
PREDICTING LAP TIMES IN A FORMULA 1
RACE USING DEEP LEARNING ALGORITHMS

A COMPARISON OF UNIVARIATE AND MULTIVARIATE TIME
SERIES MODELS

FLEUR BRUSIK

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN DATA SCIENCE & SOCIETY
AT THE SCHOOL OF HUMANITIES AND DIGITAL SCIENCES

OF TILBURG UNIVERSITY



STUDENT NUMBER

2039129

COMMITTEE

dr. Boris Čule

Federico Zamberlan

LOCATION

Tilburg University

School of Humanities and Digital Sciences

Department of Cognitive Science & Artificial Intelligence

Tilburg, The Netherlands

DATE

June 17th, 2024

WORD COUNT

8794

2



PREDICTING LAP TIMES IN A FORMULA 1 RACE
USING DEEP LEARNING ALGORITHMS

A COMPARISON OF UNIVARIATE AND MULTIVARIATE TIME SERIES
MODELS

FLEUR BRUSIK

Abstract

Predictive modeling for professional racing has proved to be a challenge which can be

overcome only when domain knowledge of racing is integrated in the modeling techniques.

In particular, predicting lap times has proved to be challenging due to substantial external

factors. Previous work has suggested that complex time series forecasting scenarios like these

require multivariate forecasting rather than univariate forecasting. Therefore, this study

proposes to compare multivariate and univariate time series models in predicting lap times in

a Formula 1 race. To this end, two sets of univariate and multivariate deep neural

architectures are compared to each other when tested on the official Formula 1 timing data

from the seasons 2018-2023. Ultimately, the dataset is divided into low complexity and high

complexity races, allowing us to examine how univariate and multivariate models compare to

each other when dealing with different levels of complexity in time series. This study shows

that complex forecasting scenarios like predicted lap times in a Formula 1 race are most

accurately tackled by multivariate models. Nonetheless, dealing with the external factors

associated with these complex forecasting scenarios remains a challenge for these models. In

addition, this study advocates the manual selection of features by means of domain

knowledge of the forecasting scenario at hand. Furthermore, this study contributes to the field

of feature extraction mechanisms in deep neural networks by offering some premises for

future research.

3



1. Problem Statement and Research Goals
Formula 1 is a data driven and strategic sport, in which every strategic call is crucial

for the optimal end result. The most important ingredient for winning a race is setting the

fastest lap times compared to your competitors. Therefore, a model that is able to predict lap

times is a huge strategic asset in a race. Furthermore, the models and methods that are derived

from this research can be applied in various other sectors that benefit society. For example, it

could be used for predicting times in public transportation whereby schedules can be

optimized. In addition, it can be utilized to predict energy consumption patterns, potentially

leading to an improved energy consumption and enhanced sustainability.

However, predicting lap times in Formula 1 is not straightforward, as a race can be

very dynamic, with many external factors that impact the lap times. For example,

Tulabandhula and Rudin (2014) concluded that the challenges that are faced in designing a

prediction and decisions system for professional racing can be overcome only when domain

knowledge of racing is integrated in the modeling techniques. The track and race

characteristics are race dependent, which severely affect the lap times (Tulabandhula &

Rudin, 2014).

Predicting lap times in a Formula 1 race is an application of time series forecasting.

Traditional methods that are generally used for time series are univariate forecasting

techniques. In a purely univariate forecasting problem, the future values of a time series are

predicted only on its own past values. So, no exogenous variables are used in predicting

future values (Hewamalage et al., 2021). Hewamalage et al. (2021) state in their empirical

study on Recurrent Neural Networks (RNN’s) for time series forecasting that univariate

forecasting may not always be the best method in any forecasting scenario. They state that

complex forecasting scenarios where the time series units may be interdependent require

multivariate forecasting rather than univariate forecasting. Complex time series are those

time series that are affected by conflicting causal forces (Armstrong et al., 2005).

Given the challenges in predictive analysis for professional racing that were outlined

above, it can be assumed that predicting lap times in a Formula 1 race is such a complex

forecasting scenario which would potentially be most appropriately tackled by means of

multivariate forecasting methods. Following these insights in literature, the following main

research question can be formulated:

How do multivariate time series models compare to univariate time series models in

predicting lap times in a Formula 1 race?

4



The main research question can be divided into several sub-questions. Recurrent

Neural Networks have proven to be competitive forecast methods for time series analysis.

Specifically, Hewmalage et al. (2021) conclude in their extensive empirical study of existing

RNN architectures that a stacked architecture combined with Long Short-Term Memory

(LSTM) cells fed with data in a moving window format is a generally competitive model

across many different types of datasets. Hewmalage et al. (2021) have only tested pure

univariate forecasting scenarios. Therefore, it would be beneficial to know if any

improvement is achieved in predicting lap times in a Formula 1 race if a Multivariate LSTM

is implemented.

SQ1: To what extent can a Multivariate LSTM with domain specific exogenous variables

outperform a Univariate LSTM in predicting the lap times in a Formula 1 race?

A time series model extracts features that represent time series patterns. In an attempt

to facilitate this procedure, Karim et al. (2017) propose to augment a Fully Convolutional

Network (FCN) with LSTM RNN for time series classification, where the FCN functions as a

feature extractor and a temporal relationship detector. In this light, Karim et al. (2019)

propose to transform the univariate Long Short-Term Memory Fully Convolutional Network

(LSTM-FCN), into a multivariate time series classification model by expanding the fully

convolutional block with a squeeze-and-excitation block. They found that the multivariate

models perform significantly better than univariate models. This result is ascribed to the

squeeze-and-excitation block which is able to model the interdependencies between the

variables in a multivariate time series model (Karim et al., 2019). It would be useful to

explore whether these models that were used for time series classification perform well when

applied to this study’s time series forecasting problem.

SQ2: To what extent can a Multivariate LSTM-FCN with domain specific exogenous

variables outperform a Univariate LSTM-FCN in predicting lap times in a Formula 1

race?

This study found that a multivariate model is able to more accurately predict the lap

times in a Formula 1 race, and therefore is assumed to be better suited to tackle complex

5



forecasting scenarios than univariate models. Nonetheless, dealing with the external factors

associated with these complex forecasting scenarios remains a challenge for these models.

2. Literature Review

2.1 Recurrent Neural Networks for Time Series Forecasting

Hewamalage et al. (2021) find that a RNN with LSTM cells is generally competitive

across many times series forecasting scenarios. Testing the LSTM on datasets taken from

several forecasting competitions demonstrated that it was able to outperform the benchmark

techniques for almost all datasets. More details on the used datasets and performance in this

work can be found in Appendix A, Table 1. Furthermore, Hewamalage et al. (2021) conclude

that RNN’s are able to capture seasonality without deseasonalization of the data when all

series have homogeneous seasonal patterns, with sufficient lengths that cover the same

duration in time.

It can be argued that lap times in a Formula 1 race exhibit a mix of both

heterogeneous and homogeneous seasonal patterns. On the one hand, lap times have

homogeneous seasonal patterns, as they follow predictable and regular patterns across races.

For example, lap times tend to be faster after pitstops, or they increase during stints due to

tire degradation. On the other hand, Formula 1 races and lap times exhibit heterogeneous

seasonal patterns due to exogenous factors that affect the lap times, like changing weather

conditions and incidents.

Therefore, in predicting lap times in a Formula 1 race it is crucial to take both the

heterogeneous and homogeneous seasonal patterns into account. As outlined above, the

homogeneous patterns in Formula 1 race time series can be accounted for by a univariate

LSTM. To capture the heterogeneous patterns, other modeling techniques should be

implemented that can incorporate domain knowledge of racing (Tulabandhula & Rudin,

2014). This can potentially be accomplished by feeding the model some important exogenous

variables in addition to the lap times, such that it becomes a multivariate LSTM.

