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COMPARISON OF MACHINE LEARNING
MODELS AND THEIR PREDICTIVE POWER
WITH REGARD TO CRYPTOCURRENCY

PRICE MOVEMENTS

Savas Murt

Abstract

Cryptocurrencies are attracting more institutional investors due to their potential profitability, despite the
need for a clear fundamental framework to anticipate their prices. Although they share specific
characteristics with traditional asset classes, the extreme volatility and shortcomings present challenging
issues in developing an accurate forecast method. This thesis addresses the lack of comparisons in the
existing literature regarding machine learning algorithms in predicting cryptocurrency prices. This thesis
aims to discover which machine learning models perform best in predicting cryptocurrency prices.
Therefore, a comparison is made between Random Forest (RF), eXtreme Gradient Boosting (XGBoost),
Multilayer Perceptron (MP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM)
models in the prediction of the daily close price of the 10 largest cryptocurrencies in terms of market
capitalization, using a 3-fold TimeSeriesSplit cross-validation technique for the period from November 9,
2017, until November 9, 2022. This research also includes technical features such as the return of the
selected cryptocurrencies and asset-based features like the volatility index, S&P 500, and NASDAQ returns.
The findings demonstrate that the trained models perform substantially better than the baseline RF model.
This study concludes that the LSTM model performs best, while the RNN model performed second to best,
given their performance on the MAE and RMSE evaluation metrics. The MLP model placed third, followed
by the XGBoost model, with the latter failing to outperform the baseline RF model on at least one occasion.

Data Source/Code/Ethics Statement

Work on this thesis did not involve collecting data from human participants or animals. The historical data
for cryptocurrencies and other market-related data are obtained from Yahoo Finance. However, the
author of this thesis acknowledges that they do not have any legal claim to this data. Furthermore, the
code used in the thesis is not publicly available.



1. INTRODUCTION

1.1 Problem Statement

Investors have well-established frameworks for evaluating traditional asset classes such as equities, fixed
income, foreign exchange, real estate, and commodities, whether it is fundamental or technical analysis.
However, no clear framework exists to predict future prices of the relatively new asset-class
cryptocurrencies, which increasingly gains the involvement of institutional investors (Huang et al., 2022).
Technological improvements accompanied by investor interest in seeking new investment options have
been significant factors in the birth of a wide range of cryptocurrencies. As a result, the overall market
value of cryptocurrencies has reached astounding heights ever since. Because of this, the use of machine
learning models for predicting cryptocurrency prices has become increasingly popular, primarily due to
their potential profitability. However, as cryptocurrencies become more broadly recognized in the
academic world with numerous published papers and in practice, it remains nascent for investors seeking
validation of their investment thesis.

There is already a substantial devotion to price prediction using machine learning models for the
traditional asset classes or Bitcoin, the most popular cryptocurrency introduced by Satoshi Nakamoto
(2009). Although they share specific characteristics with more conventional asset classes, cryptocurrency
price movements are characterized by extreme volatility, and establishing an accurate cryptocurrency
prediction model is challenging. In 2022, Fang et al. outlined the state-of-the-art by covering 146 research
papers on various areas of cryptocurrencies and gave a thorough assessment of the field. The prevalent
machine learning techniques in this discipline include Random Forest (RF), XGBoost, Long Short-Term
Memory (LSTM), and Recurrent Neural Network (RNN) (Fang et al., 2022). In the literature review section
of this thesis, the most recent work, and common approaches for machine learning-based methods on
cryptocurrency prices were further identified and analyzed. Some studies examine and compare several
machine learning models, like Jaquart, Dann, and Weinhardt (2021), but the previous studies are mainly
focused on Bitcoin or other prominent cryptocurrencies like Ethereum. This is a great chance to stand
back, evaluate the current level of research in this area, and identify research gaps that may benefit from
further study. As a result, we identified that no study extensively compares different machine learning
methods across various cryptocurrencies.

1.2 Research Goal and Relevance

As previously mentioned, the earlier studies were mainly focused on Bitcoin or other prominent
cryptocurrencies, and even if there are studies that analyze smaller cryptocurrencies, it is futile to compare
them. This is because prior research utilizes different periods, objectives, input variables, model
parameters, and assessment metrics. Therefore, comparing these prediction models across papers is
impractical. The problem statement that this research seeks to address is the lack of comparisons in the
existing literature regarding machine learning models in predicting cryptocurrency prices. Therefore, in
this thesis, a comparison will be made of five machine learning models and their predictive power
regarding cryptocurrency price movements. This will be done by combining the domains of data science



and cryptocurrency to get a deeper understanding of machine learning techniques and this relatively new
asset class.

Depending on the situation and particular applications, this research is relevant from a scientific
and societal standpoint. The scientific relevance is two-fold, first the understanding of market dynamics
because cryptocurrencies are traded on open markets, and their prices change quickly depending on a
variety of variables. Machine learning algorithms can assist academics in gaining insight into the underlying
market dynamics and test different economic theories and models by evaluating enormous volumes of
historical pricing data and detecting patterns and connections. In addition, machine learning algorithms
may be trained on extensive historical cryptocurrency price data to create predictive models that can
anticipate future prices with varied degrees of accuracy. These models may be examined using actual data
and improved over time, potentially resulting in more accurate financial market forecasting techniques.
Moreover, this research is important from a societal standpoint because cryptocurrencies have become a
well-liked asset class in the broader society. Some people spend substantial sums of money in the
expectation of making money off price changes. However, as stated before, cryptocurrencies are a risky
investment for both people and institutions because of their extreme volatility, uncertainties, and no clear
framework for their predictability. Correct cryptocurrency price forecasts can aid traders and investors in
making more educated choices about whether to purchase, sell, or hold certain assets, potentially
improving the performance of their investments. Furthermore, the market behavior of cryptocurrencies
can have wider regulatory and policy ramifications, such as influencing tax collection, national security, or
financial stability. Regulators can analyze cryptocurrency prices with machine learning algorithms to
monitor and understand the impact of these assets on the larger economy and make well-informed
choices about how to regulate or control them.

1.3 Research Questions and Strategy

This study will investigate different machine learning models together with historical cryptocurrency
and asset-based data to predict the closing price of the selected cryptocurrencies and therefore aims to
answer the following research question:

“How well can the price of selected cryptocurrencies be predicted with machine learning methods ?”.
Two related sub-questions are created to address the main research question.

Sub-question 1: “Which of a set of selected machine learning algorithms performs well in the prediction
of cryptocurrency prices?”

This sub-question will be answered by comparing five machine learning algorithms, including
Random Forest, XGBoost, Multilayer Perceptron, Recurrent Neural Network, and Long Short-Term
Memory, further elaborated in the methodology section. Moreover, both technical and asset-based
features are used in the models to predict the close price, as mentioned in Jaquart, Dann, and Weinhardt
(2021) and further outlined in the experimental setup section. Finally, two standard evaluation metrics
are used to assess each model’s performance, further outlined in the evaluation metrics section. In this



paper, the machine learning algorithm is considered to perform well if it achieves a better MAE and
RMSE score than the baseline model.

Sub-question 2: “How does the predictive power of different machine learning algorithms compare
across cryptocurrencies?”

The second sub-question is answered by comparing the models, and their predictive power is then
compared with the selected cryptocurrencies. The cryptocurrencies that are compared are Bitcoin (BTC),
Ethereum (ETH), Binance Coin (BNB), Ripple (XRP), Dogecoin (DOGE), Cardano (ADA), Polygon (MATIC),
Polkadot (DOT), Litecoin (LTC), Solana (SOL). Since different cryptocurrencies are used, there is no true
apples-to-apples comparison for the MAE and RMSE scores. Therefore, an overview of the MAE and
RMSE scores across periods of different models and coins was highlighted to see whether a model
performed the best for one particular cryptocurrency and whether the predictive power was lacking
(compared to other models) for the other cryptocurrency. This will give insight into the predictive power
of different machine-learning algorithms across cryptocurrencies.

1.4 Findings

The findings demonstrate that the trained models perform substantially better than the baseline RF model.
Furthermore, from this research, the LSTM model performs the best, while the RNN model performed
second to best, given their performance on the MAE and RMSE evaluation metrics. Finally, the MLP model
placed third, followed by the XGBoost model, with the latter model failing to outperform the baseline RF
model on at least one occasion.

2. LITERATURE REVIEW

Predicting the future price using machine learning techniques is well documented for traditional asset
classes.! However, the studies about machine learning techniques for cryptocurrencies mainly focused on
Bitcoin (Fang et al., 2022). While the traditional markets have been around for decades, the cryptocurrency
market is relatively less mature and limited in scope for most coins. Fang et al. (2022) came up with a
broad survey of earlier studies on the cryptocurrency market focusing on the price prediction. Their paper
presents an overview of the current state-of-the-art machine-learning techniques used to predict the price
of cryptocurrencies and helps us identify the research gap this thesis aims to fill. Their research covers 146
papers from the cryptocurrency space, and most research findings are predominantly focused on basic
regression, time-series methods, and decision trees, including Random Forest (RF) and XGBoost. Their
study also states that RNN and LSTM prevail among the NN algorithms.

Jaquart, Dann, and Weinhardt (2021) compared six different machine learning methods (these include
models like LSTM, RNN, and RF) for short-term predictability (one-minute to an hour) in Bitcoin prices. In
their study, they made a categorization of the features, which they separated into four groups. These
groups include technical-based features related to the history of a specific coin (e.g., returns or volume).
Asset-based features, which are comprised of traditional asset classes (e.g., return of indexes like S&P 500

! The search result on Google Scholar for the price prediction using machine learning for stocks yielded more than 100
thousand results, while similar search results for cryptocurrencies were less than 20 thousand.



and commodities like gold), and blockchain-based features indicate specific features related to the coin’s
blockchain network (e.g., transactions and number of coins in time) and sentiment-based features which
are associated with the sentiment (e.g., Twitter and Google searches). According to their research, the
performance for predictability of BTC prices increases for longer horizons, and the results of the RNN and
LSTM proved to be well-suited for Bitcoin price prediction.

