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COMPARISON OF MACHINE LEARNING 

MODELS AND THEIR PREDICTIVE POWER 

WITH REGARD TO CRYPTOCURRENCY  

PRICE MOVEMENTS 

 

Savas Murt 

 

Abstract 

Cryptocurrencies are attracting more institutional investors due to their potential profitability, despite the 

need for a clear fundamental framework to anticipate their prices. Although they share specific 

characteristics with traditional asset classes, the extreme volatility and shortcomings present challenging 

issues in developing an accurate forecast method. This thesis addresses the lack of comparisons in the 

existing literature regarding machine learning algorithms in predicting cryptocurrency prices. This thesis 

aims to discover which machine learning models perform best in predicting cryptocurrency prices. 

Therefore, a comparison is made between Random Forest (RF), eXtreme Gradient Boosting (XGBoost), 

Multilayer Perceptron (MP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) 

models in the prediction of the daily close price of the 10 largest cryptocurrencies in terms of market 

capitalization, using a 3-fold TimeSeriesSplit cross-validation technique for the period from November 9, 

2017, until November 9, 2022. This research also includes technical features such as the return of the 

selected cryptocurrencies and asset-based features like the volatility index, S&P 500, and NASDAQ returns. 

The findings demonstrate that the trained models perform substantially better than the baseline RF model. 

This study concludes that the LSTM model performs best, while the RNN model performed second to best, 

given their performance on the MAE and RMSE evaluation metrics. The MLP model placed third, followed 

by the XGBoost model, with the latter failing to outperform the baseline RF model on at least one occasion. 

 

Data Source/Code/Ethics Statement 

Work on this thesis did not involve collecting data from human participants or animals. The historical data 
for cryptocurrencies and other market-related data are obtained from Yahoo Finance. However, the 
author of this thesis acknowledges that they do not have any legal claim to this data. Furthermore, the 
code used in the thesis is not publicly available.  
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1. INTRODUCTION 

1.1 Problem Statement  

Investors have well-established frameworks for evaluating traditional asset classes such as equities, fixed 

income, foreign exchange, real estate, and commodities, whether it is fundamental or technical analysis.  

However, no clear framework exists to predict future prices of the relatively new asset-class 

cryptocurrencies, which increasingly gains the involvement of institutional investors (Huang et al., 2022). 

Technological improvements accompanied by investor interest in seeking new investment options have 

been significant factors in the birth of a wide range of cryptocurrencies. As a result, the overall market 

value of cryptocurrencies has reached astounding heights ever since. Because of this, the use of machine 

learning models for predicting cryptocurrency prices has become increasingly popular, primarily due to 

their potential profitability. However, as cryptocurrencies become more broadly recognized in the 

academic world with numerous published papers and in practice, it remains nascent for investors seeking 

validation of their investment thesis. 

There is already a substantial devotion to price prediction using machine learning models for the 

traditional asset classes or Bitcoin, the most popular cryptocurrency introduced by Satoshi Nakamoto 

(2009). Although they share specific characteristics with more conventional asset classes, cryptocurrency 

price movements are characterized by extreme volatility, and establishing an accurate cryptocurrency 

prediction model is challenging. In 2022, Fang et al. outlined the state-of-the-art by covering 146 research 

papers on various areas of cryptocurrencies and gave a thorough assessment of the field. The prevalent 

machine learning techniques in this discipline include Random Forest (RF), XGBoost, Long Short-Term 

Memory (LSTM), and Recurrent Neural Network (RNN) (Fang et al., 2022). In the literature review section 

of this thesis, the most recent work, and common approaches for machine learning-based methods on 

cryptocurrency prices were further identified and analyzed. Some studies examine and compare several 

machine learning models, like Jaquart, Dann, and Weinhardt (2021), but the previous studies are mainly 

focused on Bitcoin or other prominent cryptocurrencies like Ethereum. This is a great chance to stand 

back, evaluate the current level of research in this area, and identify research gaps that may benefit from 

further study. As a result, we identified that no study extensively compares different machine learning 

methods across various cryptocurrencies. 

 

1.2 Research Goal and Relevance 

As previously mentioned, the earlier studies were mainly focused on Bitcoin or other prominent 

cryptocurrencies, and even if there are studies that analyze smaller cryptocurrencies, it is futile to compare 

them. This is because prior research utilizes different periods, objectives, input variables, model 

parameters, and assessment metrics. Therefore, comparing these prediction models across papers is 

impractical. The problem statement that this research seeks to address is the lack of comparisons in the 

existing literature regarding machine learning models in predicting cryptocurrency prices. Therefore, in 

this thesis, a comparison will be made of five machine learning models and their predictive power 

regarding cryptocurrency price movements. This will be done by combining the domains of data science 
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and cryptocurrency to get a deeper understanding of machine learning techniques and this relatively new 

asset class. 

 Depending on the situation and particular applications, this research is relevant from a scientific 

and societal standpoint. The scientific relevance is two-fold, first the understanding of market dynamics 

because cryptocurrencies are traded on open markets, and their prices change quickly depending on a 

variety of variables. Machine learning algorithms can assist academics in gaining insight into the underlying 

market dynamics and test different economic theories and models by evaluating enormous volumes of 

historical pricing data and detecting patterns and connections. In addition, machine learning algorithms 

may be trained on extensive historical cryptocurrency price data to create predictive models that can 

anticipate future prices with varied degrees of accuracy. These models may be examined using actual data 

and improved over time, potentially resulting in more accurate financial market forecasting techniques. 

Moreover, this research is important from a societal standpoint because cryptocurrencies have become a 

well-liked asset class in the broader society. Some people spend substantial sums of money in the 

expectation of making money off price changes. However, as stated before, cryptocurrencies are a risky 

investment for both people and institutions because of their extreme volatility, uncertainties, and no clear 

framework for their predictability. Correct cryptocurrency price forecasts can aid traders and investors in 

making more educated choices about whether to purchase, sell, or hold certain assets, potentially 

improving the performance of their investments. Furthermore, the market behavior of cryptocurrencies 

can have wider regulatory and policy ramifications, such as influencing tax collection, national security, or 

financial stability. Regulators can analyze cryptocurrency prices with machine learning algorithms to 

monitor and understand the impact of these assets on the larger economy and make well-informed 

choices about how to regulate or control them. 

1.3  Research Questions and Strategy 

This study will investigate different machine learning models together with historical cryptocurrency 

and asset-based data to predict the closing price of the selected cryptocurrencies and therefore aims to 

answer the following research question:  

 

“How well can the price of selected cryptocurrencies be predicted with machine learning methods?”.  

 

Two related sub-questions are created to address the main research question.  

 

Sub-question 1: “Which of a set of selected machine learning algorithms performs well in the prediction 

of cryptocurrency prices?” 

 

This sub-question will be answered by comparing five machine learning algorithms, including 

Random Forest, XGBoost, Multilayer Perceptron, Recurrent Neural Network, and Long Short-Term 

Memory, further elaborated in the methodology section. Moreover, both technical and asset-based 

features are used in the models to predict the close price, as mentioned in Jaquart, Dann, and Weinhardt 

(2021) and further outlined in the experimental setup section. Finally, two standard evaluation metrics 

are used to assess each model’s performance, further outlined in the evaluation metrics section. In this 
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paper, the machine learning algorithm is considered to perform well if it achieves a better MAE and 

RMSE score than the baseline model. 

 

Sub-question 2: “How does the predictive power of different machine learning algorithms compare 

across cryptocurrencies?” 

The second sub-question is answered by comparing the models, and their predictive power is then 

compared with the selected cryptocurrencies. The cryptocurrencies that are compared are Bitcoin (BTC), 

Ethereum (ETH), Binance Coin (BNB), Ripple (XRP), Dogecoin (DOGE), Cardano (ADA), Polygon (MATIC), 

Polkadot (DOT), Litecoin (LTC), Solana (SOL). Since different cryptocurrencies are used, there is no true 

apples-to-apples comparison for the MAE and RMSE scores. Therefore, an overview of the MAE and 

RMSE scores across periods of different models and coins was highlighted to see whether a model 

performed the best for one particular cryptocurrency and whether the predictive power was lacking 

(compared to other models) for the other cryptocurrency. This will give insight into the predictive power 

of different machine-learning algorithms across cryptocurrencies. 

1.4 Findings  

The findings demonstrate that the trained models perform substantially better than the baseline RF model. 

Furthermore, from this research, the LSTM model performs the best, while the RNN model performed 

second to best, given their performance on the MAE and RMSE evaluation metrics. Finally, the MLP model 

placed third, followed by the XGBoost model, with the latter model failing to outperform the baseline RF 

model on at least one occasion. 

