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Abstract 

Cryptocurrencies have become increasingly popular as an investment due to their 

diversification role and potential use in innovative projects. A distinctive characteristic of many 

currencies is the ability to lock currencies to earn passive rewards, known as staking. Most 

existing studies have focused on the theoretical advantages of these Proof-of-Stake coins, but 

little effort has been made to examine their practical effects on returns. This paper aims to fill 

this gap by analyzing staking-specific variables, such as the staking yield and ratio gathered 

from StakingRewards.com, to examine the effects of staking on daily returns. Furthermore, 

prior research suggests that other variables, such as sentiment and regulatory changes, may also 

generate high volatility spikes. Ten currencies are selected for the sample, all with unique 

characteristics enabling a comprehensive examination of staking effects. The results indicate 

mixed results, with Solana and Ethereum both providing evidence that increased staking returns 

are associated with higher returns of 0.0662% and 0.6368%, respectively. In contrast, Cardano, 

Ton, and Tron exhibit mixed results, where higher yields lead to lower returns. This indicates 

that staking effects are not uniform and depend on currency-specific conditions. 

Additionally, GARCH(1,1) models are used to evaluate the impact of these variables on 

volatility. The findings indicate that changes in trading volume affect volatility across most 

currencies, while Polkadot and Cosmos, the currencies with the longest lockup periods in the 

sample, show increased volatility linked to lockup duration. This may reflect investors' 

tendency to reinvest or sell the staked tokens rewards. These insights offer valuable empirical 

evidence for policymakers, investors, and institutions to explore blockchain technology, 

informing on strategic decisions and risk management in the cryptocurrency market. 
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1. Introduction  

The rise of cryptocurrencies as an alternative asset class began with Bitcoin and it’s mining-

based consensus mechanism, has interested investors, policymakers, and institutions. As the 

ecosystem of cryptocurrencies evolved, attention expanded to staking, an alternative to mining, 

which offers both economic and network incentives. Through staking, cryptocurrency holders 

lock their tokens, which enhances network stability and supports the validation of blockchain 

transactions. In return, these holders earn passive periodic rewards, similar to a dividend payout 

in traditional finance. However, unlike the extensive research conducted in traditional finance, 

there has been little to no empirical research exploring the impact of staking metrics on returns. 

Since these metrics may present an additional return, they may influence investment strategies 

and staking policies. 

The existing literature on staking remains theoretical, with a minimal focus on empirical 

studies. Theoretical studies offer valuable insights into the potential impacts of staking. 

However, empirical investigation is necessary to understand the implications on returns fully. 

Previous study suggests that higher staking ratios lead to higher returns, with market indices 

serving as a key indicator of these returns, highlighting the strong correlation among currencies 

(Cong et al. 2025). However, these studies leave out the impact of staking yields on returns, 

suggesting that not all staking metrics are accounted for. 

Understanding the empirical effects of staking metrics on returns is crucial for developing 

optimal investment strategies, implementing blockchain technology, and optimizing policies 

related to staking. Staking metrics may not be fully priced in, offering additional returns on 

investments. However, these staking metrics may introduce risks that require careful 

consideration.  

The exploration of staking's impact on cryptocurrency returns forms the core of this thesis, 

motivated by a research gap where empirical evidence is limited despite robust theoretical 

foundations. In traditional finance, studies such as those by Modigliani and Miller (1961) 

establish dividends being irrelevant to firm value, with Black and Scholes (1974) suggesting 

that dividends may impact stock prices because of signaling, but note that if dividends adjust 

value, firms may adjust policies for its valuations. In contrast, DeAngelo and DeAngelo (2006) 

and Baker et al. (2002) show that dividends do impact firm value, based on input from 

managers, or contradicting assumptions made by prior studies. Literature on cryptocurrencies, 

such as John et al. (2021) and Riposo and Gupta (2024), focus on the role of staking in Proof-

of-Stake systems, prioritizing its benefits, like network security and adoption, but provides 

limited empirical insights into its direct effects on returns. This shortcoming in literature 
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inspires the central research question: "Do staking rewards enhance returns on 

cryptocurrencies?" This question aims to quantify whether staking yields function as a return-

enhancing mechanism, and whether they shape investor behavior or market stability due to the 

decentralized nature of cryptocurrencies. 

Beyond examining the direct impact of staking on returns, the thesis will also investigate the 

volatility implications of staking, as formed via a complementary question inspired by Catalini 

and Gans (2020): "Does the duration of staking lockups reduce the volatility of 

cryptocurrencies?" This question will evaluate whether more extended lockup periods, which 

reduce circulating supply, mitigate volatility or risk of supply shocks, as cautioned by Budish 

(2022). These research questions support two hypotheses: first, Higher staking reward rates 

positively affect cryptocurrency returns, which mirrors the return-enhancing effect of 

dividends noted by Iftikhar et al. (2017) and supported by Cong et al.'s (2025) concept of crypto 

carry, and second, Cryptocurrencies with longer staking lockup durations exhibit lower price 

volatility compared to those with shorter, or no lockups. This hypothesis reflects Fama and 

French's (2001) findings on the stability effects of dividends. Together, these questions and 

hypotheses provide a narrative to evaluate the economic significance of staking, offering 

empirical insights that could guide investment strategies and inform staking policies in 

decentralized finance. 

The research questions are addressed by employing a robust empirical framework, selecting 

data and techniques based on prior studies that examine the economic impacts of staking on 

returns and volatility in cryptocurrencies. The thesis focuses on ten staking cryptocurrencies: 

Ethereum, Solana, Cardano, Cosmos, Algorand, Tron, Ton, Binance, Polkadot, and Avalanche. 

These cryptocurrencies were selected based on their market capitalization exceeding $1 billion 

in 2024 and their launch before 2022, as per data from CoinMarketCap. This selection ensures 

robust price dynamics and significant staking activity, thereby minimizing noise in smaller-cap 

coins. Since the sample features unique staking systems with distinct mechanisms, such as 

liquid staking in Ethereum, the governance-based system of Algorand, and long lockup 

durations in Polkadot and Cosmos, it enables a comprehensive exploration of staking's effects 

across different network designs and investor behavior. Returns are calculated using 

logarithmic returns based on daily price data obtained from Coinbase, a major exchange with 

strict regulations ensuring independence and reliability (Bobin, 2022). Staking metrics, 

including yields, ratios, and lockup durations, are sourced from StakingRewards.com and 

cross-verified against blockchain explorers, ensuring accurate and consistent data for the period 

from 2022 to 2024. These datasets are ideal for testing both hypotheses, as they directly capture 
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the incentives and constraints of staking, which are crucial for understanding the impact on 

returns and volatility. 

To enhance the robustness of the findings, the analysis incorporates market and 

macroeconomic data to control external influences on cryptocurrency markets. The S&P 

Cryptocurrency Broad Digital Market Index tracks market-wide trends, with weekend returns 

interpolated to align with daily cryptocurrency trading. Market sentiment is captured via the 

Fear & Greed Index, obtained from Alternative.me, along with currency-specific sentiment 

from LunarCrush, effectively addressing endogeneity from investor behavior that could dilute 

the impact of staking. Macroeconomic variables are accounted for by a regulatory dummy, 

with the U.S. Federal Reserve's daily effective rate initially considered as a variable but 

excluded due to concerns about multicollinearity, as identified through Variance Inflation 

Factor analysis. The empirical techniques include an OLS regression for Hypothesis 1. 

Hypothesis 2 is addressed using a GARCH(1,1) model, which captures time-varying volatility, 

an ideal approach for cryptocurrencies due to volatility clustering (Chu et al., 2017).  

The empirical analysis shows mixed results for Hypothesis 1, revealing the subtle effect of 

staking across cryptocurrencies. The regression analysis reveals significant positive effects for 

Ethereum and Solana, where a 1% increase in staking yield boosting daily returns by 0.0662% 

and 0.6368%, respectively. This supports Cong et al.'s (2025) "crypto carry" concept, which 

posits that staking incentives reduce sell pressure and enhance returns. However, Ton, Tron, 

and Cardano exhibit significant negative effects, with a 1% increase in yield, lowering returns 

by 0.0051%, 0.0079%, and 0.6552%, respectively, suggesting that high yields may signal risk 

or trigger selloffs as stakers liquidate rewards, aligning with Schär's (2021) observations of 

speculative behavior in staking systems. For other currencies, the effects of staking yield are 

insignificant, indicating that staking rewards do not consistently drive returns, possibly due to 

differences in network maturity, lockup structures, or investor behavior. The staking ratio 

shows positive effects for Algorand, Solana, and Cardano, with a 1% increase in the ratio 

increasing returns by 0.0762%, 0.0001%, and 0.0051%, respectively, reflecting investor 

confidence in mature networks, supporting findings of Cong et al. (2025), but negative effects 

for Ton and Tron suggest selling pressure from reward distribution. The S&P Cryptocurrency 

Broad Digital Market Index is a significant driver of returns for most currencies, underscoring 

market correlation. Meanwhile, sentiment and trading volume have significant effects on Tron 

and Binance, highlighting the role of liquidity. These findings are relevant as they extend Baker 

et al.'s (2002) dividend analogy, revealing that staking's return-enhancing potential is 

dependent on currencies shaped by network-specific dynamics and market conditions. 
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However, volatility in cryptocurrency markets complicates consistent pricing, as noted by Liu 

and Tsyvinski (2021). 

For Hypothesis 2, the GARCH(1,1) models present a complex picture that partially contradicts 

the expectations. Across most currencies, trading volume emerges as a dominant driver of 

volatility, with significant p-values reflecting increased price swings resulting from supply-

demand shifts, consistent with Foroutan and Lahmiri (2022). However, lockup durations 

significantly increase volatility in Polkadot, Cardano, and Cosmos, with coefficients of 

0.000003%, 0.000006%, and 0.00000003% per unit change, respectively, contradicting the 

hypothesis. These currencies offer unique lockup structures, with Polkadot and Cosmos being 

among the currencies in the sample with the most extended lockup periods. Cardano, on the 

other hand, offers both liquid and fixed staking structures, which may experience volatility due 

to periodic reward reinvestment or selling, potentially amplifying market activity rather than 

stabilizing prices, as cautioned by Budish (2022). For other currencies, the lockup duration has 

no significant effect, suggesting that currency-specific factors, such as liquidity and staking 

flexibility, outweigh the impact of lockups. Additionally, the GARCH(1,1) models are plotted 

in volatility graphs, which reveal shared spikes across all currencies, notably after the 2024 

U.S. presidential election and the implementation of MiCA, indicating that macroeconomic 

and regulatory events have more impact compared to the volatility effects of staking, aligning 

with Liu and Tsyvinski's (2021) findings on the regulatory impacts.  These results are 

noteworthy as they challenge Catalini and Gans' (2020) assertion that lockups stabilize prices, 

highlighting the criticism of staking design and external shocks, which demands further 

research into staking protocol variations and their interaction with market conditions. 