Previous work has been done on the comparison between univariate and multivariate

RNNs. Cao et al. (2012) find in their comparative analysis of the wind speed forecasting

accuracy of univariate and multivariate models that the multivariate RNN models perform

better than the univariate models. Moreover, their results indicate that incorporating other

measurable covariates yields significant improvement in RNN models. Similarly, Zhang et al.

(2004) find in their comparative analysis of univariate and multivariate models for earnings

6



per share forecasting that the incorporation of fundamental accounting variables improves

forecasting accuracy.

2.2 Feature extraction in Recurrent Neural Networks for Time Series Forecasting

In order to leverage its full potential, a time series model has to be able to extract

features that represent time series patterns. Multiple studies have experimented with

feature-based approaches that can help RNNs and other deep learning models to achieve this.

However, many of these methods require heavy feature engineering and feature extraction. In

this light, Fully Convolutional Networks (FCNs) have been demonstrated to provide

state-of-the-art performance for time series modeling. For example, Wang et al. (2017) find

that the FCN achieves premium performance in time series classification compared to other

state-of-the-art approaches. They demonstrate that the FCN is performed as a feature

extractor, without requiring heavy data preprocessing or feature engineering.

Similarly, Bai et al. (2018) demonstrate in their systematic evaluation of generic

convolutional and recurrent architectures for sequence modeling that a simple convolutional

architecture outperforms recurrent networks such as LSTMs across many sequence modeling

tasks. They propose a generic Temporal Convolutional Networks (TCN) designed for

sequential data, which is based on two principles: the network produces an output of the same

length as the input, and there is no leakage from the future into the past. Bai et al. (2018)

ascribe the superior performance of TCNs over RNNs to its substantially longer memory,

allowing the TCN to capture longer histories.

Karim et al. (2017) propose the Long Short-Term Memory Fully Convolutional

Network (LSTM-FCN) to overcome the above mentioned problems associated with

feature-based approaches in time series classification. The LSTM-FCN is the product of an

augmentation of a FCN with LSTM RNN, where the TCN functions as a feature extractor

and a temporal relationship detector in a FCN branch. The LSTM-FCN significantly

enhances the performance of FCNs, while requiring minimal preprocessing of the data

(Karim et al., 2017). Testing the model on all 85 UCR time series datasets (Chen et al., 2015),

demonstrated that the LSTM-FCN at least achieves state-of-the-art performance (Appendix

A, Table 1).

However, Karim et al. (2019) acknowledge that while the LSTM-FCN has high

performance for univariate datasets, its performance is not optimal when applied directly to

multivariate datasets. Therefore, Karim et al. (2019) introduce the Multivariate LSTM-FCN

(MLSTM-FCN) for multivariate time series. They propose to transform the LSTM-FCN into
7



a multivariate time series classification model by expanding the fully convolutional block

with a squeeze-and-excitation block. The squeeze-and-excite block models the

interdependencies between variables in a multivariate time series model, leading to

significant better performance of the multivariate models as compared to the univariate

models (Karim et al., 2019). It was demonstrated by means of testing the MLSTM-FCN on

35 benchmark datasets that it is able to attain state-of-the-art performance (Appendix A,

Table 1).

3. Methodology & Experimental Setup

Following the research gaps pointed out in the previous sections, an experiment was

set up to test how multivariate time series models compare to univariate time series models in

predicting lap times in a Formula 1 race. This section describes the entire experimental

procedure in detail. The complete experimental procedure is visualized in a flowchart in

Figure 1.

Figure 1: Flowchart of the experimental procedure.

3.1 Dataset Description

For this study, the necessary data was accessed by means of the FastF1 package

(FastF1, 2024). FastF1 gives access to F1 lap timing, position data, tyre data, track data, and

weather data. Amongst other, timing data and session information is only available from the

2018 season onwards (Fastf1, 2024). Therefore, the time series data will only originate from

8



the 2018 season onwards. The collected dataset consists of 136,122 lap times with 39

features, collected over 125 races.

Thus, the data consists of lap timing data and weather data. During a race, weather

data is updated once per minute. This means that there are generally one or two data points

per lap. Therefore, the weather features for a specific lap are either the first value within the

duration of the lap, or the last known value before the end of the lap if there are no values

within the duration of the lap (FastF1, 2024).

3.2 Feature Selection and Engineering

Regarding the multivariate models, additional features from the created dataset were

carefully selected to capture the dynamics of racing in the models. An overview of all

features with their characteristics can be found in Appendix B, Table 2. The choice for and

the characteristics of the exogenous features are described in the following paragraphs.

Compound. Compound refers to the type of tyre that was used during the lap. This

feature is known to be extremely important in modeling professional racing, as the compound

type has immediate effects on lap times (Tulabandhula & Rudin, 2014). Namely, some

compounds are optimal for durability while others are optimal for peak performance (Pirelli,

n.d.).

Tyre Life. Tyre Life can be defined as the number of laps that were driven on this

specific set of tyres. Tyre Life is a crucial feature for predicting lap times, because lap times

increase throughout an outing as a result of tyre wear down (Tulabandhula & Rudin, 2014).

Stint. A stint refers to the set of laps that are performed between two pitstops, or the

set of laps between a pitstop and the start or end of the race. This feature was selected

because generally drivers try to minimize tyre degradation by managing and stabilizing their

lap times more during stints early in the race as compared to stints later in the race.

Lap-type. This feature was not readily available from the dataset, and was instead

created based on the features PitOutTime and PitInTime, which has resulted in three

categories. Inlap can be defined as a lap in which the driver enters the pits, so when

PitInTime is not missing. Outlap can be defined as a lap in which the driver exited the pit, so

when the value for PitOutTime is not missing. When a lap is neither an Inlap or Outlap, it is

categorised as a regular lap. This feature was included because a pitstop has severe effects on

lap times. For example, drivers tend to drive faster in an Outlap.

Driver. The skills among drivers can vary, which in turn affects their lap times.

Empirical research indeed indicates that driver characteristics play an important role in
9



modeling applied to professional races, as Allender (2011) found that driver years of

experience play a significant role in predicting NASCAR races outcomes.

Team. Not only the drivers’ skills affect lap times. Every constructor builds their own

car, which makes the car’s performance constructor specific. Generally, the performance of

the car is heavily dependent on the constructors’ expertise and other resources, which in turn

impact the lap times.

Trackstatus. Irregularities occur very regularly in Formula 1, such as mechanical

failures or accidents. These irregularities have to be accounted for in our predictions by

including the feature Trackstatus in the models, which contains information on all types of

deployed flags and safety cars in a race. Every time the track status changes, a new value is

sent. This entails that this feature can have multiple values, resulting in status codes.

Position. The position in which a car is driving has substantial effects on its lap times.

Namely, the fresh air effect entails that lap times are generally lower for cars in front of the

group as compared to cars in the middle or back of the group (Tulabandhula & Rudin, 2014).

Lastly, a few important weather features were selected that directly affect lap times or

indirectly affect them by increasing tyre wear and degradation. See Table 2 in Appendix B for

an overview of all weather features.

3.3 Pre-processing

3.3.1 Input and Output Strategy

For the creation of input and output windows, a multiple-input multiple-output

(MIMO) strategy was implemented, where a moving window approach is used to feed the

inputs and create the outputs as in the work of Hewmalage et al. (2021) and Bandara et al.

(2020). The advantage of using a MIMO strategy over a single-output strategy is twofold.

First, forecasting the whole output window in one go allows incorporation of the

interdependencies between the time steps, instead of predicting each time step individually

(Hewmalage et al., 2021). Secondly, a single input would require the recurrent units to

remember the whole sequence’s history, while the use of input windows relaxes this task

(Hewmalage et al., 2021).

