2

mE .=
'Ql., .
TILBURG QEl%O UNIVERSITY
Ty .

Myopia, Farsightedness, and
Stability in the Housing Matching
Model

Supervisors
P.J.J. Herings
R.L.P. Hendrickx

Author Student number
C. van Ravenswaaij 2114854

Master Thesis
Econometrics and Mathematical Economics
Tilburg University
The Netherlands
March 13, 2025



Contents

1__Introduction|
1.1 Myopial. . . . . . .
(1.2 Full Farsightedness| . . . . . . . . .. ... . ... ...
(1.3 Horizon-K Farsightedness| . . . . . . ... .. ... ... ... ......
|1‘1 :ig:g:li!zll SE!g:I&ig:!!l -------------------------------

2 Housing Matching Modell
[2.1 Preferences over the state space[ . . . . . . . . ... ...
2.2 Cycle decomposition| . . . . . . ... .. ... ..
[2.3  Effectivity correspondence| . . . . . . . .. ...

3 Myopia

[3.2 Strong core| . . ... ...
[3.3 von Neumann-Morgenstern stableset| . . . . . . ... ... ... ..
[3.4  Myopic stableset| . . . . .. ... oo o

14

Full Farsightedness with Strict Dominance|

M1 Tndirect dominance . . . . . . . . ...
4.2 Farsighted corel . . . . . . . . ...
4.3 Farsighted von Neumann-Morgenstern stable set| . . . . . . . .. ..
4.4  Largest consistent set|. . . . . . .. ... ... .. L.
4.5 DEM farsighted stableset| . . . . . ... ... .. ... .......

Full Farsightedness with Weak Dominance

[H.1 Indirect weak dominancel . . . . . . . .. ...
[>.2  Strong farsighted core] . . . . . ... ... 000
[>.3  Weak farsighted von Neumann-Morgenstern stable set|. . . . . . . .

[b.4 Largest consistent set| . . . . . . . . . . ... ... ...
.5 Weak DEM farsighted stable set|. . . . . . . ... ... ... ... .

Full Farsightedness with Antisymmetric Weak Dominance

[6.1 Indirect antisymmetric weak dominance{. . . . . . . . .. ... ..
[6.2  Strong antisymmetric farsighted corel . . . . . .. ... .0
[6.3 Largest consistent set|. . . . . . .. ... ...

Horizon- K Farsightedness|

[(.1__Horizon-K strict dominancel . . . . . . . . . ... ... .. .. ...

[7.2  Horizon- K von Neumann-Morgenstern stable set|. . . . . . . .. ..
[7.3  Horizon-K farsighted stableset| . . . . . ... ... ... ......

8 Conclusion|

(Bibliography|

32
32
33
39
41
49

51
51
92
o4
o8
63

68
68
70
72

78
79
85
86

93

97



1 Introduction

Matching theory has many applications, such as the marriage and the college admission
problems of Gale and Shapley (1962), the kidney exchange problem, and the housing
matching model of Shapley and Scarf (1974). In most of the literature, agents are either
assumed to be myopic or fully farsighted. Furthermore, many different definitions for a
matching to be stable can be found in the literature.

In this thesis, we study multiple stability concepts of the housing matching model of
Shapley and Scarf (1974), which differ by the degree of farsightedness of the agents.
Throughout the thesis, we assume that all agents have the same degree of foresight. Like
in most of the literature, we first assume that agents are either myopic or fully farsighted.
Furthermore, we look at the case in which agents have a limited degree of farsightedness,
which has not been studied often but leads to some interesting results. Within the de-
gree of farsightedness, we also vary between weak dominance and strict dominance. An
overview of the stability concepts that we study under different degrees of farsightedness
and with respect to strict or weak dominance can be found in at the end of the
introduction.

Shapley and Scarf (1974) introduced the housing matching model, which can be repre-
sented by a tuple that consists of the finite set of agents and the preferences of the agents
over the indivisible items of the agents. Each agent has an indivisible good, for example
a house, and has preferences over the set of indivisible goods. It is assumed that each
agent has no use for more than one item. The goal is to redistribute the indivisible items
among the agents with respect to their preferences.

Demuynck, Herings, Saulle, and Seel (2019a)) defined a social environment as a tuple that
consists of the finite set of agents, the state space, an effectivity correspondence, and the
preferences of the agents over the states. The housing matching model of Shapley and
Scarf (1974) is a special case of a social environment.

In this thesis, we assume that each agent has strict preferences over the indivisible items,
and we refer to the housing matching model of Shapley and Scarf (1974)) as the housing
matching model. Moreover, we define a social environment corresponding to a housing
matching model. As in Shapley and Scarf (1974)), the goal is to redistribute the indivisible
items among the agents with respect to their preferences.

As in Chwe (1994), Demuynck, Herings, Saulle, and Seel (2019b)), Kawasaki (2010),
Kawasaki (2019)) and Klaus, Klijn, and Walzl (2010), we assume that during a sequence
of trades each agent remains in possession of his own item until the end outcome of this
sequence of trades is reached. If this end outcome is stable in the sense that no coalition
of agents decides to deviate from it, then and only then the agents trade their items.
Hence, the agents only trade at the end of a sequence of trades, if this end outcome is
stable, and not during the sequence of trades. Thus, at each time during the sequence
of trades, the outcomes are considered to be realizations of what happens if a coalition
of agents decides to trade, and a realization can be interrupted by a coalition of agents
which proposes another outcome.



1.1 Myopia

The most common stability concept for cooperative games is the core, the set of out-
comes which are not dominated. The core can be seen as a myopic concept, in the sense
that agents or coalitions of agents only look one step ahead, i.e. they do not anticipate
that another coalition of agents might deviate after their own deviation. For each hous-
ing matching model with not necessarily strict preferences over the houses, Shapley and
Scarf (1974) showed with the help of the top trading cycle algorithm of Gale that the
core is non-empty. For each housing matching model with strict preferences over the
houses, Roth and Postlewaite (1977) proved that the strong core consists of the unique
top trading cycle allocation.

Another myopic concept is the von Neumann-Morgenstern stable set, which was intro-
duced by von Neumann and Morgenstern (1944). A set is a von Neumann-Morgenstern
(vNM) stable set if it satisfies the following two conditions: each outcome inside the set is
not dominated by another outcome inside the set, this is known as internal stability, and
each outcome outside the set is dominated by an outcome inside the set, this is known
as external stability. A von Neumann-Morgenstern stable set may fail to exist and if it
exists, it cannot be empty, but does not have to be unique.

Therefore, Demuynck et al. (2019a)) introduced the myopic stable set of a social environ-
ment. For a finite state space, a set is a myopic stable set if it satisfies deterrence of
external deviations, iterated external stability and minimality. A set satisfies deterrence
of external deviations if all states that dominate a state inside the set are part of the set.
In other words, no coalition of agents can benefit from deviating from a state inside the
set to a set outside the set. A set satisfies iterated external stability if from any state A
outside the set there is a finite sequence of dominations leading to some outcome A’ inside
the set. Note that each deviating coalition prefers the next outcome in the sequence to
the current one. A set satisfies minimality if there is no proper subset of the set that
satisfies deterrence of external deviations and iterated external stability. Demuynck et al.
(2019a) showed that a myopic stable set always exists and that it is unique for a finite
state space. For each housing matching model with strict preferences, Demuynck et al.
(2019b)) showed that the weak dominance myopic stable set is equal to the strong core.

In this thesis, we study the core, the von Neumann-Morgenstern stable set and the myopic
stable set of the social environment corresponding to a housing matching model under
the variation of strict dominance and weak dominance. With the proof in Shapley and
Scarf (1974)), we show that the top trading cycle allocation, which is A*, is an element
of the core. Also, with the help of the proof in Roth and Postlewaite (1977) we show
that the strong core of our social environment corresponding to a housing matching
model is equal to {A*}. We show that each vNM stable set contains the core, each weak
dominance vNM stable set contains A* and that there are housing matching models for
which a vNM stable set does not exist. Moreover, we show that the myopic stable set
contains the core, and we rewrite the proof given in Demuynck et al. (2019b)), in the
context of our social environment corresponding to a housing matching model, to show
that the weak dominance myopic stable set is equal to the strong core.



1.2 Full Farsightedness

In most of the literature, agents are either assumed to be myopic, meaning that agents
can only look one step ahead, or fully farsighted. Full farsightedness represents that
each agent or each coalition of agents anticipates that another coalition of agents might
react on their deviation without any limit. This means that each coalition of agents
can see each possible chain of deviations without any restriction on the length of the
chain. Chwe (1994)) defined indirect dominance, the farsighted notion of dominance, as
the following: an outcome A’ indirectly dominates another outcome A if there is a finite
sequence of outcomes starting from A and ending at A’, such that each deviating coalition
that moves from outcome A*~! to the consecutive outcome A* prefers the end outcome
A’ to the outcome that they are moving from, which is A*~1.

A farsighted solution concept is the farsighted core, which consists of all the outcomes that
are not indirectly dominated. In the context of a general game, Chwe (1994)) introduced
the farsighted vINM stable set and the largest consistent set as two other farsighted
solution concepts. A farsighted vNM stable set is a set that satisfies internal stability
and external stability with respect to indirect dominance. Like in the myopic case, a
farsighted vINM stable set may fail to exist, and if it exists, it cannot be empty, but may
not be unique.

Therefore, Chwe (1994) introduced the largest consistent set, the consistent set which
contains all consistent sets. A set is a consistent set if and only if it consists of all the
outcomes that satisfy deterrence of deviations. Deterrence of deviations means that each
deviation from any outcome A inside the set to an arbitrary outcome A’ is deterred by the
credible threat of ending in another outcome A” inside the set. By threat, we mean that
A" compared to A is worse or equally well for at least one agent in the deviating coalition.
This threat is credible if either A” = A’ or A” indirectly dominates A’. A consistent
set requires deterrence of internal deviations and deterrence of external deviations. A
consistent set does not have to be unique and () is a consistent set. Chwe (1994) showed
that the largest consistent set always exists and that it is unique. The idea behind the
largest consistent set is the following: if an outcome is not in the largest consistent set,
then this outcome cannot be stable, and if an outcome is in the largest consistent set,
then it is possible that this outcome is stable. Hence, the largest consistent set rules out
with confidence. Chwe (1994) showed that under some conditions the largest consistent
set is nonempty. In Herings, Mauleon, and Vannetelbosch (2004), it is shown that in
certain social environments the largest consistent set might rule out too much.

Another farsighted solution concept is a pairwise farsightedly stable set, which in the
context of networks was introduced in Herings, Mauleon, and Vannetelbosch (2009). In
Herings, Mauleon, and Vannetelbosch (2010), this concept was applied to the context of
coalition formation games and they introduced a farsightedly stable set. In the literature,
a farsightedly stable set is called a DEM farsighted stable set, see for example Kimya
(2023). Herings et al. (2010) showed that a DEM farsighted stable set always exists and
cannot be empty, but does not have to be unique. A set is a DEM farsighted stable
set if it satisfies deterrence of external deviations, external stability and minimality. A
set satisfies deterrence of external deviations if each deviation from any outcome inside
the set to an outcome outside the set is deterred by the possibility of ending worse off
or equally well off. A set satisfies external stability if each outcome outside the set is



indirectly dominated by an outcome within the set. Minimality means that there does
not exist a proper subset of the set that satisfies the other two conditions.

In this thesis, we study the farsighted core, the farsighted vINM stable set, the largest
consistent set and the DEM farsighted stable set with respect to three different definitions
of indirect dominance.

We use indirect dominance to denote that each deviating coalition that moves from an
outcome A¥~! to the consecutive outcome AF strictly prefers the end outcome A’ to the
outcome from which they are moving, which is A*~'. With respect to indirect dominance,
we prove for all housing matching models that the set {A*} is the farsighted core, the
unique farsighted vNM stable set and the unique DEM farsighted stable set. Moreover,
we show that the largest consistent set always contains A*, but that it can contain more
than A*.

As in Mauleon and Vannetelbosch (2004)), we define indirect weak dominance as indirect
dominance, such that each deviating coalition that moves from an outcome A*~! to the
consecutive outcome A¥ weakly prefers the end outcome A’ to the outcome from which
they are moving, which is A¥~!. For all housing matching models, we prove that with
respect to indirect weak dominance, the farsighted core is either () or { A*}, and that the
largest consistent set contains A*.

Moreover, for all housing matching models such that the farsighted core is equal to {A*},
we show that with respect to indirect weak dominance, {A*} is the unique farsighted
vNM stable set and the unique DEM farsighted stable set.

For all housing matching models such that the farsighted core is (), we show that with
respect to indirect weak dominance, {A*} is a farsighted vNM stable set and a DEM
farsighted stable set. Furthermore, we show that {A*} is not necessarily the unique far-
sighted vNM stable set and that there is at least one other DEM farsighted stable set.
Kawasaki (2010)) introduced the concept of indirect antisymmetric weak dominance,
which compared to indirect weak dominance has one additional restriction. This re-
striction is that each agent in the deviating coalition, which is indifferent between the
end outcome and the outcome that he is moving from gets the same item in the next
outcome in the sequence. In other words, this agent is only be part of the deviating
coalition if the deviation does not change which item he gets.

We rewrite the proof given in Kawasaki (2010), in the context of our social environment
corresponding to a housing matching model, to show for all housing matching models
that the farsighted core with respect to indirect antisymmetric weak dominance is equal
to {A*}. Moreover, for all housing matching models we notice that with respect to indi-
rect antisymmetric weak dominance, {A*} is the unique farsighted vNM stable set and
the unique DEM farsighted stable set. Furthermore, for all housing matching models,
we prove that the largest consistent set with respect to indirect antisymmetric weak
dominance is equal to {A*}.

1.3 Horizon-K Farsightedness

The interesting case is the case in which agents have a limited degree of farsightedness,
this is the intermediate case between myopia and full farsightedness. We denote the degree
of farsightedness by K, which represents the number of steps agents can look ahead. For
this intermediate case, two models have been developed: horizon-K farsightedness by



Herings, Mauleon, and Vannetelbosch (2019) and level-K farsightedness by Herings and
Khan (2022)).

In the context of networks, Herings et al. (2019)) introduced the concept of a horizon-K
farsighted set to study the influence of the degree of farsightedness on the stability of
networks. A set is a horizon-K farsighted set if the set satisfies horizon-K deterrence of
external deviations, horizon-K external stability and minimality.

A set satisfies horizon-K deterrence of external deviations if each deviation from any
outcome A inside the set to an outcome A’ outside the set is deterred by the credible
threat of ending in another outcome A”, which compared to A is not strictly preferred
by all agents in the deviating coalition. With a credible threat, we mean that A” is such
that either A” can be reached from A’ by a sequence of outcomes of a length smaller than
or equal to K —2 and A” belongs to the set or A” can be reached from A’ by a sequence
of a length equal to K — 1 and there does not exist a sequence of a length smaller than
K — 1 starting at A" and ending at A”.

A set satisfies horizon-K external stability if from each outcome outside the set there is
a finite sequence, which consists of sequences of outcomes of length smaller than or equal
to K, leading to an outcome inside the set. Minimality means that there does not exist
a proper subset of the set that satisfies the above two conditions. Herings et al. (2019)
showed that a horizon-K farsighted set always exists and that the horizon-1 farsighted
set 1s unique.

In the context of networks, Herings and Khan (2022) introduced the concept of a level-K
stable set and the concept of heterogeneity in the degree of foresight. In comparison to
the horizon-K farsightedness in Herings et al. (2019), level-K farsightedness in Herings
and Khan (2022) is defined in an inductive way. In order to define when a deviation
from an outcome to another outcome is a level-K deviation, one need to know what the
level-(K — k) deviations are for k € {1,..., K — 1}.

A set is a level-K stable set if it satisfies deterrence of external deviations, iterated
external stability and minimality, as defined in Herings and Khan (2022). Herings and
Khan (2022)) proved that there always exists a unique level-K stable set.

In this thesis, we study the horizon-K farsighted core, the horizon-K von Neumann-
Morgenstern stale set and the horizon-K farsighted set of Herings et al. (2019)), which
we call the horizon-K farsighted stable set, of the social environment corresponding to a
housing matching model.

Horizon- K farsightedness is the intermediate case between myopia and full farsightedness.
Horizon-1 farsightedness is equivalent to myopia in the sense that agents can only look
one step ahead. We notice that the horizon-1 farsighted core is the core and that horizon-
1 farsighted vINM stable sets are vNM stable sets. Moreover, we prove that the myopic
stable set is the unique horizon-1 farsighted stable set.

Horizon-oo farsightedness and full farsightedness are related in the sense that agents can
look infinitely many steps ahead. We show that the horizon-oco farsighted core is the
farsighted core, that the unique horizon-oo vNM stable set is the farsighted vINM stable
set and that {A*} is the unique horizon-oo farsighted stable set.

The more interesting case is the case in which agents are neither myopic nor fully far-
sighted, i.e. agents can look K steps ahead with 1 < K < oco. For all housing matching
models and for all K > 2, we show that the horizon-K farsighted core is equal to {A*}
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and that {A*} is the unique horizon-K vNM stable set.

The results of the horizon- K farsighted stable set depend on whether agents can look two
steps ahead or at least three steps ahead. For the case that agents can look two steps
ahead, we prove that the core is a subset of each horizon-2 farsighted stable set.

For the case that agents can look at least three steps ahead, i.e. K > 3, we prove for all
housing matching models that {A*} is the unique horizon-K farsighted stable set.

1.4 Section overview

The thesis is organized as follows. In Section [2| we give a formal definition of the hous-
ing matching model and the social environment corresponding to this housing matching
model. In Section [3| we determine the core, the vNM stable set and the myopic stable
set, as defined in Demuynck et al. (2019a)), for our social environment corresponding to
a housing matching model.

Under the assumption that all agents are fully farsighted, we study the farsighted core,
the farsighted vNM stable set, the largest consistent set and the DEM farsighted stable
set with respect to indirect dominance in Section [4, with respect to indirect weak domi-
nance in Section [b|and with respect to indirect antisymmetric weak dominance in Section
10l

In Section [ we determine the core and the von Neumann-Morgenstern set under the
assumption that agents can only look K steps ahead and we determine the horizon-K
farsighted stable set as defined in Herings et al. (2019). Finally in Section , we give an
overview of all the results that hold for all housing matching models and we conclude.

Degree of farsightedness

Myopia Fully farsighted Horizon-K farsighted
strict | core: core: core:
vNM stable set: vNM stable set: vNM stable set:

§ myopic stable set: DEM farsighted stable set: horizon-K farsighted stable set:

3

é largest consistent set: [4.4

S| weak | core: 3.2 core: |5.2|and [6.2 We do not study horizon-K farsightedness

with respect to weak dominance

vNM stable set: vNM stable set: and
myopic stable set: DEM farsighted stable set: and
largest consistent set: |5._4|and 6.3

Table 1: Overview of the stability concepts that are studied under different degrees of farsight-
edness and with respect to strict or weak dominance. The numbers refer to the subsections in
which the mentioned stability concept is studied.



2 Housing Matching Model

Let n > 1 and let N = {1,...,n} be the finite set of all agents. Each agent : € N has an
item 4, which is an indivisible good, and has strict preferences over all the items. These
strict preferences are described by an n X n matrix P with rows representing the agents
and columns representing the items. Let P;; € R denote the entry of matrix P in the ith
row and the jth column. The entries of P have the following meaning: F;; > P, means
that agent ¢ strictly prefers item j to item k. Hence, only the ordering of the entries of P
matters, i.e. the preferences are purely ordinal. Note that we do not take expectations
over the preferences. We use non-positive numbers as entries of P to avoid any confusion
with the agents in N, i.e. P;; € Z<, for all 7,5 € N.

The housing matching model is defined as the tuple (N, P) with N and P as above. In
this section, we construct the social environment, defined as in Demuynck et al. (2019a)),
corresponding to the housing matching model (N, P). A social environment is a tuple
consisting of a finite set of agents, a state space, an effectivity correspondence and pref-
erences of the agents over the state space. An effectivity correspondence defines for each
pair (A, A’) of states the set of coalitions that can change state A into state A’.

2.1 Preferences over the state space

The goal is to redistribute the items among the agents with respect to their preferences,
such that each agent gets one item. This can be described by an n x n matrix A, called
an allocation, with rows representing the agents and columns representing the items. Let
A;; € {0,1} denote the entry of matrix A in the ith row and the jth column and let it
be defined as

o 1 if agent ¢ gets item 7,
Y00 it agent ¢ does not get item j.

Note that the matrix A is a permutation matrix, which is a zero-one matrix with all
row-sums and all column-sums equal to 1. Let A; denote the ith row of A. Let the state
space X be the set of all permutation matrices.

As in Demuynck et al. (2019b)), the preferences of the agents over the set X, denoted by
(7:)ien, are induced by their preferences P over the indivisible items.

Ni

Definition 2.1 (Preferences (7Z;);cny over the set X).
Let i € N and let A, A" € X be two different permutation matrices. Let j,k € N be,
such that A;; = 1 and A}, = 1. Then we define the preferences of the agents (7;)icn

over the state space as follows:
(1) A>; A"if and only if P; > Py,
(2) A~; Aifand only if j = k.

Let 2V denote the set of all subsets of N. An element of 2V is called a coalition. The
set of coalitions that can change a permutation matrix A into a permutation matrix A’
is defined by the effectivity correspondence. In order to define it, we need to use another
description of permutation matrices.



2.2 Cycle decomposition

In Dummit and Foote (2004), the concept of a cycle was introduced. We give a formal
definition of a cycle in the context of our housing matching model (N, P). In this thesis,
we use that N is the set of all positive integers, i.e. N ={1,2,3,...}.

Definition 2.2 (Cycle ¢ and S(c)).

Let ¢ € N with £ < n and let ¢, € N for k € {1,...,¢} be distinct agents with ¢; < ¢,
for all k € {2,...,¢}. Then define a cycle ¢ = (cicy - - - ¢¢) as the permutation that sends
the item of agent ¢; to agent cxyq for 1 < k < /¢ —1 and that sends the item of agent ¢,
to agent ¢, and define the set of agents involved in cycle ¢, S(c) € 2V \ {0}, as

S(c)={ie N|3Ike{l,...,0}such that i = ¢ }.

We say that the cycle ¢ = (cica- - ¢;) contains agent ¢ € N if and only if i € S(c). Let
|S(c)| = ¢ denote the length of cycle c.

Two cycles ¢ and d, which are not necessarily of the same length, are called disjoint if
S(c) N S(d) = 0. Hence, two cycles are disjoint if they have no agents in common.

In order to understand which permutation a cycle represents and when two cycles are
disjoint, we look at an example.

Example 2.3. The cycle (123) represents that agent 1 gets item 3, agent 2 gets item
1 and that agent 3 gets item 2. Note that the cycles (123) and (245) are not disjoint,
because 2 € S(123) and 2 € S(245). The cycles (123) and (45) are disjoint, because they
have no agents in common. A

Let X,, denote the set of all bijections from N to N, i.e. the set of all permutations of
N. Note that |X,| = n!. In Chapter 4.1 of Dummit and Foote (2004) it is shown that
each permutation o € ¥, can be written as a unique finite product of disjoint cycles, this
is called the cycle decomposition of ¢. In our housing matching model this unique
product of cycles represents the trades that are being executed. Note that disjoint cycles
commute in the sense that (1)(23) and (23)(1) both represent that agent 1 gets his own
item and that agents 2 and 3 trade with each other. Thus, each permutation has a unique
cycle decomposition up to rearranging its cycles. Suppose that the cycle decomposition
of o is as follows:

o = (CICQ tee C@l)(C@lJrnglJrQ te ng) s (Cgm—lJrngm—lJrz s Cgm),

then the agents in N are partitioned into m cycles and for j € N we have that

o(j) = Cos—141  if j = ¢ps for some s € {1,...,m},
Cral if j = ¢, with r # % for all s € {1,...,m},

with % = 0. Note that in our housing matching model (N, P) we have that () is the
agent that gets the item of agent j.

In Dummit and Foote (2004), it is proved that each permutation has a unique cycle
decomposition. Our state space X is the set of all permutation matrices. Hence, in the
following lemma, we show that each A € X has a unique cycle decomposition.

9



Lemma 2.4. Fach permutation matriz can be uniquely described by a finite product of
disjoint cycles, in which a cycle of one agent means that the agent gets his own item and
a cycle of multiple agents means that each agent in the cycle gets the item belonging to
the previous agent in the cycle.

Proof. Let the map &7 : X.,, — X be defined as

1 ifo(y) =1,

A (0)ij = ig() = {0 if o(j) # 1,

with o(j) = ¢ meaning that agent i gets item j. We show that this map is a bijection.
First, we show that this map is injective. Let 0,6 € ¥, be two bijections. Suppose that
/(o) = 4/ (0), then we have that 0,,(;) = @ (0);; = Z(0)i; = ig(j) for all 4,5 € N.
Hence, we get that 6 = o.

Now, we show that the map is surjective. Let A € X. Define ¢ € ¥,, as the permutation
with o(j) = i if A;; = 1, then we have that A = &/(0). Hence, the map is bijective.
Thus, each permutation matrix has a unique cycle decomposition. O

For n = 3, the cycle decomposition of the six permutation matrices is shown in [Table 2|

Permutation matrices | Cycle decomposition

—_
=}
=)

(1(2)3)

(123)

(132)

(1)(23)

(2)(13)

(3)(12)

O = Ol O OO O R MEFEOOoOOo OO OOo
SO RO KR O OOOOoOFHKFOOoOOoOH
_ O O OO, OMFR OO OO O FFO

Table 2: Illustration of the cycle decomposition of permutation matrices.

For a housing matching model (N, P), we can conclude from , that the permutation
matrix which allocates every agent his own item, has a cycle decomposition consisting
of n cycles. Hence, it seems reasonable to define a set that contains all the cycles in the
cycle decomposition of a permutation matrix.

10



Definition 2.5. [C'(A), S(A), ca and ¢]

k
Let K> 1,let A€ X and let ¢!, ..., c" be the disjoint cycles, such that H ¢ is the cycle

=1
decomposition of A. Then define the following:

(1) C(A) as the set of cycles that are in the cycle decomposition of A, i.e.
C(A) = e Y,
(2) S(A) as the set of coalitions that form a cycle in A, i.e.

S(A) ={s(c"),....8()} = [J {5},

ceC(A)
(3) c4 as an arbitrary cycle in the cycle decomposition of A, i.e. ¢4 € C(A),

(4) ¢ as the cycle in the cycle decomposition of A that contains agent 7, i.e. ¢y € C(A)
such that ¢ € S(c%).
The following example explains what C(A), S(A), c4 and ¢!, mean.
Example 2.6. From [Table 2| we know that the cycle decomposition of

1 00
A=10 0 1
010

is (1)(23). Hence, allocation A is the product of two disjoint cycles (1) and (23), C'(A4) =
{(1),(23)}, S(A) = {{1}.{2,3}}, ciy = (1) and ¢ = ¢} = (23). A

For n = 3, an illustration of the meaning of the definitions in [Definition 2.5/ can be found
in [Table 31

Permutation matrices | Cycle decomposition | C(A) S(4) cy
100
(8 ! (1)> HEG) {0, @} | {IL LB | = 1), &= @), d=@)
0 01
(1 0 0) (123) {(123)} {{1.2,3}} dy=(123)Vie N
010
010
(0 0 1) (132) {(132)} {{1.2,3}} dy=(132)Vie N
100
100
(8 (1) é) (1)(23) {0, @)} | {{1h{2.3}} [chi=(1), ¢4 =(23) Vie {23}
0 01
(? (1) 8) (2)(13) {2.13)} | {{2h{1.3}} | A=(2), ch=013)Vie{1,3}
010
(é 8 ?) (3)(12) {3).12)} | {{BL{L2Y} |cA=0), ch=012)Vie{l2}

Table 3: Illustration of the meaning of the definitions in [Definition 2.5 for n = 3.

11



2.3 Effectivity correspondence

There are multiple ways to define an effectivity correspondence, which defines for each
pair (A, A") of permutation matrices the set of coalitions that can change a permutation
matrix A into a permutation matrix A’. In general an effectivity correspondence is a
correspondence F : X x X — 2V with E(A, A") as the set of coalitions that can change
state A into state A’.

As in Chwe (1994), Demuynck et al. (2019b), Kawasaki (2010), Kawasaki (2019)) and
Klaus et al. (2010), we assume that each agent remains in possession of his own item
until a stable state is reached, then and only then, the agents trade their items. With a
stable state, we mean that no coalition of agents decides to change it. Thus, states are
considered to be realizations of what happens if a coalition of agents decides to trade, and
a realization can be interrupted by a coalition of agents which proposes another outcome.

In Roth and Postlewaite (1977), a coalition S is effective for the allocation A’, if the
agents in S reallocate their initial items among themselves according to A’. This is the
same as an effectivity correspondence.

Hence, Roth and Postlewaite (1977) defined the effectivity correspondence as follows:
S € E(A, A') if and only if for every i € S there exists j € S such that Aj; = 1. In other
words, a coalition S can change A into A’, if and only if, according to A’, the items of
agents in S are reallocated among the agents in S.

Example 2.7. Suppose that the effectivity correspondence is defined as in Roth and
Postlewaite (1977)). Let

1 00 1 00
A=|(0 1 0 andA' =0 0 1],
0 01 010

then E(A, A") = {{1},{2,3},{1,2,3}}. We have that {1} € E(A, A'), this means that
agent 1 can claim his own item, and at the same time, he determines that agents 2 and
3 trade with each other. A

In [Example 2.7] it is unnatural that agent 1 determines what the other agents do if he
claims his own item, because agent 2 might rather have his own item than the item of
agent 3. Hence, we need restrictions in the definition of the effectivity correspondence on
what happens to agents outside the deviating coalition S.

In Kawasaki (2010), a coalition S can change A into A’ if and only if allocation A’
satisfies the following three conditions:

(1) the initial items of the agents in S are reallocated among S itself,

(2) the agents in N \ S, that are not affected by the deviating coalition, get the same
item as in A,

(3) the agents in N\ S, that are affected by the deviating coalition, get their own item.

This principle agrees with how people behave in real life settings, therefore we give
Kawasaki (2010))’s definition of an effectivity correspondence in the context of our housing
matching model (N, P).

12



Definition 2.8 (Effectivity correspondence FE).

Define the effectivity correspondence as the correspondence E : X x X — 2V such
that V. .S € 2V \ {0} and V A, A’ € X, we have that S € E(A, A’) if and only if the
following three conditions are satisfied:

(1) Vi€ S there exists j € S, such that Aj; =1,
(2) Vie N\ S such that S(c/y) NS =0, it holds that: if A;; = 1, then Aj; =1,
(3) Vie N\ S such that S(c4) NS # 0, it holds that: A, = 1.

We say that a coalition S can move or deviate from A to A" when S € E(A, A"). Note

that each S € F(A, A") can be written as S = US(C%;) and that N € E(A, A’) for
ieS

all A,A" € X. Thus, it holds that E(A, A’) # 0 for all A, A’ € X. In condition (2)

of [Definition 2.§| we assume coalitional sovereignty defined in Ray and Vohra (2015)

and Herings, Mauleon, and Vannetelbosch (2017) as that a deviating coalition S cannot

enforce what unaffected agents outside .S do.

Example 2.9. Let n = 3,

A=

?

o O =
O = O
_ o O

1 0 0
and A =1[0 0 1
01 0

then with [Table 2 and [Definition 2.8) we get that A = (1)(2)(3), A’ = (1)(23) and that
E(A A" = {{2,3},{1,2,3}}.

Note that {1} ¢ F(A, A’). In other words, agent 1 cannot determine that agents 2 and
3 have to trade with each other when he claims his own item. Moreover, we have that
C(A) ={(1),(23)}, that S = {2,3} € E(A, A') is equal to S(23), and that N € E(A, A")
can be written as N = S(1) U S(23).