These findings have substantial academic and practical implications, enriching our 

understanding of the economic role of staking in cryptocurrencies. Academically, the study 

fills a gap in the literature by empirically testing staking metrics absent in prior work by Cong 

et al. (2025) and Liu and Tsyvinski (2021), confirming that staking's effects on returns and 

volatility are not universal but depend on network design and market maturity. The positive 

yield effects for Ethereum and Solana support Buterin's (2020) and Saleh's (2021) theoretical 

models of staking's stabilizing incentives, while negative effects in Ton, Tron, and Cardano 

underscore speculative risks noted by Schär (2021). Practically, investors can leverage these 

insights to prioritize mature networks with stable staking yields, such as Ethereum, while 

remaining cautious of the volatility risks associated with currencies that have longer lockups, 

like Polkadot and Cosmos. Policymakers may use the findings on volatility to design 

regulations that enhance transparency in reward distribution, thereby mitigating supply 
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uncertainty during turbulent periods, such as future U.S. elections or the implementation of 

new laws. Institutions exploring blockchain integration can favor networks with balanced 

staking designs to minimize volatility risks while leveraging the benefits of staking, such as 

energy efficiency. The mixed results underscore the complexity of staking dynamics, 

highlighting the need for future research to investigate how maturing cryptocurrency markets, 

and evolving regulatory frameworks influence the economic impacts of staking. 

The thesis finds that staking in cryptocurrencies has a limited impact on returns and volatility, 

with significant positive effects on returns for mature networks, such as Ethereum and Solana, 

but negative or insignificant effects elsewhere. Additionally, it unexpectedly reveals increased 

volatility from longer lockup durations in currencies like Polkadot and Cosmos. The key 

finding is that staking's economic benefits, similar to dividends in traditional finance, are 

currency-dependent, shaped by network design, market maturity, and external shocks, offering 

valuable insights for investors to prioritize stable networks and for policymakers to enhance 

reward transparency. However, limitations include the reliance on a 2022 to 2024 dataset, 

which may not capture long-term trends as cryptocurrency markets mature, and the potential 

for unobserved variables, such as network usage or accounting for whales, which may influence 

results. Econometric challenges, like heteroskedasticity addressed with robust standard errors 

and the exclusion of the Federal Reserve rate due to multicollinearity, suggest model 

refinements. Future research should extend the time frame, incorporate additional staking-

specific metrics, such as validator concentration, and explore advanced models, including panel 

regressions or machine learning, to capture dynamic interactions better and address 

endogeneity, thereby enhancing the generalizability of staking's economic implications. 

The rest of the thesis is organized as follows: Chapter 2 presents a detailed literature review, 

building on traditional finance theories related to dividend impacts and bridging them to 

cryptocurrency research on staking, thereby establishing the theoretical foundation for this 

study. Chapter 3 defines the research questions and hypotheses, focusing on the empirical 

impact of staking's effects on returns and volatility. Chapter 4 discusses the data selection 

process, outlining the selection of ten cryptocurrencies based on specific thresholds and 

describing key variables, including staking metrics, market sentiment, and macroeconomic 

variables, for the 2022-2024 period. Chapter 5 presents the empirical methodology for testing 

Hypothesis 1, using an OLS regression and implementing a GARCH(1,1) model to examine 

Hypothesis 2. Chapter 6 continues on the empirical models presented in Chapter 5, detailing 

both models used to test the hypotheses. Chapter 7 presents empirical findings, examining 
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whether the hypotheses are supported. Finally, Chapter 8 concludes this thesis, summarizing 

key findings and discussing key limitations that offer potential for future research. 
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2. Literature Review 

The evolution of the cryptocurrency market has introduced mechanisms that challenge 

traditional financial theory, with staking being a key feature of Proof-Of-Stake (PoS) 

blockchain protocols. Staking allows investors to lock up their holdings to support network 

operations. As compensation, investors receive periodic rewards comparable to dividends in 

stocks or coupon payments with bonds. In traditional finance, researchers have established the 

influence of periodic payments on asset pricing, investor behavior, and market dynamics. 

Studies by Modigliani and Miller, as well as Black and Scholes, demonstrate how periodic 

payments affect liquidity and impact returns and firm value (Modigliani & Miller, 1961; Black 

& Scholes, 1974). In the domain of cryptocurrency, however, the direct impact of staking on 

asset returns and dynamics remains underexplored. 

2.1 Theory of traditional finance 

In traditional finance, periodic payments play a crucial role in asset valuation, market 

dynamics, and investor behavior. Since these periodic payouts to stockholders are comparable 

to payments to stakers, the literature on traditional finance offers a framework for evaluating 

the economic impact of staking. 

Modigliani and Miller (1961) established a theory, assuming a perfect market, that 

dividend policy is irrelevant to firm value. Returns should only depend on investment decisions 

rather than payouts. However, they acknowledged that in the presence of market imperfections, 

such as taxes or asymmetric information, dividend policy could become relevant, suggesting 

that periodic payments may enhance returns, a mechanism that staking rewards in 

cryptocurrency prices may mirror. 

Black and Scholes (1974) argue that if payout policies impact values, firms can increase 

their share price by adjusting their payout ratio. This would saturate demand for different 

dividend-yielding stocks, leading to an equilibrium in which the policy would not affect the 

stock price. They confirm this by presenting empirical evidence that different dividend yields 

result in variations in stock returns, suggesting that dividend policies do not consistently impact 

stock prices. 

The statements about the irrelevance of dividends contradict valuation models that 

consider dividends, such as the Dividend Discount Model (DDM), which was founded by 

Williams (1938). This model values assets based on the present value of future dividends, 

formulated as 𝑝 = ∑
𝐷𝑡

(1+𝑟)𝑡

∞

𝑡=1
. This model was later refined by Gordon (1959), where the 
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author introduced the Gordon Growth Model (GGM), formulated as 𝑝0 =
𝐷1

𝑟−𝑔
 . Within the 

model, constant dividend growth is assumed. In his paper, Gordon quantified the role of stable 

payouts on returns, providing a foundational link between periodic payments and asset 

valuation. 

Bhattacharya (1979) extended the dividend debate by introducing a signaling model 

where dividends convey private information. In his framework, dividends serve as a signal of 

firm quality in the presence of asymmetric information. High-quality firms use dividends to 

differentiate themselves from lower-quality firms, making the payout policy informative for 

investors. This signaling logic, particularly relevant for staking, offers a key insight into the 

importance of dividend policies in the finance sector. 

DeAngelo and DeAngelo (2006) support the findings that dividend policies impact 

value in the paper "The Irrelevance of the M&M Dividend Irrelevance Theorem." The 

researchers argue that payout policies do impact firm value and highlight different frictions 

overlooked in M&M's original model, such as taxes, agency costs, and cash flow asymmetries. 

These real-world frictions explain why dividends can influence asset prices. The critique 

suggests that dividend payments do influence firm value and returns, which is a relevant 

perspective to consider when evaluating staking rewards.  

Rozeff (1982) extends research into the relevance of dividends. The author found that 

dividend policies can mitigate agency conflicts by distributing free cash flows, thereby aligning 

the interests of managers and shareholders, suggesting that high dividend payouts signal good 

governance and enhance firm value. This perspective on agency problems suggests that staking 

policies could align the interests of holders and protocol developers, thereby boosting investor 

confidence and returns. Rozeff's findings strengthen the need to assess the economic impact of 

staking, as he highlighted the governance role of payouts. 

Baker et al. (2002) surveyed managers of firms that pay cash dividends to investigate 

the relationship between dividend policy and value, their views on dividend policies, and the 

explanations for paying dividends. They find that managers support statements that suggest 

dividend policy matters and stress the importance of dividend continuity. The managers offer 

no support for the tax preferences and agency cost explanations for dividend payouts, instead 

suggesting that dividends should serve as a signal to investors of private information, similar 

to Bhattacharya (1979). 

Fama and French (2001) link a decline in paid dividends to firm maturity. They suggest 

that established firms are more likely to pay dividends, whereas growth firms prefer to reinvest 
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profits or distribute value through capital gains. This lifecycle perspective implies that staking 

may be more common or more valued in mature blockchain ecosystems, mirroring dividend 

behavior in established companies.  

Baker and Weigand (2015) offer modern research on dividend policy and its impact on 

firm valuation. The authors provide a comprehensive overview of all the important literature 

on dividend policies. They find that there is no universal theory explaining why firms pay 

dividends or the quantity of dividends they pay. 

Iftikhar et al. (2017) continue on the theoretical research in traditional finance and 

provide empirical evidence that dividend payouts impact stock prices. The authors use a 

regression to show that with a one-unit increase in dividend payout, stock prices increase by 

19.38730. Similarly, an increase in dividend per share leads to a 5.373796 increase in stock 

prices. 

The debate within traditional finance underscores the need to evaluate the effects of staking in 

cryptocurrency finance, as the formulas used in traditional finance may also have an impact on 

staking cryptocurrencies. Staking rewards resemble dividends, which means that DDM or 

GGM may be used to value tokens. However, the variability in staking and the risks of locking 

up tokens, such as market manipulation, challenge the traditional literature, making perfect 

market assumptions less applicable. 

Cong, He, and Tang (2025) bridge the findings from traditional finance to 

cryptocurrencies in their paper "The Tokenomics of Staking." The authors develop a model of 

tokenomics that introduces "crypto carry" to link staking rewards to price changes. Crypto carry 

refers to the yield from token lockups, similar to dividends, and is shown to reduce supply and 

increase adoption, potentially enhancing returns. They suggest that staking rewards influence 

prices beyond traditional cash flows, indicating a combination of periodic income and 

speculative growth.  

The rising participation among institutional and retail investors shows the growing 

adoption of staking. Literature in traditional finance shows both empirical and theoretical 

evidence of the impact that dividends payout has on stock prices. Based on these results, the 

gap in crypto finance needs to be investigated to fully understand market dynamics. 

2.2 Proof-Of-Stake 

To understand the role of staking in cryptocurrencies, an analysis of the staking mechanisms 

and their economic implications is crucial. PoS is a protocol where token holders lock their 

assets, which validates transactions and increases network security in exchange for periodic 
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rewards. This section reviews studies on the comparison of PoS with Proof-of-Work (PoW). 

Also, the impact of staking via periodic rewards and locked tokens on the market is studied. 

Findings are found in theoretical frameworks and empirical research. 

Research in PoS shows that this is an energy-efficient alternative to PoW, which 

depends on data mining. Saleh (2021) examines PoS using a theoretical model that compares 

PoS and PoW. The model assumes tokens are staked to increase network security and focuses 

on the process of preventing energy waste. Saleh only uses theoretical evidence to predict the 

behavior of PoS under specific conditions, such as the number of stakers. The key findings 

indicate that PoW requires more energy, while PoS requires almost none. This is explained as 

PoS depends on tokens rather than machines and computers needed in PoW. Saleh also finds 

that PoS can maintain a consensus, which is a stable agreement regarding transactions if enough 

tokens are staked. Chiu and Koeppl (2017) provide insights into the comparison between PoS 

and PoW systems, focusing on their abilities to prevent double spending, a mechanism where 

holders spend the same tokens multiple times. They examine the consensus mechanisms, and 

how this aligns with validator behavior and network security, focusing on the importance of 

penalties, such as slashing, to counter malicious actions, showing the benefits of PoS compared 

to PoW. Their model remains theoretical, as it explores the theoretical structure of both 

mechanisms. Empirical data on energy consumption, one of the key benefits of PoS is provided 

by Digiconomist. The author shows that Bitcoin (PoW) consumes 700-1000 kWh per 

transaction. Comparing this to Ethereum (PoS), it gets reduced by over 99.95%, estimating to 

require about 0.03-0.1 kWh per transaction (Digiconomist, 2025) 

            Buterin (2020), the inventor of Ethereum, explained the reasoning behind the transition 

of Ethereum from PoW to PoS. One of the primary motivations for the transition to PoS is to 

address the energy-intensive nature of PoW. Buterin noted the significant requirement for 

computational power in PoW, which leads to substantial energy consumption. This is replaced 

by the implementation of PoS, where validators participate in staking, thereby reducing the 

environmental footprint, as also found by Saleh (2021) and the Digiconomist (2025). Another 

key reason for the transition of Ethereum to PoS is the robust security, which the authors find 

to be more efficient compared to PoW. With PoS, investors are incentivized for honest 

behavior, as staked tokens may be slashed for malicious behavior (Buterin, 2020; Chiu & 

Koeppl, 2017). 
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2.3 Economic implications of staking 

Staking in PoS systems does more than secure networks, it changes market dynamics as tokens 

are locked in exchange for a return. This reduction in supply may influence investor behavior 

and impact price action, much like dividends in traditional finance. This section examines the 

economic implications of staking, which helps to understand the role of staking in generating 

returns.  

