
Tilburg School of Economics and Management
Tilburg University

Deep Active Learning for Automated Damage Assessment
after a Natural Hazard

By:
Polle Dankers
SNR: 2013741

Supervised by:
dr. Marleen Balvert

Robin Swinkels (Pipple)
dr. Jacopo Margutti (510)

dr. Marc van den Homberg (510)

A thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Business Analytics and Operations

Research

June 8, 2023

Abstract

This thesis aims to improve automated damage assessment by using active learn-
ing. Automated damage assessment involves the application of machine learning
techniques to rapidly estimate the extent of building damages following a nat-
ural hazard. 510, an initiative of the Netherlands Red Cross, employs a model
for automated damage assessment using satellite imagery. A challenge is that no
labelled images, which can be used to train the model, are available from a newly
occurred natural hazard. Labelling a large amount of data is too time-consuming
and labour-intensive. Active learning aims to select those datapoints to be la-
belled by annotators which are the most informative for a model, such that the
model can be trained using only a small labelled dataset. In this use-case, it
is implemented after having pre-trained a model on available labelled data from
previously occurred disasters. The objective is to fine tune the pre-trained model
to perform well on a newly unfolding disaster without having to label a large
amount of data.

Three different active learning models, which all have different advantages, are
implemented: Bayesian Active Learning by Disagreement (BALD), BatchBALD
and Wasserstein Adversarial Active Learning (WAAL). WAAL also uses adver-
sarial training, where a part of the network is trained using unlabelled data as
well. The methods are compared to randomly selecting datapoints.

Fine-tuning the pre-trained model using a small amount of labelled data from the
new disaster resulted in large performance improvements. However, none of the
active learning techniques managed to outperform random selection, with WAAL
even performing significantly worse. Thus, while 510 should implement the fine-
tuning of pre-trained models, it is recommended to use randomly selected data.

1

Acknowledgements

Firstly, I would like to thank Pipple and 510 for enabling me to write this thesis,
as well as the Zero Hunger Lab which I could join later. The interesting subject
and combination of different organizations made writing the thesis much more
manageable.

Further, I would like to thank each of my supervisors, Robin Swinkels, Jacopo
Margutti, Marc van den Homberg and Marleen Balvert for their help with both
the content and structuring of the thesis. Lastly, I want to thank Sanne van
den Bogaart for her help when getting started with the thesis and Cascha van
Wanrooij for advising on some programming matters.

2

Contents
1 Introduction 5

2 Literature overview 8
2.1 Automated damage assessment 8

2.1.1 Using aerial imagery for damage assessment 8
2.1.2 Using satellite imagery for damage assessment 9

2.2 Convolutional Neural Networks 11
2.2.1 Convolutional layer . 11
2.2.2 Activation Function . 12
2.2.3 Pooling layer . 15
2.2.4 Fully connected layer . 16
2.2.5 Training of a CNN . 17
2.2.6 Dropout . 19
2.2.7 CNN model 510 . 20

2.3 Measuring uncertainty in neural networks 22
2.4 Transfer Learning . 23

2.4.1 Transferability models for automated damage assessment . 24
2.4.2 Fine-tuning after transfer learning 24

2.5 Active Learning . 26
2.5.1 Exploitation . 27
2.5.2 Diversity . 29
2.5.3 Combining diversity and exploitation 29

3 Data 30
3.1 xBD dataset . 30
3.2 Data of the disasters used in this research 32
3.3 Data examples . 32

4 Methodology 35
4.1 Transfer Learning . 35
4.2 Deep Active Learning . 36

4.2.1 Bayesian Neural Networks 36
4.2.2 Bayesian Active Learning by Disagreement 38
4.2.3 BatchBALD . 40
4.2.4 Wasserstein Adversarial Active Learning 43
4.2.5 Overview implemented methods 49

4.3 Performance evaluation . 50
4.3.1 Performance metrics and their interpretation 50
4.3.2 Confusion Matrices . 52
4.3.3 t-Distributed Stochastic Neighbor Embedding 52
4.3.4 Baseline model . 54

4.4 Configuration of hyperparameters 54

3

4.4.1 Configuration of general hyperparameters 55
4.4.2 Configuration of hyperparameters for Bayesian AL methods 57
4.4.3 Configuration hyperparameters WAAL 59

5 Results configuration of hyperparameters 64
5.1 Configuration of general hyperparameters 64
5.2 Configuration of hyperparameters for Bayesian AL methods . . . 65
5.3 Configuration hyperparameters WAAL 65

6 Results 67
6.1 Visual results t-SNE . 67
6.2 Results comparing different AL methods 71

6.2.1 Acquisition batch size of 100 72
6.2.2 Acquisition batch size of 500 74

6.3 Comparison pre-trained model, fine-tuning and training on full
data with confusion matrices . 76

7 Discussion and Recommendations 79

8 Conclusion 87

Appendices 96
A List of Acronyms . 96
B Appendix to Section 4: Methodology 97

B.1 Comparison different AL methods 97
B.2 Performance metrics and their interpretation 97
B.3 Confusion Matrices . 99

C Appendix to Section 5: Results configuration of hyperparameters 101
C.1 Configuration of general hyperparameters 101
C.2 Configuration of hyperparameters for Bayesian AL methods 107
C.3 Configuration hyperparameters WAAL 110

D Appendix to Section 6: Results 119
D.1 Appendix t-SNE plots . 119

4

1 Introduction
In 2022, over 30 thousand lives were lost due to natural hazards. On top, the
lives of 185 million people were effected by these hazards and they resulted in eco-
nomic losses of over 220 billion Dollars (CRED, 2020). Damages due to natural
hazards have been increasing over the years, and are expected to increase further
due to climate change and an increased number of people living in areas prone
to disasters (Laframboise and Loko, 2012). Since the 1990s, there has been a 35
percent increase in the number of climate and weather-related disasters (IFRC,
2020). While the occurrence of hazards cannot be avoided, well coordinated aid
can reduce the impact of them.

Organisations such as the Red Cross provide aid when a disaster strikes. To target
this aid towards the locations where it is needed the most and to secure sufficient
funding for the aid, it is important to assess where the disaster caused damage
and how large the damage is. A common method for this is conducting field
surveys. Typically, the assessment of damages has multiple phases. First, a rapid
assessment for emergency needs is done within a week, using limited field vis-
its. After this a more detailed assessment is conducted to obtain a more detailed
overview of damages. This typically takes up to 4 weeks (ICRC and IFRC, 2008).
Even this detailed post disaster needs assessment often has limited field visits
(Jeggle and Boggero, 2018). Due to limited resources, as well as limited acces-
sibility of damaged areas, it is generally impossible to visit the whole affected area.

One possibility to conduct damage assessments more efficiently is using remote
sensing technologies such as drones and satellites. Remote sensing techniques have
previously been used to identify land perturbations such as landslides. Lately how-
ever, its usage for damage assessments has been increasingly studied (Lallemant
et al., 2017). This research will use satellite images, as they are already collected
and cover a large area.

The information extracted from satellite pictures can assist relief work after disas-
ters in various ways. It can help in decisions on deploying international search and
rescue teams, identifying unknown damaged areas, coordinating the aid response,
decisions on sending international aid and deploying resources and to identify
housing requirements as well (Barrington et al., 2011). Conducting damage assess-
ments can be done visually by either experts or crowd-sourcing. Crowd-sourced
damage assessments are faster but less accurate as damages are not assessed by
experts (Westrope et al., 2014). Even using crowd-sourcing, assessing all buildings
in affected areas manually can be time consuming, while a big advantage of using
satellite data could be the speed of the initial damage assessment of buildings.
On top, a large amount of volunteers needs to be available.

Automated damage assessment (ADA) algorithms can speed up damage assess-

5

ments by having a computer estimate damages based on the satellite imagery
shortly after a disaster occurs, while it also decreases the dependence on the
availability of volunteers. The newest ADA algorithms typically use convolu-
tional neural networks (CNNs). 510, an initiative of the Netherlands Red Cross
for which this thesis is written, has constructed such a model. As input, the
model receives a satellite image of a building from before and and after a disas-
ter and it returns a damage classification. While results differ per disaster, they
are promising when the algorithm is trained on labelled data from the examined
disaster itself. In a practical situation, such training is not possible since it takes
too much time to label sufficient data to train a model. Using models trained on
other previously occurred hazards, of which labelled images are available, have
less predictive capabilities, though in some cases reasonable results are achieved
(Valentijn et al., 2020). Results are likely to depend on the similarity of the type
of damage and location between both the trained on disasters which previously
occurred, and the newly occurred disaster on which the model is used.

Given training the model on imagery from the newly occurred disaster results in
better performance, 510 researches the applicability of active learning (AL) for
automated damage assessment. AL is a sub-field in machine learning where an
algorithm selects unlabelled data to be labelled by an ’oracle’, which can e.g. be
a human annotator. The main idea is to make the active learner, which is the
model selecting which images it wants to be labelled, ask images in an efficient
way such that the model can achieve a high performance with limited labelled
instances (Settles, 2009).

Previously a core-set approach focusing on exploring diverse types of images has
been implemented (Sener and Savarese (2017) and Van den Bogaart (2021)), but
this did not lead to good results. Focusing on a diverse representation of data
may result in selecting a large amount of images which the model finds easy to
classify already. Another method, focusing on model uncertainty, showed some
promise (Van den Bogaart, 2021). Wang (2021) similarly shows promising re-
sults when using uncertainty based AL for ADA. Furthermore, she shows using
AL with a model pre-trained on labelled data from different disasters improves
results compared to solely training a model on new data using AL.

In this thesis, multiple AL methods are therefore implemented which aim im-
prove the previously tested uncertainty methods. Bayesian AL methods are used
for more reliable estimates for uncertainty. One of these Bayesian methods takes
into account the overlap in information which similar images may have. Lastly,
a different type of AL is used which more explicitly combines uncertainty and
diversity. On top, it uses unlabelled data when training the model. All methods
are explained in more detail later.

6

In Section 2, a literature overview containing in-depth information on automated
damage assessment, convolutional neural networks and transfer learning is given.
Furthermore, the basics of active learning are explained. The used data is intro-
duced in Section 3. Next, Section 4 contains the methodology with an elaborate
explanation of the used Active Learning methods, as well as explanations on how
transfer learning is implemented and the used performance metrics. It also con-
tains explanations on hyperparameters which must be tuned, of which the results
can be found in Section 5. The results comparing the different AL methods are
given in Section 6, followed by the discussion and conclusion in Sections 7 and 8
respectively.

7

2 Literature overview

2.1 Automated damage assessment
Automated damage assessment (ADA) is a research area which focuses on map-
ping the magnitude of damage after natural hazards. By creating models which
conduct such assessment automatically, it has the potential to quickly provide
organisations with a overview of damages and needs across an affected area.

In an early application, Naeim et al. (2006) predict the damage to buildings after
an earthquake using sensor and structural data with a probabilistic approach.
Using this method, damage prediction can be made at a floor level. However, this
approach can only be used for earthquakes and needs buildings to be equipped
with sensors, which generally is not the case. Hence this type of methods cannot
be applied for ADA in most cases.

2.1.1 Using aerial imagery for damage assessment

Another option that does not depend on having sensors installed in a building is
using aerial imagery, e.g. by using footage produced by news vendors (Ozisik and
Kerle, 2004). Given the high quality of images from such sources, researchers were
able to conduct ADA based on intensity and color measures to classify buildings
in the year 2000 already. The findings in such studies show that ADA does have
the potential to be a useful addition to traditional building damage assessment
(Hasegawa et al. (2000), Mitomi et al. (2001) and Yamazaki (2001)). However,
aerial images of news vendors are not easily accessible for large areas and the
automation methods used were not sophisticated.

Due to the improved accessibility and quality of unmanned aerial vehicles (UAVs),
often referred to as drones, the usability of aerial imagery for damage assessment
has increased lately. Since drones can circle around buildings, three dimensional
pointclouds of buildings can be created. Using these pointclouds, detailed assess-
ments of damages can be conducted (Fernandez Galarreta et al., 2015). Damage
assessment with these pointclouds can be automated using s-support vector ma-
chines and random forests. Using the random forest, 95 percent of the damaged
regions could be identified. However, when models were trained on data from
one site and tested on other unseen data, the accuracy drops by 15-30 percent
(Vetrivel et al., 2015). Performance on unseen data can be improved by combin-
ing features from such a 3D pointcloud with features extracted from the original
UAV images using a convolutional neural network (CNN, discussed in detail in
the next subsection). Using this combination, the transferability of models is in-
creased and an average accuracy of 85 percent is achieved (Vetrivel et al., 2018).
Using UAVs, it is even possible to form near real-time damage maps. A UAV

8

can be sent on a pre-defined flight plan, while automatically creating a map by
combining images. ADA can be performed on this map using a combination of
algorithms, amongst which a CNN. A damage map is automatically constructed
by the algorithm before the UAV has even landed (Nex et al., 2019).

Hence UAVs can be useful in damage assessment after a disaster. This is espe-
cially the case for search and rescue teams by using the automated near real-time
damage mapping. Whilst being helpful in the disaster response, UAVs have some
drawbacks as well. Their usage is often limited by legislation. Furthermore, atmo-
spheric conditions can lead to unforeseen behaviour of a drone. Most importantly,
UAVs can only cover a limited area since they have a short battery life and hence
small operating range (Fernandez Galarreta et al. (2015) and Kerle et al. (2019)).
There is the need for UAVs to be available at the location of the disaster as well.

2.1.2 Using satellite imagery for damage assessment

Due to these limitations, other methods are needed for damage assessment in
larger areas. For this, satellite imagery can be used. Though satellite imagery
does face some drawbacks such as only having images from the top of the build-
ing, clouds which may interfere with capturing useful images and a reliance on
satellite companies making images available, there are clear advantages of using
satellite images. They are collected automatically, removing the need for UAVs at
the location. Furthermore, images collected by satellites map the whole impacted
areas, providing a better coverage for large disasters.

Satellite images have been used in disaster management for a long time, e.g. for
the mapping of areas affected by floods in 1981. They are especially important
when the area hit by a disaster is inaccessible (Jayaraman et al., 1997). While
previously satellite images could only be used to identify large scale features such
as landslides, the introduction of civilian Very High Resolution (VHR) satellites
has made it possible to identify damages to smaller structures such as single build-
ings as well (Van Westen, 2000). Assessing damages to buildings can be done by
professional analysts who visually inspect satellite images and classify structures.
Since the availability of such professionals is limited, volunteers are also used to
map damages (Kerle and Hoffman, 2013). While such damage assessments can
provide important information for relief organisations, it currently takes multiple
weeks to process the images after a disaster even while using volunteers (Barring-
ton et al., 2011).

Therefore, soon after VHR satellite images became more available, research has fo-
cused on automating the damage assessment based on these images. Al-Khudhairy
et al. (2005) used eCognition, which groups pixels forming objects and classifies
them using fuzzy logic. This assigns a value between 0 and 1 for each possible

9

class, related to how likely it is that the object belongs to the respective class
(Flanders et al., 2003). Huyck et al. (2005) use dissimilarities between pre and
post disaster images after some processing steps, amongst which convolutional
filters which are explained in the next subsection. Both show that ADA using
satellite images is promising, but needs more research to be applicable in practice.
Other studies focused on methods such as linear relations, rule-based classifica-
tion using differences of shadow patters before and after disasters and one-class
support vector machines (Dell’Acqua and Polli (2011), Tiede et al. (2011) and Li
et al. (2010)).

More recent research into ADA using satellite images has focused on the usage of
CNNs. These are able to teach itself to recognize features in pictures, and clas-
sifies images based on these extracted features. Vetrivel et al. (2016) found that
CNN features significantly outperform handcrafted features. CNNs are also found
to outperform other methods such as SVM, classification and regression trees and
Random Forests by more that 10 percent (Ma et al. (2020) and Berezina and Liu
(2022)).