With [Table 2| and |Definition 2.8, we also get that
E(ATA) = {{2}, {3}, {1,2},{1,3},{2,3}.{1,2,3}}.

Note that {1} ¢ FE(A’, A). In other words, agent 1 cannot determine that agents 2 and

3 do not trade with each other anymore. Also, note that for example we have that
{2} = S5(2), {1,2} = S(1) U S(2) and that N = S(1) U S(2) U S(3). A

Since we described the state space, the preferences of the agents over the state space and
the effectivity correspondence, we can now, as in Demuynck et al. (2019a)), give a formal
definition of the social environment corresponding to a housing matching model (N, P).

Definition 2.10 (Social environment).
Let (N, P) be a housing matching model. The social environment corresponding to
(N, P) is the tuple

8<N7 P) = <N7X7 B, (iz)zeN)

consisting of the finite set of agents IV, the state space X, which is the set of all per-
mutation matrices, the effectivity correspondence £ on X, as in [Definition 2.8, and the

preferences (27;)ien over X as in |Definition 2.1
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For the housing matching model of Shapley and Scarf (1974), Demuynck et al. (2019b))
showed that the myopic stable set of Demuynck et al. (2019a)), which we study in Section
B}, has a nice property under the assumption that the effectivity correspondence satisfies
two conditions. These two conditions are given as follows:

(1) VS e2V\ {0} andV A, A" € X, if S € E(A, A") then for all i € S, there exists
J € S such that A}, =1,

(2) VS e2V\ {0}, V A€ X and for all bijections ¢ : S — S, there exists A’ € X such
that S € E(A, A") and Vi € S it holds that Aj; = 1.

In other words, their second condition means that every redistribution of the items within
a coalition can be achieved.

In the following lemma, we show that our effectivity correspondence satisfies the above
two conditions of Demuynck et al. (2019b)). Note that our effectivity correspondence
is not the same as the effectivity correspondence of Demuynck et al. (2019b), because
we have restrictions on how the items of agents outside the deviating coalition S are
reallocated.

Lemma 2.11. The effectivity correspondence, defined as in |Definition 2.8, satisfies the
above two conditions of Demuynck et al. (2019b).

Proof. Note that condition (1) of[Definition 2.8/implies that our effectivity correspondence
satisfies the first condition of Demuynck et al. (2019b). We show that our effectivity
correspondence also satisfies their second condition.

Take S € 2\ {0}, A € X and a bijection ¢ : S — S. Then let A’ € X be the permutation
matrix that satisfies the following three conditions:

(1) Vi€ S it holds that Aj, ;) =1,
(2) Vi€ N\ S such that S(¢}y) NS =0, it holds that: if A;; =1, then Aj; =1,
(3) Vie N\ S such that S(c) NS # 0, it holds that: A, = 1.

Then, with [Definition 2.8 we have that S € E(A, A’). Thus, our effectivity correspon-
dence satisfies their second condition. O
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3 Myopia

The most common stability concept in the literature on cooperative games is the core,
the set of permutation matrices such that no coalition wants to deviate from it. In the
literature, the core is seen as a myopic concept, in the sense that coalitions of agents do
not anticipate that their deviations can lead to further deviations by other coalitions of
agents.

Under the assumption that all agents are myopic, we study the core, the von Neumann-
Morgenstern stable set, introduced in von Neumann and Morgenstern (1944) and the
myopic stable set, which was introduced in Demuynck et al. (2019a), of the social envi-
ronment corresponding to the housing matching model (N, P).

3.1 Core

The literature distinguishes two types of dominance. We give these definitions in the
context of our social environment corresponding to the housing matching model (N, P).

Definition 3.1 (Strict dominance and weak dominance).
Let (N, P) be a housing matching model and let A, A" € X be two different permutation
matrices. Then define strict dominance and weak dominance as the following:

(1) the permutation matrix A’ strictly dominates A in £(V, P) if there exists a
coalition S € E(A, A’) such that A" >=; A for all i € 5,

(2) the permutation matrix A’ weakly dominates A in E(N, P) if there exists a
coalition S € E(A, A") such that A’ 7-; A for all i € S and A’ >; A for at least one
JjeS.

Let 2% denote the set of all subsets of X. In Demuynck et al. (2019a), the following
definitions are given. The dominance correspondence is defined as the correspon-
dence f : X — 2% such that f(A) denotes the subset of X that contains A and all the
permutation matrices A’ that strictly dominate A. In other words,

f(A)={A} U{A" € X | A strictly dominates A in E(N, P)}.

Define the correspondence f? : X — 2% such that f?(A) is the set of permutation matrices
that can be reached from A by at most two consecutive strict dominations, i.e.

f2(A)={A" € X |3 A € X such that A’ € f(A) and A” € f(A")}.

For k > 1, define the correspondence f*: X — 2% such that f*(A) is the set of permu-
tation matrices that can be reached from A by at most k consecutive strict dominations
and define the correspondence fY : X — 2% such that fN(A) is the set of permutation
matrices that can be reached from A by a finite number of strict dominations:

FA) = ).

keN

Note that the correspondences f* : X — 2% and fY: X — 2% are myopic in the sense
that coalitions only deviate when they see an immediate gain by doing so. We can also do
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the same for weak dominance. As in Demuynck et al. (2019a)), let the weak dominance
correspondence be denoted by f. Now, we are ready to define the core. The definition
that we use was introduced in Demuynck et al. (2019a)) and it is written down in the
context of our social environment corresponding to the housing matching model (N, P).

Definition 3.2 (Core and strong core).
Let (N, P) be a housing matching model. Then define the core and the strong core as
the following:

(1) the core CO of £(N, P) is defined as the set of permutation matrices that are not
strictly dominated:

CO={Aec X |f(A)={A}},

(2) the strong core SCO of £(N, P) is defined as the set of permutation matrices that
are not weakly dominated:

SCO={Aec X |f(A)={A}}.

Note that strict dominance implies weak dominance, hence the strong core is a subset of
the core. With the help of the top trading cycle algorithm of Gale, which is described
in Shapley and Scarf (1974)), we show that the core is nonempty. In Shapley and Scarf
(1974), the definition of a top trading cycle is given. We give their definition in the
context of our housing matching model (N, P) and our definition of a cycle. In this
thesis, we denote a strict inclusion by C and we denote a weak inclusion by C.

Definition 3.3 (Top trading cycle).

Let (N, P) be a housing matching model, let ¢ = (i1 ---i,) be a cycle and let iy = i,.
Then ¢ is a top trading cycle for S C N if § C S(c¢) C S and if for each k € {1,..., ¢}
it holds that P, > P, ; forall j € S\ {ir_1}.

klk—1

Recall that S(c) in [Definition 3.3|is the coalition consisting of the agents belonging to
cycle ¢, i.e. S(c¢) = {iy,...,i}. Since the set of agents is finite, we get for each nonempty
coalition S C N that there exists at least one top trading cycle. From [Definition 3.3/ and
Definition 2.2 we get that in a top trading cycle for S each agent gets his most preferred
item in S.

Notation 3.4 (Top trading cycle).
We denote a top trading cycle ¢ by tc to indicate the difference between a cycle and a
top trading cycle derived from the top trading cycle algorithm.

Shapley and Scarf (1974) also constructed an allocation, which is derived from the top
trading cycle algorithm of Gale. We give a formal formulation of the top trading cycle
algorithm and we construct an n X n permutation matrix from this algorithm.
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Algorithm 1 Top trading cycle algorithm

Let A* be an n x n matrix with all entries equal to zero.

Input : A housing matching model (N, P).

Step 1: Let tc! = (4] - - - i}y ) with i} = i}, be a top trading cycle for N and let A:i =1
for ke {1,...,0'}.

Step 2 : If N\ S(tc') # 0, let tc¢* = (if---i%) with i§ = % be a top trading cycle for
N\ S(tc') and let A%, =1for ke {1,...,0°}.
k'k—1

-
-1

For 7 > 3, continue with step 7 until there are no agents left.

Step 7: If N'\ ( U S(tcr)) # 0, let te™ = (4] - - - i} ) with if = i}. be a top trading

1<r<r-—1
cycle for N \ ( U S(tc’")) and let Aj, =1forke{l,....(7}.
1<r<r—1 N

Output: The result that the set of agents IV is partitioned into 7' disjoint coalitions

S(tc™),i.e. N= |J S(tc7), with tc¢” a top trading cycle for NV '\ ( U S(tc’")) and a
1<7<T 1<r<r—1

permutation matrix A* such that for all 7 € {1,..., T}, we have that A%, =1 for all

ke{l,....07}.

Note that the coalitions S(tc'), ..., S(tc?) are disjoint, i.e. they have no agents in com-
mon. Hence, even when there exist multiple top trading cycles for a coalition S € 2V\ {0},
we get with the fact that preferences over the items are strict, that there is a unique per-
mutation matrix that follows from the top trading cycle algorithm. We denote this unique
top trading cycle permutation matrix by A*. Note that the permutation matrix A* can
be viewed as iteratively carrying out the indicated trades within the top trading cycles.

Remark 3.5. Note that with [Definition 2.2 and [Lemma 2.4} the cycle decomposition of
A* is the product of the top trading cycles t¢” = (i{i} - - -}, _4i}.) for 7 € {1,...,T}. In

T
other words, C'(A*) = {tc',... tc"} and A* = HtcT.
T=1

To see the above, we look at an example.

Example 3.6. Let n = 3 and let the preference matrix be

0 -1 -2
P=1|-1 -2 0
-2 0 -1

Then both (1) and (23) are top trading cycles for N. Suppose that tc' = (1). Then
we still have that (23) is a top trading cycle for N \ {1} = {2,3}. Thus, we get that
A* = (1)(23). Now, suppose that tc' = (23). Note that (1) is also a top trading cycle for
N\ {2,3} = {1}. Hence, again, we get that A* = (1)(23). A
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From [Example 3.6, we can conclude that when there exist multiple top trading cycles for
a coalition S, the order in which they are selected in the top trading algorithm does not
matter in the sense that the top trading permutation matrix remains the same.

Example 3.7. Let n =3, N = {1,2,3} and let the preference matrix be

~1 0 -2
P=|[-1 =2 o0
—2 0 -1

The preference matrix P represents for each agent the preferences over the items. For
example, the first choice of agent 1 is item 2, his second choice is item 1 and his third
choice is item 3.

The unique top trading cycle for N is tc! = (23) and for N\ S* = {1}, the top trading
cycle is tc*> = (1). Note that there are no agents left. Thus, agent 1 gets his own item
and agents 2 and 3 trade with each other. This is represented in the permutation matrix
derived from the top trading cycle algorithm:

1 00
A*=10 0 1
010

Note that agent 2 and agent 3 get their top choice. Hence, only the coalition {1} could
strictly improve upon A*. Since agent 1 already gets his own item in A*, we have that
f(A*) = {A*}. With Definition 3.2(1), we get that A* € CO.

We show that each permutation matrix not equal to A* is strictly dominated. For this, we
use the notation of permutation matrices as cycles given in [Table 21 With [Definition 2.8]
[Definition 3.1(1) and [Table 4] we get that each permutation matrix not equal to A* is
strictly dominated.

Sequence E(AA) Preference

(DR)E) S5y DE3) | 12,3} € E(D()(3), (1)(28)) | (N(28) = (N2)B) Vi€ S
(2)(18) =5 WER)E) | {1,3} € B(2)(13), 2)B)) | (N2)(3) = (2)(13) Vi € §
(3)(12) S5y DE3) | {23} € B(3)(12), (1)(23)) | (1)(28) = (B)(12) Vi € 5
(123) —— > (D2)E) | {1} € E((123), (1)(2)(3)) (1)(2)(3) =1 (123)

(132) > (D)) | {3} € E((132), (1)(2)(3)) (1)(2)(3) >3 (132)

Table 4: Illustration that each permutation matrix not equal to A* is strictly dominated.

Hence, with [Definition 3.2{(1), we get that CO = {A*}. A

In[Example 3.7, we showed that the core of a specific housing matching model contains the
permutation matrix A*. This result can be generalized to all housing matching models
(N, P). The proof of the following theorem is the proof in Shapley and Scarf (1974),
but written down in the context of our social environment corresponding to the housing
matching model (N, P).

18



Theorem 3.8. For all housing matching models (N, P), the core of E(N, P) is nonempty.

Proof. Let (N, P) be a housing matching model. We show that the permutation matrix

A*, which is derived from the top trading cycle algorithm, is an element of the core. From

the top trading cycle algorithm, we get that N is partitioned into T' disjoint coalitions

S(tc™), ie. N= |J S(tc™), with tc™ a top trading cycle for N \ ( U S(tc”)) and
1<r<T 1<r<r—1

that the cycle decomposition of A* is the product of all top trading cycles.

Take an arbitrary coalition S € 2V \ {@}, and let s € {1,...,T} be the first index such
that SNS(tc®) # 0, so we have that S C N\ | | S(tc’")). Recall that tc® = (45 - - - i)

1<r<s—1
with i§ = i5..

Take i = i;, € SNS(tc*), then we have that Af;. = 1. According to [Definition 3.3, agent

i’s most preferred item in N \ ( U S(tcr)) is item ¢;_,. Thus, with [Definition 2.1}
1<r<s—1

condition (1) of Definition 2.8 and [Definition 3.1|(1), the coalition S cannot strictly im-

prove upon A*. In other words, we have that f(A*) = {A*}. Thus, we can conclude that

A* e CO. O
Recall that in we showed that A* € CO and that in the core

was equal to {A*}. With this example, we could draw the wrong conclusion that the core
of each housing matching model is equal to {A*}.

Example 3.9. Let n =3, N = {1,2,3} and let the preference matrix P be given as

-2 0 -1
P=|-1 -2 0
-1 0 =2

Then we have that A* = (1)(23), because the top trading cycle for N is tc! = (23) and
the top trading cycle for N\ S(tc') = {1} is tc? = (1). We already know that A* € CO,
and with [Table 5 we also know that (1)(2)(3), (2)(13) and (3)(12) are strictly dominated.

Sequence E(AA) Preference
(DR)B) ——— (D(23) | {2,3} € B(1)(2)(3), (1)(23)) | (1)(23) = ()(2)3) Vi e S

={2,3} o) 2.3 € E((2)(13), (1)(23)) (1)(23) =; (2)(13) Vi e S

(2)(13) > (1) (
3112 > @) | {23} € 12,0 | (18 - @1 Vie s

Table 5: Illustration that three permutation matrices are strictly dominated.

The permutation matrix A" = (132) represents that agent 1 gets item 2, that agent 2 gets
item 3 and that agent 3 gets item 1. Note that agents 1 and 2 get their top choice and
that agent 3 gets an item that he prefers to his own item. Hence, there does not exist a
coalition S such that it can strictly improve upon A’, i.e. A" € CO.
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In the permutation matrix A” = (123) agent 3 gets his top choice, and agents 1 and 2
both get an item that they prefer to their own item. Hence, only the coalition {1,2}
could strictly improve upon A”, but according to A”, agent 2 already gets item 1. Hence,
we have that A” € CO. Thus, we get CO = {A*, A", A”}. A

From we can draw the conclusion that in general, the core is not equal to
{A*}, because the core can contain permutation matrices that are not equal to A*. We
already know that the strong core is a subset of the core. In the following subsection, we
show that the strong core is not equal to the core for each housing matching model.

3.2 Strong core

In we showed for a specific housing matching model that the core contains
more than A*. In the following example, we determine the strong core for this specific
housing matching model.

Example 3.10 (Example 3.9 continued).
Let n = 3 and let the preference matrix be as in [Example 3.9

—2 0 -1
P=|[-1 =2 o0
~1 0 -2

Recall that A* = (1)(23), and that CO = {(1)(23),(132),(123)}. We determine the
strong core. Note that A" = (132) and A” = (123) are both weakly dominated by A*,
for coalition S = {2, 3}. Recall that strict dominance implies weak dominance. Thus, we
have that SCO = {A*}. Hence, we have found two permutation matrices, A" and A”,
that are in the core, but are not in the strong core. A

From |[Example 3.10, we can conclude that the strong core is not equal to the core for
each housing matching model. Now, we determine whether there is a relation between
the strong core and A*. In Roth and Postlewaite (1977), it is shown that when the
preferences over the items are strict and if the effectivity correspondence is defined by
condition (1) of Definition 2.8] the strong core consists of one unique element. With the
help of the paper of Shapley and Scarf (1974)), this unique element is A*, which is the
permutation matrix derived from the top trading cycle algorithm.

Since our definition of an effectivity correspondence satisfies condition (1) of
and has some additional restrictions, it can happen that the proofs in Roth and Postle-
waite (1977) are not valid anymore. Hence, we still need to prove that the strong core is
equal to {A*} for our effectivity correspondence.

In particular, it is shown in Roth and Postlewaite (1977)), that if preferences are strict and

the effectivity correspondence is only defined by condition (1) in [Definition 2.8| the top
trading cycle allocation weakly dominates all other allocations in each housing matching

model. In the following example, we show that this is not the case with our effectivity
correspondence.
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Example 3.11. Let n = 3, N = {1,2,3} and let the preference matrix be given as

0 -1 -2
P=|(0 —2 -1
0 -1 -2

Then we have that A* = (1)(23). For A = (2)(13), we have that F(A, A*) = {{2,3}, N}
and that A =3 A*. Hence, there does not exist a coalition S € FE(A, A*) such that

A* =i Afor all i € S and A* -; A for at least one j € S. With [Definition 3.1)2), we get
that A* does not weakly dominate A. A

From [Example 3.11} we get for each housing matching model (N, P) that with respect to
our effectivity correspondence, the allocation A* does not necessarily weakly dominate all

other permutation matrices in £(N, P). Thus, we need to prove for each housing matching
model (N, P) that each permutation matrix not equal to A* is weakly dominated by some
A" € X, which is not necessarily A*, in E(N, P).

Theorem 3.12. For all housing matching models (N, P), we have that each permutation
matrizc A € X \ {A*} is weakly dominated in E(N, P).

Proof. Let (N, P) be a housing matching model and let A € X \ {A*}. From the top
trading cycle algorithm, we get that N is partitioned into 7" disjoint coalitions S(tc7),

ie. N= J S(tc"), with tc™ a top trading cycle for N\ ( U S(tcT)) and that the
1<7<T 1<r<r—1
cycle decomposition of A* is the product of all top trading cycles. Recall that for each

T e€{1,...,T}, we have that S(tc") = {¢],... i} }, tc™ = (i] - - - i},) and if = i}..

Let s € {1,...,T} be the first index such that tc® ¢ C(A). In other words, tc® is the first
top trading cycle that is not in the cycle decomposition of A. Define

¢: | Sty — | s
1<r<s 1<r<s

as

o(iy)=1ir_, Yke{l,....,0 }andVre{l,...,s}.

Note that by construction, ¢ is a bijection and that ¢(i) = j means that agent i gets item
j. Then from [Lemma 2.11) we know that there exists A’ € X such that [J S(t¢") €

1<r<s
E(A,A"), and such that A), ., = 1foralli e |J S(tc¢"). Thus, we have that tc" € C'(4’)
60 1<r<s
for all 7 € {1,...,s}. This means that, tc',... tc* are all in the cycle decomposition of

A’. Note that tc" € C(A) for all r € {1,...,s — 1}. In other words, tc!,... tc*~! are all
in the cycle decomposition of A. Thus, we have that A’ ~; Aforalli e | S(tc").
1<r<s—1

Since tc® € C(A'), tc® ¢ C(A) and according to A’, each agent in S(tc®) gets his most
preferred item of the remaining in N \ U s (tcT)), we get that A" 7Z; A for all

1<r<s—1

i € S(tc®) and A" >, A for at least one j € S(tc®). With [Definition 3.1(2), we get that
A" weakly dominates A in E(N, P). O
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For each market model with indivisible goods with strict preferences over the goods,
Roth and Postlewaite (1977) showed that the top trading cycle allocation is not weakly
dominated when the effectivity correspondence is defined as: S € E(A, A) if and only if
Vi € S there exists j € S such that A, =

Kawasaki (2010) showed that if the same effectivity correspondence, as in ,
is used, and when the agents can anticipate that coalitions might react to their deviations,
the top trading cycle allocation is not indirectly antisymmetrically weakly dominated. In
Section [6] we look at this dominance relation.

Because we assume that agents cannot anticipate that coalitions might react to their
deviations, we prove that A* is not weakly dominated by a combination of the proofs in
Roth and Postlewaite (1977)) and Kawasaki (2010)).

Theorem 3.13. For all housing matching models (N, P), it holds that the permutation
matriz A* is not weakly dominated in E(N, P).

Proof. Let (N, P) be a housing matching model and let A" € X \ {A*}. Suppose that
A" weakly dominates A* in E(N, P). Then according to [Definition 3.1|(2), there exists
S € E(A*, A’) such that A’ 77; A* for all i € S and A’ >; A* for at least one j € S.

Note that A* is the top trading cycle permutation matrix. Hence, we have that N is
partitioned into 7" disjoint coalitions S(tc7), i.e. N = |J S(tc¢7), with t¢” a top trading

1<7<T

cycle for N'\ ( U s (tc”)) and the cycle decomposition of A* is the product of the top
1<r<r-—1
T

trading cycles, i.e. A* = H tc™. We show that A" = A* by induction on 7 € {1,...,T}.

=1

Let 7 € {1,...,T}, then define the statement

P(r): Vi€ |J S(t") it holds that A} = A,

1<r<7

First, we show that the statement is true for 7 = 1. In other words, we need to show
that AF = A/ for all i € S(tc'). We have two cases: S(tc') NS =0 and S(tc') N S # 0.
If S(tc') NS = 0, then by condition (2) in Definition 2.8 we get that A7 = A for all
i€ S(tch).

Now suppose that S(tc')NS # 0. Let i € S(tc')NS. We know that ¢ € S(¢c') implies that
according to A* agent i gets his most preferred item. Hence, in particular, it holds that
A* =, A’. Since i € S, we also have that A’ =, A*. Hence, we get that A* ~; A’. With
, we get that Af; = Aj; = 1. Note that we must have that j € S(tc') NS,

because of the top trading cycle algorithm and condition (1) in [Definition 2.8, Thus, we
get that A% = A%, = 1 and again, we must have that k € S(tc')NS. If we repeat this, we

get that S(tc') C S. Thus, for all i € S(tc') we have that Af = Al. Hence, the statement
is true for 7 = 1.

Assume that the statement P(7) holds for some 7 € {1,...,T}. In other words,

Vie [J S(tc) it holds that A7 = Aj.

1<r<r
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We need to show that P(7 + 1) holds. In other words, we need to show that

vie |J S(tc) it holds that A7 = AJ.

1<r<r+1

Using the induction hypothesis, we need to show that A¥ = A} for all i € S(tc™™!). We
have two cases: S(tc™™) NS = @ and S(tc™™) NS # @. In the former case, we get
by condition (2) in [Definition 2.8| that A7 = A for all i € S(tc"™!). Now, suppose that
S(tc™™)NS # 0. Using the same reasoning as in the base case, we have that S(tc™™!) C S.
Hence, we get that A’ =, A* for all i € S(tc"™!). Since the statement P(7) is true, we
have that according to A’ each agent in S(tc™™') can only receive items from agents in

N\ ( U s (tcT)) Hence, with the fact that according to A* each agent gets his most

1<r<r

preferred item of N \ ( U S(tc’")), we get that A* =; A’ for all i € S(tc™™'). Hence,

1<r<r
we have that Af = A/ for all i € S(tc™™'). This shows that the statement P(7 + 1) is

true. Hence, with induction we showed that Af = A} foralli e |J S(t¢") = N. Thus,
1<r<T
we have that A* = A’. This contradicts the fact that A" € X \ {A*}. Hence, we can

conclude that A* is not weakly dominated in E(N, P). O

With [Theorem 3.12 and [Theorem 3.13 we get the following corollary.

Corollary 3.14. For all housing matching models (N, P), it holds that SCO = {A*}.

3.3 von Neumann-Morgenstern stable set

In von Neumann and Morgenstern (1944)), the von Neumann-Morgenstern stable set was
introduced as a solution concept for a state space with a dominance relation over this
space. A von Neumann-Morgenstern stable set may fail to exist and if it exists, it cannot
be empty, but does not have to be unique.

Definition 3.15 (von Neumann-Morgenstern stable set).

Let (N, P) be a housing matching model. A set A C X of permutation matrices is a von
Neumann-Morgenstern (vINM) stable set of £(N, P) if it satisfies the following two
conditions:

(1) internal stability: V A € A we have that f(A) NA= {A},
(2) external stability: V A ¢ A it holds that f(A)N.A # 0.

The internal stability condition says that each permutation matrix inside A is not strictly
dominated by another permutation matrix inside A. External stability means that each
permutation matrix outside A is strictly dominated by a permutation matrix inside A.
If we replace f with f, we get the weak dominance vINM stable set.

Proposition 3.16. Let (N, P) be a housing matching model for which a von Neumann-
Morgenstern stable set exists. Then each vNM stable set must contain the core.
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Proof. Let (N, P) be a housing matching model for which a vNM stable set exists and
let A C X be a vNM stable set with CO ¢ A, then there exists A € CO \ A. Hence,
with [Definition 3.2{(1), we get that f(A) = {A}. Thus, we have that f(A) N.A = 0. This
contradicts the fact that A satisfies external stability. Hence, A is not a vNM stable set.
Thus, we can conclude that each vINM stable set contains the core. O

Note that if the core is a vNM stable set, then it is the unique vNM stable set. In
Theorem 3.8| we showed that the core contains A*, therefore we have the following result.

Corollary 3.17. Let (N, P) be a housing matching model for which a von Neumann-
Morgenstern stable set exists. Then each vINM stable set contains A* and consists of
permutation matrices that are not strictly dominated by A*.

We have a similar result for the weak dominance vINM stable set.

Proposition 3.18. Let (N, P) be a housing matching model for which a weak dominance
vNM stable set exists. Then each weak dominance vNM stable set must contain A* and
consists of permutation matrices that are not weakly dominated by A*.

Proof. Let (N, P) be a housing matching model for which a weak dominance vNM stable
set exists and let A C X be a weak dominance vNM stable set with A* ¢ A. From
|Corollary 3.14] we know that SCO = {A*}, thus with [Definition 3.2(2), we get that
f(A*) = {A*}. Hence, we have that f(A*) N A = (). This contradicts the fact that A
satisfies external stability. Thus, we can conclude that each weak dominance vNM stable
set contains A*. Therefore, with internal stability, we get that each weak dominance vNM
stable set consists of permutation matrices that are not weakly dominated by A*. ]

From [Proposition 3.16, one could wonder whether the core is a vVINM stable set for each
housing matching model (N, P). We show in the following example that in general the
core is not a vVINM stable set.

Example 3.19 (Example 3.7| continued).
Let n = 3 and let the preference matrix be given as in [Example 3.7}

~1 0 -2
P=|[-1 =2 o0
—2 0 -1

Recall that A* = (1)(23), and that CO = {A*}. Note that (123) € X \ {A*} and that
(123) is not strictly dominated by A*, since (123) ~3 (1)(23) and E((123),(1)(23)) =
{{2,3}, N}. Thus, we have that A* ¢ f((123)), hence {A*} does not satisfy external
stability. We can conclude that the core is not a vINM stable set.

Now, we show that A = {(1)(23), (123), (132)} is a vNM stable set. We already know that
F((1)(23)) = {(1)(23)}. From|[Table 4] we can conclude that f((123)) = {(123), (1)(2)(3)}
and that f((132)) = {(132),(1)(2)(3)}. Hence, for all A € A we have that f(A)NA =
{A}. Thus, A satisfies internal stability. We show that A also satisfies external stability.
From [Table 4] we already know that A* € f((1)(2)(3)) and that A* € f((3)(12)). Note
that (1)(23) =; (2)(13) for all + € {2,3} and that {2,3} € E((2)(13),(1)(23)). Thus, we
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have that (1)(23) € f((2)(13)). Hence, for all A ¢ A, we have that f(A) N.A # (). Thus,
the set A = {(1)(23), (123), (132)} is a vNM stable set.

Now, we show that SCO = {A*} is the unique weak dominance vNM stable set. Recall
that f(A*) = {A*}, thus {A*} satisfies internal stability. From |Table 6, we know that
each A € X \ {A*} is weakly dominated by A*.

Sequence E(A, A¥) Preference

(DR)B) s55y D@3 | 12,3} € E(D)B3), (1D(28)) | (N(28) = (NR2)B) Vi€ S

(2)18) S5y (DE3) | {23} € B(2)(13), (1)(23)) | (1)(28) =i (2)(A3) Vi € 5

(3)(12) m o5y (DE3) | {23} € B(3)(12), (1)(23)) | (1)(28) = (3)(12) Vi €

(123) ——— F (1)(23) {2,3} € E((123),(1)(23)) (1)(23) =2 (123) and
(1)(23) ~s (123)

(132) m (1)(23) {2,3} € E((132),(1)(23)) (1)(23) ~9 (132) and
(1)(23) =5 (132)

Table 6: Illustration that each A € X \ {A*} is weakly dominated by A*.

Thus, the set { A*} satisfies external stability. This shows that { A*} is a weak dominance
vNM stable set. From [Proposition 3.18| it follows that { A*} is the unique weak dominance
vNM stable set. A

From [Proposition 3.18 and the fact that f(A*) = {A*}, we can conclude that {A*} is
the unique weak dominance vNM stable set for each housing matching model (N, P),
such that A* weakly dominates all other permutation matrices. In the following example,
we show that {A*} is not a weak dominance vNM stable set for each housing matching
model.

Example 3.20 (Example 3.11] continued).
Let n =3, N ={1,2,3} and let the preference matrix be given as in [Example 3.11}

0 -1 -2
P=10 -2 -1
0 -1 -2

Recall that A* = (1)(23). First, we determine which permutation matrices are weakly
dominated by A*. Note that (1)(23) >=; (1)(2)(3) for all ¢ € {2,3}, (123) =2 (1)(23),
(132) =3 (1)(23), (2)(13) =3 (1)(23) and (3)(12) =2 (1)(23). Thus, A* only weakly
dominates (1)(2)(3). Hence, we get that {A*} does not satisfy weak dominance external
stability.

Now, we determine the weak dominance vINM stable sets for this housing matching model.
Let A C X be a weak dominance vNM stable set. From[Proposition 3.18 we can conclude
that A* € A and that (1)(2)(3) ¢ A. In[Table 7] all weak dominations for this housing
matching model can be found.
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Sequence E(A A" Preference
(D2)E) o5 W) | {2,381 € B(D)ER)(3), (1)(23)) | (1(23) = (D(2)B3) Vi € S
(2)(13) = WERE) | {1} € E(2)(13), (H2)E) | (D2)E) =1 (2)(13)
(2)(13) — Y (132) N € E((2)(13),(132)) (132) =; (2)(13) Vi € {1,2}
and (132) ~3 (2)(13)
(2)(13) =5y 3)(12) {1,2} € E((2)(13), (3)(12)) | (3)(12) = (2)(13> Vies
(3)(12) — > WER)E) | {1} € E(3)(12), (H2)E) | (D2)E) =1 (3)(12)
(123) = (WR)B) | {1} € E((123), (1)(2)(3)) (1)(2)(3) =1 (123)
(123) m (2)(13) {1,3} € E((123),(2)(13)) (2)(13) ~q (123) and
(2)(13) >3 (123)
(123) m (3)(12) {1,2} € E((123),(3)(12)) (3)(12) =1 (123) and
(3)(12) ~» (123)
(132) = (N()B) {1} € £((132), (1)(2)(3)) (1)(2)(3) =1 (132)
(132) m (3)(12) {1,2} € E((132),(3)(12)) (3)(12) ~; (132) and
(3)(12) =2 (132)
Table 7: Illustration of all weak dominations.
Hence, we can conclude that
F(3)(12) = {(H2)B),(3)(12)},
F(2)(13)) = {(2)(13). (1)(2)(3), (132), (3)(12)},
f((132)) = {(132),(1)(2)(3), (3)(12)},
f1(123)) = {(123),(1)(2)(3),(2)(13), (3)(12)}.