Cong, He, and Li (2021) investigate staking pools, in which token holders combine 

assets to validate transactions and earn rewards. To show the impact, they create a model that 

simulates a network based on PoS with staking pools. With the assumption that holders have 

more tokens staked than others, they evaluate how these pools are formed and how rewards are 

distributed. The model focuses solely on theoretical aspects, avoiding real-world data. They 

find that staking pools make rewards more consistent. A reduction of variation in payouts of 

staking by 2-5% compared to solo staking. The authors provide reasons for this variation, 

including risk sharing in pools and the benefits of scaling. However, they warn about the risks 

of manipulation in these pools, as they may lead to centralization, where large holders control 

a significant portion of the staked assets, potentially influencing prices, or network stability. 

However, the study only focuses on these pools and does not show the effects on prices or 

returns.  

Catalini and Gans (2020) study the effect of holder behavior. They use a theoretical 

model that acts like a stablecoin market, where holders lock tokens to stabilize the value of a 

currency, similar to staking, where holders earn a periodic reward. They solely use theoretical 

assumptions and test the costs of locking tokens, such as sudden price increases. They evaluate 

different scenarios, such as changes in returns or varying lockup periods, to observe the 

behavior of investors. They show that locking up tokens incentives long-term holdings and a 

decrease in selloffs when the markets go down. They also note the flexibility costs of locking 

up tokens. During this period, investors are unable to sell tokens if the price increases, but 

periodic returns offset this. However, as if it were only a theoretical framework, no real-world 

data is used to demonstrate the impact of staking on prices or returns. These studies provide 

theoretical evidence for staking and how supply may be reduced, encouraging long-term 

holding. However, no data is provided to verify whether this affects market prices or returns. 

Budish (2022) explores the liquidity implications, suggesting that staking’s token 

lockups reduce market fluidity, potentially indicating strong confidence among holders, as they 

may be more long-term focused. They found that limiting short-term speculation aids price 

discovery. However, the authors warn about volatility spikes when the shortage of supply 
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disrupts the market equilibrium. The authors base the findings on a theoretical model which 

focuses on Bitcoin. The model assumes tokens are locked to improve network functions, which 

reduces the available supply. Different scenarios are theoretically assessed to see if trading 

fluidity and price discovery are affected. The findings of Budish are supported by Schär (2021), 

who notes that projects may rely on governance voting schemes, where token holders grant 

voting rights, similar to a stock. These tokens may increase active participation in the token but 

note that the distribution of tokens is highly concentrated. This may lead to a loss of project 

credibility, result in massive supply shocks, and have a negative impact on liquidity, as noted 

by Budish. The findings of Budish and Schär differ from those of Catalini and Gans (2020), 

who suggest that lockups stabilize prices and volatility. Budish highlights the risks in low-

volume markets when reduced liquidity increases price swings. The high concentration risk 

echoes the warning in the paper of Chiu and Koeppl (2017) about the centralization risks of 

PoS, where a small group of stakers may impact market dynamics. 

2.4 Market dynamics and returns 

Staking in PoS systems extends beyond network security. It shapes the dynamics of the 

cryptocurrency market through its impact on supply, liquidity, and investor behavior. By 

locking up tokens to earn rewards, staking reduces the circulating supply of tokens. As rewards 

are commonly paid in tokens, mimicking dividend reinvestment by increasing token holdings, 

returns may increase as the holdings increase. 

Gupta and Krishnamachari (2024) provide empirical evidence on staking rewards. They 

predict staking rewards for top PoS cryptocurrencies, utilizing regression analysis to forecast 

rewards based on historical data, including reward rates, token prices, and market trends. They 

use blockchain explorers to collect daily data and price feeds from exchanges. Their study is 

based on data from 2022 to 2023. They predict rewards and compare them to actual rewards, 

measuring accuracy using the root mean squared error (RMSE). They show empirical evidence 

that the rewards of Ethereum can be predicted with an error of 0.7% for 1-day forecasts and 

1.1% for 7-day forecasts. Most staking rewards researched in this study are predictable, but 

currencies like Solana show slightly less accuracy due to faster block times. However, for their 

research, they leave out crucial factors for staking, such as the distribution of tokens and the 

volume of staked assets. Another shortcoming is the short-term predictions, as these are only 

either 1- or 7-day forecasts. The paper also does not link staking to market outcomes.  

John, Rivera, and Saleh (2021) offer a return-orientated perspective in which the 

researchers analyze equilibrium staking levels in PoS systems. The researchers assume that 
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staking participation stabilizes network economics, making staking a lucrative strategy for 

token holders. These rewards could enhance total returns as staking reduces supply and 

improves economic performance. They note that “increasing block rewards reduces short-

horizon cryptocurrency investment, which, under certain conditions, reduces the overall 

transfer to long-horizon investment as well” (John et al., 2021). This decreases total 

investments in cryptocurrencies, leading to a lower value of the staked assets. However, the 

researchers remain theoretical, lacking empirical evidence of price action or changes in 

volatility. Biais et al. (2023) extend this discussion by examining the dynamics and risks of 

staking. The researchers explore the PoS consensus via a theoretical view. They suggest staking 

aligned incentives but introduces different risks. Dominant holders may manipulate prices or 

volatility. Coordination among stakes may change the power dynamics between holders. 

However, the study warns about the usefulness of the findings as the theory is complex, and 

the empirical evidence is limited.  

 

 

CoinGecko (2024) provides practical insights into staking yields among the top PoS 

blockchains. In Figure 1, the yields and staking ratios are added, and the staking ratio is the 

ratio of staked assets compared to total available assets. As shown in the figure, Ethereum has 

a staking ratio of 28% with an annual yield of 3%, while Polkadot has a staking ratio of 56% 

with an annual yield of 11%. The figure shows no definite trend between a higher yield and a 

higher staking ratio, suggesting that investors consider more aspects to stake rather than solely 

yields. 

Cong et al. (2025) provide empirical evidence that a higher aggregate staking reward 

does increase the staking ratio. For this, the authors use a regression with StakingRatio as the 

dependent variable, with independent variables being staking reward rate, NotLaunched 

Figure 1: Annual Staking Yield to Staking Ratio (CoinGecko, 2024) 
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dummy, value share held by large holders known as whales, and platform productivity. The 

staking ratio is significantly and positively affected by rewards and whales and negatively by 

platform productivity. Cong et al. (2025) provides more empirical research on staking ratios. 

They suggest that the staking ratio positively predicts changes in token prices. Empirical 

evidence is provided with a regression based on the previous staking ratio. This revealed a 

significantly positive staking ratio, indicating that a higher staking ratio predicts higher token 

price appreciation. They also assess portfolio performance based on staking ratio by longing 

the top 50% of high-staking tokens and shorting the bottom 50%. They prove that this portfolio 

provides positive cumulative returns with a Sharpe ratio of 0.865. This study shows the impacts 

of staking ratios on returns and portfolio performance; however, the study is focused on the 

staking ratio, leaving out the impact of staking yields. 

Riposo and Gupta (2024) model staking as a floating rate note to estimate the returns 

on staking. Empirical evidence is based on Ethereum 2.0. The framework estimates expected 

returns by considering network-specific variables, such as staking participation and transaction 

volume. The model also incorporates slashing, a penalty for validator misbehavior that impacts 

yields, and Maximal Extractable Value (MEV), where validators obtain extra profit from 

ordering transactions. Thus, offering a complete view of all the economic drivers within 

staking. They find that staking rewards rise with increased supply lockups and network activity, 

potentially exceeding traditional yields. However, the model theoretically links staking rates to 

effects on price or volatility but lacks empirical evidence based on real-world data. The model 

also focuses solely on Ethereum 2.0, which may show different dynamics compared to other 

blockchains. Fan, Jiao, Lu, and Tong (2024) analyze an investment strategy in which investors 

exploit high staking yields in PoS assets, such as ATOM, to achieve excess returns. They found 

empirical evidence of an average excess return of 1,5% per month. The study employs a cross-

sectional approach to demonstrate that carry trades rely on yield differences, which is 

comparable to a dividend-seeking investment strategy. They note, however, that using this 

strategy does face a risk of crashing from lockup-induced volatility spikes. Nevertheless, for 

this thesis, the investor behavior in this strategy helps determine the market influence of 

staking. 

Liu and Tsyvinski (2021) explore the risk and return dynamics of cryptocurrencies over 

the period 2011 to 2018. They provide empirical evidence that cryptocurrencies exhibit high 

volatility, with annualized volatilities differing from 60 to 100%. The study also finds a low 

correlation between cryptocurrencies and traditional assets, like bonds and stocks. Liu and 

Tsyvinski identify crypto-specific return drivers, including momentum, investor attention, and 
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network effects. For example, they find empirical evidence that past weekly returns predict a 

4 to 6% higher return the next week, while investor attention boosts return by 2 to 3%. The 

authors note that cryptocurrencies are insensitive to macroeconomic variables during the study 

period. 

Chu et al. (2017) investigated the volatility dynamics of cryptocurrencies by applying 

various GARCH models to several cryptocurrencies, utilizing data from 2014 to 2017. Their 

study assesses the performance of various GARCH models in capturing the distinctive 

characteristics of cryptocurrencies, including their high volatility. They find that the 

GARCH(1,1) models provide the best fit for most cryptocurrencies, effectively capturing the 

volatility and fat-tailed nature of returns. Their study also highlights the influence of external 

factors on volatility, such as trading volume or sentiment, with higher volumes being associated 

with increased volatility because of speculative trading activity. The authors note that 

cryptocurrencies exhibit asymmetric volatility responses in which negative shocks have a 

larger impact on volatility than positive shocks. This study is relevant as it enables modeling 

volatility in PoS currencies, validating the use of GARCH(1,1) models to capture the volatility 

dynamics of crypto returns. The authors suggest that staking mechanisms, such as lockup 

durations and reward distribution, may impact liquidity and price stability (Chu et al., 2017). 

Foroutan and Lahmiri (2022) use an EGARCH model to model volatility during the COVID-

19 pandemic. The authors use ten cryptocurrencies to investigate the relationships between 

return, volatility, and volume. The authors find empirical evidence of a relationship between 

return and volatility for most of the sample. They find that changes in volume solely influence 

volatility (Foroutan & Lahmiri, 2022). 