Unlike the previous paper, the study by Mudassir et al. (2020) presents machine-learning regression
models for both short- and medium-term changes in the price of Bitcoin. While most of the previous
papers focused on short-term prediction (one-day and less), the authors explored the prediction of Bitcoin
prices using a horizon of one to ninety-days. Their findings show that the provided models performed
much better for short-term than longer-term horizons. Their results contradict and dispute the previously
mentioned study, where the performance in predicting BTC prices increases for longer horizons.

Fleischer et al. (2022) compared the LSTM model against the ARIMA in predicting the future closing
prices of several cryptocurrencies by only using the past closing price as an input feature. The authors used
the RMSE score as a comparison, and the LSTM RSME results were as follows: Bitcoin (1,334.755),
Dogecoin (0.007), and Ethereum (117.655). One of those studies that expand upon the latter study is
Hansun et al. (2022), which also included the MAE scores of the following trading pairs BTC-USD (MAE;
1,617.75 and RMSE; 2,518.02), ETH-USD (MAE; 103.18 and RMSE; 150.09), ADA-USD (MAE; 0.13 and RMSE;
0.19) and BNB-USD (MAE; 18.08 and RMSE; 27.62). Moreover, Ammer and Aldhyani (2022) also used a
multivariate LSTM model to predict closing prices. These studies included the open, high, low, close, and
volume as features, replacing any missing values used in those features with the most recent available
data. Moreover, Mohta et al. (2022) used machine learning techniques like RNN and LSTM to predict both
short- and long-term close prices of Ethereum. Their research result showed that the error metrics (RMSE
and MAE) become larger if the prediction duration increases. Just like the research of Mudassir et al.
(2020), these results contradict and dispute the study of Jaquart, Dann, and Weinhardt (2021), where the
performance in predicting the cryptocurrency price increases for longer horizons.

Chen (2022) and Tandon et al. (2019) compared NN models like LSTM and RNN with the Random
Forest model. The RF model served as an excellent baseline model to assess whether the MAE and RMSE
scores of the NN models performed better in Bitcoin price prediction.

Many alternative cross-validation techniques are proposed in the prediction of cryptocurrency prices.
Oyewola et al. (2022) analyzed a “hybrid walk-forward ensemble optimization technique and applied it to
predict the daily prices of fifteen cryptocurrencies” (p. 2). Since standard cross-validation techniques like
k-fold or leave-one-out are not suited for time series, the authors suggested an improved version of the
walk-forward cross-validation. Barnwal et al. (2019) researched the Bitcoin price direction using several
different technical indicators, models, and two cross-validation methods (walk forward expanding window
and purged cross-validation). They concluded that the latter leads to better accuracy. Erfanian et al. (2022)
compared different machine learning models and investigated the importance of several indicators (asset-
and blockchain-based) for Bitcoin price prediction. They also included a 10-fold/period rolling basis cross-
validation method. The evaluation metric scores (R-squared and Root Mean Squared Error) are averaged
across each period and used as their final evaluation metric. Their results yielded better performance when
increasing the amounts of folds/periods.

In contrast, Cocco et al. (2021) applied cross-validation on expanding basis by using three folds/periods
instead of 10. The best model was determined by calculating the Mean Absolute Percentage Error (MAPE)
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of each period and by taking the averaging across all the periods. As cited by Kuhn & Johnson (2019), the
k-fold cross-validation folds are usually either 5 or 10. However, there are no clear guidelines on choosing
the cross-validation method and the number of folds/periods. The studies above have contradicting results
on predictability when increasing or decreasing the number of folds. However, if the number of folds in
cross-validation increases, so is the computational requirement. Therefore, choosing fewer periods is
better from a practical point of view.

Bouri et al. (2017) and Su et al. (2022) researched the correlation between Bitcoin and the fear index,
commonly known as the volatility index (VIX), which is measured using the implied volatility across S&P
500 index. Their studies show that the Bitcoin price and the VIX index have an inverse relationship. Wang
et al. (2022) and Nguyen (2022) show that Bitcoin prices positively correlate to traditional risky assets like
stocks and conclude that the correlation increases under extreme shocks and high uncertainty. However,
this contradicts and disputes the findings of Shahzad et al. (2019) and Al-Yahyaee et al. (2019), where the
results suggest that Bitcoin can behave as a haven during uncertain times and that it could provide
diversification benefits to traditional assets like stocks.

The studies above only used a few techniques, models, and cryptocurrencies. Therefore, a clear
comparison between various machine-learning approaches across various cryptocurrencies has not yet
been made. This research expands on the previous research and links several machine learning models
and techniques with various cryptocurrencies to get more insight into the predictive power regarding
cryptocurrency price movements. Moreover, a commonality shared by most of these papers is the use of
the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to compare the performance of the
projected models, further outlined in section 4. Taking every paper into consideration, including Fang et
al. (2022) broad survey results, the RF, XGBoost, MLP, RNN, and LSTM models will be compared for the set
of selected cryptocurrencies mentioned in Table 1 and include cryptocurrencies that are less researched,
like Solana and Polkadot to fill the gap with earlier studies.

3. METHODOLOGY

This section included the data science flow chart, machine learning models and the reason why we chose
these models. The data science flow chart is shown first to provide an understanding of the data science
pipeline and the steps taken.

3.1 Data Science Flow Chart

The models and actions taken in the data science pipeline are depicted in Figure 1. These are further
outlined in the section 4 (Experimental Setup).
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FIGURE 1
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3.2 Random Forest

Random forest (RF) uses an ensemble technique by constructing decision trees that can be applied to
regression and classification tasks (Kumar, 2022). Ensemble techniques are methods that improve the
machine learning model prediction. Specifically, RF uses bagging and serves as an extension to this
technique, as Breiman (2001) proposed. In the RF model, the trees run parallel to each other, whereby the
predictions of the trees are combined, and the average of all the trees is used as the final RF model
prediction. To compare the performance of different models with each other, the RF will be used as the
baseline model. The RF model is used as the baseline because it is the simplest model among the ones
being compared. Despite its simplicity RF model is a well-liked option for price prediction. Moreover,
previous studies like Chen (2022) and Tandon et al. (2019) also used the RF model as their baseline.

3.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) uses decision trees like RF, but the difference is that XGBoost uses
boosting as the ensemble technique. XGBoost and RF are solid and well-known in machine learning
algorithms, but they vary in a few ways that make XGBoost the preferable option. Moreover, the studies
that compared the XGBoost model proved better results on the evaluation metrics than the RF model. For
the XGBoost model, the trees run sequentially to each other because of the boosting ensemble technique,
which makes it suitable to handle data effectively since it is built to be scalable, as opposed to the RF
model. Moreover, XGBoost uses second-order derivatives to optimize the loss function, allowing it to
converge more quickly and prevent overfitting, as stated more effectively in Chen & Guestrin (2016).
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3.4 Multilayer Perceptron

Multilayer Perceptron (MLP) is a form of artificial neural network (ANN) that interconnects a group of
nodes in a feed-forward direction, the so-called Feedforward neural network (FNN). So, each neuron
(perceptron) in the first layer (input layer) has a direct connection to the second layer (hidden layer) and,
after that, the third layer (output layer), which represents the results. Overall, MLP is more complex than
the models above and an effective method for predicting cryptocurrency prices. This is because it can
capture intricate correlations between input and output layers, extract important features from data, and
deal with noise and scale to accommodate vast volumes of data. In addition, since cryptocurrency prices
fluctuate a lot, occasionally seeing sharp jumps or drops. Outliers may be handled by MLP models without
having a substantial impact on the model’s performance.

3.5 Recurrent Neural Network

Recurrent Neural Network (RNN), just like the MLP model, is a form of ANN that is also interconnected
with a group of nodes. However, the difference is that RNN nodes are not connected feedforward (one
way only) but can go both directions (recurrent). This also allows the RNN model to have an internal
memory of the input. RNNs are a particular kind of NN that function well for sequential data, including
time series data. RNNs contain a feedback loop that enables them to keep track of prior inputs, which is
crucial for problems involving sequence prediction. Therefore, RNNs are a viable option for forecasting
time series data, such as cryptocurrency prices, and studies like Jaquart, Dann, and Weinhardt (2021) and
Chen (2022) proved promising results.

3.6 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a form of RNN, and just like RNN, it also maintains an internal memory
of the input. However, the difference is that LSTM maintains that memory longer. An LSTM model can hold
this information for an extended period because it uses input, output, and forget gates. These gates can,
in turn, control the flow of information. Since LSTM can manage long-term dependencies, it is better than
typical RNN. In addition, this makes it possible for LSTM to successfully model the intricate interactions
between input and output variables, which is crucial for correctly forecasting the price of cryptocurrencies.
Like the RNN model, LSTM showed promising results, although the latter model had better predictions in
previous studies like Mohta et al. (2022) and Ammer and Aldhyani (2022).