Suppose that (3)(12) ¢ A, then we get with (1)(2)(3) ¢ A that A does not satisfy weak
dominance external stability. Thus, we can conclude that (3)(12) € A. In order for A to
satisfy weak dominance internal stability we have that {(2)(13),(123),(132)} N A = 0.
Hence, we get that A = {(1)(23), (3)(12)} is the unique weak dominance vNM stable
set. A

In the following example, we show that there exists a housing matching model (N, P) for
which a strict von Neumann-Morgenstern stable set does not exist.

Example 3.21.
Let n =3, N = {1,2,3} and let the preference matrix be given as

-2 0 -1
P=1-1 -2 0].
0 -1 -2

We show that there does not exist a vNM stable set. Suppose to the contrary that A C X
is a vNM stable set. We have that A* = (132) and from [Table 8 we get that CO = {A*}.
We can conclude from [Proposition 3.16| that A* € A.
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Sequence E(A A" Preference

((2)B) = (132) | N e B((1)(2)(3),(132)) (132) = ()(2)(3) Vie S
(D23) =5y BU3) | 11,3} € BE(1)(23), (2)(13)) | (2)(13) =i (1)(23) Vi € 5
(2)(13) = B)12) | 1,2} € B((2)(13), (3)(12)) | (3)(12) =i (2)(A3) Vi € 5
(3)(12) S5y (D@3) | {23} € B((3)(12), (1)(23)) | (1)(23) = (3)(12) Vi € S
(123) —> (132) N € B((123), (132)) (132) = (123)Vie S

Table 8: Illustration that each permutation matrix not equal to A* is strictly dominated.

Now, we determine f((1)(23)). According to (1)(23) agent 2 gets his most preferred
item, hence he is not part of any deviating coalition. Also, since according to (1)(23)
agents 1 and 3 both get an item they prefer more than their own item, the only deviating

coalition is {1,3}. Hence, it holds that f((1)(23)) = {(1)(23),(2)(13)}. Similarly, one

can show that f((2)(13)) = {(2)(13),(3)(12)} and f((3)(12)) = {(3)(12), (1)(23)}. Note
that £((1)(2)(3)) = X and that £((123)) = {(123), (132)}. Thus, with A* € A and the

{(
internal stability condition we get that (1)(2)(3) ¢ A and (123) ¢ A. This can be seen
in Hence, we have that {(1)(2)(3),(123)} n.A = 0.

A" e f(D(2)3)) (1)(2)(3) ¢ A

)(2
3),

A*e A

A* e f((123)) —— (123) ¢ A

Figure 1: Tllustration to show that {(1)(2)(3), (123)} N A = 0.

First, note that we can conclude that { A*} is not a vNM stable set, because we have that
A" ¢ f((1)(23)).

Suppose that (1)(23) € A, then the internal stability condition gives us that (3)(12) ¢ A
and that (2)(13) ¢ A. This can be seen in [Figure 2|

(1)(23) € £(3)(12)) |—— (3)(12) ¢ A

(1)(23) € A

(2)(13) € F(D)(23)) |— (2)(13) ¢ A

Figure 2: Tllustration to show that if (1)(23) € A, then {(2)(13),(3)(12)} n.A = 0.

Hence, with {(1)(2)(3), (123)} N A = ), we get that A = {(132),(1)(23)}. Note that
F((2)(13)) N A = {(2)(13), (3)(12)} N {(132), (1)(23)} = 0.
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Hence, A = {(132),(1)(23)} does not satisfy the external stability condition. Thus, we
can conclude that (1)(23) ¢ A.

Now suppose that (2)(13) € A, then from the internal stability condition we get that

(3)(12) ¢ A. This is shown in [Figure 3|

(2)(13) € A ——(3)(12) € f((2)(13)) ——{(3)(12) ¢ A

Figure 3: Illustration to show that if (2)(13) € A, then (3)(12) ¢ A.
Hence, with {(1)(2)(3), (123), (1)(23)} N A = 0, we have that A = {(132), (2)(13)}. Note

that
f((3)(12)) N A = {(3)(12), (1)(23)} N {(132), (2)(13)} = 0.

Thus, we have that A = {(132),(2)(13)} does not satisfy external stability. We can
conclude that (2)(13) ¢ A.

Suppose that (3)(12) € A, then with {(1)(2)(3), (123), (1)(23), (2)(13)} N.A = 0, we have
that A = {(132),(3)(12)}. Note that

FID)(23)) N A= {(1)(23), (2)(13)} N {(132), (3)(12)}

Hence, A = {(132),(3)(12)} does not satisfy external stability. Thus, it holds that
(3)(12) ¢ A.
Hence, we have that .4 N {(1)(2)(3),(123),(1)(23), (2)(13), (3)(12)} = 0. With the fact

that A C X, we get that A = {A*}. Recall that {A*} is not a vNM stable set, hence
there does not exist a vINM stable set. A

0.

From [Example 3.21] we can conclude that there are housing matching models for which
a von Neumann-Morgenstern stable set does not exist. Therefore, we look at another
stability concept which exists for all housing matching models.

3.4 Myopic stable set

In Demuynck et al. (2019a), the definition of a myopic stable set is given. Note that
the set of permutation matrices X is finite and that with our effectivity
correspondence satisfies the conditions given in Demuynck et al. (2019b). Therefore, we
give the definition of a myopic stable set as given in Demuynck et al. (2019a)) for a finite
state space.
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Definition 3.22 (Myopic Stable Set (MSS)).
Let (N, P) be a housing matching model. A set A C X of permutation matrices is a
myopic stable set of £(V, P) if it satisfies the following three properties:

(1) deterrence of external deviations: V A € A it holds that f(A) C A,
(2) iterated external stability: V A ¢ A it holds that fN(A)N.A # 0,

(3) minimality: there is no proper subset A’ C A that satisfies (1) and (2).

Deterrence of external deviations says that no coalition of myopic agents can strictly
benefit from changing A € A into a state outside A. Iterated external stability means
that from any state outside A a state inside A is reached by a finite number of strict
dominations. Note that each deviating coalition prefers the next outcome in the sequence
to the current one. Iterated external stability implies that each MSS is nonempty.

Note that the set X satisfies conditions (1) and (2) in [Definition 3.22| hence we need
the minimality condition. If we replace f with f , we get the weak dominance myopic
stable set. Since X is finite, we know from Demuynck et al. (2019a), that there is a
unique myopic stable set.

One might wonder what kind of relation there is between the core and the myopic stable
set.

Lemma 3.23. For all housing matching models (N, P), the myopic stable set A of
E(N, P) must contain the core, i.e. CO C A.

Proof. Let (N, P) be a housing matching model and let A C X be a myopic stable set
with CO ¢ A. Hence, there exists an allocation A € CO such that A ¢ A. From
Definition 3.2|(1), we know that f(A) = {A}. Thus, it holds that

f2(A) = {A” e X |3 A € X such that A’ € f(A) and A" € f(A)}
= {A"e X | A" e f(A)}={A}.

Hence, we get that f*(A) = {A} for all k € N. This gives us fN(A) = {A}. Thus, for
A ¢ A, we have that fN(A) N A = (). This contradicts condition (2) of [Definition 3.22
Hence, we can conclude that each myopic stable set must contain the core. O

With [Theorem 3.8, we can conclude that the myopic stable set contains A* for each
housing matching model. From [Lemma 3.23] one could wonder whether the core is the
myopic stable set for each housing matching model (N, P).

In [Example 3.21] we showed for a specific housing matching model that a vNM stable
set does not exist. In the following example, we determine the myopic stable set for
this specific housing matching model and we show that it is not equal to the core. This
example was introduced in Demuynck et al. (2019b)) and is written down in the context
of our social environment corresponding to the housing matching model (N, P).

Example 3.24 (Example 3.21] continued).
Let n =3, N = {1,2,3} and let the preference matrix be given as in [Example 3.21}

-2 0 -1
P=|-1 -2 0
0 -1 -2
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Recall that A* = (132) and that we have CO = {A*}. Let A C X be the myopic stable
set. From we know that A* € A.

From [Table § in [Example 3.21] we can see that we have the following sequence:

(1)(23) m (2)(13) m (3)(12) m (1)(23).

Recall that f((1)(23)) = {(1)(23), (2)(13)}, F((2)(13)) = {(2)(13), (3)(12)} and f((3)(12))
{(3)(12),(1)(23)}. Hence, we have that

FH)(23)) = F1(2)(13)) = f1((3)(12)) = {(1)(23), (2)(13), (3)(12) }.

Suppose that {(1)(23),(2)(13),(3)(12)} N A = 0, then condition (2) in [Definition 3.22|
is not satisfied. Hence, in order for A to be a myopic stable set, we must have that
{(1)(23),(2)(13),(3)(12)} NA # 0. Suppose without loss of generality that (1)(23) € A,
then with f((1)(23)) = {(1)(23),(2)(13)} and condition (1) in [Definition 3.22, we get
that (2)(13) € A. Again, with £((2)(13)) = {(2)(13), (3)(12)} and condition (1) in [Defi
[nition 3.22] we get that (3)(12) € A. Hence, we have that {(1)(23), (2)(13), (3)(12)} C A.

Hence, we get that A" = {(1)(23),(2)(13),(3)(12), (132)} € A. Note that A" satisfies
deterrence of external deviations and minimality. Also since (132) € f((1)(2)(3)) and
(132) € f((123)), we have that A’ satisfies iterated external stability. Hence, the set
A ={(1)(23),(2)(13),(3)(12), (132)} is the myopic stable set. A

From [Example 3.24] we get that the myopic stable set is not equal to the core. One could
wonder what happens when we have weak dominance rather than strict dominance.

In Demuynck et al. (2019b), it is shown that the weak dominance myopic stable set is
equal to the strong core, if the effectivity correspondence satisfies their two conditions.
From [Lemma 2.11] we know that our effectivity correspondence satisfies their conditions.
Hence, the weak dominance myopic stable set of £(NN, P) is the strong core of E(N, P).
To make the thesis self-contained, a proof is given below.

Theorem 3.25. For all housing matching models (N, P), the weak dominance MSS of
E(N, P) is equal to the strong core of E(N, P).

Proof. Let (N, P) be a housing matching model. Recall that the strong core of £(N, P)
is equal to {A*}. By (2), we get that f(A*) = {A*}, hence the strong core
satisfies deterrence of external deviations. Moreover, because the strong core has exactly
one element, it automatically satisfies minimality. We show that the strong core satisfies

iterated external stability with the help of the top trading cycle algorithm. In other
words, we need to show that for all A ¢ {A*} it holds that fN(A) N {A*} # 0.

From the top trading cycle algorithm, we get that N is partitioned into T disjoint coali-
tions, i.e. N = |J S(tc¢7), with t¢™ a top trading cycle for N\ U S(tcr)). Let

1<r<T 1<r<7-—-1
A be a permutation matrix with A # A*. Let A = A and let £ = 1. Recall that A,
denotes the ith row of A. By using the steps listed below, we now construct a sequence

of permutation matrices (A9)L_, with A’ € f/(A) and AT = A*,
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(1) If ¢ =T + 1, then stop.

(2) If Vi € S(tc'), we have that A" = A*, then let A® = A", Increase ¢ by one and
go back to the first step.

(3) If 34 € S(tc’) such that A" # A* then define coalition S¢ as S* = U S(tc™)
1<7<e
and the bijection ¢ : S* — S as ¢(i) = j if A = 1. From |[Lemma 2.11|, we get
that there exists A € X such that S* € E(A*"! AY) and such that Vi € S* we
have that AY = A?. Increase ¢ by one and go back to the first step.

Note that by construction we have that A" = A*. We show that ¥ £ € {1,...,T} it holds
that A’ € (A1), because then we have that A® € f*(A). Take £ € {1,...,T}. We have
two cases: Vi € S(tc’) it holds that A = A* and 34 € S(tc’) such that A #£ Ar.

Note that if Vi € S(tc’) it holds that A;~' = A;, then we have that A* = A*~'. Thus, it
holds that A € f(A*1).

If 3i € S(tc’) such that AS™' # A’ then A’ is constructed such that Al = A5 for
all j € S* and such that S* € E(A“ 1 AY). Note that {tc!,... tc* '} C C(A*"1) and
that {tc!,... tc*} C C(AY). From the top trading cycle algorithm, we know for agent
i € S(tc*), that the best item available in N\ S*7! is the item corresponding to A¥. Thus,
it holds that A* ~; A* =; A"1. For all other j € S% we have that A® ~; A* =; A1,

Hence, by [Definition 3.1(2), we get that A* € f(A1).

Hence, we can conclude that A € f(ASY) for all £ € {1,...,T}. In particular, we get
that A* € fT(A). This proves that the strong core satisfies iterated external stability.
The weak dominance MSS of £(N, P) is thus equal to the strong core of E(N, P). O
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4 Full Farsightedness with Strict Dominance

In Section [3, we studied stability concepts under the assumption that all agents are
myopic, in the sense that they only look one step ahead. In [Definition 3.1[1), we defined

strict dominance with this assumption.

In this section, we assume that all agents are fully farsighted. This means that each
coalition of agents can anticipate the deviations of other coalitions without any limit. In
other words, each coalition of agents can see each possible chain of deviations without
any restriction on the length of the chain. Like in [Definition 3.1)(1), we can define when a
permutation matrix A is dominated by A’ under the assumption that all agents are fully
farsighted. In the literature, this is known as indirect dominance.

In Section |3, we studied the core and the vNM stable set under the assumption that all
agents are myopic. In this section, we study these stability concepts under the assumption
that agents are fully farsighted. Moreover, we study the largest consistent set, which was
introduced by Chwe ((1994), and the DEM farsighted stable set of Herings et al. (2010)).

4.1 Indirect dominance

In Chwe (1994), the definition of indirect dominance, the farsighted notion of dominance,
is given in the context of a general game with strict preferences. Note that the social
environment corresponding to the housing matching model (N, P), E(N, P), is a general

game with not necessarily strict preferences over the set X. Hence, we give this definition
in the context of E(N, P).

Definition 4.1 (Indirect dominance).

Let (N, P) be a housing matching model and let A, A" € X be two different permutation
matrices. The permutation matrix A" indirectly dominates A in £(N, P), denoted by
A" > A, if there is a sequence of permutation matrices A%, ..., A™ € X with A° = A and
A™ = A’ and there are coalitions S, ..., ™ € 2V \ {0}, such that V k € {1,...,m} the
following two conditions hold:

(1) 8% € E(AM1, AP),
(2) A" =; A1 for all i € S*.

Note that a coalition S* can move from A*! to A* with A* not necessarily strictly
preferred to A*~! for all i € S*. Furthermore, a coalition S* can move from A*~! to A*
with A*=1 =, A¥ for all i € S*. In other words, a coalition can move to a state that is less
preferred than the current state, but because the agents are farsighted they anticipate
that at the end they get a more preferred item. Indirect dominance has a nice property.

Lemma 4.2. For all housing matching models (N, P), the following holds. Let A, A’, A" €
X be different permutation matrices and let S € E(A,A"). If A” > A" and A" »~; A for
all i € S, then we have that A” > A.

Proof. Let (N, P) be a housing matching model, let A, A", A” € X be different permu-
tation matrices and let S € E(A, A’). Suppose that A” > A’ and that A” =; A for all
1 € S. We need to show that A” > A. Thus, we need to show that there is a sequence
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of permutation matrices A°,..., A™ € X with A = A and A™ = A” and there are coali-
tions St,..., 8™ € 2V \ {0}, such that V k € {1,...,m} we have that S* € F(A*"1 AF)
and that A” =; A" ! for all i € S*.

Take A = A, A' = A" and S' = S € F(A, A'), then we know that A” =; A for all
i € S'. From A” > A’ we know that there is a sequence of permutation matrices
BY....,B™ € X with B = A’ and B™ = A” and there are coalitions R',...,R"™ &€
2NV \ {0}, such that V &’ € {1,...,m'} we have that R¥ € E(B¥~' B¥) and A" =, B¥~!
for all j € R¥. For k € {2,...,m/ + 1}, let S* = R*' and let A*¥ = B*', then we have
that S* € E(A*1, A*) and that A” =; A*~! for all i € S*. This shows that A” > A. O

4.2 Farsighted core

In Diamantoudi and Xue (2003]), the definition of the farsighted core is given in the context
of partitions instead of permutations and in the context of a hedonic game, which is a
tuple consisting of a finite set of players and a preference relation over the coalitions
that contain that agent. We give this definition in the context of our social environment
corresponding to the housing matching model (N, P).

Definition 4.3 (Farsighted core).
Let (N, P) be a housing matching model. The farsighted core FCO of E(N, P) is
defined as the set of permutation matrices that are not indirectly dominated:

FCO={A€ X |3 A € X such that A’ > A}.

Note that with m = 1 strict dominance implies indirect dominance, hence we get that
FCO C CO. We can also describe the farsighted core in terms of the dominance cor-
respondence. Define the indirect dominance correspondence as the correspondence
fs : X — 2% such that

fs>(A)={AlU{A e X | A > A}

Remark 4.4. Let (N, P) be a housing matching model. The farsighted core of £(N, P)
can also be described as

FCO = {A € X | f-(4) = {A}}.

Note that the correspondence fY : X — 2% from Section [3| and the correspondence
fs : X — 2% are not the same. To see this, note that A’ € fN(A) if there exists a finite
sequence of strict dominations from A to A" and that A’ € fs (A) if there exists a finite
farsighted sequence from A to A’. With a sequence of strict dominations, we mean that
each coalition S* only deviates from A*~! to A* if A* is strictly preferred to A*~! and
with a farsighted sequence, we mean that coalition S* only deviates from A*~! to A* if
the end outcome A’ is strictly preferred to A*~1.
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Example 4.5 (Example 3.19| continued).
Let N ={1,2,3} and let the preference matrix P be as in [Example 3.19;

-1 0 =2
P=1-1 -2 0
-2 0 -1

Recall that A* = (1)(23). We already know that CO = {A*} and that FCO C CO.
Hence, we have that either FCO = () or FCO = {A*}. Suppose that A* is indirectly
dominated in E(N, P). In other words, there exists A" € X \ {A*} such that there is
a sequence of permutation matrices A%,..., A™ € X with A = A* and A™ = A’ and
there are coalitions St,... S™ € 2V \ {@}, such that V k € {1,...,m} we have that
Sk e E(AR1 AF) and A’ =, A*! for all i € S*.

Note that according to A* agents 2 and 3 get their top choice and that agent 1 gets his
own item. Thus, we have that A* 7=, A for all i € {2,3} and for all A € X\ {A*}. Hence,
we get that A* 7=; A’ for all i € {2,3}. For the nonempty coalition S' € E(A*, A'), it
must hold that A’ =; A* for all i € S'. Thus, we have that S N {2,3} = (). Hence, we
have that S = {1}. Note that agent 1 can only move from A* to A* itself. Hence, we get

that A* = A, Proceeding in this manner we get that A* = Al = A2 = ... = A™ = A
This contradicts the fact that A’ € X \ {A*}. Thus, we can conclude that A* is not
indirectly dominated, i.e. FCO = {A*}. A

The result in that A* € FCO can be generalized to all housing matching
models.

Theorem 4.6. For all housing matching models (N, P), we have that the permutation
matriz A* is not indirectly dominated in E(N, P).

Proof. Let (N, P) be a housing matching model and let A" € X \ {A*}. We show that
A" does not indirectly dominate A* in E(N, P) by a proof by contradiction. Suppose
that there exists a sequence of permutation matrices A%, ..., A™ € X with A = A* and
A™ = A" and there are coalitions S*,..., 8™ € 2V \ {0}, such that for all k € {1,...,m}
it holds that S* € F(A*! A*) and that A’ =; A*~! for all i € S*.

From the top trading cycle algorithm, we know that N is partitioned into T  disjoint
coalitions S(tc™), N = |J S(tc7), with t¢™ a top trading cycle for N\ U S(tcﬂ)

1<7<T 1<r<r—1

T
and that A* = HtCT.
=1

By induction on the parameter 7, we show that S¥ N S(tc™) = ) for all k € {1,...,m}
and for all 7 € {1,...,T}. Let 7 € {1,..., T}, then define the statement

P(r):S%n ( U S(tc”)) =(forallk € {1,...,m}.

1<r<r

First, we show that the statement is true for 7 = 1. According to A* agents in S(tc') get
their top choice, hence A* —; A’ for all i € S(tc'). Thus, with the fact that for coalition
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St e E(A*, A" it must hold that A" =; A* for all j € S*, we get that S* N S(tc!) = 0.
This implies with [Definition 2.8| that tc! € C(A'), ie. AF = Al for all i € S(tc').
Hence, we get that A' =; A’ for all i € S(tc'). Thus, with the fact that for coalition
5% € E(A, A%) it must hold that A" »; A! for all j € S?, we get that S? N S(tc') = 0.
This implies with that tc! € C(A?), i.e. A7 = A? for all i € S(tc'). Hence,
we get that A% —; A’ for all i € S(tc!). Thus, we have that S® N S(tc') = (). If we repeat
this, we get for all k € {1,...,m} that tc' € C(AF) and that S¥NS(tc) = 0. This shows
that the statement P(7) holds for 7 = 1.

Assume that the statement P(7) holds for some 7 € {1,...,T}. In other words, we have
that

St N ( U S(tcr)> =(forallk € {1,...,m}.

1<r<r

We need to show that statement P(7 + 1) holds. Hence, we need to show that

Skﬂ< U S(tc’j) =0foralke{l,...,m}.

1<r<7+1

Hence, we only need to show that S* N S(tc™!) = () for all k € {1,...,m}. From the
induction hypothesis and [Definition 2.8 we get that tc” € C(A*) for all k € {1,...,m}
and for all € {1,...,7}. Since {tc',...,tc"} C C(A’) and since according to A* each
agent in S(tc™*1) gets their top choice of the remaining items belonging to agents in
N\ ( U S(tcr)), we get that A* =; A’ for all i € S(tc™™'). Thus, with the fact

1<r<r
that for coalition S* € E(A*, A') we have that A’ »; A* for all j € S', we get that
SN S(tc™™) = (. Hence, with we can conclude that tc™ € C(AY), ie.
A = Al for all i € S(tc™™'). Thus, we get that A' 7—; A’ for all i € S(¢c"™!). Hence, with
the fact that for coalition S? € E(A', A?) it must hold that A’ »; Al for all j € S?, we get
that S N S(tc™!) = 0. Again, with we can conclude that tc™! € C'(A?).
If we repeat this, we can conclude that S*¥ N S(tc™™') = () for all k € {1,...,m}. This
shows that the statement P(7 + 1) is true.

Hence, with induction we showed that

@—Skﬂ< U S(tcT)> =S*NNforallke{l,...,m}.

1<7<T

Thus, we get that S* = () for all k € {1,...,m}. This contradicts that S¥ € 2V \ {#}. We
can conclude that A’ does not indirectly dominate A* in £(N, P). Hence, the permutation
matrix A* is not indirectly dominated in (N, P). O

Corollary 4.7. With |Definition 4.5 and |Theorem 4.6, we get for all housing matching
models (N, P) that A* € FCO.

One can also wonder what happens when the core contains more than one permutation
matrix.
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Example 4.8 (Example 3.10| continued).
Let N ={1,2,3} and let the preference matrix P be as in [Example 3.10}

-2 0 -1
P=1-1 -2 0
-1 0 =2

We know that FCO C CO and that CO = {A*, A, A"} with A* = (1)(23), A’ = (132)
and A” = (123). With the following sequences

A —— (1)(2)(3) ——— A

S1={3} §2={2,3}
A" ——— (1)(2)(3) ———— A*
S1={2} §2={2,3}

we get respectively that A* indirectly dominates A’ and that A* indirectly dominates A”.
From we know that A* € FCO. To see this, note that according to A*
agents 2 and 3 get their top choice, hence {2,3} N S' = (. Suppose that S' = {1}, then
the only allocation that S! can move to from A* is A* itself. Hence, A* is not indirectly
dominated. Thus, we have that FCO = {A*}. A

In [Example 4.8 we have that A* indirectly dominates the permutation matrices in
CO \ {A*}. This result can be generalized to all housing matching models and to all
permutation matrices that are not equal to A*.

In Diamantoudi and Xue (2003), it is shown for a hedonic game with strict preferences
that each state in the core indirectly dominates any other state. The pair (N, (27;)ien)
is a hedonic game and does not necessarily have strict preferences over X. Therefore,
we rewrite the theorem and the proof given in Diamantoudi and Xue (2003) in our
context that allows indifference between two permutation matrices. Our result is that A*
indirectly dominates all other permutation matrices.

To prove it, we use the cycle decomposition of the permutation matrices as in[Lemma 2.4
The permutation matrix A* has a nice property that we also need in the proof.

Lemma 4.9. For all housing matching models (N, P), the following holds. For all A €
X\ {A*}, we have for every cy € C(A)\ C(A*), that there exists an agent i € S(ca) such
that A* =; A.

Proof. Let (N, P) be a housing matching model, let A € X \ {A*} and let ¢4 € C(A) \
C(A*). Suppose that cy = (¢1---¢¢) with ¢ = ¢p. Define ¢ : S(ca) — S(ca) as the
bijection
¢(Ck) =c,1 VEkEe€ {1, e ,ﬁ}

From [Lemma 2.11] we know that there exists A" € X, such that S(ca) € E(A* A')
and Al =1 for all j € S(ca). Hence, we get that cy € C(A'). Thus, we have that
A’ ~; Aforall j € S(ca). Recall from[Theorem 3.13] that the allocation A* is not weakly
dominated. Thus, in particular, there exists i € S(c4) such that A* »=; A’ or we have that
A* i A for all j € S(ca). Note that ¢y ¢ C(A*), thus we cannot have that A* ~; A’
for all j € S(ca). We can conclude that there exists i € S(c4) such that A* >; A’. Thus,
with the fact that A" ~; A for all j € S(c4), we get that there exists i € S(c4) such that
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Before we give a proof that A* indirectly dominates all other permutation matrices in

each housing matching model, we look at to show that there is a construction
to prove this by using [Lemma 4.9

Example 4.10 (Example 4.8 continued).
Let n = 3 and let the preference matrix be as in [Example 4.8 We know that A* =

(1)(23), X \ {A*} = {(1)(2)(3),(2)(13),(3)(12), (123),(132)} and from that
C(A*) ={(1),(23)}. We show that A* indirectly dominates all A € X \ {A*}.

First, we show that A* indirectly dominates A = (1)(2)(3). Note that C(A) \ C(A*) =
{(2),(3)}. Hence, according to agents 2 and 3 strictly prefer A* to A. We
also have that {2,3} € F(A, A*) and that C(A*)\ C(A) = {(23)}. Thus, we get that A*
strictly dominates A with the following sequence

MR)B) = (1)(23).

S1={2,3}

Since strict dominance implies indirect dominance, we get that A* > (1)(2)(3).

Secondly, we show that A* indirectly dominates A = (2)(13). Note that C(A) \ C(A*) =
{(2), (13)}. Hence, according to there must exist an agent in S(13) = {1, 3}
such that he strictly prefers A* to A. Note that A =1 A* and that A* >3 A. Hence, let
St = {3} and let A! = (1)(2)(3), then we have that S € E(A, A') and that C(A')\
C(A*) = {(2),(3)}. From the above, we already know that A* =; A® for all i € S? =
{2,3} with S? € E(A', A*) and C(A4*) \ C(A') = {(23)}. Thus, with the following
sequence

(2)(13) e (M(2)(3 pE— A%,

we get that A* > (2)(13). The proof that A* indirectly dominates (3)(12) is similar.

Thirdly, we show that A* indirectly dominates A = (123). Note that C'(A) \ C(A*) =
{(123)}. Hence, according to there must exist an agent in S(123) = N such
that he strictly prefers A* to A. Note that A =; A*, A* =5 A and that A* ~3 A.
Hence, let S' = {2} and let A’ = (1)(2)(3), then we have that S' € E(A, A') and that
C(AY)\ C(4*) = {(2),(3)}. From the above, we already know that A* =; A! for all
i € S? = {2,3} with S? € E(A', A*) and C(A*) \ C(A') = {(23)}. Hence, we get the
following sequence

123) —— (1)(2 — A%

(129) — D) ——
Thus, we have that A* > (123). The proof that A* indirectly dominates A = (132) is
similar.

We can conclude that A* > A for all A € X \ {A*}. A
Note that in [Example 4.10} all the cycles in C'(A) \ C(A*) of a length greater than 1 are

decomposed, one at a time, until we have reached allocation A’, such that either A’ = A*
or C(A*)\ C(A*) only contains cycles of length 1, and then the cycles in C(A*)\ C(A*) are
formed, one at a time. This construction is used to prove that A* indirectly dominates
all other permutation matrices.

Theorem 4.11. For all housing matching models (N, P), it holds that the permutation
matriz A* indirectly dominates any A € X \ {A*} in E(N, P).
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Proof. Let (N, P) be a housing matching model and let A € X \ {A*}. We need to show
that A* > A. In other words, we need to construct a sequence of permutation matrices
starting with A and ending at A* where each agent in coalition S* € E(A*~1 A¥) strictly
prefers A* to A¥~!. Take A° = A.

The first part of the sequence is decomposing the cycles in C(A) \ C(A*) of a length
greater than 1 into cycles consisting of one agent. From [Lemma 4.9, we know that for all
ca € C(A)\ C(A*) there exists an agent i € S(c4) such that A* »; A.

Let ¢4 € C(A) \ C(A*) be such that |S(ca)| > 1, let i € S(ca) be an agent such that
A* =; A and let S = {i}. Define ¢ : S' — S! as the bijection ¢(i) = i. From
[Lemma 2.11} we know that there exists A* € X such that S € E(A, A') and such that
(1) € C(AY).

Again, from[Lemma 4.9 we know that for all ca1 € C(AY)\C(A*), there exists j € S(car)
such that A* =; A'. Let ca1 € C(A') \ C(A*) be such that [S(car)| > 1, let j € S(car)
be an agent such that A* »-; A' and let S? = {j}. Let ¢ : S* — S? be defined as the

bijection ¢(j) = j. From [Lemma 2.11] we know that there exists A?> € X such that
S% € E(A', A%) and such that {(i), ()} C C(A?).

We can repeat above reasoning until we have reached the permutation matrix A*, such
that either C'(A%) \ C(A*) =0 or for all ¢4 € C(AY) \ C(A*) we have that |S(cae)| = 1.

Thus, so far, we have the sequence of the first part

A— A = AT — o A
st 52 58 st
with for all k& € {1,...,¢} the following: S* € E(A*1, A¥), |S*| =1 and A* =; Ak~ for
all i € S*. Note that C'(AY) \ C(A*) = 0 if and only if A® = A*. Hence, if it holds that
C(A*)\ C(A*) = 0, then we already showed, with the above sequence, that A* > A.

Suppose that A* # A’, then we continue with the following step. The second part of
the sequence is to construct A* using the decomposition in the previous part. Note that
C(A\C(AY) = {c, ..., "} isthe set of disjoint cycles that are in the cycle decomposition
of A* and not in the cycle decomposition of A‘. Also note that C'(A*)\ C(A*) # 0, since
A £ AL

We show that each cycle in C'(A*)\ C(AY) has a length greater than 1. Note that for all
A e X\ {A*}, we have that

N = S(cy) = U Sea|U U S(ea)

ca€C(A) cA€C(A*)NC(A) ca€C(A\C(A*)
and that
N= |J Sla)= U St |U U S
cax EC(A%) cax EC(A*)NC(A) cax EC(A*)\C(A)

Hence, for all A € X we have that

U Sl = U S(ear).

cA€C(A\C(A*) cax €EC(AP\C(A)
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Since each cye € C(AY) \ C(A*) consists of one agent, we get with the above that each
ca- € O(A*)\ C(A*) consists of multiple agents.