2.5 Conclusion 

While in traditional finance, both theoretical and empirical research show that periodic 

payments, such as dividends and coupons, are return drivers, the role of staking rewards in 

cryptocurrency remains underexplored. Modigliani and Miller (1961) suggest that firm values 

are irrelevant to dividend policies. This statement has been contradicted by many studies over 

time, such as DeAngelo and DeAngelo (2006). Evidence is provided both empirical and 

theoretically confirming that periodic payments increase the price of assets, mainly explained 

by the signaling principle of private information. However, in crypto finance, most research 

prioritizes the technical and economic mechanisms of staking but not the returns. Saleh (2021) 

and Chiu and Koeppl (2017) highlight the benefits of PoS, including energy-efficient 

mechanisms and increased security, demonstrating how lockups strengthen networks. Cong et 
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al. (2021), Cong et al. (2025), and Catalini and Gans (2020) suggest that staking encourages 

holding and reduces supply, potentially stabilizing prices. These studies, however, focus on 

theoretical models, providing limited empirical evidence or leave out staking yields as a 

potential driver of returns. This research gap is critical as the periodic rewards of staking could 

drive returns by increasing holdings and signaling an increase in network security. This thesis 

aims to address this gap by examining the impact staking has on returns in PoS currencies, 

building on frameworks and principles from traditional finance.  
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3. Hypothesis 

In the literature review, the connection between periodic payments and their impact on asset 

returns in traditional finance has been established. Studies like those by DeAngelo and 

DeAngelo (2006) demonstrate how dividend payments signal firm value, a finding supported 

by many researchers. Research into the cryptocurrency literature reveals that the focus lies on 

the role of staking in PoS systems and the benefits that PoS currencies offer, such as 

enhanced network security, adoption dynamics, and the reduced carbon footprint. These 

researchers pay no attention to the full impact staking metrics have on returns or prices. 

Studies like those by John et al. (2021) and Riposo and Gupta (2024) have modeled staking 

payouts as potential enhancers of returns. However, the emphasis of these studies is on 

theoretical application without empirical evidence to support their findings, which this thesis 

aims to address. 

This chapter will define the research questions and hypotheses guiding the research 

into the impact of staking on returns. Increased staking participation suggests that staking is 

more than solely a technical feature, it influences supply, liquidity, and behavior of investors 

similar to dividends or coupons. However, while there is empirical evidence in traditional 

finance, current literature on staking falls short of evaluating the practical implications of 

staking. Gupta and Krishnamachari (2024) demonstrate the predictability of staking rewards, 

and Riposo and Gupta (2024) model yield by incorporating network activity and lockups into 

supply. However, no research ties these factors to price or volatility changes. This gap 

motivates an empirical exploration into the role of staking as a driver of returns. 

The main gap this thesis addresses is focused on staking, framing the main research question 

as: “Do staking rewards enhance returns on cryptocurrencies?”  

This question builds on the findings in the literature review, in which Cong et al. 

(2025) suggest that staking reduces supply, potentially leading to an increase in price if 

demand holds. John et al. (2021) argue that staking rewards stabilizes the blockchain 

network, offering a lucrative investment strategy akin to dividend returns. In traditional 

finance, the impact of dividends has been thoroughly examined, with authors noting both the 

relevance of dividend policies and their irrelevance. Papers like Baker et al. (2002) and 

Iftikhar et al. (2017) quantify dividends as a return boost, which may indicate the potential 

impact of staking.  

H1: “Higher staking reward rates show a positive effect on cryptocurrency returns.” 
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This hypothesis is based on the effect of dividend yields in traditional finance, 

following the impact of periodic rewards and the reduction in supply resulting from staking, 

which drives returns. This hypothesis can be empirically evaluated via an analysis of market 

data.  

Another question that complements the main research question this thesis seeks to answer is, 

“Does the duration of staking lockups reduce the volatility of cryptocurrencies?”  

Research in traditional finance highlights the additional benefits of dividend 

payments, which signal firm strength and mitigate agency conflicts (Rozeff, 1982; Fama & 

French, 2001). Following this research in traditional finance, the assumption is that this 

dynamic may be mirrored by staking. Budish (2022) has already researched the impact of 

lockups in staking, finding that lockups indicate the confidence of holders but warns of spikes 

in volatility from supply shocks resulting from market manipulation. Catalini and Gans 

(2020) explore how PoS mechanisms align token holders with network success, potentially 

supporting long-term participation. Riposo and Gupta (2024) suggest that staking rewards 

enhance network stability but lack empirical evidence. Within PoS systems, lockup durations 

vary, which allows for a natural experiment to assess the effect on stability.  

H2: “Cryptocurrencies that have longer staking lockup durations show less price volatility 

compared to currencies with shorter or no lockup durations.”  

This hypothesis is based on traditional finance, where Fama and French (2001) noted 

that mature firms pay dividends to signal stability, potentially reducing volatility. This trait 

may also be reflected in cryptocurrencies. Unlike in traditional finance, where dividends have 

a uniform schedule, the variability within PoS systems offers a unique perspective for 

assessing specific effects within the cryptocurrency market, such as volatility.  

These questions frame the empirical research of this thesis, testing if staking in PoS systems 

functions as a periodic payment mechanism with empirical impacts in the market. The thesis 

is based on the literature review, in which theoretical and practical insights are discussed. 

Following the approach used to establish the impact of dividends and coupons in traditional 

finance, this thesis aims to provide empirical evidence of the economic significance of 

staking. If this evidence can be obtained, it will contribute to academic research and may also 

be utilized in investment strategies involving cryptocurrencies. Evidence of H1 could 

prioritize high-yielding staking assets for investors, while evidence of H2 may favor 
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investment strategies with a long-term focus. Policymakers can use evidence of the 

hypotheses to re-evaluate risks within their staking policy. 
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4. Data 

The empirical analysis requires multiple datasets. The most crucial part is selecting currencies 

that meet the required criteria. These choices need to be well-considered, as the research relies 

on data based on these currencies, including returns, staking ratios, staking rewards, and market 

sentiment. Finally, macroeconomic factors, such as interest rates and legal changes, need to be 

considered, as these are crucial for answering the research questions and ensuring robust 

results. 

4.1 Currency selection 

A selected sample of cryptocurrencies meeting specific criteria to ensure a robust analysis of 

PoS dynamics is chosen. As illustrated in Appendix A, media interest in PoS increased 

significantly from 2022 onward, with limited attention prior to that. Consequently, only 

cryptocurrencies launched prior to 2022 are included, covering the study period from 2022 to 

2024. To mitigate the high volatility present in the cryptocurrency market, all selected coins 

have a market capitalization of $1 billion or higher as of 2024. This threshold ensures that the 

selected currencies offer stable price dynamics, which enhances data reliability. Control 

variables are incorporated to address endogeneity concerns, which are selected based on 

established research on cryptocurrencies. 

4.1.1. Ethereum 

Ethereum (ETH) has the second-largest market cap in cryptocurrencies, behind Bitcoin, 

making it the largest altcoin. It achieved a maximum market capitalization of almost $472 

billion in 2024 (CoinMarketCap, 2025). Ethereum officially transitioned from PoW to PoS in 

September 2022, a crucial change during the period of this study. Prior to this transition, staking 

was already possible via Beacon Chain. However, users were unable to withdraw tokens until 

the full transition (Bitstamp, 2024). For the thesis, staking data prior to the transition is also 

included, as staking was an active option during that time. Ethereum has high liquidity and 

extensive validator activity, which minimizes volatility. Ethereum has high lockup 

requirements, as thirty-two tokens are needed for staking, allowing for an exploration of the 

supply dynamics in the event of unstaking (EtherScan, 2025).  

4.1.2. Solana 

Solana (SOL) is also included,  reaching a market cap of almost $120 billion in 2024 

(CoinMarketCap, 2025). A key aspect of SOL is its high transaction throughput, which is 

driven by a PoS mechanism (SolScan, 2025). Solana is widely adopted in DeFi, making it 
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suitable for a regression analysis on returns and liquidity effects. SOL has experienced 

extensive price growth since its ICO in 2020, but this has stabilized since, making it suitable 

for analysis to determine the economic impact of staking. 

4.1.3. Cardano 

Cardano (ADA), with a market capitalization of approximately $50 billion USD in 

2024, employs an efficient PoS protocol (CoinMarketCap, 2025). Its liquid staking pool 

eliminates traditional lockup periods, limiting analysis of liquidity impacts, but offers insights 

into validator dynamics and the economic implications of staking due to its high liquidity and 

established network (CardanoScan, 2025). 

4.1.4. Cosmos 

Cosmos (ATOM) is also selected. ATOM offers a high staking yield, offering insights 

into differences in impacts based on yield. ATOM reached a market capitalization of $5 billion 

in 2024, falling short of its previous high of around $10 billion in 2022 (CoinMarketCap, 2025). 

The PoS implemented in ATOM supports interoperability, making its role in the cross-chain 

ecosystem relevant for studying the economic impacts of staking (AtomScan, 2025).  

4.1.5. Algorand 

Algorand (ALGO) is also included. ALGO employs a pure PoS protocol, which 

features an automatic staking mechanism, allowing for easy participation, making it crucial in 

understanding investor behavior and supply effects (AlloInfo, 2025). Algorand has experienced 

a significant decline in market capitalization, from $15 billion in 2022 to just over $2 billion in 

2024 (CoinMarketCap, 2025).  

4.1.6. Tron 

Tron (TRX) reached a market cap of thirty-six billion dollars in 2024 (CoinMarketCap, 

2025). TRX uses a delegated PoS system, where super representatives are used to stake tokens 

(TronScan, 2025). The application of TRX in stablecoin transfers, as well as its use in DeFi, 

makes it suitable for studying the effects on liquidity and returns. 

4.1.7. Ton 

Ton (TON) is selected for its real-world applications. The currency is integrated with 

Telegram, enabling users to easily conduct transactions via TON, which ensures high trading 

volumes (TonScan, 2025). TON reached a market cap of twenty-five billion in 2024, which 

means it matches the criteria for currency selection (CoinMarketCap, 2025). TON is a PoS 

currency and operates on an independent blockchain (TonScan, 2025). 
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4.1.8. Binance  

Binance (BNB) is the official token released by exchange Binance. It uses a PoS 

mechanism and is commonly used on Binance, resulting in high liquidity and trading volume 

(BNBScan, 2025). The noise of volatility is also limited, as Binance is a global exchange, with 

the currency achieving a market cap of $100 billion in 2024 (CoinMarketCap, 2025). The 

appliance of BNB in Defi complements the uses of Solana, which offers a comparison of the 

differences among currencies. 

4.1.9. Polkadot 

Polkadot (DOT) is selected for its high yield and solid PoS system, which enables 

interoperability. Polkadot had a maximum market cap of $15 billion in 2024. Combining this 

with an active validator network makes it suitable for studying both returns and liquidity 

dynamics. Compared to different PoS currencies, DOT offers a high yield for staking, making 

it an interesting currency for this thesis (CoinMarketCap, 2025; PolkadotScan, 2025). 

4.1.10. Avalanche 

Avalanche (AVAX) is chosen for its high-yielding PoS protocol and fast transactions. 

As it offers a high yield, the high number of validators makes it a suitable case for analyzing 

the dynamics of returns and supply. Similar to BNB and SOL, AVAX has seen growth in both 

the DeFi and institutional adoption markets, achieving a maximum market cap of almost $25 

billion in 2024 (CoinMarketCap, 2025). However, similar to ETH, AVAX has a high-stake 

requirement of 2000 AVAX tokens, offering insights into the impact of lockups (AvaScan, 

2025).  

This sample of ten cryptocurrencies provides diversity in PoS mechanisms, market dynamics, 

and staking characteristics. All meet the criteria of an ICO before 2022 and have a market 

capitalization above $1 billion as of 2024. Their independence from one another excludes 

dependent tokens, such as Polygon. Cryptocurrencies with low staking yields, such as 

Chainlink and Hedera, where staking rewards have minimal impact, are also excluded to ensure 

a meaningful analysis of staking effects. 