Using images from both before and after a disaster can improve results as well.
Shao et al. (2020) find that combining both images instead of only using the post
disaster image results in a close to double F1-score. The F1-score is a metric
used for image classification which will be further discussed in Section 4.3. In
particular, results improve when images from before and after a disaster are first
processed through separate CNNs, after which the output of both is jointly used
for classification (Xu et al. (2019) and Yang et al. (2021)). 510 has created such
a CNN, which will be discussed in more detail in Section 2.2.7.

While CNNs provide promising results for ADA, most research is conducted by
training and testing models on the same disaster event. The practical applicabil-
ity of such models is limited, since CNNs typically need large amounts of data
to train and hence such models would need many images to be labelled by hand.
This is not possible within the limited time after a disaster in which the analyses
should be conducted. Therefore some research looked into the transferability of
models between disasters. This involves the training of a model using labeled im-
ages from one or more previous disasters and predicting an unseen disaster using
this model. While in some cases reasonable results are found, especially when
a model was trained on multiple unseen disasters, such models always perform
worse than models trained on the same disaster it is used on (Valentijn et al.
(2020) and Xu et al. (2019)). This thesis will focus on active learning for the
CNN based ADA model created by 510.

10

2.2 Convolutional Neural Networks
Note that overviews on CNNs by Goodfellow et al. (2016), Albawi et al. (2017),
O’Shea and Nash (2015) and Gu et al. (2018) are used throughout this subsection,
without explicitly referring to them each time.

CNNs are neural networks that use multiple different types of layers, amongst
which convolutional layers, that allow the model to extract features from the
data and make predictions based on them. The first well known CNN frame-
works, LeNet-5 (LeCun et al., 1998) and AlexNet (Krizhevsky et al., 2017), first
use a combination of convolutional and pooling layers. Together, these layers ex-
tract features from data while keeping the size manageable. These layers will be
explained in detail later in this subsection. After several convolutional and pool-
ing layers, typically the extracted features are flattened and then fed to dense
fully connected layers. Figure 1 visualizes an example of a simple CNN with two
convolution layers followed by pooling, which is connected to a dense fully con-
nected layer.
As the network is able to extract and recognize certain features, it provides a
high performance in image recognition. All aforementioned layers will be ex-
plained next. These layers are the basic building blocks of a CNN, upon which
more sophisticated CNN models such as the one used by 510 are based.

Figure 1: Basic structure of a CNN (source: Albelwi and Mahmood (2017)).

2.2.1 Convolutional layer

The input to the first convolutional layer, such as in Figure 1, is generally an im-
age represented by a matrix with pixel intensities or red, green and blue (RGB)
values. For convolutional layers following this first one, the output matrices of
previous layers, called feature maps, are used as input. A convolutional layer uses
a filter, sometimes referred to as kernel, to extract features from the image. The
filter is a block of weights, whose dimensions are chosen by the researcher. The
filter is moved over the input matrix. At each position, the element-wise product

11

is computed between the filter and the part of the input matrix considered, which
has the same dimensions. The entries of the resulting matrix are summed and this
sum is the entry in the relevant position in the feature map, sometimes referred
to as the convolved image. In Figure 2 this process is visualized. The number
of rows or columns which the filter moves can be adjusted and is referred to as
the stride. Sometimes padding is used, which are rows and columns containing
only zero values around the original image. Padding can prevent a decrease in
the spatial resolution of an image and can be used such that more information
on the edge of the image is detected. Without it, less filters would be applied to
these edge values compared to those on the interior of the image.

A two-dimensional convolution can be computed as follows (Liquet et al. (2023)
and Goodfellow et al. (2016))1:

Si,j = (K ∗ I)i,j =
∑
m

∑
n

Ia(i,m),b(j,n)Km,n , (1)

where Si,j is the entry in row i and column j of the feature map. I is the input
image and K is the kernel, which both are matrices. m and n range over the
dimensions of the kernel. a(i, m) and b(j, n) are functions that determine the
input indexes of the image I. Generally this these functions are simply defined as
i + m and j + n (Liquet et al., 2023), but this can be altered e.g. to incorporate
a stride larger than one. When calculating the full convolution, this function is
applied for every combination of i and j, with i and j ranging over the number
of rows and columns of the feature map respectively.

Convolution has several advantages. By using a filter whose weights are the same
for each region it is applied to, the number of weights that need to be trained
remains relatively small. Furthermore, by applying the same filter to different re-
gions, features can be recognized anywhere within the image. By applying several
filters in parallel, the network can learn to recognize different types of features,
such as edges (Albawi et al., 2017). By combining multiple layers with filters, the
model can learn complicated structures.

2.2.2 Activation Function

Convolution is generally combined with a non-linear activation function. Some-
times this step is considered to be a separate layer: the non-linear layer. It
introduces nonlinear capabilities to the network (Hao et al., 2020). Without such

1Mathematically, a convolution is defined slightly different. The correct mathematical formu-
lation is less easy to apply and mostly used for proofs. When implementing a convolution filter
in practice, the formulation as stated here is generally used, which strictly speaking is a cross-
correlation formula. For CNNs, the difference between the cross-correlation and convolution
functions is not relevant for its performance (Goodfellow et al., 2016).

12

Figure 2: Visualization of a convolution using a filter with stride equal to one and
no padding, shifting through the first two and last element-wise products (source:
Yamashita et al. (2018)).

13

a function, the network would not be able to detect non-linear features (Gu et al.,
2018). While for a long time the sigmoid function (see equation (2)) has mostly
been used for CNNs, recently rectified linear unit (ReLU) has become more pop-
ular. ReLU has a simple definition, see equation (3). Furthermore, when a model
is trained using backpropagation, which will be explained later in this section,
functions such as sigmoid suffer from the vanishing gradient problem. This es-
pecially becomes a problem in deeper neural networks. The problem is caused
by the sigmoid function having a gradient close to zero when values are not close
to zero. ReLU does not suffer from this problem since its gradient is constant
for positive input (Albawi et al., 2017). In Figure 3, both functions are shown
to clarify this difference. ReLU also has a low computational cost and its usage
results in fast learning (Nwankpa et al., 2018). Hao et al. (2020) and Mishkin
et al. (2017) both show that ReLU and activation functions closely related to
ReLU perform significantly better than sigmoid.

Sigmoid(x) = 1
1 + e−x

(2)

ReLU(x) = max(0, x) (3)

Figure 3: Comparison ReLU and sigmoid function (source: Sun et al. (2019)).

A bias is generally added to the input of the activation function. This bias is a
learnable parameter. In regular neural networks, biases are connected to a single
neuron, where for each neuron a separate bias is learned by training. When using
CNNs, one bias term is used for each kernel. Hence the convolution step does not
only decrease the number of weights to be learned but also the number of biases,
decreasing the number of parameters to be learned (Nielsen, 2015). The bias can

14

be interpreted as a term shifting the graphs of the ReLU and sigmoid functions
shown in Figure 3 to the left or right.

When the filter is assumed to be a square and an activation function and bias are
added, equation (1) can be altered to:

Si,j = (I ∗ K)i,j = f(
p−1∑
m=0

p−1∑
n=0

Ii+m,j+nKm,n + b) (4)

Where S, I, K, i and j are defined as before. Function f is the activation function,
often ReLU. p is the dimension of the filter, e.g. when a 3 ∗ 3 filter is used, p = 3.
Lastly b is the bias (Liu et al., 2019).

2.2.3 Pooling layer

Often, convolutional layers are followed by a pooling layer. Pooling is used to
simplify the output from convolutional layers by decreasing the dimensions of
the output. It summarizes regions of the feature map into a single unit (Nielsen,
2015). Pooling reduces the number of trainable parameters, which results in faster
training. It also reduces overfitting. Multiple ways of pooling are commonly used
(Zafar et al., 2022):

• Max-pooling: regions of the original feature map are summarized by the
maximum value within the region.

• Average pooling: The region is summarized by taking the average over its
entries

• Mixed pooling: combines average and max-pooling by randomly choosing
between the two.

• L2 pooling: the square root of the sum of squares of neurons in a 2 ∗ 2
region is used. This can be extended to Lp pooling by using the p and 1

p
as

exponents instead of squares and square roots.
In Figure 4, max-pooling is visualized. For each 2 ∗ 2 region without overlap, the
largest value is used to insert into the pooled feature map.

Figure 4: visualization of max-pooling (source: Gholamalinezhad and Khosravi
(2020)).

15

2.2.4 Fully connected layer

After the combinations of convolutional and pooling layers, the output of high
level features is flattened. Thus, the different resulting feature maps are reshaped
to vectors and stacked onto one another, resulting into one large vector. This
flattened vector is the input used for the fully connected layers. Fully connected
layers are layers where all neurons from the previous layer are connected to all
neurons in the next layer (Hijazi et al., 2015). It learns to correctly classify im-
ages based on the combination of features extracted by the convolutional layers.
These fully connected layers generally contain most of the parameters within a
CNN (Basha et al., 2020). Between fully connected layers, activation functions
such as ReLU are used.

In the classification layer another type of activation function is used. Often,
softmax (see equation (5)) is applied. The function assigns numbers in the range
of [0, 1] to each possible class, which together sum up to one. The outcome with
the highest number is predicted.

Softmax(x)i = exi∑J
j=1 exj

(5)

In the equation, Softmax(x)i is the score for class i. xi is the sum of the product
of weights connected to output node i with the output of the previous layer, with
the bias added to it. Hence xi = wT

i z + bi with z a vector containing the output
of the previous layer, wi a vector with weights between this output and class i
and bi the bias for class i. J is the total number of classes the model can predict.
In Figure 5, the flattening of data and fully connected layers are visualized using
one feature map.

Figure 5: Flattening and fully connected layers (source: Srivastava et al. (2014)).

16

2.2.5 Training of a CNN

Before discussing the training of a CNN, it is important to clearly distinguish
between the terms parameters and hyperparameters, which are both important
in training. Parameters refers to the weights and biases which the model should
learn. The hyperparameters refer to different settings used in training, set by the
researcher. For the training of a CNN, labelled data is needed. These are e.g.
images for which the class is known. These images are split in a train, validation
and test set. The train set is used to learn the parameters. The validation set
is used to evaluate the performance of models on unseen data while training by
applying the model to the validation data. This is used to select hyperparameters
and to assess whether the model is overfitting after a certain amount of epochs.
Epochs are a type of training iterations which will be explained later in this sec-
tion. The test set is only used at the end after a model is constructed and used
to give a reliable estimation of the error in the model (Goodfellow et al., 2016).

Given the training set with labelled images, the CNN needs to know what a good
prediction is. For this, a loss function is used. For classification, usually cross-
entropy loss is used. When the model predicts the correct class with high certainty,
the output of the function is small. Predicting a class with high certainty for a
given datapoint refers to a large predictive value for the respective class, while
the predicted values for the other classes are small2. When the model contrarily
predicts the wrong class with high certainty, the output is large. The model aims
to minimize the cross-entropy loss (Zhang et al. (2021) and Nielsen (2015)):

CE(y, ŷ) = −
N∑

i=1

K∑
j=1

yijlog(ŷij) + (1 − yij)log(1 − ŷij) (6)

Where i denotes the image and N the number of images used. j denotes the class
and K the number of possible classes. yij equals one if image i belongs to class
j and ŷij is the prediction made by the model for image i and class j, which is
the output of the softmax function in the output layer. Equation (6) can also be
written with the images xi and parameters θ as input (CE(xi, θ)), which is useful
when describing the learning procedure using gradients.

2For example, consider a model predicting four classes. Let there be two datapoints, where
the output of the softmax layer of the first datapoint is 0.05/0.1/0.8/0.05, with these num-
bers being the predictive value of the four classes. The output of the second datapoint is
0.2/0.25/0.3/0.25. Both predict the third class, but the predictive value for that class is much
larger for the first datapoint, of which the model is therefore considered to be more certain of it
belonging to the thirs class. Thus, the cross-entropy loss will be larger for the second datapoint
compared to the first datapoint if class three is indeed correct. If any of the other classes is
the true class, the loss will be larger for the first datapoint as its predictive value would then
be relatively small for the correct class. Note that this interpretation of predictive values as a
measure of uncertainty is not entirely correct, which is discussed further in Section 2.3

17

The training of a CNN has several steps. Firstly, all parameters are initialized.
Next an iterative process of updating weights and biases, together referred to as
parameters and denoted by θ, is started. First, feed forward propagation is used.
This is simply using the current parameters to obtain prediction ŷ for images.
This prediction can next be used to calculate the loss. Next, a process called
back propagation is started which calculates gradients in order to decrease the
loss (Goodfellow et al., 2016).

Backward propagation starts from the output layer and moves backwards through
the network, computing gradients in each layer by applying the chain rule (LeCun
et al., 2015). Having calculated these gradients, parameters can be updated as
follows, using (batch) gradient descent (Bottou et al., 1991):

θt+1 = θt − ηt
1
N

N∑
i=1

∇θCE(xi, θt) (7)

Where t denotes the iteration. θt are the current parameters, with θt+1 the newly
updated parameters. ηt is the learning rate, which is a hyper parameter set by the
researcher. It regulates the magnitude by which parameters are updated during
a training step and is sometimes referred to as the step size. ∇θCE(xi, θt) is
the gradient of the parameters for a given image xi. However, one step takes a
lot of time since it involves computing the gradients using all images, which can
also result in memory issues when using a large dataset. Therefore stochastic
gradient descent (SGD) can be used, where one image z is randomly chosen and
the parameters are updated based on the gradient of this single image:

θt+1 = θt − ηt∇θCE(z, θt) (8)

Using this method, the model can be trained faster. Being only based on one
image, the calculated gradients are not representative for the whole set. Therefore
often a combination of gradient descent and stochastic gradient descent is used,
where a mini-batch is randomly chosen which is a small sample of the training set.
Next the gradient for this batch is calculated and used to update the parameters,
see equation (9). This method is often referred to as mini-batch gradient descent,
though it is sometimes referred to as stochastic gradient descent as well (Nielsen,
2015).

θt+1 = θt − ηt
1

M

M∑
i=1

∇θCE(xi, θt) (9)

M is the size of the mini-batch. Training is done in multiple epochs. One epoch
consists of randomly choosing mini-batches of images without replacement and
updating parameters as described above, until all images have been used in a
mini-batch.

Often more sophisticated update rules such as SGD with momentum, AdaGrad,
RMSProp and Adam are used which solve different problems that may occur

18

when using the more simple versions of SGD. One of these problems is caused
by an ill-conditioned Hessian3. This leads to large oscillation of the gradients,
making convergence slow. Momentum is used to solve this issue by using previous
gradients in the current updating step. Another problem is caused by sparse
features. This can lead to the optimization being too sensitive to features with
large values. Adagrad and RMSprop solve this issue by changing the learning rate
for each parameter based on past gradients computed for that parameter. When
this gradient is large, the learning rate is small and vice versa. Adam combines
the advantages of all these methods, hence solving both issues. Using Adam,
weights are updated as follows:

gt+1 = 1
M

M∑
i=1

∇θCE(xi, θt)

vt+1 = 1
1 − βt

1
(β1vt + (1 − β1)gt+1)

st+1 = 1
1 − βt

2
(β2st + (1 − β2)g2

t+1)

θt+1 = θt − ηtvt+1√
st+1 + ϵ

gt+1

(10)

Here vt solves the problem with an ill conditioned Hessian, while st solves issues
related to sparse features. t denotes the iteration and gt is the gradient computed
using mini-batches. β1 and β2 are hyperparameters controlling the decay rate, set
close to 1. ϵ is a hyperparameter, which is usually small, used such that division
by zero is impossible. ηt is the learning rate (Kingma and Ba (2014), Ruder (2016)
and Balvert (2021)).

2.2.6 Dropout

One possible problem that can occur when training a CNN, or neural networks
in general, is overfitting. When this happens, the model is adapting too much to
the training data used without generalizing well on new data. Overfitting can be
identified when the loss of a model is decreasing while training, while the accu-
racy of the model applied to the validation set does not increase or even decreases
(Nielsen, 2015).

