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Abstract

Cryptocurrencies have become increasingly popular as an investment due to their
diversification role and potential use in innovative projects. A distinctive characteristic of many
currencies is the ability to lock currencies to earn passive rewards, known as staking. Most
existing studies have focused on the theoretical advantages of these Proof-of-Stake coins, but
little effort has been made to examine their practical effects on returns. This paper aims to fill
this gap by analyzing staking-specific variables, such as the staking yield and ratio gathered
from StakingRewards.com, to examine the effects of staking on daily returns. Furthermore,
prior research suggests that other variables, such as sentiment and regulatory changes, may also
generate high volatility spikes. Ten currencies are selected for the sample, all with unique
characteristics enabling a comprehensive examination of staking effects. The results indicate
mixed results, with Solana and Ethereum both providing evidence that increased staking returns
are associated with higher returns of 0.0662% and 0.6368%, respectively. In contrast, Cardano,
Ton, and Tron exhibit mixed results, where higher yields lead to lower returns. This indicates
that staking effects are not uniform and depend on currency-specific conditions.

Additionally, GARCH(1,1) models are used to evaluate the impact of these variables on
volatility. The findings indicate that changes in trading volume affect volatility across most
currencies, while Polkadot and Cosmos, the currencies with the longest lockup periods in the
sample, show increased volatility linked to lockup duration. This may reflect investors'
tendency to reinvest or sell the staked tokens rewards. These insights offer valuable empirical
evidence for policymakers, investors, and institutions to explore blockchain technology,

informing on strategic decisions and risk management in the cryptocurrency market.
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1. Introduction

The rise of cryptocurrencies as an alternative asset class began with Bitcoin and it’s mining-
based consensus mechanism, has interested investors, policymakers, and institutions. As the
ecosystem of cryptocurrencies evolved, attention expanded to staking, an alternative to mining,
which offers both economic and network incentives. Through staking, cryptocurrency holders
lock their tokens, which enhances network stability and supports the validation of blockchain
transactions. In return, these holders earn passive periodic rewards, similar to a dividend payout
in traditional finance. However, unlike the extensive research conducted in traditional finance,
there has been little to no empirical research exploring the impact of staking metrics on returns.
Since these metrics may present an additional return, they may influence investment strategies
and staking policies.

The existing literature on staking remains theoretical, with a minimal focus on empirical
studies. Theoretical studies offer valuable insights into the potential impacts of staking.
However, empirical investigation is necessary to understand the implications on returns fully.
Previous study suggests that higher staking ratios lead to higher returns, with market indices
serving as a key indicator of these returns, highlighting the strong correlation among currencies
(Cong et al. 2025). However, these studies leave out the impact of staking yields on returns,
suggesting that not all staking metrics are accounted for.

Understanding the empirical effects of staking metrics on returns is crucial for developing
optimal investment strategies, implementing blockchain technology, and optimizing policies
related to staking. Staking metrics may not be fully priced in, offering additional returns on
investments. However, these staking metrics may introduce risks that require careful
consideration.

The exploration of staking's impact on cryptocurrency returns forms the core of this thesis,
motivated by a research gap where empirical evidence is limited despite robust theoretical
foundations. In traditional finance, studies such as those by Modigliani and Miller (1961)
establish dividends being irrelevant to firm value, with Black and Scholes (1974) suggesting
that dividends may impact stock prices because of signaling, but note that if dividends adjust
value, firms may adjust policies for its valuations. In contrast, DeAngelo and DeAngelo (2006)
and Baker et al. (2002) show that dividends do impact firm value, based on input from
managers, or contradicting assumptions made by prior studies. Literature on cryptocurrencies,
such as John et al. (2021) and Riposo and Gupta (2024), focus on the role of staking in Proof-
of-Stake systems, prioritizing its benefits, like network security and adoption, but provides

limited empirical insights into its direct effects on returns. This shortcoming in literature
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inspires the central research question: "Do staking rewards enhance returns on
cryptocurrencies?" This question aims to quantify whether staking yields function as a return-
enhancing mechanism, and whether they shape investor behavior or market stability due to the
decentralized nature of cryptocurrencies.

Beyond examining the direct impact of staking on returns, the thesis will also investigate the
volatility implications of staking, as formed via a complementary question inspired by Catalini
and Gans (2020): "Does the duration of staking lockups reduce the volatility of
cryptocurrencies?” This question will evaluate whether more extended lockup periods, which
reduce circulating supply, mitigate volatility or risk of supply shocks, as cautioned by Budish
(2022). These research questions support two hypotheses: first, Higher staking reward rates
positively affect cryptocurrency returns, which mirrors the return-enhancing effect of
dividends noted by Iftikhar et al. (2017) and supported by Cong et al.'s (2025) concept of crypto
carry, and second, Cryptocurrencies with longer staking lockup durations exhibit lower price
volatility compared to those with shorter, or no lockups. This hypothesis reflects Fama and
French's (2001) findings on the stability effects of dividends. Together, these questions and
hypotheses provide a narrative to evaluate the economic significance of staking, offering
empirical insights that could guide investment strategies and inform staking policies in
decentralized finance.

The research questions are addressed by employing a robust empirical framework, selecting
data and techniques based on prior studies that examine the economic impacts of staking on
returns and volatility in cryptocurrencies. The thesis focuses on ten staking cryptocurrencies:
Ethereum, Solana, Cardano, Cosmos, Algorand, Tron, Ton, Binance, Polkadot, and Avalanche.
These cryptocurrencies were selected based on their market capitalization exceeding $1 billion
in 2024 and their launch before 2022, as per data from CoinMarketCap. This selection ensures
robust price dynamics and significant staking activity, thereby minimizing noise in smaller-cap
coins. Since the sample features unique staking systems with distinct mechanisms, such as
liquid staking in Ethereum, the governance-based system of Algorand, and long lockup
durations in Polkadot and Cosmaos, it enables a comprehensive exploration of staking's effects
across different network designs and investor behavior. Returns are calculated using
logarithmic returns based on daily price data obtained from Coinbase, a major exchange with
strict regulations ensuring independence and reliability (Bobin, 2022). Staking metrics,
including yields, ratios, and lockup durations, are sourced from StakingRewards.com and
cross-verified against blockchain explorers, ensuring accurate and consistent data for the period

from 2022 to 2024. These datasets are ideal for testing both hypotheses, as they directly capture
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the incentives and constraints of staking, which are crucial for understanding the impact on
returns and volatility.

To enhance the robustness of the findings, the analysis incorporates market and
macroeconomic data to control external influences on cryptocurrency markets. The S&P
Cryptocurrency Broad Digital Market Index tracks market-wide trends, with weekend returns
interpolated to align with daily cryptocurrency trading. Market sentiment is captured via the
Fear & Greed Index, obtained from Alternative.me, along with currency-specific sentiment
from LunarCrush, effectively addressing endogeneity from investor behavior that could dilute
the impact of staking. Macroeconomic variables are accounted for by a regulatory dummy,
with the U.S. Federal Reserve's daily effective rate initially considered as a variable but
excluded due to concerns about multicollinearity, as identified through Variance Inflation
Factor analysis. The empirical techniques include an OLS regression for Hypothesis 1.
Hypothesis 2 is addressed using a GARCH(1,1) model, which captures time-varying volatility,
an ideal approach for cryptocurrencies due to volatility clustering (Chu et al., 2017).

The empirical analysis shows mixed results for Hypothesis 1, revealing the subtle effect of
staking across cryptocurrencies. The regression analysis reveals significant positive effects for
Ethereum and Solana, where a 1% increase in staking yield boosting daily returns by 0.0662%
and 0.6368%, respectively. This supports Cong et al.'s (2025) “crypto carry"” concept, which
posits that staking incentives reduce sell pressure and enhance returns. However, Ton, Tron,
and Cardano exhibit significant negative effects, with a 1% increase in yield, lowering returns
by 0.0051%, 0.0079%, and 0.6552%, respectively, suggesting that high yields may signal risk
or trigger selloffs as stakers liquidate rewards, aligning with Schér's (2021) observations of
speculative behavior in staking systems. For other currencies, the effects of staking yield are
insignificant, indicating that staking rewards do not consistently drive returns, possibly due to
differences in network maturity, lockup structures, or investor behavior. The staking ratio
shows positive effects for Algorand, Solana, and Cardano, with a 1% increase in the ratio
increasing returns by 0.0762%, 0.0001%, and 0.0051%, respectively, reflecting investor
confidence in mature networks, supporting findings of Cong et al. (2025), but negative effects
for Ton and Tron suggest selling pressure from reward distribution. The S&P Cryptocurrency
Broad Digital Market Index is a significant driver of returns for most currencies, underscoring
market correlation. Meanwhile, sentiment and trading volume have significant effects on Tron
and Binance, highlighting the role of liquidity. These findings are relevant as they extend Baker
et al.'s (2002) dividend analogy, revealing that staking's return-enhancing potential is

dependent on currencies shaped by network-specific dynamics and market conditions.
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However, volatility in cryptocurrency markets complicates consistent pricing, as noted by Liu
and Tsyvinski (2021).

For Hypothesis 2, the GARCH(1,1) models present a complex picture that partially contradicts
the expectations. Across most currencies, trading volume emerges as a dominant driver of
volatility, with significant p-values reflecting increased price swings resulting from supply-
demand shifts, consistent with Foroutan and Lahmiri (2022). However, lockup durations
significantly increase volatility in Polkadot, Cardano, and Cosmos, with coefficients of
0.000003%, 0.000006%, and 0.00000003% per unit change, respectively, contradicting the
hypothesis. These currencies offer unique lockup structures, with Polkadot and Cosmos being
among the currencies in the sample with the most extended lockup periods. Cardano, on the
other hand, offers both liquid and fixed staking structures, which may experience volatility due
to periodic reward reinvestment or selling, potentially amplifying market activity rather than
stabilizing prices, as cautioned by Budish (2022). For other currencies, the lockup duration has
no significant effect, suggesting that currency-specific factors, such as liquidity and staking
flexibility, outweigh the impact of lockups. Additionally, the GARCH(1,1) models are plotted
in volatility graphs, which reveal shared spikes across all currencies, notably after the 2024
U.S. presidential election and the implementation of MiCA, indicating that macroeconomic
and regulatory events have more impact compared to the volatility effects of staking, aligning
with Liu and Tsyvinski's (2021) findings on the regulatory impacts. These results are
noteworthy as they challenge Catalini and Gans' (2020) assertion that lockups stabilize prices,
highlighting the criticism of staking design and external shocks, which demands further
research into staking protocol variations and their interaction with market conditions.

These findings have substantial academic and practical implications, enriching our
understanding of the economic role of staking in cryptocurrencies. Academically, the study
fills a gap in the literature by empirically testing staking metrics absent in prior work by Cong
et al. (2025) and Liu and Tsyvinski (2021), confirming that staking's effects on returns and
volatility are not universal but depend on network design and market maturity. The positive
yield effects for Ethereum and Solana support Buterin's (2020) and Saleh's (2021) theoretical
models of staking's stabilizing incentives, while negative effects in Ton, Tron, and Cardano
underscore speculative risks noted by Schér (2021). Practically, investors can leverage these
insights to prioritize mature networks with stable staking yields, such as Ethereum, while
remaining cautious of the volatility risks associated with currencies that have longer lockups,
like Polkadot and Cosmos. Policymakers may use the findings on volatility to design

regulations that enhance transparency in reward distribution, thereby mitigating supply
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uncertainty during turbulent periods, such as future U.S. elections or the implementation of
new laws. Institutions exploring blockchain integration can favor networks with balanced
staking designs to minimize volatility risks while leveraging the benefits of staking, such as
energy efficiency. The mixed results underscore the complexity of staking dynamics,
highlighting the need for future research to investigate how maturing cryptocurrency markets,
and evolving regulatory frameworks influence the economic impacts of staking.

The thesis finds that staking in cryptocurrencies has a limited impact on returns and volatility,
with significant positive effects on returns for mature networks, such as Ethereum and Solana,
but negative or insignificant effects elsewhere. Additionally, it unexpectedly reveals increased
volatility from longer lockup durations in currencies like Polkadot and Cosmos. The key
finding is that staking's economic benefits, similar to dividends in traditional finance, are
currency-dependent, shaped by network design, market maturity, and external shocks, offering
valuable insights for investors to prioritize stable networks and for policymakers to enhance
reward transparency. However, limitations include the reliance on a 2022 to 2024 dataset,
which may not capture long-term trends as cryptocurrency markets mature, and the potential
for unobserved variables, such as network usage or accounting for whales, which may influence
results. Econometric challenges, like heteroskedasticity addressed with robust standard errors
and the exclusion of the Federal Reserve rate due to multicollinearity, suggest model
refinements. Future research should extend the time frame, incorporate additional staking-
specific metrics, such as validator concentration, and explore advanced models, including panel
regressions or machine learning, to capture dynamic interactions better and address
endogeneity, thereby enhancing the generalizability of staking's economic implications.