3.3.1.1 Moving Window Approach

In a moving window approach, the model takes a window of inputs and creates a

window of outputs respective to the time steps subsequent to the fed inputs. In the next time

step, the model takes an input window of the same size, shifted forward by one.
10



3.3.1.2 Window Sizes

In this study, a sequence can be defined as the sequence of laps for one driver in one

race. Regarding the choice of the window sizes, it was decided to align them with the average

stint length in races. In practice, this means that the input and output windows will both be

half the length of an average stint. This choice was founded on two important concerns. First,

from a Formula 1 team’s perspective, it is extremely valuable to get insights into how the

current stint will develop. In this way, the team will know when lap times are expected to

increase in the current stint, such that they can plan their next pit stop. However, from a

model performance perspective, the windows need to be of sufficient length to allow the

model to perform well. Concretely, this means that both the input and output windows in this

study will be of length 10, given the fact that the average stint length in the dataset is 20.25

laps. As a result, the sequences with less than 20 data points were excluded from analysis.

3.3.2 Processing Missing values

The dataset contained a number of missing values that had to be dealt with

appropriately. Pratama et al. (2016) state in their review of missing values handling methods

in time-series data that estimation techniques are overall the best option for missing values

handling, especially with large amounts of missing values. However, it can be argued that

methods like mean or mode imputation are not a sensible option in this study, as all lap times

and variables are heavily sequence specific, which would make imputation based on the

variable in the whole data unreliable. Furthermore, the percentage missing in this dataset is

only about 2% to 3%.

Given these considerations, it can be argued that deletion is an appropriate missing

values handling method in this study. Pratama et al. (2016) state that basic methods such as

deletion are simplistic and effective for low percentage of missingness. Only with larger

percentages of missing (>15%) will these methods affect the results of analysis.

Table 3 in Appendix C gives an overview of the number of missing values per

variable in the dataset. The missing values in this dataset can be categorized into three types

of missing values; first laps missing, consecutive laps missing, and individual values missing.

It was observed that the first lap time in a race is almost always unknown. Therefore, it was

decided to delete all first laps. Furthermore, it appeared that a missing lap time in a sequence

is commonly followed by one or more consecutive missing lap times. This is most likely due

to technical issues with measurements in the car. Therefore, it was decided to delete the

11



windows that contained two or more consecutive missing values in a row, because any

imputation method would incur too much unreliability.

The last category, individual values missing, required a different missing values

handling method, as listwise deletion would make too many windows unusable. Therefore,

the Next Observation Carried Backward (NOCB) technique was used, which uses the first

valid observation after the missing value and carries it backward (Ahn et al., 2022). This

technique was chosen because as mentioned in section 3.2, lap times evolve gradually by

increasing throughout an outing. Therefore, NOCB is a more appropriate technique than its

opposite technique Last Observation Carried Forward (LOCF), which carries forward the last

valid observation before the missing value. In this work, NOCB was used first to impute the

missing values for all features that had missing values. However, it might be the case that the

last value in the sequence is missing, therefore after NOCB, LOCF was used to handle these

last missing values.

3.3.3 Feature Encoding and Normalisation

All proposed models in this work require categorical features to be encoded. As

illustrated in section 3.2, the values of feature Trackstatus consist of a code, which is the

result of all status changes in that lap. This means that an observation can have multiple

values for this feature. Therefore, Trackstatus was encoded by means of multi-label encoding.

All other categorical features were encoded by means of one-hot encoding. Furthermore, the

lap times were converted to milliseconds. Ultimately, all numerical input values were

standardized to enable stable and efficient model training.

3.3.4 Splitting the Data and Predictions

The data has been splitted according to a traditional time series split which follows

strict chronological order. This means that the model is trained and developed on the earliest

partition of races and tested on a small partition of the latest races. The models are trained on

all windows that are generated from the sequences in the train set, and the models will predict

all windows in the test set that follow the first window of a sequence. Thus, the first actual

prediction in a race will be done once the first window has been fed to the model.

3.4 Experimental Design and Algorithms

This subsection gives an outline of the time series forecasting techniques employed in

this study. An overview of all tested models can be found in Table 4. These models are
12



evaluated against a baseline, which uses the last known lap time in the input window as an

estimate for all lap times in the predicted window. The models were trained using the Keras

library (Keras) with the TensorFlow backend (TensorFlow).

Model Origin Architecture

Univariate Long Short-Term

Memory (ULSTM)

Hewmalage et al.

(2021)

Stacked architecture with

LSTM cells

Multivariate Long Short-Term

Memory (MLSTM)

Hewmalage et al.

(2021)

Stacked architecture with

LSTM cells

Long Short-Term Memory Fully

Convolutional Network

(LSTM-FCN)

Karim et al. (2017) FCN augmented with

LSTM-RNN

Multivariate Long Short-Term

Memory Fully Convolutional

Network (MLSTM-FCN)

Karim et al. (2019) FCN with

squeeze-and-excitation

blocks, augmented with

LSTM-RNN

Table 4: Overview of the tested models.

3.4.1 ULSTM and MLSTM

The LSTM cell, initially introduced by Hochreiter and Schmidhuber (1997), is praised

for its ability to capture long-term dependencies in a sequence while mitigating vanishing

gradient issues. The LSTM cell has two components to its state that makes it stand out from

the basic RNN cell. Namely, the hidden state, which provides short-term memory, and the

cell state, which corresponds to the long-term memory. In addition, a gating scheme that

consists of input, forget and output gates is introduced. The input and forget gate jointly

determine the amount of the historical information that is kept in the current cell state and

how much of the current context is propagated to the next time steps.

In this study, the LSTM will be implemented as proposed by Hewamalage et al.

(2021), with a stacked architecture combined with LSTM cells. First, this architecture will be

13



implemented such that it is an univariate model of lap times. Subsequently, it will be

implemented as a multivariate model, by additionally feeding it the exogenous features.

3.4.1.1 Hyper Parameters for ULSTM and MLSTM

The hyper parameters for the LSTM models were carefully selected based on the

work by Hewamalage et al. (2021), adapted to this specific forecasting problem. The

motivation for all parameter choices are outlined below.

Regarding the optimiser, the Adam optimiser was selected with the initial learning

rate set to 0.001, as Hewamalage et al. (2021) found that the Adam optimizer usually required

a small range (0.001-0.1) to converge. Concerning the number of hidden layers in the RNN,

Hewamalage et al. (2021) strengthen the existing convention that a low value usually

performs better. Therefore, in this work two layers with both 64 cells were used. With regard

to the activation functions, Hewamalage et al. (2021) used the sigmoid activation function for

the hidden layers. However, in this study it was decided to select the Rectified Linear Unit

(ReLU) activation function for the hidden layers, because sigmoid and tanh functions are

more likely to cause vanishing gradient problems (Sharma et al., 2020). Sharma et al. (2020)

conclude in their review on activation functions in neural networks that ReLU is usually the

preferred choice as activation function in hidden layers. Regarding the activation of the

output, the linear activation function was considered to be the appropriate choice. Namely,

predicting lap times is an application of a regression problem, which requires a linear

activation function. An overview of all initial and tuned hyper parameters for the LSTM

models can be found in Appendix D, Table 5.

3.4.1.1.1 Hyper Parameter Tuning for ULSTM

The ULSTM was first run with the above mentioned initial parameter settings. The

hyperparameters were tuned one at a time, while keeping all others constant. According to

Hewamalage et al. (2021), the batch size needs to be chosen proportional to the size of the

dataset, such that the lower bound of the initial hyperparameter range is around a tenth of the

dataset size. Given the fact that this dataset is quite large (136,122 lap times), larger batches

of the following sizes were tested: 64, 128, 256. However, it appeared that increasing the

batch size reduced performance, such that the initial batch size of 32 leads to the best

performance. Additionally, tuning the number of epochs proved that the initial value of 10

epochs yielded the best performance as well. Lastly, experimenting with the number of layers

14



proved that a model with three layers with 64 cells each performed best as compared to a

higher number of layers (4 or more) or the initial setting of two layers.