Overfitting can be reduced in multiple ways, with the most straightforward way
increasing the amount of training data. Collecting additional training data is
costly and therefore this is often not feasible. In the model used by 510, dropout is

3The Hessian is ill-conditioned when derivatives increase fast in one direction but slow in
another direction. This can result in no significant progress in the directions where the derivative
only increases slowly (Goodfellow et al., 2016).

19

therefore implemented4. This method randomly drops neurons in a neural network
along with all corresponding connections. The dropped neurons are temporarily
removed from the network. Figure 6 shows this, with the crossed out neurons
representing the randomly selected neurons which are removed. For each mini-
batch, dropout is randomly performed and hence the model being trained changes
for each training step. When using dropout, the tunable hyperparameter p is
introduced. p is the probability of retaining a neuron in the network. A large p
means only few neurons are dropped, while a small p results in only few neurons
being turned on while training. For neurons in hidden layers, typically 0.5 ≤ p ≤
0.8 is used (Srivastava et al., 2014).

Figure 6: Comparison NN with and without dropout (source: Srivastava et al.
(2014)).

2.2.7 CNN model 510

To perform automated damage assessment, 510 has created a CNN called Cal-
adrius. The model is described by Valentijn et al. (2020), on which this subsection
is largely based.

The architecture of Caladrius is inspired by Siamese NNs. This type of NNs con-
sist of first two distinct networks which both are given an image, or other data, as
input. The parameters in both networks are shared. The output of the networks
are then compared to make predictions (Bromley et al. (1993) and Koch et al.
(2015)). Since satellite imagery is available from before and after disasters, com-
paring these images is possible in the automated damage assessment application.
While usually parameters are shared between the two networks in a Siamese NN,
this is not the case in Caladrius as images before and after a disaster have distinct

4Other regularization techniques, such as L1 regularization and data augmentation, can be
used to reduce overfitting as well. Given that these methods are not implemented, they will not
be discussed further.

20

features which should be extracted. Furthermore, instead of immediately predict-
ing the outcome after both networks, the Caladrius model implements multiple
fully connected layers between the two CNNs and classification. These layers can
learn which features, or combinations of features, indicate certain damage classes
(Valentijn et al., 2020). In Figure 7, the network architecture is visualized with
first the two separate CNN blocks, which are explained in more detail after the
figure, followed by fully connected layers.

Figure 7: Network design CNN Caladrius (source: Valentijn et al. (2020)).

As shown in Figure 7, the input consists of images of buildings with dimension
299 ∗ 299 ∗ 3. In Section 3, these will be elaborated upon further. An Inception-
v3 CNN is used for both images. It is an advanced CNN mainly consisting of
inception modules. These modules consist of parallel combinations of convolution
and pooling layers with varying filter sizes, stride values and padding values.
Using these different convolutions, the model can learn features of different sizes.
The created feature maps within an inception module are concatenated. The
network design keeps the computational cost manageable (Szegedy et al. (2015),
Szegedy et al. (2016) and Ding et al. (2019)). In Figure 8 the architecture of
Inception-v3 is shown with the different types of inception modules used.

Figure 8: Inception-v3 architecture (source: Ding et al. (2019)).

21

From each Inception-v3 CNN, a vector with 512 features is extracted. These are
concatenated into a vector with the 1024 features from both CNNs. This vector
next goes through three fully connected layers, which all use a ReLU activation
function, batch normalization to speedup training (Ioffe and Szegedy, 2015), and
dropout with p = 0.5. Lastly the softmax function is used to create predictions
for four different classes, into which the damage label is predicted. Cross-entropy
is used for the loss function (Valentijn et al., 2020).

The Inception-v3 CNNs are pre-trained on ImageNet as this improves accuracy.
Due to the pre-training, the model already knows how to recognize some features
(Marmanis et al., 2015). The full model is trained using the Adam optimizer
(Valentijn et al., 2020). The batch size is set to 32, while the number of epochs
used for training is elaborated upon further in Section 4.4.1.

2.3 Measuring uncertainty in neural networks
In deep learning models such as the CNN by 510, the predictive probabilities do
not represent the uncertainty of the model. These predictive probabilities are the
output of the softmax layer. Often deep learning models are only used to predict
the right class, without placing any importance on the uncertainty of the model.
However, when uncertainty is important, such as in Active Learning which is fur-
ther introduced in Section 2.5, this can become a problem.

Specifically for instances which are more dissimilar from the training data, the
predictive probabilities can differ considerably from the uncertainty of the model
(Gal and Ghahramani, 2016). To clarify why the predictive probabilities found
by deep learning cannot directly be used for measuring uncertainty, an example
based on Gal and Ghahramani (2016) is used. In the example, the Gaussian
process in Figure 9 is used as this visualization is easily interpretable. The true
function to generate data points with is f(x) = x ∗ sin(x), where x is the input.
Randomly drawn noisy points from this function are represented with the blue
dots. The prediction of the model is shown with the red line, with a 95 percent
confidence interval. These predictions are made using a Gaussian process regres-
sion, but for this example we assume the red line represents the output for class
c = 0 of a CNN model with two classes, before the softmax function is used.
Now let the model be used to predict for a data point x∗ = 10. In this case,
the predicted function point estimate is very large (f̂(x∗) ≈ 34.1). If we assume
the output of the network for the other class is 8, the predictive probability for
class c = 0 using the softmax function (see Equation (5)) is e34.1

e34.1+e8 ≈ 1. Hence
the model seems to be close to entirely sure about x∗ belonging to c = 0 if only
the point estimate is used as input for the softmax function. Considering the
95 percent confidence interval from the Gaussian process regression in the fig-
ure, the model is actually very uncertain about the prediction it made, but this
is not reflected in the point estimate used to make predictions. Thus, the pre-

22

dictive probabilities of a CNN cannot be interpreted as the certainty of the model.

Figure 9: Gaussian process regression with true function f(x) = x ∗ sin(x) to
clarify why the predictive probabilities do not equal certainty (made using code
from Dubourg et al. (2022)).

To solve this problem, Bayesian Neural Networks can be used. These networks
are able to incorporate uncertainty in the model by using a distribution over the
estimated parameters. Multiple methods exist to create such BNNs, but these
often introduce additional parameters to be trained, increasing training time. This
is especially a problem for deep networks, such as Caladrius. Gal and Ghahramani
(2016) developed a method for Bayesian approximation in neural networks which
does not need any additional parameters. In Section 4.2, this method will be
explained in detail.

2.4 Transfer Learning
In traditional machine learning, the domain and task of a model is equal when
training the model on the training data and when using the model on the test
data. The domain is the sample space and distribution of input data and the
task refers to the label space and the conditional probability P (y|X) of labels.
Transfer learning is used when either the domain or the task differs between the
training and test data (Pan and Yang, 2010). Thus for image recognition this is

23

the case when either the type of images used as input, or the classes in which the
model is supposed to classify the images, differs between training and testing the
model.

When data from former disasters is used to predict in a new disaster, the task is
the same. For different disasters, the aim is still to classify the damaged buildings
in the same categories. Furthermore, buildings with a same image from before
and after the disaster should be labelled the same irrespective of the exact disaster
it was part of. However, the sample space and distribution of data differ between
disasters. Thus, in this case transfer learning can be implemented.

2.4.1 Transferability models for automated damage assessment

Valentijn et al. (2020) have evaluated the performance of transferring Caladrius
CNN models trained using different disasters on the Joplin Tornado. The best
performance was found for a model trained on all other wind type disasters (see
Section 3). This model got close to the performance of a model which was trained
on data from Joplin itself, achieving a macro-F1 score of 0.73 compared to 0.79
for the latter. The macro F1-score will be explained further in Section 4.3.

Hence the model transfers quite well between these wind type disasters. What
must be noted is that Valentijn et al. (2020) mostly use data from the same
country (the United States of America) as Joplin, which likely results in more
similarities between the images compared to using images from other regions.
The transferability of models to other regions might be worse.

2.4.2 Fine-tuning after transfer learning

Fine-tuning the pre-trained model using data from the new disaster is likely to
improve the model. Especially when the new disaster struck in another region
than the disaster(s) which the model has previously seen, there will be some dif-
ferences with the images on which the model is pre-trained. After fine-tuning, the
model will have more knowledge of data from the new disaster and hence will be
more likely to perform well in this new situation.

Xu et al. (2019) found that such fine-tuning indeed improves the performance of
models. They randomly sampled 10 percent of instances available from the new,
unseen disaster to fine-tune a pre-trained model. The performance is tested on two
different disasters, where a comparison is made with solely using the pre-trained
model (Xu et al., 2019). The comparison between different models is shown in
Table 1.

24

Table 1: Comparison of performances of models trained on different data sets,
with all considered disasters being earthquakes (source: Xu et al. (2019)).

Wang (2021) similarly compared using only transfer learning with a combination
of transfer learning with 10 percent of the instances from the tested disaster. Be-
sides only testing this with random sampling, she also tests the performance of
using uncertainty based active learning to select the 10 percent of images from
the test disaster that are used. Active learning is discussed in more detail in the
next subsection. Lastly, the results of only using 10 percent of instances selected
with active learning are included (Wang, 2021).

In Table 2 the results of Wang can be found. Similarly to Xu et al. (2019),
retraining a model using 10 percent of randomly sampled images from the test
disaster after having pre-trained on data from other disasters outperformed solely
using these other disasters. The difference between both is even more clear in this
case study. Sampling these images using active learning improved the model even
further, hence showing that using AL for ADA is promising. Lastly, using only the
images selected with active learning instead of using them after pre-training on
data from other disasters shows significantly worse results (Wang, 2021). Thus,
previous exposure to damage assessment seems to improve the performance of the
model (Wang, 2021). Given this result, this thesis will focus on the usage of AL
in combination with transfer learning, instead of using only AL.

Table 2: Comparison of performances of models trained on different data sets,
including active learning (source: Wang (2021)).

25

2.5 Active Learning
Models trained on data from the same disaster event as the one they were tested
on were previously found to outperform those trained solely on images from other
disaster events, even if these events are the same hazard type. However, labeling
a set of images that is sufficiently large for training is time consuming. When
time is limited, such as after a disaster, labeling sufficient data is not possible.
Hence AL can be used to select those images that can improve models the most,
such that only a limited number of images needs to be labelled. As mentioned
in Section 2.4, Wang (2021) showed that fine-tuning using active learning indeed
outperformed fine-tuning using random sampling. This subsection discusses the
general background of research into AL. In Section 4.2 more recent developments
that show promising results for image classification, which are implemented in
this thesis, are discussed. Note that the overview on active learning by Settles
(2009) is used throughout this section without explicitly referring to it each time.

The basic principle of AL is a machine, often referred to as the active learner,
that chooses certain unlabelled images which an oracle should label. The oracle is
generally a human annotator, which is also the case when AL is implemented for
ADA in practice. For this research however, a labelled dataset is used where the
labels are not yet known by the active learner. When a label request is made, the
label of the image is made available to the active learner. The labelling request
by the active learner will from now on be referred to as a query. Before going into
more detail on how active learners can decide which images to query, first two
common scenarios are discussed.

The first is a stream-based scenario, which assumes that unlabelled instances be-
come available sequentially. The active learner needs to decide whether to query
an instance or to discard it, after which the same question arises for the next
instance.
The other scenario is pool-based, which is most frequently occurring in literature.
This method assumes that a large number of instances can be gathered at the
same time. The active learner can decide which instances should be labelled by
the oracle based on several criteria, which are applied to a large number of in-
stances. Hence the pool-based scenario enables the active learner to decide which
images to query after having analyzed a large number of, or all, instances (Han
et al., 2016). In Figure 10, the pool-based AL method is visualized. As satellite
images are simultaneously made available, this thesis will focus on active learning
in the pool-based scenario.

26

Figure 10: Pool-based active learning (source: Settles (2009)).

In the pool-based scenario, the active learner can decide which queries to make
using multiple methods. Next, some commonly used types of methods are dis-
cussed, though not focused on deep learning. Most focus on exploitation, meaning
they select those instances which are expected to improve the model the fastest.
Other methods focus on the diversity of the sample. Methods which are specifi-
cally designed for deep learning and / or image data, which are implemented in
this thesis, will be discussed in detail in Section 4.2.

2.5.1 Exploitation

Uncertainty Sampling
Uncertainty sampling is one of the most commonly used AL query strategies. It
focuses on exploitation by choosing those images of which the model is the most
uncertain. This uncertainty is often measured by entropy, see equation 11. In the
equation, ŷi is the predictive probability5 of label i given the model for instance x.
K is the number of classes. This value is large when the predictive probabilities
for different classes are close to each other, and small when the probability is large
for one class and small for others. Hence it can be interpreted as a measure for
the certainty a model has about predicting a class. Other measures can be used
as well, such as least confidence in the predicted label, where a low maximum
predicted value shows that the model is not very confident about predicting the
respective class (Settles, 2009).

5The output of the softmax layer is often interpreted as the probability of a class. In Section
2.3, more information on this interpretation is given.

27

H(x) = −
K∑
i

ŷilog(ŷi) (11)

Van den Bogaart (2021) and Wang (2021) showed that uncertainty based AL
methods are promising when applied to ADA, with Wang (2021) implementing
an entropy based AL method similar to the method discussed above. For both,
improvements are likely possible due to problems such as using output of a NN
directly as discussed in Section 2.3 and no diversity being taken into account,
which will be discussed in Section 2.5.3.

Query-by-committee
Query-by-committee (QBC) is another commonly used type of active learning.
It uses a committee of models, which are trained using the same labelled data,
but represent a different hypothesis. A straightforward method to construct this
committee is using bagging or boosting (Abe, 1998). When a new instance needs
to be labelled, all models in the committee predict the label. The instance about
which the committee disagrees the most is chosen, as this is considered the most
informative query (Seung et al. (1992) and Settles (2009)). Hence QBC has large
similarities to ensemble methods such as random forests. Both use outputs of
multiple models, but while random forests try to find the right prediction, QBC
uses these models to find the instances that need to be labelled such that a good
model can be trained.

Expected model change
Other methods, which similarly to uncertainty sampling and QBC aim to find
those images the model learns the most of, try to maximise the expected model
change more directly. Such methods aim to select an instance which is expected
to alter the weights in a model the most. The most straightforward method to
calculate the expected model change is using expected gradient length (EGL).
Since the true label is not yet known, the EGL is calculated by multiplying the
gradient length for all possible classes with their respective estimated probability
and summing over these multiplications (Settles (2009) and Settles et al. (2007)).
A drawback of such a method is that an instance which belongs to a certain class
and has a large gradient but a low predicted value for this respective class is un-
likely to be chosen when the gradient lengths for the other classes are small.

Combining methods
Given the previously found performance of uncertainty sampling by Wang (2021),
a more sophisticated uncertainty based method, specifically designed for deep
learning with images, will be implemented. This method, Bayesian Active Learn-
ing by Disagreement (BALD), also includes some elements closely related to QBC
and expected model change. For a better estimation of uncertainty, multiple

28

models constructed using dropout are used, as explained further in Section 4.2.1.
Using these multiple models to select the most uncertain images has similarities
to QBC. On top, BALD aims to query those images which contain the maximum
amount of information on the model parameters. These images are expected to
result in a large model change, and hence the method has some similarities with
expected model change. While QBC and expected model change are not directly
implemented, elements from both are found in this method. More information on
BALD is given in Section 4.2.2.

2.5.2 Diversity

Other methods focus on the diversity of selected datapoints. Instead of finding
those instances that the model is most uncertain about, or those that would result
in the largest change of the model, it focuses on finding a set of instances which
are most representative for the entire sample space. An example of such a method
tuned to CNNs is the coreset approach by Sener and Savarese (2017). They choose
images such that the maximum distance to the nearest labelled image is minimized
for unlabelled images. To measure distances between images, L2 distance between
activations of the last fully-connected layer is used. In their experiment, the
method outperforms methods such as uncertainty sampling (Sener and Savarese,
2017). Van den Bogaart (2021) has already investigated the core-set approach
for ADA. Results are mixed, with the method sometimes even performing worse
than random selection. Hence, focusing solely on diversity does not seem to be
a viable option to train CNNs for ADA. This thesis therefore will not implement
stand-alone diversity algorithms.