The rest of the thesis is organized as follows: Chapter 2 presents a detailed literature review,
building on traditional finance theories related to dividend impacts and bridging them to
cryptocurrency research on staking, thereby establishing the theoretical foundation for this
study. Chapter 3 defines the research questions and hypotheses, focusing on the empirical
impact of staking's effects on returns and volatility. Chapter 4 discusses the data selection
process, outlining the selection of ten cryptocurrencies based on specific thresholds and
describing key variables, including staking metrics, market sentiment, and macroeconomic
variables, for the 2022-2024 period. Chapter 5 presents the empirical methodology for testing
Hypothesis 1, using an OLS regression and implementing a GARCH(1,1) model to examine
Hypothesis 2. Chapter 6 continues on the empirical models presented in Chapter 5, detailing

both models used to test the hypotheses. Chapter 7 presents empirical findings, examining



whether the hypotheses are supported. Finally, Chapter 8 concludes this thesis, summarizing

key findings and discussing key limitations that offer potential for future research.
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2. Literature Review

The evolution of the cryptocurrency market has introduced mechanisms that challenge
traditional financial theory, with staking being a key feature of Proof-Of-Stake (PoS)
blockchain protocols. Staking allows investors to lock up their holdings to support network
operations. As compensation, investors receive periodic rewards comparable to dividends in
stocks or coupon payments with bonds. In traditional finance, researchers have established the
influence of periodic payments on asset pricing, investor behavior, and market dynamics.
Studies by Modigliani and Miller, as well as Black and Scholes, demonstrate how periodic
payments affect liquidity and impact returns and firm value (Modigliani & Miller, 1961; Black
& Scholes, 1974). In the domain of cryptocurrency, however, the direct impact of staking on

asset returns and dynamics remains underexplored.

2.1 Theory of traditional finance

In traditional finance, periodic payments play a crucial role in asset valuation, market
dynamics, and investor behavior. Since these periodic payouts to stockholders are comparable
to payments to stakers, the literature on traditional finance offers a framework for evaluating
the economic impact of staking.

Modigliani and Miller (1961) established a theory, assuming a perfect market, that
dividend policy is irrelevant to firm value. Returns should only depend on investment decisions
rather than payouts. However, they acknowledged that in the presence of market imperfections,
such as taxes or asymmetric information, dividend policy could become relevant, suggesting
that periodic payments may enhance returns, a mechanism that staking rewards in
cryptocurrency prices may mirror.

Black and Scholes (1974) argue that if payout policies impact values, firms can increase
their share price by adjusting their payout ratio. This would saturate demand for different
dividend-yielding stocks, leading to an equilibrium in which the policy would not affect the
stock price. They confirm this by presenting empirical evidence that different dividend yields
result in variations in stock returns, suggesting that dividend policies do not consistently impact
stock prices.

The statements about the irrelevance of dividends contradict valuation models that
consider dividends, such as the Dividend Discount Model (DDM), which was founded by

Williams (1938). This model values assets based on the present value of future dividends,

formulated as p = Z (1+ ewr This model was later refined by Gordon (1959), where the
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author introduced the Gordon Growth Model (GGM), formulated as p, = TDTIg . Within the
model, constant dividend growth is assumed. In his paper, Gordon quantified the role of stable
payouts on returns, providing a foundational link between periodic payments and asset
valuation.

Bhattacharya (1979) extended the dividend debate by introducing a signaling model
where dividends convey private information. In his framework, dividends serve as a signal of
firm quality in the presence of asymmetric information. High-quality firms use dividends to
differentiate themselves from lower-quality firms, making the payout policy informative for
investors. This signaling logic, particularly relevant for staking, offers a key insight into the
importance of dividend policies in the finance sector.

DeAngelo and DeAngelo (2006) support the findings that dividend policies impact
value in the paper "The Irrelevance of the M&M Dividend Irrelevance Theorem." The
researchers argue that payout policies do impact firm value and highlight different frictions
overlooked in M&M's original model, such as taxes, agency costs, and cash flow asymmetries.
These real-world frictions explain why dividends can influence asset prices. The critique
suggests that dividend payments do influence firm value and returns, which is a relevant
perspective to consider when evaluating staking rewards.

Rozeff (1982) extends research into the relevance of dividends. The author found that
dividend policies can mitigate agency conflicts by distributing free cash flows, thereby aligning
the interests of managers and shareholders, suggesting that high dividend payouts signal good
governance and enhance firm value. This perspective on agency problems suggests that staking
policies could align the interests of holders and protocol developers, thereby boosting investor
confidence and returns. Rozeff's findings strengthen the need to assess the economic impact of
staking, as he highlighted the governance role of payouts.

Baker et al. (2002) surveyed managers of firms that pay cash dividends to investigate
the relationship between dividend policy and value, their views on dividend policies, and the
explanations for paying dividends. They find that managers support statements that suggest
dividend policy matters and stress the importance of dividend continuity. The managers offer
no support for the tax preferences and agency cost explanations for dividend payouts, instead
suggesting that dividends should serve as a signal to investors of private information, similar
to Bhattacharya (1979).

Fama and French (2001) link a decline in paid dividends to firm maturity. They suggest

that established firms are more likely to pay dividends, whereas growth firms prefer to reinvest
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profits or distribute value through capital gains. This lifecycle perspective implies that staking
may be more common or more valued in mature blockchain ecosystems, mirroring dividend
behavior in established companies.

Baker and Weigand (2015) offer modern research on dividend policy and its impact on
firm valuation. The authors provide a comprehensive overview of all the important literature
on dividend policies. They find that there is no universal theory explaining why firms pay
dividends or the quantity of dividends they pay.

Iftikhar et al. (2017) continue on the theoretical research in traditional finance and

provide empirical evidence that dividend payouts impact stock prices. The authors use a
regression to show that with a one-unit increase in dividend payout, stock prices increase by
19.38730. Similarly, an increase in dividend per share leads to a 5.373796 increase in stock
prices.
The debate within traditional finance underscores the need to evaluate the effects of staking in
cryptocurrency finance, as the formulas used in traditional finance may also have an impact on
staking cryptocurrencies. Staking rewards resemble dividends, which means that DDM or
GGM may be used to value tokens. However, the variability in staking and the risks of locking
up tokens, such as market manipulation, challenge the traditional literature, making perfect
market assumptions less applicable.

Cong, He, and Tang (2025) bridge the findings from traditional finance to
cryptocurrencies in their paper "The Tokenomics of Staking.” The authors develop a model of
tokenomics that introduces "“crypto carry" to link staking rewards to price changes. Crypto carry
refers to the yield from token lockups, similar to dividends, and is shown to reduce supply and
increase adoption, potentially enhancing returns. They suggest that staking rewards influence
prices beyond traditional cash flows, indicating a combination of periodic income and
speculative growth.

The rising participation among institutional and retail investors shows the growing
adoption of staking. Literature in traditional finance shows both empirical and theoretical
evidence of the impact that dividends payout has on stock prices. Based on these results, the
gap in crypto finance needs to be investigated to fully understand market dynamics.

2.2 Proof-Of-Stake
To understand the role of staking in cryptocurrencies, an analysis of the staking mechanisms
and their economic implications is crucial. PoS is a protocol where token holders lock their

assets, which validates transactions and increases network security in exchange for periodic
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rewards. This section reviews studies on the comparison of PoS with Proof-of-Work (PoW).
Also, the impact of staking via periodic rewards and locked tokens on the market is studied.
Findings are found in theoretical frameworks and empirical research.

Research in PoS shows that this is an energy-efficient alternative to PoW, which
depends on data mining. Saleh (2021) examines PoS using a theoretical model that compares
PoS and PoW. The model assumes tokens are staked to increase network security and focuses
on the process of preventing energy waste. Saleh only uses theoretical evidence to predict the
behavior of PoS under specific conditions, such as the number of stakers. The key findings
indicate that PoW requires more energy, while PoS requires almost none. This is explained as
PoS depends on tokens rather than machines and computers needed in PoW. Saleh also finds
that PoS can maintain a consensus, which is a stable agreement regarding transactions if enough
tokens are staked. Chiu and Koeppl (2017) provide insights into the comparison between PoS
and PoW systems, focusing on their abilities to prevent double spending, a mechanism where
holders spend the same tokens multiple times. They examine the consensus mechanisms, and
how this aligns with validator behavior and network security, focusing on the importance of
penalties, such as slashing, to counter malicious actions, showing the benefits of PoS compared
to PoOW. Their model remains theoretical, as it explores the theoretical structure of both
mechanisms. Empirical data on energy consumption, one of the key benefits of PoS is provided
by Digiconomist. The author shows that Bitcoin (PoW) consumes 700-1000 kWh per
transaction. Comparing this to Ethereum (PoS), it gets reduced by over 99.95%, estimating to
require about 0.03-0.1 kWh per transaction (Digiconomist, 2025)

Buterin (2020), the inventor of Ethereum, explained the reasoning behind the transition
of Ethereum from PoW to PoS. One of the primary motivations for the transition to PoS is to
address the energy-intensive nature of PoW. Buterin noted the significant requirement for
computational power in PoW, which leads to substantial energy consumption. This is replaced
by the implementation of PoS, where validators participate in staking, thereby reducing the
environmental footprint, as also found by Saleh (2021) and the Digiconomist (2025). Another
key reason for the transition of Ethereum to PoS is the robust security, which the authors find
to be more efficient compared to PoW. With PoS, investors are incentivized for honest
behavior, as staked tokens may be slashed for malicious behavior (Buterin, 2020; Chiu &
Koeppl, 2017).
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2.3 Economic implications of staking

Staking in PoS systems does more than secure networks, it changes market dynamics as tokens
are locked in exchange for a return. This reduction in supply may influence investor behavior
and impact price action, much like dividends in traditional finance. This section examines the
economic implications of staking, which helps to understand the role of staking in generating
returns.

Cong, He, and Li (2021) investigate staking pools, in which token holders combine
assets to validate transactions and earn rewards. To show the impact, they create a model that
simulates a network based on PoS with staking pools. With the assumption that holders have
more tokens staked than others, they evaluate how these pools are formed and how rewards are
distributed. The model focuses solely on theoretical aspects, avoiding real-world data. They
find that staking pools make rewards more consistent. A reduction of variation in payouts of
staking by 2-5% compared to solo staking. The authors provide reasons for this variation,
including risk sharing in pools and the benefits of scaling. However, they warn about the risks
of manipulation in these pools, as they may lead to centralization, where large holders control
a significant portion of the staked assets, potentially influencing prices, or network stability.
However, the study only focuses on these pools and does not show the effects on prices or
returns.

Catalini and Gans (2020) study the effect of holder behavior. They use a theoretical
model that acts like a stablecoin market, where holders lock tokens to stabilize the value of a
currency, similar to staking, where holders earn a periodic reward. They solely use theoretical
assumptions and test the costs of locking tokens, such as sudden price increases. They evaluate
different scenarios, such as changes in returns or varying lockup periods, to observe the
behavior of investors. They show that locking up tokens incentives long-term holdings and a
decrease in selloffs when the markets go down. They also note the flexibility costs of locking
up tokens. During this period, investors are unable to sell tokens if the price increases, but
periodic returns offset this. However, as if it were only a theoretical framework, no real-world
data is used to demonstrate the impact of staking on prices or returns. These studies provide
theoretical evidence for staking and how supply may be reduced, encouraging long-term
holding. However, no data is provided to verify whether this affects market prices or returns.

Budish (2022) explores the liquidity implications, suggesting that staking’s token
lockups reduce market fluidity, potentially indicating strong confidence among holders, as they
may be more long-term focused. They found that limiting short-term speculation aids price

discovery. However, the authors warn about volatility spikes when the shortage of supply
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disrupts the market equilibrium. The authors base the findings on a theoretical model which
focuses on Bitcoin. The model assumes tokens are locked to improve network functions, which
reduces the available supply. Different scenarios are theoretically assessed to see if trading
fluidity and price discovery are affected. The findings of Budish are supported by Schar (2021),
who notes that projects may rely on governance voting schemes, where token holders grant
voting rights, similar to a stock. These tokens may increase active participation in the token but
note that the distribution of tokens is highly concentrated. This may lead to a loss of project
credibility, result in massive supply shocks, and have a negative impact on liquidity, as noted
by Budish. The findings of Budish and Schér differ from those of Catalini and Gans (2020),
who suggest that lockups stabilize prices and volatility. Budish highlights the risks in low-
volume markets when reduced liquidity increases price swings. The high concentration risk
echoes the warning in the paper of Chiu and Koeppl (2017) about the centralization risks of

PoS, where a small group of stakers may impact market dynamics.

2.4 Market dynamics and returns

Staking in PoS systems extends beyond network security. It shapes the dynamics of the
cryptocurrency market through its impact on supply, liquidity, and investor behavior. By
locking up tokens to earn rewards, staking reduces the circulating supply of tokens. As rewards
are commonly paid in tokens, mimicking dividend reinvestment by increasing token holdings,
returns may increase as the holdings increase.

Gupta and Krishnamachari (2024) provide empirical evidence on staking rewards. They
predict staking rewards for top PoS cryptocurrencies, utilizing regression analysis to forecast
rewards based on historical data, including reward rates, token prices, and market trends. They
use blockchain explorers to collect daily data and price feeds from exchanges. Their study is
based on data from 2022 to 2023. They predict rewards and compare them to actual rewards,
measuring accuracy using the root mean squared error (RMSE). They show empirical evidence
that the rewards of Ethereum can be predicted with an error of 0.7% for 1-day forecasts and
1.1% for 7-day forecasts. Most staking rewards researched in this study are predictable, but
currencies like Solana show slightly less accuracy due to faster block times. However, for their
research, they leave out crucial factors for staking, such as the distribution of tokens and the
volume of staked assets. Another shortcoming is the short-term predictions, as these are only
either 1- or 7-day forecasts. The paper also does not link staking to market outcomes.