First, we construct the cycle ¢'. Let S*' = S(c!') and suppose that ¢! = (¢! --- C|1$Z+1\)
with ¢ = c|155+1|. Define ¢ : S“*' — S as the bijection

¢(Cl) :Cifl Vs e {17'-'7|S€+1|}’

S

From [Lemma 2.11|, we know that there exists A“*! € X, such that St € E(Af, A1)

and A(jé) =1 for all i € S“*1. Thus, we have that ¢! € C(A**!). We show that A* =; A*

for all i € S, According to A*, we have for all s € {1,...,[S*!|} that each agent
cl e S gets item ¢!, € S*FL. Moreover, according to A*, each agent in S*™! gets
his own item. Note that ¢! consists of multiple agents, hence by the top trading cycle
algorithm we can conclude that A* =; A’ for all i € S

Now, we construct the cycle ¢®. Let S“* = S(c?) and suppose that ¢* = (cf -~ g1z
with ¢ = C|25u2|‘ Define ¢ : S“2 — S%*?2 as the bijection

p(2)=c2, Vse{l,. .. |S™]).

S S

Again, from [Lemma 2.11] we know that there exists A2 € X, such that S‘*2 ¢
E(A™ A%2) and {c!,¢?*} C C(A*?). Again, from the top trading cycle algorithm,
we get that A* =; A“! for all i € S*+2,

We repeat this until all the cycles ¢!, ..., ¢
and the second part is equal to

A=A — . 5 A — AT A — y AT —— AT = 4
S1 S2 S¢ Seé+1 Seé+2 Se+3 Seé+h—1 St+h

with for all & € {1,...,¢+ h} it holds that S* € F(A*! A*) and that A* =; A*! for
all i € S*. In particular, we have that |S*| = 1 for all k € {1,...,¢} and S* = S(cF7)
forall k € {{ +1,...,0+ h}. Thus, we can conclude that A* > A.

Hence, the permutation matrix A* indirectly dominates any A € X\ {A*} in E(N,P) O

From and [Theorem 4.T1] we get the following corollary.
Corollary 4.12. For all housing matching models (N, P), we have that FCO = {A*}.

h are formed. Hence, the sequence of the first

4.3 Farsighted von Neumann-Morgenstern stable set

In Chwe ((1994), the farsighted von Neumann-Morgenstern stable set was introduced in
the context of a general game and in Mauleon, Vannetelbosch, and Vergote (2011)) the
definition is given in the context of the marriage problem of Gale and Shapley (1962).
Like in the myopic case, a farsighted von Neumann-Morgenstern stable set may fail to
exist and if it exists, it cannot be empty, but does not have to be unique.

In the context of the housing matching model of Shapley and Scarf (1974), Klaus et al.
(2010) studied the farsighted vINM stable set with the same effectivity correspondence as
in 2.8 but with a preference relation such that no agent is indifferent between his own
item and an item of another agent. We give the definition in the context of our social
environment corresponding to the housing matching model (N, P).
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Definition 4.13 (Farsighted von Neumann-Morgenstern stable set).

Let (N, P) be a housing matching model. A set A C X of permutation matrices is a
farsighted von Neumann-Morgenstern (vVINM) stable set of £(N, P) if it satisfies
the following two conditions:

(1) internal stability: V A € A we have that fs. (A) N A= {A},
(2) external stability: V A ¢ A it holds that fs.(A) N A # 0.

Internal stability says that no permutation matrix belonging to A is indirectly dominated
by another permutation matrix belonging to A. External stability means that each
permutation matrix not belonging to A is indirectly dominated by a permutation matrix

inside \A.

Note that the internal stability condition is automatically satisfied for a set A with
|A| = 1. Hence, if we want to know whether a set A with [A| = 1 is a farsighted vNM
stable set, we only need to check whether it satisfies the external stability condition.

In Mauleon et al. (2011), it is shown for the marriage problem of Gale and Shapley
(1962) with strict preferences, that each singleton consisting of a matching in the core is
a farsighted vNM stable set. In our context with not necessarily strict preferences over
the set of all permutation matrices, we have a stronger result.

Theorem 4.14. For all housing matching models (N, P), the set A = {A*} is a farsighted
vNM stable set of E(N, P).

Proof. Let (N, P) be a housing matching model. Note that |.A| = 1, hence we only need
to show that A = {A*} satisfies the external stability condition. From we
get that A* indirectly dominates all A € X \ {A*}, i.e. A* € fs(A) forall A e X\ {A*}.
Thus, the set A = {A*} is a farsighted vNM stable set. O

In [Theorem 4.14] we showed that {A*} is a farsighted vNM stable set. For each A C X
with A* € A and |A| > 1, we get with [Theorem 4.11] that A* indirectly dominates any
permutation matrix A € A\ {A*}. Hence, the internal stability condition is not satisfied.
Thus, each farsighted vNM stable set cannot be of the form A* € A and |A| > 1.
Therefore, the remaining question is, can a set that does not contain A* be a farsighted
vNM stable set? In the following example, we show that {A*} is the unique farsighted
vNM stable set for a specific housing matching model.

Example 4.15. Let n = 3, N = {1,2,3} and let the preference matrix be given as:

-1 0 =2
P=1|-1 -2 0
-2 -1 0

Then we have that A* = (3)(12). Let A be a farsighted vNM stable set. In [Table 9
the construction of [Theorem 4.11]is used to show that A* indirectly dominates any A €
X \ {A*}. Hence, with condition (1) in [Definition 4.13| we have that either A = {A*} or
A ¢ A.
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Sequence E(A, A') and E(A', A) Preference
MR 55 ©02) {1,2} € E(1)(2)(3), 3)(12)) | (3)(12) = (D(2)(3) Vi € 5
(D) 5> W) 577 B)12) | {8} € E(D)(23), (HR)B)) | (3)(12) =5 (1)(23)

{1,2} € E(1)(2)(3), (3)(12)) | (3)(12) = (1)(2)(3) Vi € 5°
(2)(3) 5> D)) 577 B)12) | {8} € E(2)(13), (HR)B)) | (3)(12) =5 (3)(12)

{1.2} € E(1)(2)(3).(3)(12)) | (3)(12) =; (1)(2)(3) Vi € 5°
(123) —— 2 DR)E) 7> B)12) {1} € B((123), (H(2)(3)) (3)(12) =1 (123)

(1.2 € BUOE), B | G112+ (NEE Vi &
(132) ——=» (DR)B) == B)12) | {3} € B((132), ((2)(3)) (3)(12) >3 (132)

{1,2} € E((1)(2)(3), (3)(12)) | (3)(12) =; (1)(2)(3) Vi € S*

Table 9: Illustration that each A € X \ {A*} is indirectly dominated by A*.

Suppose that A* ¢ A. Since A is a farsighted vNM stable set, we must have that there
exists A" € A such that A’ > A*. With [Theorem 4.6, we know that A* is not indirectly
dominated, thus we have that A = {A*}. A

The remaining question is, can the result in be generalized to all housing
matching models? For the marriage problem of Gale and Shapley (1962) with strict
preferences, Mauleon et al. (2011)) proved that each farsighted vNM stable set must be a
singleton consisting of a matching in the core. In our context with not necessarily strict
preferences over the set of all permutation matrices, there is a stronger result.

Theorem 4.16. For all housing matching models (N, P), it holds that if A C X is a
farsighted vNM stable set of E(N, P), then we have that A = {A*}.

Proof. Let (N, P) be a housing matching model. We prove that if A # {A*}, then we
have that A is not a farsighted vNM stable set. Suppose that A C X with A # {A*}.
We have two cases: A* ¢ A and A* € A with |A] > 1. For the latter case, we already
discussed that it cannot be a farsighted vINM stable set. Thus, each farsighted vNM
stable set either is equal to {A*} or it does not contain A*.

Suppose that A* ¢ A, then from we know that A* is not indirectly dom-
inated. Hence, for each set A C X with A* ¢ A the external stability condition is not
satisfied. Thus, each A C X that does not contain A* is not a farsighted vINM stable set.
Hence, if A C X is a farsighted vNM stable set, then we have that A = {A*}. O

From [Theorem 4.14] and [I'heorem 4.16| we get the following corollary.

Corollary 4.17. For all housing matching models (N, P), the unique farsighted vNM
stable set of E(N, P) is {A*}.

4.4 Largest consistent set

In Chwe (1994)), a consistent set and the largest consistent set are defined for a gen-
eral game with strict preferences. We give these definitions in the context of our social
environment corresponding to a housing matching model with not necessarily strict pref-
erences over X, and we use some small adjustments in order to make the definitions more
understandable. For the definition of a consistent set, we need another definition.
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Definition 4.18 ((.A, >)-deterrence of deviations).

Let (N, P) be a housing matching model. Let A C X and let A € X. We say that A
satisfies (A, >>)-deterrence of deviations if for all A’ € X and for all S € E(A, A),
there exists A” € A such that the following two conditions hold:

(1) cither A” = A" or A” > A',
(2) there exists i € S with A 7z; A”.

That A satisfies (A, >)-deterrence of deviations means that each deviation from permu-
tation matrix A to an arbitrary permutation matrix A’ is deterred by the possibility of
ending up at a permutation matrix A” inside A, which is not strictly preferred to A by
at least one agent in the deviating coalition.

Definition 4.19 (Consistent set).
Let (N, P) be a housing matching model. A set A C X is a consistent set of £(N, P)
if it satisfies the following two conditions:

(1) if A € A, then A satisfies (A, >)-deterrence of deviations,
(2) for all A ¢ A we have that A does not satisfy (A, >)-deterrence of deviations.
In the following remark, we give an intuition of (A, >)-deterrence of external deviations.

Remark 4.20. Let (N, P) be a housing matching model, let A C X and let A € X.
Suppose that A does not satisfy (A, >>)-deterrence of deviations. Then we have that
there exists A" € X and that there exists S € E(A, A’), such that for all A” € A, we have
that at least one of the following conditions hold:

(1) A” # A and A” % A,
(2) A” =; Aforalli e S.

In particular, we have that for all A” € A with A” > A’, it must hold that A” =; A for
all i € S. Hence, from [Lemma 4.2) we get that A” > A. Also note that for A” € A with

A" = A’) it must hold that A" >=; A for all i € S. Hence, with [Definition 3.1j(1), we can
conclude that A’ strictly dominates A.

As in Chwe ((1994)), define the consistent correspondence as the correspondence g, :
2% — 2% such that

gs(A) = {A € X | A satisfies (A, >)-deterrence of deviations}.

Remark 4.21. From [Definition 4.19/and the definition of the consistent correspondence,
we get that A C X is consistent, if and only if A is a fixed point of gy, i.e. A= gs(A),

Note that for A € A and A’ = A, we have for A” = A that A” = A" and A ~; A” for all
i € N. Hence, in order to check whether A € A satisfies (A, >)-deterrence of deviations,
we need to check it for all A’ € X \ {A}.

Lemma 4.22. For all housing matching models (N, P), we have that () is a consistent
set of E(N, P).
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Proof. Let (N, P) be a housing matching model. Note that the statement A € () is
false for all A € X. Also note that the statement A € X satisfies (), >)-deterrence of
deviations means that for all A’ € X and for all S € E(A, A’), there exists A” € () such
that either A” = A" or A” > A’, and such that 3 ¢ € S with A =; A”. Hence, the
statement A € X satisfies (), >>)-deterrence of deviations is also false for all A € X.
With Chartrand, Polimeni, and Zhang (2018) we can conclude that the statements imply
each other. Thus, () is a consistent set of E(N, P). O

In Chwe (1994), it is shown that there exists a unique consistent set, called the largest
consistent set Y, that contains all consistent sets, i.e. if Y’ is consistent, then Y’ C Y.
In our context the definition of the largest consistent set given in Chwe (1994) is:

y= J A

ACgs (A)

We give a slightly different definition, but we show that our definition of the largest
consistent set and the definition in Chwe (1994)) are equivalent.

Definition 4.23 (Largest consistent set).
The largest consistent set Ay of E(N, P) is the union of all consistent sets:

A=g>(A)

equivalently
Ay, ={Ac X |3FAC X with A= gs(A) and A € A}.

In the following lemma, we show that the largest consistent set, as defined in

is the definition of Chwe (1994).

Lemma 4.24. For all housing matching models (N, P), the largest consistent set As, is
the largest consistent set of Chwe (1994).

Proof. Let (N, P) be a housing matching model. Note that

As= |J Ac |J A=Y

A=gs (A) ACgs(A)

We show that Y is a consistent set of £(V, P) by rewriting the proof given in Chwe (1994)).
Note that gs : 2% — 2% is isotonic, which means that if A’ C A, then gs.(A") C gs(A).
Thus, for all A C X such that A C gs.(A), we have that g< (A) C g=.(Y). Hence, we get
that

Y= |J Ac |J o) Cg(V).

ACgs (A) ACgs. (A)

Since g : 2% — 2% is isotonic, we have that g (Y) C gs(gs(Y)). With the definition
of Y we can conclude that gs.(Y) C Y. Thus, we have that ¥ = g5 (Y), ie. YV is a
consistent set of £(NV, P). Hence, we get that Y C Ay.. This gives us that Y = Ay.. In
other words, the largest consistent set A is the largest consistent set of Chwe (1994). [
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From the proof of [Lemma 4.24] we get the following corollary.

Corollary 4.25. For all housing matching models (N, P), the largest consistent set As
of E(N, P) is a consistent set.

Note that the state space X is finite and that A ~; A for all « € N and for all A € X
hence with a corollary in Chwe (1994)) we can conclude that the largest consistent set Ay
is nonempty and satisfies external stability, which means that V A ¢ Ay it holds that

fs(A)NAs #0.

In the following proposition, we show that each nonempty consistent set must contain
the top trading cycle permutation matrix.

Proposition 4.26. For all housing matching models (N, P), we have that each nonempty
set A C X \ {A*} is not a consistent set of E(N, P).

Proof. Let (N, P) be a housing matching model and let A C X \ {A*} be a nonempty
subset. In order to prove that A is not a consistent set, we show that each A € A does
not satisfy (A, >)-deterrence of deviations. Let A € A, then we need to show that there
exists A’ € X and that there exists S € F(A, A’), such that for all A” € A, we have that
A" # A" and A” % A’, or we have that A” =; A for alli € S.

We show that there exists A" € X \ A, such that for all A” € A we have that A” % A’
Take A" = A* € X\ A, then by[Theorem 4.6, we know that A* is not indirectly dominated.
Hence, in particular, for all A” € A, we have that A” % A*. This shows that A does not

satisfy (A, >>)-deterrence of deviations. Thus, we can conclude that A is not a consistent
set of E(NV, P). O

From [Proposition 4.26, we know that each nonempty consistent set A must contain A*.
Without any further restrictions on the set A we can show that A* satisfies (A,>)-
deterrence of deviations.

Lemma 4.27. For all housing matching models (N, P), it holds for each A C X with
A* € A, that A* satisfies (A, >>)-deterrence of deviations.

Proof. Let (N, P) be a housing matching model and let A C X with A* € A. We need
to show that A* satisfies (A, >>)-deterrence of deviations. For all A € X and for all
S e E(A* A, let A” = A* € A. We show that it holds that either A* = A" or A* > A/,
and that 3 ¢ € S with A* =, A*. Note that A* ~; A* for all i € N. Hence, for all
A" e X\ {A*} we need to show that A* > A’. This follows from [Theorem 4.11] Thus,
A* satisfies (A, >)-deterrence of deviations. O

With the help of the following corollary we can show that A = {A*} is a consistent set.

Corollary 4.28. For all housing matching models (N, P), it follows from
that for each A € X \ {A*} there exists i € N such that A* =; A.

Theorem 4.29. For all housing matching models (N, P), the set A = {A*} is a consistent
set of E(N, P).
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Proof. Let (N, P) be a housing matching model and let A = {A*}. The first condition in
[Definition 4.19| is satisfied, because from it follows that A* satisfies (A, >>)-
deterrence of deviations.

Thus, for all permutation matrices A € X \ {A*}, we need to show that A does not
satisfy (A, >>)-deterrence of deviations. Hence, for all A € X \ {A*}, we need to show
that 3 A’ € X and 3 S € F(A, A’), such that A* # A" and A* » A’ or such that Vi € S
it holds that A* >=; A. Since A* indirectly dominates all other permutation matrices, we
need to show for all A € X \ {A*}, that 3 A’ € X and 35 € E(A, A'), such that Vi e S
it holds that A* =, A.

Let A€ X\ {A*}. Then from |Corollary 4.28 we know that there exists ¢ € N such that
A* =; A. Take S = {i} and define ¢ : S — S as ¢(i) = i, then ¢ is a bijection. From
[Lemma 2.11], we know that E satisfies condition (2) of Demuynck et al. (2019D)), hence
there exists A’ € X such that S = {i} € F(A, A’) and A}, = 1. Hence, A does not satisfy
(A, >)-deterrence of deviations. Thus, all permutation matrices not equal to A*, do not
satisfy (A, >>)-deterrence of deviations.

Thus, we can conclude that A = {A*} is a consistent set. O

From [Proposition 4.26| and [Lemma 4.27] we know for each nonempty consistent set A
that {A*} C A. From [Theorem 4.29, we know that {A*} is a consistent set, hence we
get the following corollary.

Corollary 4.30. For all housing matching models (N, P), we have that A* € As,.
In the following example, we look at whether {A*} can be the largest consistent set.

Example 4.31 (Example 4.5 continued).
Let n = 3 and let the preference matrix be as in [Example 4.5}

~1 0 -2
P=|[-1 =2 o0
—2 0 -1

Let A C X be a nonempty consistent set. From |[Proposition 4.26, we know that A* =
(1)(23) € A. We show that A must be equal to {A*}. In other words, we show that
{A*} is the only nonempty consistent set. Since A is an arbitrary nonempty consistent
set, it is sufficient to show that each A € X \ {A*} does not satisfy (A, >)-deterrence
of deviations. Hence, we need to show that 3 A’ € X and 3 S € E(A, A'), such that
v A" € A, we have that A” # A" and A” % A’, or we have that A” =, A for all i € S.

Let A € {(1)(2)(3), (2)(13), (3)(12)}. Suppose that A" = A*, then we have that E(A, A*) =
{{2,3},N}. For each A” € A\ {A*}, we have that A” % A*. Note that each A €
{(1)(2)(3), (2)(13), (3)(12)} is strictly dominated by A* for S = {2,3}. Thus, for A” = A*
we have that A* >=; A for all i € {2,3}. We can conclude that A does not satisfy (A, >>)-
deterrence of deviations. Since A is consistent, we get that {(1)(2)(3), (2)(13), (3)(12)} N
A = (). Thus, we have that A4 C {(1)(23), (123), (132)}.

Let A = (123). Suppose that A" = (1)(2)(3), then we have that E(A, A’) = 2V \ {0}.
Let S = {1} € E(A,A"). For A” € {A*(132)}, we have that A” =; (123) and for
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A" = (123), we have that (123) 3% (1)(2)(3). Thus, we can conclude that (123) does not
satisfy (A, >)-deterrence of deviations. Since A is consistent, we get that (123) ¢ A.

Let A = (132). Suppose that A" = (1)(2)(3), then we have that E(A, A’) = 2V \ {0}.
Let S = {3} € E(A,A"). For A” € {A* (123)}, we have that A” =3 (132) and for
A" = (132), we have that (132) 3% (1)(2)(3). Thus, we can conclude that (132) does
not satisfy (A, >)-deterrence of deviations. Hence, we have that (132) ¢ A, since A is
consistent.

We can conclude that A = {A*} is the unique nonempty consistent set. Thus, we also
have that Ay = {A*}. A

The result in [Example 4.31] that a permutation matrix that is strictly dominated by A*
cannot be in any nonempty consistent set can be generalized to all housing matching
models.

Proposition 4.32. For all housing matching models (N, P), we have that the following
holds. Let A C X be a nonempty consistent set of E(N, P). If A* strictly dominates
A e X\ {A*}, then we have that A ¢ A.

Proof. Let (N, P) be a housing matching model and let A C X be a nonempty consistent
set of E(N, P). We give a proof by contradiction. Suppose that there exists A € A\ {A*}
such that A* strictly dominates A.

We show that A € A does not satisfy (A,>>)-deterrence of deviations, which gives a
contradiction with the fact that A is a consistent set of £(N, P). Hence, we need to show
that 3 A’ € X and 3 S € E(A, A'), such that ¥V A” € A, we have that A” # A" and
A" % A’ or we have that A” =; A for all i € S. From |Proposition 4.26| we know that
each nonempty consistent set must contain A*, hence we have that A* € A.

Let A = A*. Note that from we know that A* is not indirectly dominated.
Hence, for all A” € A\ {A*}, we have that A” # A* and A” % A*. Now, let A” = A*.
Recall that A is strictly dominated by A*. Thus, according to [Definition 3.1(1) there
exists S € E(A, A*) such that A* »=; A for all i € S.

We can conclude that A € A does not satisfy (A, >)-deterrence of deviations. Thus, we
showed that if A* strictly dominates A € X \ {A*}, then we have that A ¢ A for any
nonempty consistent set A of E(N, P). O

In the following example, we show that a set A with |A|] > 1 and A* € A can be
a consistent set. This shows that the largest consistent set can contain permutation
matrices that are not equal to A*.

Example 4.33 (Example 3.24| continued).
Let the preference matrix like in be given as

—2 0 -1
P=|[-1 =2 o0
0 -1 -2

Recall that A* = (132). Let A = {(132),(1)(23),(2)(13), (3)(12)} € X. We show that A
is a consistent set of E(N, P).
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First, we show that each permutation matrix outside .4 does not satisfy (A, >)-deterrence
of deviations. Note that X \ A = {(1)(2)(3), (123)}. We know from that
A* = (132) is not indirectly dominated. Note that for all A € X \ A we have that
E(A,A*) = {N} and that A5 € N such that A =; A*. Hence, A € X \ A implies that A
does not satisfy (A, >)-deterrence of deviations.

Secondly, we show that A € A implies that A satisfies (A, >)-deterrence of deviations.
In other words, for all A € A, we need to show that V A" € X and V S € E(A, A’), there
exists A” € A, such that either A” = A" or A” > A’ and such that 3¢ € S with A =—; A”.
For A* = (132) € A, we know from that A* satisfies (A, >>)-deterrence of

deviations.

With the fact that strict dominance implies indirect dominance, we know from

[ple 3.2 that (132) > (123), (2)(13) > (1)(23), (3)(12) > (2)(13) and (1)(23) > (3)(12).

Now, we show that (1)(23) € A satisfies (A, >>)-deterrence of deviations.
Let A" = (1)(2)(3), then with the sequence

(D)) —— (1))
we get that (1)(23) € A strictly dominates (1)(2)(3). Thus, we have that (1)(23) >
(1)(2)(3). Note that E((1)(23), (1)(2)(3)) = 2N\ {0, {1}} and that (1)(23) ~; (1)(23) for
all i € N. Hence, the deviation from (1)(23) to (1)(2)(3) is deterred by the possibility
of ending up at (1)(23). For A’ = (132) € A, we have that £((1)(23),(132)) = {N} and
that (1)(23) ~2 (132). Now, let A" = (123), then we have that E((1)(23), (123)) = {N},
that (132) > (123) with (132) € A and (1)(23) ~2 (132). Thus, the deviation from
(1)(23) to (123) is deterred for agent 2 by the possibility of ending up at (132).

Suppose that A" = (2)(13), then we have that (3)(12) € A with (3)(12) > (2)(13),
E((1)(23),(2)(13)) = {{1,3}, N} and that (1)(23) >3 (3)(12). Hence, the deviation from
(1)(23) to (2)(13) is deterred for agent 3 by the possibility of ending up at (3)(12). For
A" = (3)(12), it holds that (1)(23) € A with (1)(23) > (3)(12), E((1)(23),(3)(12)) =
{{1,2}, N} and (1)(23) ~; (1)(23) for all i € N.

We showed for all A’ € X and for all S € F((1)(23), A’) that there exists A” € A, such
that either A” = A" or A” > A’, and such that there exists ¢ € S with (1)(23) =, A”.
Thus, we get that (1)(23) satisfies (A, >)-deterrence of deviations. An overview of the
above can be found in [Table 10l

AeX |SeEAA) A"e A| A=Aor | Jie Swith Az, A”
AII >> A/
(DER)B) | B((1)(23), (1)(2)B3) =27\ {0, {1}} | (1)(23) | A" > A
VS e{{2},{1,2},{2,3}, N} (1)(23) ~2 (1)(23)
VS e {{3},{1,3},{2,3}, N} (1)(23) ~3 (1)(23)
(132) E((1)(23), (132)) = {N} (132) | A"=A" | (1)(23) ~5 (132)
(123) E((1)(23), (123)) = {N} (132) | A"> A" | (1)(23) ~» (132)
(2)(13) | BE((1)(23),(2)(13)) = {{1,3}, N} (3)(12) | A”> A" | (1)(23) >3 (3)(12)
(3)(12) | B((1)(23),(3)(12)) = {{1,2}, N'} (1)(23) | A" > A" | (1)(23) ~2 (1)(23)

Table 10: Ilustration that A = (1)(23) satisfies (A, >)-deterrence of deviations.
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Similarly, we can show that (2)(13) € A satisfies (A, >)-deterrence of deviations. An
overview of this can be found in [lable 11l Note that with the sequence

(D)) ——> (2)(13)

we get that (2)(13) strictly dominates (1)(2)(3). Thus, it holds that (2)(13) > (1)(2)(3).

AeX [SeE(AA) AT€A[A"=Aor [Jie Swith Ar; A”
A// >> A/
DRE) | E(@1), DE)E) = 2\ {0, {2)] | @O13) A > A
VS € ({1}, {12}, {1,3}, N} (2)(13) ~1 (2)(13)
V.S € ({3}, {1,3},{2,3}, N} (2)(13) ~s (2)(13)
(32) | B((2)(13), (132) = (N} (32) | A=A | (2)(13) ~ (132)
(123) E((Z)(IS) (123)) = {N} (132) Al >> A (2)(13) ~3 (132)
(23] | E(@)(13), (1)(23) = {({2.3LN) | @(13) | 47> A | (2)(13) ~3 (2)(13)
3)12) | BE(@)(13).3)12) = ({L2L, N} | (D@3) [ A > A | (2)(13) = (1)(23)

Table 11: Illustration that A = (2)(13) satisfies (A, >>)-deterrence of deviations.

Now consider (3)(12) € A, then with the sequence
1)(2 12
(D)) —— (02)

we get that (3)(12) strictly dominates (1)(2)(3). Thus, with [Table 12| we have that
(3)(12) satisfies (A, >)-deterrence of deviations.

A ecX [SeEEAA) A€ A|A"=Aor |[JieSwithA =, A"
A// >> Al

(1)(2)(3) | E((3)(12),(1)(2)(3)) =28\ {0, {3}} | (3)(12) | A" > A’

VS e {{1}.{1,2}.{1,3}, N} (3)(12) ~1 (3)(12)

v S e {{2}.{1,2}{2,3} N} (3)(12) ~5 (3)(12)
(132) E((3)(12), (132)) = {N} (132) | A"= A | (3)(12) ~ (132)
(123) E((3)(12), (123)) = {N} (132) | A7> A" | (3)(12) ~; (132)
(1)(23) | E((3)(12),(1)(23)) = {{2,3}, N} (2)(13) | A"> A" | (3)(12) > (2)(13)
(2)13) | E((3)(12),(2)(13)) = {{1,3}, N} (3)(12) [ A"> A" [ (3)(12) ~:i (3)(12)

Table 12: Ilustration that A = (3)(12) satisfies (A, >)-deterrence of deviations.

Hence, we get that A € A implies that A satisfies (A, >)-deterrence of deviations. We
have showed that A satisfies the two conditions in [Definition 4.19] thus

A= {(132), (1)(23), (2)(13), (3)(12)}

is a consistent set of E(N, P). A

From [Example 4.31] and [Example 4.33] we can conclude that for some housing matching
models {A*} is the largest consistent set, but it is not the largest consistent set for each
housing matching model (N, P).
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4.5 DEM farsighted stable set

In the context of networks, Herings et al. (2009) introduced the concept of a pairwise
farsightedly stable set. In Herings et al. (2010), this concept was applied to the context
of coalition formation games and a farsightedly stable set was introduced. We give their
definition in the context of our social environment corresponding to the housing matching
model (N, P) and Definition 4.1 As in Kimya (2023)), we give it the name DEM farsighted
stable set.

Recall that fs is the indirect dominance correspondence, i.e.

fs(A)={Atu{A" e X | A > A}

Definition 4.34 (DEM farsighted stable set).
Let (N, P) be a housing matching model. A set A C X of permutation matrices is a
DEM farsighted stable set of (N, P) if it satisfies the following three properties:

(1) deterrence of external deviations: V A e A VA ¢ AandV S € E(AA),
there exists A” € A such that A” > A’ and 3i € S with A 77; A”,

(2) external stability: V A ¢ A it holds that fs.(A)N.A # 0,
(3) minimality: there is no proper subset A" C A that satisfies (1) and (2).

Deterrence of external deviations says that each deviation from a permutation matrix A
inside A to a permutation matrix A’ outside A is deterred by the possibility of ending
up at another permutation matrix A” inside A, which is not strictly preferred by at least
one agent in the deviating coalition.

Note that deterrence of external deviations looks a lot like (A, >>)-deterrence of devia-
tions: V A’ € X and V S € E(A, A’), there exists A” € A, such that either A” = A’ or
A" > A’ and such that 3¢ € S with A =; A”. Hence, that A € A satisfies (A,>>)-
deterrence of deviations says that each deviation from a permutation matrix A to an
arbitrary permutation matrix A" € X, not necessarily outside A, is deterred by the pos-
sibility of ending up at another permutation matrix A” inside A, which is not strictly
preferred by at least one agent in the deviating coalition. Thus, A € A satisfies (A, >>)-
deterrence of deviations implies that A € A satisfies deterrence of external deviations.

External stability means that each permutation matrix outside A is indirectly dominated
by a permutation matrix inside .A. Note that external stability implies that for all housing
matching models (N, P) we have that () is not a DEM farsighted stable set of £(N, P).

Hence, the DEM farsighted stable requires deterrence of external deviations, the external
stability condition and minimality and the largest consistent set requires deterrence of
external deviations, deterrence of internal deviations and maximality.

Theorem 4.35. For all housing matching models (N, P), the set A = {A*} is the unique
DEM farsighted stable set of E(N, P).

Proof. Let (N, P) be a housing matching model. First, we show that A = {A*} is a
DEM farsighted stable set of £(N, P). The first condition in [Definition 4.34] becomes
vV A € X\ {A*} it holds that A* > A’. This follows from [Theorem 4.11] hence A
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satisfies deterrence of external deviations. From [Theorem 4.11] we get that A* € fs.(A)
for all A € X \ {A*}. Hence, A satisfies external stability. The set A automatically
satisfies the minimality condition, since |A| = 1. Thus, A is a DEM farsighted stable set
of E(N, P).

Secondly, we show that each set A" C X with A* € A" and |A’| > 1 is not a DEM
farsighted stable set of E(N, P). Let A" C X with A* € A" and |A'| > 1, then from the
above A = {A*} C A’ is a proper subset that satisfies (1) and (2) in [Definition 4.34l
Hence, A’ does not satisfy the minimality condition. Thus, A’ is not a DEM farsighted
stable set of E(N, P).