2. LITERATURE REVIEW 
Predicting the future price using machine learning techniques is well documented for traditional asset 

classes.1 However, the studies about machine learning techniques for cryptocurrencies mainly focused on 

Bitcoin (Fang et al., 2022). While the traditional markets have been around for decades, the cryptocurrency 

market is relatively less mature and limited in scope for most coins. Fang et al. (2022) came up with a 

broad survey of earlier studies on the cryptocurrency market focusing on the price prediction. Their paper 

presents an overview of the current state-of-the-art machine-learning techniques used to predict the price 

of cryptocurrencies and helps us identify the research gap this thesis aims to fill. Their research covers 146 

papers from the cryptocurrency space, and most research findings are predominantly focused on basic 

regression, time-series methods, and decision trees, including Random Forest (RF) and XGBoost. Their 

study also states that RNN and LSTM prevail among the NN algorithms. 

Jaquart, Dann, and Weinhardt (2021) compared six different machine learning methods (these include 

models like LSTM, RNN, and RF) for short-term predictability (one-minute to an hour) in Bitcoin prices. In 

their study, they made a categorization of the features, which they separated into four groups. These 

groups include technical-based features related to the history of a specific coin (e.g., returns or volume). 

Asset-based features, which are comprised of traditional asset classes (e.g., return of indexes like S&P 500 

                                                             
1 The search result on Google Scholar for the price prediction using machine learning for stocks yielded more than 100 
thousand results, while similar search results for cryptocurrencies were less than 20 thousand. 
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and commodities like gold), and blockchain-based features indicate specific features related to the coin’s 

blockchain network (e.g., transactions and number of coins in time) and sentiment-based features which 

are associated with the sentiment (e.g., Twitter and Google searches). According to their research, the 

performance for predictability of BTC prices increases for longer horizons, and the results of the RNN and 

LSTM proved to be well-suited for Bitcoin price prediction. 

Unlike the previous paper, the study by Mudassir et al. (2020) presents machine-learning regression 

models for both short- and medium-term changes in the price of Bitcoin. While most of the previous 

papers focused on short-term prediction (one-day and less), the authors explored the prediction of Bitcoin 

prices using a horizon of one to ninety-days. Their findings show that the provided models performed 

much better for short-term than longer-term horizons. Their results contradict and dispute the previously 

mentioned study, where the performance in predicting BTC prices increases for longer horizons.   

Fleischer et al. (2022) compared the LSTM model against the ARIMA in predicting the future closing 

prices of several cryptocurrencies by only using the past closing price as an input feature. The authors used 

the RMSE score as a comparison, and the LSTM RSME results were as follows: Bitcoin (1,334.755), 

Dogecoin (0.007), and Ethereum (117.655). One of those studies that expand upon the latter study is 

Hansun et al. (2022), which also included the MAE scores of the following trading pairs BTC-USD (MAE; 

1,617.75 and RMSE; 2,518.02), ETH-USD (MAE; 103.18 and RMSE; 150.09), ADA-USD (MAE; 0.13 and RMSE; 

0.19) and BNB-USD (MAE; 18.08 and RMSE; 27.62). Moreover, Ammer and Aldhyani (2022) also used a 

multivariate LSTM model to predict closing prices. These studies included the open, high, low, close, and 

volume as features, replacing any missing values used in those features with the most recent available 

data. Moreover, Mohta et al. (2022) used machine learning techniques like RNN and LSTM to predict both 

short- and long-term close prices of Ethereum. Their research result showed that the error metrics (RMSE 

and MAE) become larger if the prediction duration increases. Just like the research of Mudassir et al. 

(2020), these results contradict and dispute the study of Jaquart, Dann, and Weinhardt (2021), where the 

performance in predicting the cryptocurrency price increases for longer horizons.   

Chen (2022) and Tandon et al. (2019) compared NN models like LSTM and RNN with the Random 

Forest model. The RF model served as an excellent baseline model to assess whether the MAE and RMSE 

scores of the NN models performed better in Bitcoin price prediction. 

Many alternative cross-validation techniques are proposed in the prediction of cryptocurrency prices. 

Oyewola et al. (2022) analyzed a “hybrid walk-forward ensemble optimization technique and applied it to 

predict the daily prices of fifteen cryptocurrencies” (p. 2). Since standard cross-validation techniques like 

k-fold or leave-one-out are not suited for time series, the authors suggested an improved version of the 

walk-forward cross-validation. Barnwal et al. (2019) researched the Bitcoin price direction using several 

different technical indicators, models, and two cross-validation methods (walk forward expanding window 

and purged cross-validation). They concluded that the latter leads to better accuracy. Erfanian et al. (2022) 

compared different machine learning models and investigated the importance of several indicators (asset- 

and blockchain-based) for Bitcoin price prediction. They also included a 10-fold/period rolling basis cross-

validation method. The evaluation metric scores (R-squared and Root Mean Squared Error) are averaged 

across each period and used as their final evaluation metric. Their results yielded better performance when 

increasing the amounts of folds/periods.  

In contrast, Cocco et al. (2021) applied cross-validation on expanding basis by using three folds/periods 

instead of 10. The best model was determined by calculating the Mean Absolute Percentage Error (MAPE) 
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of each period and by taking the averaging across all the periods. As cited by Kuhn & Johnson (2019), the 

k-fold cross-validation folds are usually either 5 or 10. However, there are no clear guidelines on choosing 

the cross-validation method and the number of folds/periods. The studies above have contradicting results 

on predictability when increasing or decreasing the number of folds. However, if the number of folds in 

cross-validation increases, so is the computational requirement. Therefore, choosing fewer periods is 

better from a practical point of view. 

Bouri et al. (2017) and Su et al. (2022) researched the correlation between Bitcoin and the fear index, 

commonly known as the volatility index (VIX), which is measured using the implied volatility across S&P 

500 index. Their studies show that the Bitcoin price and the VIX index have an inverse relationship. Wang 

et al. (2022) and Nguyen (2022) show that Bitcoin prices positively correlate to traditional risky assets like 

stocks and conclude that the correlation increases under extreme shocks and high uncertainty. However, 

this contradicts and disputes the findings of Shahzad et al. (2019) and Al-Yahyaee et al. (2019), where the 

results suggest that Bitcoin can behave as a haven during uncertain times and that it could provide 

diversification benefits to traditional assets like stocks. 

The studies above only used a few techniques, models, and cryptocurrencies. Therefore, a clear 

comparison between various machine-learning approaches across various cryptocurrencies has not yet 

been made. This research expands on the previous research and links several machine learning models 

and techniques with various cryptocurrencies to get more insight into the predictive power regarding 

cryptocurrency price movements. Moreover, a commonality shared by most of these papers is the use of 

the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) to compare the performance of the 

projected models, further outlined in section 4. Taking every paper into consideration, including Fang et 

al. (2022) broad survey results, the RF, XGBoost, MLP, RNN, and LSTM models will be compared for the set 

of selected cryptocurrencies mentioned in Table 1 and include cryptocurrencies that are less researched, 

like Solana and Polkadot to fill the gap with earlier studies. 

3. METHODOLOGY 
This section included the data science flow chart, machine learning models and the reason why we chose 

these models. The data science flow chart is shown first to provide an understanding of the data science 

pipeline and the steps taken. 

3.1 Data Science Flow Chart 

The models and actions taken in the data science pipeline are depicted in Figure 1. These are further 

outlined in the section 4 (Experimental Setup).  
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FIGURE 1 

DATA SCIENCE FLOW CHART 

 

3.2 Random Forest 

Random forest (RF) uses an ensemble technique by constructing decision trees that can be applied to 

regression and classification tasks (Kumar, 2022). Ensemble techniques are methods that improve the 

machine learning model prediction. Specifically, RF uses bagging and serves as an extension to this 

technique, as Breiman (2001) proposed. In the RF model, the trees run parallel to each other, whereby the 

predictions of the trees are combined, and the average of all the trees is used as the final RF model 

prediction. To compare the performance of different models with each other, the RF will be used as the 

baseline model. The RF model is used as the baseline because it is the simplest model among the ones 

being compared. Despite its simplicity RF model is a well-liked option for price prediction. Moreover, 

previous studies like Chen (2022) and Tandon et al. (2019) also used the RF model as their baseline. 

3.3 Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) uses decision trees like RF, but the difference is that XGBoost uses 

boosting as the ensemble technique. XGBoost and RF are solid and well-known in machine learning 

algorithms, but they vary in a few ways that make XGBoost the preferable option. Moreover, the studies 

that compared the XGBoost model proved better results on the evaluation metrics than the RF model. For 

the XGBoost model, the trees run sequentially to each other because of the boosting ensemble technique, 

which makes it suitable to handle data effectively since it is built to be scalable, as opposed to the RF 

model. Moreover, XGBoost uses second-order derivatives to optimize the loss function, allowing it to 

converge more quickly and prevent overfitting, as stated more effectively in Chen & Guestrin (2016). 
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3.4 Multilayer Perceptron 

Multilayer Perceptron (MLP) is a form of artificial neural network (ANN) that interconnects a group of 

nodes in a feed-forward direction, the so-called Feedforward neural network (FNN). So, each neuron 

(perceptron) in the first layer (input layer) has a direct connection to the second layer (hidden layer) and, 

after that, the third layer (output layer), which represents the results. Overall, MLP is more complex than 

the models above and an effective method for predicting cryptocurrency prices. This is because it can 

capture intricate correlations between input and output layers, extract important features from data, and 

deal with noise and scale to accommodate vast volumes of data. In addition, since cryptocurrency prices 

fluctuate a lot, occasionally seeing sharp jumps or drops. Outliers may be handled by MLP models without 

having a substantial impact on the model’s performance. 