2.5.3 Combining diversity and exploitation

When using methods such as uncertainty sampling, chosen samples may lack
diversity. This is especially the case when batches of datapoints are queried to-
gether. In such settings, the chosen images can be similar since the model may
be struggling the most with a certain type of image. Uncertainty sampling would
only select these similar, difficult to classify, images. Since these images have
considerable similarities, the amount of information in such batches decreases
(Mehrjou et al., 2018).

Retraining a CNN for each chosen instance is not practical since single instances
are not likely to have a significant impact on accuracy and full training to reach
convergence is time consuming (Sener and Savarese, 2017). Thus, solving this
problem by selecting datapoints one by one is not practical, while acquiring
batches of images by solely focusing on exploitation may reduce performance.
Therefore, methods which combine exploitation with diversity could be preferred.
In Section 4.2, such methods which are applicable to CNNs will be discussed in
more detail.

29

3 Data
In this section, the data used in this research is discussed. Similar to most other
recent research into satellite imagery based damage assessment, the xBD dataset
is used.

3.1 xBD dataset
Previously, no large labelled dataset containing satellite images of different disaster-
struck places was available. Since such dataset is essential to train and test ADA
models, Gupta et al. (2019) created the xBD dataset. It uses pre and post disaster
satellite images made available by Maxar, a satellite imagery company, through
their Open Data program. These satellite images have a high resolution, with a
ground sample distance of at most 0.8 meters. The dataset contains the locations
of building polygons as well, which can be used to extract images of buildings
from the satellite images. In real-life applications, these locations would not be
known. For this purpose, 510 has built a building detection model which must
be used prior to the damage classification model. However in this research, the
building polygons available in the xBD dataset are used.

xBD contains satellite images of more than 800,000 building polygons together
with damage labels, based on the Joint Damage Scale. This scale classifies build-
ings in four different categories: no damage, minor damage, major damage and
destroyed. Table 3 contains the characteristics of buildings in each class. The
labelling of buildings is performed by human annotators, after which the given
labels are reviewed by other annotators. This ensures the consistency of the la-
bels. Lastly a random sample of the annotated images is reviewed by experts,
who found that 2-3 percent was mislabelled (Gupta et al., 2019).

30

Table 3: Joint Damage Scale classes and their respective description (source:
Gupta et al. (2019)).

The disasters included in the xBD dataset
The xBD dataset contains data from 19 different disasters. These disasters in-
clude earthquakes, tsunamis, floods, volcanic eruptions, wildfires, hurricanes and
tornadoes. These disasters took place in different regions of the world. In Fig-
ure 11, the different disasters are shown with the type of damage caused and
geographical location.

Figure 11: Disasters included in xBD with damage type and geographical location
(source: Gupta et al. (2019)).

31

3.2 Data of the disasters used in this research
To align with the priorities of the Red Cross, Valentijn et al. (2020) only focused
on tornadoes, hurricanes, floodings, tsunamis and volcanic eruptions. Training
CNNs on multiple types of disasters is time consuming. Therefore this thesis will
only consider disasters with wind type damages, which are hurricanes and torna-
does. This is chosen since wind type damage is likely to be visible on the roof, and
thus the damage is likely to be visible on satellite images. Furthermore, there are
multiple disasters available with this type of damage which can be used for trans-
fer learning. Valentijn et al. (2020) showed promising results when using transfer
learning for one of the wind type disasters. Lastly, Van den Bogaart (2021) sim-
ilarly used only wind type disasters, making comparison between results easier.
Hence images are used from the following disasters: hurricane Matthew, Moore
tornado, Tuscaloosa tornado, Joplin tornado and hurricane Michael. Two more
hurricanes, Florence and Harvey, are included in xBD. However, these hurricanes
caused flood type instead of wind type damages and hence these are not used
in this research. The included disasters mainly took place in the United States
of America (USA). Only data on hurricane Matthew is from Haiti instead of the
USA.

Table 4 contains an overview of all disasters used in this research, with both the
number of buildings available and the distribution over classes. For most disasters,
the most common class is no damage. In general, the distribution over classes
is very uneven. Hurricane Matthew has a different distribution in damage labels
compared to the other disasters, with the most buildings having minor damage.

Table 4: Disasters used in research, with the class distribution being no damage
/ minor damage / major damage / destroyed, similar to Valentijn et al. (2020).

Disaster Location Number of Buildings Class Distribution*
Hurricane Matthew Haiti 16,457 18/58/13/12

Moore Tornado USA 18,855 87/4/2/6
Tuscaloosa Tornado USA 12,577 74/15/3/7

Joplin Tornado USA 12,163 55/16/8/21
Hurricane Michael USA 31,332 64/25/9/3

Total 91,384 70/17/6/7
*Note: due to rounding, the class distribution could sum to a different amount than
100. The presented class distribution is based on the labels in the train set.

3.3 Data examples
To give some insight into the images used, this subsection shows some examples.
In Figure 12, satellite images of a residential area before and after the disaster for

32

the Matthew and Michael hurricanes are shown. These are the original images
from which images of buildings are extracted. While this is only an example, clear
differences can be seen between the type of buildings in both regions.

(a) Pre disaster image Matthew (b) Post disaster image Matthew

(c) Pre disaster image Michael (d) Post disaster image Michael

Figure 12: Satellite images from before and after the Matthew and Michael hur-
ricanes (source: Gupta et al. (2019)).

To clarify the input used for the Caladrius model, Figure 13 contains examples of
images of buildings extracted from satellite images such as displayed in Figure 12.
For each class, one building is selected from imagery of hurricane Matthew. While
the used satellite images are high-resolution, still some images are not clear. Even
for humans it may be difficult to select the right label when they are not trained

33

in such classification tasks. Therefore, it can be difficult for models to reach a
very good performance.

(a) No damage (b) Minor damage

(c) Major damage (d) Destroyed

Figure 13: Examples of pre disaster (left) and post disaster (right) images of
buildings for all four possible classes. Images are from hurricane Matthew in
Haiti (source: Gupta et al. (2019)).

34

4 Methodology
In this section, the transfer learning implemented is discussed first. Different
implemented active learning methods are then explained in detail, after which
an explanation on the evaluation of the performance of these methods is given.
Lastly, the hyperparameters that will be tuned are discussed.

4.1 Transfer Learning
As discussed in Section 2.4, transfer learning achieves promising, but mixed, re-
sults for ADA. Especially when the type of damage caused by the natural hazard
and the region where it occurred are similar between the disasters on which a
model is pre-trained and the disaster for which the model is used, good results
can be obtained.

In practice, new disasters almost always happen in other places than those of
which labelled images from prior disasters is available to train Caladrius on. Us-
ing solely transfer learning can be insufficient to achieve good performance in this
case. The new region is likely to have different features which need to be learned
by a model using data from this new disaster. Fine-tuning pre-trained models is
more likely to yield significant improvements in such applications. Additionally,
aid in damage assessment by 510 is more likely to be needed in developing coun-
tries such as Haiti, where hurricane Matthew struck, than in the USA where all
other wind type disasters took place. Therefore, this thesis will use the Moore
tornado, Tuscaloosa tornado, Joplin tornado and hurricane Michael to pre-train
a model, which will be used on data from Hurricane Matthew.

The class distribution of the data we want to label is not known immediately
after a disaster. Therefore, a model should be capable of being tuned to a disas-
ter with a different class distribution. In the data used, hurricane Matthew has
a clearly different class distribution compared to the Moore tornado, Tuscaloosa
tornado, Joplin tornado and hurricane Michael. When pre-training the model on
the other wind-type disasters, the loss is therefore weighted such that each class
has an equal contribution to the loss. This way when pre training, the model is
not focused more on certain classes which occur more in the disasters pre-trained
on. While not being tested due to time constraints, this weighting of the loss
when pre-training is expected to make it easier for the model to be tuned for
classification in the newly occurring disaster.

As mentioned in Section 2.4, fine-tuning pre-trained models using a small amount
of data from the new disaster is likely to improve performance. In the next
subsection, different methods to select which images are used for fine-tuning are
introduced.

35

4.2 Deep Active Learning
This subsection explains the active learning methods which will be used to select
images for fine-tuning pre-trained models. The discussed models all use some
measure of uncertainty when querying data, which is combined with diversity for
some of them. The outcomes of all models are compared with each other, as well
as with random sampling instances. Before selecting images using these methods,
an initial batch of 100 images is randomly labelled, with which the model is
trained at the start of the AL procedure. This initialization is common practice in
active learning (Norouzzadeh et al., 2021), and for some models required. Before
introducing the AL methods, Bayesian neural networks are introduced, which are
used in some of the AL methods.

4.2.1 Bayesian Neural Networks

As explained in Section 2.3, the output of the softmax layer in (convolutional)
neural networks does not represent the certainty of predictions. A Bayesian neu-
ral network (BNN) can be used to incorporate uncertainty in the model by using
a distribution over the estimated parameters. Gal and Ghahramani (2016) devel-
oped a method for the approximation of a BNN with relatively low computational
costs using dropout. More information on dropout can be found in Section 2.2.6.
To approximate the certainty of a model for sample x∗, they use the average of the
outcomes of the model with different nodes dropped out. This method is called
Monte Carlo (MC) dropout. Thus it essentially predicts using multiple different
variants of the model. Using the outputs of these different variants of the model,
the uncertainty of the model can be quantified better.

More formally, they first define the approximating variational distribution q(ω)
with ω = (Wi)L

i=1 as:

Wi = Mi ∗ diag([zij]Ki
j=1)

zij ∼ Bernoulli(pi) for i = 1, ..., L, j = 1, ..., Ki−1,
(12)

where L is the number of layers in the model, with the input layer not counting
towards the total. Ki is the number of nodes in a given layer. pi is the probability
of retaining a node in a given layer. Mi contains variational parameters to be op-
timized (Gal and Ghahramani, 2015). This notation is clarified using Figure 14,
which is a simple Neural Network with L = 3 layers. The values of Ki are given for
all layers. Mi is visualized as all the connecting lines between the given layer and
the layer before. Usually, the variational parameters are optimized by minimizing
the Kullback-Leibler divergence. When a model is trained using dropout between
all layers, the optimal weights found while optimizing the model are equal to the
optimal variational parameters (Gal et al., 2016). This property is proven in the
appendix to Gal and Ghahramani (2016). Hence in such cases, Mi can be substi-
tuted with the parameters θ found when training the network, as introduced in

36

Section 2.2.5. Given this θ, the approximating variational distribution is denoted
as qθ(ω).

Figure 14: Clarification notation used for q(ω), with L = 3.

Using qθ(ω) the uncertainty of the neural network can be estimated with Monte
Carlo integration, using multiple stochastic forward passes through the network,
where a stochastic forward pass corresponds to a single prediction using a MC
dropout model (Gal et al., 2017):

p(y = c|x, Dtrain) =
∫

p(y = c|x, ω)p(ω|Dtrain)dω

≈
∫

p(y = c|x, ω)qθ(ω)dω

≈ 1
T

T∑
t=1

p(y = c|x, ω̂t)

(13)

Where c is a possible class, in this case e.g. "destroyed". Dtrain is the training
set. T is the number of stochastic forward passes. p(ω|Dtrain) is the true pos-
terior distribution given the training data, which is approximated using dropout
distribution qθ(ω). ω̂t denotes a random draw from qθ(ω). p(y = c|x, ω̂t) is the
prediction for class c obtained using a forward pass in the model constructed with
ω̂t. p(y = c|x, Dtrain) is thus effectively estimated by averaging over estimates
of multiple forward passes with a different set of nodes being dropped (Gal and

37

Ghahramani, 2016).

Besides having a low computational cost compared to other methods to construct
a BNN, this method has another major advantage. Since it averages forward
passes in a neural network trained using dropout, with in each forward pass other
neurons being dropped out, it can be used on an already existing neural network.
Hence, using this method, any (convolutional) neural network which has been
trained using dropout can straightforwardly be turned into a BNN, or a Bayesian
convolutional neural network (BCNN).

Given that the BCNN is contructed to give a better representation of uncertainty,
the most straightforward active learning method is to simply select queries using
entropy as discussed in Section 2.5.1. However, Gal et al. (2017) propose more
sophisticated methods as well, of which one is introduced next.

4.2.2 Bayesian Active Learning by Disagreement

When selecting images using entropy, the model simply chooses those images of
which it is the most uncertain. The idea is that a model can learn the most from
such images, thus that it contains the most information of which the model can
learn. Bayesian Active Learning by Disagreement (BALD) is closely related to
entropy, but calculates the information on true parameters contained in images
more directly. It aims to choose the image which maximizes the decrease in
expected posterior entropy. Houlsby et al. (2011) show that this is equivalent
to maximizing the mutual information between the parameters and unknown
output conditional on labelled training data and the image which is considered.
In Figure 15, this mutual information is visualized by the grey shaded area, which
is the intersection of both circles which represent the information contained in
the parameters and outcome respectively. Hence, the mutual information can be
explained as the overlap of the information in both the parameters and outcomes.
It can be calculated as follows (Houlsby et al., 2011):

I(ω, y|x, D) = H[y|x, D] − Eω∼p(ω|D)[H[y|x, ω]] (14)

Here, x is a particular instance for which the BALD value is calculated, with y
output that must be predicted. D is the currently labelled train set, with ω the
parameters of the model. p(ω|D) is the true posterior distribution of the param-
eters, which can be approximated using the dropout distribution qθ(ω) as defined
in the previous section. H[y|x, D] denotes the average entropy of predictions us-
ing the posterior parameter distribution p(ω|D), calculated using Equation (11).
H[y|x, ω] is the estimated entropy for a single model with weights ω which is
drawn from the mentioned posterior distribution. Thus, Eω∼p(ω|D)[H[y|x, ω]] is
estimated by first calculating the entropy over all drawn models from p(ω|D) and

38

then taking the average over these entropies.

ω y|x

Figure 15: Visualization of mutual information (shaded grey) between parameters
ω and outcome y.

Using MC dropout to estimate p(ω|D) as qθ(ω), Gal et al. (2017) show how BALD
can be estimated using a BCNN:

Î(ω, y|x, D) ≈ −
∑

c

(1
T

∑
t

p[y = c|x, ω̂t])log(1
T

∑
t

p[y = c|x, ω̂t])

+ 1
T

∑
t,c

p[y = c|x, ω̂t]log(p[y = c|x, ω̂t])
(15)

Here, T is the number of MC dropout models used, over which t spans. c is the
class. ω̂t is the set of parameters for dropout model t drawn from qθ(ω) as shown
in Section 4.2.1.

Computing the conditional mutual information between the unknown outcome
and parameters can appear complex. The idea behind BALD can be clarified
by explaining how the different terms in equation 14 behave. The first term,
H[y|x, D], is large when the average of drawn models is uncertain about its pre-
diction. The second term, Eω∼p(ω|D)[H[y|x, ω]], is small when different models
drawn from p(ω|D) are certain about their predictions. In the MC dropout imple-
mentation, this corresponds to the different dropout models being certain about
their predictions. As this second term is subtracted from the first term, BALD
selects instances of which the model is uncertain on average but different drawn
models result in disagreeing predictions (Gal and Ghahramani, 2016).

Using BALD, T is an important hyperparameter to be set. This hyperparameter
has a large influence on acquisition time. In Section 4.4.2, the considerations in
selecting this hyperparameters are explained further.
Both BALD and BatchBALD, which is discussed in the next subsection, are
implemented using code from Atighehchian et al. (2022).