John, Rivera, and Saleh (2021) offer a return-orientated perspective in which the

researchers analyze equilibrium staking levels in PoS systems. The researchers assume that
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staking participation stabilizes network economics, making staking a lucrative strategy for
token holders. These rewards could enhance total returns as staking reduces supply and
improves economic performance. They note that “increasing block rewards reduces short-
horizon cryptocurrency investment, which, under certain conditions, reduces the overall
transfer to long-horizon investment as well” (John et al., 2021). This decreases total
investments in cryptocurrencies, leading to a lower value of the staked assets. However, the
researchers remain theoretical, lacking empirical evidence of price action or changes in
volatility. Biais et al. (2023) extend this discussion by examining the dynamics and risks of
staking. The researchers explore the PoS consensus via a theoretical view. They suggest staking
aligned incentives but introduces different risks. Dominant holders may manipulate prices or
volatility. Coordination among stakes may change the power dynamics between holders.
However, the study warns about the usefulness of the findings as the theory is complex, and

the empirical evidence is limited.
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Figure 1: Annual Staking Yield to Staking Ratio (CoinGecko, 2024)

CoinGecko (2024) provides practical insights into staking yields among the top PoS
blockchains. In Figure 1, the yields and staking ratios are added, and the staking ratio is the
ratio of staked assets compared to total available assets. As shown in the figure, Ethereum has
a staking ratio of 28% with an annual yield of 3%, while Polkadot has a staking ratio of 56%
with an annual yield of 11%. The figure shows no definite trend between a higher yield and a
higher staking ratio, suggesting that investors consider more aspects to stake rather than solely
yields.

Cong et al. (2025) provide empirical evidence that a higher aggregate staking reward
does increase the staking ratio. For this, the authors use a regression with StakingRatio as the

dependent variable, with independent variables being staking reward rate, NotLaunched
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dummy, value share held by large holders known as whales, and platform productivity. The
staking ratio is significantly and positively affected by rewards and whales and negatively by
platform productivity. Cong et al. (2025) provides more empirical research on staking ratios.
They suggest that the staking ratio positively predicts changes in token prices. Empirical
evidence is provided with a regression based on the previous staking ratio. This revealed a
significantly positive staking ratio, indicating that a higher staking ratio predicts higher token
price appreciation. They also assess portfolio performance based on staking ratio by longing
the top 50% of high-staking tokens and shorting the bottom 50%. They prove that this portfolio
provides positive cumulative returns with a Sharpe ratio of 0.865. This study shows the impacts
of staking ratios on returns and portfolio performance; however, the study is focused on the
staking ratio, leaving out the impact of staking yields.

Riposo and Gupta (2024) model staking as a floating rate note to estimate the returns
on staking. Empirical evidence is based on Ethereum 2.0. The framework estimates expected
returns by considering network-specific variables, such as staking participation and transaction
volume. The model also incorporates slashing, a penalty for validator misbehavior that impacts
yields, and Maximal Extractable Value (MEV), where validators obtain extra profit from
ordering transactions. Thus, offering a complete view of all the economic drivers within
staking. They find that staking rewards rise with increased supply lockups and network activity,
potentially exceeding traditional yields. However, the model theoretically links staking rates to
effects on price or volatility but lacks empirical evidence based on real-world data. The model
also focuses solely on Ethereum 2.0, which may show different dynamics compared to other
blockchains. Fan, Jiao, Lu, and Tong (2024) analyze an investment strategy in which investors
exploit high staking yields in PoS assets, such as ATOM, to achieve excess returns. They found
empirical evidence of an average excess return of 1,5% per month. The study employs a cross-
sectional approach to demonstrate that carry trades rely on yield differences, which is
comparable to a dividend-seeking investment strategy. They note, however, that using this
strategy does face a risk of crashing from lockup-induced volatility spikes. Nevertheless, for
this thesis, the investor behavior in this strategy helps determine the market influence of
staking.

Liu and Tsyvinski (2021) explore the risk and return dynamics of cryptocurrencies over
the period 2011 to 2018. They provide empirical evidence that cryptocurrencies exhibit high
volatility, with annualized volatilities differing from 60 to 100%. The study also finds a low
correlation between cryptocurrencies and traditional assets, like bonds and stocks. Liu and

Tsyvinski identify crypto-specific return drivers, including momentum, investor attention, and
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network effects. For example, they find empirical evidence that past weekly returns predict a
4 t0 6% higher return the next week, while investor attention boosts return by 2 to 3%. The
authors note that cryptocurrencies are insensitive to macroeconomic variables during the study
period.

Chu et al. (2017) investigated the volatility dynamics of cryptocurrencies by applying
various GARCH models to several cryptocurrencies, utilizing data from 2014 to 2017. Their
study assesses the performance of various GARCH models in capturing the distinctive
characteristics of cryptocurrencies, including their high volatility. They find that the
GARCH(1,1) models provide the best fit for most cryptocurrencies, effectively capturing the
volatility and fat-tailed nature of returns. Their study also highlights the influence of external
factors on volatility, such as trading volume or sentiment, with higher volumes being associated
with increased volatility because of speculative trading activity. The authors note that
cryptocurrencies exhibit asymmetric volatility responses in which negative shocks have a
larger impact on volatility than positive shocks. This study is relevant as it enables modeling
volatility in PoS currencies, validating the use of GARCH(1,1) models to capture the volatility
dynamics of crypto returns. The authors suggest that staking mechanisms, such as lockup
durations and reward distribution, may impact liquidity and price stability (Chu et al., 2017).
Foroutan and Lahmiri (2022) use an EGARCH model to model volatility during the COVID-
19 pandemic. The authors use ten cryptocurrencies to investigate the relationships between
return, volatility, and volume. The authors find empirical evidence of a relationship between
return and volatility for most of the sample. They find that changes in volume solely influence
volatility (Foroutan & Lahmiri, 2022).

2.5 Conclusion

While in traditional finance, both theoretical and empirical research show that periodic
payments, such as dividends and coupons, are return drivers, the role of staking rewards in
cryptocurrency remains underexplored. Modigliani and Miller (1961) suggest that firm values
are irrelevant to dividend policies. This statement has been contradicted by many studies over
time, such as DeAngelo and DeAngelo (2006). Evidence is provided both empirical and
theoretically confirming that periodic payments increase the price of assets, mainly explained
by the signaling principle of private information. However, in crypto finance, most research
prioritizes the technical and economic mechanisms of staking but not the returns. Saleh (2021)
and Chiu and Koeppl (2017) highlight the benefits of PoS, including energy-efficient
mechanisms and increased security, demonstrating how lockups strengthen networks. Cong et
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al. (2021), Cong et al. (2025), and Catalini and Gans (2020) suggest that staking encourages
holding and reduces supply, potentially stabilizing prices. These studies, however, focus on
theoretical models, providing limited empirical evidence or leave out staking yields as a
potential driver of returns. This research gap is critical as the periodic rewards of staking could
drive returns by increasing holdings and signaling an increase in network security. This thesis
aims to address this gap by examining the impact staking has on returns in PoS currencies,

building on frameworks and principles from traditional finance.
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3. Hypothesis

In the literature review, the connection between periodic payments and their impact on asset
returns in traditional finance has been established. Studies like those by DeAngelo and
DeAngelo (2006) demonstrate how dividend payments signal firm value, a finding supported
by many researchers. Research into the cryptocurrency literature reveals that the focus lies on
the role of staking in PoS systems and the benefits that PoS currencies offer, such as
enhanced network security, adoption dynamics, and the reduced carbon footprint. These
researchers pay no attention to the full impact staking metrics have on returns or prices.
Studies like those by John et al. (2021) and Riposo and Gupta (2024) have modeled staking
payouts as potential enhancers of returns. However, the emphasis of these studies is on
theoretical application without empirical evidence to support their findings, which this thesis

aims to address.

This chapter will define the research questions and hypotheses guiding the research
into the impact of staking on returns. Increased staking participation suggests that staking is
more than solely a technical feature, it influences supply, liquidity, and behavior of investors
similar to dividends or coupons. However, while there is empirical evidence in traditional
finance, current literature on staking falls short of evaluating the practical implications of
staking. Gupta and Krishnamachari (2024) demonstrate the predictability of staking rewards,
and Riposo and Gupta (2024) model yield by incorporating network activity and lockups into
supply. However, no research ties these factors to price or volatility changes. This gap

motivates an empirical exploration into the role of staking as a driver of returns.

The main gap this thesis addresses is focused on staking, framing the main research question

as: “Do staking rewards enhance returns on cryptocurrencies?”

This question builds on the findings in the literature review, in which Cong et al.
(2025) suggest that staking reduces supply, potentially leading to an increase in price if
demand holds. John et al. (2021) argue that staking rewards stabilizes the blockchain
network, offering a lucrative investment strategy akin to dividend returns. In traditional
finance, the impact of dividends has been thoroughly examined, with authors noting both the
relevance of dividend policies and their irrelevance. Papers like Baker et al. (2002) and
Iftikhar et al. (2017) quantify dividends as a return boost, which may indicate the potential
impact of staking.

H1: “Higher staking reward rates show a positive effect on cryptocurrency returns.”
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This hypothesis is based on the effect of dividend yields in traditional finance,
following the impact of periodic rewards and the reduction in supply resulting from staking,
which drives returns. This hypothesis can be empirically evaluated via an analysis of market
data.

Another question that complements the main research question this thesis seeks to answer is,

“Does the duration of staking lockups reduce the volatility of cryptocurrencies?”

Research in traditional finance highlights the additional benefits of dividend
payments, which signal firm strength and mitigate agency conflicts (Rozeff, 1982; Fama &
French, 2001). Following this research in traditional finance, the assumption is that this
dynamic may be mirrored by staking. Budish (2022) has already researched the impact of
lockups in staking, finding that lockups indicate the confidence of holders but warns of spikes
in volatility from supply shocks resulting from market manipulation. Catalini and Gans
(2020) explore how PoS mechanisms align token holders with network success, potentially
supporting long-term participation. Riposo and Gupta (2024) suggest that staking rewards
enhance network stability but lack empirical evidence. Within PoS systems, lockup durations

vary, which allows for a natural experiment to assess the effect on stability.

H2: “Cryptocurrencies that have longer staking lockup durations show less price volatility

compared to currencies with shorter or no lockup durations.”

This hypothesis is based on traditional finance, where Fama and French (2001) noted
that mature firms pay dividends to signal stability, potentially reducing volatility. This trait
may also be reflected in cryptocurrencies. Unlike in traditional finance, where dividends have
a uniform schedule, the variability within PoS systems offers a unique perspective for

assessing specific effects within the cryptocurrency market, such as volatility.

These questions frame the empirical research of this thesis, testing if staking in PoS systems
functions as a periodic payment mechanism with empirical impacts in the market. The thesis
is based on the literature review, in which theoretical and practical insights are discussed.
Following the approach used to establish the impact of dividends and coupons in traditional
finance, this thesis aims to provide empirical evidence of the economic significance of
staking. If this evidence can be obtained, it will contribute to academic research and may also
be utilized in investment strategies involving cryptocurrencies. Evidence of H1 could

prioritize high-yielding staking assets for investors, while evidence of H2 may favor
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investment strategies with a long-term focus. Policymakers can use evidence of the

hypotheses to re-evaluate risks within their staking policy.
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4. Data

The empirical analysis requires multiple datasets. The most crucial part is selecting currencies
that meet the required criteria. These choices need to be well-considered, as the research relies
on data based on these currencies, including returns, staking ratios, staking rewards, and market
sentiment. Finally, macroeconomic factors, such as interest rates and legal changes, need to be
considered, as these are crucial for answering the research questions and ensuring robust

results.

4.1 Currency selection

A selected sample of cryptocurrencies meeting specific criteria to ensure a robust analysis of
PoS dynamics is chosen. As illustrated in Appendix A, media interest in PoS increased
significantly from 2022 onward, with limited attention prior to that. Consequently, only
cryptocurrencies launched prior to 2022 are included, covering the study period from 2022 to
2024. To mitigate the high volatility present in the cryptocurrency market, all selected coins
have a market capitalization of $1 billion or higher as of 2024. This threshold ensures that the
selected currencies offer stable price dynamics, which enhances data reliability. Control
variables are incorporated to address endogeneity concerns, which are selected based on

established research on cryptocurrencies.

4.1.1. Ethereum

Ethereum (ETH) has the second-largest market cap in cryptocurrencies, behind Bitcoin,
making it the largest altcoin. It achieved a maximum market capitalization of almost $472
billion in 2024 (CoinMarketCap, 2025). Ethereum officially transitioned from PoW to PoS in
September 2022, a crucial change during the period of this study. Prior to this transition, staking
was already possible via Beacon Chain. However, users were unable to withdraw tokens until
the full transition (Bitstamp, 2024). For the thesis, staking data prior to the transition is also
included, as staking was an active option during that time. Ethereum has high liquidity and
extensive validator activity, which minimizes volatility. Ethereum has high lockup
requirements, as thirty-two tokens are needed for staking, allowing for an exploration of the

supply dynamics in the event of unstaking (EtherScan, 2025).

4.1.2. Solana
Solana (SOL) is also included, reaching a market cap of almost $120 billion in 2024
(CoinMarketCap, 2025). A key aspect of SOL is its high transaction throughput, which is

driven by a PoS mechanism (SolScan, 2025). Solana is widely adopted in DeFi, making it
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suitable for a regression analysis on returns and liquidity effects. SOL has experienced
extensive price growth since its ICO in 2020, but this has stabilized since, making it suitable
for analysis to determine the economic impact of staking.

4.1.3. Cardano

Cardano (ADA), with a market capitalization of approximately $50 billion USD in
2024, employs an efficient PoS protocol (CoinMarketCap, 2025). Its liquid staking pool
eliminates traditional lockup periods, limiting analysis of liquidity impacts, but offers insights
into validator dynamics and the economic implications of staking due to its high liquidity and
established network (CardanoScan, 2025).