3.5 Recurrent Neural Network 

Recurrent Neural Network (RNN), just like the MLP model, is a form of ANN that is also interconnected 

with a group of nodes. However, the difference is that RNN nodes are not connected feedforward (one 

way only) but can go both directions (recurrent). This also allows the RNN model to have an internal 

memory of the input. RNNs are a particular kind of NN that function well for sequential data, including 

time series data. RNNs contain a feedback loop that enables them to keep track of prior inputs, which is 

crucial for problems involving sequence prediction. Therefore, RNNs are a viable option for forecasting 

time series data, such as cryptocurrency prices, and studies like Jaquart, Dann, and Weinhardt (2021) and 

Chen (2022) proved promising results.  

3.6 Long Short-Term Memory 

Long Short-Term Memory (LSTM) is a form of RNN, and just like RNN, it also maintains an internal memory 

of the input. However, the difference is that LSTM maintains that memory longer. An LSTM model can hold 

this information for an extended period because it uses input, output, and forget gates. These gates can, 

in turn, control the flow of information. Since LSTM can manage long-term dependencies, it is better than 

typical RNN. In addition, this makes it possible for LSTM to successfully model the intricate interactions 

between input and output variables, which is crucial for correctly forecasting the price of cryptocurrencies. 

Like the RNN model, LSTM showed promising results, although the latter model had better predictions in 

previous studies like Mohta et al. (2022) and Ammer and Aldhyani (2022). 

4. EXPERIMENTAL SETUP 

4.1 Cryptocurrency data 

The 10 most valuable cryptocurrencies, measured by market capitalization, were chosen. The data was 

collected as a CSV file from Yahoo Finance’s Application Programming Interface (API). 2  The following 

cryptocurrencies are excluded from the analysis: Tether (USDT), USD Coin (USDC), Binance USD (BUSD), 

and Dai (DAI), even though these cryptocurrencies are in the top ten in terms of market capitalization. 

These stablecoins are excluded because their values are pegged to the US dollar, and it would not be 

                                                             
2 Based on the market capitalization data from https://coinmarketcap.com/ as of November 9, 2022. 

https://coinmarketcap.com/
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informative to analyze them in this research. The cryptocurrencies that will be analyzed in this research 

and their category are shown in Table 1. As previously stated in the literature review, unlike Bitcoin, less 

researched cryptocurrencies like Solana or Polkadot, among others, are included. The start and end date 

and the number of daily observations differ for each cryptocurrency since some projects were launched 

at a later stage. Moreover, the maximum data for the selected cryptocurrencies will be set at no more 

than five years due to the fact of extreme volatility in the emergence phase of the cryptocurrency market 

when crypto was less mature. Additionally, to overcome the discrepancies between cryptocurrencies that 

were launched at a later stage. 

TABLE 1  

CRYPTOCURRENCY DATA 

Cryptocurrencies Ticker Category Trading Pair Start Date End Date 
No. of 

Daily Data 

Bitcoin BTC Digital currency BTC-USD 9-Nov-2017 9-Nov-2022 1,827 

Ethereum ETH Blockchain network ETH-USD 9-Nov-2017 9-Nov-2022 1,827 

Binance Coin BNB 
Native coin of Binance 

exchange and ecosystem 
BNB-USD 9-Nov-2017 9-Nov-2022 1,827 

Ripple XRP Digital currency XRP-USD 9-Nov-2017 9-Nov-2022 1,827 

Dogecoin DOGE Meme coin  DOGE-USD 9-Nov-2017 9-Nov-2022 1,827 

Cardano ADA Blockchain network ADA-USD 9-Nov-2017 9-Nov-2022 1,827 

Polygon MATIC Layer-2 scaling solution MATIC-USD 28-Apr-2019 9-Nov-2022 1,292 

Polkadot DOT Blockchain network DOT-USD 20-Aug-2020 9-Nov-2022 812 

Litecoin LTC Digital currency LTC-USD 9-Nov-2017 9-Nov-2022 1,827 

Solana SOL Blockchain network SOL-USD 10-Apr-2020 9-Nov-2022 944 

 

4.2 Asset-based data 

Technical features like the return of the cryptocurrencies and some of the asset-based features mentioned 

in Jaquart, Dann, and Weinhardt (2021) are also included in this research. The asset-based features used 

in this analysis are the daily returns for the S&P 500 and the NASDAQ, which resemble and correlate with 

cryptocurrencies, as further shown in the exploratory data analysis section. Moreover, the VIX returns will 

be included as they have an inverse correlation to Bitcoin, according to Bouri et al. (2017) and Su et al. 

(2022). This was further explored in the exploratory data analysis to see the relation with another 

cryptocurrency. The daily returns are then calculated by subtracting the daily opening prices from the 

closing price. The information on the asset-based dataset with their category is shown in Table 2. The 

trading pair column is removed as the tickers are not tradable and are only used to show the price 

movements. Furthermore, the asset-based data has fewer observations than the cryptocurrency dataset, 

even if the start- and end dates are the same. The reason for this is that traditional assets are traded on 
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the stock market, which is not open on certain days (e.g., holidays like Independence Day or the weekends) 

and periods (trading hours) depending on where it is exchanged, unlike cryptocurrencies that are traded 

twenty-four hours seven days a week. 

TABLE 2  

ASSET-BASED DATA 

Asset-Based Ticker Category Start Date End Date No. of Daily Data 

S&P 500 ^GSPC Stock market index 9-Nov-2017 9-Nov-2022 1,258 

NASDAQ ^IXIC Stock market index 9-Nov-2017 9-Nov-2022 1,258 

VIX ^VIX Volatility measure 9-Nov-2017 9-Nov-2022 1,258 

 

Both cryptocurrencies and asset-based data are denominated in $USD (United States Dollar). The 

data type with their description is shown in Table 3 and is the same for cryptocurrency and asset-based 

datasets. 

TABLE 3  

DATA TYPE AND DESCRIPTION 

 

 

 

 

 

 

4.3 Exploratory Data Analysis 

In this section, due to the word limit imposed (explained in section 6.2) and for brevity, the returns of two 

cryptocurrencies (Bitcoin and Litecoin) and returns of the asset-based were outlined from the selected 

cryptocurrencies to perform an initial investigation. Figure 2 depicts Bitcoin and Litecoin prices over the 

same time span from November 9, 2017, until November 9, 2022. It is immediately apparent that Bitcoin 

price has grown significantly over the years. For both cryptocurrencies, a significant price surge is seen in 

and around the first and second quarters of 2021. Furthermore, unlike Bitcoin, it is apparent that Litecoin 

reached a similar price height of around $350 at the end of 2017.  

Variable Data Type Description 

Date object Date of the corresponding data 

Open float64 The price of the first trade of the day 

High float64 The price of the highest trade of the day 

Low float64 The price of the lowest trade of the day 

Close float64 The price of the last trade of the day 
Adj. Close float64 The close price after adjustments 

Volume int64 The total volume of the trading day 
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FIGURE 2  

BITCOIN AND LITECOIN PRICE 

 

Moreover, Figure 3 illustrates the correlation heatmap of Bitcoin and Litecoin, and Figure 4 illustrates the 

pairwise scatterplot. From the correlation heatmap, we see that the returns of Bitcoin and Litecoin are 

positively correlated with Nasdaq and S&P500 returns, and a negative correlation exists with the VIX index. 

Additionally, we see that Litecoin has a lower correlation with the above indices, given the lower numbers. 

Furthermore, the pairwise scatterplot shows the graphed visual distribution of the Bitcoin and Litecoin 

data with the indices. Whereby the closer the data points approximate a straight line, the higher the 

connection between these factors. A good example can be seen between the strong positive association 

of the S&P500 with the Nasdaq, given the direction of the values. 
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FIGURE 3  

CORRELATION HEATMAP OF BITCOIN (LEFT) AND LITECOIN (RIGHT) 

 

FIGURE 4  

PAIRWISE SCATTERPLOT OF BITCOIN (LEFT) AND LITECOIN (RIGHT) 

 

4.4 Preprocessing 

After merging the cryptocurrency and asset-based data, the initial stage is to check for missing values. As 

mentioned, the asset-based data had several missing values (NAs). This can be filled with several methods, 

like using the mean. In this study, the gaps are filled by using a simple imputation in which the most recent 

available observation is taken, which is also used by Hansun et al. (2022) and Ammer and Aldhyani (2022). 