3.4.1.1.2 Hyper Parameter Tuning for MLSTM

For the MLSTM, the tuned hyperparameters from the ULSTM were used (Appendix

D, Table 5). First, the MLSTM was run with all features (see section 3.2 and Appendix B,

Table 2). However, inspecting the training and validation loss indicated that the model is

overfitting, as the training loss continued to decrease, while the validation loss quickly

stopped decreasing. A plausible cause for this overfitting is the high model complexity

arising from the high dimensionality. Therefore, the hyperparameter tuning experiments for

the MLSTM consisted of combating the overfitting by searching for the optimal number and

combination of features.

As outlined earlier, Tulabandhula and Rudin (2014) found that the challenges that are

faced in designing a prediction system for professional racing can be overcome only when

domain knowledge of racing is integrated in the modeling techniques. They explain that

domain knowledge can be practically integrated into the modeling techniques by infusing it

into the feature generation and selection. Therefore, it was decided to search for the best

combination of features in this study by manually selecting the features by means of domain

knowledge of Formula 1. This domain knowledge has been gathered by consistently

watching Formula 1 races, and reading commentaries. The search was done manually with

multiple combinations of those features that were considered most important based on the

domain knowledge of Formula 1 racing: Trackstatus, Position, Lap-type, Tyre Life, and all

weather variables. An overview of why these features are important was given in section 3.2.

The search proved that an MLSTM with features Track Status and Position resulted in the

best performance.

3.4.2 LSTM-FCN and MLSTM-FCN

The LSTM-FCN is composed of a Fully Convolutional Network (FCN) and an

LSTM-RNN (Karim et al., 2017). Karim et al. (2017) use TCNs as a feature extractor in a

FCN branch. One dimensional filters are applied on the convolutional layers to capture how

the input evolves over the course of a time series. The FCN is then augmented with an

LSTM-RNN.

Karim et al. (2019) propose to transform the univariate LSTM-FCN into a

multivariate time series classification model by expanding the fully convolutional block with
15



a squeeze-and-excitation block to make the model applicable to multivariate time series. The

squeeze and excite mechanism adaptively rescales feature maps, acknowledging that not all

features contribute equally to subsequent layers. This can be seen as a form of learned self

attention, where the importance of the feature maps is adjusted to model feature

interdependencies at each time step (Karim et al., 2019).

3.4.2.1 Hyperparameters for LSTM-FCN and MLSTM-FCN

The hyper parameters for the LSTM-FCN models were carefully selected based on

the work by Karim et al. (2017) and Karim et al. (2019), adapted to this specific forecasting

problem. The motivation for all parameter choices are outlined below.

Regarding the model architecture, the fully convolutional block is comprised of three

stacked temporal convolutional layers accompanied by batch normalization. The

convolutional layers have filter sizes of 128, 256, and 128 respectively. The LSTM block is

comprised of one LSTM layer with 64 cells, followed by a dropout layer. Karim et al. (2017)

propose to use a high dropout rate of 80% to combat overfitting. Concerning the activation

functions, ReLU activation function was used for the convolutional layers as well as for the

LSTM layer. The concatenated output of the LSTM block and global pooling layer is passed

onto a linear activation function in the output layer instead of a softmax activation function

used by Karim et al. (2017), considering the fact that they use the LSTM-FCN for time series

classification, as opposed to time series forecasting in this study. Both models were trained by

means of the Adam optimizer, with an initial learning rate of 0.001. The number of epochs

was initially set at 10, following the ULSTM and MLSTM models. Simultaneously, an initial

batch size of 32 was used.

The only adjustment that had to be made to the architecture to transform the

LSTM-FCN into the MLSTM-FCN, was to conclude the first two convolutional blocks with

a squeeze-and-excite block. The only hyperparameter for the squeeze-and-excite block is the

reduction ratio, which was set to and kept at 16 following Karim et al. (2019). An overview

of all initial and tuned hyper parameters for the LSTM-FCN models can be found in

Appendix D, Table 6.

3.4.2.1.1 Hyper Parameter Tuning for LSTM-FCN

The LSTM-FCN was first run with the above mentioned initial parameter settings.

The hyperparameters were tuned one at a time, while keeping all others constant. First, as the

model showed no signs of overfitting, the high dropout rate of 80% was tuned. The optimal
16



rate was found to be 20%. With regard to the number of epochs, it was observed that training

loss as well as the validation loss continued to decrease while approaching the 10th epoch.

Tuning the number of epochs therefore proved that 20 epochs yielded the best performance.

Additionally, experiments with larger batch sizes indicated that the initial batch size of 32 led

to the best performance. Lastly, tuning the learning rate did not lead to any improvement.

3.4.2.1.2 Hyper Parameter Tuning for MLSTM-FCN

Considering the MLSTM’s inability to deal with the high dimensionality incurred

from using all features (see section 3.4.1.1.2), it was decided to run the MLSTM-FCN with

the same combination of features as in the MLSTM. However, for experimental purposes, an

attempt was made to run the MLSTM-FCN with all features. As expected, this model was

unable to learn and converge due to the high model complexity.

The MLSTM-FCN was run with the tuned hyperparameters from the LSTM-FCN.

Nonetheless, some hyperparameter tuning experiments were conducted to make sure that

these hyperparameter settings are optimal for this model as well. As such, the optimal number

of LSTM cells proved to be 128, instead of the initial value of 64. However, experiments with

the batch size, learning rate, and number of epochs demonstrated that the tuned values for the

LSTM-FCN were the optimal values for the MLSTM-FCN as well.

3.5 Evaluation methods

The models were evaluated with three different evaluation metrics to ensure robust

model comparison. First, mean squared error (MSE) was chosen, as it ensures that opposite

signed errors do not offset each other, which offers an overall view of the forecasting error

(Adhikari et al., 2013). Unfortunately, MSE penalises extreme errors. For this reason, mean

absolute percentage error (MAPE) was selected as an additional evaluation metric, which

represents the percentage of the average absolute error. This metric is especially suitable for

predicting lap times as it does not penalise extreme deviations, something which is highly

expected to happen in lap time sequences (Adhikari et al., 2013). Lastly, mean absolute error

(MAE) is selected in order to gain insights in the magnitude of the overall error (Adhikari et

al., 2013).

3.6 Error analysis: high and low complexity races

With the aim of offering a conclusive answer to the research question, the data set has

been splitted into two groups; high and low complexity races, where high complexity races
17



are races in which rainfall was present, and low complexity races are those races in which no

rainfall was present. Both the best performing univariate model and multivariate model were

used to train and test on these separate groups. In this way, conclusions can be drawn on how

univariate and multivariate models compare to each other when dealing with different levels

of complexity in the data.

The sequences from a race were added to the high complexity group when rainfall

was present in at least one lap during the race. This has resulted in 18 high complexity races

and 107 low complexity races. Considering the fact that the high complexity group is

substantially smaller than the low complexity group, it was decided to decrease the batch size

for the high complexity group. All other hyper parameters except for the number of epochs

were the same as in the models that were used for the whole dataset, to ensure unbiased

comparison between the groups and models. Similarly, the same evaluation metrics were

used.

4. Results

In order to answer this study’s research question, the evaluation metrics for the

univariate and multivariate models will be compared, which can be found in Table 7. A

helpful remark for interpretation of these metrics is that the lap times are measured in

milliseconds, where the average lap time in the test set amounts to 90407 milliseconds.

Model
Name

Train
MSE

Train
MAE

Train
MAPE

Test
MSE

Test
MAE

Test
MAPE

Baseline - - - 130676431 4774 4,9%

ULSTM 66656808 4223 4,5% 91758211 4684 4,7%

MLSTM 54747748 3774 3.9% 80647734 3958 3.9%

LSTM-FCN 73390136 5353 5,8% 84052706 4005 3,9%

MLSTM-FCN 49250432 3709 3,9% 77825885 4104 4,0%

Table 7: Overview of results for the compared models in the experiment.