4. EXPERIMENTAL SETUP

4.1 Cryptocurrency data

The 10 most valuable cryptocurrencies, measured by market capitalization, were chosen. The data was
collected as a CSV file from Yahoo Finance’s Application Programming Interface (API).2 The following
cryptocurrencies are excluded from the analysis: Tether (USDT), USD Coin (USDC), Binance USD (BUSD),
and Dai (DAl), even though these cryptocurrencies are in the top ten in terms of market capitalization.
These stablecoins are excluded because their values are pegged to the US dollar, and it would not be

2 Based on the market capitalization data from https://coinmarketcap.com/ as of November 9, 2022.
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informative to analyze them in this research. The cryptocurrencies that will be analyzed in this research
and their category are shown in Table 1. As previously stated in the literature review, unlike Bitcoin, less
researched cryptocurrencies like Solana or Polkadot, among others, are included. The start and end date
and the number of daily observations differ for each cryptocurrency since some projects were launched
at a later stage. Moreover, the maximum data for the selected cryptocurrencies will be set at no more
than five years due to the fact of extreme volatility in the emergence phase of the cryptocurrency market
when crypto was less mature. Additionally, to overcome the discrepancies between cryptocurrencies that
were launched at a later stage.

TABLE 1
CRYPTOCURRENCY DATA
Cryptocurrencies Ticker Categor Trading Pair Start Date End Date No. of
yp gory & Daily Data
Bitcoin BTC Digital currency BTC-USD 9-Nov-2017 9-Nov-2022 1,827
Ethereum ETH Blockchain network ETH-USD 9-Nov-2017 9-Nov-2022 1,827
Binance Coin  BNB \auvecoin of Binance BNB-USD  9-Nov-2017  9-Nov-2022 1,827
exchange and ecosystem
Ripple XRP Digital currency XRP-USD 9-Nov-2017 9-Nov-2022 1,827
Dogecoin DOGE Meme coin DOGE-USD 9-Nov-2017 9-Nov-2022 1,827
Cardano ADA Blockchain network ADA-USD 9-Nov-2017 9-Nov-2022 1,827
Polygon MATIC  Layer-2 scaling solution MATIC-USD  28-Apr-2019  9-Nov-2022 1,292
Polkadot DOT Blockchain network DOT-USD 20-Aug-2020  9-Nov-2022 812
Litecoin LTC Digital currency LTC-USD 9-Nov-2017 9-Nov-2022 1,827
Solana SOL Blockchain network SOL-USD 10-Apr-2020  9-Nov-2022 944

4.2 Asset-based data

Technical features like the return of the cryptocurrencies and some of the asset-based features mentioned
in Jaquart, Dann, and Weinhardt (2021) are also included in this research. The asset-based features used
in this analysis are the daily returns for the S&P 500 and the NASDAQ, which resemble and correlate with
cryptocurrencies, as further shown in the exploratory data analysis section. Moreover, the VIX returns will
be included as they have an inverse correlation to Bitcoin, according to Bouri et al. (2017) and Su et al.
(2022). This was further explored in the exploratory data analysis to see the relation with another
cryptocurrency. The daily returns are then calculated by subtracting the daily opening prices from the
closing price. The information on the asset-based dataset with their category is shown in Table 2. The
trading pair column is removed as the tickers are not tradable and are only used to show the price
movements. Furthermore, the asset-based data has fewer observations than the cryptocurrency dataset,
even if the start- and end dates are the same. The reason for this is that traditional assets are traded on
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the stock market, which is not open on certain days (e.g., holidays like Independence Day or the weekends)
and periods (trading hours) depending on where it is exchanged, unlike cryptocurrencies that are traded
twenty-four hours seven days a week.

TABLE 2

ASSET-BASED DATA

Asset-Based Ticker Category Start Date End Date No. of Daily Data
S&P 500 AGSPC  Stock marketindex 9-Nov-2017 9-Nov-2022 1,258
NASDAQ AIXIC Stock marketindex 9-Nov-2017 9-Nov-2022 1,258

VIX AVIX Volatility measure  9-Nov-2017 9-Nov-2022 1,258

Both cryptocurrencies and asset-based data are denominated in SUSD (United States Dollar). The
data type with their description is shown in Table 3 and is the same for cryptocurrency and asset-based
datasets.

TABLE 3

DATA TYPE AND DESCRIPTION

Variable  Data Type Description
Date object Date of the corresponding data
Open float64 The price of the first trade of the day
High floatb4  The price of the highest trade of the day
Low float64 The price of the lowest trade of the day
Close float64 The price of the last trade of the day

Adj. Close  float64 The close price after adjustments

Volume int64 The total volume of the trading day

4.3 Exploratory Data Analysis

In this section, due to the word limit imposed (explained in section 6.2) and for brevity, the returns of two
cryptocurrencies (Bitcoin and Litecoin) and returns of the asset-based were outlined from the selected
cryptocurrencies to perform an initial investigation. Figure 2 depicts Bitcoin and Litecoin prices over the
same time span from November 9, 2017, until November 9, 2022. It is immediately apparent that Bitcoin
price has grown significantly over the years. For both cryptocurrencies, a significant price surge is seen in
and around the first and second quarters of 2021. Furthermore, unlike Bitcoin, it is apparent that Litecoin
reached a similar price height of around $350 at the end of 2017.
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FIGURE 2

BITCOIN AND LITECOIN PRICE
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Moreover, Figure 3 illustrates the correlation heatmap of Bitcoin and Litecoin, and Figure 4 illustrates the
pairwise scatterplot. From the correlation heatmap, we see that the returns of Bitcoin and Litecoin are
positively correlated with Nasdaq and S&P500 returns, and a negative correlation exists with the VIX index.
Additionally, we see that Litecoin has a lower correlation with the above indices, given the lower numbers.
Furthermore, the pairwise scatterplot shows the graphed visual distribution of the Bitcoin and Litecoin
data with the indices. Whereby the closer the data points approximate a straight line, the higher the
connection between these factors. A good example can be seen between the strong positive association
of the S&P500 with the Nasdagq, given the direction of the values.
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FIGURE 3

CORRELATION HEATMAP OF BITCOIN (LEFT) AND LITECOIN (RIGHT)
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FIGURE 4

PAIRWISE SCATTERPLOT OF BITCOIN (LEFT) AND LITECOIN (RIGHT)
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4.4 Preprocessing

After merging the cryptocurrency and asset-based data, the initial stage is to check for missing values. As
mentioned, the asset-based data had several missing values (NAs). This can be filled with several methods,
like using the mean. In this study, the gaps are filled by using a simple imputation in which the most recent
available observation is taken, which is also used by Hansun et al. (2022) and Ammer and Aldhyani (2022).
This approach is suitable because asset-based data are not subject to rapid fluctuations in short periods,
especially for indices. Since the date variable is an object type, it is converted to DateTime format and set
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as the index. After, the ‘Adj. Close’ variable, which represents the price after paying off dividends are
removed as the selected coins do not pay dividends (the values are in this case the same as the Close
variable). The daily returns are calculated by subtracting the previous day's closing price from the current
day's closing price and then dividing the result by the previous day's closing price. Moreover, just like in
the studies by Jaquart, Dann, and Weinhardt (2021), Hansun et al. (2022), the values are rescaled
(normalized) with min-max normalization, further elaborated in section 4.9.

4.5 Model Parameters

Whereas grid search examines every conceivable combination of hyperparameters to identify the optimal
parameters within a model, it is computationally expensive. Therefore, in this research, the decision was
made to opt for RandomizedSearchCV to find the parameters. With random search, a random combination
of hyperparameters from the grid is chosen to find the parameters instead of trying out every combination,
leading to faster computation. In addition, the number of iterations for the RF and XGBoost models is set
at a default of 100, as is in line with common practice. Table 4 shows the values tested as input derived
from earlier studies and a common practice for the RF and XGBoost model hyperparameters.

TABLE 4

MODEL PARAMETERS FOR RF AND XGBOOST MIODELS

Model Hyperparameter Input values Parameter explanation
Random Forest n_estimators 100, 250, 500, 1000, 2000 Unit of trees in RF
min_samples_split 2,5,10 Min. sample required to split node
min_samples_leaf 1,2,4 Min. sample required in leaf node
max_depth 10, 20, 50, 100 Makx. level of splits in each tree
XGBoost n_estimators 100, 250, 500, 1000, 2000 Unit of trees in XGBoost
max_depth 3,6,9,12 Max. dept of each tree
learning_rate 0.01, 0.03, 0.05,0.1 The shrinkage at every step

However, implementing RandomizedsearchCV with TimeSeriesSplit to identify the optimal
parameters for the NN models is not practical. This is because deep learning techniques sometimes call
for large datasets, which can result in models that require training for hours or days (Brownlee, 2020). To
keep run times reasonable, different combinations are tested and showcased in appendix D. Table 5 shows
the input values that are tested for the MLP, RNN, and LSTM models, which were derived from the
literature and common practice.
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TABLE 5

MODEL PARAMETERS FOR MILP, RNN AND LSTM MODELS

Model Hyperparameter Input values Parameter Explanation
MLP hidden_layer_sizes 50, 100, 200, 500 Number of nodes in each layer
learning_rate_init  0.005, 0.001, 0.0005, 0.0001 The learning rate of MLP
RNN epochs 30, 60, 120, 150 Number of times dataset is passed in training
batch_size 4,8,16, 32,64,128 Training samples amount
learning_rate 0.005, 0.001, 0.0005, 0.0001 The learning rate of RNN
LSTM epochs 30, 60, 120, 150 Number of times dataset is passed in training
batch_size 4,8,16,32,64,128 Training samples amount
learning_rate 0.005, 0.001, 0.0005, 0.0001 The learning rate of LSTM

4.6 Baseline Model

To compare the performance of different models, the RF will be used as the baseline model. As mentioned
in the methodology section, the RF model is used as the baseline because it is the simplest model among
the ones being compared, and previous studies like Chen (2022) and Tandon et al. (2019) also used the RF
model as their baseline. This research compares the MAE and RMSE scores of comparative models
(XGBoost, MLP, RNN, and LSTM) to determine whether it outperforms the baseline. The machine learning
algorithm is considered to perform well if it achieves a better performance in terms of MAE and RMSE
scores than the baseline model. Throughout this paper, the RF model and baseline model are used
interchangeably.