Thirdly, we show that each set A” C X \ {A*} is not a DEM farsighted stable set of

E(N,P). Let A7 C X\ {A*} and let A € A”. Note that A* ¢ A”. From [Theorem 4.6,
we know that fs. (A*) = {A*}. Hence, we have that fs (A*) N A" = (). This shows that

A” does not satisfy the external stability condition. Thus, A” is not a DEM farsighted
stable set of E(N, P).

We can conclude that A = {A*} is the unique DEM farsighted stable set of (N, P). O
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5 Full Farsightedness with Weak Dominance

In Section [ we studied the core, the vNM stable set, the largest consistent set and
the DEM farsighted stable set under the assumption that all agents are fully farsighted.
In this section, we also assume that all agents are fully farsighted and we study these
stability concepts with respect to indirect weak dominance instead of indirect dominance.

5.1 Indirect weak dominance

In Mauleon and Vannetelbosch (2004])), the definition of indirect weak dominance is given
in the context of a coalition formation game. We give this definition in the context of
our social environment corresponding to the housing matching model (N, P).

Definition 5.1 (Indirect weak dominance).

Let (N, P) be a housing matching model. Let A, A" € X be two different permutation
matrices. The permutation matrix A’ indirectly weakly dominates A in E(N, P),
denoted by A’ > A, if there is a sequence of permutation matrices A%, ..., A™ € X
with A° = A and A™ = A’ and there are coalitions S*,...,S™ € 2V \ {0}, such that
VEke{l,...,m} the following two conditions hold:

(1) S* € B(A*, A"),
2) A =; Ak=! for all i € S¥ and A’ ~; A*~! for at least one j € S*.
~Y J

Note that with m = 1 weak dominance implies indirect weak dominance. Also note
that indirect dominance implies indirect weak dominance and that from [I'heorem 4.11],
we know that A* indirectly dominates all other permutation matrices for all housing
matching models. Thus, we get the following corollary.

Corollary 5.2. For all housing matching models (N, P), each A € X \ {A*} is indirectly
weakly dominated by A* in E(N, P).

In [Lemma 4.2 we showed that indirect dominance has a nice property. Indirect weak

dominance has a similar property.

Lemma 5.3. For all housing matching models (N, P), the following holds. Let A, A’, A" €
X be different permutation matrices and let S € E(AA"). If A” > A, A" 77, A for all
i€ S and A" ~; A for at least one j € S, then we have that A” > A.

Proof. Let (N, P) be a housing matching model, let A, A’, A” € X be different permuta-
tion matrices and let S € E(A, A’). Suppose that A” > A’, A” =, A for all i € S and
that A” >, A for at least one j € S. We need to show that A” > A. Thus, we need to
show that there is a sequence of permutation matrices A%, ..., A™ € X with A = A and
A™ = A" and there are coalitions S, ..., 8™ € 2V \ {0}, such that V k € {1,...,m}, we
have that S* € E(A*1 AF), A" =, AF=! for all i € S* and 3 j € S* with A” »=; AF 1.

Take A = A, A' = A" and S' = S € F(A, A’), then we know that A” =; A for all
i € S" and that 3 j € S* with A” »=; A. From A” > A’, we know that there is a
sequence of permutation matrices BY,...,B™ € X with B® = A’ and B™ = A” and
there are coalitions R!,..., R™ € 2V \ {0}, such that V & € {1,...,m'}, we have that
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R¥ ¢ E(B¥-',B¥), A" »-; B¥ ' for all i € R¥ and 3 j € R¥ with A” ~; B¥~L.
For k € {2,...,m' + 1}, let S¥ = R*! and let A* = B*"!, then we have that S* €
E(AFY AR) A" =, AR for all i € S* and that 3 j € S* with A” =; A=, This shows
that A” > A. m

5.2 Strong farsighted core

In Section [4, we defined the farsighted core as the set of permutation matrices that are
not indirectly dominated. In this section, we look at the farsighted core with respect to
indirect weak dominance. Define the indirect weak dominance correspondence as
the correspondence fs : X — 2% such that

[s(A)={A}U{4d e X | A" > A}

Definition 5.4 (Strong farsighted core).
Let (N, P) be a housing matching model. The strong farsighted core SFCO of £(N, P)
is defined as the set of permutation matrices that are not indirectly weakly dominated:

SFCO ={A € X | fo(A) = {A}}.

Recall that weak dominance implies indirect weak dominance and that indirect dominance
implies indirect weak dominance, hence we have that SE'CO C SCO and SFCO C FCO.
Recall from [Corollary 4.12] that the farsighted core of each housing matching model is
equal to {A*}, hence we get the following corollary.

Corollary 5.5. For all housing matching models (N, P), we have that the strong far-
sighted core of E(N, P) is either O or {A*}.

In the following example, we show, for a specific housing matching model, that the strong
farsighted core is equal to {A*}.

Example 5.6. Let n = 3, N = {1,2,3} and let the preference matrix be given as

-2 -1 0
P = 0 -1 -2
-1 0 -2

Then we have that A* = (123). Note that according to A* each agent ¢ € N gets his
top choice, thus we have that A* 7-; A’ for all i € N and for all A" € X \ {A*}. Hence,
with [Definition 5.1, we can conclude that A* is not indirectly weakly dominated. From

Corollary 5.2 we know that each permutation matrix in X \ {A*} is indirectly weakly
dominated by A*, hence we get that SFCO = {A*}. A

From [Example 5.6] we could draw the wrong conclusion that for all housing matching
models (NN, P), we have that the strong farsighted core of £(N, P) is equal to {A*}. In
the following example, we show that A* can be indirectly weakly dominated.
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Example 5.7 (Example 4.10| continued).
Let n = 3 and let the preference matrix P be as in

-2 0 -1
P=1-1 -2 0
-1 0 =2

Recall that A* = (1)(23). Take A’ = (132), then for the following sequence:

1)(2 1)(2 132

(1)( 3)@( )2)(3) > (132),
we have that ST = {1,2} € E((1)(23),(1)(2)(3)), (132) =1 (1)(23), (132) ~o (1)(23),
S?2 = N e B((1)(2)(3), (132)) and (132) =; (1)(2)(3) for all i € N. Hence, A’ = (132)
indirectly weakly dominates A*. The intuition behind this, is the following. Agents 1 and
2 can deviate from (1)(23) to (1)(2)(3), knowing that allocation (1)(2)(3) gives each agent

his worst choice and thus knowing that all agents want to deviate from it. A possible
deviation from (1)(2)(3) is allocation (132).

From |Corollary 5.2, we know that each permutation matrix in X \ {A*} is indirectly
weakly dominated by A*. Hence, the strong farsighted core of (N, P) is empty, i.e.

SFCO = 0. A

In the following example, we show that if there exists an agent which according to A*
does not receive his top choice, the strong farsighted core does not have to be (.

Example 5.8 (Example 4.31 continued).
Let n = 3 and let the preference matrix be as in [Example 4.31}

-1 0 =2
P=|-1 -2 0
-2 0 -1

Recall that A* = (1)(23). We show that SFCO = {A*}. From |Corollary 5.2, we know

that each permutation matrix in X \ {A*} is indirectly weakly dominated by A*. Hence,
we need to show that A* is not indirectly weakly dominated. Suppose to the contrary that
A* is indirectly weakly dominated in £(N, P). In other words, there exists A’ € X'\ {A*},
such that there is a sequence of permutation matrices A°, ..., A™ € X with A° = A and
A™ = A’ and there are coalitions S*,...,S™ € 2V \ {0}, such that V k € {1,...,m}, we
have that S* € E(A"1 AF), A" =, AF1 for all i € S¥ and 3 j € S* with A’ »; A* L.
Note that 2V \ {0} = {{1}, {2}, {3},{1,2},{1,3},{2,3}, N}.

Note that according to A* agents 2 and 3 get their top choice, thus we have that A* —; A
for all i € {2,3} and for all A € X \ {A*}. With the fact that for the nonempty coalition
St e E(A*, AY) it must hold that there exists j € S* with A" »; A*, we can conclude
that S ¢ {{2}, {3}, {2,3}}. Hence, we have that S* € {{1},{1,2},{1,3}, N}.

Suppose that S' = N, then it must hold that A" =; A* for all € N. We also have that
A* 7, A for alli € {2,3}. Hence, we get that A" ~; A* for all i € {2,3}, i.e. we have that
(23) € C(A’). Thus, according to A" agent 1 gets his own item, i.e. A" = (1)(23) = A*.
This gives a contradiction with A’ € X \ {A*}, thus we have that S # N.
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Now, suppose that S = {1, 3}, then it must hold that A" =3 A*. Recall that A* =5 A’
hence we have that A’ ~3 A*. This means that according to A" agent 3 gets item 2. With
the fact that for the nonempty coalition hold that there exists j € S* with A’ =; A*, we
get that it must hold that A’ =1 A*. According to A* agent 1 receives item 1. Note that
Py > Pi3 and that P > P;;. Thus, according to A’ agent 1 should get item 2. This
gives a contradiction with the fact that agent 3 should also get item 2, hence we have

that S # {1,3}. Thus, we can conclude that S* € {{1},{1,2}}.

Suppose that S' = {1,2}, then it must hold that A’ =5 A*. Recall that A* =5 A’, hence
we have that A’ ~3 A*. This means that according to A’ agent 2 gets item 3 With the
fact that there exists j € S* with A’ =; A*, we get that A’ =; A*. Thus, with the above
we get that according to A" agent 1 should get item 2. Hence, we have that A’ = (132).
In order for this to happen, we must have that there exists £ € {1,...,m} such that
3 € S*. Note that S! can only move from (1)(23) to (1)(23), (1)(2)(3) and (3)(12). Note
that (1)(23) =3 (132), (1)(2)(3) =3 (132) and that (3)(12) >3 (132). Hence, we get
that 3 ¢ S2. Coahtlon S e {{1}, {2} {1,2}} can only move from (1)(2)(3) to (1)(2)(3),

or (3)(12). Coalition S € {{1},{2},{1,2}} can only move from (3)(12) to (3)(12), or
(1)(2)(3). Hence, we get that 3 ¢ S* for all k € {1,...,m}. Thus, we can conclude that

{12},
Thus, we must have that S = {1}. Note that agent 1 can only move from (1)(23) to
(1)(23) itself. Thus, with the above we get that there does not exist St € 2V \ {0}, such
that A’ =; A* for all i € S* and 3 j € S' with A’ =; A*. This shows that A* is not
indirectly weakly dominated. Hence, we have that SFCO = {A*}. A

From [Example 5.7, we can conclude that the strong farsighted core can be empty. There-
fore, we look at another solution concept.

5.3 Weak farsighted von Neumann-Morgenstern stable set

In Section [4] we defined the farsighted vNM stable set. In this section, we look at the
farsighted vINM stable set with respect to >, which we call the weak farsighted vINM
stable set.

Definition 5.9 (Weak farsighted von Neumann-Morgenstern stable set).

Let (N, P) be a housing matching model. A set A C X of permutation matrices is a
weak farsighted von Neumann-Morgenstern (vNM) stable set of £(N, P) if it
satisfies the following two conditions:

(1) internal stability: V A € A we have that fs.(4)NA = {A},
(2) external stability: V A ¢ A it holds that fs (A4) N A # 0.

In the following theorem, we show that for all housing matching models (N, P) there
exists at least one weak farsighted vNM stable set.

Theorem 5.10. For all housing matching models (N, P), the set A = {A*} is a weak
farsighted vNM stable set of E(N, P).
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Proof. Let (N, P) be a housing matching model. Note that |A| = 1, hence A automat-
ically satisfies internal stability. From [Corollary 5.2] we know that A* indirectly weakly
dominates all other permutation matrices. Hence, we have that A* € fs(A) for all
A e X \ {A*}. This shows that A satisfies external stability. Thus, the set A = {A*} is
a weak farsighted vNM stable set of E(N, P). O

In , we showed that {A*} is a weak farsighted vINM stable set for all housing
matching models (N, P). From we know that A* € fs(A) for all A €
X \ {A*}, hence each set A C X with A* € A and |A| > 1 does not satisfy internal
stability. Thus, for all housing matching models (N, P), we have that each weak farsighted
vNM stable set of (N, P) either is equal to {A*} or it does not contain A*.

Theorem 5.11. For all housing matching models (N, P) such that SFCO = {A*}, we
have that A = {A*} is the unique weak farsighted vNM stable set of E(N, P).

Proof. Let (N, P) be a housing matching model such that SFCO = {A*}. In
rem 5.10] we already showed that A = {A*} is a weak farsighted vNM stable set. Recall
that each set A" C X with A* € A and A* € A does not satisfy internal stability. Thus,
we only need to show that each set A" C X with A* ¢ A’ is not a weak farsighted vINM
stable set.

Let A" C X with A* ¢ A’. Note that SFCO = {A*}, thus we have that A* is not
indirectly weakly dominated. Hence, it holds that

fo(A)NAT={A} N A" = 0.

Thus, we can conclude that A” does not satisfy external stability. This shows that the
set A = {A*} is the unique weak farsighted vNM stable set of E(N, P). O

In the following example, we show for the specific housing matching model in[Example 5.7]
that there exists a weak farsighted vINM stable set that does not contain A*.

Example 5.12 (Example 5.7| continued).
Let n = 3 and let the preference matrix P be as in [Example 5.7

-2 0 -1
P=1-1 -2 0
-1 0 =2

Recall that A* = (1)(23) and that SFCO = (). We determine all weak farsighted vNM
stable sets of (N, P). From [Theorem 5.10, we know that A = {A*} is a weak farsighted
vNM stable set of E(N, P). First, we show that A" = {(132)} and A" = {(123)} are both
weak farsighted vNM stable sets of £(N, P) by using [Table 13| then we show that A, A’
and A" are the only weak farsighted vNM stable sets of E(N, P).
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Ae X Preferences compared to (123) | Preferences compared to (132)
(2)3) | (123) = (1)(2)(3) Vie N (132) = (D)(2)(3) Vie N
(2)(13) | (123) ~1 (2)(13) (132) =1 (2)(13)
(123) =5 (2)(13) (132) =5 (2)(13)
(123) =5 (2)(13) (132) ~5 (2)(13)
(3)(12) | (3)(12) =, (123) (132) ~1 (3)(12)
(123) ~5 (3)(12) (132) =5 (3)(12)
(123) =35 (3)(12) (132) -3 (3)(12)
(1)(23) | (123) =1 (1)(23) (132) =1 (1)(23)
(1)(23) =2 (123) (132) ~> (1)(23)
(123) ~5 (1)(23) (1)(23) =3 (132)
(123) (123) ~; (123)Vie N (132) =4 (123)
(132) =4 (123)
(123) =3 (132)

Table 13: Tllustration of the comparison of the preferences of each A € X to A’ € {(123), (132)}.

First, we show that A" = {(132)} is a weak farsighted vNM stable set. Since |A'| = 1, we
only need to show that A’ satisfies external stability. In other words, we need to show
that (132) € fs.(A) for all A € X \ {(132)}. For all A € {(1)(2)(3),(2)(13),(3)(12)}, we
can conclude from and N € E(A,(132)), that (132) > A. From [Example 5.7
we know that (132) > (1)(23). Hence, we only need to show that (132) > (123). From
[Table 13| we know that (132) >; (123) for all i € {1,2}. Hence, agents 1 and 2 can deviate
from (123) to (1)(2)(3) knowing that agent 3 is willing to trade such that allocation (132)
is constructed. Hence, we have that (132) > (123). This shows that A" = {(132)} is a
weak farsighted vINM stable set of £(N, P). An illustration of the sequences can be found
in [Table 141

Sequence E(A, AY) and E(A', A" Preference
(DH(2)(3) —— o (132) N € E((1)(2)(3), (132)) (132) =; (1)(2)(3) Vi e St
O] (Ejp— (132) N € E((2)(13),(132)) (132) =, (2)(13) Vi € {1,2} and
(132) ~5 (2)(13)
(3)(12) — (132) N € E((3)(12), (132)) (132) ~; (3)(12) and
- (132) =; (3)(12) Vi € {2,3}
(DE3) S5 WRE) S0 (182) | {12} € B((1)(23), (1)(2)(3)) | (132) =1 (1)(23) and
(132) ~, (1)(23)
N B [(3) - (DOE Vi
(123) Slz—{l?}> (1)(2)(3) P (132) {1,2} € E((123),(1)(2)(3)) (132) =; (123) Vi € St
’ N e E((1)(2)(3), (132)) (132) = (H(2)(3) Vi € 5

Table 14: Ilustration that each A € X \ {(132)} is indirectly weakly dominated by A" = (132).

Now we show that A" = {(123)} is a weak farsighted vNM stable set. Hence, we need
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to show that (123) € fs.(A) for all A € X \ {(123)}. Let A = (1)(2)(3), then we have
that N € E((1)(2)(3),(123)) and that (123) =; (1)(2)(3) for all i € N. Thus, we have
that (123) strictly dominates (1)(2)(3). This gives us that (123) > (1)(2)(3). Now, let
A = (2)(13), then all agents can deviate from (2)(13) to (123) knowing that all agents
weakly prefer (123) to (2)(13). From [Table 13} we know that (123) ~; (2)(13) and that
(123) =; (2)(13) for all i« € {2,3}. With the fact that N € E((2)(13), (123)), we get that
(123) weakly dominates (2)(13). This gives us that (123) > (2)(13).

Consider A = (3)(12), then agents 2 and 3 can deviate from (3)(12) to (1)(2)(3) knowing
that all agents want to deviate from (1)(2)(3) to (123). From [Table 13| we know that
(123) ~s (3)(12) and that (123) =5 (3)(12). Thus, with {2,3} € E((3)(12), (1)(2)(3)),
we have that (123) > (3)(12). Now, we show that (123) indirectly weakly dominates
A* = (1)(23). From [Table 13| we know that (123) = (1)(23), (1)(23) =2 (123) and that
(123) ~3 (1)(23). Hence, agents 1 and 3 can deviate from (1)(23) to (1)(2)(3) knowing
that there is a possibility that all agents deviate from (1)(2)(3) to (123). Hence, we
have that (123) > (1)(23). Consider A = (132), then agent 3 can deviate from (132)
to (1)(2)(3) knowing that there is a possibility that all agents deviate from (1)(2)(3) to
(123). Note that {3} € E((132),(1)(2)(3)) and that (123) >3 (132). Hence, we have that
(123) > (132). An illustration of the above can be found in [Table 15| Hence, we get
that A" satisfies external stability. Thus, we have that A" = {(123)} is a weak farsighted
vNM stable set of E£(N, P).

Sequence E(A, A') and E(A', A) Preference
(1H)(2)(3) —— . (123) N € E((1)(2)(3),(123)) (123) =; (1)(2)(3) Vi e S?
@003 —— (123) N € E(2)(13), (123)) (123) ~; (2)(13) and
(123) = (2)(13) Vi € {2, 3}
(3)(12) S (DR)G) o (123) | {2,3} € E((3)(12), (D)) | (123) ~» (3)(12) and
(123) =5 (3)(12)
N € E((1)(2)(3), (123)) (123) =; (1)(2)(3) Vi € S?
(D) S WR)G) o (123) | {1,3} € BE((1)(23), (D)) | (123) =1 (1)(23) and
(123) ~s (1)(23)
N € E((1)(2)(3), (123)) (123) =; ()(2)(3) Vi € S?
(132) sy WRE) T (123) {3} € E((132), (1)(2)(3)) (123) =35 (132)
N € E((1)(2)(3), (123)) (123) =; ()(2)(3) Vi € S?

Table 15: Tllustration that each A € X \ {(123)} is indirectly weakly dominated by A’ = (123).

Now we show that A = {A*}, A" = {(132)} and A" = {(123)} are the only weak
farsighted vNM stable sets of £(IV, P). We know that A* € fs,(A) for all A e X\ {A*},
that (132) € fy(A') for all A’ € X \ {(132)} and that (123) € fs(A”) for all A" €
X \ {(123)}. Hence, with the internal stability condition we can conclude that each set
A" C X with |A”] > 1 and {4%, (132),(123)} N A" # 0 is not a weak farsighted vNM
stable set.

Note that fs((1)(2)(3)) = X, hence with the internal stability condition we get that
each set that contains (1)(2)(3) and at least one other permutation matrix is not a weak
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farsighted vNM stable set. Thus, each set A” C X with |A”] > 1 and
{47, (132), (123), (1)(2)(3)} N A" # 0

is not a weak farsighted vNM stable set. Note that (123) >=; (1)(2)(3) for all i € N,
thus we have that (1)(2)(3) 2 (123). Hence, the set {(1)(2)(3)} is not a weak farsighted
vNM stable set. Thus, we only need to show that the sets {(2)(13)}, {(3)(12)} and
{(2)(13),(3)(12)} are not weak farsighted vNM stable sets. Note that (3)(12) =; (2)(13)
for all i € {1,2} and that {1,2} € E((2)(13), (3)(12)). Hence, with the following sequence

2)013) —— ()02)
we get that (3)(12) weakly dominates (2)(13). Thus, with internal stability, we get that
{(2)(13),(3)(12)} is not a weak farsighted vINM stable set. For all A € {(2)(13),(3)(12)},
we have that A > (1)(23) and that (1)(23) >=; A for all i € {2,3}. Thus, we have that
(2)(13) % (1)(23) and that (3)(12) % (1)(23). This shows that the sets {(2)(13)} and
{(3)(12)} are not weak farsighted vNM stable sets. Hence, the sets A = {A*}, A" =
{(132)} and A” = {(123)} are the only weak farsighted vNM stable sets of E(N, P). A

For the housing matching model (N, P) in [Example 5.12] we know that there exist three
weak farsighted vNM stable sets of £(N, P). Hence, there are housing matching models
for which there exist multiple weak farsighted vINM stable sets. Therefore, we look at
another solution concept.

5.4 Largest consistent set

In the case with indirect weak dominance, the definition of a consistent set differs from
the one with indirect dominance. To denote the difference, we give the consistent set
with respect to > the name consistent > set. In order to define a consistent > set, we
need to have a new definition of deterrence of deviations.

Definition 5.13 ((A,>)-deterrence of deviations).

Let (N, P) be a housing matching model, let A C X and let A € X. We say that A
satisfies (A,>)-deterrence of deviations if for all A’ € X and for all S € E(A, A'),
there exists A” € A such that the following two conditions hold:

(1) either A” = A" or A" > A/,
(2) there exists i € S with A >; A” or for all j € S we have that A 77; A”.

That A € X satisfies (A, >)-deterrence of deviations means that each deviation from A
to an arbitrary permutation matrix A" € X is deterred by the possibility of ending up at
a permutation matrix A” inside A, such that A is strictly preferred for at least one agent
in the deviating coalition or A is weakly preferred by all agents in the deviating coalition.
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Definition 5.14 (Consistent set with respect to >).
Let (N, P) be a housing matching model. A set A C X is a consistent > set of £(N, P)
if it satisfies the following two conditions:

(1) if A e A, then A satisfies (A, >)-deterrence of deviations,
(2) for all A ¢ A we have that A does not satisfy (A, >)-deterrence of deviations.
In the following remark, we give an intuition of (A, >)-deterrence of deviations.

Remark 5.15. Let (N, P) be a housing matching model, let A C X and let A € X.
Suppose that A does not satisfy (A4, >)-deterrence of deviations. Then we have that
there exists A" € X and that there exists S € F(A, A’), such that for all A” € A, we have
that at least one of the following conditions hold:

(1) A" # A" and A” % A',
(2) A" i Aforalli e S and 3 j € S with A" >; A.

In particular, we have that for all A” € A with A” > A’, it must hold that A” =; A for
alli € S and 3 j € S with A” >~; A. Hence, from we get that A” > A. Also
note that for A” € A with A” = A’, it must hold that A" 7Z; A for all i € S and that

17 € S with A" >; A. Hence, with [Definition 3.1|(2), we can conclude that A" weakly

dominates A.

Define the consistent > correspondence g5 : 2% — 2% as the correspondence such
that
gs(A) = {A € X | Asatisfies (A, >)-deterrence of deviations}.

Then we have that A is a consistent > set if and only if A = gs(A). For all housing
matching models (N, P), note that ) is a consistent > set of (N, P).

Definition 5.16 (Largest consistent set with respect to >).
Let (N, P) be a housing matching model. The largest consistent > set of £(N, P),
denoted by Ay, is the union of all consistent > sets:

A=g> (A)

Remark 5.17. If we replace > by > the proof of remains valid, thus we
have that the definition of Ay and the definition given in Chwe (1994) with respect to
> are equivalent. Thus, we have that

A= |J A= |J 4
A=g>(A)

In Section {4} we showed that {A*} is a consistent set. In the following theorem, we show
that {A*} is a consistent > set.

Theorem 5.18. For all housing matching models (N, P), the set A = {A*} is a consistent
> set of E(N, P).
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Proof. Let (N, P) be a housing matching model and let A = {A*}. First, we show that
A* satisfies (A, >)-deterrence of deviations. In other words, we need to show that for all
A" € X and for all § € E(A*, A"), we have that either A* = A" or A* > A’, and that
di e S with A* >; A" or for all j € S we have that A* 7Z; A*. Note that A* ~; A* for
all 7 € N. Hence, we need to show that for all A" € X and for all S € E(A*, A’), either

A* = A" or A* > A’. From |Corollary 5.2) we know that A* > A’ for all A’ € X \ {A*}.
This shows that A* satisfies (A, >>)-deterrence of deviations.

Now we show that each A € X \ {A*} does not satisfy (A, >)-deterrence of deviations.
Let A € X \ {A*}, then we need to show that 3 A" € X and 3 5 € E(A, A’), such that
A* #£ A and A* % A’ or such that Vi € S we have that A* 7, A and 3 j € S with
A* =; A. Since A* indirectly weakly dominates all other permutation matrices, we need
to show that there exists A’ € X and that there exists S € E(A, A"), such that Vi € S
we have that A* 7, A and 3 j € § with A* >; A.

From [Theorem 3.12 we know that there exists A" € X such that A € X \ {A*} is weakly
dominated by A’ in £(N, P) for coalition S = |J S(tc") € E(A, A’), withs € {1,...,T}

1<r<s
the first index such that tc® ¢ C(A) and with tc!,... tc® in the cycle decomposition of
A’. In particular, we know from [Theorem 3.12| that A’ ~; A for alli € J S(t¢") and

1<r<s
that A’ »; A for at least one j € S(tc®). Recall that C(A*) = {tc!,... tc"} and that
{tct, ... tc*} € C(A), thus we have that A* ~; A’ for all k € S. Hence, with the above
we get that V¢ € S it holds that A* 2Z; A and 3 5 € S with A* =, A. Hence, we showed
that A does not satisfy (A, >)-deterrence of deviations.

Thus, we can conclude that A = {A*} is a consistent > set of E(N, P). O

From [Theorem 5.18| we get the following result.

Corollary 5.19. For all housing matching models (N, P), we have that A* € As,.

In the following example, we show that there is a housing matching model, for which
there exists a consistent > set that does not contain A*.

Example 5.20 (Example 5.12f continued).
Let n = 3 and let the preference matrix be as in [Example 5.12¢

-2 0 -1
P=1|-1 -2 0
-1 0 =2

We show that A" = {(132)} and A” = {(123)} are both consistent > sets of E(N, P).

First, we show that A" = {(132)} is a consistent > set. Hence, we need to show that
(132) satisfies (A’, >)-deterrence of deviations and that each A € X \ {(132)} does not
satisfy (A’,>)-deterrence of deviations. From [Example 5.12| we know that each A’ €
X \ {(132)} is indirectly weakly dominated by (132). Hence, for each A" € X \ {(132)},
let A” = (132) € A’, then we have that A” > A’ and that A” ~; (132) for all j € N.
Thus, we can conclude that (132) satisfies (A’, >)-deterrence of deviations.

Now, we show that each A € X'\ {(132)} does not satisfy (A, >)-deterrence of deviations.
Hence, we need to show that for each A € X \ {(132)}, 3 A’ € X and 3 S € E(A, A'),
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such that (132) # A’ and (132) % A’, or such that Vi € S we have that (132) 2Z; A and
37 € S with (132) >; A. Since (132) indirectly weakly dominates all other permutation
matrices, we need to show for each A € X \ {(132)}, that there exists A’ € X and that
there exists S € E(A, A’), such that Vi € S we have that (132) 2Z; A and 3 j € S with
(132) >=; A. From [Table 13| in [Example 5.12] we get [Table 16, which shows that each
A € X\ {(132)} does not satisfy (A’,>)-deterrence of deviations. Thus, we have that
A’ is a consistent > set of E(N, P).

Ae X\{(132)} | A e X | SeEAA) Vie S (132) z; Aand
3j € S with (132) =, A
(1)(2)(3) (132) | N € E((1)(2)(3), (132)) (132) = (1)(2)3) Vie N
(2)(13) (132) | N € E((2)(13),(132)) (132) =; (2)(13) Vi € {1,2} and
(132) ~5 (2)(13)
(3)(12) (132) | N € E((3)(12),(132)) (132) ~q (3)(12) and
(132) =; (3)(12) Vi € {2,3}
(1)(23) (3)(12) | (1,2} € E((1)(23), (3)(12)) | (132) =, (1)(23) and
(132) ~» (1)(23)
(123) (3)(12) | {1,2} € E((123), (3)(12)) | (132) =, (123) Vi € {1,2}

Table 16: Illustration that each A € X\{(132)} does not satisfy (A, >)-deterrence of deviations.

Now we show that A” = {(123)} is a consistent > set. First, we show that (123) satisfies
(A", >)-deterrence of deviations. Recall from [Example 5.12] that each A’ € X \ {(123)}
is indirectly weakly dominated by (123). Hence, for each A’ € X \ {(123)}, let A” =
(123) € A’, then we have that A” > A" and that A” ~; (123) for all j € N. Now, we
show that each A € X \ {(123)} does not satisfy (A”,>)-deterrence of deviations. Since
(123) > A’ for all A’ € X \ {(123)}, we need to show for each A € X \ {(123)}, that
there exists A’ € X and that there exists S € EF(A, A’), such that Vi € S we have that
(123) Z; A and 3 j € S with (123) >; A. Note that with [Table 13|in [Example 5.12| we
get [Table 17, which shows that each A € X \ {(123)} does not satisfy (A", >)-deterrence
of deviations. Thus, we have that A" = {(123)} is a consistent > set of E(N, P).

Ae X\ {(123)} | A e X | SeE(AA) VieS (123) z; A and

3j € S with (123) =; A
D)E) (123) | NeB(D@(E).(23) | (123) = (DRB)VieN
(2)(13) (123) N € E((2)(13), (123)) (123) ~1 (2)(13) and

(123) =; (2)(13) Vi € {2,3}
(3)(12) (1)23) | {2,3} € E((3)(12), (1)(23)) | (123) ~2 (3)(12)

(123) =5 (3)(12)
(1)(23) (2)(13) | {1,3} € E((1)(23),(2)(13)) | (123) > (1)(23) and

(123) ~3 (1)(23)
(132) (D(R)B) | {3} € B((132), (H(2)(3)) | (123) >3 (132)

Table 17: Illustration that each A € X \ {(123)} does not satisfy (A”,>)-deterrence of devia-
tions.
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Thus, we can conclude that A" = {(132)} and A” = {(123)} are both consistent > sets
of (N, P). A

For the housing matching model in [Example 5.20] we showed that there exist at least
two consistent > sets that do not contain A*. In the following example, we determine
the largest consistent set for this housing matching model.

Example 5.21 (Example 5.20| continued).
Let n = 3 and let the preference matrix be as in [Example 5.20f

-2 0 -1
P=1|-1 -2 0
-1 0 -2

We show that Ay, = {(1)(23), (132), (123)}. Recall that Ay is the union of all consistent
> sets, i.e.
As= |J A
A=g>(A)

From [Theorem 5.18, we know that {A*} is a consistent > set of E(N, P). From
ple 5.20] we know that {(132)} and that {(123)} are both consistent > sets of E(N, P).
Thus, we have that {(1)(23), (132), (123)} C As.