This approach is suitable because asset-based data are not subject to rapid fluctuations in short periods, 

especially for indices. Since the date variable is an object type, it is converted to DateTime format and set 
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as the index. After, the ‘Adj. Close’ variable, which represents the price after paying off dividends are 

removed as the selected coins do not pay dividends (the values are in this case the same as the Close 

variable). The daily returns are calculated by subtracting the previous day's closing price from the current 

day's closing price and then dividing the result by the previous day's closing price. Moreover, just like in 

the studies by Jaquart, Dann, and Weinhardt (2021), Hansun et al. (2022), the values are rescaled 

(normalized) with min-max normalization, further elaborated in section 4.9. 

4.5 Model Parameters 

Whereas grid search examines every conceivable combination of hyperparameters to identify the optimal 

parameters within a model, it is computationally expensive. Therefore, in this research, the decision was 

made to opt for RandomizedSearchCV to find the parameters. With random search, a random combination 

of hyperparameters from the grid is chosen to find the parameters instead of trying out every combination, 

leading to faster computation. In addition, the number of iterations for the RF and XGBoost models is set 

at a default of 100, as is in line with common practice. Table 4 shows the values tested as input derived 

from earlier studies and a common practice for the RF and XGBoost model hyperparameters.  

TABLE 4  

MODEL PARAMETERS FOR RF AND XGBOOST MODELS 

Model Hyperparameter Input values Parameter explanation 

Random Forest n_estimators 100, 250, 500, 1000, 2000 Unit of trees in RF 
 min_samples_split 2, 5, 10 Min. sample required to split node 
 min_samples_leaf 1, 2, 4 Min. sample required in leaf node 
 max_depth 10, 20, 50, 100 Max. level of splits in each tree 

XGBoost n_estimators 100, 250, 500, 1000, 2000 Unit of trees in XGBoost 
 max_depth 3, 6, 9, 12 Max. dept of each tree 
 learning_rate 0.01, 0.03, 0.05, 0.1 The shrinkage at every step 

 

However, implementing RandomizedsearchCV with TimeSeriesSplit to identify the optimal 

parameters for the NN models is not practical. This is because deep learning techniques sometimes call 

for large datasets, which can result in models that require training for hours or days (Brownlee, 2020). To 

keep run times reasonable, different combinations are tested and showcased in appendix D. Table 5 shows 

the input values that are tested for the MLP, RNN, and LSTM models, which were derived from the 

literature and common practice. 
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TABLE 5  

MODEL PARAMETERS FOR MLP, RNN AND LSTM MODELS 

Model Hyperparameter Input values Parameter Explanation 

MLP hidden_layer_sizes 50, 100, 200, 500 Number of nodes in each layer 
 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 The learning rate of MLP 

RNN epochs 30, 60, 120, 150 Number of times dataset is passed in training 
 batch_size 4, 8, 16, 32, 64, 128 Training samples amount 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 The learning rate of RNN 

LSTM epochs 30, 60, 120, 150 Number of times dataset is passed in training 
 batch_size 4, 8, 16, 32, 64, 128 Training samples amount 
 learning_rate 0.005, 0.001, 0.0005, 0.0001 The learning rate of LSTM 

 

4.6 Baseline Model 

To compare the performance of different models, the RF will be used as the baseline model. As mentioned 

in the methodology section, the RF model is used as the baseline because it is the simplest model among 

the ones being compared, and previous studies like Chen (2022) and Tandon et al. (2019) also used the RF 

model as their baseline. This research compares the MAE and RMSE scores of comparative models 

(XGBoost, MLP, RNN, and LSTM) to determine whether it outperforms the baseline. The machine learning 

algorithm is considered to perform well if it achieves a better performance in terms of MAE and RMSE 

scores than the baseline model. Throughout this paper, the RF model and baseline model are used 

interchangeably. 

4.7 Features and Target for Models without Memory Unit 

Since they do not explicitly describe the temporal connections in the data, models like RF and XGBoost are 

examples of models without an explicit memory unit, as described in section 3. Given that the models’ 

designs and presumptions about the nature of the data differ, it might be difficult to compare models that 

are built to handle time-series data with models that are not. To overcome this, we opted for the 3-fold 

Timeseriessplit and a sliding window approach with window size of 7, further elaborated in section 4.11. 

As standard RF and XGBoost models do not have an explicit memory function, this approach can be seen 

as a way of creating a memory-like effect by giving the models with a sequence of past values to learn 

from. Furthermore, using this approach, we don’t need to create separate features for each lagged value. 

Instead, we rearrange the input features into a time-series format by sliding a window over the data and 

we would be able to use the same input features for all models. Moreover, the features that are used for 

the models with and without memory are the daily: 1) Open, 2) Close, 3) High, 4) Low, 5) Volume, 6) Return 

for each selected cryptocurrency, 7) Nasdaq return, 8) S&P 500 return, 9) VIX return. However, instead of 

using a three-dimensional tensor like the models with memory unit, we flatten the data for each window 

into a one-dimensional vector where each input and output shape for these models is a two-dimensional 

tensor. With the target being the ‘Close’ price, representing the predicted closing price of the selected 

cryptocurrency for the next day, and since we are using a sliding window approach with a step size of one, 
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the models can capture some of the temporal relationships between adjacent windows. Unlike the studies 

by Jaquart, Dann, and Weinhardt (2021) for predicting short-term (1-min to 60-min) cryptocurrency prices, 

in this research, the next day close price will be forecasted, just like the study of Mudassir et al. (2020), 

which showcased promising results. 

4.8 Features and Target for Models with Memory Unit 

On the other hand, memory units are all present in the RNN and LSTM models. Although lagged copies of 

the input variables can be included as extra inputs to the model, previous models lack a clear method for 

adding historical data in the sense that they do not explicitly contain the memory function. While having 

an explicit memory structure that enables them to recognize temporal correlations in the input, RNNs and 

LSTMs are primarily created to represent sequential data as mentioned in the methodology section. 

Furthermore, the MLP model may not explicitly model temporal dependencies, it can still capture some 

level of temporal information by using aforementioned approach, and since MLP belongs to NN category, 

in this research the MLP model is listed in the model with memory unit. Moreover, for the models with 

memory unit we create a similar DataFrame with columns for open, high, low, close, volume, and returns 

(selected cryptocurrencies, VIX, Nasdaq, and S&P500). We then train these memory-based models utilizing 

a sliding window approach to incorporate temporal dependencies. This generates the input shape of three-

dimensional tensor that is then used to train and evaluate the memory-based models and the output 

shape is a two-dimensional tensor representing the predicted closing price of the selected cryptocurrency 

for the next day. Moreover, in all cases for the RNN and LSTM models, the number of layers is set at three, 

and the parameter of units is arranged as [32, 64, 128] due to common practice. The study of Hansun et 

al. (2022) suggested that a straightforward three-layer structure, particularly for this type of prediction, 

basic architecture can obtain performance outcomes that are equivalent to those of deeper and more 

complicated ones. In addition, as mentioned above, for the NN models, as common practice, the data is 

reshaped into a 3D array before being fed into the model. For each model, the error pattern visualization 

is showcased in the results section and in Appendix B and C. Furthermore, ‘Adam’ optimization is used in 

all the NN models with ‘ReLu’ as activation, just like Chen (2022). 

4.9 Data Normalization 

The most prevailing approach in the literature review is the Min-Max scaler as a normalizing method. This 

feature scaling technique rescales the range for the features between [0,1], so that the features are 

measured on the same scale, and improve the machine learning performance.  

EQUATION 1  

MIN-MAX NORMALIZATION 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑋) =
𝑋 − 𝑀𝑖𝑛 (𝑋)

𝑀𝑎𝑥 (𝑋) − 𝑀𝑖𝑛 (𝑋)
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4.10 Evaluation Metrics 

The prediction ability of the models will be assessed using two common error measures for regression 

models in machine-learning: the Mean-Absolute-Error (MAE) and Root-Mean-Squared-Error (RMSE). In 

addition, most studies mentioned in the literature review used these error metrics. The MAE score is 

calculated by taking the average absolute difference between the forecasted- and actual value across the 

dataset. For the RMSE, the difference between the forecasted- and actual-value are squared. Afterward 

the average is taken across the dataset. For both error metrics, lower values represent a better model 

performance. 

EQUATION 2  

ERROR METRICS 

Error Metrics Formula 

Mean Absolute Error (MAE) 

 

Root Mean Squared Error (RMSE) 

 

Where 𝑦𝑖 is the predicted value, and 𝑦 is the actual value 

Since the data is split into several periods using TimeSeriesSplit cross-validation, this will lead to a 

separate MAE and RMSE score for each period. Just like the studies of Erfanian et al. (2022) and Cocco et 

al. (2021), the separate MAE and RMSE scores are then averaged across all periods to be used as the final 

evaluation metric. 