4.1 Results ULSTM and MLSTM

The MLSTM was able to outperform the baseline, while the ULSTM performs nearly

similarly. In addition, it can be observed that both models perform almost equally on the
18



training and test set. When comparing the ULSTM and MLSTM, it can be observed that the

MLSTM (MSE = 80647734, MAE = 3958, MAPE = 3,9%) performs better than the ULSTM

(MSE = 91758211, MAE = 4684, MAPE = 4,7%). This suggests that adding domain specific

exogenous variables enables an LSTM to more accurately predict lap times in a Formula 1

race.

Figure 2: The plot of the actual lap times compared to the predicted lap times by the ULSTM
and MLSTM, for one sequence.

Figure 2 shows the plot of the actual lap times compared to the predicted lap times by

the ULSTM and MLSTM, for a randomly selected sequence. As mentioned earlier, a

sequence in this study can be defined as the sequence of laps for one driver in one race.

Figure 3, in Appendix E shows four additional plots from randomly selected sequences. The

plots demonstrate that there is a lag in the predicted values, which is approximately of the

same size as a window. This suggests that the ULSTM and MLSTM mimic the former seen

window as a prediction for the current window. Interestingly, in line with the above

observation that the MLSTM performs better than the ULSTM, it can be observed that the

MLSTM trends are a more accurate mimicry of the actual trends than the ULTSM trends.

However, both models highly underestimate peaks in the lap times. At a first glance, it might

seem that the baseline performs better than the models, as it seems to follow the actual trend

19



better. However, in doing so it tends to make huge errors, as it is always one lap behind. This

will particularly produce huge errors in lap time peaks such as in Figure 2 around lap 14.

4.2 Results LSTM-FCN AND MLSTM-FCN

Both the LSTM-FCN and MLSTM-FCN were able to slightly outperform the baseline

model. In addition, it is slightly remarkable that the LSTM-FCN performs better on the test

set than the training set. When comparing the LSTM-FCN (MSE = 84052706, MAE = 4005,

MAPE = 3,9%) and MLSTM-FCN (MSE = 77825885, MAE = 4104, MAPE = 4,0%), it can

be observed that there is no strong evidence that any of the two models performs substantially

better. Moreover, they do not perform better than the MLSTM. However, the LSTM-FCN

does substantially outperform the ULSTM.

Figure 4: The plot of the actual lap times compared to the predicted lap times by the
LSTM-FCM and MLSTM-FCN, for one sequence.

Figure 4 shows the plot of the actual lap times compared to the predicted lap times by

the LSTM-FCN and MLSTM-FCN, for the same sequence as in Figure 2. Figure 5, in

Appendix E shows four additional plots. The plots do not demonstrate the same apparent

prediction lag as the ULSTM and MLSTM did. This suggests that the LSTM-FCN and

MLSTM-FCN do not merely mimic the former seen windows as a prediction for the current

20



window. In line with the results described above, the MLSTM-FCN trends seem to be overall

more accurate than the LSTM-FCN trends.

4.3 Error analysis: delving into a sequence

Thus far, the results suggest that all models have difficulties with accurately

predicting the lap times, especially when there is a peak in the lap times. An example of such

a peak can be found in Figure 2 around laps 4 and 14. Figuring out what conditions cause

these peaks in the lap times can uncover the conditions that the models struggle with most.

Appendix F, Table 7 offers the explanatory variables per lap for the sequence in Figure 2,

resulting from the multivariate data used in this study.

When looking at laps 3 and 4 in Table 7, it can be observed that all features stay

stable, except for TrackStatus which goes from ‘Track clear’ (1) to ‘Yellow flag’ (2)1.

Another peak starts around lap 10. It can again be observed that when moving from lap 10 to

lap 11, the track status changes from ‘Track clear’ to ‘Yellow flag’. The same goes for the

peak around lap 14, as the track status shows the same change moving from lap 13 to 14.

These observations suggest that a peak tends to be caused by a change in track status. Thus, a

change in track status can be seen as a condition that the models struggle with. When looking

at laps 24 and 25 in Table 7, it can be observed that the driver goes for a pitstop, based on the

feature ‘LapType’. Interestingly, the lap times stay consistent during this event. This suggests

that a pit stop is not a direct cause of a peak in lap times, and therefore is not a condition

which underlies the models’ weak performances.

Model
Name

Train
MSE

Train
MAE

Train
MAPE

Test
MSE

Test
MAE

Test
MAPE

LSTM-FCN no rain 67892480 5389 5,8% 55024178 3479 3,4%

MLSTM-FCN no rain 16668492 2179 2,3% 26537436 2575 2,6%

LSTM-FCN rain 121087960 7975 8,6% 78678865 5657 6,2%

MLSTM-FCN rain 37122796 3255 3,3% 56659053 4000 4,3%

Table 8: Overview of results for the error analysis.

1 The yellow flag is a signal of danger (Seymour, 2023). Additionally, the overview of all

feature categories in Appendix B Table 2 is helpful in interpreting these features.

21



4.4 Results error analysis: high and low complexity races

As outlined in section 3.6, in order to analyse the errors, the data set was divided into

high complexity races in which rain was present and low complexity races in which rain was

not present. The LSTM-FCN and MLSTM-FCN have been separately trained and tested on

these groups. The results can be found in Table 8.

4.4.1 Results group no rain

Again, it appears that the LSTM-FCN performs better on the test data than on the

training data. When looking at the no rain group, it can be observed that the MLSTM-FCN

(MSE = 26537436, MAE = 2575, MAPE = 2,6%) performs substantially better than the

LSTM-FCN (MSE = 55024178, MAE = 3479, MAPE = 3,4%). This finding is interesting,

because the results in section 4.2 demonstrated that the MLSTM-FCN does not confidently

outperform the LSTM-FCN. This suggests that there is greater difference between the

LSTM-FCN and MLSTM-FCN in favor of the latter when used on specific groups in the

data, which is in this case less complex data.

Figure 6: The plot of the actual lap times compared to the predicted lap times by the
LSTM-FCM and MLSTM-FCN, for one sequence in the no rain group.

22



Figure 6 shows the plot of the actual lap times compared to the predicted lap times by

the LSTM-FCN and MLSTM-FCN, for one sequence in the no rain group. Figure 7, in

Appendix E shows four additional plots. Interestingly, in line with the above mentioned

result, it can be observed in the plots that the MLSTM-FCN trends follow the actual trends

more accurately than the LSTM-FCN trends do. This finding strengthens the indication that

the MLSTM-FCN can outperform the LSTM-FCN under some conditions. However, it is still

apparent that the models have difficulties with estimating peaks accurately.

4.4.2 Results group rain

First of all, it can be observed that there are some differences in the performances of

the models for the training and test sets, however these differences are not outstanding. When

looking at the rain group, it can again be observed that the MLSTM-FCN (MSE = 56659053,

MAE = 4000, MAPE = 4,3%) performs better than the LSTM-FCN (MSE = 78678865, MAE

= 5657, MAPE = 6,2%). This strengthens the conviction that the MLSTM-FCN outperforms

the LSTM-FCN. When comparing the results for the rain group to the no rain group, it is

proved that the models have more difficulties with predicting more complex sequences.

However, in any situation, the MLSTM-FCN is superior to its univariate counterpart.

Figure 8: The plot of the actual lap times compared to the predicted lap times by the
LSTM-FCM and MLSTM-FCN, for one sequence in the rain group.

23



Figure 8 shows the plot of the actual lap times compared to the predicted lap times by

the LSTM-FCN and MLSTM-FCN, for one sequence in the rain group. Figure 9, in

Appendix E shows four additional plots. The plots demonstrate that the MLSTM-FCN trends

follow the actual trends more accurately than the LSTM-FCN trends do. Once again, this

strengthens the support of choosing the multivariate model over the univariate model.