39

4.2.3 BatchBALD

When a batch of instances is selected, the model may be uncertain about similar
instances. The active learner may choose to only query these similar instances.
Information contained in these selected batches is likely to have overlap. For
BALD, this issue is visualized in Figure 16a. Here, the conditional mutual in-
formation between the parameters ω and outcomes y1, y2 and y3 are shown with
the shaded area. When BALD were to select a batch of images, it would simply
sum the conditional mutual information between the parameters and outcomes
without taking into account the overlap in the mutual information for these out-
comes. If the same information is contained in different images, this information
is counted double when creating the batch, as visualized in Figure 16a by the
dark shaded areas (Kirsch et al., 2019).

To maximize the informativeness of a batch of images, the information of a batch
should be calculated by counting the overlapping information only once. Batch-
BALD aims to do this by calculating the union of the mutual information be-
tween the outcomes and parameters instead of the sum, as visualized in Figure
16b. Here, the overlapping mutual information is only counted once (Kirsch et al.,
2019).

(a) BALD (b) BatchBALD

Figure 16: Visualization of batch information calculated using BALD and Batch-
BALD (source: Kirsch et al. (2019)).

In order to compute the union of the mutual information, equation (14) must
be adjusted. Instead of computing the conditional mutual information for each
image separately, the joint conditional mutual information for a batch is calculated
(Kirsch et al., 2019):

I(ω, y1, ..., yb|x1, ..., xb, D) = H[y1, ..., yb|x1, ..., xb, D]
− Eω∼p(ω|D)[H[y1, ..., yb|x1, ..., xb, ω]]

(16)

40

Where x1, ..., xb denotes the b different images selected in a given acquisition batch
and y1, ..., yb denotes the corresponding predictions of these images. For brevity,
these will be referred to as x1:b and y1:b in the remainder of this subsection. Func-
tion H denotes the entropy as defined in equation (11) in this whole subsection.
Further notation is the same as in equation (14).

Computing the joint conditional mutual information for each possible batch sep-
arately using equation (16) would be computationally impossible6. Therefore, a
greedy heuristic is used which iteratively adds the image resulting in the largest
increase in the joint conditional mutual information to the query batch until the
required batch size is reached. Kirsch et al. (2019) show that this heuristic is a
(1 − 1/e) approximation.

The estimation of equation (16) is explained separately for the left and right term
of the equation. Kirsch et al. (2019) note that the right term can be estimated
by simplifying the conditional joint entropy into a sum of expected entropies for
separate images. This is possible given that the predictions yi are independent
when conditioned on parameters ω. Estimating the expected entropy for these
images separately is done using MC dropout (Kirsch et al., 2019). The estimation
of this right term is therefore just the sum of conditional entropies for different
images similar to the right term of BALD in equations (14 - 15):

Eω∼p(ω|D)[H[y1:b|x1:b, ω]] =
b∑

i=1
Eω∼p(ω|D)[H[yi|xi, ω]]

≈ 1
T

b∑
i=1

T∑
t=1

[H[yi|xi, ω̂t]]
(17)

with all symbols as previously defined in equations (14 - 16).

Computing the left part of equation (16) is more challenging. Given that the
joint mutual entropy is not conditioned on the parameters, the predictions yi

are not independent. Therefore, this term cannot be decomposed into a sum of
separate mutual information estimates. It is thus approximated using all possible
configurations of ŷ1:b, which are the MC dropout estimations of the configurations
of y1:b (Kirsch et al., 2019):

H(y1:b) ≈ −
∑
ŷ1:b

(1
T

T∑
t=1

p(ŷ1:b|ω̂t))log(1
T

T∑
t=1

p(ŷ1:b|ω̂t)) (18)

While this equation works for small acquisition batch sizes, the calculations ex-
plode when more images are selected as the number of possible configurations

6When selecting a batch of 100 images out of a pool of 10,000 images, there would be
6.5 ∗ 10241 possible combinations for which the joint conditional mutual information should be
computed.

41

becomes too large7. To reduce the number of calculations needed, p(y1:b|ω) can
be factorized into p(y1:b−1|ω)p(yb|ω). This is possible since the previously chosen
images x1:b−1 are fixed when using the aforementioned heuristic. In the estimation
using MC dropout, this yields (Kirsch et al., 2019):

1
T

T∑
t=1

p(ŷ1:b|ω̂t) = 1
T

T∑
t=1

p(ŷ1:b−1|ω̂t)p(ŷb|ω̂t) = 1
T

(P̂1:b−1P̂
′
b)ŷ1:b−1,ŷb

(19)

Where the last part rewrites the equation to a matrix multiplication to speed up
calculations. Here P̂1:b−1 is a cb−1 ∗ T matrix with T MC dropout predictions
p(ŷ1:b−1|ω̂t) for the cb−1 configurations of the currently picked b − 1 images. This
only has to be calculated once every iteration. P̂b is a c ∗ T matrix with the T
MC dropout predictions p(ŷb|ω̂t) for the c classes.
Still, when the acquisition batch size grows large, P̂1:b−1 becomes too large to
compute. Thus Kirsch et al. (2019) reduce the computation time of equation (19)
by using m samples of the configurations in ŷ1:b−1:

H(y1:b) ≈ − 1
m

m∑
i

∑
ŷb

(P̂1:b−1P̂
′
b)ŷi

1:b−1,ŷb

(P̂1:b−11T,1)ŷi
1:b−1

log(1
T

(P̂1:b−1P̂
′
b)ŷi

1:b−1,ŷb
) (20)

Where now P̂1:b−1 is a matrix with dimensions m ∗ T containing p(ŷi
1:b−1|ω̂t).

Thus, this matrix contains the T MC dropout predictions for each configuration
ŷ1

1:b−1, ..., ŷm
1:b−1, which are sampled from all possible configurations of ŷ1:b−1. 1T,1

is a vector of ones with dimension T ∗ 1. The rest of the symbols are as defined
before. To construct this formula importance sampling is used. For more infor-
mation on this, please refer to Appendix C of Kirsch et al. (2019).

Plugging the estimations from equation (17) and (20) into equation (16), we get
the implemented estimation of the joint conditional mutual information for a
batch x1:b:

Î(ω, y1:b|x1:b, D) = − 1
m

m∑
i

∑
ŷb

(P̂1:b−1P̂
′
b)ŷi

1:b−1,ŷb

(P̂1:b−11T,1)ŷi
1:b−1

log(1
T

(P̂1:b−1P̂
′
b)ŷi

1:b−1,ŷb
)

− 1
T

b∑
i=1

T∑
t=1

(H(yi|xi, ω̂t))

(21)

In the previously mentioned heuristic, this value is calculated for each image that
has not yet been selected into the batch. The image with a maximum joint con-
ditional mutual information Î is added to the batch, which is repeated until the

7Considering a situation where we want to acquire a batch of 100 images, with the four
possible classes used in this research, the number of possible configurations becomes 4100 ≈
1.6 ∗ 1060. For each configuration, T MC dropout estimates are used. This then needs to
be calculated for each possible batch from the unlabelled pool, resulting in a huge number of
calculations.

42

desired batch size is reached.

While for BALD the only additional hyperparameter was the number of MC
dropout models used (denoted with T), for batchbald m is added as well as
well. In the code implemented based on Kirsch et al. (2019), m depends on T :
m = T ∗ s. This s is the additional hyperparameter that must be set in order
to increase or decrease the number of draws used from ŷ1:b−1 given T . In Section
4.4.2, considerations in choosing combinations of T and s are discussed.

4.2.4 Wasserstein Adversarial Active Learning

Another implemented method, developed by Shui et al. (2020), is Wasserstein
Adversarial Active Learning (WAAL). WAAL is a deep active learning method
which aims to combine diversity and uncertainty when selecting queries. Note
that throughout this section, Shui et al. (2020) is used without always explicitly
referring to it. Before discussing how WAAL is used, first the reason to implement
this specific method is explained.

Zhan et al. (2022) compared the performance of 18 active learning methods for
deep neural networks, amongst which BALD and WAAL, as well as other re-
cently introduced methods combining diversity and uncertainty. BatchBALD is
not included in these methods, mainly due to the large amount of memory it
uses. They test the performance of these methods on multiple datasets, such as
the often used MNIST and CIFAR datasets, as well as medical image datasets.
Methods are ranked based on whether they perform better, worse or similar com-
pared to the other tested methods. Using 8 different standard image recognition
datasets, WAAL is ranked first. For both the medical image datasets it outper-
forms all other models by a margin, while even outperforming a model trained on
the full dataset (Zhan et al., 2022). An overview of the ranking of AL methods
from the paper is included in Appendix Table B.1.

The previous methods used Bayesian models to maximize the mutual information
between outcomes and the parameters. WAAL is a different type of algorithm.
Whereas BALD and BatchBALD mainly focus on the uncertainty of predictions,
with BatchBALD taking overlap of information into account as well, WAAL aims
to more directly select images that are both uncertain and result in a diverse
sample. It does this by combining metrics measuring uncertainty and diversity,
which is explained later in this section. Beyond this, it uses information from the
unlabelled images when training the model by implementing adversarial training,
similar to the training of Generative Adversarial Networks (GANs). Thus, the
aim of WAAL is to both select the right images to label and to improve training
by using the unlabelled samples (Shui et al., 2020).

Feature extractor, classifier and discriminator networks

43

To implement WAAL in practice, first the CNN model of 510 (Caladrius) must be
adjusted to fit the WAAL framework. Instead of simply using one CNN, WAAL
divides the network in different parts as visualized in Figure 17. The first part is
the feature extractor, which is used to extract the features from images and should
be trained using both the labelled and unlabelled data. When using WAAL with
the Caladrius architecture (Figure 7), the feature extractor is made out of the two
inception-V3 models for the pre and post disaster images, from which features are
concatenated. Features extracted with this network are used as the input for two
other networks.
The first of these is a classifier, which only uses the features extracted from la-
belled data. Its architecture is the same as the fully connected layers from the
full Caladrius model, as shown in Figure 17. After the feature extractor and clas-
sifier are trained using WAAL, the full Caladrius model can be reconstructed by
pasting this classifier behind the feature extractor.
Lastly, a discriminator network is used. This has a similar architecture to the clas-
sifier, but instead of 4 output nodes, it only has one output node. Additionally,
the batch normalization used in the classifier is replaced with layer normalization,
which is further explained in Ba et al. (2016). This is proposed by Gulrajani et al.
(2017) for their Wasserstein Generative Adversarial Network, on which the adver-
sarial training in WAAL is based8. The output is used to discriminate between
labelled and unlabelled data, which can be used to ensure diversity when querying
new labels. On top, the discriminator can be used to train the feature extractor
on unlabelled data. For each of these networks, different loss functions are used,
which are explained later in this section.

Both the discriminator and the classifier can only be used in combination with
the feature extractor, since their inputs are the output created by the feature
extractor. In Figure 17 this is visualized by both networks being connected to
the feature extractor. The feature extractor can be trained both using the clas-
sifier and discriminator. Subsequently using the feature extractor and classifier
will from now on be referred to with h(x), while subsequently using the feature
extractor and discriminator will be referred to with g(x). x is the input data
to the feature extractor, which can be either labelled or unlabelled. Unlabelled
data is only used in combination with the discriminator. The parameters of the
networks are referred to as θf , θc and θd for the feature extractor, classifier and
discriminator respectively.

8Another option would have been to remove the batch normalization without replacing it,
but this resulted in bad performance. Further, batch normalization was only replaced with layer
normalization after having configured the epochs, optimizer and learning rate hyperparameters.

44

Figure 17: WAAL Caladrius model with a feature extractor, classifier and discrim-
inator. The numbers below the different component of the networks correspond
to the input and output dimensions of these components. For more information
on the Inception-v3 models, see Section 2.2.7. The fully connected blocks consist
of a fully connected layer with the ReLU activation function, batch normalization
or layer normalization, and dropout.

Wasserstein distance
Before the practical implementation using these three networks is discussed in
detail, the Wasserstein distance must be introduced. The Wasserstein distance
is a metric used to calculate the minimal transport costs going from one distri-
bution to another distribution. In this case, it is used to measure these costs
between the distributions underlying the labelled and unlabelled data. Shui et al.
(2020) specifically use the Wasserstein-1 distance, which uses Euclidean distance
to measure the distance between data from both distributions.
A small Wasserstein distance means that the distributions are similar. In the
AL context, the Wasserstein distance would thus measure how similar the dis-
tributions of labelled and unlabelled datapoints are. Selecting query data by
minimizing this distance would therefore result in a labelled dataset which closely
resembles the unlabelled dataset. Following this intuition, Shui et al. (2020) show
that indeed a diverse query results in a small Wasserstein distance.

AL using Wasserstein distance
For training and query together, WAAL has two objectives: minimizing the esti-
mation error and minimizing the Wasserstein distance. Let L̂, Û , B̂ and D̂ = L̂∪Û
be the set of labelled data, unlabelled data, query data and total data respectively.
Let h be a hypothesis which essentially is the classification model used9. Further-
more, let R̂A(h) = 1

N

∑N
i=1 l(h(xi), yi) estimate the loss of predicting using h for

9Shui et al. (2020) define h as an at most H-Lipschitz function which transforms input X
to output Y , but to simplify the explanations it will simply be referred to as a model. More
information on the function and assumptions can be found in Shui et al. (2020).

45

data distribution A. Then WAAL aims to minimize (Shui et al., 2020):

min
B̂,h

R̂L̂∪B̂(h) + µW1(D̂, L̂ ∪ B̂), (22)

where minimizing the first term should result in good predictions on the labelled
dataset and minimizing W1, which is the Wasserstein-1 distance, ensures a di-
verse representation of D̂. Both the model h and query batch B̂ are chosen by
minimizing these functions together. µ is a hyperparameter which can be used to
set how important the two terms are relative to one another.

Estimating the Wasserstein-1 distance is challenging in practice. Shui et al. (2020)
therefore rewrite equation (22) as a min-max optimization problem using the dis-
criminator, classifier and feature extractor as defined previously10. The equation
then becomes:

min
θf ,θc,B̂

max
θd

R̂(θf , θc) + µÊ(θf , θd) (23)

Here, R̂θf ,θc = E(x,y) L̂∪B̂l(h(x, y)), which is the expected loss of the classifica-
tion model, implemented using cross-entropy similarly to the other AL models.
Ê(θf , θd) = Ex∈D̂(g(x)) − Ex∈L̂∪B̂(g(x)) is the adversarial loss, calculated as the
difference of the discriminator function’s predictions on the full dataset and the
labelled dataset11. Thus, the smaller this expression is, the closer the labelled
dataset resembles the full dataset.

Shui et al. (2020) further decompose this equation to enable estimation using
the feature extractor, classifier and discriminator. After some steps, the function
becomes:

min
θf ,θc,B̂

max
θd

1
L + B

∑
x,y∈L̂

l((h(x, y))

+ µ(1
L + U

∑
x∈Û

g(x) − (1
L + B

− 1
L + U

)
∑
x∈L̂

g(x)

+ 1
L + B

∑
(x,y?)∈B̂

l(h(x, y?)) − µ

L + B

∑
x∈B̂

g(x)

(24)

Here L, U and B are the size of the labelled, unlabelled and queried data in a
given active iteration. y? denotes the unknown label of query samples (Shui et al.,
2020), which will be discussed later.
The first two lines in equation (24) are used to train parameters θf , θc and θd.
The last line is used for the query of new datapoints. Using this notation, the

10To derive this function, Shui et al. (2020) use Kantorovich-Rubinstein duality. For more
information on the derivation, please refer to their paper.

11Shui et al. (2020) require g to be 1-Lipschitz, for which an additional term is added in
estimation.

46

training and query step can be executed separately. One active iteration of WAAL
consists of subsequently executing the training and query step.

Training step
The first two lines of equation (24) are used to train the model. The first line is
the predictor loss, used to train the feature extractor and classifier. The second
line is the adversarial loss, used for the feature extractor and discriminator. This
adversarial loss uses both unlabelled and labelled data, enabling the feature ex-
tractor to be trained on both labelled and unlabelled data.