4.11 Cross-validation 

While a standard k-fold cross-validation technique (e.g., hold-out, leave-one-out, or stratified k-folds) is an 

excellent way to split the data and avoid overfitting, it creates a problem for time-series data as future 

observations should not be used (trained on) to make predictions of the past. This is because time-series 

data are not independent and evenly distributed. However, the data is dependent, and using a standard 

k-fold cross-validation will result in data spillover (peeking into the future). The main idea is that each test 

set period must come later than the previous period. There are several ways to overcome this issue, but 

the two commonly used methods in the literature review are the rolling window (sometimes mentioned 

as the sliding window) and expanding window method (sometimes mentioned as the walk forward).3 For 

example, Cocco et al. (2021) and Erfanian et al. (2022) used the expanding window approach, while 

Oyewola et al. (2022) and Barnwal et al. (2019 used the walk forward approach. The rolling window has a 

fixed size, while the expanding window includes new data along the periods. This research used a 3-fold 

                                                             
3 The name of the methods for splitting time-series data using cross-validation is sometimes used interchangeably in 
the previous research papers, even though there is a slight difference between the techniques. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦|

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦)2

𝑛

𝑖=1
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TimeSeriesSplit with 70-30% train-test data split as common practice, and a sliding window approach with 

a window size of 7, which gives a good balance of training data and model complexity. Furthermore, in 

appendix A, the visualization for each train/test period using TimeSeriesSplit and cryptocurrencies are 

showcased. 

4.12 Algorithms and Software  

All processing and execution in this thesis are done in Python 3.7.13 (Anaconda Navigator 2.3.2 and Jupyter 

Notebook 6.4.12). The following packages and libraries are utilized: Pandas (1.3.5), NumPy (1.18.5), Pyplot, 

Seaborn (0.12.0), Tqdm (4.64.1), Scikit-learn, TensorFlow (1.15.0), Keras (2.1.6). To access both the 

cryptocurrency and asset-based data, YahooFinancials API is used.  

5. RESULTS 

This section will outline the model performance in terms of MAE and RMSE scores for each cryptocurrency 

and period separately. Finally, a general overview of the average MAE and RMSE results across periods of 

all cryptocurrencies and models will be outlined. 

5.1 Bitcoin 

The MAE and RMSE results per period for the models of the Bitcoin (BTC) dataset are shown in Table 6, 

and the accompanying error pattern visualization graphs for period 3 are shown in Figure 5. The RF model 

resulted in average MAE and RMSE scores of 3,619.93 and 6,547.88, respectively. The XGBoost model 

performed slightly better, with an average MAE of 3,556.44 and an RMSE score of 6,506.36 across periods. 

The best-performing model is the RNN model. with an average MAE and RMSE score of 1,846.83 and 2,515, 

with the LSTM model as runner-up having a slightly higher MAE and RMSE score of 2,003.99 and 2,710.97 

respectively. While the MLP model had an inferior performance on average across all periods compared 

to the other two NN models, it still outperformed RF and XGBoost models by a considerable margin with 

an average MAE and RMSE of 2,127.92 and 3,535.66, respectively. Moreover, the MLP model had a far 

superior performance in predicting period 3, as showcased in the error pattern visualization. The smaller 

distance between the actual and predicted price lines indicates a better performance. Furthermore, as 

shown in Figure 5, RNN and LSTM models were outperformed by the RF and XGBoost models in predicting 

the price of BTC for period 3. 

 

TABLE 6  

BITCOIN MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      

Period 1 1,021.3402 1,058.4958 1,322.0843 718.2236 1,277.1019 

Period 2 7,822.6211 7,689.6479 3,566.7063 1,177.1306 637.2353 

Period 3 2,015.8153 1,921.1776 1,494.9556 3,645.1483 4,097.6457 
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Average 3,619.9256 3,556.4405 2,127.9155 1,846.8342 2,003.9944 

RMSE      

Period 1 1,399.1677 1,496.5066 1,601.2831 973.4368 1,691.6154 

Period 2 15,714.3719 15,577.5591 7,018.4809 2,226.4023 1,112.9666 

Period 3 2,530.0973 2,445.0232 1,987.2083 4,345.1585 5,328.3298 

Average 6,547.8790 6,506.3630 3,535.6575 2,514.9992 2,710.9707 

 

FIGURE 5  

BITCOIN ERROR PATTERN VISUALIZATION FOR PERIOD 3 (FROM TOP TO BOTTOM AND LEFT TO RIGHT RF, 
XGBOOST, MLP, RNN AND LSTM) 

 

 

5.2 Ethereum 

The MAE and RMSE results per period for the models of the Ethereum (ETH) dataset are shown in Table 7, 

and the accompanying error pattern visualization graphs for period 3 are shown in Figure 6. The RF model 

resulted in average MAE and RMSE scores of 188.93 and 317.16, respectively. The XGBoost model 

performed slightly better, with an average MAE and RMSE score across periods of 187.88 and 316.12, 

respectively. The MLP model had a lower average MAE of 115.27 and an average RMSE score across 

periods of 160.72. The best-performing model is the LSTM model, given the lowest average MAE score of 
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94.04 and RMSE score across periods of 126.73. The RNN model had the second-lowest average MAE and 

RMSE scores across periods of 99.66 and 136.25, respectively. The MLP and LSTM models had the best 

performance in predicting the ETH price for period 3, as seen in the error pattern visualization, where the 

actual and predicted lines follow each other closely.  

TABLE 7  

ETHEREUM MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      
Period 1 125.7137 137.8595 161.2175 106.6618 125.5759 

Period 2 166.4938 151.8153 61.6038 43.5030 34.4451 

Period 3 274.5883 273.9661 122.9863 148.8092 122.0854 

Average 188.9320 187.8804 115.2692 99.6581 94.0355 

RMSE      

Period 1 142.7886 154.8428 171.7173 120.3267 140.1135 

Period 2 426.0585 405.1560 141.9610 93.0554 67.8574 

Period 3 382.6364 388.3472 168.4945 195.3555 172.2089 

Average 317.1612 316.1154 160.7243 136.2459 126.7266 
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FIGURE 6  

ETHEREUM ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

 

5.3 Binance Coin 

The MAE and RMSE results per period for the models of the Binance Coin (BNB) dataset are shown in Table 

8, and the accompanying error pattern visualization graphs for period 3 are shown in Figure 7. The RF 

model resulted in average MAE and RMSE scores of 31.26 and 66.06, respectively. The XGBoost performed 

better with an average MAE score across periods of 30.97 and an average RMSE score across periods of 

65.47. While the MLP model had the lowest MAE score (20.11), the average RMSE score (41.16) across 

periods was higher than the other NN models. However, the MLP model had a far superior performance 

in predicting period 3, also showcased in the error pattern visualization. The RNN model had the lowest 

RMSE score of 33.88 and an average MAE of 24.95. The LSTM model had the worst performance among 

the NN models with an average MAE and RMSE score across periods of 26.50 and 41.17, respectively, but 

still had a far better performance than the RF and XGBoost models in predicting the BNB price. 
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TABLE 8  

BINANCE COIN MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      

Period 1 3.2730 2.5866 7.9500 3.2789 8.2884 

Period 2 55.6892 55.5107 36.6681 11.5018 14.9256 

Period 3 34.8293 34.8206 15.7346 60.0765 56.2947 

Average 31.2639 30.9727 20.1176 24.9525 26.5030 

RMSE      

Period 1 5.4440 4.4613 10.7069 5.5800 11.2422 

Period 2 148.8639 148.7983 90.5595 31.7298 37.4617 

Period 3 43.8851 43.1536 22.2409 64.3551 74.8280 

Average 66.0644 65.4711 41.1692 33.8883 41.1773 

 

FIGURE 7  

BINANCE COIN ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 
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5.4 Ripple 

The MAE and RMSE results per period for the models of the Ripple (XRP) dataset are shown in Table 9, and 

the accompanying error pattern visualization graphs for period 3 are shown in Figure 8. The RF model 

resulted in average MAE and RMSE scores of 0.0485 and 0.0767, respectively. The XGBoost model 

performed better, with an average score of 0.045 and 0.0722, respectively. The best-performing model is 

the LSTM model, with an average MAE and RMSE score of 0.0302 and 0.0517, respectively. While the RNN 

model had a lower average MAE score of 0.0337 compared to the MLP model (0.0362), it had a slightly 

higher average RMSE score across periods. Moreover, it can be seen in Figure 8 that all the NN models had 

a similar performance in predicting the price of XRP for period 3, where the predicted price line closely 

resembles the actual price for each model. 