4.1.4. Cosmos

Cosmos (ATOM) is also selected. ATOM offers a high staking yield, offering insights
into differences in impacts based on yield. ATOM reached a market capitalization of $5 billion
in 2024, falling short of its previous high of around $10 billion in 2022 (CoinMarketCap, 2025).
The PoS implemented in ATOM supports interoperability, making its role in the cross-chain

ecosystem relevant for studying the economic impacts of staking (AtomScan, 2025).

4.1.5. Algorand

Algorand (ALGO) is also included. ALGO employs a pure PoS protocol, which
features an automatic staking mechanism, allowing for easy participation, making it crucial in
understanding investor behavior and supply effects (AlloInfo, 2025). Algorand has experienced
a significant decline in market capitalization, from $15 billion in 2022 to just over $2 billion in
2024 (CoinMarketCap, 2025).

4.1.6. Tron

Tron (TRX) reached a market cap of thirty-six billion dollars in 2024 (CoinMarketCap,
2025). TRX uses a delegated PoS system, where super representatives are used to stake tokens
(TronScan, 2025). The application of TRX in stablecoin transfers, as well as its use in DeFi,

makes it suitable for studying the effects on liquidity and returns.

4.1.7. Ton

Ton (TON) is selected for its real-world applications. The currency is integrated with
Telegram, enabling users to easily conduct transactions via TON, which ensures high trading
volumes (TonScan, 2025). TON reached a market cap of twenty-five billion in 2024, which
means it matches the criteria for currency selection (CoinMarketCap, 2025). TON is a PoS
currency and operates on an independent blockchain (TonScan, 2025).
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4.1.8. Binance

Binance (BNB) is the official token released by exchange Binance. It uses a PoS
mechanism and is commonly used on Binance, resulting in high liquidity and trading volume
(BNBScan, 2025). The noise of volatility is also limited, as Binance is a global exchange, with
the currency achieving a market cap of $100 billion in 2024 (CoinMarketCap, 2025). The
appliance of BNB in Defi complements the uses of Solana, which offers a comparison of the

differences among currencies.

4.1.9. Polkadot

Polkadot (DOT) is selected for its high yield and solid PoS system, which enables
interoperability. Polkadot had a maximum market cap of $15 billion in 2024. Combining this
with an active validator network makes it suitable for studying both returns and liquidity
dynamics. Compared to different PoS currencies, DOT offers a high yield for staking, making

it an interesting currency for this thesis (CoinMarketCap, 2025; PolkadotScan, 2025).

4.1.10. Avalanche

Avalanche (AVAX) is chosen for its high-yielding PoS protocol and fast transactions.
As it offers a high yield, the high number of validators makes it a suitable case for analyzing
the dynamics of returns and supply. Similar to BNB and SOL, AVAX has seen growth in both
the DeFi and institutional adoption markets, achieving a maximum market cap of almost $25
billion in 2024 (CoinMarketCap, 2025). However, similar to ETH, AVAX has a high-stake
requirement of 2000 AVAX tokens, offering insights into the impact of lockups (AvaScan,
2025).

This sample of ten cryptocurrencies provides diversity in PoS mechanisms, market dynamics,
and staking characteristics. All meet the criteria of an ICO before 2022 and have a market
capitalization above $1 billion as of 2024. Their independence from one another excludes
dependent tokens, such as Polygon. Cryptocurrencies with low staking yields, such as
Chainlink and Hedera, where staking rewards have minimal impact, are also excluded to ensure

a meaningful analysis of staking effects.

4.2 Data collection for currencies

Following the selection of cryptocurrencies, specific data for each currency were collected to
address the research question, which examines the impact of staking on returns, volatility, and
liquidity in PoS cryptocurrencies. Data are obtained for the period from 2022 to 2024, aligning

with the surge in PoS interest that began in 2022, as noted in Section 4.1, to maximize the
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likelihood of significant findings. This section justifies the sources and methods used for data

collection, ensuring robust empirical analysis.

4.2.1. Daily prices and returns

The most important piece of data for this thesis is the daily prices, which are used to calculate
daily returns and serve as the dependent variable for the study. This data is essential in assessing
the impact of staking on returns, the key part of the research question. This data is obtained
from Coinbase, a major exchange with no affiliates in the selected currencies, which ensures
independence and removes the potential for any biases (Bobin, 2022). The data obtained
consists of the daily open, close, high, and low prices. For the consistency of the research, the
daily returns are based on daily closing prices, calculated as logarithmic returns with In(p;) —
In(p,_;). Logarithmic returns are used in statistics for properties such as the normalization of
price changes. Within the data obtained from Coinbase, the daily volume is also obtained. This
data is interesting for the research as the volume can be used as an indicator to show the impact

of the lockup periods and investor behavior after this period.

Coinbase was selected as a key source for data because of its extensive market coverage and
robust API, which provides reliable data for all selected currencies. Since Coinbase is a large
exchange subject to strict regulations, its prices and volume data are robust and continuous,
minimizing the potential discrepancies that occur with smaller exchanges (Bobin, 2022). The
data collected spans the entire period from 2022 to 2024, eliminating the need for sample

adjustments.

4.2.2. Staking data

Staking data is essential for analyzing the economic effects of staking in PoS currencies, as this
provides insight into additional returns, changes in volatility, and liquidity dynamics resulting
from staking mechanisms. This data is used to address both the primary research question,
focusing on returns, and the second question, which focuses on volatility and liquidity. These
data include the yield from staking, lockup requirements, and staking ratio for the selected
currencies.

Staking yield is expressed as an annual percentage and measures the additional returns
that investors earn from staking, similar to dividends in traditional finance. This is essential in
determining whether higher yields drive stability or volatility. This data is obtained as effective
daily rewards rates, which reflect the change in rewards depending on the amount staked and

validator performance, and is sourced from Stakingrewards.com, a leading platform for staking
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metrics. This site provides reliable and historical information on yields, lockup periods, and
minimum staking requirements. Their data is based on various sources to ensure robust results.
Staking yields and lockup details are cross-verified with blockchain explorers, which are
specific for each currency. These explorers provide real-time statistics on validators and
protocols.

The staking ratio measures the proportion of the total coins that are locked for staking,
calculated by dividing total staked tokens by total circulating supply. This data is essential in
analyzing if lockups and other behavioral changes influence volatility or returns. Data on
staked tokens is also obtained from StakingRewards.com. The total token supply is estimated
by dividing the daily market cap by the daily closing price of the currency. The data on the
market caps is obtained from Coinmarketcap.com.

Lockup requirements provide insights into the volatility and liquidity dynamics of
cryptocurrencies. Staking protocols require stakers to lock tokens in order to earn rewards,
allowing this data to be sourced from various blockchain explorers. However, as exchanges
offer different lockup durations, the data is adjusted based on unlock periods, as determined by
explorers, combined with exchange requirements. This adjustment is based on changes in
staking ratio’s, allowing to capture when supply becomes available. By making the lockup
variable time-varying, rather than stationary, the GARCH(1,1) can more accurately estimate
the impact of lockup durations on volatility.

The staking data are appropriate for the research questions because they provide a direct
measure of both the financial and operational aspects of staking that influence returns,
volatility, and liquidity. Higher yielding PoS currencies may attract investors, which can
increase returns but also volatility if staking participation fluctuates over time. Lockup
requirements restrict the token supply, which may stabilize prices during lockups but introduce
other risks, such as massive unstaking events. The selection of diverse staking mechanisms
among selected currencies enables a comprehensive analysis of the economic effects of staking,
aiming to fill the current gap in the existing literature. With the focus on high-cap coins, the
noise from speculative low-cap coins is minimized, ensuring reliable staking metrics.

Data on staking yield and ratio for the selected cryptocurrencies were primarily sourced
from StakingRewards.com, a widely cited platform for staking metrics, ensuring consistency
across the 2022—-2024 study period. However, Algorand lacks comprehensive historical yield
and staking ratio data on StakingRewards.com due to its governance-based staking model,
which differs from traditional PoS mechanisms. To address this, a constant staking yield of

4.42% was obtained from Coinbase, a major exchange providing standardized yield estimates
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for Algorand (Coinbase, 2025). Algorand's staking ratio was estimated by dividing its Total
Value Locked (TVL), sourced from DefiLlama, by its market capitalization, yielding an
average staking ratio of 10% over the study period.

For Ton, which transitioned from PoW to PoS in November 2022, the staking yield and
ratio are assumed to be zero prior to the transition due to the absence of a staking mechanism.
Post-transition, TON's staking data were sourced from StakingRewards.com, consistent with
other cryptocurrencies, ensuring comparability.

4.2.3. Market data

To address endogeneity issues, market data is essential to capture external price fluctuations
and investor behavior that may confound the effects of staking. Endogeneity may arise via
reverse causality or omitted variables. To control broader market trends, the S&P
Cryptocurrency Broad Digital Market Index is used as a control variable. Sentiment indicators
are also included to account for market-wide and currency-specific optimism or fear, which
may drive price movements independently of staking mechanics.

The Fear & Greed Index, gathered from Alternative.me, is a metric that combines
cryptocurrency market indicators, including volatility, trading volume, social media activity,
and Bitcoin dominance (Alternative.me, 2025). This index provides a daily measure of overall
market sentiment, which influences investor behavior across all selected currencies, making it
a robust control variable against external price drivers. For example, a high greed score during
bull runs, characterized by a high score, with 100 being extreme greed, may inflate returns. The
index is collected daily for the period 2022 to 2024, gathered from Alternative.me.

Currency-specific sentiment is captured through social media analytic tools.
LunarCrush offers insight into specific currency sentiment, mentions, and engagements on
social media. The data provided by LunarCrush indicates a 100% score when sentiment is
exceptionally good, while a lower score indicates a worse sentiment for the currency
(LunarCrush, 2025). Currencies with strong sentiment and high engagement may be influenced
by external factors that affect investor behavior, potentially leading to omitted variable bias if
these factors are not accounted for. By controlling media sentiment, the findings should be
robust against external price drivers.

To control market movements, daily log returns of the S&P Cryptocurrency Broad
Digital Market (BDM) are included. This helps to capture market-wide trends. The index tracks
over 240 cryptocurrencies that meet specific liquidity and market capitalization criteria,

providing a comprehensive benchmark for the cryptocurrency market's performance
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(SPGlobal, 2025). This data complements specific variables for PoS currencies, such as staking
yield and ratio. Because the index only includes weekday trading data, weekend returns are
interpolated using the average of preceding and following trading days. This preserves the daily
frequency of the datasets and avoids bias by assuming zero or constant weekend returns.

Data quality is ensured through thorough processing of the available data. The Fear &
Greed Index is complete for the research period, with no missing values. The sentiment data
obtained via LunarCrush is filtered for activity from bots, providing nearly complete data.
Some minor gaps are interpolated linearly to maintain the daily frequency used in the research.
Outliers, such as the collapse of FTX in November 2022, remain in the data to reflect complete
market reactions, as cryptocurrencies are prone to large price swings. Removing events like
this, risks introducing bias by removing volatile events, a key feature of crypto markets. The
BDM index captures macro-level market trends, which, together with the variables that account
for sentiment, help control for addressing endogeneity due to omitted variables. The period of
the research contains key PoS events, such as the switch of Ethereum to PoS, which ensures
the relevance of staking dynamics. By mitigating external price drivers, these controls enhance

the robustness of the findings, aligning with similar studies on cryptocurrency markets.

4.3 Macroeconomic data

Macroeconomic data is essential for analyzing the effects of staking economics on returns,
volatility, and liquidity. These data control external economic factors that may impact price
movements and investor behavior independent of staking mechanics. For the research
questions, certain macroeconomic variables, such as interest rates and regulatory changes, are
considered which enhances the robustness of the regression.

Interest rates influence investor risk appetite, with changing rates potentially diverting
capital from cryptocurrencies to traditional assets, affecting returns and liquidity (Karadag &
Cetin, 2023). To ensure robust results, the U.S. Federal Reserve's fund rate is a key indicator
in monetary policy. The daily effective rate is obtained from the Federal Reserve Economic
Data (FRED) database, which provides a complete dataset for the thesis’ time period.

Regulatory changes can increase volatility or alter returns, potentially biasing findings.
While prior studies, such as Feinstein and Werbach (2021), find no evidence that regulatory
measures drive traders away, this study uses pre-existing data, making regulatory impact a
critical variable to consider. Robustness in the findings are ensured as regulatory events are

collected as a dummy variable based on news archives and legal databases. The focus of these
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events ison U.S. and EU regulatory changes because of their impact on the global market, such
as the approval of ETFs and the SEC's ruling against XRP.

4.4 Descriptive statistics

This section summarizes the characteristics of the selected PoS cryptocurrencies to provide
context for the empirical analysis. Descriptive statistics for daily returns, staking metrics,
trading volumes, market sentiment, and macroeconomic variables are presented to assess the
suitability of data for addressing the research questions on the impact of staking on returns,

volatility, and liquidity. These statistics ensure the dataset's robustness for regression analysis.