To practically implement the adversarial training, so optimizing the second line
of equation (24), one more alteration must be made. When training a CNN,
gradient descent related methods are used as discussed in Section 2.2.5. Batches
of both the labelled and unlabelled data must be used. Shui et al. (2020) thus
rewrite the adversarial training part such that it can be used with equally sized
batches for both labelled and unlabelled data. The equal batch size is denoted as
S.
There is an unbalance between the quantity of labelled and unlabelled data, with
generally less labelled data available compared to the amount of unlabelled data.
In order to still use the full unlabelled data, they re-sample labelled data which
has previously been used in other batches, thus using the same labelled data in
multiple batches. Then, the second line of equation (24) is rewritten to12:

min
θf

max
θd

µ(1
S

∑
x∈ÛS

g(x) − C0
1
S

∑
x∈L̂S

g(x)) (25)

C0 is an additional hyperparameter to reduce the influence of the labelled data in
each step. It aims to prevent excessive use of the labelled data, given that each
labelled datapoint is used in multiple batches. In Section 4.4.3, this hyperparam-
eter will be discussed in more detail.

Using this new formulation, training on one batch can be defined for each of the
three networks. Given that training is done with batches of S datapoints, the
first line of equation (24) is reformulated using S as well. For the classifier we
obtain:

min
θc

1
S

∑
(x,y)∈L̂S

l((h(x, y)) (26)

For the feature extractor we get:
12To ensure the 1-Lipschitz property of g(x), in practice a gradient penalty is added this the

equation to ensure this property. This will not be discussed in more detail, since it does not
add to the understanding of the WAAL framework.

47

min
θf

1
S

∑
(x,y)∈L̂S

l((h(x, y)) + µ(1
S

∑
x∈ÛS

g(x) − C0
1
S

∑
x∈L̂S

g(x)) (27)

And lastly for the discriminator:

max
θd

µ(1
S

∑
x∈ÛS

g(x) − C0
1
S

∑
x∈L̂S

g(x)) (28)

In the WAAL algorithm, the optimization is executed iteratively for different
batches in the same order as above, using the gradient descent methods explained
in Section 2.2.5. More information on the configuration of the gradient descent
methods, as well as how epochs are defined, can be found in Section 4.4.3.

Query step
Having trained the different networks, the query step is executed. In equation
(24), this is the last line:

min
B̂

1
L + B

∑
(x,y?)∈B̂

l(h(x, y?)) − µ

L + B

∑
(x)∈B̂

g(x) (29)

The left part of this equation represents the uncertainty of the model, with y?

unknown. Similarly to previous methods, uncertainty is thus estimated using the
predicted classes. Instead of the commonly used entropy-related methods, WAAL
combines two other metrics. Let h(x, yi) = ŷi be the prediction made by the clas-
sifier for class i for a given unlabelled datapoint x. Then the first metric, the
highest least prediction confidence score, is defined as:

max
i

− log(ŷi) (30)

Thus, this metric equals the negative of the logarithmic score of the class with
the lowest predicted value. The intuition is that a smaller highest least prediction
confidence score means the prediction for the least likely label is relatively large,
which is related to the model being uncertain. Hence, the aim is to select samples
for which this score is as small as possible.

The second metric measures the uniformity of prediction confidence scores:∑
i

−log(ŷi) (31)

This metric is smaller when predictions are more uniform. Thus, the smaller this
metric becomes, the more uncertain the model is. This metric is similar to en-
tropy which is often used to measure uncertainty, see equation (11).

48

Any convex combination of these metrics can be used. For their paper, Shui et al.
(2020) use a combination where both are given an equal weight of 0.5, which will
be implemented for this research as well. Thus, the uncertainty metric becomes:

U(x) = 0.5 ∗ (max
i

− log(ŷi)) + 0.5 ∗
∑

i

−log(ŷi) (32)

Notable is that this measure does not use MC dropout to estimate uncertainty.
Hence, the query of WAAL is susceptible to the issues described in Section 2.3.
In case both Bayesian AL methods and WAAL perform well, combining both
approaches could be an interesting addition in future research13. A combina-
tion could be implemented by using Bayesian uncertainty estimation using MC
dropout models instead of the uncertainty estimation currently used for WAAL,
while keeping the training and diversity part equal.

The right side of equation (29) represents the diversity. Estimation for this ex-
pression is straightforward using the discriminator. The discriminator is trained
to capture the difference between unlabelled and labelled samples by maximizing
the Wasserstein distance. If the output of discriminator g(x) is close to zero, it
expects datapoint x to be part of the labelled data while values close to one are
related to the model expecting this datapoint to belong to the unlabelled data.
Thus, the larger the output of g(x), the more different the image is compared
to the labelled data. Thus to ensure diversity, g(x) should be maximized when
querying new datapoints.

WAAL then uses equation (33) to calculate a score which represents both uncer-
tainty and diversity. It then ranks all the scores and chooses the B datapoints
with the smallest score. The selected images thus have large uncertainty, due to a
minimized U(x), and a large diversity as a large diversity score g(x) is preferred.
In the equation, ϕ is a hyperparameter which is used to place more importance
on either uncertainty or diversity. The selection of this parameter is discussed
further in Section 4.4.

U(x) − ϕg(x) (33)

4.2.5 Overview implemented methods

In Table 5, an overview is given of the implemented AL methods, along with their
main advantages and disadvantages. All methods use uncertainty when querying
new samples. However, BALD and BatchBALD implement Bayesian methods for
improved uncertainty estimation, and should therefore be able to better represent
model uncertainty. BALD does not use any diversity, while BatchBALD does
consider overlapping information within batches, but not with other labelled data.

13Due to the limited time available for this research, this will not be implemented even if it
is promising.

49

WAAL explicitly aims to select images which are different to the currently labelled
ones, hence this method is more focused on diversity. Lastly, WAAL trains the
feature extractor with unlabelled data through adversarial learning, whereas the
other methods do not use unlabelled data when training.

Table 5: Overview of the main characteristics of implemented active learning
methods.

Uncertainty Diversity Training using
unlabelled data

BALD
Yes, using Bayesian
methods for better

estimation
No No

BatchBALD
Yes, using Bayesian
methods for better

estimation

Overlap of information
within acquisition batches

accounted for, but not
explicitly aiming to find a
diverse representation of

the data

No

WAAL

Yes, but does not use
Bayesian methods, possibly

resulting in worse
uncertainty estimation

Yes, uses a discriminator to
take diversity into account

when querying new
datapoints

Yes, feature extractor is
trained using unlabelled
data by implementing

adversarial training with
the discriminator

4.3 Performance evaluation
The dataset is divided in a train, validation and test set. As clear from the name,
the train set is used to train the model. The validation set is used to compare
the performance of different models and choose which model performs the best.
The data is not used in training and hence the best performing model is chosen
using unseen data. The methods to assess the performance are discussed later in
this section. Lastly, the test set can be used to find the performance of the best
performing model on again an unseen dataset, which has not been used in model
selection.

4.3.1 Performance metrics and their interpretation

To evaluate the performance of the trained models, different performance metrics
are used. A more detailed explanation of these metrics is given in Appendix B.2.

Performance metrics
Firstly, accuracy is used, which is often implemented in other research as well.
Thus, accuracy is useful for comparisons with previous research. However, accu-
racy does not always give a fair representation of the performance of a model, as
it does not take into account class imbalance resulting in possibly good perfor-
mance already when only predicting the majority class. Therefore, it is important

50

to keep the class distribution in mind when assessing accuracy. To assess if mod-
els perform well over multiple classes, the macro F1-score is used as well. This
metric assesses the performance in each class separately, after which the score is
calculated by taking the average of the scores for these classes. Thus, this metric
places equal performance on each class instead of each datapoint, which is the
case with accuracy. The macro F1-score is used in some previous work as well,
thus making it useful in some comparisons.

Both accuracy and the macro F1-score only measure whether the predicted class
is exactly correct, without measuring a degree of wrongness on how far from the
true class a datapoint is predicted. There is a clear order in classes for ADA,
where predicting further away from the true class is less desirable. Predicting
e.g. a destroyed building as majorly damaged is not as bad as predicting it to be
undamaged, while both accuracy and macro-F1 score would see both predictions
as equally incorrect. To measure the degree of wrongness as well, the Mean Ab-
solute Error (MAE) is used. Similarly to accuracy, the MAE does not account for
class unbalance. Therefore, a macro averaged variant of the MAE is used as well,
which will be referred to as the Macro Averaged Absolute Error (MAAE). The
MAAE is calculated by weighting the absolute error for each datapoint relative
to the number of occurrences of the true class within the whole dataset, such that
each class equally contributes to the calculated score. While calculated slightly
differently, this method is similar to the macro-averaged mean absolute error in-
troduced by Baccianella et al. (2009). As mentioned, more information on the
implementation of all discussed metrics can be found in Appendix B.2.

Interpreting accuracy, macro F1-score, MAE and MAAE
For both accuracy and macro F1-score, a higher score is related to better per-
formance of the model. For both, scores can be between zero and one. A score
of zero means no prediction is correct, while a score of one means the model can
predict all datapoints correctly. MAE and MAAE should be interpreted differ-
ently. As it uses the error, the MAE and MAAE should be as small as possible.
In this case, a perfect model would result in an MAE and MAAE of zero. Thus in
this case, the closer the score gets to zero the better the performance of the model.

The unweighted metrics, accuracy and MAE, show how well the model predicts
considering all datapoints equally, which is useful to predict all separate build-
ings as good as possible. The macro averaged metrics are useful to assess if the
model predicts well for different classes, or if it only predicts well in the majority
classes. Accuracy and macro-F1 are used to assess how well the model performs
at predicting the exactly right class, while also being commonly used in previous
research thus making comparisons easier. The mean absolute error metrics are
used to measure how far off the model is when predicting wrongly, thus taking
into account the order in the classes.

51

4.3.2 Confusion Matrices

Additionally, confusion matrices are used for more detailed analyses. More infor-
mation on confusion matrices and their interpretation, as well as an example, can
be found in Appendix B.3.
While being very informative and intuitive to interpret, confusion matrices will
not be used as much as the previously discussed metrics. Those metrics are sim-
ply one number which makes it easy to plot the performance over different active
iterations and compare different models using this. This cannot be done using
confusion matrices, and therefore they are only used in some cases where more
in-depth performance evaluation is desired.

4.3.3 t-Distributed Stochastic Neighbor Embedding

To gain insight into how different methods select images and if this aligns with
the expectations from the theory behind them, t-Distributed Stochastic Neighbor
Embedding (t-SNE) plots are used. Using t-SNE, data with large dimensions
can be plotted in a two-dimensional space. Using the CNN in this research, the
features of images from the last fully connected layer are used as input for the
t-SNE decomposition. Similarity in these features should indicate that images are
similar. For all t-SNE plots, the model constructed in the last active iteration is
used to extract features to keep plots consistent over iterations when evaluating
them.

t-SNE aims to map datapoints that are close to each other in the high-dimensional
space close to each other in the low-dimensional space as well, making it useful
to visualize comparable datapoints close to each other. It tries to match the
probability of points being close in the low-dimension to the probability of them
being close in the high-dimension (Van der Maaten and Hinton, 2008). For more
information on the implementation of t-SNE, refer to Van der Maaten and Hinton
(2008).

For active learning, this can provide insights on how algorithms work. What
would be expected is that random acquisition of images would result in selected
images being scattered relatively evenly over the two dimensional space, while
BALD would be expected to select more images close to each other. The plots
can thus be used to assess if the algorithms work as expected.

While t-SNE can provide some useful insights, it is important to acknowledge
some flaws in t-SNE plots. Firstly, different extracted features have a different
importance in classification, which is not visualized in t-SNE. Thus, the visual-
ization could visualize similarities while putting disproportional importance on

52

some irrelevant features. On top, the different t-SNE plots are created using fea-
tures extracted by the model trained on the selected images, thus comparisons
between them are not based on similarities in the same features. It also only aims
to measure the closeness in a two dimensional space, hence the position of data-
points itself is irrelevant, only the distance to other datapoints should be assessed.
Still given these flaws, it can give an indication on how different AL methods work.

In Figure 18, an example is given of a t-SNE plot, similarly to those that will
be used in the results. It shows 300 labelled images plotted in a two-dimensional
space using a colour related to their respective class. Images which are not yet
labelled are plotted in grey. Important for interpreting the t-SNE plots is that
only the relative positions of datapoints to each other is relevant. The numbers
on the axes are not interpretable.

Using t-SNE with a lot of active iterations would results in too many plots, which
do not add much onto the understanding of these models. Therefore, t-SNE plots
for different iterations are only shown for a case where four active iterations of
acquiring 500 images are used. In the plot of the first iteration, the 100 images
selected randomly for the initialization are shown as well. Since the acquisition
size could affect performance of different methods, t-SNE plots from the last iter-
ation when an acquisition batch size of 100 is used are discussed as well. Results
can be found in Section 6.1.

53

Figure 18: Example of t-SNE plot when using random acquisition.

4.3.4 Baseline model

In previous research, models trained on a large proportion of the data from the
disaster on which the model is used, performed the best. To establish an ’upper
bound’ of the performance which could be achieved by the Caladrius model, a pre-
trained model is fine-tuned using all training data from hurricane Matthew. This
upper bound can be used to evaluate to which extent a model trained using active
learning can approach the performance of a model trained on the full dataset. The
scores of the baseline model are added in all plots containing the performance of
AL methods.

4.4 Configuration of hyperparameters
Multiple hyperparameters that can affect performance are tested using different
settings. In the comparison, the same seed is used for each setting. Still, ran-
domness is likely to have a large influence on performances. The improvement
gained by selected images is partly due to simple luck, as its true class is not
known when selecting it, while bayesian AL methods include randomness in the
selection algorithms as well. Therefore, multiple test runs should be used for each
setting to select the best hyperparameters. However, given a large training time
and only limited resources, this is not possible. Therefore, hyperparameters are

54

selected using only one run with a given random seed, meaning that randomness
can have a substantial influence in this selection.
In all comparisons, every hyperparameter except for the one tested is kept con-
stant. If this is not the case, it is explicitly mentioned. The standard values of
hyperparameters which are not tested are as shown in Table 6. More information
on these different hyperparameters, as well as the configuration of their values, is
given in the remainder of this section.

Table 6: Standard hyperparameter settings.

Hyperparameter Standard value
Acquisition batch size 100

Loss type Unweighted
MC dropout models (T) 10

s 500

4.4.1 Configuration of general hyperparameters

First the configuration of general hyperparameters, which are used in most meth-
ods14, is discussed. Before discussing the hyperparameters for which different
values are tested, the hyperparameters set to a fixed value are given. The batch
size is set to 32. The starting learning rate is fixed to 0.001. This learning
rate is decreased by a factor 10 when the loss did not improve significantly for
10 epochs15. These hyperparameter settings equal the default values used for
Caladrius. In the remainder of this section, hyperparameters for which multiple
values are tested will be discussed. The results for these hyperparameters can be
found in Section 5.1.

Epochs per active iteration
The first hyperparameter that can influence performance is the number of epochs
used in each active iteration. Higher values could increase performance, or some-
times result in overfitting (Liu et al., 2008). An additional consideration in this
application is the increased training time for higher numbers of epochs. Tested
values are 5, 20 and 50 epochs.

Reinitialization of model
Another choice that must be made is whether or not to use reinitialization of the

14For WAAL, most of these hyperparameters are used as selected based on this subsection as
well, but the number of epochs and the learning rate are chosen separately due to the different
type of training.

15These are the standard hyperparameters set for Caladrius, which are therefore used for most
AL methods as well. When using WAAL, different values can be chosen since the architecture
and training of Caladrius is altered when using that method.