4.7 Features and Target for Models without Memory Unit

Since they do not explicitly describe the temporal connections in the data, models like RF and XGBoost are
examples of models without an explicit memory unit, as described in section 3. Given that the models’
designs and presumptions about the nature of the data differ, it might be difficult to compare models that
are built to handle time-series data with models that are not. To overcome this, we opted for the 3-fold
Timeseriessplit and a sliding window approach with window size of 7, further elaborated in section 4.11.
As standard RF and XGBoost models do not have an explicit memory function, this approach can be seen
as a way of creating a memory-like effect by giving the models with a sequence of past values to learn
from. Furthermore, using this approach, we don’t need to create separate features for each lagged value.
Instead, we rearrange the input features into a time-series format by sliding a window over the data and
we would be able to use the same input features for all models. Moreover, the features that are used for
the models with and without memory are the daily: 1) Open, 2) Close, 3) High, 4) Low, 5) Volume, 6) Return
for each selected cryptocurrency, 7) Nasdaq return, 8) S&P 500 return, 9) VIX return. However, instead of
using a three-dimensional tensor like the models with memory unit, we flatten the data for each window
into a one-dimensional vector where each input and output shape for these models is a two-dimensional
tensor. With the target being the ‘Close’ price, representing the predicted closing price of the selected
cryptocurrency for the next day, and since we are using a sliding window approach with a step size of one,
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the models can capture some of the temporal relationships between adjacent windows. Unlike the studies
by Jaquart, Dann, and Weinhardt (2021) for predicting short-term (1-min to 60-min) cryptocurrency prices,
in this research, the next day close price will be forecasted, just like the study of Mudassir et al. (2020),
which showcased promising results.

4.8 Features and Target for Models with Memory Unit

On the other hand, memory units are all present in the RNN and LSTM models. Although lagged copies of
the input variables can be included as extra inputs to the model, previous models lack a clear method for
adding historical data in the sense that they do not explicitly contain the memory function. While having
an explicit memory structure that enables them to recognize temporal correlations in the input, RNNs and
LSTMs are primarily created to represent sequential data as mentioned in the methodology section.
Furthermore, the MLP model may not explicitly model temporal dependencies, it can still capture some
level of temporal information by using aforementioned approach, and since MLP belongs to NN category,
in this research the MLP model is listed in the model with memory unit. Moreover, for the models with
memory unit we create a similar DataFrame with columns for open, high, low, close, volume, and returns
(selected cryptocurrencies, VIX, Nasdaq, and S&P500). We then train these memory-based models utilizing
asliding window approach to incorporate temporal dependencies. This generates the input shape of three-
dimensional tensor that is then used to train and evaluate the memory-based models and the output
shape is a two-dimensional tensor representing the predicted closing price of the selected cryptocurrency
for the next day. Moreover, in all cases for the RNN and LSTM models, the number of layers is set at three,
and the parameter of units is arranged as [32, 64, 128] due to common practice. The study of Hansun et
al. (2022) suggested that a straightforward three-layer structure, particularly for this type of prediction,
basic architecture can obtain performance outcomes that are equivalent to those of deeper and more
complicated ones. In addition, as mentioned above, for the NN models, as common practice, the data is
reshaped into a 3D array before being fed into the model. For each model, the error pattern visualization
is showcased in the results section and in Appendix B and C. Furthermore, ‘Adam’ optimization is used in
all the NN models with ‘ReLu’ as activation, just like Chen (2022).

4.9 Data Normalization

The most prevailing approach in the literature review is the Min-Max scaler as a normalizing method. This
feature scaling technique rescales the range for the features between [0,1], so that the features are
measured on the same scale, and improve the machine learning performance.

EQUATION 1

MIN-MAX NORMALIZATION

i _ X —Min(x)
Normalized x) = m
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4.10 Evaluation Metrics

The prediction ability of the models will be assessed using two common error measures for regression
models in machine-learning: the Mean-Absolute-Error (MAE) and Root-Mean-Squared-Error (RMSE). In
addition, most studies mentioned in the literature review used these error metrics. The MAE score is
calculated by taking the average absolute difference between the forecasted- and actual value across the
dataset. For the RMSE, the difference between the forecasted- and actual-value are squared. Afterward
the average is taken across the dataset. For both error metrics, lower values represent a better model
performance.

EQUATION 2

ERROR METRICS

Error Metrics Formula

Mean Absolute Error (MAE) 1%
MAE = Ez lyi =yl
i=1

Root Mean Squared Error (RMSE) RMSE —

Where y; is the predicted value, and y is the actual value

Since the data is split into several periods using TimeSeriesSplit cross-validation, this will lead to a
separate MAE and RMSE score for each period. Just like the studies of Erfanian et al. (2022) and Cocco et
al. (2021), the separate MAE and RMSE scores are then averaged across all periods to be used as the final
evaluation metric.

4.11 Cross-validation

While a standard k-fold cross-validation technique (e.g., hold-out, leave-one-out, or stratified k-folds) is an
excellent way to split the data and avoid overfitting, it creates a problem for time-series data as future
observations should not be used (trained on) to make predictions of the past. This is because time-series
data are not independent and evenly distributed. However, the data is dependent, and using a standard
k-fold cross-validation will result in data spillover (peeking into the future). The main idea is that each test
set period must come later than the previous period. There are several ways to overcome this issue, but
the two commonly used methods in the literature review are the rolling window (sometimes mentioned
as the sliding window) and expanding window method (sometimes mentioned as the walk forward).? For
example, Cocco et al. (2021) and Erfanian et al. (2022) used the expanding window approach, while
Oyewola et al. (2022) and Barnwal et al. (2019 used the walk forward approach. The rolling window has a
fixed size, while the expanding window includes new data along the periods. This research used a 3-fold

3 The name of the methods for splitting time-series data using cross-validation is sometimes used interchangeably in
the previous research papers, even though there is a slight difference between the techniques.



21

TimeSeriesSplit with 70-30% train-test data split as common practice, and a sliding window approach with
a window size of 7, which gives a good balance of training data and model complexity. Furthermore, in
appendix A, the visualization for each train/test period using TimeSeriesSplit and cryptocurrencies are
showcased.

4.12 Algorithms and Software

All processing and execution in this thesis are done in Python 3.7.13 (Anaconda Navigator 2.3.2 and Jupyter
Notebook 6.4.12). The following packages and libraries are utilized: Pandas (1.3.5), NumPy (1.18.5), Pyplot,
Seaborn (0.12.0), Tgdm (4.64.1), Scikit-learn, TensorFlow (1.15.0), Keras (2.1.6). To access both the
cryptocurrency and asset-based data, YahooFinancials APl is used.

5. RESULTS

This section will outline the model performance in terms of MAE and RMSE scores for each cryptocurrency
and period separately. Finally, a general overview of the average MAE and RMSE results across periods of
all cryptocurrencies and models will be outlined.

5.1 Bitcoin

The MAE and RMSE results per period for the models of the Bitcoin (BTC) dataset are shown in Table 6,
and the accompanying error pattern visualization graphs for period 3 are shown in Figure 5. The RF model
resulted in average MAE and RMSE scores of 3,619.93 and 6,547.88, respectively. The XGBoost model
performed slightly better, with an average MAE of 3,556.44 and an RMSE score of 6,506.36 across periods.
The best-performing model is the RNN model. with an average MAE and RMSE score of 1,846.83 and 2,515,
with the LSTM model as runner-up having a slightly higher MAE and RMSE score of 2,003.99 and 2,710.97
respectively. While the MLP model had an inferior performance on average across all periods compared
to the other two NN models, it still outperformed RF and XGBoost models by a considerable margin with
an average MAE and RMSE of 2,127.92 and 3,535.66, respectively. Moreover, the MLP model had a far
superior performance in predicting period 3, as showcased in the error pattern visualization. The smaller
distance between the actual and predicted price lines indicates a better performance. Furthermore, as
shown in Figure 5, RNN and LSTM models were outperformed by the RF and XGBoost models in predicting
the price of BTC for period 3.

TABLE 6

BiTcoiN MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 1,021.3402 1,058.4958 1,322.0843  718.2236 1,277.1019
Period 2 7,822.6211 7,689.6479 3,566.7063 1,177.1306 637.2353

Period 3 2,015.8153 1,921.1776 1,494.9556 3,645.1483 4,097.6457




22

Average 3,619.9256 3,556.4405 2,127.9155 1,846.8342 2,003.9944
RMSE
Period 1 1,399.1677 1,496.5066 1,601.2831  973.4368 1,691.6154
Period 2 15,714.3719 15,577.5591 7,018.4809 2,226.4023 1,112.9666
Period 3 2,530.0973 2,445.0232 1,987.2083 4,345.1585 5,328.3298
Average 6,547.8790 6,506.3630 3,535.6575 2,514.9992 2,710.9707
FIGURE 5

BITCOIN ERROR PATTERN VISUALIZATION FOR PERIOD 3 (FROM TOP TO BOTTOM AND LEFT TO RIGHT RF,
XGBOOST, MLP, RNN AND LSTM)
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5.2 Ethereum

The MAE and RMSE results per period for the models of the Ethereum (ETH) dataset are shown in Table 7,
and the accompanying error pattern visualization graphs for period 3 are shown in Figure 6. The RF model
resulted in average MAE and RMSE scores of 188.93 and 317.16, respectively. The XGBoost model
performed slightly better, with an average MAE and RMSE score across periods of 187.88 and 316.12,
respectively. The MLP model had a lower average MAE of 115.27 and an average RMSE score across
periods of 160.72. The best-performing model is the LSTM model, given the lowest average MAE score of
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94.04 and RMSE score across periods of 126.73. The RNN model had the second-lowest average MAE and
RMSE scores across periods of 99.66 and 136.25, respectively. The MLP and LSTM models had the best
performance in predicting the ETH price for period 3, as seen in the error pattern visualization, where the
actual and predicted lines follow each other closely.