Currency|Mean Median Standard deviation Lowest daily return Highest daily return
ETH 0.06% 0.02% 3.58% -17.52% 19.23%
SOL 0.15% -0.10% 5.27% -42.25%, 32.73%
ADA 0.05% 0.00% 4.29% -18.65% 23.51%
ATOM -0.05% -0.10% 4.66% -20.54% 24.31%
ALGO -0.04% 0.05% 4.80% -23.03% 36.21%
TRX 0.16% 0.15% 3.07% -18.38% 43.30%
TON 0.13% -0.049% 4.45% -18.86% 26.80%
BNB 0.07% 0.04% 3.12% -18.36% 17.30%
DOT -0.04% 0.00% 4.25% -19.98% 29.26%
AVAX 0.02% -0.12% 5.07% -30.08%4 24.82%

Figure 2: Descriptive Statistics Currency Data

Figure 2 presents the descriptive statistics of the currencies, including the mean,
median, standard deviation, and range of daily returns for each cryptocurrency from 2022 to
2024. The figure highlights lower volatility in higher market capitalization coins, consistent
with their established market presence. Larger-cap currencies, such as Ethereum and Binance,

exhibit smaller extreme daily returns compared to smaller-cap currencies like Algorand.

Currency | Average Yield Epoch Lockup period Average ratio
ETH 4.2% 1 4 17.5%
SOL 6.6% 5 512.6%
ADA 3.5% 5 0 67.3%
ATOM 18.4% 7 25 63.9%
ALGO 1.5% 1 0 9.6%
TRX 4.2% 3 14 43.9%
TON 4.2% 1 0 0.8%
BNB 3.5% 1 7 13.1%
DOT 13.5% 1 30 54.4%
AVAX 8.3% 4 9 27.8%

Figure 3: Descriptive Statistics Staking Metrics

31



Figure 3 summarizes the staking metrics data, including yields, staking ratios, reward
epochs, and lockup periods. Annual staking yields range from 2.6% to 18.7%, reflecting
diverse incentives across currencies. Contrary to expectations, higher yields do not consistently
correlate with higher staking ratios as shown in Figure 3, which is supported by Figure 1,
suggesting other factors, such as investor preferences or network design, influence staking
behavior. Reward epochs vary among currencies, ranging from 1 to 7 days, while lockup
periods range from liquid staking pools to fixed periods of up to one month.

Sentiment| Mean Median Standard deviation Lowest daily score Highest daily score
ETH 83.49% 85.00% 8.77% 10.00% 99.00%
50L 81.98% 85.00% 10.69% 10.00% 99.00%
ADA 82.89% 85.00% 9.88% 13.00% 99.00%
ATOM 76.79% 78.00% 12.52% 1.00% 100.00%
ALGO 78.42% 79.00% 11.14% 29.00% 100.00%
TRX 78.03% 79.00% 20.66% 2.00% 100.00%
TON 77.27% 80.00% 14.08% 8.00% 100.00%
BNB 77.22% 79.00% 8.87% 25.00% 100.00%
DOT 82.78% 84.00% 11.64% 10.00% 100.00%
AVAX 79.03% 82.00% 12.92% 22.00% 100.00%

Figure 4: Descriptive Statistics Sentiment Data

The Fear & Greed Index, averaging 47.77 from 2022 to 2024, captures market
sentiment dynamics. Peaks align with significant events, such as the U.S. presidential election
in late 2024 and the cryptocurrency bull run in late 2022, while lows correspond to bear markets
in late 2023 and early 2024. This aligns with currency-specific sentiment scores from
LunarCrush, which data is summarized in Figure 4. Larger-cap coins exhibit a lower standard
deviation with a high sentiment score.

Key macroeconomic variables include regulatory changes and interest rates. Inthe U.S.,
a notable regulatory event occurred in July 2023, when a court ruled in favor of Ripple against
the SEC, determining that XRP is not a security. In the European Union, the Markets in Crypto-
Assets Regulation (MiCA) was adopted in April 2023, with implementation phases scheduled
for July 2023, October 2023, and March 2024. Monthly FRED interest rates averaged 3.95%
over the study period, providing a macroeconomic control variable. These variables account
for external influences on cryptocurrency returns and volatility, enhancing the robustness of
the analysis.

This chapter establishes a robust framework for analyzing the economic implications of staking

on returns, volatility, and liquidity in PoS cryptocurrencies. A sample of ten cryptocurrencies
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was selected based on criteria that ensured significant staking yields, being a market
capitalization exceeding $1 billion in 2024, and independent blockchains, as detailed in Section
4.1. These criteria ensure a diverse and representative sample suitable for comparative analysis.
Data were sourced from multiple reputable databases, including Coinbase for prices,
StakingRewards.com for staking metrics, LunarCrush for market sentiment, and FRED for
macroeconomic variables, enabling a comprehensive regression analysis. Descriptive statistics,
presented in Section 4.3, confirm the data's suitability, revealing lower volatility in higher
market capitalization coins and a wide range of staking yields, which supports the analysis of
diverse staking mechanisms. This framework facilitates a precise evaluation of staking's

effects, ensuring robust and reliable insights into its economic impacts.

4.5 Data validity
Robustness and validity of the model is ensured by evaluating several statistical assumptions.

First, the assumption of linearity between the dependent variable and independent
variables was assessed by examining residual plots. These plots displayed a random scatter of
residuals around zero, confirming a linear relationship and supporting the appropriateness of a
linear regression framework.

Next, multicollinearity among explanatory variables was evaluated using Variance
Inflation Factors (VIF). VIF quantifies the extent to which the variance of an estimated
regression coefficient is inflated due to correlations among predictors. A VIF value exceeding
five indicates high multicollinearity, which can inflate standard errors, making estimates less
precise and statistical less reliable. In this analysis, VIF values were computed for all
explanatory variables, leading to the removal of the FRED variable due to problematic
multicollinearity. Although this issue was not universal across all currencies, the variable was
removed from the models for all to maintain consistency in the estimation process and avoid
potential distortions in comparative analyses. The problematic multicollinearity between
FRED and cryptocurrency returns reflects their shared sensitivity to macroeconomic
conditions. Changes in FRED rates usually signal shifts in liquidity, risk appetite, and inflation
expectations, which are key macro-financial dynamics that impact cryptocurrency markets.

The zero-mean residual assumption was verified ensuring the model's residuals have an
expected mean of approximately zero. This condition is typically satisfied when the regression
includes an intercept term, as was the case here. Confirmation of this assumption ensures that
the model is correctly specified and unbiased in its predictions, as non-zero mean residuals

could indicate the presence of omitted variables or model misspecification.
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Homoskedasticity, the assumption of constant residual variance across observations,
was tested using the Breusch-Pagan test. This test assesses whether the residual variance is
dependent on the values of the independent variables. Heteroskedasticity, if present, may lead
to inefficient estimates and biased standard errors, affecting the validity of hypothesis tests and
confidence intervals. The Breusch-Pagan test results showed the presence of heteroscedasticity
among all currencies. To account for this, robust standard errors are used. Since a Durbin-
Watson test showed no significant autocorrelation, there was no need to use Newey-West
robust standard errors.

Finally, the normality of residuals was considered. Given the large sample size of the
dataset, the Central Limit Theorem shows that the sampling distribution of the regression
coefficients approximates normality, thereby reducing concerns about minor deviations in
residual normality.

A key assumption of the GARCH(1,1) model is that the return series must be covariance
stationary, implying that the mean, variance, and autocorrelation structure remain constant over
time, which are ensured by using daily log returns, which are commonly applied to stabilize
variance and achieve stationarity. Furthermore, consistent with the assumptions of OLS, the
model requires that residuals exhibit no significant autocorrelation and that the presence of
conditional heteroskedasticity justifies the use of a GARCH model. These conditions were
evaluated and addressed during the preliminary analysis of the explanatory variables. Lastly,
for the GARCH(1,1) model to be valid, the conditional variance process must also be
stationary. This requires that the sum of the ARCH and GARCH parameters, indicated by
Alpha and Beta, is less than one, ensuring that volatility remains mean-reverting and does not
diverge over time.

Together, these diagnostics confirm compliance with the key assumptions of the models,
supporting the reliability and interpretability of the results for the hypotheses.
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5. Empirical models

This section outlines the empirical models used to test the hypotheses and address the research
questions of the thesis. Building on literature in traditional finance and existing studies in
cryptocurrency, the hypothesis examines whether the implications of staking mimic the effects
of dividends in traditional finance. These models utilize established methodologies in

traditional finance and adapt to the characteristics of the cryptocurrency market.

5.1 Hypothesis 1

The literature review examines the impact of dividend payments on stock returns, providing a
foundation for analyzing staking rewards in cryptocurrencies. Iftikhar et al. (2017) found
evidence that dividends enhance asset returns. Staking rewards mimic dividends by providing
periodic payments and additionally, enhancing network security, which incentivizes long-term
holding and decreases the circulating supply (Cong et al., 2025). Cong et al. (2025) introduce
the concept of “crypto carry”, suggesting that staking lockups increase cryptocurrency prices.
This study examines whether staking rewards have a similar effect on cryptocurrency returns,
drawing parallels with traditional finance.

The hypothesis posits that staking rewards positively affects cryptocurrency returns. If
the null hypothesis that staking rewards does not affect returns, cannot be rejected, it would
indicate that there is no significant impact. If a positive effect of staking is found, the null
hypothesis would be rejected, confirming that staking enhances returns, similar to traditional
finance. Hypothesis 1 is tested by employing an OLS regression model, following the
traditional research of Iftikhar et al. (2017), who uses an OLS regression to quantify the impact
of dividends on stock returns, and Cong et al. (2025), who employ regressions to identify return
drivers for cryptocurrencies. The dependent variable will be the daily returns of the currency,
with independent variables including staking metrics, such as the yield and ratio. Control
variables include the market sentiment and a dummy variable for regulatory events. These
variables account for external influences. Due to the simplicity of OLS, it is preferred over
similar models, such as the panel regression model. The regression is formulated as follows:

Ryt = ai + Bi1SRit—1 + BizSYit-1 + BisFGi—1 + PiaREG; + BisLog(MC);t + BigASENT;;
+ BizLog(Volume);; + PigAMKT; + ¢

Where:
- R;;: Daily logarithmic returns for currency i at time t,

SR;;_,: Staking ratio for currency i at time t,
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- SY,,_,: Staking yield for currency i at time t,

- FG,_,: Fear & Greed index score on time t,

- REG,: Regulatory event dummy for cryptocurrencies on day t where 1 indicates a

regulatory event,

- Log(MC);:: Log of Market Cap of currency i at time t,

- ASENT;: Change in market sentiment for currency i at time t,

- Log(Volume);;: Trading volume for currency i at time t,

- AMKT,: Change in Crypto Market Index returns at time t,

- & Error term

The expectation is that 7/ and £2 will significantly increase returns, as this reduces
circulating supply and signals network stability (Cong et al., 2025), similar to findings by
Iftikhar et al. (2017) in traditional finance. Cong et al. (2025) showed that the staking ratio has
a positive effect on returns, which is also expected in this regression.

The control variables of volume and sentiment are also expected to increase returns, while
Fear & Greed remains ambiguous. In times of greed, this variable is likely to have a positive
effect on returns, but in times of fear, it may depress returns. Regulatory events are likely to
have mixed effects, as such changes can have both negative and positive impacts on the market.
Market cap is also expected to influence returns significantly, however, the direction may be
ambiguous, similar to volume. Finally, returns are expected to follow the returns in the index,

as some currencies are included in them, leading to a correlation with the returns.

5.2 Hypothesis 2
Literature in traditional finance shows that dividend payments reduce stock price volatility by
offsetting agency problems (Rozeff, 1982) and signaling firm maturity (Fama & French, 2001).
In PoS systems, tokens are typically required to be locked up, which restricts the token supply
and encourages long-term holding, potentially stabilizing prices (Catalini & Gans, 2020).
However, Budish (2022) warns of sudden volatility shocks when supply becomes available.
The currency selection offers variability in lockup durations, enabling experimentation to test
the effects. The hypothesis, as formulated in Chapter 3, proposes that longer lockup durations
lower price volatility.

This hypothesis is tested using a Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) (1,1) model to capture the dynamics of return volatility. GARCH
models estimate the conditional variance of returns as a function of both past squared residuals

and past variances, which is particularly appropriate for cryptocurrencies due to their known
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volatility and volatility clustering (Chu et al., 2017). The model’s ability to estimate volatility
dynamically over time makes it well-suited for evaluating the evolving impact of staking
lockups. Chu et al. (2017) conducted a comparative study of various GARCH specifications
applied to cryptocurrency markets. They found that the GARCH(1,1) model most accurately
captures the statistical properties of returns on digital assets. In this analysis, lockup duration
is used as the primary explanatory variable on volatility while also controlling staking ratio,
staking yield, trading volume, and relevant micro- and macroeconomic variables. A negative
and significant effect of lockup duration on conditional variance would reject the null
hypothesis, supporting the theoretical insights of Bhattacharya (1979) and Catalini and Gans
(2020), who argue that information frictions and commitment mechanisms can stabilize asset
pricing dynamics. The GARCH(1,1) model consists of both a mean equation and a variance
equation, with the focus of this study being on the variance equation. The mean equation is
specified as:
Riy=p+e
The variance equation is specified as:
oty = Wi+ ag® + io® + yy SRy + Yi2SYie—1 + YisFGiy + YuREG, + y;sLog(MC),
+ yi6ASENT;; + yizLog(Volume);; + y;gLD;s + yioAMKT; + €

In this model:

- &2, Variance for currency i on day t,

- LD;: Lockup duration in days for currency i on day t,

- SR, SY, VOL, FG, SENT, MC, MKT and REG follow the same definition as given in
H1,

e Error term

The expectation is that longer lockup durations will reduce volatility, as this limits
speculation and sell-offs during bear markets (Catalini & Gans, 2020). Both market sentiment,
expressed in the Fear & Greed index, and the microeconomic sentiment, expressed in
sentiment, are expected to be ambiguous as swings can move both ways, similar to regulatory
events. The staking ratio and yield are expected to show negative signs, as volatility is most
stable with fixed staking, which is impacted by these factors. Changes in volume are expected
to increase volatility, and an increase in market returns is likely to increase volatility as money
flows increase into currencies.