5. Discussion

The research goal of this study was to determine how multivariate and univariate

times series models deal with complex forecasting scenarios and specifically how they

compare to each other in predicting lap times in a Formula 1 race.

5.1 Discussion of results

A first interesting finding is that the MLSTM performed better than the ULSTM,

which means that in predicting lap times in a Formula 1 race it is beneficial to add domain

specific exogenous features in addition to the lap times in an LSTM. This finding is in line

with existing work on the comparison between univariate and multivariate RNNs (Zhang et

al., 2004; Cao et al., 2012).

However, when adding those features it is required that one is critical in choosing

them, as the MLSTM suffered from high model complexity and dimensionality when run

with the whole set of initially selected features. This instance of the curse of dimensionality is

not surprising, as this a broad problem in data analysis and in time series forecasting

(Verleysen et al., 2005). In this study, the features for the multivariate models were manually

selected by using domain knowledge in the choice for the features, based on the work of

Tulabandhula and Rudin (2014).

When comparing the LSTM-FCN and MLSTM-FCN it was initially found that the

difference in performance was not large enough to strongly prove that the MLSTM-FCN

leads to more accurate predictions. However, it was found that even though the LSTM-FCN

models did not outperform the MLSTM, the LSTM-FCN did perform substantially better

than the ULSTM. This finding suggests that a univariate forecasting scenario benefits from

integrated feature extraction mechanisms in a model, while in this study, such a large benefit

was not found in a multivariate forecasting scenario. One potential explanation for this

contradicting observation is that a simple univariate model needs some facilitated feature

extraction mechanisms, as time series patterns are hidden in a single value. While these

24



mechanisms are less needed in multivariate models as these contain exogenous variables that

already represent and explain some of the underlying patterns in the time series.

In the error analysis, the MLSTM-FCN outperformed the LSTM-FCN in both the low

and high complexity group. This is an interesting finding when compared to the discussion

above, because for some reason the MLSTM-FCN is only superior to its univariate

counterpart in this study when used on separate groups. One potential explanation for this is

that a division in distinct groups based on some criterion removes one major source of noise

in the data. This removal of noise enables the squeeze-and-excite block to better model the

interdependencies between the variables in the MLSTM-FCN. This finding and reasoning

offer an interesting perspective on the work of Karim et al. (2017) and Karim et al. (2019).

In order to provide more interpretability in the model errors, an effort was made to

uncover the conditions that cause the models to struggle with accurately predicting the lap

times. It was found that while the models perform reasonably when the lap times are stable

and external factors are minimal, none of the models are capable of accurately predicting

peaks in the lap times that are caused by external factors, such as on track incidents. This

finding confirms that predictive analysis for professional racing is challenging, due to many

external factors that impact a race, which was contended by Tulabandhula and Rudin (2014).

5.2 Limitations

The primary limitation of this study is the limited consideration with respect to

inconsistencies in the data set. Namely, Formula 1 regulations change slightly every year, and

every few years there is even a large change in regulations. This implies for example that

there were different categories of tyres in 2018 as compared to 2023. This study used all

sequences from all races, and did not take into account any inconsistencies that may exist

between them. This may have led to decreased reliability of the data.

What is more, this study did not experiment with different window sizes and

strategies due to limited resources. The window sizes were held constant at ten, which is

relatively short. Experimenting with larger windows could have potentially enabled the

models to better capture long-term dependencies. In addition, more exploration could have

been done on different types of windows, like for example expanding windows. These

restrictions reduce the robustness of the study and limit its generalizability.

Lastly, although this study did analyze the model errors and behavior which has

provided a certain extent of model interpretability, it would have been interesting to conduct

25



this analysis for more sequences. Unfortunately, this was not done due to resource

constraints.

5.3 Relevance and future research

For the broader domain of time series forecasting, this study has found evidence that

complex forecasting scenarios benefit from multivariate rather than univariate models, which

was already proposed by Hewamalage et al. (2021). This insight has the potential to improve

other complex forecasting scenarios in other sectors that benefit broader society. Future

research could gain more insights into how univariate and multivariate models compare to

each other when dealing with different levels of complexity in the data by comparing model

performance on complex forecasting scenarios and less complex forecasting scenarios.

Furthermore, this study has demonstrated that without automated techniques and

methods for feature selection, the features can be selected manually by means of domain

knowledge of the complex forecasting scenario at hand. This study has proved that this

selection method offers a robust and effective starting point in the case of constraints of

resources. This finding has significant societal relevance, as it implies that even in

resource-limited settings, such as small businesses or underfunded research initiatives,

effective forecasting of complex scenarios can still be achieved.

Despite infusing domain knowledge of racing into the modeling techniques based on

Tulabandhula and Rudin (2014), this study did not succeed in overcoming the challenges in

predictive analysis for professional racing, as the models are still not able to cope with the

external factors that impact a Formula 1 race. In this light, this study sees opportunities in

predicting lap times in Formula 1 by choosing the set of features race dependent. This means

that different multivariate models with different selections of features could be trained for

distinct types of races. For example, track status may be the most important feature in a street

race, as these races are known to have an increased risk of incidents. By creating these race

specific models, the domain knowledge of racing is even more integrated into the modeling

techniques, which hopefully allows the models to better cope with external factors.

However, there are other opportunities for incorporating domain knowledge into the

modeling techniques which can facilitate the models’ ability to cope with these conditions.

Namely, in order to tackle the forecasting of complex time series, Armstrong et al. (2005)

propose decomposition of complex time series by causal forces. Domain knowledge is used

to identify different forces for component series, after which forecasts are obtained for each

26



component instead of for the global series. It would be interesting to apply this technique on

Formula 1 races and this specific dataset.

Finally, future work could focus on the mixed results regarding the LSTM-FCN and

MLSTM-FCN. One suggestion that was offered in this study stated that multivariate models

might benefit less from feature extraction mechanisms because the exogenous features

already explain and represent the underlying patterns in the time series. Another suggestion

offered in this study was that an MLSTM-FCN is only able to outperform an LSTM-FCN

when the noise in the data is reduced. Future studies could dive into these reasoning and

empirically test them.

6. Conclusion

This study contributes to the field of time series forecasting and to the sub-domain of

comparing univariate and multivariate time series models in complex forecasting scenarios

like Formula 1 racing by answering the following research question:

How do multivariate time series models compare to univariate time series models in

predicting lap times in a Formula 1 race?

This study has demonstrated that multivariate models perform better on a complex

forecasting scenario than univariate models. Feature selection for the multivariate models was

done by manually selecting the features using domain knowledge. Despite its minor

drawbacks, feature selection by means of domain knowledge proves to be efficient and offers

further opportunities in the field of multivariate time series models. Furthermore, potential

solutions were given for the models’ limited ability to deal with the external factors

associated with complex forecasting scenarios. Finally, this study has offered valuable

insights in the domain of feature extraction of patterns within time series, and offers some

interesting reasoning and recommendations that can be further examined in future studies.

7. Source/code/ethics/technology statement

The data has been acquired from the FastF1 API through the FastF1 python package.

Work on this thesis did not involve collecting data from human participants or animals. The

original owner of the data and code used in this thesis retains ownership of the data and code

during and after the completion of this thesis. The thesis code can be accessed through the

following GitHub repository: https://github.com/fbrusik/MasterThesis_DS_FleurBrusik.
27

https://github.com/fbrusik/MasterThesis_DS_FleurBrusik


The code used for the LSTM-FCN model used the implementation proposed by Karim et al.

(2017) acquired from a GitHub repository https://github.com/titu1994/LSTM-FCN. The code

used for the LSTM-FCN model used the implementation proposed by Karim et al. (2019)

acquired from a GitHub repository https://github.com/titu1994/MLSTM-FCN. All figures

and tables in this study are made by the author.