TABLE 7

ETHEREUM MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 125.7137 137.8595 161.2175 106.6618 125.5759
Period 2 166.4938 151.8153 61.6038 43.5030 34.4451
Period 3 274.5883 273.9661 122.9863 148.8092 122.0854
Average 188.9320 187.8804 115.2692 99.6581 94.0355
RMSE
Period 1 142.7886 154.8428 171.7173 120.3267 140.1135
Period 2 426.0585 405.1560 141.9610 93.0554 67.8574
Period 3 382.6364 388.3472 168.4945 195.3555 172.2089

Average 317.1612 316.1154 160.7243 136.2459 126.7266




24

FIGURE 6

ETHEREUM ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM)
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5.3 Binance Coin

The MAE and RMSE results per period for the models of the Binance Coin (BNB) dataset are shown in Table
8, and the accompanying error pattern visualization graphs for period 3 are shown in Figure 7. The RF
model resulted in average MAE and RMSE scores of 31.26 and 66.06, respectively. The XGBoost performed
better with an average MAE score across periods of 30.97 and an average RMSE score across periods of
65.47. While the MLP model had the lowest MAE score (20.11), the average RMSE score (41.16) across
periods was higher than the other NN models. However, the MLP model had a far superior performance
in predicting period 3, also showcased in the error pattern visualization. The RNN model had the lowest
RMSE score of 33.88 and an average MAE of 24.95. The LSTM model had the worst performance among
the NN models with an average MAE and RMSE score across periods of 26.50 and 41.17, respectively, but
still had a far better performance than the RF and XGBoost models in predicting the BNB price.



TABLE 8

BiNANCE COIN MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 3.2730 2.5866 7.9500 3.2789 8.2884
Period 2 55.6892 55.5107 36.6681 11.5018 14.9256
Period 3 34.8293 34.8206 15.7346 60.0765 56.2947
Average 31.2639 30.9727 20.1176 24.9525 26.5030
RMSE
Period 1 5.4440 4.4613 10.7069 5.5800 11.2422
Period 2 148.8639 148.7983 90.5595 31.7298 37.4617
Period 3 43.8851 43.1536 22.2409 64.3551 74.8280
Average 66.0644 65.4711 41.1692 33.8883 41.1773
FIGURE 7

BINANCE COIN ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM)
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5.4 Ripple

The MAE and RMSE results per period for the models of the Ripple (XRP) dataset are shown in Table 9, and
the accompanying error pattern visualization graphs for period 3 are shown in Figure 8. The RF model
resulted in average MAE and RMSE scores of 0.0485 and 0.0767, respectively. The XGBoost model
performed better, with an average score of 0.045 and 0.0722, respectively. The best-performing model is
the LSTM model, with an average MAE and RMSE score of 0.0302 and 0.0517, respectively. While the RNN
model had a lower average MAE score of 0.0337 compared to the MLP model (0.0362), it had a slightly
higher average RMSE score across periods. Moreover, it can be seen in Figure 8 that all the NN models had
a similar performance in predicting the price of XRP for period 3, where the predicted price line closely
resembles the actual price for each model.

TABLE 9

RiPPLE MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 0.0602 0.0623 0.0267 0.0276 0.0225
Period 2 0.0315 0.0314 0.0501 0.0442 0.0382
Period 3 0.0537 0.0412 0.0316 0.0290 0.0297
Average 0.0485 0.0450 0.0362 0.0337 0.0302
RMSE
Period 1 0.0766 0.0907 0.0360 0.0397 0.0316
Period 2 0.0637 0.0574 0.0892 0.0913 0.0702
Period 3 0.0897 0.0684 0.0504 0.0522 0.0532

Average 0.0767 0.0722 0.0586 0.0611 0.0517
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FIGURE 8

RIPPLE ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM)
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5.5 Dogecoin

The MAE and RMSE results per period for the models of the Dogecoin (DOGE) dataset are shown in Table
10, and the accompanying error pattern visualization graphs for period 3 are shown in Figure 9. The RF
model resulted in average MAE and RMSE scores of 0.0243 and 0.0538, respectively. The RF model
outperformed the XGBoost model with average MAE and RMSE scores across periods of 0.0353 and
0.0654, respectively. The best-performing model is the LSTM model, with an average MAE score across
periods of 0.0141 and an RMSE score across periods of 0.0335. The MLP model had the second-lowest
average MAE and RMSE scores across periods of 0.0142 and 0.0347, respectively. Despite falling short
compared to the LSTM models in terms of the average score across periods, the MLP model had a far
better performance predicting period 3, as showcased in the error pattern visualization graph.



TABLE 10

DOGECOIN MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 0.0002 0.0003 0.0067 0.0051 0.0025
Period 2 0.0240 0.0238 0.0236 0.0258 0.0240
Period 3 0.0485 0.0817 0.0122 0.0167 0.0155
Average 0.0243 0.0353 0.0142 0.0159 0.0141
RMSE
Period 1 0.0003 0.0003 0.0071 0.0055 0.0031
Period 2 0.0883 0.0881 0.0776 0.0866 0.0751
Period 3 0.0728 0.1078 0.0192 0.0230 0.0220
Average 0.0538 0.0654 0.0347 0.0384 0.0335
FIGURE 9

DOGECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM)
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5.6 Cardano

The MAE and RMSE results per period for the models of the Cardano (ADA) dataset are shown in Table 11.
The accompanying error pattern visualization graphs for period 3 are shown in Figure 10. The RF model
resulted in average MAE and RMSE scores of 0.0882 and 0.1591, respectively. The XGBoost model
performed better with average MAE and RMSE scores across periods of 0.0752 and 0.1394, respectively.
The LSTM model had the lowest average MAE score across periods (0.0303) compared to the MLP (0.0457)
and RNN model (0.0310); however, the LSTM RMSE score (0.0501) was slightly higher than the RNN model
(0.0493). Furthermore, as seen in the error pattern visualization, the RNN and LSTM model best predicted
the ADA price for period 3.

TABLE 11

CARDANO MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 0.0429 0.0351 0.0184 0.0114 0.0042
Period 2 0.0506 0.0412 0.0428 0.0204 0.0276
Period 3 0.1709 0.1493 0.0758 0.0609 0.0591
Average 0.0882 0.0752 0.0457 0.0310 0.0303
RMSE
Period 1 0.0477 0.0397 0.0200 0.0179 0.0059
Period 2 0.1268 0.1043 0.0769 0.0393 0.0557
Period 3 0.3027 0.2742 0.1220 0.0907 0.0886

Average 0.1591 0.1394 0.0730 0.0493 0.0501
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FIGURE 10

CARDANO ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM)
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5.7 Polygon

The MAE and RMSE results per period for the models of the Polygon (MATIC) dataset are shown in Table
12, and the accompanying error pattern visualization graphs for period 3 are shown in Figure 11. The RF
model resulted in average MAE and RMSE scores of 0.28 and 0.40, respectively. The XGBoost model
performed slightly better, with an average MAE across periods of 0.27 and an average RMSE score across
periods of 0.39. The best-performing model is the RNN model, with an average MAE and RMSE score of
0.24 and 0.33, respectively. The LSTM model had marginally lower MAE (0.25) and RMSE (0.35) scores
compared to the MLP model (0.26 and 0.36, respectively). For period 3 however, the price predictions for
the MLP model were the closest to the actual value, also seen in the error pattern visualization in Figure
11.



TABLE 12

PoLYGON MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 0.0020 0.0015 0.1323 0.0054 0.0042
Period 2 0.6146 0.6143 0.5763 0.5550 0.6259
Period 3 0.2396 0.2062 0.0938 0.1631 0.1251
Average 0.2854 0.2741 0.2675 0.2412 0.2518
RMSE
Period 1 0.0030 0.0025 0.1347 0.0070 0.0053
Period 2 0.8679 0.8678 0.8123 0.7800 0.8776
Period 3 0.3515 0.3223 0.1374 0.2060 0.1686
Average 0.4075 0.3976 0.3615 0.3310 0.3506
FIGURE 11

POLYGON ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MILP, RNN AND LSTM)
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5.8 Polkadot

The MAE and RMSE results per period for the models of the Polkadot (DOT) dataset are shown in Table
13, and the accompanying error pattern visualization graphs for period 3 are shown in Figure 12. The RF
model resulted in average MAE and RMSE scores of 7.01 and 8.77, respectively. Like the previous results,
the XGBoost model had lower average MAE and RMSE scores across periods (6.64 and 8.43, respectively).
The best-performing model is the LSTM model, given the lowest average MAE score of 4.14 and RMSE
score across periods of 5.28. The RNN model had the second-lowest average MAE and RMSE scores across
periods of 4.58 and 5.83, respectively. Despite falling short compared to the other NN models in terms of
the average score across periods, the MLP model had a far better performance predicting period 3, as
showcased in the error pattern visualization.