Now, we show that for each A € {(1)(2)(3),(2)(13),(3)(12)} it holds that A ¢ As,. Note
that gs : 2% — 2% is isotonic, which means that if A’ C A, then it holds that g5 (A’) C
gs(A). Thus, in particular for all sets A C X that are consistent > sets of £(N, P), it
holds that A = g5.(A) C g (X). Thus, we have that {(1)(23), (132), (123)} C g=(X).

We show that

9=(X) N {(1)(2)(3), (2)(13), (3)(12)} = 0.
Note that

g5 (X) = {A € X | A satisfies (X,>)-deterrence of deviations}.

Thus, we show that each A € {(1)(2)(3),(2)(13),(3)(12)} does not satisfy (X,>)-
deterrence of deviations. Let A = (1)(2)(3), A’ = (1)(23) and S = {2,3} € E(A,A"),
then for each A” € {(1)(23), (132), (123)} we have that A” >; A for all i € S and for each
A" e {(1)(2)(3),(2)(13),(3)(12)} we have that A” # A" and A” % A’. Thus, (1)(2)(3)
does not satisfy (X, >>)-deterrence of deviations.

Let A= (2)(13), A’ = (1)(23) and S = {2,3} € E(A, A’), then for A” € {(1)(23), (123)}
we have that A” >; A for all i € S, for A” = (132) we have that A” =9 A and A” ~3 A

and for each A” € {(1)(2)(3),(2)(13),(3)(12)} we have that A” # A" and A” % A’
Hence, (2)(13) does not satisfy (X, >>)-deterrence of deviations.

Let A= (3)(12), A’ = (1)(23) and S = {2,3} € E(A, A’), then for A” € {(1)(23), (132)}
we have that A” »=; A for all i € S, for A” = (123) we have that A” ~5 A and A” >3 A
and for each A” € {(1)(2)(3),(2)(13),(3)(12)} we have that A” # A" and A” % A’
Hence, (3)(12) does not satisfy (X, >>)-deterrence of deviations. Thus, we have that

9> (X) = {(1)(23), (132), (123)}.
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Thus, we can conclude that for all A C X, which are consistent > sets, we must have
that A C {(1)(23), (132), (123)}. This shows that {(1)(2)(3),(2)(13),(3)(12)} N Ay = 0.
Thus, we have that Ay = {(1)(23), (132), (123)}. A

For the housing matching model (N, P) as in [Example 5.21], we showed in [Example 5.12
that {(1)(23)}, {(132)}, {(123)} are the only weak farsighted vNM stable sets and in

I[Example 5.21] we showed that Ay = {(1)(23),(132),(123)}. Thus, for this specific
housing matching model, we have that each weak farsighted vNM stable set is a subset
of the largest consistent > set. This result can be generalized to all housing matching
models. For a general game with strict preferences, Chwe (1994) proved this with respect
to indirect dominance. We give this proof in our context and with respect to indirect
weak dominance instead of indirect dominance.

Proposition 5.22. For all housing matching models (N, P), the following holds. If
A" C X is a weak farsighted vNM stable set of E(N, P), then we have that A’ C Ay,

Proof. Let (N, P) be a housing matching model. Suppose that A" C X is a weak far-

sighted vNM stable set of £(V, P). From [Remark 5.17, we know that
Ay = U A= U A

A=gs (A) ACgs (A)

We need to show that A" C As,. Hence, with the above it is sufficient to show that
A" C g5 (A'). Suppose to the contrary that A € A"\ g5 (A’). Since A ¢ g5 (A'), we
have that there exists A’ € X and S € E(A, A’), such that for all A” € A’ we have that
A" #£ A" and A" % A’ or we have that A” 7—; A for all i € S and there exists j € S with
A" =; A. Hence, in particular for all A” € A’ with either A” = A" or A” > A’, it must
hold that A” 7Z; A for all ¢ € S and there exists j € S with A” >; A.

We have two cases A’ € A" and A" ¢ A'. First, suppose that A" € A’, then with the
above we get that A’ 77; A for all i € S and there exists j € S with A" >; A. With
Definition 3.1|(2), we get that A" weakly dominates A for coalition S € E(A, A"). Hence,
we get that A" > A. Thus, we have that A" € fs (A) N .A". This gives a contradiction
with the internal stability of A’.

Now, suppose that A" ¢ A’, then from the external stability of A’ we get that there exists
A" € A" such that A” > A. Hence, with the above we get that A” =; A for all i € S and
there exists j € S with A” -; A. From [Lemma 5.3 we get that A” > A. Thus, we have
that A” € fs.(A) N A’. This gives a contradiction with the internal stability of A’

Thus, we can conclude that A" C g (A’). Hence, we can conclude that if A’ C X is a
weak farsighted vNM stable set of £(N, P), then we have that A" C A O

5.5 Weak DEM farsighted stable set

In Section [4] we showed for all housing matching models (N, P) that A = {A*} is the
unique DEM farsighted stable set of £(N, P). In this section, we show that there exists
a housing matching model for which there are multiple DEM farsighted stable sets with
respect to >.

In the context of coalition formation games, Herings et al. (2010)) defined a farsightedly
stable set. We give it the name weak DEM farsighted stable set.
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Definition 5.23 (Weak DEM farsighted stable set).
Let (N, P) be a housing matching model. A set A C X of permutation matrices is a weak
DEM farsighted stable set of £(N, P) if it satisfies the following three properties:

(1) deterrence of external deviations: VA€ A VA ¢ AandV S € E(A,A),
there exists A” € AN fs.(A’) such that we have that 3¢ € S with A >~; A” or that
Az Al forall j €8S,

(2) external stability: V A ¢ A it holds that fs (A) N A # 0,
(3) minimality: there is no proper subset A’ C A that satisfies (1) and (2).

Note that external stability implies that for all housing matching models (N, P) we have
that () is not a weak DEM farsighted stable set of £(N, P). Hence, each set A C X
with |A| = 1 satisfies minimality. Like in Section [4] there is a relation between (A,>>)-
deterrence of deviations and deterrence of external deviations.

Remark 5.24. Let (N, P) be a housing matching model and let A C X. Suppose
that A € A satisfies (A, >)-deterrence of deviations, then we have that A € A satisfies
deterrence of external deviations.

Since from [Corollary 5.2] we know that A* indirectly weakly dominates all other permu-
tation matrices, we have that {A*} is a weak DEM farsighted stable set for all housing
matching models.

Theorem 5.25. For all housing matching models (N, P), the set A = {A*} is a weak
DEM farsighted stable set of E(N, P).

Proof. Let (N, P) be a housing matching model. We show that A = {A*} is a weak DEM
farsighted stable set of £(N, P). Since | A| = 1, we have that the set A satisfies minimality.
First, we show that A satisfies deterrence of external deviations. In other words, we need
to show that ¥V A" € X \ {A*} and V S € E(A*, A'), it holds that A* > A’ and that
die S with A* >; A* or that A* 7; A* for all j € S. Note that A* ~; A* for all j € N.
Thus, we need to show that ¥ A" € X \ {A*} it holds that A* > A’. This follows from
[Corollary 5.2 hence A satisfies deterrence of external deviations. From [Corollary 5.2} we
also know that A* € fs (A) for all A € X \ {A*}. Hence, A satisfies external stability.
Thus, the set A = {A*} is a weak DEM farsighted stable set of (N, P). O

From [Theorem 5.25| and the minimality condition, we get the following result.

Corollary 5.26. For all housing matching models (N, P), we have that each set A C X
with A* € A and |A| > 1 is not a weak DEM farsighted stable set of E(N, P).

For all housing matching models for which A* is not indirectly weakly dominated, we
have that there exists a unique weak DEM farsighted stable set.

Theorem 5.27. For all housing matching models (N, P) such that SFCO = {A*}, we
have that A = {A*} is the unique weak DEM farsighted stable set of E(N, P).
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Proof. Let (N, P) be a housing matching model such that SFCO = {A*}. In
, we already showed that A = {A*} is a weak DEM farsighted stable set of
E(N, P). From |Corollary 5.26 we know that each set A" C X with A* € Aand A* € A
is not a weak DEM farsighted stable set of (N, P). Hence, it is sufficient to show that
each set A” C X with A* ¢ A’ is not a weak DEM farsighted stable set.

Let A" C X with A* ¢ A’. Note that SFCO = {A*}, i.e. A* is not indirectly weakly
dominated. Thus, we have that

fz(A*) N A// — {A*} N ./4.// — (Z)

Hence, we can conclude that A” does not satisfy external stability. This shows that the
set A = {A*} is the unique weak DEM farsighted stable set of £(N, P). O

In the following example, we show that there exists a housing matching model for which
there are multiple weak DEM farsighted stable sets.

Example 5.28 (Example 5.21| continued).
Let n = 3 and let the preference matrix be as in [Example 5.21}

—2 0 -1
P=|(-1 =2 o0
~1 0 -2

Recall that A* = (1)(23) and that SFCO = (). We show that A" = {(132)} and A" =
{(123)} are both weak DEM farsighted stable sets of £(N, P). Since |A'| = |A"] = 1, we
have that both sets satisfy minimality. In[Example 5.12] we showed that A’ = {(132)} and
A" = {(123)} are both weak farsighted vNM stable sets of £(N, P). Thus, we have that
(132) € fs(A') forall A” € X'\ {(132)} and that (123) € fs, (A”) for all A” € X'\ {(123)}.
Hence, both sets satisfy external stability.

In [Example 5.20, we showed that A" = {(132)} and A” = {(123)} are both consistent
> sets. Thus, we have that (132) satisfies (A’, >)-deterrence of deviations and that
(123) satisfies (A", >)-deterrence of deviations. Hence, with [Remark 5.24] we get that
A" and A" satisfy deterrence of external deviations. This show that A" = {(132)} and
A" = {(123)} are both weak DEM farsighted stable sets of E(V, P). A

The result in that each weak farsighted vINM stable set is a weak DEM
farsighted stable set, can be generalized to all housing matching models. In Herings et al.
(2010), this is shown in the context of coalition formation games. We give this proof
in the context of our social environment corresponding to the housing matching model

(N, P).

Proposition 5.29. For all housing matching models (N, P), the following holds. If
A C X is a weak farsighted vNM stable set of E(N, P), then we have that A is a weak
DEM farsighted stable set of E(N, P).

Proof. Let (N, P) be a housing matching model. Suppose that A C X is a weak farsighted
vNM stable set of £(N, P), then we have that A satisfies internal stability, fs.(A) N
A = {A} for all A € A, and that A satisfies external stability, V A ¢ A it holds that
fs(A)N A # (. Hence, condition (2) in [Definition 5.23is automatically satisfied.
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Suppose that A4 does not satisfy deterrence of deviations. Thus, we have that there exist
Ac A A ¢ Aand S € E(A, A'), such that V A” € AN fs.(A) it holds that A” 7, A for
all i € S and A” >, A for at least one j € S. Since A’ ¢ A and A is a weak farsighted
vNM stable set, we know that there exists A” € A such that A” > A’. Hence, from
the above we get that A” 77, A for all i € S and A” »>; A for at least one j € S. From
, we can conclude that A” > A, i.e. A” € fs(A). This violates the internal
stability of A. Thus, the set A satisfies deterrence of deviations.

Suppose that A does not satisfy minimality. Hence, there exists a proper subset A" C A
that satisfies conditions (1) and (2) in [Definition 5.23] Let A € A\ A’, then since A
satisfies internal stability we have that

f>(A)NA C fs(A)NA={A}.

Since A € A\ A’, we get that fs.(A) NA" = (). This violates the external stability of A’
Thus, A satisfies minimality.

Thus, A satisfies deterrence of external deviations, external stability and minimality.
Hence, we have that A is a weak DEM farsighted stable set.

Thus, if A C X is a weak farsighted vNM stable set of £(NV, P), then we have that A is
a weak DEM farsighted stable set of £(N, P). O

Note that a weak DEM farsighted stable set is not necessarily a weak farsighted vNM
stable set, since a weak DEM farsighted stable set does not require the internal stability
condition as in |[Definition 5.9, Since the internal stability condition is automatically
satisfied for a set that consists of one element, we have the following result, which is
proved in Herings et al. (2010).

Proposition 5.30. For all housing matching models (N, P), the following holds. The
set A = {A} is a weak DEM farsighted stable set of E(N, P) if and only if A= {A} is a
weak farsighted vNM stable set of E(N, P).

Proof. Let (N, P) be a housing matching model. Suppose that A = {A} is a weak DEM
farsighted stable set of £(N, P), then we have that condition (2) in [Definition 5.9| is
automatically satisfied. Hence, since |A| = 1, we have that A is a weak farsighted vNM
stable set.

Suppose that A = {A} is a weak farsighted vNM stable set of (N, P). Then condition
(2) and (3) in [Definition 5.23|are automatically satisfied. Since A = { A} satisfies external
stability, we have that A € fs (A4’) for all A" € X'\ {A}. Hence, A also satisfies deterrence
of external deviations, since for all A" ¢ A and S € E(A, A’) we can take A € AN fs,(A)
with A ~; A for all j € N. This shows that A = {A} is a weak DEM farsighted stable
set.

Thus, the set A = {A} is a weak DEM farsighted stable set of £(V, P) if and only if
A = {A} is a weak farsighted vNM stable set of £(N, P). O

In [Example 5.28| we showed for a specific housing matching model with SFCO = (), that
there are multiple weak DEM farsighted stable sets. This result can be generalized to all
housing matching models (N, P) such that SFCO = ().
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In the context of coalition formation games, Herings et al. (2010) proved that a set is the
unique weak DEM farsighted stable set if and only if the following two conditions are
satisfied: it consists of all the outcomes that are not indirectly weakly dominated and
each outcome outside the set is indirectly weakly dominated by an outcome inside the
set. Hence, if there does not exist an outcome which is not indirectly weakly dominated,
then there are multiple DEM farsighted stable sets. We use a part of their proof and we
rewrite it in the context of our social environment corresponding to a housing matching
model.

Theorem 5.31. For all housing matching models (N, P) such that SFCO = 0, we have
that there are multiple weak DEM farsighted stable sets of E(N, P).

Proof. Let (N, P) be a housing matching model such that SFCO = (). In|Theorem 5.25|
we already showed that A = {A*} is a weak DEM farsighted stable set of £(V, P). Hence,
we only need to show that there exists at least one other weak DEM farsighted stable set
of E(N, P).

Since SFCO = (), we know that there exists A’ € X \ {A*} such that A" > A*. Define
A C X as
A = [AYUfA € X | A & fo(A)}.

Note that A* ¢ A, since A’ > A*. Thus, in particular, we have that A" # {A*}. We
show that A’ satisfies deterrence of external deviations and external stability. Note that
by construction of A" we have for any A ¢ A’ that A" € fs.(A). Thus, with A" € A’, we
get that A’ satisfies external stability.

Now, we show that A’ satisfies deterrence of external deviations. Hence, we need to show
that VAe A, VB ¢ Aand V S € E(A, B), there exists C € AN fs(B) such that we
have that 347 € S with A >; C or that A 77; C for all j € S.

Suppose that A = A" € A’. Then for all B ¢ A we know that A" € AN fs(B). Hence,
by taking C' = A’ each deviation from A’ to any B ¢ A’ is deterred. Now, suppose that
A e A"\ {A'}, then by construction of A" we have that A" ¢ fs.(A). Suppose to the
contrary that there exist B ¢ A and S € E(A, B), such that for all C € AN fs.(B) we
have that C' 7Z; A for all i € S and C' >; A for at least one j € S. From [Lemma 5.3
we can conclude that AN fs.(B) C fs.(A). Since B ¢ A’, we have by construction of A’
that A’ € fs.(B). Hence, we get that A’ € AN fs.(B) C fs.(A), this contradicts the fact
that A" ¢ fs.(A). Thus, we can conclude that each deviation from A € A"\ {A'} to any
B ¢ A’ is deterred. Hence, A’ satisfies deterrence of external deviations.

We have two cases: A’ satisfies minimality and A’ does not satisfy minimality. In the
former case we get with the above that A’ is a weak DEM farsighted stable set. Hence,
with A" # {A*}, we showed that there are multiple weak DEM farsighted stable sets. In
the latter case, we know from Herings et al. (2010) with the fact that the cardinality of
A’ is finite, that there is a proper subset A" C A’ that satisfies conditions (1), (2) and
(3) in [Definition 5.23| Hence, with A* ¢ A’, we get that there are multiple weak DEM
farsighted stable sets.

We can conclude for all housing matching models (N, P) such that SFCO = (), that
there are multiple weak DEM farsighted stable sets of E(NV, P). O
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6 Full Farsightedness with Antisymmetric Weak Dom-
inance

In Section [5 we had the following results for the housing matching model (N, P) as
in [Example 5.28; the strong farsighted core is empty, there does not exist a unique
weak farsighted vINM stable set, the largest consistent set contains a lot of permutation
matrices and there are multiple weak DEM farsighted stable sets. Therefore, in this
section, we study these stability concepts with respect to a slightly different definition of
indirect weak dominance, which compared to indirect weak dominance has one additional
restriction.

6.1 Indirect antisymmetric weak dominance

In Kawasaki (2010), indirect antisymmetric weak dominance is defined in the context
of the housing matching model of Shapley and Scarf (1974) with the same effectivity
correspondence as in [Definition 2.8l We give this definition in the context of our social
environment corresponding to the housing matching model (N, P) and we denote it by
>

a*

Definition 6.1 (Indirect antisymmetric weak dominance).

Let (N, P) be a housing matching model. Let A, A" € X be two different permutation
matrices. The permutation matrix A’ indirectly antisymmetrically weakly domi-
nates A in £(N, P), denoted by A’ > A, if there is a sequence of permutation matrices
A% . A™ € X with A° = A and A™ = A’ and there are coalitions S*, ..., S™ € 2M\ {0},
such that V k € {1,...,m} the following three conditions hold:

(1) S* € E(AF1, AF).
(2) A" A1 for all i € S* and A’ =; A*! for at least one j € S*,
(3) if A’ ~; A¥=! for some i € S*, then we have that A¥~! = Ak,

Note that the difference between indirect antisymmetric weak dominance and indirect
weak dominance is that indirect antisymmetric weak dominance has one additional re-
striction, namely condition (3) in [Definition 6.1} Hence, indirect antisymmetric weak
dominance implies indirect weak dominance. Condition (3) says that if agent i € S* is
indifferent between A*~' and A’, i.e. he gets the same item according to A*~! as to A’,
then he never wants another item. Hence, he only deviates from A*~! to A* if he gets
the same item according to A* as according to A¥~!. In the following example, we show
the difference between > and > .

Example 6.2 (Example 5.28| continued).
Let n = 3 and let the preference matrix P be as in [Example 5.28

-2 0 -1
P=1|1-1 -2 0
-1 0 =2
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Recall that A* = (1)(23) and that in [Example 5.7, we showed that (132) > (1)(23) with

the following sequence:

1)(23 1)(2)(3 132).

(1)( >SI:—{1,2}>( )(2)( )SQTN>( )
We show that (132) %, (1)(23). Suppose to the contrary that there is a sequence of
permutation matrices A% ..., A™ € X with A° = (1)(23) and A™ = (132) and there
are coalitions St ... S™ € 2V \ {0}, such that V k € {1,...,m} the three conditions in
[Definition 6.1 hold.

For the nonempty coalition S, it must hold that (132) =; (1)(23) for all i € S* and that
there exists j € S* such that (132) >; (1)(23). Note that (1)(23) =3 (132), hence we have
that 3 ¢ S'. Thus, we have that S* € {{1},{2}, {1,2}}. Note that (132) = (1)(23) and
that (132) ~5 (1)(23), hence we have that S* € {{1},{1,2}}. Suppose that S* = {1,2},
then with condition (3) in we get that A} = AJ. Hence, according to A’
agent 2 should get item 3. In order for this to happen, we must have that 3 € S*. But
we already showed that 3 ¢ S'. Thus, we have that ST = {1}, but agent 1 can only move
from (1)(23) to (1)(23) itself. Hence, we can conclude that (132) %, (1)(23).

With (123) =, (1)(23), (1)(23) =2 (123) and (123) ~3 (1)(23), one can show, in a similar
way, that (123) 3% (1)(23).

Recall that (1)(2)(3) 2 (1)(23), (2)(13) 2 (1)(23) and that (3)(12) 2 (1)(23). Hence,
with the fact that indirect antisymmetric weak dominance implies indirect weak dom-

inance, we get that (1)(2)(3) %, (1)(23), (2)(13) 2, (1)(23) and that (3)(12) %,
(1)(23). Thus, we have that A* is not indirectly antisymmetrically weakly dominated

in E(N, P). A

Remark 6.3. Note that for a sequence of length 1, m =1, A 7 A’ condition (3) in

[Definition 6.1 becomes: if A" ~; A for some i € S, then we have that A; = A,. From
this is automatically satisfied, hence with m = 1 weak dominance implies
indirect antisymmetric weak dominance. Also note that if A" > A, then conditions
(1), (2) and (3) in Definition 6.1] are automatically satisfied. Hence, we have that A’ > A
implies A" > A. In other words, indirect dominance implies indirect antisymmetric
weak dominance.

In the following example, we show the difference between > and > .

Example 6.4 (Example 3.20| continued).

Let n = 3 and let the preference matrix be as in [Example 3.20f

0 -1 -2
P=|(0o —2 -1
0 -1 —2

We show that there exist two different permutation matrices A’, A € X, such that A" >
Aand A" B A. Let A’ = (3)(12) and let A = (132), then we have that {1,2} € E(A, A'),

(3)(12) ~; (132) and that (3)(12) >, (132). Hence, with [Definition 3.1)(2), we get that
(3)(12) weakly dominates (132), thus it holds that (3)(12) >, (132).
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Suppose that (3)(12) > (132). With |Definition 4.1} we get that there is a sequence of
permutation matrices A°, ..., A™ € X with A° = (132) and A™ = (3)(12) and there

are coalitions St,... 5™ € 2N\ {0}, such that V k& € {1,...,m}, we have that S* €
E(A*1 AF) and that (3)(12) =; A*! for all i € S*. Thus, for the nonempty coalition
S' it must hold that (3)(12) =; (132) for all i € S'. Note that (132) ~; (3)(12), that
(3)(12) =5 (132) and that (132) =3 (3)(12). Thus, we get that S = {2}. Agent 2
can only deviate from (132) to (1)(2)(3), thus we have that A' = (1)(2)(3). For the
nonempty coalition S?, it must hold that (3)(12) =; (1)(2)(3) for all j € S%. Note that
(1)(2)(3) =1 (3)(12), (3)(12) =5 (1)(2)(3) and that (1)(2)(3) ~3 (3)(12). Thus, we have
that S? = {2}. Note that agent 2 can only move from (1)(2)(3) to (1)(2)(3). Hence,
agent 1 is never willing to trade with 2, thus we can never have a sequence starting at

(132) and ending at (3)(12) such that the conditions in [Definition 4.1|are satisfied. Thus,
we can conclude that (3)(12) 3% (132). A

shows that > and > are not the same.

6.2 Strong antisymmetric farsighted core

In Section [5, we defined the strong farsighted core and we showed that either SFCO = ()
or SFCO = {A*}. We define the farsighted core with respect to >,, which we call
the strong antisymmetric farsighted core. Define the indirect antisymmetric weak
dominance correspondence as the correspondence fs : X — 2X such that

fo,(A) ={Au{A e X [ A" >, A}.

Definition 6.5 (Strong antisymmetric farsighted core).

Let (N, P) be a housing matching model. The strong antisymmetric farsighted core
SAFCO of £(N, P) is defined as the set of permutation matrices that are not indirectly
antisymmetrically weakly dominated:

SAFCO ={A € X | f5,(A) = {A}}.

In Kawasaki (2010)), it is shown that when the preferences over the initial items are not
necessarily strict, each allocation is indirectly antisymmetrically weakly dominated by a
top trading cycle allocation. Because we have strict preferences over the initial items,
the top trading cycle allocation is unique. From [Theorem 4.11] we get that A* indirectly
dominates all A € X \ {4*} and from [Remark 6.3 we know that indirect dominance

implies indirect antisymmetric weak dominance. Hence, we have the following corollary.

Corollary 6.6. For all housing matching models (N, P), each A € X \ {A*} is indirectly
antisymmetrically weakly dominated by A* in E(N, P).

For the housing matching model (N, P) as in we showed that A* is not indi-
rectly antisymmetrically weakly dominated. This result can be generalized to all housing
matching models. In Kawasaki (2010)), it is also shown that top trading cycle allocations
are not indirectly antisymmetrically weakly dominated. Since we have strict preferences
of the agents over the items, we have that A* is not indirectly antisymmetrically weakly
dominated. We write down the proof given in Kawasaki (2010)) in the context of our
social environment corresponding to the housing matching model (N, P).
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Theorem 6.7. For all housing matching models (N, P), the permutation matriz A* is
not indirectly antisymmetrically weakly dominated in E(N, P).

Proof. Let (N, P) be a housing matching model. We know that A* is the top trading cycle
permutation matrix. From the top trading cycle algorithm, we get that N is partitioned

into T disjoint coalitions S(tc7), i.e. N = |J S(tc7), with t¢™ a top trading cycle for
1<7<T

T
N\ ( U S(tc’“)). Recall that A* = HtCT.
1<r<r—1 b
Let A € X \ {A*}. We show that A" % A* by a proof by contradiction. Suppose
that there exist a sequence of permutation matrices A% ..., A™ € X with A% = A*
and A™ = A’ and a sequence of coalitions S',...,S™ € 2V \ {@}, such that for all

k e {1,...,m} conditions (1), (2) and (3) in [Definition 6.1 hold.

First, we show that A; = Af for all i € S(tc'). For coalition S* € E(A*, A'), we have two
cases: S(tc')N St =0 and S(tc') N S #£ 0. If S(tc') N S* = @, then by condition (2) in
the definition of our effectivity correspondence, [Definition 2.8, we get that A} = A} for
all ¢ € S(tct).

Suppose that S(tc') NSt #£ 0. Let i € S(tc') N S'. Because i € S, we get by condition

(2) of [Definition 6.1 that A" =—; A*. Because i € S(tc'), we have that according to A*

agent i gets his most preferred item, thus it holds that A* 7—; A’. Hence, we get that

A’ ~; A*. Then by condition (3) in [Definition 6.1} we get that A} = A;. Thus, for all

i€ S(tc')N St it holds that Aj = Af. We show that S(tc') C S'. Suppose that Aj; =1,

1

then we have that j € S(tc') by definition of a top trading cycle and that j € S* by

condition (1) of [Definition 2.8 Thus, we have that j € S(tc') N S!. If we repeat this, we
get that S(tc') C S'. Thus, we have that A} = A} for all i € S(tc').

Thus, in both cases we have that A} = A for all i € S(tc!). In other words, we have
that tc' € C(A%Y).
For coalition S? € F(A', A%), we also have two cases: S(tc')NS? = () and S(tc!)NS? # 0.

If S(tc') N S? = ), then with tc' € C(A') we get by condition (2) in [Definition 2.8 that
A% = Al for all i € S(tc'). In the case that S(tc')N.S? # (), we also have that A? = A} for

all i € S(tc'). To see this, let i € S(tc') NS Then by condition (2) in |[Definition 6.1, we

have that A’ =—; A' and by definition of tc' we have that A* »=; A’. Note that A} = A},

since i € S(tc'). Hence, we get that A’ ~; A'. Thus, by condition (3) of [Definition 6.1

we get that A} = A?. By the same reasoning as for S*, we get that S(tc') C S? and that
Al = A? for all i € S(tch).

Thus, in both cases we have that A} = A! = A? for all i € S(tc!). If we repeat above
reasoning for the other coalitions S2,...,S™, we get that

A=Al = A2 = ... = A" = Al for all i € S(tch).

Thus, we have that tc' € C(A*) for all k € {1,...,m}.

Secondly, we show that A = Af for all i € S(tc¢*). We already know that according to
all outcomes A°, ..., A™ each agent in S(tc') always gets his most preferred item, which
belongs to an agent in S(tc'). Hence, each agent in S(tc*) can only receive items from
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the agents in N \ S(tc'). According to A*, each agent in S(tc?) gets his most preferred
item of the remaining items belonging to the agents in N\ S(tc'). Hence, if we use the
same reasoning as above, we get that Af = Al for all i € S(¢tc?).

If we repeat this for the other coalitions S(tc?),...,S(tc?), then we get that Af = A/

foralli € |J S(tc") = N. Hence, we have that A’ = A* which contradicts the fact
1<7<T
that A’ € X \ {A*}. Thus, A* is not indirectly antisymmetrically weakly dominated in

E(N, P). m

For all housing matching models, we can conclude from [Corollary 6.6 and [T'heorem 6.7,
that A* indirectly antisymmetrically weakly dominates all permutation matrices A €
X \ {A*}, while it is not indirectly antisymmetrically weakly dominated. Hence, we get
the following corollary.

Corollary 6.8. For all housing matching models (N, P), we have that SAFCO = {A*}.

As in Section [p, we could give the definitions a vNM farsighted stable set, a consistent
set and a DEM farsighted stable set with > instead of > and fs instead of fs. We
show that it is only relevant to look at the definition of a consistent set with respect to
za'

In Kawasaki (2010)), a farsighted vNM stable set with respect to >, is defined. Note
that with [Corollary 6.6| and [Theorem 6.7 we have that the proofs of [Iheorem 5.10]

[Theorem 5.11} [Theorem 5.25[ and [Theorem 5.27|still hold when we replace > by > and
[> by fs . Thus, we have the following result.

Corollary 6.9. For all housing matching models (N, P), we have that with respect to
> the unique vNM farsighted set of E(N, P) and the unique DEM farsighted stable set
of E(N, P) are both equal to {A*}.

6.3 Largest consistent set

In this section, we look at the largest consistent set with respect to indirect antisymmetric
weak dominance as defined in [Definition 6.1 We give the consistent set with respect to
>, the name consistent > set. Again, we need to have a definition of deterrence of
deviations.

Definition 6.10 ((A, > ,)-deterrence of deviations).

Let (N, P) be a housing matching model, let A C X and let A € X. We say that A
satisfies (A,> )-deterrence of deviations if for all A’ € X and for all S € E(A, A'),
there exists A” € A such that the following two conditions hold:

(1) either A” = A" or A" > A,
(2) there exists i € S with A >=; A” or for all j € S we have that A 77; A”.

Note that the only difference between (A,>)-deterrence of deviations and (A,>,)-
deterrence of deviations is that in [Definition 5.13) we have that A” > A’ and that
in [Definition 6.10] we have that A” > A’. Hence, the intuition of (A, > )-deterrence of
deviations is |[Remark 5.15| with > instead of >.
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Definition 6.11 (Consistent set with respect to > ).
Let (N, P) be a housing matching model. A set A C X is a consistent > set of
E(N, P) if it satisfies the following two conditions:

(1) if A € A, then A satisfies (A, >, )-deterrence of deviations,
(2) for all A ¢ A we have that A does not satisfy (A, > )-deterrence of deviations.

Define the consistent >, correspondence as the correspondence gs = : 2X — 2X such
that
9>, (A) = {A € X | Asatisfies (A, >,)-deterrence of deviations}.

Then the following holds: A is a consistent > set if and only if A = g5 (A). Note that
for all housing matching models (N, P), we have that ) is a consistent > set of (N, P).

Definition 6.12 (Largest consistent set with respect to > ).
Let (N, P) be a housing matching model. The largest consistent > set of £(N, P),
denoted by A , is the union of all consistent >, sets:

For the housing matching model, as in [Example 5.20] we showed that there exist at least
two consistent > sets that do not contain A*. In the following example, we show for this
specific housing matching model that these two sets are not consistent > sets.