4.2 Data collection for currencies 

Following the selection of cryptocurrencies, specific data for each currency were collected to 

address the research question, which examines the impact of staking on returns, volatility, and 

liquidity in PoS cryptocurrencies. Data are obtained for the period from 2022 to 2024, aligning 

with the surge in PoS interest that began in 2022, as noted in Section 4.1, to maximize the 
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likelihood of significant findings. This section justifies the sources and methods used for data 

collection, ensuring robust empirical analysis. 

4.2.1. Daily prices and returns 

The most important piece of data for this thesis is the daily prices, which are used to calculate 

daily returns and serve as the dependent variable for the study. This data is essential in assessing 

the impact of staking on returns, the key part of the research question. This data is obtained 

from Coinbase, a major exchange with no affiliates in the selected currencies, which ensures 

independence and removes the potential for any biases (Bobin, 2022). The data obtained 

consists of the daily open, close, high, and low prices. For the consistency of the research, the 

daily returns are based on daily closing prices, calculated as logarithmic returns with ln(𝑝𝑡) −

ln(𝑝𝑡−1). Logarithmic returns are used in statistics for properties such as the normalization of 

price changes. Within the data obtained from Coinbase, the daily volume is also obtained. This 

data is interesting for the research as the volume can be used as an indicator to show the impact 

of the lockup periods and investor behavior after this period.  

Coinbase was selected as a key source for data because of its extensive market coverage and 

robust API, which provides reliable data for all selected currencies. Since Coinbase is a large 

exchange subject to strict regulations, its prices and volume data are robust and continuous, 

minimizing the potential discrepancies that occur with smaller exchanges (Bobin, 2022). The 

data collected spans the entire period from 2022 to 2024, eliminating the need for sample 

adjustments.  

4.2.2. Staking data 

Staking data is essential for analyzing the economic effects of staking in PoS currencies, as this 

provides insight into additional returns, changes in volatility, and liquidity dynamics resulting 

from staking mechanisms. This data is used to address both the primary research question, 

focusing on returns, and the second question, which focuses on volatility and liquidity. These 

data include the yield from staking, lockup requirements, and staking ratio for the selected 

currencies.  

Staking yield is expressed as an annual percentage and measures the additional returns 

that investors earn from staking, similar to dividends in traditional finance. This is essential in 

determining whether higher yields drive stability or volatility. This data is obtained as effective 

daily rewards rates, which reflect the change in rewards depending on the amount staked and 

validator performance, and is sourced from Stakingrewards.com, a leading platform for staking 
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metrics. This site provides reliable and historical information on yields, lockup periods, and 

minimum staking requirements. Their data is based on various sources to ensure robust results. 

Staking yields and lockup details are cross-verified with blockchain explorers, which are 

specific for each currency. These explorers provide real-time statistics on validators and 

protocols.  

The staking ratio measures the proportion of the total coins that are locked for staking, 

calculated by dividing total staked tokens by total circulating supply. This data is essential in 

analyzing if lockups and other behavioral changes influence volatility or returns. Data on 

staked tokens is also obtained from StakingRewards.com. The total token supply is estimated 

by dividing the daily market cap by the daily closing price of the currency. The data on the 

market caps is obtained from Coinmarketcap.com. 

Lockup requirements provide insights into the volatility and liquidity dynamics of 

cryptocurrencies. Staking protocols require stakers to lock tokens in order to earn rewards, 

allowing this data to be sourced from various blockchain explorers. However, as exchanges 

offer different lockup durations, the data is adjusted based on unlock periods, as determined by 

explorers, combined with exchange requirements. This adjustment is based on changes in 

staking ratio’s, allowing to capture when supply becomes available. By making the lockup 

variable time-varying, rather than stationary, the GARCH(1,1) can more accurately estimate 

the impact of lockup durations on volatility.  

The staking data are appropriate for the research questions because they provide a direct 

measure of both the financial and operational aspects of staking that influence returns, 

volatility, and liquidity. Higher yielding PoS currencies may attract investors, which can 

increase returns but also volatility if staking participation fluctuates over time. Lockup 

requirements restrict the token supply, which may stabilize prices during lockups but introduce 

other risks, such as massive unstaking events. The selection of diverse staking mechanisms 

among selected currencies enables a comprehensive analysis of the economic effects of staking, 

aiming to fill the current gap in the existing literature. With the focus on high-cap coins, the 

noise from speculative low-cap coins is minimized, ensuring reliable staking metrics. 

Data on staking yield and ratio for the selected cryptocurrencies were primarily sourced 

from StakingRewards.com, a widely cited platform for staking metrics, ensuring consistency 

across the 2022–2024 study period. However, Algorand lacks comprehensive historical yield 

and staking ratio data on StakingRewards.com due to its governance-based staking model, 

which differs from traditional PoS mechanisms. To address this, a constant staking yield of 

4.42% was obtained from Coinbase, a major exchange providing standardized yield estimates 
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for Algorand (Coinbase, 2025). Algorand's staking ratio was estimated by dividing its Total 

Value Locked (TVL), sourced from DefiLlama, by its market capitalization, yielding an 

average staking ratio of 10% over the study period. 

For Ton, which transitioned from PoW to PoS in November 2022, the staking yield and 

ratio are assumed to be zero prior to the transition due to the absence of a staking mechanism. 

Post-transition, TON's staking data were sourced from StakingRewards.com, consistent with 

other cryptocurrencies, ensuring comparability. 

4.2.3. Market data 

To address endogeneity issues, market data is essential to capture external price fluctuations 

and investor behavior that may confound the effects of staking. Endogeneity may arise via 

reverse causality or omitted variables. To control broader market trends, the S&P 

Cryptocurrency Broad Digital Market Index is used as a control variable. Sentiment indicators 

are also included to account for market-wide and currency-specific optimism or fear, which 

may drive price movements independently of staking mechanics. 

The Fear & Greed Index, gathered from Alternative.me, is a metric that combines 

cryptocurrency market indicators, including volatility, trading volume, social media activity, 

and Bitcoin dominance (Alternative.me, 2025). This index provides a daily measure of overall 

market sentiment, which influences investor behavior across all selected currencies, making it 

a robust control variable against external price drivers. For example, a high greed score during 

bull runs, characterized by a high score, with 100 being extreme greed, may inflate returns. The 

index is collected daily for the period 2022 to 2024, gathered from Alternative.me. 

Currency-specific sentiment is captured through social media analytic tools. 

LunarCrush offers insight into specific currency sentiment, mentions, and engagements on 

social media. The data provided by LunarCrush indicates a 100% score when sentiment is 

exceptionally good, while a lower score indicates a worse sentiment for the currency 

(LunarCrush, 2025). Currencies with strong sentiment and high engagement may be influenced 

by external factors that affect investor behavior, potentially leading to omitted variable bias if 

these factors are not accounted for. By controlling media sentiment, the findings should be 

robust against external price drivers. 

To control market movements, daily log returns of the S&P Cryptocurrency Broad 

Digital Market (BDM) are included. This helps to capture market-wide trends. The index tracks 

over 240 cryptocurrencies that meet specific liquidity and market capitalization criteria, 

providing a comprehensive benchmark for the cryptocurrency market's performance 
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(SPGlobal, 2025). This data complements specific variables for PoS currencies, such as staking 

yield and ratio. Because the index only includes weekday trading data, weekend returns are 

interpolated using the average of preceding and following trading days. This preserves the daily 

frequency of the datasets and avoids bias by assuming zero or constant weekend returns.  

Data quality is ensured through thorough processing of the available data. The Fear & 

Greed Index is complete for the research period, with no missing values. The sentiment data 

obtained via LunarCrush is filtered for activity from bots, providing nearly complete data. 

Some minor gaps are interpolated linearly to maintain the daily frequency used in the research. 

Outliers, such as the collapse of FTX in November 2022, remain in the data to reflect complete 

market reactions, as cryptocurrencies are prone to large price swings. Removing events like 

this, risks introducing bias by removing volatile events, a key feature of crypto markets. The 

BDM index captures macro-level market trends, which, together with the variables that account 

for sentiment, help control for addressing endogeneity due to omitted variables. The period of 

the research contains key PoS events, such as the switch of Ethereum to PoS, which ensures 

the relevance of staking dynamics. By mitigating external price drivers, these controls enhance 

the robustness of the findings, aligning with similar studies on cryptocurrency markets.  

4.3 Macroeconomic data 

Macroeconomic data is essential for analyzing the effects of staking economics on returns, 

volatility, and liquidity. These data control external economic factors that may impact price 

movements and investor behavior independent of staking mechanics. For the research 

questions, certain macroeconomic variables, such as interest rates and regulatory changes, are 

considered which enhances the robustness of the regression. 

Interest rates influence investor risk appetite, with changing rates potentially diverting 

capital from cryptocurrencies to traditional assets, affecting returns and liquidity (Karadag & 

Cetin, 2023). To ensure robust results, the U.S. Federal Reserve's fund rate is a key indicator 

in monetary policy. The daily effective rate is obtained from the Federal Reserve Economic 

Data (FRED) database, which provides a complete dataset for the thesis’ time period. 

Regulatory changes can increase volatility or alter returns, potentially biasing findings. 

While prior studies, such as Feinstein and Werbach (2021), find no evidence that regulatory 

measures drive traders away, this study uses pre-existing data, making regulatory impact a 

critical variable to consider. Robustness in the findings are ensured as regulatory events are 

collected as a dummy variable based on news archives and legal databases. The focus of these 
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events is on U.S. and EU regulatory changes because of their impact on the global market, such 

as the approval of ETFs and the SEC's ruling against XRP. 

4.4 Descriptive statistics 

This section summarizes the characteristics of the selected PoS cryptocurrencies to provide 

context for the empirical analysis. Descriptive statistics for daily returns, staking metrics, 

trading volumes, market sentiment, and macroeconomic variables are presented to assess the 

suitability of data for addressing the research questions on the impact of staking on returns, 

volatility, and liquidity. These statistics ensure the dataset's robustness for regression analysis. 

 

 

Figure 2 presents the descriptive statistics of the currencies, including the mean, 

median, standard deviation, and range of daily returns for each cryptocurrency from 2022 to 

2024. The figure highlights lower volatility in higher market capitalization coins, consistent 

with their established market presence. Larger-cap currencies, such as Ethereum and Binance, 

exhibit smaller extreme daily returns compared to smaller-cap currencies like Algorand.  

 

 

Figure 2: Descriptive Statistics Currency Data  

Figure 3: Descriptive Statistics Staking Metrics  



32 
 

Figure 3 summarizes the staking metrics data, including yields, staking ratios, reward 

epochs, and lockup periods. Annual staking yields range from 2.6% to 18.7%, reflecting 

diverse incentives across currencies. Contrary to expectations, higher yields do not consistently 

correlate with higher staking ratios as shown in Figure 3, which is supported by Figure 1, 

suggesting other factors, such as investor preferences or network design, influence staking 

behavior. Reward epochs vary among currencies, ranging from 1 to 7 days, while lockup 

periods range from liquid staking pools to fixed periods of up to one month. 

 

 

 

 The Fear & Greed Index, averaging 47.77 from 2022 to 2024, captures market 

sentiment dynamics. Peaks align with significant events, such as the U.S. presidential election 

in late 2024 and the cryptocurrency bull run in late 2022, while lows correspond to bear markets 

in late 2023 and early 2024. This aligns with currency-specific sentiment scores from 

LunarCrush, which data is summarized in Figure 4. Larger-cap coins exhibit a lower standard 

deviation with a high sentiment score.  