TABLE 13

POLKADOT MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 16.8703 16.8500 14.2757 11.5782 10.4964
Period 2 2.8235 2.2489 1.5266 1.4475 1.3011
Period 3 1.3546 0.8306 0.5373 0.7304 0.6427
Average 7.0162 6.6432 5.4466 4.5854 4.1467
RMSE
Period 1 20.9662 20.9532 17.7699 14.6346 13.2619
Period 2 3.6298 3.2914 2.0704 1.9326 1.8075
Period 3 1.7240 1.0568 0.7109 0.9227 0.7898

Average 8.7734 8.4339 6.8505 5.8300 5.2864
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FIGURE 12

POLKADOT ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM)
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5.9 Litecoin

The MAE and RMSE results per period for the models of the Litecoin (LTC) dataset are shown in Table 14,
and the accompanying error pattern visualization graphs for period 3 are shown in Figure 13. The RF model
resulted in average MAE and RMSE scores of 9.77 and 16.09, respectively. The XGBoost model surprisingly
had a higher average MAE score across periods of 11.23. However, the average RMSE score of the XGBoost
model was 15.67, thus lower than the RF model. The MLP model had a lower average MAE score across
periods of 8.64 than the RNN model at 8.67. However, the RMSE score was worse compared to the RNN
model. The LSTM model had the best performance, with average MAE and RMSE scores across periods of
7.96 and 11.52, respectively. The LSTM and RNN model performed the best in predicting the price for
period 3 as seen in Figure 13, with the latter model having a slightly better prediction.



TABLE 14

LITECOIN MAE AND RMSE RESULTS

Periods

RF

XGBoost MLP RNN LSTM

MAE

Period 1 12.8455 21.6784 13.6878 15.9603 13.8639

Period 2 7.9645 6.1564 5.5826 4.9078 4.8090

Period 3 8.5103 5.8576 6.6621 5.1453 5.2291
Average 9.7735 11.2309 8.6442 8.6712 7.9674
RMSE

Period 1 18.0986 25.7149 17.0314 18.8385 15.5734

Period 2 14.7308 10.8480 8.8358 8.6542 9.2163

Period 3 15.4500 10.4591 10.7666 9.0697 9.7863
Average 16.0932 15.6741 12.2113 12.1875 11.5254

FIGURE 13

LITECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MILP, RNN AND LSTM)
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5.10 Solana

The MAE and RMSE results per period for the models of the Solana (SOL) dataset are shown in Table 15,
and the accompanying error pattern visualization graphs for period 3 are shown in Figure 14. The RF model
resulted in average MAE and RMSE scores of 29.88 and 40.57, respectively. The XGBoost model performed
better, with an average MAE score across periods of 28.56 and an average RMSE across periods of 39.33.
The best-performing model was the LSTM model, with average MAE and RMSE scores across periods of
10.37 and 13.98, respectively. The RNN model predicted the price of SOL better on average than the MLP
model. It also had the best performance in predicting the price for period 3, also seen on the error pattern

visualization where the actual and predicted lines follow each other closely.

TABLE 15

SOLANA MAE AND RMSE RESULTS

Periods RF XGBoost MLP RNN LSTM
MAE
Period 1 5.6913 5.6673 10.0307 6.0891 6.1090
Period 2 79.5157 76.1985 28.7436 32.7164 21.1795
Period 3 4.4425 3.8164 3.6235 2.9963 3.8288
Average 29.8832 28.5608 14.1326 13.9340 10.3725
RMSE
Period 1 9.8387 9.8240 13.5543 10.0764 10.0897
Period 2 105.5675 102.7142 39.5981 40.5201 26.5273
Period 3 6.3331 5.4535 5.2302 4.2882 5.3296
Average 40.5798 39.3306 19.4609 18.2949 13.9822
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FIGURE 14

SOLANA ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM)
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5.11 Results overview

Table 16 shows the average MAE and RMSE scores across periods of different models and coins. The
numbers highlighted in green are the ones that performed the best compared to other models, and the
numbers highlighted in red are the ones that the baseline model has outperformed. In Table 16, it is
demonstrated that the LSTM model had seven times the lowest MAE score and six times the lowest RMSE
score across the analyzed cryptocurrencies. The RNN model had two times the lowest MAE and four times
the lowest RMSE score across different cryptocurrencies, while the MLP model only outperformed every

other model once for the BNB-USD pair in terms of the lowest MAE score. Moreover, the XGBoost model,
on average, had a better performance than the baseline model in predicting close prices. However, it was

outperformed three times for the DOGE-USD and LTC-USD pairs, which could be due to the chosen
hyperparameters.
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TABLE 16

REsSuULTS OVERVIEW: AVERAGE MAE AND RMSE ScORE ACROSS PERIODS

Cryptocurrencies RF XGBoost MLP RNN LSTM
MAE
BTC-USD 3,619.9256 3,556.4405 2,127.9155  1,846.8342  2,003.9944
ETH-USD 188.9320 187.8804 115.2692 99.6581 94.0355
BNB-USD 31.2639 30.9727 20.1176 24.9525 26.5030
XRP-USD 0.0485 0.0450 0.0362 0.0337 0.0302
DOGE-USD 0.0243 0.0353 0.0142 0.0159 0.0141
ADA-USD 0.0882 0.0752 0.0457 0.0310 0.0303
MATIC-USD 0.2854 0.2741 0.2675 0.2412 0.2518
DOT-USD 7.0162 6.6432 5.4466 4.5854 4.1467
LTC-USD 9.7735 11.2309 8.6442 8.6712 7.9674
SOL-USD 29.8832 28.5608 14.1326 13.9340 10.3725
RMSE
BTC-USD 6,547.879 6,506.363 3,535.6575  2,514.9992 2,710.9707
ETH-USD 317.1612 316.1154 160.7243 136.2459 126.7266
BNB-USD 66.0644 65.4711 41.1692 33.8883 41.1773
XRP-USD 0.0767 0.0722 0.0586 0.0611 0.0517
DOGE-USD 0.0538 0.0654 0.0347 0.0384 0.0335
ADA-USD 0.1591 0.1394 0.0730 0.0493 0.0501
MATIC-USD 0.4075 0.3976 0.3615 0.3310 0.3506
DOT-USD 8.7734 8.4339 6.8505 5.8300 5.2864
LTC-USD 16.0932 15.6741 12.2113 12.1875 11.5254
SOL-USD 40.5798 39.3306 19.4609 18.2949 13.9822
6. DISCUSSION

The problem statement that this research addressed is the lack of comparisons in the existing literature
regarding machine learning models in predicting cryptocurrency prices. Therefore, in this thesis, a
comparison was made of five machine learning models and their predictive power regarding 10 different
cryptocurrencies. In particular, this thesis tried to answer the following research question:

“How well can the price of selected cryptocurrencies be predicted with machine learning methods?”
Two related sub-questions were created to address the main research question:

Sub-question 1: “Which of a set of selected machine learning algorithms performs well in the prediction

of cryptocurrency prices?”
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This sub-question will be answered by comparing the five machine learning algorithms across 10
cryptocurrencies to assess which model performed well in predicting the price of cryptocurrencies. This
was done by assessing these models’ average MAE and RMSE scores across 3 periods and against the
baseline model. As was further outlined in the experimental setup section, different hyperparameters
were used for each model and cryptocurrency. Moreover, both technical and asset-based features were
used to predict the price. In this research, the machine learning algorithm is considered to perform well if
it achieves a better MAE and RMSE score across periods than the baseline model, which was different for
each cryptocurrency. The results show that, on average, all machine learning algorithms (XGBoost, MLP,
RNN, and LSTM) compared to the baseline RF model performed well. The results are in line with previous
studies like Mohta et al. (2022) and Tandon et al. (2019), where the comparative models outperformed
the baseline model, which substantiates their hypothesis.

Sub-question 2: “How does the predictive power of different machine learning algorithms compare across
cryptocurrencies?”

The second sub-question is answered by comparing the aforementioned models, and their predictive
power is then compared with the selected cryptocurrencies mentioned in Table 1. We opted for the 10
largest cryptocurrencies in terms of market capitalization (as of November 9, 2022) and collected the data
as a CSV file from Yahoo Finance (API). Stablecoins were excluded from this research, which is not
informative to analyze as their values are pegged to the US dollar. Moreover, the start- and end dates and
the number of daily observations differed for each cryptocurrency since some projects were founded and
launched at a later stage. Since different cryptocurrencies were used, there is no true apples-to-apples
comparison for the MAE and RMSE scores. Therefore, an overview of the MAE and RMSE scores across
periods of different models and coins was highlighted in the results overview to see whether a model
performed the best for one particular cryptocurrency and whether the predictive power was lacking
(compared to other models) for the other cryptocurrency. This will give insight into the predictive power
of different machine-learning algorithms across cryptocurrencies. The conclusion that follows is that there
is not just one machine-learning algorithm that is certain to be the most accurate for all cryptocurrencies.
Moreover, on average, the NN models outperformed the machine-learning models. However, it’s crucial
to remember that a specific NN model might not always be the ideal option for every cryptocurrency price
prediction, as showcased in the result section. This is not surprising, as factors like the unique properties
of the coin under consideration, prediction horizon, and specific features and inputs influence the
effectiveness of the price prediction for a particular model. This was also the case for prior studies like
Hansun et al. (2022) and Fleischer et al. (2022), among others. Although they used different techniques,
the predictive nature of a machine learning algorithm differed for a particular cryptocurrency.

With the answers to the sub-questions, the main research question will be answered:
“How well can the price of selected cryptocurrencies be predicted with machine learning methods?”

The findings demonstrate that the trained models perform substantially better than the baseline
RF model. From this research, the LSTM model performed the best while the RNN model placed second,
given the number of times these algorithms had the lowest MAE and RMSE score across different
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cryptocurrencies. The MLP model placed third, followed by the XGBoost model, but the latter failed to
outperform the baseline model on at least one occasion.