The GARCH(1,1) models are constructed in RStudio using the maximum likelihood
method from the rugarch package. This approach estimates the parameters by assuming the
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models follow a Student’s T-distribution, aligning with Chu et al.’s (2017) findings that this
distribution provides the best fit for cryptocurrency data. The coefficients and their
corresponding standard errors, t-values, and p-values are derived to assess statistical
significance, offering insights into the impact of each parameter and external regressor on the
mean returns and variance.

The empirical analysis draws on a dataset from Chapter 4, which includes daily returns,
staking metrics, sentiment, and macroeconomic factors. By basing the methodology on
established frameworks from traditional finance tailored to the dynamics of cryptocurrencies,
this study ensures robust and generalized conclusions about the economic implications of

staking.
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6. Results
This section provides the empirical results of the regression analysis testing both hypotheses.
The results of both hypotheses are summarized in Appendix B.

6.1 Hypothesis 1
An OLS regression was conducted for the ten cryptocurrencies over the period from 2022 to
2024. The dependent variable is the daily logarithmic returns, and the explanatory variables
include staking metrics, sentiment scores, a regulatory dummy, and macroeconomic variables.

Hypothesis 1 posits that a high staking reward rate has a positive effect on crypto returns.
The regression results provide mixed evidence among the sample of currencies. A significant
positive effect is observed in Solana and Ethereum, where an increase in staking yield is
correlated with higher daily returns. The regression shows a 1% increase in yield, resulting in
an increase in returns of 0.6368% and 0.0662%, respectively. This aligns with dividend
signaling theory under asymmetric information (Bhattacharya, 1979), where higher dividends
signal firm quality, reduce uncertainty and boost stock prices. Similarly, higher staking yields
may signal robust network health, incentivizing holding and reducing sell pressure, as
supported by Iftikhar et al. (2017), who find an increase in return increases with a higher
dividend payout ratio. This is consistent with the economic incentives of staking (Cong et al.,
2025) and the Dividend Discount Model (Williams, 1938; Gordon, 1959), where asset value
reflects expected future payouts, suggesting staking yields enhance returns for mature
cryptocurrencies like Solana and Ethereum. However, Ton, Tron, and Cardano show
significant negative results. Tron shows a decrease of 0.0079% when the staking yield increases
by 1%, indicating a significant impact. Similarly, Ton and Cardano show a reduction of
0.0051% and 0.6552% in daily returns per 1% increase in staking yield, respectively. These
negative effects align with traditional finance findings, which indicate that high dividend yields
signal risk or unsustainability (DeAngelo & DeAngelo, 2006). Rozeff (1982) also emphasizes
the trade-off between dividends and investment, where excessive payouts may be perceived as
agency-driven or detrimental to growth. These parallels suggest that high staking yields
indicate network saturation, dilution risks, or anticipated selling pressure following reward
distributions.

For the remaining currencies, the effect of staking yield is statistically insignificant,
suggesting, as per Modigliani and Miller's (1961) irrelevance theory, that staking rewards may
not consistently drive returns in idealized conditions due to market frictions like variable

lockup periods or network-specific risks, such as price manipulation, which challenge the
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applicability of traditional models like Gordon's (1959) Growth Model. This may be explained
by differences in network designs or investor behavior, which dilute the signaling effect of
staking rewards across all PoS cryptocurrencies.

The staking ratio also shows mixed effects on returns. Algorand, Ethereum, Solana, and
Cardano demonstrate a positive impact on returns, which aligns with the findings of Cong et
al. (2025). For Ethereum, however, the effect is rounded to 0, while Algorand, Solana, and
Cardano show increases in returns of 0.0762%, 0.0001%, and 0.0051%, respectively, with a 1
unit increase in staking ratio. The effects of Algorand can be explained by the strong confidence
investors have in the governance-based model of Algorand. Solana, Ethereum, and Cardano
may be explained by their maturity compared to the other currencies in the sample. These
currencies are among the largest altcoins, which may indicate that this variable is only priced
for larger and more mature currencies. This finding, however, is contradicted by Ton and Tron,
which both show a negative effect on returns when the ratio increases. This effect may be
explained by the selling pressure of the distributed rewards or the reduced market liquidity,
which may increase downward price pressure. This would show that during the time period,
the selling activity is more significant as the buyers of the currencies.

A key return indicator for almost all currencies is the S&P Cryptocurrency Broad Digital
Market Index, which aligns with the findings by Cong et al. (2025). This suggests that the
currencies in the sample closely follow broader market trends in cryptocurrency, reflecting an
interconnected market. The sentiment of currencies, measured by changes sentiment scores
obtained via LunarCrush, shows significant effects on Tron and Cosmos, suggesting that the
returns of these currencies are influenced by shifts in sentiment scores. The Fear and Greed
index shows no significant impact across all currencies, indicating the limited role of sentiment
pricing in determining prices. Key regulatory events have only shown a minor positive effect
on Cosmaos' returns, possibly due to the increased legitimacy following the regulatory changes.
The impact of macroeconomic variables is similar to the findings of Liu and Tsyvinski (2021)
in their study, which focuses on the period 2011 to 2018. They also note that cryptocurrencies'
returns are largely insensitive to macroeconomic variables. An increase in market cap shows a
significant increase in returns for Tron, Algorand, and Binance, while the return of Cardano
and Binance are positively affected by an increase in trading volume, reflecting the role of
liquidity in returns.

The regression results provide mixed support for the hypothesis, suggesting that staking
rewards' impact on returns varies across PoS currencies. Drawing from traditional finance, the

positive effect of staking yields on Solana and Ethereum mirrors dividend signaling theory
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(Bhattacharya, 1979), where higher yields signal strong network fundamentals, thereby
boosting returns, as supported by Iftikhar et al. 's (2017) findings. This aligns with the Dividend
Discount Model (Williams, 1938; Gordon, 1959), where asset value is determined by expected
payouts, particularly for mature cryptocurrencies. Conversely, the negative findings for Ton,
Tron, and Cardano align with the risk-signaling view (DeAngelo & DeAngelo, 2006) and
agency-based dividend theories (Rozeff, 1982), indicating that high yields might be perceived
as unsustainable or opportunistic. The insignificant effects in other currencies support
Modigliani and Miller's (1961) irrelevance theorem, suggesting that staking yields may not
drive returns due to crypto-specific frictions like market manipulation or lockup variability,
which complicate traditional valuation models (Williams, 1938; Gordon, 1959). Another
reason for the results is the maturity and volatility of crypto markets. Several studies have tried
to identify key return drivers for cryptocurrencies (Liu & Tsyvinski, 2021; Cong et al., 2025).
These studies offer insights about return drivers, showing parallels with dividend policies in
traditional finance, which are also implemented in this study. Staking's volatility-dampening
potential may be offset by crypto market dynamics, and with the recent rise of interest in

staking, not all effects are effectively priced in.
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Observations 1,094 1,094 1,094 1,084 1,094
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Note: *pel,1; **p<0.05: **¥p<0. 01

Figure 5: Regression H1 for ETH, SOL, ADA, ATOM & ALGO
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Figure 6: Regression H1 for TRX, TON, BNB, DOT & AVAX

42



6.2 Hypothesis 2
GARCH(1,1) models were estimated for the ten selected PoS cryptocurrencies over the period
to assess the impact of the variables used in Hypothesis 1 on the volatility of each currency’s
daily logarithmic returns. The models incorporate the explanatory variables from H1, including
lagged staking vyield, lagged staking ratio, Fear and Greed Index, change in sentiment, a
regulatory dummy, log market capitalization, log trading volume, and change in broader market
returns, to evaluate their influence on conditional volatility. These models are added in
Appendix C, with several models being highlighted and added in the text.

Hypothesis 2 suggests that currencies with longer lockup durations show less price
volatility compared to currencies with shorter or no lockup durations. The empirical results,

presented in Appendix C, present a complex picture that partially contradicts the hypothesis.

GARCH(1,1) Coefficients for Cardano Returns

Estimate Std. Error t wvalue Pri= | t| )

mu -0.018852 0.060059 -0.313886 0.753608
mxregl 0.000128  0.000156 0.820264  0.412066
mxreg2 -0.136983  0.190673 -0.718422 0.472497
mxreg3 0.000021  0.000023 0.883541  0.376944
mxreg4 -0.000778 0.011744 -0.066288  0.947149
mxreg> 0.000780 0.002578 0.302769 0.762066
mxregb 0.001745 0.004938 0.353433 0.723763
mxreg/7 0.000183  0.000408 0.448743  0.653617
mxreg8 -0.000077 0.000088 -0.867150  0.385860
mxreg9 0.868034  0.034085 25.466820 0
omega  0.000072 0.000023 3.136309 0.001711
alphal 0.260994 0.046229 5.645636 0.00000002
betal 0.625673 0.023086 27.101280 0
vxregl 0.00000004 0.000002 0.018272 0.985422
vXreg?2 0 0.000578 0.000021  0.999983
vXreg3 0 0.00000003 0.0000001  1.000000
vxreg4 0.00000003 0.000742 0.000038  0.999970
vxreg> 0.00000003 0.00000003 1.214578  0.224527
vxregb 0.00000003 0.000317 0.000106  0.99%916
vxreg/ 0.0000001 0.00000003 3.890625 0. 000100
vXregd 0.000006 0.00000003 213.589800 0
vXreg9 0.00000003 0.000874  0.000029  0.999977
shape  4.637008  0.549737 8.434958 0

Figure 7: GARCH(1,1) model on Cardano Returns
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GARCH(1,1) Coefficients for Polkadot Returns

mu -0.04Y660  0.053190 -0.896031 0.370236
mxregl -0.001149 0.000765 -1.501341  0.133267
mxregZ 0.000353  0.001755 0.201014  0.840688
mxreg3 -0.000007 0.000038 -0.193178  0.846819
mxreg4 0.008640 0.012158 0.710645 0.477304
mxreg5 0.002027 0.002302 0.880634 0.378516
mxregb 0.009472 0.006517 1.453449  0.146099
mxreg/7 -0.000236  0.000115 -2.061276  0.039277
mxreg8 0.000079  0.000112 0.701503  0.482989
mxreg9 0.909955 0.03277 27.763850 0

omega  0.000001  0.000015 0.037846  0.969810
alphal 0.211739 0.019100 11.085640 0

betal 0.654009 0.028107 23.268620 0

vxregl 0.00000004 0.000017 0.002439  0.998054
vXregz 0 0.000017 0.000850  0.999322
vxreg3 0 0.0000001 0.000050  0.999960
vxreg4 0.0000001  0.000586 0.000121  0.999903
vXregs 0 0 0.450836  0.652108
vXregb 0 0.000825 0.000011  0.999991
vxreg/7 0.000009 0.0000001 144.971500 0

vxregsd 0.000003 0.0000001 24.095090 0

vXreg9 0 0.000729 0.000004  0.999997
shape 5.639417 0.779913 7.230826 0

Figure 8: GARCH(1,1) model on Polkadot Returns

Among most currencies, a significant explanatory variable for volatility is changes in
volume. This relationship is driven by increased trading activity, which tends to cause
increased price volatility due to shifts in supply and demand (Foroutan & Lahmiri, 2022).
The GARCH(1,1) models consistently show that LogVolume, as represented by vxreg7, is a
significant predictor of volatility across the majority of the sample, with p-values typically
below 0.05, indicating the dominant role of volume on volatility. For example, Ethereum

shows a highly significant p-value of 0.000217, which reinforces this finding.

However, the impact of lockup duration, indicated by vxreg8, challenges the
hypothesis. Most currencies show no significant impact, with a p-value being larger than
0.05. However, Polkadot, Cardano, and Cosmos show a significant increase in volatility
associated with changes in lockup duration, with the currencies showing increases of
0.000003%, 0.000006%, and 0.00000003% per unit change in lockup duration, as seen in
Figure 7 and 8 for Cardano and Polkadot. These coefficients have small p-values, suggesting
that longer lockup periods do not reduce volatility as hypothesized. Notably, Polkadot and

Cosmos, which rank among the longest lockup durations in the sample, alongside Cardano's
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dual staking structure, which offers both liquid staking and staking with short lockup
durations, provide critical context in understanding the impact of staking on volatility. The
increase in volatility for these currencies may be attributed to investor behavior, like the
reinvestment or selling of staking rewards upon receiving rather than a stabilizing effect from
longer lockups. This behavior may amplify market activity, contradicting the expected
reduction in volatility. However, the evidence suggests that currency-specific factors, like
market liquidity, staking flexibility, and ecosystem dynamics, dominantly drive volatility

outcomes, which overshadows the expected effects of extended lockup periods.

The contradictory findings may reflect the interplay between lockup duration and
other volatility drivers. For example, Polkadot has a 28-day unstaking period, and Cosmos
has validator-specific lockup periods, which may encourage periodic selling pressure. In

contrast, Cardano's liquid staking may mitigate the fixed lockup impacts.

6.3 Additional findings
Beyond the primary results of this study, the empirical analysis revealed several findings that
provide deeper insights into the dynamics of PoS cryptocurrencies. These additional findings
will be summarized in this section, enhancing the understanding of the economic implications
of staking on returns and volatility and offering valuable insights for future research.