Key macroeconomic variables include regulatory changes and interest rates. In the U.S., 

a notable regulatory event occurred in July 2023, when a court ruled in favor of Ripple against 

the SEC, determining that XRP is not a security. In the European Union, the Markets in Crypto-

Assets Regulation (MiCA) was adopted in April 2023, with implementation phases scheduled 

for July 2023, October 2023, and March 2024. Monthly FRED interest rates averaged 3.95% 

over the study period, providing a macroeconomic control variable. These variables account 

for external influences on cryptocurrency returns and volatility, enhancing the robustness of 

the analysis.  

This chapter establishes a robust framework for analyzing the economic implications of staking 

on returns, volatility, and liquidity in PoS cryptocurrencies. A sample of ten cryptocurrencies 

Figure 4: Descriptive Statistics Sentiment Data 
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was selected based on criteria that ensured significant staking yields, being a market 

capitalization exceeding $1 billion in 2024, and independent blockchains, as detailed in Section 

4.1. These criteria ensure a diverse and representative sample suitable for comparative analysis. 

Data were sourced from multiple reputable databases, including Coinbase for prices, 

StakingRewards.com for staking metrics, LunarCrush for market sentiment, and FRED for 

macroeconomic variables, enabling a comprehensive regression analysis. Descriptive statistics, 

presented in Section 4.3, confirm the data's suitability, revealing lower volatility in higher 

market capitalization coins and a wide range of staking yields, which supports the analysis of 

diverse staking mechanisms. This framework facilitates a precise evaluation of staking's 

effects, ensuring robust and reliable insights into its economic impacts.  

4.5 Data validity 

Robustness and validity of the model is ensured by evaluating several statistical assumptions. 

First, the assumption of linearity between the dependent variable and independent 

variables was assessed by examining residual plots. These plots displayed a random scatter of 

residuals around zero, confirming a linear relationship and supporting the appropriateness of a 

linear regression framework.  

Next, multicollinearity among explanatory variables was evaluated using Variance 

Inflation Factors (VIF). VIF quantifies the extent to which the variance of an estimated 

regression coefficient is inflated due to correlations among predictors. A VIF value exceeding 

five indicates high multicollinearity, which can inflate standard errors, making estimates less 

precise and statistical less reliable. In this analysis, VIF values were computed for all 

explanatory variables, leading to the removal of the FRED variable due to problematic 

multicollinearity. Although this issue was not universal across all currencies, the variable was 

removed from the models for all to maintain consistency in the estimation process and avoid 

potential distortions in comparative analyses. The problematic multicollinearity between 

FRED and cryptocurrency returns reflects their shared sensitivity to macroeconomic 

conditions. Changes in FRED rates usually signal shifts in liquidity, risk appetite, and inflation 

expectations, which are key macro-financial dynamics that impact cryptocurrency markets. 

The zero-mean residual assumption was verified ensuring the model's residuals have an 

expected mean of approximately zero. This condition is typically satisfied when the regression 

includes an intercept term, as was the case here. Confirmation of this assumption ensures that 

the model is correctly specified and unbiased in its predictions, as non-zero mean residuals 

could indicate the presence of omitted variables or model misspecification. 



34 
 

Homoskedasticity, the assumption of constant residual variance across observations, 

was tested using the Breusch-Pagan test. This test assesses whether the residual variance is 

dependent on the values of the independent variables. Heteroskedasticity, if present, may lead 

to inefficient estimates and biased standard errors, affecting the validity of hypothesis tests and 

confidence intervals. The Breusch-Pagan test results showed the presence of heteroscedasticity 

among all currencies. To account for this, robust standard errors are used. Since a Durbin-

Watson test showed no significant autocorrelation, there was no need to use Newey-West 

robust standard errors. 

Finally, the normality of residuals was considered. Given the large sample size of the 

dataset, the Central Limit Theorem shows that the sampling distribution of the regression 

coefficients approximates normality, thereby reducing concerns about minor deviations in 

residual normality.  

A key assumption of the GARCH(1,1) model is that the return series must be covariance 

stationary, implying that the mean, variance, and autocorrelation structure remain constant over 

time, which are ensured by using daily log returns, which are commonly applied to stabilize 

variance and achieve stationarity. Furthermore, consistent with the assumptions of OLS, the 

model requires that residuals exhibit no significant autocorrelation and that the presence of 

conditional heteroskedasticity justifies the use of a GARCH model. These conditions were 

evaluated and addressed during the preliminary analysis of the explanatory variables. Lastly, 

for the GARCH(1,1) model to be valid, the conditional variance process must also be 

stationary. This requires that the sum of the ARCH and GARCH parameters, indicated by 

Alpha and Beta, is less than one, ensuring that volatility remains mean-reverting and does not 

diverge over time. 

Together, these diagnostics confirm compliance with the key assumptions of the models, 

supporting the reliability and interpretability of the results for the hypotheses. 
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5. Empirical models 

This section outlines the empirical models used to test the hypotheses and address the research 

questions of the thesis. Building on literature in traditional finance and existing studies in 

cryptocurrency, the hypothesis examines whether the implications of staking mimic the effects 

of dividends in traditional finance. These models utilize established methodologies in 

traditional finance and adapt to the characteristics of the cryptocurrency market. 

5.1 Hypothesis 1 

The literature review examines the impact of dividend payments on stock returns, providing a 

foundation for analyzing staking rewards in cryptocurrencies. Iftikhar et al. (2017) found 

evidence that dividends enhance asset returns. Staking rewards mimic dividends by providing 

periodic payments and additionally, enhancing network security, which incentivizes long-term 

holding and decreases the circulating supply (Cong et al., 2025). Cong et al. (2025) introduce 

the concept of “crypto carry”, suggesting that staking lockups increase cryptocurrency prices. 

This study examines whether staking rewards have a similar effect on cryptocurrency returns, 

drawing parallels with traditional finance. 

The hypothesis posits that staking rewards positively affects cryptocurrency returns. If 

the null hypothesis that staking rewards does not affect returns, cannot be rejected, it would 

indicate that there is no significant impact. If a positive effect of staking is found, the null 

hypothesis would be rejected, confirming that staking enhances returns, similar to traditional 

finance. Hypothesis 1 is tested by employing an OLS regression model, following the 

traditional research of Iftikhar et al. (2017), who uses an OLS regression to quantify the impact 

of dividends on stock returns, and Cong et al. (2025), who employ regressions to identify return 

drivers for cryptocurrencies. The dependent variable will be the daily returns of the currency, 

with independent variables including staking metrics, such as the yield and ratio. Control 

variables include the market sentiment and a dummy variable for regulatory events. These 

variables account for external influences. Due to the simplicity of OLS, it is preferred over 

similar models, such as the panel regression model. The regression is formulated as follows: 

𝑅𝑖𝑡 = 𝑎𝑖 + 𝛽𝑖1𝑆𝑅𝑖𝑡−1 + 𝛽𝑖2𝑆𝑌𝑖𝑡−1 + 𝛽𝑖3𝐹𝐺𝑡−1 + 𝛽𝑖4𝑅𝐸𝐺𝑡 + 𝛽𝑖5𝐿𝑜𝑔(𝑀𝐶)𝑖𝑡 + 𝛽𝑖6𝛥𝑆𝐸𝑁𝑇𝑖𝑡

+ 𝛽𝑖7𝐿𝑜𝑔(𝑉𝑜𝑙𝑢𝑚𝑒)𝑖𝑡 + 𝛽i8𝛥𝑀𝐾𝑇𝑡 +  𝜀 

 

Where: 

- 𝑅𝑖𝑡: Daily logarithmic returns for currency i at time t, 

- 𝑆𝑅𝑖𝑡−1: Staking ratio for currency i at time t, 
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- 𝑆𝑌𝑖𝑡−1: Staking yield for currency i at time t, 

- 𝐹𝐺𝑡−1:  Fear & Greed index score on time t, 

- 𝑅𝐸𝐺𝑡:  Regulatory event dummy for cryptocurrencies on day t where 1 indicates a 

regulatory event, 

- 𝐿𝑜𝑔(𝑀𝐶)𝑖𝑡: Log of Market Cap of currency i at time t, 

- 𝛥𝑆𝐸𝑁𝑇𝑖𝑡:  Change in market sentiment for currency i at time t, 

- 𝐿𝑜𝑔(𝑉𝑜𝑙𝑢𝑚𝑒)𝑖𝑡: Trading volume for currency i at time t, 

- 𝛥𝑀𝐾𝑇𝑡:  Change in Crypto Market Index returns at time t, 

- 𝜀: Error term 

The expectation is that β1 and β2 will significantly increase returns, as this reduces 

circulating supply and signals network stability (Cong et al., 2025), similar to findings by 

Iftikhar et al. (2017) in traditional finance. Cong et al. (2025) showed that the staking ratio has 

a positive effect on returns, which is also expected in this regression. 

The control variables of volume and sentiment are also expected to increase returns, while 

Fear & Greed remains ambiguous. In times of greed, this variable is likely to have a positive 

effect on returns, but in times of fear, it may depress returns. Regulatory events are likely to 

have mixed effects, as such changes can have both negative and positive impacts on the market. 

Market cap is also expected to influence returns significantly, however, the direction may be 

ambiguous, similar to volume. Finally, returns are expected to follow the returns in the index, 

as some currencies are included in them, leading to a correlation with the returns. 

5.2 Hypothesis 2 

Literature in traditional finance shows that dividend payments reduce stock price volatility by 

offsetting agency problems (Rozeff, 1982) and signaling firm maturity (Fama & French, 2001). 

In PoS systems, tokens are typically required to be locked up, which restricts the token supply 

and encourages long-term holding, potentially stabilizing prices (Catalini & Gans, 2020). 

However, Budish (2022) warns of sudden volatility shocks when supply becomes available. 

The currency selection offers variability in lockup durations, enabling experimentation to test 

the effects. The hypothesis, as formulated in Chapter 3, proposes that longer lockup durations 

lower price volatility.  

            This hypothesis is tested using a Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) (1,1) model to capture the dynamics of return volatility. GARCH 

models estimate the conditional variance of returns as a function of both past squared residuals 

and past variances, which is particularly appropriate for cryptocurrencies due to their known 
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volatility and volatility clustering (Chu et al., 2017). The model’s ability to estimate volatility 

dynamically over time makes it well-suited for evaluating the evolving impact of staking 

lockups. Chu et al. (2017) conducted a comparative study of various GARCH specifications 

applied to cryptocurrency markets. They found that the GARCH(1,1) model most accurately 

captures the statistical properties of returns on digital assets. In this analysis, lockup duration 

is used as the primary explanatory variable on volatility while also controlling staking ratio, 

staking yield, trading volume, and relevant micro- and macroeconomic variables. A negative 

and significant effect of lockup duration on conditional variance would reject the null 

hypothesis, supporting the theoretical insights of Bhattacharya (1979) and Catalini and Gans 

(2020), who argue that information frictions and commitment mechanisms can stabilize asset 

pricing dynamics. The GARCH(1,1) model consists of both a mean equation and a variance 

equation, with the focus of this study being on the variance equation. The mean equation is 

specified as: 

𝑅𝑖𝑡 = 𝜇 + 𝜀 

The variance equation is specified as: 

𝜎𝑖𝑡
2 = 𝑤𝑖 + 𝛼𝜀2 + 𝛽𝑖𝜎2 + 𝑦𝑖1𝑆𝑅𝑖𝑡−1 + 𝑦𝑖2𝑆𝑌𝑖𝑡−1 + 𝑦𝑖3𝐹𝐺𝑡−1 + 𝑦𝑖4𝑅𝐸𝐺𝑡 + 𝑦𝑖5𝐿𝑜𝑔(𝑀𝐶)𝑡

+ 𝑦𝑖6𝛥𝑆𝐸𝑁𝑇𝑖𝑡 + 𝑦𝑖7𝐿𝑜𝑔(𝑉𝑜𝑙𝑢𝑚𝑒)𝑖𝑡 + 𝑦𝑖8𝐿𝐷𝑖𝑡  +  𝑦𝑖9𝛥𝑀𝐾𝑇𝑡 +  𝜀 

In this model: 

- 𝜎2
𝑖𝑡: Variance for currency i on day t, 

- 𝐿𝐷𝑖: Lockup duration in days for currency i on day t, 

- SR, SY, VOL, FG, SENT, MC, MKT and REG follow the same definition as given in 

H1, 

- 𝜀: Error term 

The expectation is that longer lockup durations will reduce volatility, as this limits 

speculation and sell-offs during bear markets (Catalini & Gans, 2020). Both market sentiment, 

expressed in the Fear & Greed index, and the microeconomic sentiment, expressed in 

sentiment, are expected to be ambiguous as swings can move both ways, similar to regulatory 

events. The staking ratio and yield are expected to show negative signs, as volatility is most 

stable with fixed staking, which is impacted by these factors. Changes in volume are expected 

to increase volatility, and an increase in market returns is likely to increase volatility as money 

flows increase into currencies. 