6.1 Scientific and Societal Impact

This study provides a knowledge base to comprehend various machine learning algorithms and
their predictive power across cryptocurrencies. While the aforementioned studies only used a few
techniques, models, and cryptocurrencies. Particularly, it helps to understand what machine learning
algorithm performs best for a specific cryptocurrency. From the scientific point of view, this research can
assist academics in gaining insight into the predictive nature of different machine learning algorithms to
test economic theories and models. In addition, these models may be used to create predictive models
that can anticipate future prices with varied degrees of accuracy and potentially result in more accurate
financial market forecasting techniques. Moreover, this research is interesting from a societal standpoint
because cryptocurrencies have become a well-liked asset class in the broader society. Some people spend
substantial sums of money in the expectation of making money off price changes. Correct cryptocurrency
price forecasts can aid traders and investors in making more educated choices about whether to purchase,
sell, or hold certain assets, potentially improving the performance of their investments.

6.2 Limitations and Future Research

Due to processing power, a more thorough parameter-tuning process could not be followed for this
research, especially when the number of iterations and epochs was increased. Moreover, this research
makes no inferences on modifying the ideal machine-learning algorithm to obtain the best performance.
Future studies may also include additional hyperparameters. Regarding the NN models, combining
different layers instead of a fixed number of layers could be experimented upon to see whether
performance increases since there was no experimentation regarding the structure in this research due to
the imposed word count limit and due to a vast number of cryptocurrencies that were analyzed. In
addition, the prediction with different time horizons might lead to better results, which was left out in this
research due to the word limit. Finally, as the market environment and the underlying cryptocurrency data
are subject to change, further research could be used to find the optimal performance.

7. CONCLUSION

Although institutional investors are becoming more interested in the emerging asset class of
cryptocurrencies, it is still challenging to predict their future pricing because there is no established
framework. In the existing literature, there is a lack of comparative analysis of machine learning models
for cryptocurrency price prediction. To fill this gap in the literature, the research employs a 3-fold
TimeSeriesSplit cross-validation technique and sliding window approach to compare the predictive
abilities of five machine learning models across ten different cryptocurrencies. MAE and RMSE scores are
employed to assess these models' performance. The results reveal that trained models perform
significantly better than the baseline model, with NN models showing particularly impressive results and
outperforming other comparable machine-learning models. The LSTM model exhibits the highest
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predictive power of the models analyzed, as well as the lowest MAE and RMSE scores across a variety of
cryptocurrencies.

Thus, this thesis provides a valuable contribution to the field by comparing the price prediction of ten
cryptocurrencies that have not been extensively researched. The findings highlight the disparities in
predictive ability among different machine learning approaches for various cryptocurrencies, which can
help in choosing the best algorithm for a given cryptocurrency and potentially result in more precise
methods for forecasting the financial markets.



41

REFERENCES

Al-Yahyaee, K. H., Mensi, W., Al-Jarrah, I. M., Hamdi, A., &amp; Kang, S. H. (2019). Volatility forecasting,
downside risk, and diversification benefits of bitcoin and oil and international commodity
markets: A comparative analysis with yellow metal. The North American Journal of Economics
and Finance, 49, 104-120. https://doi.org/10.1016/j.najef.2019.04.001

Ammer, M. A., & Aldhyani, T. H. (2022). Deep learning algorithm to predict cryptocurrency fluctuation
prices: Increasing investment awareness. Electronics, 11(15), 2349.
https://doi.org/10.3390/electronics11152349

Assaad, R. H., & Fayek, S. (2021). Predicting the price of crude oil and its fluctuations using computational
econometrics: Deep Learning, LSTM, and Convolutional Neural Networks. Econometric Research
in Finance, 6(2), 119-137. https://doi.org/10.2478/erfin-2021-0006

Barnwal, A., Bharti, H. P., Ali, A., & Singh, V. (2019). Stacking with neural network for cryptocurrency
investment. 2019 New York Scientific Data Summit (NYSDS).
https://doi.org/10.1109/nysds.2019.8909804

Breiman, L. (n.d.). Random forests . Retrieved December 13, 2022, from
https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf

Brownlee, J. (2020, August 27). How to grid search deep learning models for time series forecasting.
MachinelLearningMastery.com. Retrieved December 20, 2023, from
https://machinelearningmastery.com/how-to-grid-search-deep-learning-models-for-time-series

forecasting/

Chen, J. (2022). Analysis of bitcoin price prediction using machine learning. Journal of Risk and Financial
Management, 16(1), 51. https://doi.org/10.3390/jrfm16010051

Cocco, L., Tonelli, R., & Marchesi, M. (2021). Predictions of bitcoin prices through machine learning based
frameworks. Peer) Computer Science, 7. https://doi.org/10.7717/peerj-cs.413

Erfanian, S., Zhou, Y., Razzaq, A., Abbas, A., Safeer, A. A., & Li, T. (2022). Predicting bitcoin (BTC) price in
the context of economic theories: A machine learning approach. Entropy, 24(10), 1487.
https://doi.org/10.3390/e24101487

Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-Rego, D., Wu, F., & Li, L. (2022). Cryptocurrency
trading: A comprehensive survey. Financial Innovation, 8(1). https://doi.org/10.1186/s40854
021-00321-6

Fleischer, J. P., von Laszewski, G., Theran, C., & Parra Bautista, Y. J. (2022). Time series analysis of
cryptocurrency prices using long short-term memory. Algorithms, 15(7), 230.
https://doi.org/10.3390/a15070230



https://doi.org/10.1016/j.najef.2019.04.001
https://doi.org/10.3390/electronics11152349
https://doi.org/10.2478/erfin-2021-0006
https://doi.org/10.1109/nysds.2019.8909804
https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf
https://machinelearningmastery.com/how-to-grid-search-deep-learning-models-for-time-series%09forecasting/
https://machinelearningmastery.com/how-to-grid-search-deep-learning-models-for-time-series%09forecasting/
https://doi.org/10.3390/jrfm16010051
https://doi.org/10.7717/peerj-cs.413
https://doi.org/10.3390/e24101487
https://doi.org/10.1186/s40854%09021-00321-6
https://doi.org/10.1186/s40854%09021-00321-6
https://doi.org/10.3390/a15070230

42

Hansun, S., Wicaksana, A., & Khalig, A. Q. (2022). Multivariate cryptocurrency prediction: Comparative
analysis of three recurrent neural networks approaches. Journal of Big Data, 9(1).
https://doi.org/10.1186/s40537-022-00601-7

Huang, X, Lin, J., & Wang, P. (2022). Are institutional investors marching into the crypto market?
Economics Letters, 220, 110856. https://doi.org/10.1016/j.econlet.2022.110856

Jaquart, P., Dann, D., & Weinhardt, C. (2021). Short-term bitcoin market prediction via machine learning.
The Journal of Finance and Data Science, 7, 45—66. https://doi.org/10.1016/j.jfds.2021.03.001

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. https://doi.org/10.1007/978-1-4614-6849
3

Kumar, A. (2022, November 6). Differences: Decision tree &amp; random forest. Data Analytics. R
etrieved January 1, 2023, from https://vitalflux.com/differences-between-decision-tree-random
forest/

Mudassir, M., Bennbaia, S., Unal, D., & Hammoudeh, M. (2020). Time-series forecasting of bitcoin prices
using high-dimensional features: A machine learning approach. Neural Computing and
Applications. https://doi.org/10.1007/s00521-020-05129-6

Nakamoto, S. (2009). A peer-to-peer electronic cash system. Bitcoin. Retrieved December 20, 2022, from
https://bitcoin.org/en/bitcoin-paper

Nikou, M., Mansourfar, G., & Bagherzadeh, J. (2021). Stock price prediction using deep learning
algorithm and its comparison with machine learning algorithms. Intelligent Systems in
Accounting, Finance and Management, 26(4), 164-174. https://doi.org/10.1002/isaf.1459

Oyewola, D. 0., Dada, E. G., & Ndunagu, J. N. (2022). A novel hybrid walk-forward ensemble optimization
for time series cryptocurrency prediction. Heliyon, 8(11).
https://doi.org/10.1016/j.heliyon.2022.e11862

S, M., Mohta, M., & Rangaswamy, S. (2022). Ethereum Price prediction using Machine Learning
Techniques — A Comparative Study. International Journal of Engineering Applied Sciences and
Technology, 7(2), 137-142. https://doi.org/10.33564/ijeast.2022.v07i02.018

Sen, J., & Mehtab, S. (2021). Design and analysis of robust deep learning models for stock price
prediction. Artificial Intelligence. https://doi.org/10.5772/intechopen.99982

Shahzad, S. J., Bouri, E., Roubaud, D., Kristoufek, L., &amp; Lucey, B. (2019). Is bitcoin a better safe-haven
investment than gold and commodities? International Review of Financial Analysis, 63, 322-330.
https://doi.org/10.1016/j.irfa.2019.01.002



https://doi.org/10.1186/s40537-022-00601-7
https://doi.org/10.1016/j.econlet.2022.110856
https://doi.org/10.1016/j.jfds.2021.03.001
https://doi.org/10.1007/978-1-4614-6849%093
https://doi.org/10.1007/978-1-4614-6849%093
https://vitalflux.com/differences-between-decision-tree-random
https://vitalflux.com/differences-between-decision-tree-random
https://doi.org/10.1007/s00521-020-05129-6
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1002/isaf.1459
https://doi.org/10.1016/j.heliyon.2022.e11862
https://doi.org/10.33564/ijeast.2022.v07i02.018
https://doi.org/10.5772/intechopen.99982
https://doi.org/10.1016/j.irfa.2019.01.002

43

Soni, P., Tewari, Y., & Krishnan, D. (2022). Machine learning approaches in stock price prediction: A
systematic review. Journal of Physics: Conference Series, 2161(1), 012065.
https://doi.org/10.1088/1742-6596/2161/1/012065

Tandon, S., Tripathi, S., Saraswat, P., & Dabas, C. (2019). Bitcoin price forecasting using LSTM and 10-fold
cross validation. 2019 International Conference on Signal Processing and Communication (ICSC).
https://doi.org/10.1109/icsc45622.2019.8938251

Wang, H., Wang, J., Cao, L., Li, Y., Sun, Q., & Wang, J. (2021). A stock closing price prediction model based
on CNN-BISLSTM. Complexity, 2021, 1-12. https://doi.org/10.1155/2021/5360828

Wang, P., Liu, X., & Wu, S. (2022). Dynamic linkage between Bitcoin and traditional financial assets: A
comparative analysis of different time frequencies. Entropy, 24(11), 1565.
https://doi.org/10.3390/e24111565



https://doi.org/10.1088/1742-6596/2161/1/012065
https://doi.org/10.1109/icsc45622.2019.8938251
https://doi.org/10.1155/2021/5360828
https://doi.org/10.3390/e24111565

44

APPENDIX A: Cryptocurrency TimeSeriesSplit

In Appendix A the TimeSeriesSplit periods for each cryptocurrency are showcased (starting with period 1
from top to bottom).