28

https://github.com/titu1994/LSTM-FCN
https://github.com/titu1994/MLSTM-FCN


References

Ahn, H., Sun, K., & Kim, K. P. (2022). Comparison of missing data imputation methods in

time series forecasting. Computers, Materials & Continua, 70(1), 767-779.

https://doi.org/10.32604/cmc.2022.019369

Allender, M. (2008). Predicting the outcome of NASCAR races: The role of driver

experience. Journal of Business & Economics Research (JBER), 6(3).

https://doi.org/10.19030/jber.v6i3.2403

Armstrong, J. S., Collopy, F., & Yokum, J. T. (2005). Decomposition by causal forces: a

procedure for forecasting complex time series. International Journal of forecasting,

21(1), 25-36. https://doi.org/10.1016/j.ijforecast.2004.05.001

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional

and recurrent networks for sequence modeling. arXiv preprint.

https://doi.org/10.48550/arXiv.1803.01271

Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using

recurrent neural networks on groups of similar series: A clustering approach. Expert

systems with applications, 140, 112896. https://doi.org/10.1016/j.eswa.2019.112896

Cao, Q., Ewing, B. T., & Thompson, M. A. (2012). Forecasting wind speed with recurrent

neural networks. European Journal of Operational Research, 221(1), 148-154.

https://doi.org/10.1016/j.ejor.2012.02.042

Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., & Batista, G. (2015). The

UCR Time Series Classification Archive. Retrieved from

www.cs.ucr.edu/~eamonn/time_series_data/

FastF1. (2024). https://docs.fastf1.dev/

29

https://doi.org/10.32604/cmc.2022.019369
https://doi.org/10.19030/jber.v6i3.2403
https://doi.org/10.1016/j.ijforecast.2004.05.001
https://doi.org/10.48550/arXiv.1803.01271
https://doi.org/10.1016/j.eswa.2019.112896
https://doi.org/10.1016/j.ejor.2012.02.042
http://www.cs.ucr.edu/~eamonn/time_series_data/
https://docs.fastf1.dev/


Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent neural networks for time

series forecasting: Current status and future directions. International Journal of

Forecasting, 37(1), 388-427. https://doi.org/10.1016/j.ijforecast.2020.06.008

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2017). LSTM fully convolutional networks

for time series classification. IEEE access, 6, 1662-1669.

https://doi.org/10.1109/access.2017.2779939

Karim, F., Majumdar, S., Darabi, H., & Harford, S. (2019). Multivariate LSTM-FCNs for

time series classification. Neural networks, 116, 237-245.

https://doi.org/10.1016/j.neunet.2019.04.014

Keras. (n.d.). Keras: The Python deep learning API. Retrieved from https://keras.io/

Pei, W., Dibeklioğlu, H., Tax, D. M., & van der Maaten, L. (2017). Multivariate time-series

classification using the hidden-unit logistic model. IEEE transactions on neural

networks and learning systems, 29 (4), 920-931.

https://doi.org/10.1109/tnnls.2017.2651018

Pirelli. (n.d.). F1 Tyres. https://www.pirelli.com/tyres/en-ww/motorsport/f1/tyres.

Pratama, I., Permanasari, A. E., Ardiyanto, I., & Indrayani, R. (2016, October). A review of

missing values handling methods on time-series data. In 2016 international conference

on information technology systems and innovation (ICITSI), 1-6. IEEE.

https://doi.org/10.1109/icitsi.2016.7858189

Schäfer, P., & Leser, U. (2017). Multivariate time series classification with WEASEL+

MUSE. arXiv preprint arXiv. https://doi.org/10.48550/arXiv.1711.11343

30

https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/access.2017.2779939
https://doi.org/10.1016/j.neunet.2019.04.014
https://keras.io/
https://doi.org/10.1109/tnnls.2017.2651018
https://www.pirelli.com/tyres/en-ww/motorsport/f1/tyres
https://doi.org/10.1109/icitsi.2016.7858189
https://doi.org/10.48550/arXiv.1711.11343


Seymour, M. (2023). The beginner’s guide to Formula 1 flags. Formula 1. Retrieved from:

https://www.formula1.com/en/latest/article/the-beginners-guide-to-formula-1-flags.T5D

qOqbWI6S4Va8Y5yMld

Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks.

International Journal of Engineering Applied Sciences and Technology 4(12), 310-316.

TensorFlow. (n.d.) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

Retrieved from https://www.tensorflow.org/

Tulabandhula, T., & Rudin, C. (2014). Tire changes, fresh air, and yellow flags: challenges in

predictive analytics for professional racing. Big data, 2(2), 97-112.

http://dx.doi.org/10.1089/big.2014.0018

Verleysen, M., & François, D. (2005). The Curse of Dimensionality in Data Mining and Time

Series Prediction. In Computational Intelligence and Bioinspired Systems, 758–770.

Springer Berlin Heidelberg. https://doi.org/10.1007/11494669_93

Wang, Z., Yan, W., & Oates, T. (2017). Time series classification from scratch with deep

neural networks: A strong baseline. International joint conference on neural networks

(IJCNN), 1578-1585. IEEE. https://doi.org/10.1109/ijcnn.2017.7966039

Zhang, W., Cao, Q., & Schniederjans, M. J. (2004). Neural network earnings per share

forecasting models: A comparative analysis of alternative methods. Decision Sciences,

35(2), 205-237. https://doi.org/10.1111/j.00117315.2004.02674.x

31

https://www.formula1.com/en/latest/article/the-beginners-guide-to-formula-1-flags.T5DqOqbWI6S4Va8Y5yMld
https://www.formula1.com/en/latest/article/the-beginners-guide-to-formula-1-flags.T5DqOqbWI6S4Va8Y5yMld
https://www.tensorflow.org/
http://dx.doi.org/10.1089/big.2014.0018
https://doi.org/10.1007/11494669_93
https://doi.org/10.1109/ijcnn.2017.7966039
https://doi.org/10.1111/j.00117315.2004.02674.x


Appendix A - Literature

Origin Model Datasets Performance

Hewamalage et al.

(2021)

LSTM Several datasets

from the following

forecasting

competitions:

• CIF 2016

Forecasting

Competition Dataset

• NN5 Forecasting

Competition Dataset

• M3 Forecasting

Competition Dataset

• M4 Forecasting

Competition Dataset

• Wikipedia Web

Traffic Time Series

Forecasting

Competition Dataset

• Tourism

Forecasting

Competition Dataset

The model

outperforms the

benchmark

techniques on all the

datasets except for

the M4 monthly

dataset, in terms of

both the SMAPE

and MASE error

metrics.

Karim et al. (2017) LSTM-FCN The model has been

tested on all 85 UCR

time series datasets

(Chen et al., 2015).

Model evaluation

was done by means

of accu-

racy, arithmetic

rank, geometric

rank, the Wilcoxon

signed-rank test, and

mean per class error.

The LSTM-FCN

32



overall achieves

state-of-the-art

performance, and it

is able to

outperform

state-of-the art

models in at least 43

datasets.

Karim et al. (2019) MLSTM-FCN The model has been

tested on 35

benchmark datasets

from various fields,

of which five were

formerly used by Pei

et al. (2018), and 20

were used by

Schäfer et al. (2017).

Model evaluation

was done by means

of accu-

racy, arithmetic

rank, geometric

rank, the Wilcoxon

signed-rank test, and

mean per class error.

The MLSTM-FCN

attains

state-of-the-art

results for most of

the datasets, namely

28 out of 35.

Wang et al. (2017) FCN The model has been

tested on a subset of

the UCR time series

datasets (Chen et al.,

2015), which

includes 44 distinct

time series datasets.

The

FCN achieves

premium

performance to other

state-of-the-art

approaches.

33



Bai et al. (2018) LSTM, GRU, RNN,

TCN

The models are

evaluated on tasks

that have been

commonly used to

benchmark the

performance of

different RNN

sequence modeling

architectures:

• The adding

problem

• Sequential MNIST

and P-MNIST

• Copy memory

• JSB Chorales and

Nottingham

• PennTreebank

• Wikitext-103

• LAMBADA

• text8

A simple

convolutional

architecture

outperforms

canonical recurrent

networks such as

LSTMs across a

diverse range of

tasks and datasets

Table 1: Details on the used most important literature works.