 The GARCH(1,1) models are constructed in RStudio using the maximum likelihood 

method from the rugarch package. This approach estimates the parameters by assuming the 
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models follow a Student’s T-distribution, aligning with Chu et al.’s (2017) findings that this 

distribution provides the best fit for cryptocurrency data. The coefficients and their 

corresponding standard errors, t-values, and p-values are derived to assess statistical 

significance, offering insights into the impact of each parameter and external regressor on the 

mean returns and variance. 

            The empirical analysis draws on a dataset from Chapter 4, which includes daily returns, 

staking metrics, sentiment, and macroeconomic factors. By basing the methodology on 

established frameworks from traditional finance tailored to the dynamics of cryptocurrencies, 

this study ensures robust and generalized conclusions about the economic implications of 

staking.  
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6. Results 

This section provides the empirical results of the regression analysis testing both hypotheses. 

The results of both hypotheses are summarized in Appendix B. 

6.1 Hypothesis 1 

An OLS regression was conducted for the ten cryptocurrencies over the period from 2022 to 

2024. The dependent variable is the daily logarithmic returns, and the explanatory variables 

include staking metrics, sentiment scores, a regulatory dummy, and macroeconomic variables.  

Hypothesis 1 posits that a high staking reward rate has a positive effect on crypto returns. 

The regression results provide mixed evidence among the sample of currencies. A significant 

positive effect is observed in Solana and Ethereum, where an increase in staking yield is 

correlated with higher daily returns. The regression shows a 1% increase in yield, resulting in 

an increase in returns of 0.6368% and 0.0662%, respectively. This aligns with dividend 

signaling theory under asymmetric information (Bhattacharya, 1979), where higher dividends 

signal firm quality, reduce uncertainty and boost stock prices. Similarly, higher staking yields 

may signal robust network health, incentivizing holding and reducing sell pressure, as 

supported by Iftikhar et al. (2017), who find an increase in return increases with a higher 

dividend payout ratio. This is consistent with the economic incentives of staking (Cong et al., 

2025) and the Dividend Discount Model (Williams, 1938; Gordon, 1959), where asset value 

reflects expected future payouts, suggesting staking yields enhance returns for mature 

cryptocurrencies like Solana and Ethereum. However, Ton, Tron, and Cardano show 

significant negative results. Tron shows a decrease of 0.0079% when the staking yield increases 

by 1%, indicating a significant impact. Similarly, Ton and Cardano show a reduction of 

0.0051% and 0.6552% in daily returns per 1% increase in staking yield, respectively. These 

negative effects align with traditional finance findings, which indicate that high dividend yields 

signal risk or unsustainability (DeAngelo & DeAngelo, 2006). Rozeff (1982) also emphasizes 

the trade-off between dividends and investment, where excessive payouts may be perceived as 

agency-driven or detrimental to growth. These parallels suggest that high staking yields 

indicate network saturation, dilution risks, or anticipated selling pressure following reward 

distributions. 

For the remaining currencies, the effect of staking yield is statistically insignificant, 

suggesting, as per Modigliani and Miller's (1961) irrelevance theory, that staking rewards may 

not consistently drive returns in idealized conditions due to market frictions like variable 

lockup periods or network-specific risks, such as price manipulation, which challenge the 
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applicability of traditional models like Gordon's (1959) Growth Model. This may be explained 

by differences in network designs or investor behavior, which dilute the signaling effect of 

staking rewards across all PoS cryptocurrencies. 

The staking ratio also shows mixed effects on returns. Algorand, Ethereum, Solana, and 

Cardano demonstrate a positive impact on returns, which aligns with the findings of Cong et 

al. (2025). For Ethereum, however, the effect is rounded to 0, while Algorand, Solana, and 

Cardano show increases in returns of 0.0762%, 0.0001%, and 0.0051%, respectively, with a 1 

unit increase in staking ratio. The effects of Algorand can be explained by the strong confidence 

investors have in the governance-based model of Algorand. Solana, Ethereum, and Cardano 

may be explained by their maturity compared to the other currencies in the sample. These 

currencies are among the largest altcoins, which may indicate that this variable is only priced 

for larger and more mature currencies. This finding, however, is contradicted by Ton and Tron, 

which both show a negative effect on returns when the ratio increases. This effect may be 

explained by the selling pressure of the distributed rewards or the reduced market liquidity, 

which may increase downward price pressure. This would show that during the time period, 

the selling activity is more significant as the buyers of the currencies. 

A key return indicator for almost all currencies is the S&P Cryptocurrency Broad Digital 

Market Index, which aligns with the findings by Cong et al. (2025). This suggests that the 

currencies in the sample closely follow broader market trends in cryptocurrency, reflecting an 

interconnected market. The sentiment of currencies, measured by changes sentiment scores 

obtained via LunarCrush, shows significant effects on Tron and Cosmos, suggesting that the 

returns of these currencies are influenced by shifts in sentiment scores. The Fear and Greed 

index shows no significant impact across all currencies, indicating the limited role of sentiment 

pricing in determining prices. Key regulatory events have only shown a minor positive effect 

on Cosmos' returns, possibly due to the increased legitimacy following the regulatory changes. 

The impact of macroeconomic variables is similar to the findings of Liu and Tsyvinski (2021) 

in their study, which focuses on the period 2011 to 2018. They also note that cryptocurrencies' 

returns are largely insensitive to macroeconomic variables. An increase in market cap shows a 

significant increase in returns for Tron, Algorand, and Binance, while the return of Cardano 

and Binance are positively affected by an increase in trading volume, reflecting the role of 

liquidity in returns. 

The regression results provide mixed support for the hypothesis, suggesting that staking 

rewards' impact on returns varies across PoS currencies. Drawing from traditional finance, the 

positive effect of staking yields on Solana and Ethereum mirrors dividend signaling theory 
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(Bhattacharya, 1979), where higher yields signal strong network fundamentals, thereby 

boosting returns, as supported by Iftikhar et al. 's (2017) findings. This aligns with the Dividend 

Discount Model (Williams, 1938; Gordon, 1959), where asset value is determined by expected 

payouts, particularly for mature cryptocurrencies. Conversely, the negative findings for Ton, 

Tron, and Cardano align with the risk-signaling view (DeAngelo & DeAngelo, 2006) and 

agency-based dividend theories (Rozeff, 1982), indicating that high yields might be perceived 

as unsustainable or opportunistic. The insignificant effects in other currencies support 

Modigliani and Miller's (1961) irrelevance theorem, suggesting that staking yields may not 

drive returns due to crypto-specific frictions like market manipulation or lockup variability, 

which complicate traditional valuation models (Williams, 1938; Gordon, 1959). Another 

reason for the results is the maturity and volatility of crypto markets. Several studies have tried 

to identify key return drivers for cryptocurrencies (Liu & Tsyvinski, 2021; Cong et al., 2025). 

These studies offer insights about return drivers, showing parallels with dividend policies in 

traditional finance, which are also implemented in this study. Staking's volatility-dampening 

potential may be offset by crypto market dynamics, and with the recent rise of interest in 

staking, not all effects are effectively priced in. 
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Figure 5: Regression H1 for ETH, SOL, ADA, ATOM & ALGO 

 

Figure 6: Regression H1 for TRX, TON, BNB, DOT & AVAX 
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6.2 Hypothesis 2 

GARCH(1,1) models were estimated for the ten selected PoS cryptocurrencies over the period 

to assess the impact of the variables used in Hypothesis 1 on the volatility of each currency’s 

daily logarithmic returns. The models incorporate the explanatory variables from H1, including 

lagged staking yield, lagged staking ratio, Fear and Greed Index, change in sentiment, a 

regulatory dummy, log market capitalization, log trading volume, and change in broader market 

returns, to evaluate their influence on conditional volatility. These models are added in 

Appendix C, with several models being highlighted and added in the text. 

 Hypothesis 2 suggests that currencies with longer lockup durations show less price 

volatility compared to currencies with shorter or no lockup durations. The empirical results, 

presented in Appendix C, present a complex picture that partially contradicts the hypothesis. 

 

Figure 7: GARCH(1,1) model on Cardano Returns 
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Figure 8: GARCH(1,1) model on Polkadot Returns 

            Among most currencies, a significant explanatory variable for volatility is changes in 

volume. This relationship is driven by increased trading activity, which tends to cause 

increased price volatility due to shifts in supply and demand (Foroutan & Lahmiri, 2022). 

The GARCH(1,1) models consistently show that LogVolume, as represented by vxreg7, is a 

significant predictor of volatility across the majority of the sample, with p-values typically 

below 0.05, indicating the dominant role of volume on volatility. For example, Ethereum 

shows a highly significant p-value of 0.000217, which reinforces this finding. 

            However, the impact of lockup duration, indicated by vxreg8, challenges the 

hypothesis. Most currencies show no significant impact, with a p-value being larger than 

0.05. However, Polkadot, Cardano, and Cosmos show a significant increase in volatility 

associated with changes in lockup duration, with the currencies showing increases of 

0.000003%, 0.000006%, and 0.00000003% per unit change in lockup duration, as seen in 

Figure 7 and 8 for Cardano and Polkadot. These coefficients have small p-values, suggesting 

that longer lockup periods do not reduce volatility as hypothesized. Notably, Polkadot and 

Cosmos, which rank among the longest lockup durations in the sample, alongside Cardano's 
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dual staking structure, which offers both liquid staking and staking with short lockup 

durations, provide critical context in understanding the impact of staking on volatility. The 

increase in volatility for these currencies may be attributed to investor behavior, like the 

reinvestment or selling of staking rewards upon receiving rather than a stabilizing effect from 

longer lockups. This behavior may amplify market activity, contradicting the expected 

reduction in volatility. However, the evidence suggests that currency-specific factors, like 

market liquidity, staking flexibility, and ecosystem dynamics, dominantly drive volatility 

outcomes, which overshadows the expected effects of extended lockup periods.  

            The contradictory findings may reflect the interplay between lockup duration and 

other volatility drivers. For example, Polkadot has a 28-day unstaking period, and Cosmos 

has validator-specific lockup periods, which may encourage periodic selling pressure. In 

contrast, Cardano's liquid staking may mitigate the fixed lockup impacts. 