FIGURE 15: BITCOIN TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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FIGURE 16: ETHEREUM TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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FIGURE 17: BINANCE COIN TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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FIGURE 18: RiPPLE TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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FIGURE 19: DOGECOIN TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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FIGURE 21: POLYGON TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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FIGURE 22: POLKADOT TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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FIGURE 23: LITECOIN TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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FIGURE 24: SOLANA TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT
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APPENDIX B: Error pattern visualization for period 1

This appendix includes the error pattern visualization (predicted vs. actual) for period 1. The figure on
top is the RF model and from top to bottom left to right XGBoost, MLP, RNN and LSTM is shown.

FIGURE 25: BITCOIN ERROR PATTERN VISUALIZATION FOR PERIOD 1(RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 26: ETHEREUM ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 27: BINANCE COIN ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MILP, RNN, LSTM)
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FIGURE 28: RIPPLE ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MILP, RNN AND LSTM)
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FIGURE 29: DOGECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MILP, RNN AND LSTM)
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FIGURE 30: POLKADOT ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 31: CARDANO ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 32: POLYGON ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 33: LITECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 34: SOLANA ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM)
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APPENDIX C: Error pattern visualization for period 2

This appendix includes the error pattern visualization (predicted vs. actual) for period 2. The figure on
top is the RF model and from top to bottom left to right XGBoost, MLP, RNN and LSTM is shown.

FIGURE 35: BITCOIN ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM)

tl-

RN

N o D P S A S B T A Y
- &7 L B T T G T i T g G



55

FIGURE 37: BINANCE COIN ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN, LSTM)
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FIGURE 38: RIPPLE ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MILP, RNN AND LSTM)
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FIGURE 39: DOGECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 40: POLKADOT ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MILP, RNN AND LSTM)
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FIGURE 41: CARDANO ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MILP, RNN AND LSTM)
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FIGURE 42: POLYGON ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 43: LITECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM)
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FIGURE 44: SOLANA ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM)
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APPENDIX D: Cryptocurrency model hyperparameters
In Appendix D the hyperparameters that are used for each model and cryptocurrency are showcased.

TABLE 17: BiTcoIN RF, XGB0oosT, MLP, RNN AND LSTM HYPERPARAMETERS

Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 1000
min_samples_split 2,5,10 5
min_samples_leaf 1,2,4 4
max_depth 10, 20, 50, 100 50
XGBoost n_estimators 100, 250, 500, 1000, 2000 250
max_depth 3,6,9,12 9
learning_rate 0.01, 0.03,0.05, 0.1 0.03
MLP hidden_layer_sizes 50, 100, 200, 500 500
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001
RNN epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 8
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 16
Iearning=rate 0.005, 0.001, 0.0005, 0.0001 0.005

TABLE 18: ETHEREUM RF, XGB0oOST, MILP, RNN AND LSTM HYPERPARAMETERS

Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 500
min_samples_split 2,5,10 10
min_samples_leaf 1,2,4 1
max_depth 10, 20, 50, 100 50
XGBoost n_estimators 100, 250, 500, 1000, 2000 2000
max_depth 3,6,9,12 6
learning_rate 0.01, 0.03,0.05, 0.1 0.05
MLP hidden_layer_sizes 50, 100, 200, 500 500
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.005
RNN epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 8
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 16
Iearning=rate 0.005, 0.001, 0.0005, 0.0001 0.005
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TABLE 19
BINANCE CoIN RF, XGB0ooST, MLP, RNN AND LSTM HYPERPARAMETERS
Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 100
min_samples_split 2,5,10 5
min_samples_leaf 1,2,4 4
max_depth 10, 20, 50, 100 100
XGBoost n_estimators 100, 250, 500, 1000, 2000 1000
max_depth 3,6,9,12 12
learning_rate 0.01, 0.03, 0.05,0.1 0.01
MLP hidden_layer_sizes 50, 100, 200, 500 500
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001
RNN epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 4
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 120
batch_size 4,8,16, 32,64, 128 16
Iearning=rate 0.005, 0.001, 0.0005, 0.0001 0.0005
TABLE 20
RipPLE RF, XGB0OST, MILP, RNN AND LSTM HYPERPARAMETERS
Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 100
min_samples_split 2,5,10 5
min_samples_leaf 1,2,4 4
max_depth 10, 20, 50, 100 100
XGBoost n_estimators 100, 250, 500, 1000, 2000 500
max_depth 3,6,9,12 3
learning_rate 0.01, 0.03, 0.05, 0.1 0.03
MLP hidden_layer_sizes 50, 100, 200, 500 500
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.005
RNN epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 8
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 32
0.005

learning_rate

0.005, 0.001, 0.0005, 0.0001
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TABLE 21
DoGECOIN RF, XGB0oosT, MLP, RNN AND LSTM HYPERPARAMETERS
Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 500
min_samples_split 2,5,10 5
min_samples_leaf 1,2,4 1
max_depth 10, 20, 50, 100 10
XGBoost n_estimators 100, 250, 500, 1000, 2000 1000
max_depth 3,6,9,12 12
learning_rate 0.01, 0.03, 0.05,0.1 0.01
MLP hidden_layer_sizes 50, 100, 200, 500 500
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001
RNN epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 8
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 8
Iearning=rate 0.005, 0.001, 0.0005, 0.0001 0.0005
TABLE 22
CARDANO RF, XGB0o0osT, MLP, RNN AND LSTM HYPERPARAMETERS
Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 100
min_samples_split 2,5,10 5
min_samples_leaf 1,2,4 4
max_depth 10, 20, 50, 100 100
XGBoost n_estimators 100, 250, 500, 1000, 2000 500
max_depth 3,6,9,12 3
learning_rate 0.01, 0.03, 0.05, 0.1 0.03
MLP hidden_layer_sizes 50, 100, 200, 500 500
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001
RNN epochs 30, 60, 120, 150 60
batch_size 4,8,16,32,64,128 16
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 60
batch_size 4,8,16,32,64,128 16
0.005

learning_rate

0.005, 0.001, 0.0005, 0.0001




TABLE 23

PoLYyGoN RF, XGBoosT, MILP, RNN AND LSTM HYPERPARAMETERS
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Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 500
min_samples_split 2,5,10 5
min_samples_leaf 1,2,4 1
max_depth 10, 20, 50, 100 10
XGBoost n_estimators 100, 250, 500, 1000, 2000 1000
max_depth 3,6,9,12 12
learning_rate 0.01, 0.03, 0.05,0.1 0.01
MLP hidden_layer_sizes 50, 100, 200, 500 500
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.005
RNN epochs 30, 60, 120, 150 120
batch_size 4,8,16, 32,64, 128 16
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 120
batch_size 4,8,16, 32,64, 128 16
Iearning=rate 0.005, 0.001, 0.0005, 0.0001 0.0005
TABLE 24
PoLKADOT RF, XGB0OST, MLP, RNN AND LSTM HYPERPARAMETERS
Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 100
min_samples_split 2,5,10 5
min_samples_leaf 1,2,4 4
max_depth 10, 20, 50, 100 100
XGBoost n_estimators 100, 250, 500, 1000, 2000 1000
max_depth 3,6,9,12 12
learning_rate 0.01, 0.03, 0.05, 0.1 0.01
MLP hidden_layer_sizes 50, 100, 200, 500 500
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001
RNN epochs 30, 60, 120, 150 60
batch_size 4,8,16,32,64,128 8
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 60
batch_size 4,8,16,32,64,128 16
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.0005
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Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 500
min_samples_split 2,5,10 2
min_samples_leaf 1,2,4 1
max_depth 10, 20, 50, 100 20
XGBoost n_estimators 100, 250, 500, 1000, 2000 1000
max_depth 3,6,9,12 3
learning_rate 0.01, 0.03, 0.05,0.1 0.01
MLP hidden_layer_sizes 50, 100, 200, 500 200
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.005
RNN epochs 30, 60, 120, 150 120
batch_size 4,8,16, 32,64, 128 16
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 8
Iearning=rate 0.005, 0.001, 0.0005, 0.0001 0.0005
TABLE 26
SOLANA RF, XGB0o0osT, MLP, RNN AND LSTM HYPERPARAMETERS
Model Hyperparameter Input values Used values
Random Forest n_estimators 100, 250, 500, 1000, 2000 100
min_samples_split 2,5,10 5
min_samples_leaf 1,2,4 4
max_depth 10, 20, 50, 100 100
XGBoost n_estimators 100, 250, 500, 1000, 2000 1000
max_depth 3,6,9,12 12
learning_rate 0.01, 0.03, 0.05, 0.1 0.01
MLP hidden_layer_sizes 50, 100, 200, 500 200
learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001
RNN epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 8
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005
LSTM epochs 30, 60, 120, 150 120
batch_size 4,8,16,32,64,128 16
learning_rate 0.005, 0.001, 0.0005, 0.0001 0.0005
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