TABLE 9  

RIPPLE MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      

Period 1 0.0602 0.0623 0.0267 0.0276 0.0225 

Period 2 0.0315 0.0314 0.0501 0.0442 0.0382 

Period 3 0.0537 0.0412 0.0316 0.0290 0.0297 

Average 0.0485 0.0450 0.0362 0.0337 0.0302 

RMSE      

Period 1 0.0766 0.0907 0.0360 0.0397 0.0316 

Period 2 0.0637 0.0574 0.0892 0.0913 0.0702 

Period 3 0.0897 0.0684 0.0504 0.0522 0.0532 

Average 0.0767 0.0722 0.0586 0.0611 0.0517 
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FIGURE 8  

RIPPLE ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

 

5.5 Dogecoin 

The MAE and RMSE results per period for the models of the Dogecoin (DOGE) dataset are shown in Table 

10, and the accompanying error pattern visualization graphs for period 3 are shown in Figure 9. The RF 

model resulted in average MAE and RMSE scores of 0.0243 and 0.0538, respectively. The RF model 

outperformed the XGBoost model with average MAE and RMSE scores across periods of 0.0353 and 

0.0654, respectively. The best-performing model is the LSTM model, with an average MAE score across 

periods of 0.0141 and an RMSE score across periods of 0.0335. The MLP model had the second-lowest 

average MAE and RMSE scores across periods of 0.0142 and 0.0347, respectively. Despite falling short 

compared to the LSTM models in terms of the average score across periods, the MLP model had a far 

better performance predicting period 3, as showcased in the error pattern visualization graph.  
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TABLE 10  

DOGECOIN MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      

Period 1 0.0002 0.0003 0.0067 0.0051 0.0025 

Period 2 0.0240 0.0238 0.0236 0.0258 0.0240 

Period 3 0.0485 0.0817 0.0122 0.0167 0.0155 

Average 0.0243 0.0353 0.0142 0.0159 0.0141 

RMSE      

Period 1 0.0003 0.0003 0.0071 0.0055 0.0031 

Period 2 0.0883 0.0881 0.0776 0.0866 0.0751 

Period 3 0.0728 0.1078 0.0192 0.0230 0.0220 

Average 0.0538 0.0654 0.0347 0.0384 0.0335 

 

FIGURE 9  

DOGECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 
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5.6 Cardano 

The MAE and RMSE results per period for the models of the Cardano (ADA) dataset are shown in Table 11. 

The accompanying error pattern visualization graphs for period 3 are shown in Figure 10. The RF model 

resulted in average MAE and RMSE scores of 0.0882 and 0.1591, respectively. The XGBoost model 

performed better with average MAE and RMSE scores across periods of 0.0752 and 0.1394, respectively. 

The LSTM model had the lowest average MAE score across periods (0.0303) compared to the MLP (0.0457) 

and RNN model (0.0310); however, the LSTM RMSE score (0.0501) was slightly higher than the RNN model 

(0.0493). Furthermore, as seen in the error pattern visualization, the RNN and LSTM model best predicted 

the ADA price for period 3. 

TABLE 11 

CARDANO MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      
Period 1 0.0429 0.0351 0.0184 0.0114 0.0042 

Period 2 0.0506 0.0412 0.0428 0.0204 0.0276 

Period 3 0.1709 0.1493 0.0758 0.0609 0.0591 

Average 0.0882 0.0752 0.0457 0.0310 0.0303 

RMSE      

Period 1 0.0477 0.0397 0.0200 0.0179 0.0059 

Period 2 0.1268 0.1043 0.0769 0.0393 0.0557 

Period 3 0.3027 0.2742 0.1220 0.0907 0.0886 

Average 0.1591 0.1394 0.0730 0.0493 0.0501 
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FIGURE 10  

CARDANO ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

 

5.7 Polygon 

The MAE and RMSE results per period for the models of the Polygon (MATIC) dataset are shown in Table 

12, and the accompanying error pattern visualization graphs for period 3 are shown in Figure 11. The RF 

model resulted in average MAE and RMSE scores of 0.28 and 0.40, respectively. The XGBoost model 

performed slightly better, with an average MAE across periods of 0.27 and an average RMSE score across 

periods of 0.39. The best-performing model is the RNN model, with an average MAE and RMSE score of 

0.24 and 0.33, respectively. The LSTM model had marginally lower MAE (0.25) and RMSE (0.35) scores 

compared to the MLP model (0.26 and 0.36, respectively). For period 3 however, the price predictions for 

the MLP model were the closest to the actual value, also seen in the error pattern visualization in Figure 

11. 
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TABLE 12  

POLYGON MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      

Period 1 0.0020 0.0015 0.1323 0.0054 0.0042 

Period 2 0.6146 0.6143 0.5763 0.5550 0.6259 

Period 3 0.2396 0.2062 0.0938 0.1631 0.1251 

Average 0.2854 0.2741 0.2675 0.2412 0.2518 

RMSE      

Period 1 0.0030 0.0025 0.1347 0.0070 0.0053 

Period 2 0.8679 0.8678 0.8123 0.7800 0.8776 

Period 3 0.3515 0.3223 0.1374 0.2060 0.1686 

Average 0.4075 0.3976 0.3615 0.3310 0.3506 

 

FIGURE 11  

POLYGON ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 
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5.8 Polkadot 

The MAE and RMSE results per period for the models of the Polkadot (DOT) dataset are shown in Table 

13, and the accompanying error pattern visualization graphs for period 3 are shown in Figure 12. The RF 

model resulted in average MAE and RMSE scores of 7.01 and 8.77, respectively. Like the previous results, 

the XGBoost model had lower average MAE and RMSE scores across periods (6.64 and 8.43, respectively). 

The best-performing model is the LSTM model, given the lowest average MAE score of 4.14 and RMSE 

score across periods of 5.28. The RNN model had the second-lowest average MAE and RMSE scores across 

periods of 4.58 and 5.83, respectively. Despite falling short compared to the other NN models in terms of 

the average score across periods, the MLP model had a far better performance predicting period 3, as 

showcased in the error pattern visualization.  

TABLE 13  

POLKADOT MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      

Period 1 16.8703 16.8500 14.2757 11.5782 10.4964 

Period 2 2.8235 2.2489 1.5266 1.4475 1.3011 

Period 3 1.3546 0.8306 0.5373 0.7304 0.6427 

Average 7.0162 6.6432 5.4466 4.5854 4.1467 

RMSE      

Period 1 20.9662 20.9532 17.7699 14.6346 13.2619 

Period 2 3.6298 3.2914 2.0704 1.9326 1.8075 

Period 3 1.7240 1.0568 0.7109 0.9227 0.7898 

Average 8.7734 8.4339 6.8505 5.8300 5.2864 
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FIGURE 12  

POLKADOT ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

 

5.9 Litecoin 

The MAE and RMSE results per period for the models of the Litecoin (LTC) dataset are shown in Table 14, 

and the accompanying error pattern visualization graphs for period 3 are shown in Figure 13. The RF model 

resulted in average MAE and RMSE scores of 9.77 and 16.09, respectively. The XGBoost model surprisingly 

had a higher average MAE score across periods of 11.23. However, the average RMSE score of the XGBoost 

model was 15.67, thus lower than the RF model. The MLP model had a lower average MAE score across 

periods of 8.64 than the RNN model at 8.67. However, the RMSE score was worse compared to the RNN 

model. The LSTM model had the best performance, with average MAE and RMSE scores across periods of 

7.96 and 11.52, respectively. The LSTM and RNN model performed the best in predicting the price for 

period 3 as seen in Figure 13, with the latter model having a slightly better prediction. 
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TABLE 14  

LITECOIN MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      

Period 1 12.8455 21.6784 13.6878 15.9603 13.8639 

Period 2 7.9645 6.1564 5.5826 4.9078 4.8090 

Period 3 8.5103 5.8576 6.6621 5.1453 5.2291 

Average 9.7735 11.2309 8.6442 8.6712 7.9674 

RMSE      

Period 1 18.0986 25.7149 17.0314 18.8385 15.5734 

Period 2 14.7308 10.8480 8.8358 8.6542 9.2163 

Period 3 15.4500 10.4591 10.7666 9.0697 9.7863 

Average 16.0932 15.6741 12.2113 12.1875 11.5254 

 

FIGURE 13  

LITECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 
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5.10 Solana 

The MAE and RMSE results per period for the models of the Solana (SOL) dataset are shown in Table 15, 

and the accompanying error pattern visualization graphs for period 3 are shown in Figure 14. The RF model 

resulted in average MAE and RMSE scores of 29.88 and 40.57, respectively. The XGBoost model performed 

better, with an average MAE score across periods of 28.56 and an average RMSE across periods of 39.33. 

The best-performing model was the LSTM model, with average MAE and RMSE scores across periods of 

10.37 and 13.98, respectively. The RNN model predicted the price of SOL better on average than the MLP 

model. It also had the best performance in predicting the price for period 3, also seen on the error pattern 

visualization where the actual and predicted lines follow each other closely. 