6.3 Additional findings 

Beyond the primary results of this study, the empirical analysis revealed several findings that 

provide deeper insights into the dynamics of PoS cryptocurrencies. These additional findings 

will be summarized in this section, enhancing the understanding of the economic implications 

of staking on returns and volatility and offering valuable insights for future research. 

Appendix D presents the volatility graphs for the selected cryptocurrencies in this study, 

covering the period from 2022 to 2024. These graphs are derived from the GARCH(1,1) 

models used to test the second hypothesis. The graphs reveal similar volatility spikes among 

all currencies, indicating shared exposure to market-wide events. The most prominent spike 

was observed after the U.S. presidential election in November 2024, following Trump's 

appointment as president. This event sparked anticipation of changes in U.S. regulation, which 

typically leads to a price change, as confirmed by a study conducted by Liu and Tsyvinski 

(2021). The study found that returns are affected by negative regulatory events but not by 

positive regulatory events. Additional spikes in volatility are found near the implementations 

of MiCA. These spikes suggest that external macroeconomic factors, especially regulatory 

factors, influence the volatility of cryptocurrencies, which go beyond the effects of staking 

metrics. 

The volatility graphs also uncovered interactions between staking lockup periods, 

liquidity, and market sentiment. Currencies with liquid staking pools, such as Ethereum and 

Cardano, exhibit high volatility during spikes, which can be attributed to the absence of lockup 

constraints, allowing investors to make rapid responses. In contrast, currencies with longer 
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lockup durations, such as Cosmos and Atom, exhibited fewer volatility shifts, suggesting that 

lockup durations help stabilize prices.  

These additional findings strengthen the explanation of the complexity of PoS 

cryptocurrency dynamics and highlight the need to account for macroeconomic events and 

staking design in analysis. The volatility graphs in Appendix D, together with the regressions 

from Figures 5 and 6 and the GARCH models in Appendix C, provide a comprehensive view 

of how staking interacts with external factors. 

6.4 Implications 

This section serves as an exploration of the findings from both academic and practical 

perspectives, focusing on the economic implications of staking in PoS currencies and their 

broader relevance to the market of cryptocurrencies. 

Academically, this study contributes to the existing literature on the drivers of return 

and volatility in cryptocurrencies. The study prioritizes the implications of staking, focusing 

on the staking ratio and yield and how these variables impact returns. The study builds on Cong 

et al. (2025) and Liu and Tsyvinski (2021), which employ similar methods and slightly adjusted 

data to explore return drivers. This study addresses the research gap left by prior studies by 

incorporating staking-specific metrics absent in prior research. Cong et al. (2025) emphasizes 

the stabilizing role of staking through reduced circulating supply and network incentives, while 

Liu and Tsyvinski (2021) highlight factors such as momentum and investor attention as key 

drivers of returns. The authors also note the insensitivity of cryptocurrency returns to 

macroeconomic variables, like interest rates. However, these studies do not directly examine 

staking metrics as return drivers in PoS systems, which is the gap this study aimed to fill. 

This gap is filled by revealing effects across several PoS cryptocurrencies over the 2022 

to 2024 period. The theory of Cong et al. (2025) suggests that staking induces price stability, 

which suggests that a higher staking yield would incentivize holding and reduce sell pressure. 

The findings of H1 are mixed, with Solana and Ethereum showing that a higher yield for 

staking leads to a higher return. However, the negative effects for Ton, Tron, and Cardano 

suggest that high yields may indicate risks or increase sell pressure, which aligns with Schär's 

(2021) observation of speculative behavior in PoS currencies. The author also warns about the 

highly concentrated distribution of staked tokens. The GARCH models further enrich the 

existing volatility literature in crypto by finding a positive effect on the volatility for tokens 

with longer lockup periods. This suggests that longer lockup periods introduce supply 

uncertainty and liquidity constraints, which is consistent with the findings of Chu et al. (2017) 
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about the role of factors that influence crypto volatility. However, the key change of volatility 

for PoS currencies is explained by changes in volume. 

The study also contributes a perspective on the impact of several variables on volatility. 

The models extend prior volatility models from Chu et al. (2017) by incorporating recent data 

and PoS-specific variables, such as lockup duration, staking ratio, and yield. The observed 

volatility spikes across all currencies are seen during the implementation of MiCA and the U.S. 

election, which underscores the impact of market-wide factors and the interplay with staking 

mechanics, which is backed by the study of Liu and Tsyvinski (2021). The findings of the 

volatility graphs suggest that staking's economic effects are context-dependent and influenced 

by network-specific factors and external shocks. This highlights the need for future research, 

when cryptocurrencies are more mature, to explore the interaction between PoS protocol 

designs and market conditions, as well as regulatory frameworks. 

Furthermore, the findings of this study align with theoretical frameworks on 

decentralized finance and blockchain economics. Buterin (2020) explained in the whitepaper 

on Ethereum's transition to PoS that staking mechanisms can enhance network security but 

influence economic incentives. The perspective of Buterin is empirically tested in this study, 

enabling policymakers to make informed decisions based on empirical evidence. The 

theoretical insights of Buterin are supported by Saleh (2021), who provides a theoretical model 

of PoS economics, suggesting that staking rewards may stabilize prices as they align with the 

incentives of holders. This is empirically supported by Solana and Ethereum but contradicted 

by Ton, Tron, and Cardano, where sell pressure is more dominant.  

From a practical perspective, the findings of this study offer valuable insights for 

various stakeholders in the cryptocurrency ecosystem, including investors. For them, the results 

highlight the importance of evaluating staking metrics alongside other risk factors when 

investing in PoS currencies. The positive effect of yield on Ethereum and Solana suggests that 

staking rewards can enhance returns, making them a lucrative option for long-term investors. 

However, the negative effects in several currencies indicate risks, such as sell pressure and 

changes in volatility. Another key item investors need to consider is the lockup duration. As 

seen in the GARCH models, longer lockup durations in Cosmos and Polkadot increase 

volatility, which can be attributed to supply uncertainty. 

Policymakers may use the findings to design policies that strike a balance between 

staking incentives and market stability. Policymakers may consider guidelines that enhance 

transparency in trading protocols and reward distribution to reduce uncertainty. This would 
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ensure that the PoS systems remain resilient during turbulent times, like the implementation of 

MiCA or the U.S. election in 2024.  

Institutions exploring potential blockchain integration, such as smart contracts, may 

benefit from understanding the economic implications of staking. The insignificant yield 

effects for several currencies suggest that staking rewards may not drive returns in efficient 

markets. However, the volatility effects indicate potential risks to price stability, which could 

impact financial blockchain products. Institutions may favor networks that offer stable staking 

designs to mitigate volatility risks while still using the benefits of PoS, like energy efficiency.  
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7. Conclusion 

Using OLS regression and GARCH(1,1) models to analyze a sample of ten PoS 

cryptocurrencies over the period 2022 to 2024, I find that staking yields significantly enhance 

daily returns for Solana and Ethereum. Specifically, a 1% increase in staking yield boosts 

returns by 0.6368% for Solana and 0.0662% for Ethereum. However, results are mixed, as Ton, 

Tron, and Cardano show a significant negative effect, reducing returns by 0.0051%, 0.0079%, 

and 0.6552%, respectively. Additionally, staking ratios positively affect daily returns for 

Algorand, Solana, and Cardano, which reflects investor confidence in established networks. In 

contrast, negative effects on Ton and Tron suggest selling pressure from the reward 

distribution. For Hypothesis 2, I used GARCH(1,1) models and found that lockup durations 

increase volatility for Polkadot, Cardano, and Cosmos, which contradicts the hypothesis that 

longer staking lockups reduce volatility. The model shows that, among most currencies, trading 

volume emerges as a dominant driver of volatility. This research contributes to the academic 

literature on cryptocurrencies by addressing a gap in prior cryptocurrency studies, which 

overlook specific staking metrics, and extending frameworks from traditional finance to crypto 

finance. The study provides practical insights for investors by showing empirical evidence for 

investing in PoS currencies, showing that investments should not solely be based on staking 

rewards. Policymakers should use the findings and implement transparent reward distribution 

policies to enhance market stability. 

However, a key limitation of this study is its limited time frame of 2022 to 2024, which may 

not capture long-term market effects. Leaving out variables such as network changes or 

validator concentration may also influence outcomes. OLS assumptions have been accounted 

for by including robust standard errors to address heteroskedasticity and by removing FRED 

as a variable, as the VIF indicated problematic multicollinearity. Future research should extend 

the time horizon and incorporate additional metrics on PoS metrics, like validator activity or 

protocol upgrades. Employing machine learning may also lead to interesting findings by better 

modelling dynamic interactions and addressing endogeneity concerns, thereby enhancing our 

understanding of staking’s role in the evolving cryptocurrency markets.  
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Application of AI during thesis 

In preparing this thesis, I utilized AI tools to enhance the quality and efficiency of my 

work while maintaining my contributions. I used Grammarly to improve the thesis's grammar, 

sentence structure, and overall readability, ensuring clarity without incorporating entirely 

generated text. This allowed me to preserve my writing style while ensuring the quality and 

readability of the text. 

AI was also used during statistical analysis conducted in RStudio. When encountering 

unfamiliar error messages or coding challenges, I used Grok to diagnose issues and suggest 

solutions, such as debugging syntax errors or optimizing regression models. I evaluated the 

output and ensured the models aligned with the hypotheses.  

AI was also used to adjust the figures. For example, the original Appendix A and Figure 

1 used to have a black background, mismatching with the white papers. Because of this, AI 

was requested to adjust the figures to have a white background to align with the other figures 

and the coloring of the paper. 

Additionally, I used Grok as an analytical aid to refine and improve research methods. 

For example, Grok helped identify key regulatory changes and brainstorm potential variables 

to improve model performance. I made all final decisions, ensuring that AI contributions 

supplemented rather than replaced my independent judgment.  

This selective and transparent use of AI tools enhanced the clarity, accuracy, and 

consistency of my thesis, while adhering to the guidelines of Tilburg University on responsible 

AI usage. 
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Appendix  

Appendix A: Engagement PoS Social Media 

 
Figure 9: Engagement PoS social media (LunarCrush, 2025) 
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Appendix B: Summary table 

 

Figure 10: Summary of tested hypotheses 
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Appendix C: GARCH(1,1) Models 

  

Figure 12: GARCH(1,1) model on Ethereum Returns  

 

Figure 13: GARCH(1,1) on Solana returns 

Figure 11: GARCH(1,1) Variable table 
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Figure 14: GARCH(1,1) on Cardano returns 

 

 

 

 

 

 

 

 

 

 

Figure 15: GARCH(1,1) on Cosmos returns 
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Figure 16: GARCH(1,1) on Algorand returns 

 

Figure 17: GARCH(1,1) on Tron returns 
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Figure 18: GARCH(1,1) on Ton returns 

Figure 19: GARCH(1,1) on Binance Returns 
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Figure 20: GARCH(1,1) on Polkadot returns 

  

Figure 21: GARCH(1,1) on Avalanche returns  
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Appendix D: Volatility graphs 

 

Figure 22: Volatility graph Ethereum Returns 

 

Figure 23: Volatility graph Solana Returns 
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Figure 24: Volatility graph Cardano Returns 

 

Figure 25: Volatility graph Cosmos Returns 
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Figure 26: Volatility graph Algorand Returns 

 

Figure 27: Volatility graph Tron Returns 
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Figure 28: Volatility graph Ton Returns 

 

Figure 29: Volatility graph Binance Returns  
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Figure 30: Volatility graph Polkadot Returns 

 

Figure 31: Volatility graph Avalanche Returns 