Appendix D presents the volatility graphs for the selected cryptocurrencies in this study,
covering the period from 2022 to 2024. These graphs are derived from the GARCH(1,1)
models used to test the second hypothesis. The graphs reveal similar volatility spikes among
all currencies, indicating shared exposure to market-wide events. The most prominent spike
was observed after the U.S. presidential election in November 2024, following Trump's
appointment as president. This event sparked anticipation of changes in U.S. regulation, which
typically leads to a price change, as confirmed by a study conducted by Liu and Tsyvinski
(2021). The study found that returns are affected by negative regulatory events but not by
positive regulatory events. Additional spikes in volatility are found near the implementations
of MICA. These spikes suggest that external macroeconomic factors, especially regulatory
factors, influence the volatility of cryptocurrencies, which go beyond the effects of staking
metrics.

The volatility graphs also uncovered interactions between staking lockup periods,
liquidity, and market sentiment. Currencies with liquid staking pools, such as Ethereum and
Cardano, exhibit high volatility during spikes, which can be attributed to the absence of lockup

constraints, allowing investors to make rapid responses. In contrast, currencies with longer
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lockup durations, such as Cosmos and Atom, exhibited fewer volatility shifts, suggesting that
lockup durations help stabilize prices.

These additional findings strengthen the explanation of the complexity of PoS
cryptocurrency dynamics and highlight the need to account for macroeconomic events and
staking design in analysis. The volatility graphs in Appendix D, together with the regressions
from Figures 5 and 6 and the GARCH models in Appendix C, provide a comprehensive view
of how staking interacts with external factors.

6.4 Implications

This section serves as an exploration of the findings from both academic and practical
perspectives, focusing on the economic implications of staking in PoS currencies and their
broader relevance to the market of cryptocurrencies.

Academically, this study contributes to the existing literature on the drivers of return
and volatility in cryptocurrencies. The study prioritizes the implications of staking, focusing
on the staking ratio and yield and how these variables impact returns. The study builds on Cong
etal. (2025) and Liu and Tsyvinski (2021), which employ similar methods and slightly adjusted
data to explore return drivers. This study addresses the research gap left by prior studies by
incorporating staking-specific metrics absent in prior research. Cong et al. (2025) emphasizes
the stabilizing role of staking through reduced circulating supply and network incentives, while
Liu and Tsyvinski (2021) highlight factors such as momentum and investor attention as key
drivers of returns. The authors also note the insensitivity of cryptocurrency returns to
macroeconomic variables, like interest rates. However, these studies do not directly examine
staking metrics as return drivers in PoS systems, which is the gap this study aimed to fill.

This gap is filled by revealing effects across several PoS cryptocurrencies over the 2022
to 2024 period. The theory of Cong et al. (2025) suggests that staking induces price stability,
which suggests that a higher staking yield would incentivize holding and reduce sell pressure.
The findings of H1 are mixed, with Solana and Ethereum showing that a higher yield for
staking leads to a higher return. However, the negative effects for Ton, Tron, and Cardano
suggest that high yields may indicate risks or increase sell pressure, which aligns with Schar's
(2021) observation of speculative behavior in PoS currencies. The author also warns about the
highly concentrated distribution of staked tokens. The GARCH models further enrich the
existing volatility literature in crypto by finding a positive effect on the volatility for tokens
with longer lockup periods. This suggests that longer lockup periods introduce supply

uncertainty and liquidity constraints, which is consistent with the findings of Chu et al. (2017)
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about the role of factors that influence crypto volatility. However, the key change of volatility
for PoS currencies is explained by changes in volume.

The study also contributes a perspective on the impact of several variables on volatility.
The models extend prior volatility models from Chu et al. (2017) by incorporating recent data
and PoS-specific variables, such as lockup duration, staking ratio, and yield. The observed
volatility spikes across all currencies are seen during the implementation of MiCA and the U.S.
election, which underscores the impact of market-wide factors and the interplay with staking
mechanics, which is backed by the study of Liu and Tsyvinski (2021). The findings of the
volatility graphs suggest that staking's economic effects are context-dependent and influenced
by network-specific factors and external shocks. This highlights the need for future research,
when cryptocurrencies are more mature, to explore the interaction between PoS protocol
designs and market conditions, as well as regulatory frameworks.

Furthermore, the findings of this study align with theoretical frameworks on
decentralized finance and blockchain economics. Buterin (2020) explained in the whitepaper
on Ethereum's transition to PoS that staking mechanisms can enhance network security but
influence economic incentives. The perspective of Buterin is empirically tested in this study,
enabling policymakers to make informed decisions based on empirical evidence. The
theoretical insights of Buterin are supported by Saleh (2021), who provides a theoretical model
of PoS economics, suggesting that staking rewards may stabilize prices as they align with the
incentives of holders. This is empirically supported by Solana and Ethereum but contradicted
by Ton, Tron, and Cardano, where sell pressure is more dominant.

From a practical perspective, the findings of this study offer valuable insights for
various stakeholders in the cryptocurrency ecosystem, including investors. For them, the results
highlight the importance of evaluating staking metrics alongside other risk factors when
investing in PoS currencies. The positive effect of yield on Ethereum and Solana suggests that
staking rewards can enhance returns, making them a lucrative option for long-term investors.
However, the negative effects in several currencies indicate risks, such as sell pressure and
changes in volatility. Another key item investors need to consider is the lockup duration. As
seen in the GARCH models, longer lockup durations in Cosmos and Polkadot increase
volatility, which can be attributed to supply uncertainty.

Policymakers may use the findings to design policies that strike a balance between
staking incentives and market stability. Policymakers may consider guidelines that enhance

transparency in trading protocols and reward distribution to reduce uncertainty. This would
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ensure that the PoS systems remain resilient during turbulent times, like the implementation of
MiCA or the U.S. election in 2024.

Institutions exploring potential blockchain integration, such as smart contracts, may
benefit from understanding the economic implications of staking. The insignificant yield
effects for several currencies suggest that staking rewards may not drive returns in efficient
markets. However, the volatility effects indicate potential risks to price stability, which could
impact financial blockchain products. Institutions may favor networks that offer stable staking

designs to mitigate volatility risks while still using the benefits of PoS, like energy efficiency.
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7. Conclusion

Using OLS regression and GARCH(1,1) models to analyze a sample of ten PoS
cryptocurrencies over the period 2022 to 2024, | find that staking yields significantly enhance
daily returns for Solana and Ethereum. Specifically, a 1% increase in staking yield boosts
returns by 0.6368% for Solana and 0.0662% for Ethereum. However, results are mixed, as Ton,
Tron, and Cardano show a significant negative effect, reducing returns by 0.0051%, 0.0079%,
and 0.6552%, respectively. Additionally, staking ratios positively affect daily returns for
Algorand, Solana, and Cardano, which reflects investor confidence in established networks. In
contrast, negative effects on Ton and Tron suggest selling pressure from the reward
distribution. For Hypothesis 2, |1 used GARCH(1,1) models and found that lockup durations
increase volatility for Polkadot, Cardano, and Cosmos, which contradicts the hypothesis that
longer staking lockups reduce volatility. The model shows that, among most currencies, trading
volume emerges as a dominant driver of volatility. This research contributes to the academic
literature on cryptocurrencies by addressing a gap in prior cryptocurrency studies, which
overlook specific staking metrics, and extending frameworks from traditional finance to crypto
finance. The study provides practical insights for investors by showing empirical evidence for
investing in PoS currencies, showing that investments should not solely be based on staking
rewards. Policymakers should use the findings and implement transparent reward distribution
policies to enhance market stability.

However, a key limitation of this study is its limited time frame of 2022 to 2024, which may
not capture long-term market effects. Leaving out variables such as network changes or
validator concentration may also influence outcomes. OLS assumptions have been accounted
for by including robust standard errors to address heteroskedasticity and by removing FRED
as a variable, as the VIF indicated problematic multicollinearity. Future research should extend
the time horizon and incorporate additional metrics on PoS metrics, like validator activity or
protocol upgrades. Employing machine learning may also lead to interesting findings by better
modelling dynamic interactions and addressing endogeneity concerns, thereby enhancing our

understanding of staking’s role in the evolving cryptocurrency markets.
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Application of Al during thesis

In preparing this thesis, I utilized Al tools to enhance the quality and efficiency of my
work while maintaining my contributions. I used Grammarly to improve the thesis's grammar,
sentence structure, and overall readability, ensuring clarity without incorporating entirely
generated text. This allowed me to preserve my writing style while ensuring the quality and
readability of the text.

Al was also used during statistical analysis conducted in RStudio. When encountering
unfamiliar error messages or coding challenges, | used Grok to diagnose issues and suggest
solutions, such as debugging syntax errors or optimizing regression models. | evaluated the
output and ensured the models aligned with the hypotheses.

Al was also used to adjust the figures. For example, the original Appendix A and Figure
1 used to have a black background, mismatching with the white papers. Because of this, Al
was requested to adjust the figures to have a white background to align with the other figures
and the coloring of the paper.

Additionally, I used Grok as an analytical aid to refine and improve research methods.
For example, Grok helped identify key regulatory changes and brainstorm potential variables
to improve model performance. | made all final decisions, ensuring that Al contributions
supplemented rather than replaced my independent judgment.

This selective and transparent use of Al tools enhanced the clarity, accuracy, and
consistency of my thesis, while adhering to the guidelines of Tilburg University on responsible
Al usage.
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Appendix
Appendix A: Engagement PoS Social Media

Figure 9: Engagement PoS social media (LunarCrush, 2025)
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Appendix B: Summary table

Currency

Hypothesis 1

Hypothesis 2

Ethereum
solana
Cardano
Cosmos
Algorand
Tron

Ton
Binance
Polkadot
Avalanche

Reject HO

Reject HO

Do not reject HO
Do not reject HO
Do not reject HO
Do not reject HO
Do not reject HO
Do not reject HO
Do not reject HO
Do not reject HO

Do not reject HO
Do not reject HO
Do not reject HO
Do not reject HO
Do not reject H)
Do not reject HD
Do not reject HD
Do not reject HO
Do not reject HO
Do not reject H)

Figure 10: Summary of tested hypotheses
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Appendix C: GARCH(1,1) Models

GARCH(1,1) Coefficients for Ethereum Returns

Estimate Std. Error t value Pr(> | t| )
mu 0.008262 0.007707 1.071915 0.283758
mxregl 0 0.0000004 0.000649 0.999482
mxreg?2 -0.178622 091893 -1.943814 0.051918
mxreg3 -0.000003 .000025 -0.111368 0.911325
mxregd -0.035573 0
mxreg5 -0.000334

.017116 -2.078377
.000056 -5.945764 0

.037675

0

0

0

0
mxregd 0.011409 0.003584 3.183239 0.001456
mxreg7 0.001580 0.001e46 0.960291 0.336909
mxregd8 -0.000078  0.000073 -1.063319 0.287637
mxreg9 1.054138  0.031387 33.585310 0
omega  0.000001  0.000001 0.412808 0.679747
alphal 0.162659 0.010686 15.221780 0
betal 0.789613 0.019279 40.957040 0
vxregl 0.00000004 0.000001 0.044955 0.964143
vxreg2 0.00000002 0.000065 0.000274  0.999781
wxreg3 0 0.0000001 0.101831  0.918891
vxrreg4 0 0.000077 0.000151  0.999879
vxreg5 0.00000002 0.0000001 0.328320 0.742669
vxregb 0 0.000063 0.000189 0.999849
wxreg’ 0 0 3.698323  0.000217
wxreg8 0 0.00000005 0.112454  0.910464
vxrreg9 0 0.000078 0.000115 0.999908
shape 21.544880 2.630245 8.191207 0

Figure 12: GARCH(1,1) model on Ethereum Returns

GARCH(1,1) Coefficients for Solana Returns

Estimate Std. Error t value Pr(= | t| )

mu -0.003348 0.017254 -0.194062 0.846128
mxregl 0.090029 0.059547 1.511894 0.130561
mxreg2 0.403583 0.162600 2.482063 0.013062
mxreg3 -0.000035 0.000044 -0.814241 0.415507
mxreg4 0.002352 0.014624 0.160825 0.872231
mxreg5 -0.001395 0.000751 -1.856743 0.063348
mxregb 0.000966 0.007559 0.127840 0.898276
mxreg/ 0.000002 0.000442 0.004784 0.996183
mxreg8 -0.000074 0.000239 -0.309553 0.756901
mxreg9 1.116186 0.041882 26.650940 0

omega  0.000001 0.000025 0.033879 0.972974
alphal 0.205119 0.049933 4.107923 0.000040
betal 0.634385 0.093551 6.781198 0

vxregl 0.00000004 0.000477 0.000094 0.999925
vxreg?2 0 0.000536 0.000011 0.999991
vxreg3 0 0 0 1

vxreg4 0 0.001293 0.000008 0.999993
vxreg5 0.00000002 0.00000003 0.843326 0.399046
vxregb6 0.00000003 0.000374 0.000068 0.999946
vxreg/7 0.000025 0.000012 2.154386 0.031210
vxreg8 0 0.00000003 0.482764 0.629263
vxreg9 0 0.001450 0.000006 0.999995
shape 5.656949 0.988943 5.720196 0

Figure 13: GARCH(1,1) on Solana returns
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Regl
Reg2
Reg3
Regd
Regh
Regb
Reg/
Reg8
Reg9

Lagged Staking Ratio

Lagged Staking Yield

Lagged Fear and Greed Index
Regulatory Dummy
Log(MarketCap)

ASentiment

Log(Volume)