55

model. Reinitializing the model is resetting it to the pre-trained model after each
active iteration. The idea is that without it, the model may focus too much on
information from images chosen in early iterations, as those images are used for
the training in more iterations. Kirsch et al. (2019) advise using reinitialization
when performing active learning using BatchBALD. To test whether this improves
the performance, reinitialization is compared using BatchBALD and random ac-
quisition. For the runs using reinitialization, the number of epochs after the last
acquisition of a labelled batch is set to 100, since it does not use information on
previously trained models.

Weighting the loss function
In a neural network, the loss is minimized. The loss can be calculated weighted
or unweighted. When unweighted loss is used, this means that each datapoint
has the same influence on the total loss. Using weighted loss, the influence of
datapoints is weighted by the inverse of the number of datapoints which have the
same label, similar to macro-averaging for the performance metrics. The idea is
that weighted loss results in a better performance for less frequently occurring
classes as these are given equal weight, while unweighted loss results in more fo-
cus on learning the classes with more occurrences. Thus it would in general be
expected that weighted loss results in better performance using macro-averaged
metrics, whereas unweighted loss results in better performance using unweighted
metrics.

Important to note is that AL aims to identify those datapoints which are most in-
formative for training the model. Given that the subset of most desirable training
images is selected, using unweighted loss would be most logical. With weighted
loss, the influence of datapoints selected by the model to be informative would be
changed. Still, both types are assessed as weighted loss could still be desirable if
it leads to clearly better macro-averaged performance.

Acquisition batch size
Another parameter which can be altered is the acquisition size in each active it-
eration. In general, a larger acquisition batch size would be preferred. The larger
the batch size, the more convenient the labelling progress is since the number of
times the model has to be retrained is reduced. However, larger acquisition batch
sizes are linked to worse performance in active learning as mentioned in Section
4.2 and shown by Kirsch et al. (2019).

Therefore, multiple acquisition batch sizes are tested to investigate their influence
on performance. This is tested for each AL method as some methods are more
sensitive to the batch size than others. The smallest batch size used is 50. Smaller
acquisition batch sizes are not tested, since lower batch sizes are impractical given
the large CNN that must be retrained after each acquisition. Furthermore, ac-

56

quiring 100 and 500 images in each active iteration are tested. The number of
active iterations is scaled to the batch size, with 40 active iterations for a batch
size of 50, 20 for a batch size of 100 and 4 for a batch size of 500. Thus in total,
2000 images are labelled on top of the 100 random initialization images for each
of the acquisition sizes. To keep the total number of training epochs comparable,
these are scaled to the number of active iterations: 10 per active iteration for a
batch size of 50, 20 for a batch size of 100 and 100 for a batch size of 500.

For the acquisition of 500 images per batch, two versions are compared: only
resetting the learning rate in between active iterations such as implemented for
the other acquisition batch sizes, and also resetting the learning rate within active
iterations after each 20 epochs16. The last option is added as it turned out that
even for random acquisition, batch sizes of 500 performed poorly. A possible
explanation is that the learning rate’s decay results in the model getting stuck in
a local minimum and only improving marginally after a certain number of epochs.
This resetting of learning rates while training the model is similar to stochastic
gradient descent with warm restarts introduced in Loshchilov and Hutter (2016).
Resets of the learning rate within active iterations will be referred to as ’warm
restarts’ in the remainder of this research as well.

4.4.2 Configuration of hyperparameters for Bayesian AL methods

BALD
Using BALD, the number of MC dropout models used (T) is an important factor
in running time. There is a trade-off that must be made here: more stochastic
forward passes results in better estimation of uncertainty of the model for images,
but also in an increased time spent to select images. Doubling T is related to twice
as much time spent predicting on the unlabelled pool of images, which is the only
step in the BALD heuristic that has a significant impact on computation time.
The total computation time of an active iteration mainly consists of this predic-
tion step and the training of the model using previously labelled images. Gal and
Ghahramani (2016) find that even with only 10 forward passes, reasonable esti-
mates of uncertainty can be found. While 10 MC dropout models should result in
reasonable estimations, BALD is performed using 15 MC dropout models as well
to see whether this could improve the performance significantly17. Furthermore,
BALD is also implemented using 5 MC dropout models, to find out whether a
lower number of MC dropout models could still yield reasonable results. Lastly, 2
MC dropout models are tested to check the influence of picking a very low value,

16Resetting every 20 epochs is chosen to make it comparable to acquiring 100 images in each
batch, as using those settings the learning rate is reset after each active iteration of 20 epochs.

17Running BALD with 20 MC dropout models has first been tried. However, this led to
memory issues when predicting on the unlabelled pool. If using more than 15 MC dropout
models would be preferred, these issues can be resolved by either using a GPU with more RAM,
or by using less efficient computations.

57

using which the estimation of uncertainty should be less accurate than for higher
values.

BatchBALD
In Section 4.2.3, additional parameter s is introduced on top of the number of
mc dropout models T , which is also used with BALD. s is used jointly with T
(as m = T ∗ s, with m the total number of configurations used) to determine the
number of draws from all possible configurations of ŷ1:b−1. For BALD the main
time-consuming part in active learning was the prediction on the MC dropout
models. For BatchBALD, the heuristic itself is time consuming as well. The the
total time used in acquiring a new batch of images to label depends on both T
and s. Kirsch et al. (2019) set s given T such that s ∗ T = 40000. However, this
yields memory issues18, while leading to a too large computation time as well.
To find a good configuration of these parameters for this application, multiple
combinations of T and s are tested. Combinations are tested since they both
have similar affects: both should result in better performance at the expense of
a higher computation time. In the heuristic, for both s and T a twice as large
value also results in a twice as large computation time. T also affects the time
spent predicting with MC dropout models and hence its effect is larger on the
total computation time.

T equal to 5, 10 and 15 are tested with similar reasoning as previously discussed
for BAAL. For s, 500 was previously used as a baseline, which combined with
T = 10 results in a desirable computation time of approximately 30 minutes19.
Additionally, s = 250 is tested to find whether a smaller value clearly yields worse
results, with s = 25 tested to find out about the effect of an extremely small
value. s = 1000 and s = 2000 are tested to find out whether larger values result
in significantly better results.
Not each combination of T and s is tested to reduce the number of runs. For
T = 10 and s = 500, combinations with each value of the other hyperparameter
respectively are tested. By keeping either of the two constant, the influence of T
and s can be determined separately. Additionally, combinations of T = 5 with
s = 1000 and s = 2000 are tested. The computation time of these combinations is
manageable, while it can be used to determine if compensating a smaller T value
with a larger s value results in good performance. To provide an overview, the
combinations used are marked with an X in Table 7:

18When using T = 10 and s = 2500, the memory of the used GPU (Nvidia T4, with 16 GB
RAM) is too small to compute the heuristic efficiently.

19Together with 510, a computation time of 30 minutes was set as the target for an iteration.

58

Table 7: Combinations of s and T tested for BatchBALD, marked with an X.

s
25 250 500 1000 2000

5 X X X
T 10 X X X X X

15 X

4.4.3 Configuration hyperparameters WAAL

For WAAL there are more hyperparameters to be tuned, since its training proce-
dure differs from the other methods as well. Therefore, decisions must be made
between the hyperparameters set for training the Caladrius model, which are used
with the other AL methods, and using the configurations suggested for WAAL.
Also, some decisions must be made on the importance of both diversity and un-
certainty in the model. Some of these hyperparameters are likely to influence each
other. The best method to set the configurations would be to evaluate combina-
tions of these hyperparameters. However, due to time constraints, they will be
set separately. The parameters will be tuned in the order they are discussed in
below, hence after one hyperparameter is tuned, the next parameter is tuned us-
ing this newly determined value. Note that other hyperparamaters, which are not
discussed here, are set to the values chosen based on the results of Section 4.4.1,
since these were already analysed at the point WAAL was implemented. The
remainder of this subsection describes the hyperparameters and settings which
are tested subsequently.

Training epochs
As training is different, the way epochs work is different as well. For the previ-
ously discussed more classic active learning techniques, one epoch simply consists
of training the model one time having used all available data in the different
batches. For WAAL, both the labelled and unlabelled data is used in training.
One WAAL training epoch similarly consists of training on all data. However,
there is an unbalance between labelled and unlabelled data quantities. In the
WAAL framework, simply the number of batches that can be selected from the
largest dataset is chosen, and when the other dataset has used up all images it
simply restarts loading datapoints that were previously used already. This can
lead to datapoints being used for training a lot of times within one epoch. An
example is after the random initialization, there are 100 labelled images. The
unlabelled dataset consists of approximately 13000 images. Therefore, labelled
images would be used for training 13000/100 = 130 times. When 20 WAAL
epochs were to be used, similarly to the other implementations, this would result
in using each image 20 ∗ 130 = 2600 times in a batch, similar to 2600 epochs for
the other AL methods. This could results in overfitting on this small dataset,
while also leading to a large computation time. Therefore, multiple ways of train-

59

ing in WAAL are tested. In the remainder of this thesis when considering the
training of WAAL, a WAAL epoch will refer to training using each datapoint in
the largest dataset once, while train set epochs will refer to the number of times
each labelled image is used. The following settings are tested:

1. The first option combines the train set and WAAL epoch types. To train
the classifier similarly to other implemented AL methods, the number of
train set epochs is set to the same number of epochs as determined for the
other AL methods. This number of epochs is chosen in the next section.
Having reached the selected number of train set epochs, the parameters of
the classifier are frozen. The current WAAL epoch is still finished for the
discriminator and feature extractor. This ensures that the feature extractor
and discriminator are trained using each unlabelled datapoint the same
number of times. Since the discriminator is used to query the unlabelled
data, not training it equally on all datapoints may result in unfair query
between datapoints.

2. Updating the parameters of the feature extractor after having frozen the
parameters of the classifier can have disadvantages as well. The extracted
features, based on which the classifier determines the degree of damage,
change. As the classifier is not retrained based on these new features, it may
not perform well combined with the updated feature extractor. Therefore,
performance is also tested for the same settings as above, but freezing the
parameters for the feature extractor as well. This method is also faster,
since only the relatively small discriminator network, with a small number
of parameters compared to the feature extractor, is trained when finishing
the WAAL epoch.

3. Another option is to simply stop training altogether after having reached
the number of train set epochs required for the labelled images. This would
be the fastest method and most comparable to other AL methods. However,
it means the discriminator is only trained on a subset of the unlabelled data
when the imbalance between labelled and unlabelled data is large20, thus
query may be less accurate.

4. When training, WAAL combines the cross-entropy loss with a Wasserstein
distance loss function. Hence, cross-entropy loss may have a smaller ef-
fect when updating weights, which could lead to slower performance im-
provements compared to the other methods. Therefore, a higher number of
epochs compared to the other methods is implemented as well. This number
of epochs is defined in Section 5 after having set the number of epochs for
the other methods21.

20e.g. consider 20 epochs with a labelled dataset of 200 datapoints. In this case, only 20∗200 =
4000 of the unlabelled images are used.

21Note: this is only be implemented when not leading to excessive computation time.

60

5. Using 5 full WAAL epochs is tested as well in order to see whether their
training scheme works better than the self-created training schemes tuned
for Caladrius and for better comparison with other AL methods. 5 WAAL
epochs are chosen as Zhan et al. (2022) showed that using WAAL, 5 epochs
is sufficient to obtain good performance. More epochs did not significantly
improve performance anymore (Zhan et al., 2022).

For testing these settings, Adam is used as optimizer22.

Optimizer and learning rate
In Caladrius, the standard optimizer used is Adam with a learning rate of 0.001,
whilst WAAL uses SGD with momentum and a learning rate of 0.01 (Shui et al.,
2020). More information on these settings can be found in Section 2.2.5. Since a
combination of the Caladrius and WAAL training is used, combinations of their
respective optimizers and learning rates are tested: both Adam and SGD are
tested with a learning rate of 0.01 and 0.001. The same optimizer and learning
rate is used for each of the networks.

For the other AL methods, the learning rate is reduced by a factor 10 after no
significant improvement of the loss is found for 10 epochs. This is implemented for
WAAL as well23. For the learning rate reduction, epochs are defined as training
set epochs. Thus, after the loss did not improve significantly in 10 times training
on the full labelled dataset, the learning rate is reduced. The learning rate of the
feature extractor, classifier and discriminator are reduced separately. The learn-
ing rate of these networks can thus be different from each other.

Wasserstein distance balancing parameter (C0)
Multiple different methods for calculating C0 are implemented:

• C0 = L
U

, with L the total amount of labelled data and U the number of
unlabelled data. This choice of the hyperparameter is similar to the setting
used by Shui et al. (2020)24. As L

U
is generally smaller than one, which

in this application is always the case, this results in giving labelled data a
lower weight than unlabelled data. The aim of giving the labelled data a
smaller weight is to avoid excessive reusing of the labelled data (Shui et al.,

22In some initial runs where tuning hyperparameters systematically was not yet the target,
the WAAL type optimizer did not seem to work well. Therefore, adam is used as long as the
optimizer is not yet tuned following more thorough analyses.

23Note: learning rate reduction was only implemented after the previously mentioned hyper-
parameters were chosen

24In the code with their paper, this is the implemented method. In their paper, the term is
slightly different, where the size of the acquisition batch relative to currently labelled dataset
size is used as well. In this implementation, this results in giving the labelled train set an
even smaller weight (up to half of L

U). Given L
U is possibly too small already, which is discussed

further in this section, the other weighting method introduced by Shui et al. (2020) is not tested.

61

2020). When only a small amount of labelled train set epochs is chosen,
unlabelled datapoints are not always used in training. In such case, C0 will
be set proportionally to the amount of unweighted data used in training25.

• C0 = 1: When optimizing the discriminator using C0 = L
U

with highly
unbalanced data, the unlabelled data has a much larger influence on the
discriminator loss and the Wasserstein distance part of the loss used for
the feature extractor when considering a single optimization step. When
optimizing the loss, close to perfect performance can be obtained by simply
predicting each datapoint to be unlabelled. Therefore, other options may
give better results. C0 = 1 is therefore tested as well. This is the version
implemented in the code supplied to the paper of Zhan et al. (2022).

• C0 = 0.5: Additionally, a combination is implemented. The aim is to use a
value where the contribution of the labelled datapoints to the loss is smaller
than that of unlabelled datapoints in order to reduce the excessive use of
the labelled data, but also not too small such that the model is not likely
to just predict each datapoint to be unlabelled. For this purpose, C0 = 0.5
is tested.

Given the explanations above, the decision on which setting of C0 is chosen will
mainly be based on the predictions made by the discriminator. The discriminator
should not predict all datapoints with the same value, since this would make it
useless for including diversity. To assess the performance with different choices
of C0, the mean and standard deviation of the estimations of the discriminator is
given for both the labelled and unlabelled datasets, computed during each query
step. Only if multiple settings of C0 result in usable discriminator estimations,
the performance of the classifier given the selected data will be assessed for the
different values of C0 to decide between them.

Classification and Wasserstein distance loss trade-off for training (µ)
When training, a decision must be made about the importance of both the clas-
sification and Wasserstein distance loss components. This is mostly important
for training the feature extractor. Shui et al. (2020) use two different values:
µ = 0.001 and µ = 0.01, which we will test as well. Furthermore, µ = 0.1 is
implemented to assess whether giving the Wasserstein distance a larger impor-
tance could increase performance, as the feature extractor learns more from the
unlabelled data. Lastly, µ = 1 is tested as well, to assess whether not weighting
the loss components yields good results.

Diversity and uncertainty trade-off for query (ϕ)
Similar to training, there is a trade-off between diversity and uncertainty in the

25E.g. with 20 train set epochs, a labelled train set of 100 datapoints and 10000 unweighted
datapoints, L

U = 0.01, while only 4000 of the unlabelled datapoints are used. Therefore in this
case, C0 = 1

20 = 0.05 is used

62

query as well. Therefore, ϕ must be tuned. The larger ϕ, the larger the influence
of the diversity component in query (see equation (33)). In general, ϕ is chosen
much larger than µ, since the uncertainty component generally has larger val-
ues compared to the discriminator values26. Shui et al. (2020) use two different
values: 5 and 10, which are tested in this application as well. On top, ϕ = 2 is
tested. This value is added due to a difference in the number of classes used in the
research by Shui et al. (2020) and this application. In this research, 4 classes are
used instead of 10 classes in their research. Due to the smaller amount of classes,
the score of the uniformity uncertainty metric is generally smaller (see equation
(31)), thus the total uncertainty score is smaller as well. The magnitude of the
diversity score does not depend on the number of classes. The smaller value of ϕ
is tested to compensate for this difference.