TABLE 15  

SOLANA MAE AND RMSE RESULTS 

Periods RF XGBoost MLP RNN LSTM 

MAE      
Period 1 5.6913 5.6673 10.0307 6.0891 6.1090 

Period 2 79.5157 76.1985 28.7436 32.7164 21.1795 

Period 3 4.4425 3.8164 3.6235 2.9963 3.8288 

Average 29.8832 28.5608 14.1326 13.9340 10.3725 

RMSE      

Period 1 9.8387 9.8240 13.5543 10.0764 10.0897 

Period 2 105.5675 102.7142 39.5981 40.5201 26.5273 

Period 3 6.3331 5.4535 5.2302 4.2882 5.3296 

Average 40.5798 39.3306 19.4609 18.2949 13.9822 
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FIGURE 14 

SOLANA ERROR PATTERN VISUALIZATION FOR PERIOD 3 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

 

5.11 Results overview 

Table 16 shows the average MAE and RMSE scores across periods of different models and coins. The 

numbers highlighted in green are the ones that performed the best compared to other models, and the 

numbers highlighted in red are the ones that the baseline model has outperformed. In Table 16, it is 

demonstrated that the LSTM model had seven times the lowest MAE score and six times the lowest RMSE 

score across the analyzed cryptocurrencies. The RNN model had two times the lowest MAE and four times 

the lowest RMSE score across different cryptocurrencies, while the MLP model only outperformed every 

other model once for the BNB-USD pair in terms of the lowest MAE score. Moreover, the XGBoost model, 

on average, had a better performance than the baseline model in predicting close prices. However, it was 

outperformed three times for the DOGE-USD and LTC-USD pairs, which could be due to the chosen 

hyperparameters. 
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TABLE 16  

RESULTS OVERVIEW: AVERAGE MAE AND RMSE SCORE ACROSS PERIODS 

Cryptocurrencies RF XGBoost MLP RNN LSTM 

MAE      

BTC-USD 3,619.9256 3,556.4405 2,127.9155 1,846.8342 2,003.9944 

ETH-USD 188.9320 187.8804 115.2692 99.6581 94.0355 

BNB-USD 31.2639 30.9727 20.1176 24.9525 26.5030 

XRP-USD 0.0485 0.0450 0.0362 0.0337 0.0302 

DOGE-USD 0.0243 0.0353 0.0142 0.0159 0.0141 

ADA-USD 0.0882 0.0752 0.0457 0.0310 0.0303 

MATIC-USD 0.2854 0.2741 0.2675 0.2412 0.2518 

DOT-USD 7.0162 6.6432 5.4466 4.5854 4.1467 

LTC-USD 9.7735 11.2309 8.6442 8.6712 7.9674 

SOL-USD 29.8832 28.5608 14.1326 13.9340 10.3725 

RMSE      

BTC-USD 6,547.879 6,506.363 3,535.6575 2,514.9992 2,710.9707 

ETH-USD 317.1612 316.1154 160.7243 136.2459 126.7266 

BNB-USD 66.0644 65.4711 41.1692 33.8883 41.1773 

XRP-USD 0.0767 0.0722 0.0586 0.0611 0.0517 

DOGE-USD 0.0538 0.0654 0.0347 0.0384 0.0335 

ADA-USD 0.1591 0.1394 0.0730 0.0493 0.0501 

MATIC-USD 0.4075 0.3976 0.3615 0.3310 0.3506 

DOT-USD 8.7734 8.4339 6.8505 5.8300 5.2864 

LTC-USD 16.0932 15.6741 12.2113 12.1875 11.5254 

SOL-USD 40.5798 39.3306 19.4609 18.2949 13.9822 

 

6. DISCUSSION 

The problem statement that this research addressed is the lack of comparisons in the existing literature 

regarding machine learning models in predicting cryptocurrency prices. Therefore, in this thesis, a 

comparison was made of five machine learning models and their predictive power regarding 10 different 

cryptocurrencies. In particular, this thesis tried to answer the following research question:  

“How well can the price of selected cryptocurrencies be predicted with machine learning methods?” 

Two related sub-questions were created to address the main research question: 

Sub-question 1: “Which of a set of selected machine learning algorithms performs well in the prediction 

of cryptocurrency prices?” 
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This sub-question will be answered by comparing the five machine learning algorithms across 10 

cryptocurrencies to assess which model performed well in predicting the price of cryptocurrencies. This 

was done by assessing these models’ average MAE and RMSE scores across 3 periods and against the 

baseline model. As was further outlined in the experimental setup section, different hyperparameters 

were used for each model and cryptocurrency. Moreover, both technical and asset-based features were 

used to predict the price. In this research, the machine learning algorithm is considered to perform well if 

it achieves a better MAE and RMSE score across periods than the baseline model, which was different for 

each cryptocurrency. The results show that, on average, all machine learning algorithms (XGBoost, MLP, 

RNN, and LSTM) compared to the baseline RF model performed well. The results are in line with previous 

studies like Mohta et al. (2022) and Tandon et al. (2019), where the comparative models outperformed 

the baseline model, which substantiates their hypothesis.  

Sub-question 2: “How does the predictive power of different machine learning algorithms compare across 

cryptocurrencies?” 

The second sub-question is answered by comparing the aforementioned models, and their predictive 

power is then compared with the selected cryptocurrencies mentioned in Table 1. We opted for the 10 

largest cryptocurrencies in terms of market capitalization (as of November 9, 2022) and collected the data 

as a CSV file from Yahoo Finance (API). Stablecoins were excluded from this research, which is not 

informative to analyze as their values are pegged to the US dollar. Moreover, the start- and end dates and 

the number of daily observations differed for each cryptocurrency since some projects were founded and 

launched at a later stage. Since different cryptocurrencies were used, there is no true apples-to-apples 

comparison for the MAE and RMSE scores. Therefore, an overview of the MAE and RMSE scores across 

periods of different models and coins was highlighted in the results overview to see whether a model 

performed the best for one particular cryptocurrency and whether the predictive power was lacking 

(compared to other models) for the other cryptocurrency. This will give insight into the predictive power 

of different machine-learning algorithms across cryptocurrencies. The conclusion that follows is that there 

is not just one machine-learning algorithm that is certain to be the most accurate for all cryptocurrencies. 

Moreover, on average, the NN models outperformed the machine-learning models. However, it’s crucial 

to remember that a specific NN model might not always be the ideal option for every cryptocurrency price 

prediction, as showcased in the result section. This is not surprising, as factors like the unique properties 

of the coin under consideration, prediction horizon, and specific features and inputs influence the 

effectiveness of the price prediction for a particular model. This was also the case for prior studies like 

Hansun et al. (2022) and Fleischer et al. (2022), among others. Although they used different techniques, 

the predictive nature of a machine learning algorithm differed for a particular cryptocurrency.  

With the answers to the sub-questions, the main research question will be answered: 

“How well can the price of selected cryptocurrencies be predicted with machine learning methods?”  

The findings demonstrate that the trained models perform substantially better than the baseline 

RF model. From this research, the LSTM model performed the best while the RNN model placed second, 

given the number of times these algorithms had the lowest MAE and RMSE score across different 
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cryptocurrencies. The MLP model placed third, followed by the XGBoost model, but the latter failed to 

outperform the baseline model on at least one occasion. 

6.1 Scientific and Societal Impact 

This study provides a knowledge base to comprehend various machine learning algorithms and 

their predictive power across cryptocurrencies. While the aforementioned studies only used a few 

techniques, models, and cryptocurrencies. Particularly, it helps to understand what machine learning 

algorithm performs best for a specific cryptocurrency. From the scientific point of view, this research can 

assist academics in gaining insight into the predictive nature of different machine learning algorithms to 

test economic theories and models. In addition, these models may be used to create predictive models 

that can anticipate future prices with varied degrees of accuracy and potentially result in more accurate 

financial market forecasting techniques. Moreover, this research is interesting from a societal standpoint 

because cryptocurrencies have become a well-liked asset class in the broader society. Some people spend 

substantial sums of money in the expectation of making money off price changes. Correct cryptocurrency 

price forecasts can aid traders and investors in making more educated choices about whether to purchase, 

sell, or hold certain assets, potentially improving the performance of their investments. 

6.2 Limitations and Future Research 

Due to processing power, a more thorough parameter-tuning process could not be followed for this 

research, especially when the number of iterations and epochs was increased. Moreover, this research 

makes no inferences on modifying the ideal machine-learning algorithm to obtain the best performance. 

Future studies may also include additional hyperparameters. Regarding the NN models, combining 

different layers instead of a fixed number of layers could be experimented upon to see whether 

performance increases since there was no experimentation regarding the structure in this research due to 

the imposed word count limit and due to a vast number of cryptocurrencies that were analyzed. In 

addition, the prediction with different time horizons might lead to better results, which was left out in this 

research due to the word limit. Finally, as the market environment and the underlying cryptocurrency data 

are subject to change, further research could be used to find the optimal performance. 