Example 6.13 (Example 6.2 continued).
Let n = 3 and let the preference matrix be as in [Example 6.2}

-2 0 -1
P=1-1 -2 0
-1 0 =2

Recall from [Example 5.20, that A" = {(132)} and A” = {(123)} are both consistent >
sets of £(N, P). We show that A" = {(132)} and A” = {(123)} are not consistent >

sets of (N, P).

First, we show that A" = {(132)} is not a consistent > set. We show that (132) does
not satisfy (A’,>)-deterrence of deviations. Hence, we need to show that there exist
A'e X and S € F(A, A'), such that (132) # A" and (132) %, A, or such that we have
that (132) z; (132) for all i € S and (132) >; (132) for at least one j € S. Since we
have that (132) ~; (132) for all i € N, we need to show that there exists A’ € X, such
that (132) # A’ and (132) %, A’. From [Example 6.2, we know that (132) %, (1)(23).
This shows that (132) does not satisfy (A, >)-deterrence of deviations. Thus, A’ is not
a consistent > set of E(N, P).

Since from [Example 6.2, we also know that (123) % (1)(23), one can show, in a similar
way, that A” is not a consistent > set of £(N, P). A
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The result in that the two sets without A* are not consistent > sets can be
generalized to all housing matching models and to all sets without A*. In[Proposition 4.26),
we showed that each nonempty consistent set must contain A*. With [Theorem 6.7, we
know that A* is not indirectly antisymmetrically weakly dominated. Hence, if we replace
> by >, the proof of [Proposition 4.20] is still valid, thus we get the following corollary.

Corollary 6.14. For all housing matching models (N, P), we have that each nonempty
set A C X \ {A*} is not a consistent > set of E(N, P).

In [Theorem 5.18] we showed for all housing matching models (N, P), that {A*} is a

consistent > set of £(N, P). From [Corollary 6.6, we know that for each A" € X \ {A*}
it holds that A* > A’. Hence, the proof of [Theorem 5.18| remains valid if we replace >

by > . Thus, we get the following corollary.

Corollary 6.15. For all housing matching models (N, P), the set A = {A*} is a consis-
tent > set of E(N, P).

From [Corollary 6.15, we get that {A*} = g5 ({A*}). Since g5 : 2% — 2% is isotonic,
we have that for all A C X with A* € A it holds that {A*} C g5 (A). In other words,
A* satisfies (A, > ,)-deterrence of deviations for all 4 C X with A* € A.

In [Example 4.33] we showed for a specific housing matching model that there exists a
consistent set that contained more than A*. In the following example, we show that this
set is not a consistent > = set.

Example 6.16 (Example 4.33| continued).

Let n = 3 and let the preference matrix be as in [Example 4.33;

—2 0 -1
P=|[-1 =2 o0
0 -1 -2

Recall that A* = (132) and recall that in [Example 4.33) we showed that
A ={(132),(1)(23),(2)(13), (3)(12)}

is a consistent set. We determine that 4 is not a consistent > _ set by showing that there
exists A € A that does not satisfy (A,>,)-deterrence of deviations. Hence, we need to
show that 3 A € A, for which there exist A’ € X and S € F(A, A’), such that V A” € A,

we have that A” # A" and A” % A’ or we have that A” 77, Aforallie S and A" ~; A
for at least one j € S.

Let A= (1)(23) € A and let A’ = A* = (132), then we have that F(A, A") = {N}. We
know that A* is not indirectly antisymmetrically weakly dominated, hence for each A” €
A\{A*} we have that A” % A*. Suppose that A* = A”. Note that A* weakly dominates
A, since N € E(A, A*), (132) =, (1)(23), (132) ~3 (1)(23) and (132) >3 (1)(23). Thus,
(1)(23) € A does not satisfy (A, > )-deterrence of deviations. We can conclude that
A = {(132),(1)(23),(2)(13), (3)(12)} is not a consistent > set. A

The result in [Example 6.16] that A € A, that is weakly dominated by A*, does not
satisfy (A, > )-deterrence of deviations can be generalized to all housing matching models
(N, P) and to all A € X that are weakly dominated by A*.
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Proposition 6.17. For all housing matching models (N, P), we have that the following
holds. Let A C X be a nonempty consistent >, set of E(N, P). If A* weakly dominates
Ae X\ {A*}, then A ¢ A.

Proof. Let (N, P) be a housing matching model and let A C X be a nonempty consistent
> set of £(N, P). We give a proof by contradiction. Suppose that there exists A € A
such that A* weakly dominates A.

We show that A does not satisfy (A, > )-deterrence of deviations. Hence, we need to
show that 3 A’ € X and 35 € E(A, A'), such that ¥V A” € A, we have that A” # A" and
A" % A’ or we have that A” 7=, A for all i € S and A” >; A for at least one j € S.
From |Corollary 6.14] we know that each nonempty consistent >, set must contain A*,
thus we have that A* € A.

Let A” = A*. Note that from [Theorem 6.7, we know that A* is not indirectly antisym-
metrically weakly dominated. Hence, for all A” € A\ {A*} we have that A” # A* and
A" % A*. Now, let A” = A*. Recall that A is weakly dominated by A*. Thus, accord-

ing to [Definition 3.1j(2) there exists S € E(A, A*), such that A* -, A for all i € S and
A* =, A for at least one j € S.

We can conclude that A does not satisfy (A,> )-deterrence of deviations. Thus, we
showed that if A* weakly dominates A € X \ {A*}, then we have that A ¢ A for any
nonempty consistent > set of £(N, P). O

From |Corollary 6.14] and [Proposition 6.17, we know that each nonempty consistent >
set must contain A* and can only consist of permutation matrices that are not weakly
dominated by A*. Thus, for each housing matching model (N, P) such that A* weakly
dominates all other permutation matrices, we have that {A*} is the unique nonempty
consistent > set.

From we know that there exists a housing matching model such that A*
does not weakly dominate all other permutation matrices. In the following example, we
look at whether for this housing matching model there exists a consistent > set that
contains more than A*.

Example 6.18 (Example 6.4] continued).
Let n = 3 and let the preference matrix be as in [Example 6.4}

0 -1 -2
P=10 -2 -1
0 -1 -2

Recall that A* = (1)(23). Note that for all A € X \ {A*} we have that F(A, A*) =
{{2,3}, N}. Suppose that A C X with A* € A is a consistent >, set.

Recall that A* only weakly dominates (1)(2)(3). From |Proposition 6.17, we know that
each consistent > set cannot contain (1)(2)(3). Thus, we have that (1)(2)(3) ¢ A.

Secondly, we determine whether A can contain A = (123). In other words, we need
to determine whether (123) satisfies (A,>)-deterrence of deviations. Note that for
A" = A" = A* we have that (123) > (1)(23). Hence, so far it seems that (123) satisfies
(A, >, )-deterrence of deviations.
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Now, let A" = (1)(2)(3) and S = {1} € E(A,A"). We need to determine whether
1 A" € A, such that either A” = A" or A” > A’, and such that A 77, A”. For A” = A",
we have that A* =; (123). Note that A’ = (1)(2)(3) ¢ A. Thus, for all A” € A\ {A*}
we have that A” # A’. Also note that fs ((1)(2)(3)) = {(1)(2)(3), (1)(23)} = {A, A*}.
Thus, for all A” € A\ {A*} we also have that A” % A’. Hence, we cannot find A” € A
that satisfies the two conditions. We can conclude that (123) ¢ A.

Note that with the same reasoning as above and A* >=; A for all
A € {(123), (132), (2)(13), (3)(12)},

we get that {(132), (2)(13), (3)(12)} N A = (). Hence, the set {A*} is the only nonempty
consistent > set of E(N, P). A

In [Example 6.18], we showed for a housing matching model such that A* does not weakly
dominate all other permutation matrices, that {A*} is the only nonempty consistent >
set. This result can be generalized to all housing matching models. Recall from
lary 6.14] that each nonempty consistent >, set must contain A* and from [Corollary 6.15]
that {A*} is a consistent > set. Hence, for each housing matching model we only need
to show that each set that contains A* and at least one other permutation matrix is not a
consistent > set. For the proof of this theorem, it can be helpful to note the following.

Example 6.19 (Example 6.18 continued).

Note that the first top trading cycle in|{Example 6.18]is (1) and that the second top trading
cycle is (23). We also have that (1)(2)(3) weakly dominates each permutation matrix

A € {(123),(132),(2)(13), (3)(12)} and that (1)(23) weakly dominates (1)(2)(3). A

Theorem 6.20. For all housing matching models (N, P), each set A C X with A* € A
and |A| > 1 is not a consistent > set of E(N, P).

Proof. Let (N, P) be a housing matching model and let A C X with A* € A and |A| > 1.
Let A € A\ {A*}. We show that A does not satisfy (A, >, )-deterrence of deviations. In
other words, we need to show that 3 A’ € X and 3 5 € E(A, A’), such that V A” € A,
we have that A” # A’ and A” % A’ or we have that V¢ € S it holds that A” 2Z; A and
that 3 j € § with A" = A.

From [Theorem 3.12 we know that there exists A’ € X, such that A € X \ {A*} is weakly
dominated by A’ in £(N, P) for coalition S = |J S(tc") € E(A, A'), withs e {1,...,T}
1<r<s

the first index such that tc® ¢ C(A) and with tc!,... tc® in the cycle decomposition of
A

For allocation A” € A, we have two cases: either tc!, ... tc® are all part of the cycle
decomposition of A” or there exists r € {1,...,s} such that t¢" is not in the cycle
decomposition of A”.

For each A” € A with {tc',... tc*} C C(A”), we have that A” ~; A for all ¢ €
U S(tc"), A” i Afor all i € S(tc®) and A” =; A for at least one j € S(tc*).

1<r<s—1

For each A” € A such that 3 r € {1,...,s} with t¢" ¢ C(A”), we have that A” # A’

We show that A” % A’. Note that {tc',... tc’} C C(A), ie. tc',... tc* are all in
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the cycle decomposition of A’. By using the proof of [Theorem 6.7| with A’ instead of A*
and |J S(tc¢") instead of |J S(tc¢™), we can conclude that for each A” € X, which

1<r<s 1<r<T
indirectly antisymmetrically weakly dominates A’, it must hold that {tc!,... tc*} C
C(A"). Thus, we can conclude that A” % A’

Thus, for all A” € A it holds that, we have that A” # A" and A” % A’, or we have
that V¢ € S it holds that A” 77, A and that 3 j € S with A” >, A. Hence, A € A does
not satisfy (A,>,)-deterrence of deviations. We can conclude that the set A is not a
consistent > set of E(N, P). O

From |Corollary 6.14} [Corollary 6.15 and [Theorem 6.20, we get that A = {A*} is the
unique nonempty consistent > set for all housing matching models. Thus, we have the
following result.

Corollary 6.21. For all housing matching models (N, P), we have that Ay = {A*}.
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7 Horizon-K Farsightedness

In Section 3] we looked at different solution concepts under the assumption that all agents
are myopic. In Section [d Section [5] and Section [6] we studied stability concepts under
the assumption that all agents are fully farsighted.

One can also wonder what happens when agents can only look two or three steps ahead.
We denote the degree of farsightedness by K, which represents the number of steps
agents can look ahead. For the intermediate case between myopia and full farsightedness,
two models have been developed: horizon-K farsightedness by Herings et al. (2019)) and
level-K farsightedness by Herings and Khan (2022).

Herings et al. (2019) introduced the concept of a horizon-K farsighted set to study the
influence of a limited degree of farsightedness on the stability of networks. In Herings et
al. (2019)), the dominance correspondence of an outcome contains all the end outcomes of
a sequence from that outcome. A set is a horizon-K farsighted set if it satisfies horizon- K
deterrence of external deviations, horizon-K external stability and minimality as defined
in Herings et al. (2019)).

A set satisfies horizon-K deterrence of external deviations if each deviation from any
outcome A inside the set to an outcome A’ outside the set is deterred by the credible
threat of ending in another outcome A”, which compared to A is not strictly preferred
by all agents in the deviating coalition. With a credible threat, we mean that A” is such
that either A” can be reached from A’ by a sequence of a length smaller than or equal
to K — 2 and A” belongs to the set or A” can be reached from A’ by a sequence of a
length equal to K — 1 and there does not exist a sequence of a length smaller than K — 1
starting at A" and ending at A”.

A set satisfies horizon-K external stability if from each outcome outside the set there is
a finite sequence, which consists of sequences of outcomes of length smaller than or equal
to K, leading to an outcome inside the set. Minimality means that there does not exist
a proper subset of the set that satisfies horizon- K deterrence of external deviations and
horizon-K external stability. Herings et al. (2019) proved that a horizon-K farsighted
set always exists and that the horizon-1 farsighted set is unique. Note that for K > 2 a
horizon- K farsighted set does not have to be unique.

In the context of network games, Herings and Khan (2022)) introduced the concept of a
level- K stable set and the concept of heterogeneity in the degree of foresight. In Herings
and Khan (2022)), the dominance correspondence of an outcome contains all the outcomes
which are considered to be a deviation from that outcome. Hence, they define when a
deviation from an outcome to another outcome is considered to be a level-K deviation.

In comparison to the horizon-K farsightedness in Herings et al. (2019), level-K far-
sightedness in Herings and Khan (2022) is defined in an inductive way. In order to
define a level-K deviation, one need to know what the level-(K — k) deviations are for

ke {1,...,K —1}. A deviation from an outcome A to an outcome A’ is a level-K
deviation, if there exists a coalition S which can move from A to A’ and if there exists
a sequence of outcomes A, A’, A%, ..., A®' starting at A and ending at another outcome

A" with either a length of K, i.e. K/ = K, or a length of at most K —1,ie. K' < K —1,
such that AX" =; A for all i € S, the kth induced deviation, for any k € {1,..., K’ — 1},
is a level-(K — k) deviation and such that if K/ < K — 1, then there does not exist a level
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(K — K')-deviation from AX'

A level-K stable set is a set that satisfies deterrence of external deviations, iterated ex-
ternal stability and minimality as defined in Herings and Khan (2022). Deterrence of
external deviations means that all level-K deviations from any outcome inside the set are
part of the set. Iterated external stability says that from each outcome outside the set
there exists a finite sequence of level-K deviations to an outcome inside the set. Mini-
mality means that there does not exist a proper subset of the set that satisfies deterrence
of external deviations and iterated external stability. Herings and Khan (2022) showed
that a level-K stable set always exists and that it is unique.

In Section ] we defined indirect dominance in the sense that A’ indirectly dominates
A, if there is a finite sequence of permutation matrices starting from A and ending to
A’ such that the conditions of [Definition 4.1| are satisfied. Hence, this is more similar
to the horizon-K farsighted set of Herings et al. (2019). Thus, under the assumption
that all agents are horizon-K farsighted, we study the core, the vNM stable set and the
horizon- K farsighted set of Herings et al. (2019) in the context of our social environment
corresponding to the housing matching model (N, P). We only do this with respect to
strict dominance, because the results of the stability concepts with respect to indirect
weak dominance, which we studied in Section [section 5| are undesirable.

7.1 Horizon-K strict dominance

In the context of networks, a farsighted improving path of length smaller or equal to K
from one network to another is defined in Herings et al. (2019). We give a similar definition

in the context of our social environment corresponding to the housing matching model
(N, P).

Definition 7.1 (Horizon-K strict dominance).

Let (NN, P) be housing matching model, let K € N and let A, A" € X be two different
permutation matrices. The permutation matrix A’ horizon-K strictly dominates A
in (N, P), denoted by A" >, A, if there 3 K’ € N with K’ < K, such that there is
a sequence of permutation matrices A%, ..., A" € X with A° = A and AX = A’ and
there are coalitions S*, ..., S5 € 2N\ {0}, such that V k € {1,..., K’} the following two
conditions hold:

(1) S* € E(AMT, AY),
(2) A" =; A1 for all i € S

Remark 7.2. Note that horizon-1 strict dominance is equal to strict dominance, that for
each K € N horizon-K strict dominance implies indirect dominance and that horizon-oco
strict dominance is equal to indirect dominance.

From [Theorem 4.6 we know that A* is not indirectly dominated, hence with Remark 7.2]

we get the following corollary.

Corollary 7.3. For all housing matching models (N, P), we have for each K € N that
A* is not horizon-K strictly dominated in E(N, P).
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Like in Section 4] and in Herings et al. (2019), we can define a dominance correspondence
with respect to horizon-K strict dominance. Define the horizon-K dominance corre-
spondence as the correspondence fx : X — 2% such that fx(A) denotes the subset of
X that contains A and all the permutation matrices that horizon- K strictly dominate A.
In other words,

fx(A) ={AU{A e X | A" >, A}
Note that for all A € X, we have that fi(A) = f(A), that f(A) = fs.(A) and that
V K,K' € N with K’ < K it holds that fx:/(A) C fx(A). Define f2(A) as the set of
permutation matrices that can be reached from A by at most two consecutive horizon- K
strict dominations:

fe(A)={A" € X |3 A" € X such that A’ € fx(A) and A" € fr(A)}

Define fX(A) as the set of permutation matrices that can be reached from A by at most &
consecutive horizon-K strict dominations and fR(A) as the set of permutation matrices
that can be reached from A by a finite number of horizon- K strict dominations:

FrA) = J k).
keN
Definition 7.4 (Horizon-K farsighted core).
Let (N, P) be a housing matching model and let K € N. The horizon-K farsighted
core KFCO of E(N, P) is defined as the set of permutation matrices that are not horizon-
K strictly dominated:

KFCO ={A€ X | fx(A) = {A}}.

Note that with f1(A) = f(A) for all A € X we get that the horizon-1 farsighted core
is the core and that with fo(A) = fs.(A) for all A € X we get that the horizon-oco
farsighted core is equal to the farsighted core. From [Corollary 7.3 we get the following
result.

Corollary 7.5. For all housing matching models (N, P), we have for all K > 1 that
A* e KFCO.

Note that fx(A) is the set that contains A and all the permutation matrices that horizon-
K strictly dominate A and that fF(A) is the set that contains A and all the permutation
matrices that can be reached from A by a sequence of at most k consecutive horizon-K
strict dominations. To denote the difference, we look at an example.

Example 7.6. Let n = 3 and let the preference matrix be

-2 -1 0
P = 0 -2 -1
-1 0 -2

Then we have that A* = (123). Note that f((1)(23)) = {(1)(23), (3)(12)}, f((2)(13)) =
{(2)(13),(1)(23)} and that f((3)(12)) = {(3)(12), (2)(13)}. Thus, we have that

F2(1)(23)) = £2((2)(13)) = fA((3)(12)) = {(1)(23), (2)(13), (3)(12) }-
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With the following sequences

1)(23) — (1)(2)(3
(1)23) §1={2) ( 52=(1)(2)(3)
2)(13) — (1)(2)(3
@1 )51={3} ( 52=(1)(2)(3)

(3)(12) Sy (1H(2)(3 P (123)

|

(123)

|

(123)

we get that (123) € f5((1)(23)), (123) € f2((2)(13)) and that (123) € f5((3)(12)). Hence,
we have that fZ and f, are not the same. A

In|{Theorem 4.11] we showed that A* indirectly dominates all A € X'\ {A*} by a construc-
tion in which all the cycles in C(A) \ C(A*) of a length greater than 1 are decomposed,

one at a time, until allocation A’ is reached, such that either A® = A* or C(A*) \ C(A*)
only contains cycles of length 1, and then the cycles in C(A*)\ C(A?) are formed, one at
a time.

For each housing matching model (N, P) with n = 3, we have that the above construction
is done in at most two steps, namely at most one step for each of the two parts of the
construction. Hence, for each housing matching model with three agents, we have that A*
horizon-2 strictly dominates all other permutation matrices. In the following example, we
look at whether A* horizon-2 strictly dominates all A € X\ {A*}, for a housing matching
model with four agents.

Example 7.7. Let n =4, N = {1,2,3,4} and let the preference matrix be given as

-2 0 -1 -3

0 -3 -1 -2

b= 0 -2 -3 -1
-3 -1 0 =2

Note that X contains 4! = 24 permutation matrices and that A* = (12)(34). Hence, we
have that C'(A*) = {(12), (34)}.

First, we show that A* horizon-2 strictly dominates all

Ae{(1)(2)3)4), ()(2)(34), (3)(4)(12)}.

Recall that strict dominance is equal to horizon-1 strict dominance and that horizon-
1 strict dominance implies horizon-2 strict dominance. Note that A* =; (1)(2)(3)(4)
for all ¢ € N and that N € E((1)(2)(3)(4), A*). Hence, with [Definition 3.1[1) and
the above, we get that A* >, (1)(2)(3)(4). Also note that A* »; (1)(2)(34) for all
i € {1,2} with {1,2} € E((1)(2)(34), A*) and that A* =; (3)(4)(12) for all j € {3,4}
with {3,4} € E((3)(4)(12), A*). Thus, we also have that A* >, (1)(2)(34) and that
A* >4 (3)(4)(12).

Now, we show that A* horizon-2 strictly dominates A = (13)(24). Note that C(A) \

C(A*) = {(13),(24)}, hence according to there exist i € {1,3} such that
A* =, A and j € {2,4} such that A* >=; A. We have that (12)(34) >, (13)(24),
(13)(24) =3 (12)(34), (12)(34) =2 (13)(24) and that (12)(34) =4 (13)(24). Hence, if we
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take St = {1,2,4} and A' = (1)(2)(3)(4), then we have that S* € E(A, A') and that
A* =; A for all i € S'. Note that A* »=; Al for all j € N and that N € E(A', A*). Let
S? = N, then with the following sequence

(13)(24) R (DE)B)E) —— (12)(34)

and we can conclude that A* horizon-2 strictly dominates A.
In the following construction is used to show that A* horizon-2 strictly domi-

nates all
A e X\ {(1)(2)(3)(4), (1)(2)(34), (3)(4)(12)}.

Note that C'(A) \ C'(A*) is the set of cycles that are in the cycle decomposition of A and
are not in the cycle decomposition of A*. From [Lemma 4.9, we know in particular for
all c4 € C(A) \ C(A*) with |S(ca)| > 1, that there exists i € S(ca) such that A* >, A.
Hence, let S be the set of agents that prefer A* to A and that are contained in some
S(ca) with ¢4 € C(A)\ C(A*) and |S(ca)| > 1. Note that

Ae X\ {(1)(2)(34), (3)(4)(12)}

implies that C(A) NC(A*) = 0. Let A' = (1)(2)(3)(4), then with C(A)NC(A*) =0 and
A # (1)(2)(3)(4), we have that S* € E(A, A'). Note that A* =; A' for all j € N and
that N € E(A', A*). Let S? = N, then with the following sequence

A— A — A*
st 52

we get that A* horizon-2 strictly dominates all

A€ X\ {1)EG)A), (DER)B4), (3)(4)(12)}.
Thus, we have that A* >y A for all A € X \ {A*}.
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Preference

12)(39) = DB @ Vie s
123 = M2)BH Vie s
(12)(34) = )(3)(24) Vie 5"

(12)(34) = (D(2)(3)(4) Vi € 5
(12)(34) = (1)(4)(23) Vi € S

(12)(34) = (H()B)@) Vi € 5
(12)(34) =, (2)(3)(14) Vi € S

12030~ DEE@ Vie S

(12)(34) =1 (2)(4)(13)

(12)(34) = (H2)B)4) Vi€ 5
(12)(34) =; (3)(4)(12) Vi € ST
(12)(34) =; (13)(24) Vi € 51

(12031 = (D@B)E) Vie S
()23 =~ DB @) Vie s
(1231 = (D@E)E) Vie 5

(12)(34) =, (1)(234) Vi € 7

1230 ~ DEE@ Vi e 5
(12)(34) =, (1)(243) Vi € ST

(12)(34) »; (1)(2)(3)(4) Vi € 57

(12)(34) = (2)(134)

12031 = D@E[E) Vie 5

(12)(34) =, (2)(143) Vi € ST

(12)(34) = (N(2)(3)(4) Vi € 5

(12)(34) =, 3)(12) Vie 5!

(12031 = (D@E)E) Vie 5

(12)(34) =; (3)(142) Vi € St

(12)(34) =; ()(2)(3)(4) Vi € 5?

(12)(34) =; (4)(123) Vi € St

(12031 = (DDEIE) Vie 5

(12)(34) =5 (4)(132)

(12)(34) = ()(2)(3)(4) Vi € 52

(12)(34) =, (1234) Vi € ST

(12)(34) = (N(2)B3)(4) Vi € 5

(12)(34) =, (1243) Vi € 5

2030~ WEE@ Vie s

(12)(34) =; (1324) Vi € S

(12)(34) = N(A)(B)(4) Vi€ 5

(12)(34) = (1342)

(12)(34) = H(A)B)(4) Vi€ 5

(12)(34) =, (1423) Vi€ ST

(12)(34) = (N(A)B)(4) Vi€ 52

(12)(34) =, (1432) Vi € S"

(12)(34) = (N(A)(B)(4) Vi€ 52

E(A, A') and E(AL, A*)

N e E(1)(2)3)4), (12)(34))

{1,2} € E((1)(2)(34), (12)(34))

{2,4} € E(1)(3)(24), (H(2)(3)(4))

N e E(D(2)B)4), (12)(34))

{2,3} € E(1)(4)(23), (D(2)(3)(4))

N e E(D(2)B)4), (12)(34))

{1,4} € E((2)3)(14), (1)(2)(3)(4))

N € E(D@)(3)(d), (12)(30)

{1} € E(2)(4)(13), (1)(2)(3)(4)
N € E(1)(2)B3)(4), (12)(34))

{3,4} € E((3)(4)(12), (12)(34))

{1,2,4} € E((13)(24), (1)(2)(3)(4))

N e E(1)(2)3)(4), (12)(34))
N e E((14)(23), (1)(2)(3)(4))
N € E(D(2)B3)4), (12)(34))

{2,3} € E((1)(234), (1)(2)(3)(4))
N e E(D(2)8)4), (12)(34))

{2,4} € E((1)(243), (1)(2)(3)(4))
N e E(D(2)3)4), (12)(34))

{1} € E()(134), ()2 3)(4)
N € E(D@)B3)E), (12)(3)

{1,4} € E((2)(143), (1)(2)(3)(4))
N e E(1)(2)B3)4), (12)(34))

{1,4} € E((3)(124), () (2)(3)(4))
N € E(D(2)B3)4), (12)(34))

{2,4} € E((3)(142), (1)(2)(3)(4))
N € E(D)(2)B3)4), (12)(34))

{1,3} € E((4)(123), (1)(2)(3)(4))
N € E(D(2)B3)(4), (12)(34))

{2} € E(4)(132), (1)(2)(3)(4))
N e E((D(2)3)4), (12)(34))

{1,3} € E((1234), (1)(2)(3)(4))
N e E(1)(2)B3)4), (12)(34))

{14} € B((1243), (D2 3)(4))
N € E(D@)(3)(4), (12)(30)

{1,2,4} € E((1324),(1)(2)(3)(4))

N € E(1)(2)3)(4), (12)(34))
{2} € B((1342), (1)(2)(3)(4))

N € E(1)(2)3)4), (12)(34))
N € E((1423), (1)(2)(3)(4))

N e E(D(2)3)4), (12)(34))

{2,4} € E((1432), (1)(2)(3)(4))
N e E(D(2)B)4), (12)(34))

Sequence

(12)(34)

IR
§1={1,2}

(1)(2)(34)

(12)(34)

—
S2=N

(M2)B)4)

ey
S1={2,4}

(13)(24) -

(12)(34)

—
s2=N

(1(2)B)4)

—_—
S1={2,3}

(1)(4)(23) —

(12)(34)

—
S1=N

(D2)(3)(4)

JES—
St={1,4}

(2)(3)(14)

(12)(34)

—
S1=N

20)13) S HER)E)E)

BH(12) 5— (12)31)

(12)(34)

—
S2=N

M@B)4)

—
S1={1,2,4}

(13)(24)

(12)(34)

—
s2=N

(M)(3)4)

—_—
S1=N

(14)(23)

(12)(34)

—
S2=N

(D@34 S—=> (DRE)(4)

(12)(34)

—
S2=N

M2)B)4)

R
S1={2,4}

(1)(243)

(12)(34)

—
S2=N

M2)B)4)

——
s1={1}

(2)(134)

(12)(34)

—
S2=N

(1(2)3)(4)

B
S1={1,4}

(2)(143)

(12)(34)

—
S2=N

(3)(124) S— > (DR)B)(4)

(12)(34)

—
52=N

M2)B)4)

ey
S1={2,4}

(3)(142)

(12)(34)

—
S2=N

M2)B)4)

—_—
51={1,3}

(4)(123)

(12)(34)

—
S2=N

(1132) S—— HER)E)E)

(12)(34)

—
$2=N

(M2)B)4)

—_—
S1={1,3}

(1234)

(12)(34)

—
S2=N

(D2)(3)(4)

—
S1={1,4}

(1243)

(12)(34)

—
$2=N

(1324) Soan (1)(2)(3)(4)

(12)(34)

—
$2=N

M)(3)4)

ey
S1=(2}

(1342)

(12)(34)

—
S2=N

M2)B)4)

—
Sl=N

(1423)

(12)(34)

—
S2=N

M2)B)4)

e
S1={2,4}

(1432)

Table 18: Illustration that each A € X \ {(12)(34)} is horizon-2 strictly dominated by A* =

(12)(34).

A
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In [Example 7.7, we showed for a specific housing matching model with four agents that
A* horizon-2 strictly dominates all other permutation matrices. This gives rise to the
conjecture that the proof of can be shortened to at most two steps by using

the construction described in [Example 7.7

Theorem 7.8. For all housing matching models (N, P), the permutation matriz A*
horizon-2 strictly dominates any A € X \ {A*} in E(N, P).

Proof. Let (N, P) be a housing matching model and let A € X \ {A*}. We need to
show that A* >, A. In other words, we need to show that there exists K’ € {1,2},
such that there is a sequence of permutation matrices A%, A', AX" € X with A° = A and
AK" = A* and there are coalitions S', S € 2V \ {(}, such that ¥V k& € {1, K’} we have
that S* € F(A*1 AF) and that A* =; A*! for all i € S*.

Take A° = A. The first step is to construct A! € X by partially decomposing A into
cycles consisting of one agent. From [Lemma 4.9 we know for all ¢4 € C(A)\ C(A*), that
there exists ¢ € S(ca) such that A* >=; A. In other words, in each coalition of agents,
which forms a trading cycle in A, but not in A*, there exists an agent that strictly prefers
A* to A.

Let S' € 2V be defined as

Slz{z’eN

In other words, coalition S' consists of all the agents that strictly prefer A* to A and are
in a coalition of more than one agent which forms a trading cycle in A, but not in A*.

If St = 0, then we have that K’ = 1 and we continue with the second step. Note that
C(A)\ C(A*) = 0 if and only if A = A*. Since A € X \ {A*}, we have that S! = () means
that V cq € C(A) \ C(A*), we have that [S(ca)| = 1. In other words, S' = @, if each
trading cycle of A which is not equal to any top trading cycle consists of one agent.

If ST # @, then we define ¢ : S' — S! as the bijection ¢(i) = i. From [Lemma 2.11} we
know that there exists A' € X, such that S' € F(A, A') and A}¢(i) =1 for all i € S*.

Thus, we have that (i) € C(A') for all i € S'. By definition of S', we have that A* =; A
for all i € S1.

There are two cases: A* = A! and A* # A'. In the former case, we have that K’ = 1.
Thus, with the above we already showed that A* horizon-2 strictly dominates A. In the
latter case, we have that K’ = 2 and we continue with the second step.