34



Appendix B - Features

Feature Name Feature Type Categories

Laptime Numerical -

Compound Categorical Hard, Hypersoft, Intermediate, Medium,

Soft, Supersoft, Ultrasoft, Wet

Tyre Life Numerical -

Stint Numerical -

Lap-type Categorical Inlap, Outlap, Lap

Driver Categorical AIT, ALB, ALO, BOT, DEV, ERI, FIT,

GAS, GIO, GRO, HAM, HAR, HUL,

KUB, KVY, LAT, LAW, LEC, MAG,

MAZ, MSC, NOR, OCO, PER, PIA,

RAI, RIC, RUS, SAI, SAR, SIR, STR,

TSU, VAN, VER, VET, ZHO

Team Categorical Alfa Romeo, Alfa Romeo Racing,

AlphaTauri, Alpine, Aston Martin,

Ferrari, Force India, Haas F1 Team,

McLaren, Mercedes, Racing Point, Red

Bull Racing, Renault, Sauber, Toro

Rosso, Williams

Trackstatus Categorical ‘1’: Track clear, ‘2’: Yellow flag, ‘4’:

Safety Car, ‘5’: Red Flag, ‘6’: Virtual

Safety Car deployed, ‘7’: Virtual Safety

Car ending

Position Numerical -

Weather - Air Temperature Numerical -

35



Weather - Humidity Numerical -

Weather - Pressure Numerical -

Weather - Rainfall Categorical True, False

Weather - Track Temperature Numerical -

Weather - Wind Direction Numerical -

Weather - Wind Speed Numerical -

Table 2: An overview of all features for the multivariate models.

36



Appendix C - Missing values in the data

Feature Name Missing Sum - Including

First laps

Missing Sum - Excluding

First laps

Laptime 2646 2533

Stint 343 18

Compound 343 18

Tyre Life 343 18

Trackstatus 177 177

Position 177 177

Total Missing Values 4029 2941

Percentage Missing

Dataset

2.95% 2.16%

Table 3: An overview of the number of missing values per variable in the dataset. Shown
before and after the deletion of all first laps. The features that had no missing values were
excluded from this table.

37



Appendix D - Hyper parameter settings

Hyper Parameters Initial Value Tuned Value

Optimizer Adam Adam

Learning rate 0.001 0.001

Batch size 32 32

Hidden Layers Two layers with 64 cells Three layers with 64 cells

Activation Function - Hidden

State

ReLU ReLU

Activation Function - Output Linear Linear

Loss Function MSE MSE

Epochs 10 10

Table 5: Overview of the initial and tuned hyper parameter settings for the LSTM models.

38



Hyper Parameters Initial Value Tuned Value:

LSTM-FCN

Tuned Value:

MLSTM-FCN

Optimizer Adam Adam Adam

Learning rate 0.001 0.001 0.001

Batch size 32 32 32

Convolutional Layers Three layers with

filter sizes of 128,

256, and 128

Three layers with

filter sizes of 128,

256, and 128

Three layers with

filter sizes of 128,

256, and 128

LSTM Layer One layer with 64

cells

One layer with 64

cells

One layer with 128

cells

Dropout rate 80 20 20

Reduction rate - - 16

Activation Function -

Layers

ReLU ReLU ReLU

Activation Function -

Output

Linear Linear Linear

Loss Function MSE MSE MSE

Epochs 10 20 20

Table 6: Overview of the initial and tuned hyper parameter settings for the LSTM-FCN
models.

39



Appendix E - Actual versus. Predicted plots

Figure 3: Plots of the actual lap times compared to the predicted lap times by the ULSTM and
MLSTM, for four sequences.

40



Figure 5: Plots of the actual lap times compared to the predicted lap times by the LSTM-FCN
and MLSTM-FCN, for four sequences.

41



Figure 7: Plots of the actual lap times compared to the predicted lap times by the LSTM-FCN
and MLSTM-FCN, for four sequences in the no rain group.

42



Figure 9: Plots of the actual lap times compared to the predicted lap times by the LSTM-FCN
and MLSTM-FCN, for four sequences in the rain group.

43



Appendix F - Error analysis of a sequence

Lap Driver Stint Compound TyreLife TrackStatus Position Rainfall LapType

1 RUS 2.0 HARD 7.0 1.0 6.0 TRUE Lap

2 RUS 2.0 HARD 8.0 1.0 6.0 TRUE Lap

3 RUS 2.0 HARD 9.0 1.0 6.0 TRUE Lap

4 RUS 2.0 HARD 10.0 2.0 6.0 TRUE Lap

5 RUS 2.0 HARD 11.0 2.0 6.0 TRUE Lap

6 RUS 2.0 HARD 12.0 1.0 6.0 TRUE Lap

7 RUS 2.0 HARD 13.0 1.0 6.0 TRUE Lap

8 RUS 2.0 HARD 14.0 1.0 6.0 TRUE Lap

9 RUS 2.0 HARD 15.0 1.0 6.0 TRUE Lap

10 RUS 2.0 HARD 16.0 1.0 6.0 TRUE Lap

11 RUS 2.0 HARD 17.0 2.0 5.0 TRUE Lap

12 RUS 2.0 HARD 18.0 1.0 5.0 TRUE Lap

13 RUS 2.0 HARD 19.0 1.0 5.0 TRUE Lap

14 RUS 2.0 HARD 20.0 2.0 5.0 TRUE Lap

15 RUS 2.0 HARD 21.0 1.0 6.0 TRUE InLap

16 RUS 2.0 HARD 22.0 1.0 6.0 TRUE Outlap

17 RUS 2.0 HARD 23.0 1.0 5.0 TRUE Lap

18 RUS 2.0 HARD 24.0 1.0 5.0 TRUE Lap

19 RUS 2.0 HARD 25.0 1.0 5.0 TRUE Lap

20 RUS 2.0 HARD 26.0 26.0 5.0 TRUE Lap

21 RUS 2.0 HARD 27.0 64.0 5.0 TRUE Lap

22 RUS 2.0 HARD 28.0 4.0 5.0 TRUE Lap

23 RUS 2.0 HARD 29.0 4.0 5.0 TRUE Lap

24 RUS 2.0 HARD 30.0 45.0 5.0 TRUE InLap

44



25 RUS 3.0 MEDIUM 1.0 1.0 5.0 FALSE Outlap

26 RUS 3.0 MEDIUM 2.0 1.0 5.0 FALSE Lap

27 RUS 3.0 MEDIUM 3.0 1.0 5.0 FALSE Lap

28 RUS 3.0 MEDIUM 4.0 1.0 5.0 FALSE Lap

29 RUS 3.0 MEDIUM 5.0 1.0 5.0 FALSE Lap

30 RUS 3.0 MEDIUM 6.0 1.0 5.0 FALSE Lap

31 RUS 3.0 MEDIUM 7.0 1.0 5.0 FALSE Lap

32 RUS 3.0 MEDIUM 8.0 1.0 5.0 TRUE Lap

33 RUS 3.0 MEDIUM 9.0 1.0 5.0 FALSE Lap

34 RUS 3.0 MEDIUM 10.0 1.0 5.0 FALSE Lap

35 RUS 3.0 MEDIUM 11.0 1.0 5.0 FALSE Lap

36 RUS 3.0 MEDIUM 12.0 1.0 5.0 FALSE Lap

37 RUS 3.0 MEDIUM 13.0 1.0 5.0 FALSE Lap

38 RUS 3.0 MEDIUM 14.0 1.0 5.0 FALSE Lap

39 RUS 3.0 MEDIUM 15.0 1.0 5.0 FALSE Lap

Table 7: Error analysis; the explanatory variables for the sequence in Figures 2 and 4.

45