7. CONCLUSION 

Although institutional investors are becoming more interested in the emerging asset class of 

cryptocurrencies, it is still challenging to predict their future pricing because there is no established 

framework. In the existing literature, there is a lack of comparative analysis of machine learning models 

for cryptocurrency price prediction. To fill this gap in the literature, the research employs a 3-fold 

TimeSeriesSplit cross-validation technique and sliding window approach to compare the predictive 

abilities of five machine learning models across ten different cryptocurrencies. MAE and RMSE scores are 

employed to assess these models' performance. The results reveal that trained models perform 

significantly better than the baseline model, with NN models showing particularly impressive results and 

outperforming other comparable machine-learning models. The LSTM model exhibits the highest 
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predictive power of the models analyzed, as well as the lowest MAE and RMSE scores across a variety of 

cryptocurrencies. 

Thus, this thesis provides a valuable contribution to the field by comparing the price prediction of ten 

cryptocurrencies that have not been extensively researched. The findings highlight the disparities in 

predictive ability among different machine learning approaches for various cryptocurrencies, which can 

help in choosing the best algorithm for a given cryptocurrency and potentially result in more precise 

methods for forecasting the financial markets.  
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APPENDIX A: Cryptocurrency TimeSeriesSplit 

In Appendix A the TimeSeriesSplit periods for each cryptocurrency are showcased (starting with period 1 

from top to bottom). 

FIGURE 15: BITCOIN TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 

 

FIGURE 16: ETHEREUM TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 
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FIGURE 17: BINANCE COIN TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 

 

FIGURE 18: RIPPLE TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 
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FIGURE 19: DOGECOIN TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 

 

FIGURE 20: CARDANO TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 
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FIGURE 21: POLYGON TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 

 

FIGURE 22: POLKADOT TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 
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FIGURE 23: LITECOIN TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 

 

FIGURE 24: SOLANA TRAIN/TEST PERIOD (1, 2 AND 3) SPLIT 
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APPENDIX B: Error pattern visualization for period 1 

This appendix includes the error pattern visualization (predicted vs. actual) for period 1. The figure on 

top is the RF model and from top to bottom left to right XGBoost, MLP, RNN and LSTM is shown. 

FIGURE 25: BITCOIN ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM)

 

FIGURE 26: ETHEREUM ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM) 
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FIGURE 27: BINANCE COIN ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN, LSTM) 

 

FIGURE 28: RIPPLE ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM) 
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FIGURE 29: DOGECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

FIGURE 30: POLKADOT ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM) 
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FIGURE 31: CARDANO ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

FIGURE 32: POLYGON ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM) 
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FIGURE 33: LITECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

FIGURE 34: SOLANA ERROR PATTERN VISUALIZATION FOR PERIOD 1 (RF, XGBOOST, MLP, RNN AND LSTM) 
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APPENDIX C: Error pattern visualization for period 2 

This appendix includes the error pattern visualization (predicted vs. actual) for period 2. The figure on 

top is the RF model and from top to bottom left to right XGBoost, MLP, RNN and LSTM is shown. 

FIGURE 35: BITCOIN ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

FIGURE 36: ETHEREUM ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 
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FIGURE 37: BINANCE COIN ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN, LSTM) 

 

FIGURE 38: RIPPLE ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 
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FIGURE 39: DOGECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

FIGURE 40: POLKADOT ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 
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FIGURE 41: CARDANO ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

FIGURE 42: POLYGON ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 
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FIGURE 43: LITECOIN ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 

 

FIGURE 44: SOLANA ERROR PATTERN VISUALIZATION FOR PERIOD 2 (RF, XGBOOST, MLP, RNN AND LSTM) 
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APPENDIX D: Cryptocurrency model hyperparameters 

In Appendix D the hyperparameters that are used for each model and cryptocurrency are showcased. 

TABLE 17: BITCOIN RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 1000 
 min_samples_split 2, 5, 10 5 

 min_samples_leaf 1, 2, 4 4 

 max_depth 10, 20, 50, 100 50 

XGBoost n_estimators 100, 250, 500, 1000, 2000 250 

 max_depth 3, 6, 9, 12 9 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.03 

MLP hidden_layer_sizes 50, 100, 200, 500 500 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001 

RNN epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 8 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

 

TABLE 18: ETHEREUM RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 500 
 min_samples_split 2, 5, 10 10 

 min_samples_leaf 1, 2, 4 1 

 max_depth 10, 20, 50, 100 50 

XGBoost n_estimators 100, 250, 500, 1000, 2000 2000 

 max_depth 3, 6, 9, 12 6 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.05 

MLP hidden_layer_sizes 50, 100, 200, 500 500 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.005 

RNN epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 8 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005  
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TABLE 19  

BINANCE COIN RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 100 
 min_samples_split 2, 5, 10 5 

 min_samples_leaf 1, 2, 4 4 

 max_depth 10, 20, 50, 100 100 

XGBoost n_estimators 100, 250, 500, 1000, 2000 1000 

 max_depth 3, 6, 9, 12 12 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.01 

MLP hidden_layer_sizes 50, 100, 200, 500 500 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001 

RNN epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 4 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001  0.0005 

 

TABLE 20  

RIPPLE RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 100 
 min_samples_split 2, 5, 10 5 

 min_samples_leaf 1, 2, 4 4 

 max_depth 10, 20, 50, 100 100 

XGBoost n_estimators 100, 250, 500, 1000, 2000 500 

 max_depth 3, 6, 9, 12 3 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.03 

MLP hidden_layer_sizes 50, 100, 200, 500 500 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.005 

RNN epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 8 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 32 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005  
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TABLE 21  

DOGECOIN RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 500 
 min_samples_split 2, 5, 10 5 

 min_samples_leaf 1, 2, 4 1 

 max_depth 10, 20, 50, 100 10 

XGBoost n_estimators 100, 250, 500, 1000, 2000 1000 

 max_depth 3, 6, 9, 12 12 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.01 

MLP hidden_layer_sizes 50, 100, 200, 500 500 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001 

RNN epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 8 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 8 

 learning_rate 0.005, 0.001, 0.0005, 0.0001  0.0005 

 

TABLE 22 

CARDANO RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 100 
 min_samples_split 2, 5, 10 5 

 min_samples_leaf 1, 2, 4 4 

 max_depth 10, 20, 50, 100 100 

XGBoost n_estimators 100, 250, 500, 1000, 2000 500 

 max_depth 3, 6, 9, 12 3 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.03 

MLP hidden_layer_sizes 50, 100, 200, 500 500 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001 

RNN epochs 30, 60, 120, 150 60 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 60 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001  0.005 
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TABLE 23  

POLYGON RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 500 
 min_samples_split 2, 5, 10 5 

 min_samples_leaf 1, 2, 4 1 

 max_depth 10, 20, 50, 100 10 

XGBoost n_estimators 100, 250, 500, 1000, 2000 1000 

 max_depth 3, 6, 9, 12 12 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.01 

MLP hidden_layer_sizes 50, 100, 200, 500 500 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.005 

RNN epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.0005  

 

TABLE 24  

POLKADOT RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 100 
 min_samples_split 2, 5, 10 5 

 min_samples_leaf 1, 2, 4 4 

 max_depth 10, 20, 50, 100 100 

XGBoost n_estimators 100, 250, 500, 1000, 2000 1000 

 max_depth 3, 6, 9, 12 12 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.01 

MLP hidden_layer_sizes 50, 100, 200, 500 500 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001 

RNN epochs 30, 60, 120, 150 60 

 batch_size 4, 8, 16, 32, 64, 128 8 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 60 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001  0.0005 
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TABLE 25  

LITECOIN RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 500 
 min_samples_split 2, 5, 10 2 

 min_samples_leaf 1, 2, 4 1 

 max_depth 10, 20, 50, 100 20 

XGBoost n_estimators 100, 250, 500, 1000, 2000 1000 

 max_depth 3, 6, 9, 12 3 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.01 

MLP hidden_layer_sizes 50, 100, 200, 500 200 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.005 

RNN epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 8 

 learning_rate 0.005, 0.001, 0.0005, 0.0001  0.0005 

 

TABLE 26  

SOLANA RF, XGBOOST, MLP, RNN AND LSTM HYPERPARAMETERS 

Model Hyperparameter Input values Used values 

Random Forest n_estimators 100, 250, 500, 1000, 2000 100 
 min_samples_split 2, 5, 10 5 

 min_samples_leaf 1, 2, 4 4 

 max_depth 10, 20, 50, 100 100 

XGBoost n_estimators 100, 250, 500, 1000, 2000 1000 

 max_depth 3, 6, 9, 12 12 

 learning_rate 0.01, 0.03, 0.05, 0.1 0.01 

MLP hidden_layer_sizes 50, 100, 200, 500 200 

 learning_rate_init 0.005, 0.001, 0.0005, 0.0001 0.001 

RNN epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 8 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.005 

LSTM epochs 30, 60, 120, 150 120 

 batch_size 4, 8, 16, 32, 64, 128 16 

 learning_rate 0.005, 0.001, 0.0005, 0.0001 0.0005  
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