Jeca € C(A) \ C(A*) such that [S(ca)| > 1,
i€ S(ca)and A* —; A '

The second step is to construct A* = AKX € X by using the decomposition in the first
step. Let C(A*) \ C(AK'=1) = {c!,...,c"} be the set of cycles that are in the cycle
decomposition of A* and are not in the cycle decomposition of AX'~!. Suppose that for
all g € {1,...,h} we have that ¢? = (¢{---c},) with ¢}, = ¢{. Define

S =) S

1<q<h
and define ¢ : S&" — S&' as the following bijection:

o(cl)=c, Vpe{l,.... 7 andV g {1,...,h}.
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Then from|Lemma 2.11} we know that there exists A% € X, such that S € E(AK'~1 AK")
and Afg(i) = 1forall i € SX". In other words, we have that {c',...,c"} C C(AX"). Recall

that condition (2) of [Definition 2.8 is: Vi € N \ SX" such that S(c 1) N SK =10, it

holds that: if Ag/’l = 1, then we have that A% = 1. Note that for cach ¢ 41 € C(A*)N
C(AK' 1), we have that S(c x—1) N SE = 0. Hence, for all c k-1 € C(A*) N C(AK' D),
we have that ¢ € C(AX).

Hence, we have that
O(A*) = (O(A*) N O(AK"1)> U (C(A*) \ 0<AK’—1)> C O(AX),
Since, we have that

U S(ca) =N = U S(cqxr),
)

cax€C(A* ¢,k €C(AK")

we get that C(AX") = C(A*). Thus, with C(A4*)\ C(AX") = 0, we have that A% = A*.
In other words, the cycle decomposition of A% consists of the cycles ¢!, ..., ¢" and of
all the cycles ¢ € C(A*) N C(AX' 1), i.e. the cycles that are in the cycle decomposition

of A* and are in the cycle decomposition of A% ~!. From [Theorem 4.11| we know that
A* =, AKX =1 for all i € S’ Hence, it holds that A* >, A.

Thus, we have that A* horizon-2 strictly dominates any A € X \ {A*} in E(N,P). O
From [Theorem 7.8 we know that A* € fy(A) for all permutation matrices A not equal

to the top trading cycle permutation matrix. With the fact that fx:/(A) C fx(A) for all
K,K' € Nwith K’ < K and for all A € X, we get the following corollary.

Corollary 7.9. For all housing matching models (N, P), we have for all K > 2, that
A* € fr(A) for all A e X\ {A*}.

From |Corollary 7.5 we know for all housing matching models that A* € KFCO for all
K > 2. Thus, with we get the following result.

Corollary 7.10. For all housing matching models (N, P), we have for all K > 2 that
the horizon-K farsighted core is equal to {A*}.

7.2 Horizon-K von Neumann-Morgenstern stable set

For all housing matching models, we proved in Section |3 that each von Neumann-
Morgenstern stable set contains the core and in Section [4] that the unique farsighted vNM
stable set is equal to {A*}. In this section, we look at the von Neumann-Morgenstern
stable set under the assumption that all agents are horizon-K farsighted.
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Definition 7.11 (Horizon-K von Neumann-Morgenstern stable set).

Let (N, P) be a housing matching model. A set Ax C X of permutation matrices is a
horizon-K von Neumann-Morgenstern (vINM) stable set of £(N, P) if it satisfies
the following two conditions:

(1) internal stability: V A € Ax we have that fx(A) N Ax = {A},
(2) external stability: V A ¢ Ak it holds that fx(A) N Ax # 0.

With the fact that fi(A) = f(A) for all A € X, we can conclude that the definitions of
a horizon-1 vNM stable set and a vINM stable set are equivalent. Also with the fact that
foo(A) = fs.(A) for all A € X, we can conclude that the definitions of a horizon-oco vNM
stable set and a farsighted vNM stable set are equivalent. Hence, from now of on, we
focus on horizon-K vINM stable sets for 2 < K < o0.

Note that for a set Ax with |Ax| = 1 the internal stability condition is automatically
satisfied. Hence, if we want to know whether a set Ax with |Ag| = 1 is a horizon-K
vINM stable set, we only need to check whether it satisfies the external stability condition.
With the help of we show that for all housing matching models the unique
horizon-K vNM stable set is {A*} for all K > 2.

Theorem 7.12. For all housing matching models (N, P), we have for all K > 2, that
Ax = {A*} is the unique horizon-K vNM stable set of E(N, P).

Proof. Let (N, P) be a housing matching model and let K > 2. First, we show that
Ax = {A*} is a horizon-K vNM stable set. Note that |Ax| = 1, thus we have that
A satisfies internal stability. From [Corollary 7.9 we know that A* € fx(A) for all
A € X\ {A*}. This shows that A also satisfies external stability. Hence, Ax = {A*}
is a horizon-K vNM stable set of £(N, P).

Now we show that {A*} is the unique horizon-K vNM stable set. Suppose that A} C X
is a horizon-K vNM stable set with A% # {A*}. There are two cases: A* € A} with
|A%| > 1 and A* ¢ A). In the former case we have that there exists A € A} \ {A*}.
From [Corollary 7.9} we know that A* € fx(A), thus it holds that A* € fx(A)NA). This

gives a contradiction with the internal stability of A'..

In the latter case we have that A* ¢ Al. From [Corollary 7.3 we know that fx(A*) =
{A*}. Hence, it holds that fr(A*) N A} = {A*} N A} = (. This gives a contradiction
with the external stability of A’%. We can conclude that if A’y is a horizon-K vNM stable
set, then it must hold that A} = {A*}. Thus, we have that { A*} is the unique horizon- K
vNM stable set of E(N, P). O

7.3 Horizon-K farsighted stable set

In the literature, there are more definitions of a set to be stable. In Herings et al. (2019),
a horizon- K farsighted set of networks is defined as a minimal set that satisfies horizon-K
deterrence of external deviations and horizon-K external stability.

In our social environment corresponding to the housing matching model (N, P), horizon-
K deterrence of external deviations says that each deviation from A to an arbitrary

86



permutation matrix A’ outside the set is deterred by the credible threat of ending up at
another permutation matrix A” that is not strictly preferred to A for at least one agent
in the deviating coalition.

Now, we explain what we mean with a credible threat. Consider the deviation from A to
A’. There are two cases A” € fr_1(A")\ fx—2(A’) and A” € fr_2(A’). In the former case
going from A to A” takes exactly K steps. This threat is credible, since each agent has
a horizon-K farsightedness. In the latter case we have that going from A to A” takes at
most K — 1 steps. Hence, the threat is only credible when A” is also an element of the
set.

In this thesis, horizon-K external stability, as defined in Herings et al. (2019)), is re-
ferred to as horizon-K iterated external stability. It means that from each permutation
matrix outside the set there exists a sequence of horizon-K strict dominations to some
permutation matrix inside the set.

We give the definition of a horizon- K farsighted set of Herings et al. (2019) in the context
of our social environment corresponding to the housing matching model (N, P) and we
call it a horizon- K farsighted stable set. In the definition below, we use fy(A) = {A} and
f-1(A) = 0 for all permutation matrices A € X.

Definition 7.13 (Horizon-K farsighted stable set).
Let (N, P) be a housing matching model and let K € N. A set Ax C X is a horizon-K
farsighted stable set of E(NV, P) if it satisfies the following three conditions:

(1) horizon-K deterrence of external deviations: V A € Ax, V A" ¢ Ak and
VS e E(A,A"), there exists A” € (fr—2(A)NAg) U (fx-1(A")\ fx—2(A")) such
that 37 € S with A =, A",

(2) horizon-K iterated external stability: V A ¢ A it holds that fi(A)NAx # 0,
(3) minimality: there is no proper subset Ay C Ay that satisfies (1) and (2).

Note that () does not satisfy horizon-K iterated external stability for all K € N. Hence,
for all K € N, we have that each set Ax C X with |Ag| = 1 satisfies minimality.

First, we look at horizon-oo farsighted stable sets. In Section [d we defined the DEM
farsighted stable set, which is the farsightedly stable set of Herings et al. (2010]), which
is a generalized concept of the pairwise farsightedly stable set of Herings et al. (2009).
Note that with fs(A) = fw(A) for all A € X, we get that horizon-oo deterrence of
external deviations is equal to condition (1) in [Definition 4.34] Recall that condition (2)
in [Definition 4.34]is: V A ¢ A it holds that fs (A)N.A # 0. Note that horizon-oo iterated
external stability is: V A ¢ Ay it holds that fY (A) N Ax # (). In Herings et al. (2019),
it is shown, with fs. (A) = foo(A) C fI(A) for all A € X, that for every DEM farsighted
stable set A, there is a set A,, C A such that A, is a horizon-oco farsighted stable set.
In , we showed for all housing matching models that A = {A*} is the unique
DEM farsighted stable set. Hence, with the fact that () cannot be a horizon-oco farsighted
stable set, we get that A, = {A*} is the unique horizon-co farsighted stable set for all
housing matching models.
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Now, we focus on horizon-1 farsighted stable sets. With fo(A) = {A} and f_1(A) = 0 for
all A € X, we can simplify horizon-1 deterrence of external deviations. The simplification
of [Definition 7.13| for K =1 is given below.

Definition 7.14 (Horizon-1 farsighted stable set).
Let (N, P) be a housing matching model. A set A; C X is a horizon-1 farsighted
stable set of £(N, P) if it satisfies the following three conditions:

(1) horizon-1 deterrence of external deviations: V A € A;, V A" ¢ A; and
VS e E(A,A), we have that 37 € S with A 7Z; A,

(2) horizon-1 iterated external stability: V A ¢ A, it holds that f1'(A)N.A; # 0,
(3) minimality: there is no proper subset A} C A; that satisfies (1) and (2).

In the context of networks the following results are known in the literature. In Herings
et al. (2019)), it is shown that the pairwise myopically stable set as defined in Herings
et al. (2009) is the horizon-1 farsighted set. Also, the myopic stable set as defined in
Demuynck et al. (2019a) is equal to the pairwise myopically stable set. In the context
of our social environment corresponding to the housing matching model (N, P), we have
the following result.

Lemma 7.15. For all housing matching models (N, P), the myopic stable set of E(N, P)
is the unique horizon-1 farsighted stable set of E(N, P).

Proof. Let (N, P) be a housing matching model. We already know from Demuynck et al.
(2019a) that there exists a unique myopic stable set. Thus, it is sufficient to show that
the definitions of a myopic stable set and a horizon-1 farsighted stable set are equivalent.

First, we show that horizon-1 deterrence of external deviations is condition (1) of
[tion 3.22] Note that condition (1) in [Definition 7.14| means that each permutation matrix
inside A; is not strictly dominated by any permutation matrix outside A;. In other
words, V A € A; we must have that f(A) C A, which is condition (1) in|Definition 3.22|

Recall that fi(A) = f(A) for all A € X. Thus, we also have that horizon-1 iterated
external stability is equal to condition (2) in [Definition 3.22, Note that both the myopic
stable set and a horizon-1 farsighted stable set must satisfy minimality in the sense that
there does not exist a proper subset that satisfies the other two conditions. This shows
that the definitions of a myopic stable set and a horizon-1 farsighted set are equivalent.
Thus, the myopic stable set is the unique horizon-1 farsighted stable set. O

For each housing matching model, we can conclude from [Theorem 3.8, [Lemma 3.23| and
[Cemma 7.15] that the horizon-1 farsighted stable set contains A*. This result can be
generalized to all horizon-K farsighted stable sets with K € N.

In the context of networks Herings et al. (2019) proved that the set of horizon-K pairwise
stable networks, the set of networks that are not horizon-K pairwise dominated, is a
subset of each horizon-K farsighted set. In the context of our social environment of
housing matching model (N, P), we know from |Corollary 7.10| that KFCO = {A*} for
all K > 2. Hence, we get the following result.
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Lemma 7.16. For all housing matching models (N, P), we have for all K € N that each
horizon-K farsighted stable set of E(N, P) must contain A*.

Proof. Let (N, P) be a housing matching model and let K € N. Suppose that Ax C
X \ {A*} is a horizon-K farsighted stable set of £(N, P). From [Corollary 7.3 we know
that A* is not horizon-K strictly dominated, hence it holds that fx(A*) = {A*}. This
gives us that fR(A*) = {A*}, thus we have that f}(A*) N Ax = 0. Hence, we can
conclude that Ax does not satisfy the horizon-K iterated external stability condition.
Hence, each horizon-K farsighted stable set of £(NV, P) must contain A*. O

From now of on, we focus on horizon-K farsighted stable sets for K > 2. From Herings
et al. (2019)), we know that a horizon-K farsighted set always exists, but that it does not
have to be unique.

From we know for all housing matching models that each set Ax C X \{A*}
cannot be a horizon-K farsighted stable set for all K € N. With the help of
we show, for all housing matching models, that Ax = {A*} is the unique horizon-K
farsighted stable set for each K > 3.

Theorem 7.17. For all housing matching models (N, P), we have for all K > 3 that the
set Ax = {A*} is the unique horizon-K farsighted stable set of E(N, P).

Proof. Let (N, P) be a housing matching model and let K > 3. First, we show that
A = {A*} satisfies conditions (2) and (3) in [Definition 7.13, Note that |Ax| = 1,
hence Ay satisfies minimality. From , we know that A* € fx(A) for all
A€ X\ {A*}. Hence, we have that A* € fR(A) N A for all A€ X \ {A*}. This shows
that A also satisfies horizon- K iterated external stability.

The proof that Ax satisfies horizon-K deterrence of external deviations depends on
whether K = 3 or K > 4. Let K = 3, then we need to show that A3 = {A*} satisfies
horizon-3 deterrence of external deviations. In other words, we need to show that V A" €
X\{A*} and V S € E(A*, A), there exists A” € (f1(A) N{A*}) U (f2(A)\ f1(A")) such
that 3 i € S with A* 7; A”. Let A’ € X \ {4*} and let S € E(A*, A’). From [Corol{
lary 7.9 we know that A* € fo(A’). There are two cases: A* € fi(A') and A* ¢ fi(A4').
In the former case we have that A* € f1(A’) N {A*} and in the latter case we have that
A* € fo(A)\ fi(A"). Hence, in both cases we have that A” = A is a credible threat
with A* ~; A” for all ¢ € N. Thus, A3 = {A*} satisfies horizon-3 deterrence of external
deviations.

Now, we show that Ax = {A*} satisfies horizon-K deterrence of external deviations for
K > 4. Let K > 4, then we need to show that V A" € X \ {A*} and V S € E(A*, A"), we
have that there exists A” € (fr_2(A") N{A*}) U (fx-1(A") \ fx—2(A")) such that Ji e S
with A* =; A”. From [Corollary 7.9 we know that A* € fx/(A’) for all K’ > 2 and for all
A" e X \ {A*}. We know that K > 4, thus it holds that K/ = K —2 > 2. Hence, we get
that A* € fx_o(A’) for all A’ € X\ {A*}. Thus, we have that A” = A* € fx (A )N{A*}
with A* ~; A” for all i € N. Thus, Ax = {A*} satisfies horizon-K deterrence of external
deviations.

This shows that Ax = {A*} is a horizon-K farsighted stable set of £(NV, P) for each
K > 3. With the minimality condition, we can conclude for all K > 3 that each set
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Al € X with A* € A} and |A}| > 1 is not a horizon-K farsighted stable set of E(N, P).
From [Lemma 7.16, we already know that each set that does not contain A* is not a
horizon-K farsighted stable set of E(N, P) for all K > 3. Thus, for all K > 3, we can
conclude that Ax = {A*} is the unique horizon-K farsighted stable set of E(N, P). [

Now, we focus on horizon-2 farsighted stable sets. Recall that fo(A) = {A} forall A € X.
Note that for all sets Ay C X and for all permutation matrices A” ¢ A, it holds that
fo(A)N Ay = {A'} N Ay = (. Hence, we can simplify horizon-2 deterrence of external
deviations. The simplification of [Definition 7.13| for K = 2 is given below.

Definition 7.18 (Horizon-2 farsighted stable set).
Let (N, P) be a housing matching model. A set A; C X is a horizon-2 farsighted
stable set of £(N, P) if it satisfies the following three conditions:

(1) horizon-2 deterrence of external deviations: V A € Ay, V A" ¢ A, and
VS e E(A,A), there exists A” € fi(A") \ {A’} such that 3¢ € S with A =—; A”,

(2) horizon-2 iterated external stability: V A ¢ A, it holds that fY(A) N Ay # 0,

(3) minimality: there is no proper subset A, C A, that satisfies (1) and (2).

Because of condition (1) in [Definition 7.18) we have that the core must be a subset of
each horizon-2 farsighted stable set.

Lemma 7.19. For all housing matching models (N, P), it holds that each horizon-2
farsighted stable set Ay C X of E(N, P) must contain the core, i.e. CO C As.

Proof. Let (N, P) be a housing matching model and let Ay C X be a horizon-2 farsighted
stable set of £(N, P) with CO ¢ A,. Hence, there exists A’ € CO \ A,. Since A’ € CO,
we have that f1(A") = f(A") = {A'}. Thus, it holds that fi(A")\{A’} = 0. Since A’ ¢ A,
and A, satisfies horizon-2 deterrence of external deviations, we must have for all A € A,
and for all S € F(A, A"), that there exists A” € fi(A’) \ {A’} such that there is an agent
i€ S with A z; A”. Since f1(A")\ {A’} = 0 this statement is false. Hence, A, does
not satisfy horizon-2 deterrence of external deviations. This gives a contradiction. Thus,
we can conclude that each horizon-2 farsighted stable set of £(N, P) must contain the
core. U

From the proof of [Lemma 7.19] we know that each set that satisfies horizon-2 deterrence
of external deviations must contain the core. Thus, the core satisfies minimality. From
Lemma 7.19, we also get that each horizon-2 farsighted stable set contains the core.
Hence, if the core satisfies conditions (1) and (2) in|[Definition 7.18} we can conclude with
the minimality condition that C'O is the unique horizon-2 farsighted stable set. In the
following example, we show for a specific housing matching model that the core is the
unique horizon-2 farsighted stable set.

Example 7.20 (Example 6.16| continued).
Let n = 3 and let the preference matrix P be as in

-2 0 -1
P=1|-1 -2 0
0 -1 -2
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Note that A* = (132). Recall that f((1)(2)(3)) = X, f((1)(23)) = {(1)(23), (2)(13)},
F(203) = {(2)13), )12}, F(3)(12) = {(3)(12),(1)(23)} and that f((123)) =
{(123), (132)}. Hence, we have that CO = {A*}. We show that the core satisfies the
three conditions of [Definition 7.18] Note that |CO| = 1, hence the core automatically
satisfies minimality. From [Theorem 7.8, we know that A* € fy(A) C fY(A) for all
A€ X\ {A*}, hence the core also satisfies horizon-2 iterated external stability.

Thus, we need to show that the core satisfies horizon-2 deterrence of external deviations.
In other words, we need to show that V A" € X \ {A*} and V § € E(A* A), there
exists A” € fi(A) \ {A'} such that 3¢ € S with A* = A”. Note that f1(A) = f(A)
for all A € X. Let A’ = (1)(23), then we have that fi(A’) \ {4’} = {(2)(13)} and that
E(A* A") = {{2,3}, N}. Suppose that coalition {2,3} considers the deviation from A*
to A’. After this deviation, coalition {1, 3} can deviate from A’ to (2)(13), but then agent
2 is worse off then at A*. Hence, the deviation from A* to A’ is deterred. In [Table 19
it is shown that each deviation from A* to any A’ € X \ {A*} is deterred by a credible
threat.

Ae X\{A*} | E(AA) | A7 e fi(A)\{A'} | Tie S with A* =; A”
(1)(2)(3) 2N\ {0} A* A~y A"VieN
(1)(23) {{2.3}, N} | (2)(13) (132) =2 (2)(13)
(2)(13) {13}, N} | (3)(12) (132) =5 (3)(12)
(3)(12) {12}, N} | (1)(23) (132) =1 (1)(23)

(123) {N} A* A"~ A"Yie N

Table 19: Illustration that the core satisfies horizon-2 deterrence of external deviations.

Thus, the core is the unique horizon-2 farsighted stable set of £(N, P). A

The result in [Example 7.20|that Ay = {A*} is the unique horizon-2 farsighted stable set,
can be generalized to all housing matching models such that CO = {A*}.

Theorem 7.21. For all housing matching models (N, P) such that CO = {A*}, we have
that the set Ay = {A*} is the unique horizon-2 farsighted stable set of E(N, P).

Proof. Let (N, P) be a housing matching model such that CO = {A*}. First, we show
that Ay = {A*} is a horizon-2 farsighted stable set. Note that A, satisfies minimality,

since |Az] = 1. From [Theorem 7.8, we know that A* € fy(A) C fY(A) for all A €

X \ {4*}. Hence, A, also satisfies horizon-2 iterated external stability.

We show that Ay, = {A*} satisfies horizon-2 deterrence of external deviations by a proof
by contradiction. Hence, suppose that As does not satisfy horizon-2 deterrence of external
deviations. In other words, 3 A" € X \ {A*} and 3 S € E(A*, A’), such that V A" €
fi(A) \ {A'} we have that A” =; A* for all i € S. Note that fi(A") \ {4’} # 0,
since CO = {A*} and A’ € X \ {A*}. There are two cases: A* € fi(A) \ {4’} and
A* ¢ f1(A)\ {A’}. In the former case we get a contradiction by taking A” = A*, since
then we have that A* ~; A” for all 7 € N.
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In the latter case, we get that 3 A” € f1(A") \ {A’} such that A” # A* and A” »; A* for
all i € S. Note that A” € f1(A’)\ {A’} means that there exists S? € E(A’, A”) such that
A" =, A’ for all j € S%. Hence, with S = S € F(A*, A') and A" =; A* for all i € S, we
can conclude with the following sequence
A —— A — A
S1=5 52
that A” >, A*. This contradicts the fact that A* is not horizon-2 strictly dominated

in £(N, P). Hence, we can conclude that A, satisfies horizon-2 deterrence of external
deviations. Thus, we get that A = {A*} is a horizon-2 farsighted stable set of £(N, P).

We know that CO = {A*}. Hence, from [Lemma 7.19 we get that each horizon-2 far-
sighted stable set contains A*. We already showed that {A*} satisfies conditions (1)
and (2) in [Definition 7.18] Hence, with the minimality condition we can conclude that
Ay = {A*} is the unique horizon-2 farsighted stable set of E(N, P). O
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8 Conclusion

In Section [3, we studied the core, the von Neumann-Morgenstern stable set and the
myopic stable set of Demuynck et al. (2019a) under the assumption that agents are

myopic. We found the results given in [Table 20|

Myopic stability concepts, A C X is
core vNM stable set | myopic stable set

§ strict A* e CO cocCcA COCA

3

=

‘2| weak | SCO = {A*} Are A strong core

S

<

Table 20: Overview of the results under the assumption that all agents are myopic.

Under the assumption that agents are fully farsighted, we studied the farsighted core,
the farsighted vNM stable set, the largest consistent set of Chwe (1994) and the DEM
farsighted stable set, as given in Herings et al. (2010)), with respect to three different
definitions of indirect dominance. In Section 4] Section [5] and Section [6] we studied these
four solution concepts with respect to indirect dominance, with respect to indirect weak
dominance and with respect to indirect antisymmetric weak dominance, respectively. The

results can be found in [Table 211

Fully farsighted stability concepts, A C X is
farsighted core | vNM stable set | largest consistent set | DEM farsighted stable set
g| > FCO = {A*} A= {A*} A*e A A= {A*}
5> | sFco=ho A" ¢ Aor A e A A ¢ Aor
E SFCO = {A*} | A={A%} A={A"}
Tl> [ SAFCO={A}]| A={A"} A={A"} A={A"}

Table 21: Overview of the results under the assumption that all agents are fully farsighted.
Note that the largest consistent set is denoted by A in Section {4} by As in Section [5| and by
A in Section @

Moreover, we also studied the intermediate case between myopia and full farsightedness,
in which agents can look at most K steps ahead. For K € N, we studied the horizon-K
farsighted core, the horizon-K vNM stable set and the horizon-K farsighted stable set,
as defined in Herings et al. (2019). As expected, the results depend on the degree of far-
sightedness of the agents. The extreme cases are myopia, K = 1, and full farsightedness,
K = 0o. As shown in Section [7] the results of the intermediate case depend on whether

K =2 or K > 3. The results are given in [lable 22|
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Horizon-K farsighted stability concepts, A C X is
horizon-K farsighted core | horizon-K vNM stable set | horizon-K farsighted stable set

% K=1 core vNM stable set myopic stable set
=t

s

g‘:o K=2 KFCO = {A*} A={A7} COCA

§%

—

S K>3 KFCO = {A*} A= {A*} A= {A*}

S}

<)

go K =00 FCO farsighted vNM stable set A= {A*}

<)

<

Table 22: Overview of the results under the assumption that all agents are horizon-K farsighted.

Now, we compare the results given in [Table 20| in [Table 21| and in [Table 22|

First, we compare with respect to the degree of farsightedness of the agents. When
agents are myopic, the top trading allocation is a stable outcome, but it is not the only
stable outcome. When agents can look two steps ahead, the top trading allocation is a
stable outcome and only the horizon-2 farsighted stable set says that more outcomes are
considered to be stable. Moreover, if agents can look at least three steps ahead, we can
conclude that the top trading cycle allocation is considered to be the only stable outcome.

Secondly, we compare the stability concepts, which we studied within the same degree
of farsightedness and the same notion of dominance. When agents are myopic, we can
conclude that the three stability concepts that we studied are similar in the sense that A*
is considered to be stable, but differ in the sense that other allocations can be considered
stable. In particular, the vNM stable set seems to be a weak concept.

When agents are neither myopic nor fully farsighted, i.e. 1 < K < oo, then we make
a distinction between the case in which agents are horizon-2 farsighted and the case in
which agents are at least horizon-3 farsighted. If all agents are horizon-2 farsighted, then
all the three stability concepts that we studied say that A* is a stable outcome. Moreover,
the horizon-2 farsighted core and the horizon-2 vNM stable set say that allocation A* is
the only stable outcome. However, each horizon-2 farsighted stable set says that more
outcomes are considered to be stable. If all agents are at least horizon-3 farsighted, the
three stability concepts that we studied say that A* is the only stable outcome.

When agents are fully farsighted, we can conclude that the farsighted core, the farsighted
vNM stable set and the DEM farsighted stable set all give the same result.

Now, we compare the largest consistent set with the other farsighted solution concepts.
As Chwe (1994) mentioned, the largest consistent set is a weak concept in the sense that
it rules out with confidence. With the results given in [Table 21| we can conclude that
with respect to indirect dominance, this also holds in our housing matching model, since
the largest consistent set compared to the other solution concepts contains allocations
that are not stable. With respect to indirect antisymmetric weak dominance, we can
conclude that all four solution concepts that we studied give the same result, namely
that A* is the only stable outcome.

Thirdly, we give a general comparison. We can conclude that the top trading cycle
allocation is part of each stability concept, except when agents are fully farsighted and
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the notion of dominance is indirect weak dominance. Therefore, we only compare the
other results. Each stability concept says that the top trading cycle allocation is stable.
Moreover, in most cases A* is the only stable outcome. While studying these stability
concepts, we did expect that the top trading cycle allocation would play a role, but we
did not expect that the top trading cycle allocation would play such an overwhelming
role in the sense that it is the only stable outcome.

The results of indirect weak dominance, given in [lable 21| are undesirable. They arise,
because agents who are indifferent between the end state and the current state may be re-
quired to move according to the definition of indirect weak dominance. Kawasaki (2010)
introduced indirect antisymmetric weak dominance to solve this problem of indirect weak
dominance. Indirect antisymmetric weak dominance has an additional restriction com-
pared to indirect weak dominance.

Kawasaki (2019) introduced another solution, which is minimal enforceability. Instead of
defining a new type of dominance as in Kawasaki (2010)), the effectivity correspondence
has an additional restriction, namely the deviating coalition S is the minimal set that
satisfies condition (1) in Recall that condition (1) in says
that each agent in the deviating coalition S receives an item belonging to an agent in S.
Kawasaki (2019) showed that this minimality condition does not affect the indirect dom-
inance as defined in Klaus et al. (2010) and the indirect antisymmetric weak dominance
as defined in Kawasaki (2010)).

Therefore, for further research, one could study the effect of minimal enforceability on the
results of the stability concepts with respect to indirect weak dominance. With minimal
enforceability, we expect that the top trading cycle allocation is not indirectly weakly
dominated, while it indirectly weakly dominates all other allocations. Therefore, we ex-
pect that the results of the stability concepts in this new setting will be similar to the
results with respect to indirect antisymmetric weak dominance.

In this thesis, we studied stability concepts by varying the degree of the farsightedness of
the agents and we made the assumption of homogeneity in the sense that all agents had
the same degree of farsightedness. Therefore, for further research, one could study the
effect of heterogeneity in the degree of farsightedness of the agents on the results of the
horizon-K farsighted core, the horizon-K farsighted vNM stable set and the horizon-K
farsighted stable set.

In the context of network games, the concept of heterogeneity in the degree of farsight-
edness is introduced in Herings and Khan (2022)). As in Herings and Khan (2022), let K
denote the degree of farsightedness of agent i € N and let K = (K;);en € NV represent
the degree of foresight of all the agents. We expect that horizon-K strict dominance

could be defined as in [Definition 8.1l

Definition 8.1 (Horizon-K strict dominance).

Let (N, P) be housing matching model, let K = (K;);ey € NV and let A, A’ € X be
two different permutation matrices. The permutation matrix A’ horizon-K strictly
dominates A in E(N, P), denoted by A" >, A, if there exists K’ € N with K’ <

max K;, such that there is a sequence of permutation matrices A°, ..., AX € X with
1€

A® = A and A% = A’ and there are coalitions S*, ..., S% € 2V \ {0}, such that V k €
{1,..., K"} the following two conditions hold:
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(1) 8" e B(AFT, AP,

s !
(2) for alli € S*, it holds that A" =; A¥~1 with h = {K" k=l ?fK" th-l< K
K’ it K, +k—1>K'.
Note that if all agents have the same degree of farsightedness, i.e. K; = K for allt € N,
then [Definition 8.1} is [Definition 7.1} This is desirable, since it means that the setting
in which all agents have the same degree of foresight is contained within the setting of
heterogeneity.

Moreover, we expect that the concept of heterogeneity in the degree of foresight of the
agents will lead to new results, since the top trading cycle allocation might not horizon-
K strictly dominate all permutation matrices. To see this, one can look at the housing

matching model (N, P) as in [Example 7.20} i.e. n = 3 and the preference matrix

2 0 -1
P=|-1 -2 o],
0 —1 -2

and prove that the top trading cycle allocation A* = (132) does not horizon-(1, 2, 2)
strictly dominate the allocation (2)(13). Because of this, we expect that agents with the
lowest degree of foresight will determine whether other allocations than A* are considered
to be stable.

Furthermore, whether A* horizon-K strictly dominates all other permutation matrices
also seems to depend on whether the agent with the lowest degree of foresight is part
of the first top trading cycle. To see this, one can look at the housing matching model

(N, P) as in [Example 6.13] i.e. n = 3 and the preference matrix

—2 0 -1
P=|-1 -2 o],
~1 0 -2

and prove that A* = (1)(23) horizon-(1, 2, 2) strictly dominates all other allocations, but
does not horizon-(2, 1,2) strictly dominate (123).

Moreover, we expect that the top trading cycle allocation A* is not horizon-K strictly
dominated, since according to A* each agent in tc¢” gets his most preferred item of the
remaining items in N \ ( U s (tc“)). Hence, we expect that A* is considered to be

1<r<r—1
stable.

Therefore, studying the effect of heterogeneity in the degree of foresight of the agents on
the stability concepts seems to be interesting.
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