Lockup Duration

AMarket Index

Figure 11: GARCH(1,1) Variable table




GARCH(1,1) Coefficients for Cardano Returns

Estimate Std. Error t value Pri>= | tl )

mu -0.018852 0.060059 -0.313886 0.753608
mxregl 0.000128 0.000156 0.820264 0.412066
mxreg2 -0.136983 0.190673 -0.718422 0.472497
mxreg3 0.000021 0.000023 0.883541 0.376944
mxreg4 -0.000778 0.011744 -0.066288 0.947149
mxreg5 0.000780 0.002578 0.302769 0.762066
mxregb 0.001745 0.004938 0.353433 0.723763
mxreg/7 0.000183 0.000408 0.448743 0.653617
mxreg8 -0.000077 0.000088 -0.867150 0.385860
mxreg9 0.868034 0.034085 25.466820 0
omega  0.000072 0.000023 3.136309 0.001711
alphal 0.260994 0.046229 5.645636 0.00000002
betal 0.625673 0.023086 27.101280 0
vxregl 0.00000004 0.000002 0.018272 0.985422
wXxreg?2 0 0.000578 0.000021 0.999983
wXreg3 0 0.00000003 0.0000001 1.000000
vxreg4 0.00000003 0.000742 0.000038 0.999970
wXregd 0.00000003 0.00000003 1.214578 0.224527
wxregb 0.00000003 0.000317 0.000106 0.999916
vxreg/7 0.0000001 0.00000003 3.890625 0.000100
vxreg8 0.000006 0.00000003 213.589800 0
vxreg9 0.00000003 0.000874 0.000029 0.999977
shape 4.637008 0.549737 8.434958 0

Figure 14: GARCH(1,1) on Cardano returns
GARCH(1,1) Coefficients for Cosmos Returns

Estimate Std. Error t value Pr( | t| )

mu 0.140231  0.032535 4.310098 0.000016
mxregl -0.000729  0.001088 -0.670071 0.502813
mxreg2 0.000390 0.001437 0.271393 0.786089
mxreg3 0.000117  0.000052 2.2060777 0.023773
mxreg4 -0.008133  0.015124 -0.537708 0.590779
mxreg5 -0.007234  0.001431 -5.056871 0.0000004
mxregb -0.009062  0.009959 -0.909943 0.362852
mxreg7 0.000553  0.000428 1.292878 0.196053
mxreg8 0.000314  0.000315 0.995857 0.319320
mxreg9 0.123244  0.047263 2.607598  0.009118
omega  0.000086  0.000024 3.048787 0.000263
alphal 0.183049 0.042474 4.309637  0.000016
betal 0.786916 0.037216 21.144500 0
vxregl 0 0.000019 0.000598 0.999523
vxregZ 0.00000002 0.000015 0.001617 0.998710
vxreg3 0 0.00000003 0.0000001 1.000000
vxreg4 0.00000004 0.000998 0.000044  0.999965
vxreg5 0.0000001 0.0000001 1.228130 0.219398
vxregb 0 0.000432 0.000012  0.999990
vXreg’ 0 0.0000001 0.225884 0.821291
vxreg8 0.00000003 0 3.065175 0.002175
vxreg9 0.00000002 0.001186 0.000018 0.999986
shape 6.728076 1.396139 4.819057 0.000001

Figure 15: GARCH(1,1) on Cosmos returns
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GARCH(1,1) cCoefficients for Algorand Returns

Estimate sStd. Error t wvalue Pr(> | t| )

mu -0.014301  0.010448 -1.368791 0.171065
mxregl 0.001933  0.001551 1.245889 0.212805
mxregZ2 0.000043  0.000044 0.998305 0.318132
mxreg3 0.009255 0.012177 0.760044  0.447228
mxreg4 0.000347  0.000553 0.627261  0.530488
mxreg> 0.001430 0.009753 0.146642 0.883415
mxregb 0.000268 0.000095 2.821444  0.004781
mxreg7 -0.000080 0.000148 -0.541787 0.587965
mxreg8 0.953036 0.038351 24.850620 0
omega  0.000145 0.000027 5.402726  0.0000001
alphal 0.253448 0.045141 5.614592 0.00000002
betal 0.664642 0.036573 18.172880 0
vxregl 0.00000003 0.000019 0.001722 0.998626
vxreg2 0 0 2.342299  0.019165
vxreg3 0.00000002 0.000745 0.000026  0.999979
vxreg4 0.0000001 0 7.022557 0
vxreg5 0.00000002 0.000453 0.000039 0.999969
vxregb 0.0000002 0.00000002 10.624640 0
vxreg? 0 0.00000002 0.000005 0.999996
vxreg8 0 0.001269 0.000004  0.999997

shape 5.857273  1.049624 5.580354 0.00000002

Figure 16: GARCH(1,1) on Algorand returns

GARCH(1,1) Coefficients for TRON Returns

Estimate Std. Error t wvalue Pr(= | t| )

mu -0.078187 0.084987 -0.919978 0.357584
mxregl -0.002434 0.001590 -1.530407 0.125916
mxreg?2 -0.001420 0.001541 -0.921892 0.356585
mxreg3 -0.000020 0.000023 -0.853694 0.393275
mxreg4 0.005189 0.007965 0.651465 0.514747
mxreg> 0.003816 0.003131 1.218637 0.222982
mxregb 0.007466 0.002632 2.837303 0.004550
mxreg7 -0.000459 0.000636 -0.722150 0.470202
mxreg8 0.000070 0.000194 0.361991 0.717358
mxreg9 0.375083 0.015187 24.697870 0

omega  0.000057 0.000003 19.683080 0

alphal 0.190467 0.008609 22.125180 0

hetal 0.697816 0.023082 30.232540 0

vXregl 0 0.000005 0.000996 0.999206
vxregZ2 0.00000003 0.000006 0.005193 0.995857
vxregs 0 0. 0000001 0 1

vxregd 0.0000001 0.000199 0.000255 0.999796
vxregb 0.0000001 0.0000002 0.585889 0.557950
vXregb 0 0.000059 0.000096 0.999923
vxreg7 0.00000003 0.0000002 0.127121 0.898845
vxreg8 0.00000002 0.0000003 0.061797 0.950724
vxregd 0.00000003 0.000065 0.000436 0.999652
shape 3.771551 0.386750 9.751904 0

Figure 17: GARCH(1,1) on Tron returns
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GARCH(1,1) Coefficients for TON Returns

Estimate Std. Error € value Pr(= | t| )

mu -0.009773  0.010511 -0.929828 0.352460
mxregl -0.001609 0.001190 -1.352081 0.176349
mxregZ2 -0.001400 0.001579 -0.886351 0.375428
mxreg3 0.000028  0.000036 0.783518 0.433323
mxreg4 -0.015307  0.012845 -1.1917253 0.233370
mxreg> -0.001053  0.001121 -0.939872 0.347283
mxregb -0.000935 0.003168 -0.295270 0.767788
mxreg7 0.001802 0.001189 1.515618 0.129616
mxreg8 0.000055 0.000238 0.229438  0.818529
mxreg9 0.051898 0.039616 1.310019 0.190189
omega  0.000140 0.000026 5.469786 0.00000005
alphal 0.241089 0.036682 6.572443 0

betal 0.751131  0.029512 25.452020 0

vxregl 0.00000004 0.000021 0.002043 0.998370
vxregZ 0.00000002 0.000026 0.000845 0.999326
vxreg3 0 0.00000002 0.312569 0.754608
vxreg4 0.0000001  0.000880 0.000063  0.999950
vxreg> 0.00000002 0.00000002 0.961536  0.336282
vxregb 0 0.000341 0.000001  0.999999
vxreg7 0.0000001 0.00000002 2.870205 0.004102
vXregs 0 0.00000005 0.000238  0.999810
vxreg9 0.00000003 0.0012060 0.000028 0.999977
shape 3.279077  0.346351 9.467484 0

Figure 18: GARCH(1,1) on Ton returns

GARCH(1,1) Coefficients for Binance Coin Returns

Estimate 5Std. Error t wvalue Pr(> | t] )

mu -0.020533  0.005520 -3.719935 0.000199
mxregl 0.000361  0.000742 0.485824 0.627092
mxregZ -0.000554 0.000474 -1.166833 0.243278
mxreg3 0.000002  0.000025 0.092281 0.926475
mxreg4 -0.005117  0.005661 -0.903916 0.366040
mxreg> 0.000718  0.000288 2.493156 0.012661
mxregb -0.002881  0.008597 -0.335143 0.737518
mxreg/ 0.000239 0.000089 2.694451  0.007050
mxreg8é -0.000526  0.000819 -0.642386 0.520623
mxreg9 0.612814 0.023163 26.456360 0

omega  0.000047  0.000003 18.536300 0

alphal 0.254382 0.028685 8.868125 0

betal 0.745040 0.022112 33.693520 0

vxregl 0 0.000002 0.006996  0.994418
vXreg? 0 0.000008 0.001258 0.99899%
vxreg3 0 0.0000002 0.0000001 1.000000
vXreg4 0 0.000339 0.000041  0.999967
vxreg> 0.00000004 0.0000002 ©0.180996 0.856371
vxrege 0.00000002 0.000256 0.000081  0.999935
vxreg/ 0.00000003 0.0000001 0.453934 0.649876
vxreg8 0.00000002 0.000001 0.018318 0.985385
vxreg9 0.00000002 0.000457 0.000038 0.999969
shape 3.276730  0.302077 10.847330 0

Figure 19: GARCH(1,1) on Binance Returns
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GARCH(1,1) Coefficients for Polkadot Returns

Estimate Std. Error t value Pri= | tl] )

mu -0.047660 0.053190 -0.8%6031 0.370236
mxregl -0.001149 0.000765 -1.501341  0.133267
mxreg2 0.000353  0.001755 0.201014  0.840688
mxreg3 -0.000007  0.000038 -0.193178  0.846819
mxreg4 0.008640  0.012158 0.710645 0.477304
mxreg> 0.002027  0.002302 0.880634 0.378516
mxregb 0.009472  0.006517 1.453449  0.146099
mxreg7 -0.000236  0.000115 -2.061276  0.039277
mxreg8 0.000079  0.000112 0.701503  0.482989
mxreg9 0.909955 0.032775 27.763850 0

omega  0.000001  0.000015 0.037846  0.969810
alphal 0.211739 0.019100 11.085640 0

betal 0.654009 0.028107 23.268620 0

vxregl 0.00000004 0.000017 0.002439  0.998054
vxreg?2 0 0.000017 0.000850  0.999322
vxreg3 0 0.0000001  0.000050  0.999960
vxreg4 0.0000001  0.000586  0.000121  0.999903
vXregs 0 0] 0.450836  0.652108
vxregb 0 0.000825 0.000011 0.999991
vxreg/s 0.000009 0.0000001 144.971500 0

vxreg8 0.000003 0.0000001 24.095090 0

vxreg9 0 0.000729  0.000004  0.999997
shape 5.639417  0.779913 7.230826 0

Figure 20: GARCH(1,1) on Polkadot returns

GARCH(1,1) Coefficients for Avalanche Returns

Estimate sStd. Error t wvalue Pri= | tl )

mu -0.042404 0.032056 -1.322813  0.185897
mxregl 0.003744  0.002658 1.408922  0.158858
mxregZ2 -0.000318 0.000492 -0.647214  0.517493
mxreg3 -0.000013 0.000044 -0.296506 0.766844
mxreg4 0.013934  0.016541  0.842400 0.399564
mxreg> 0.001972  0.001579  1.249090 0.211632
mxregb -0.011038 0.008323 -1.326191 0.184776
mxreg7 -0.000383 0.000373 -1.026272 0.304764
mxregsé -0.000057 0.000157 -0.359602 0.719145
mxreg9 1.147023  0.041255 27.802940 0

omega 0.000106  0.000032 3.301915 0.000960
alphal 0.208512 0.034830 5.986630 0

betal 0.748625 0.050588 14.798620 0

vXregl 0 0.000015 0.000636  0.999492
vXreg?2 0 0.000021 0.000711  0.999433
vXreg3 0 0.0000002 0.00000003 1.000000
vxregd 0 0.000598 0.000017  0.999987
vxreg> 0.0000001 0.00000004 2.625709  0.008647
vxregb 0 0.000798 (0.000013  0.999990
vxreg/7 0.0000001 0.00000003 2.494331  0.012619
vXregs8 0 0 0.057384  0.954240
vXreg9 0 0.001201  0.000008  0.999993
shape 4.670057 0.606358 7.701817 0

Figure 21: GARCH(1,1) on Avalanche returns
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Appendix D: Volatility graphs
GARCH(1,1) Conditional Volatility for Ethereum Returns
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Figure 22: Volatility graph Ethereum Returns

GARCH(1,1) Conditional Volatility for Solana Returns
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Figure 23: Volatility graph Solana Returns
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GARCH(1,1) Conditional Volatility for Cardano Returns
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Figure 24: Volatility graph Cardano Returns

GARCH(1,1) Conditional Volatility for Cosmos Returns
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Figure 25: Volatility graph Cosmos Returns
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GARCH(1,1) Conditional Volatility for Algorand Returns
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Figure 26: Volatility graph Algorand Returns

GARCH(1,1) Conditional Volatility for TRON Returns
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Figure 27: Volatility graph Tron Returns
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GARCH(1,1) Conditional Volatility for TON Returns
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Figure 28: Volatility graph Ton Returns

GARCH(1,1) Conditional Volatility for Binance Coin Return
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Figure 29: Volatility graph Binance Returns
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GARCH(1,1) Conditional Volatility for Polkadot Returns
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Figure 30: Volatility graph Polkadot Returns

GARCH(1,1) Conditional Volatility for Avalanche Returns

Volatility

0.02 004 006 008 0.10 0.12

2022 2023 2024 2025

Date

Figure 31: Volatility graph Avalanche Returns

65