Training data batch size
A different batch size is used for the labelled train data. Whereas for other
methods, the default Caladrius batch size of 32 labelled images is used, this is
decreased to 16 for WAAL. The reason for this is simple. Given that the training
uses unlabelled images as well, the number of images used in training is twice as
large for a given labelled images batch size, resulting in more memory being used.
Using 32 labelled images together with 32 unlabelled images therefore results in
memory issues on the used GPU when training27.

26The discriminator output is always in [0, 1], while the uncertainty component can grow
significantly larger. The smallest possible value of the uniformity uncertainty metric, when each
class is given the same predictive value, is −4 ∗ log(0.25) ≈ 2.4 is already substantial larger.
The same holds for the standard deviation.

27A Nvidia Tesla T4 GPU with 16 GB memory is used. This only has a shortage of approxi-
mately 200 MB of memory. While it is tried to free all memory which was unnecessarily stored,
it may be possible to still reduce memory usage to a point where a batch size of 32 can be used.
Furthermore, GPU’s with a larger memory would certainly enable the usage of this larger batch
size.

63

5 Results configuration of hyperparameters
As mentioned, the hyperparameters are configured by testing their performance
in different settings. The tested hyperparameters, their settings and explanations
on why these are tested are explained in Section 4.4. In this section, the chosen
configuration is discussed. In Appendix C, a detailed explanation is given for each
of the chosen settings, along with figures and tables containing the results based
on which the decisions are made.

5.1 Configuration of general hyperparameters
First the configuration of the general hyperparameters is discussed, with more
detailed explanations being given in Appendix C.1. Most decisions are based on
results when acquiring a total of 2000 images in active iterations, with an acqui-
sition batch size of 100.

While acquiring images with an acquisition batch size of 100 was chosen as a
baseline value, this hyperparameter is tuned as well. Given the results presented in
the Appendix, two scenarios are chosen to be investigated further when comparing
different AL methods over multiple runs28:

• Acquiring 500 images with AL using an acquisition batch size of 100

• Acquiring 2000 images with AL using an acquisition batch size of 500 with
warm restart

These scenarios simulate different types of settings in which AL could be imple-
mented by 510. The first scenario simulates a relatively small scale disaster, where
resources are likely limited. In such a case, data would have to be labelled inter-
nally by employees of 510. Consequently, the total number of images that can be
labelled is small. Therefore, only 500 images are labelled using active learning in
this scenario, with an acquisition batch size of 100.

The second scenario simulates a larger disaster which captures a lot of media at-
tention. In this case, 510 is more likely to have a group of volunteers available to
label data. In this situation, it is possible to label a larger total amount of images.
A dataset of 2000 images will thus be labelled in this scenario. When using groups
of volunteers, labelling larger batches of data each time is more convenient. When
using an acquisition batch size of 500 instead of 100, volunteers only have to be
asked for help in 4 different iterations with retraining in between. Additionally,
labelling 500 images could be done in groups where one expert helps volunteers
with images they are unsure of. Therefore an acquisition batch size of 500 is used

28On top of the number of images selected using AL, both scenarios use a randomly chosen
initial set of 100 labelled images.

64

to simulate this scenario.

The other hyperparameters are set as given in Table 8. As mentioned, more
information on the considerations when setting these hyperparameters is given in
Appendix C.1.

Table 8: Configuration of the general hyperparameters.

Scenario
500 images in total,

acquisition bacth size of 100
2000 images in total,

acquisition bacth size of 500

Epochs per active iteration 20 100, with warm restart
after every 20 epochs

Hyperparameter Reinitialization of the model No No
Weighted loss function No No

5.2 Configuration of hyperparameters for Bayesian AL
methods

Next, the configuration of additional hyperparameters for the Bayesian AL meth-
ods, which are BALD and BatchBALD is given. For BALD, the number of MC
dropout models used is set to 10 (T = 10). For BatchBALD, T = 10 is used as
well, with s set to 500. For both T and s, using different values did not have
a clear impact on performance. Therefore, T and s are mainly set based on a
trade-off between using values resembling those used in the papers by Gal et al.
(2017) and Kirsch et al. (2019), and computation time. More information is given
in Appendix C.2.

5.3 Configuration hyperparameters WAAL
For WAAL, more different hyperparameters need to be tuned since a different
type of training is used. These are tuned using the scenarios described before, so
acquiring 500 images using AL with an acquisition batch size of 100 and acquiring
2000 images with AL using an acquisition batch size of 500, after a random ini-
tialization step using 100 images. Only the number of epochs are tuned for both
scenarios separately, the other hyperparameters are tuned using the first scenario
due to limited time. In Table 9, the chosen hyperparameters are given.

An important finding when tuning the hyperparameters is that the discriminator
does not always learn the differences between labelled and unlabelled data well.
The predicted output is generally larger for the unlabelled data, which is as ex-
pected, but differences are small in some cases. More information on this issue,
as well as the details of the configuration of the hyperparameters, are given in
Appendix C.3.

65

Table 9: Configuration of the WAAL hyperparameters.
Scenario

500 images in total,
acquisition bacth size of 100

2000 images in total,
acquisition bacth size of 500

Epochs per active iteration* 50 train set epochs, with warm restart
after every 20 train set epochs

100 train set epochs for feature extractor and classifier,
finishing last WAAL epoch for discriminator,

with warm restart after every 20 train set epochs
Hyperparameter Optimizer and learning rate Adam with a starting learning rate of 0.001 and learning rate reduction

C0 1
µ 0.01
ϕ 5

*Note: In WAAL, two types of epochs are used: train set epochs and WAAL epochs.
See Section 4.4.3 for an explanation on these epoch types.

66

6 Results
In this section, results comparing the different AL methods and random selection
of datapoints are presented. First, t-SNE plots are displayed for each method.
Next, results comparing all methods using the mean and standard deviation of the
different evaluation metrics over multiple runs are discussed. For a small selection
of runs, confusion matrices are discussed as well for more detailed analyses. All
models are tested using hurricane Matthew, with models being pre-trained using
the Moore tornado, Tuscaloosa tornado, Joplin tornado and hurricane Michael.

6.1 Visual results t-SNE
t-SNE plots, created with the different AL methods, are shown to visually assess
if these methods behave as expected. Important to note is that these plots are
only snapshots of one run, hence results are not necessarily representative of the
behaviour of the methods in all cases. Furthermore, it is important to keep the
flaws with t-SNE plots mentioned in Section 4.3 in mind. In particular, the reason
for certain images to be clustered together can be due to a lot of features, which
are not necessarily important for how images are classified and queried. The plots
should thus only be used to get some intuition with how methods select images.

BALD
First in Figure 19 the plots can be found for BALD. As may be expected, images
from some areas are chosen more often than others. In this case, clearly more
images are labelled which are plotted in the top left, top right and bottom right
of the two-dimensional space of the t-SNE plot. Especially in the middle of the
space, fewer images are labelled.

67

(a) iteration 1 (b) iteration 2

(c) iteration 3 (d) iteration 4

Figure 19: t-SNE plots for BALD in different active iterations, using four active
iterations selecting 500 images in each iteration. Training is performed using 100
epochs in each iteration with warm restart each 20 epochs.

BatchBALD
In Figure 20, similarly the t-SNE plots of BatchBALD can be found. BatchBALD
seems to select more different types of images, as the chosen images are more
evenly spread over the space. This is as expected since it accounts for overlap of
information between datapoints in batches. Still, images in some areas are more
often labelled than in others. On the left, images are less often labelled than on
the right of the two-dimensional space.

68

(a) iteration 1 (b) iteration 2

(c) iteration 3 (d) iteration 4

Figure 20: t-SNE plots for BatchBALD in different active iterations, using four
active iterations selecting 500 images in each iteration. Training is performed
using 100 epochs in each iteration with warm restart each 20 epochs.

Figure 21 contains the t-SNE plot after the last active iteration for BALD and
BatchBALD when the same number of images is acquired with an acquisition
batch size of 100, hence showing all selected images over the iterations together29.
This is displayed as well since the acquisition bacth size could affect the perfor-
mance of the different Bayesian AL methods. With smaller batch sizes, Batch-
BALD and BALD behave more similar, with both acquiring more images from
certain regions in the plot.

29All used hyperparameters are set to the default values previously introduces in the intro-
duction to this Section.

69

(a) BALD (b) BatchBALD

Figure 21: t-SNE plots after 20 active iterations for BALD and BatchBALD with
an acquisition batch size 100.

WAAL
Figure 22 contains the t-SNE plots for WAAL. Generally, labelled datapoints are
divided fairly even over the two-dimensional area, though some parts are rep-
resented somewhat more than others. Datapoints in the middle left of the two
dimensional space are labelled more often, while datapoints in the right bottom
are labelled less often. Furthermore, the colors representing datapoints from dif-
ferent classes seem more mixed over the space compared to the t-SNE plots for
the other methods.

70

(a) iteration 1 (b) iteration 2

(c) iteration 3 (d) iteration 4

Figure 22: t-SNE plots for WAAL in different active iterations, using four active
iterations selecting 500 images in each iteration. Training is performed using 100
epochs in each iteration with warm restart each 20 epochs.

Random
In Appendix Figure D.1, t-SNE plots can be found for random selection as well.
Selected images are evenly distributed over the space in each iteration, as could
be expected when randomly selecting datapoints.

6.2 Results comparing different AL methods
In this section, the results comparing AL methods using multiple runs are dis-
cussed. For each method, the same seeds are used when randomly selecting the
initial dataset of 100 images for the different runs. Still, the performance after
training on this random initial dataset may differ slightly between methods. This
is due to some stochastic processes within the training of the model, such as
dropout.

In this section, the mean results for each method are given together with the

71

standard deviation. Results for an acquisition batch size of 100 are based on 10
runs. For an acquisition batch size of 500, only 5 runs are used due to its larger
computation time.

6.2.1 Acquisition batch size of 100

First, results using an acquisition batch size of 100 are discussed. As explained
in Section C.1, in total 500 images are selected using AL techniques, while 100
images are labelled in the random initialization. The results are displayed in Fig-
ure 23. For each of the metrics, fine-tuning the model using data from the newly
occurring disaster results in clear improvements in the scores of all performance
metrics. For the unweighted metrics, the improvement is mainly found in the
random initialization, while the performance using macro-averaged metrics re-
sults improves more gradually over different active iterations. For the unweighted
performance measures, improvements after the random initialization step are dif-
ficult to distinguish. Therefore Figure 24 displays the same plots, but zoomed in
to show the performance of AL methods after the random initialization better.

For each of the metrics, BatchBALD (in blue), BALD (in green) and random
(in red) show similar performance. Their respective scores fluctuate around each
other, while generally being within one standard deviation away from each other.
WAAL (in orange) is the only method which clearly performs differently from
the other methods. For each of the metrics, the scores for WAAL are worse than
those for the other methods. This worse performance is already observed after
the random acquisition, when no query step is performed yet.

72

0 100 200 300 400 500 600
Labelled images

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(a) Accuracy

0 100 200 300 400 500 600
Labelled images

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(b) Macro-F1

0 100 200 300 400 500 600
Labelled images

0.4

0.6

0.8

1.0

1.2

M
AE

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(c) MAE

0 100 200 300 400 500 600
Labelled images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
AA

E

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(d) MAAE

Figure 23: Mean and standard deviation of the performance of different methods
over 10 runs for an acquisition size of 100.

73

0 100 200 300 400 500 600
Labelled images

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700
Ac

cu
ra

cy
BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(a) Accuracy

0 100 200 300 400 500 600
Labelled images

0.35

0.40

0.45

0.50

0.55

0.60

M
AE

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(b) MAE

Figure 24: Zoomed mean and standard deviation of the performance of different
methods over 10 runs for an acquisition size of 100, for the unweighted metrics.

6.2.2 Acquisition batch size of 500

Next Figure 25 contains these results similarly for an acquisition batch size of
500, with Figure 26 containing zoomed plots for the unweighted metrics. Simi-
larly to results with an acquisition batch size of 100, all metrics show improving
performance when fine-tuning the model. Again, the improvements considering
unweighted metrics are mostly found in the random acquisition step, with the
improvements considering macro-averaged metrics being found more gradually
over different acquisition steps. Additionally, the performance after all active
iterations is better compared to the performance previously found in the other
scenario where fewer images were labelled.

For macro-averaged metrics, differences between the different methods are similar
to those found with an acquisition batch size of 100. BALD, BatchBALD and
random all show similar performance, while WAAL performs worse than other
methods. When the unweighted metrics are considered, WAAL performs more
comparably to the other methods, while with the smaller acquisition size it was
outperformed by all methods when considering the unweighted metrics as well.

74

0 500 1000 1500 2000
Labelled images

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(a) Accuracy

0 500 1000 1500 2000
Labelled images

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(b) Macro-F1

0 500 1000 1500 2000
Labelled images

0.4

0.6

0.8

1.0

1.2

M
AE

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(c) MAE

0 500 1000 1500 2000
Labelled images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
AA

E

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(d) MAAE

Figure 25: Mean and standard deviation of the performance of different methods
over 5 runs for an acquisition size of 500.

75

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Ac

cu
ra

cy
BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(a) Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.40

0.45

0.50

0.55

0.60

M
AE

BatchBALD
BALD
Random
WAAL
All weighted
All unweighted

(b) MAE

Figure 26: Zoomed mean and standard deviation of the performance of different
methods over 5 runs for an acquisition size of 500, for the unweighted metrics.

6.3 Comparison pre-trained model, fine-tuning and train-
ing on full data with confusion matrices

Next, Figure 27 contains confusion matrices for predictions made by the pre-
trained model, fine-tuned models with acquisition batch sizes of 100 and 500,
with the total labelled datasets containing 600 and 2100 datapoints respectively
and random acquisition used to choose images30, and lastly a confusion matrix
with predictions made using a model which was trained on the full dataset of
hurricane Matthew. The full train dataset consists of 13165 datapoints31. The
figure is used to assess how the pre-trained and fine-tuned models compare with
a model trained on the full dataset, as well as to identify how well the predictions
are for different classes. Important to note is that these confusion matrices only
correspond to the performance on the test data after a single run for each of these
options.

As was noticed using the performance metrics before, the pre-trained model does
not perform well. Mostly, it predicts buildings to be either undamaged or de-
stroyed. Only buildings which are destroyed are usually correctly classified, with

30Since AL methods do not seem to clearly improve over random acquisition, random acqui-
sition is used in these analyses.

31Both the fine-tuning using a small dataset and training on the whole train set are performed
using unweighted loss. When training on the full dataset of hurricane Matthew, the pre-trained
model was used as well to make it more comparable.

76

reasonable performance for undamaged buildings as well. When 600 datapoints
from Matthew are labelled, it performs better with the predictions generally be-
ing closer to the diagonal. Most predictions are at most one class away from the
true class. Buildings which have no damage or major damage are often classified
wrongly as minorly damaged. When 2100 datapoints are labelled, results are
similar. However, the predictions of the model for buildings which have major
damage or are destroyed clearly improve, with a minor improvement for minorly
damaged buildings as well. When the full train set of hurricane Matthew is used,
predictions of destroyed buildings are more often correct, while results are similar
to fine-tuning with 2100 images in the other classes.

Generally, fine-tuning the model on a small dataset results in similar confusion
matrices to the one created using the full dataset of hurricane Matthew. The
models mainly predict undamaged and majorly damaged buildings incorrectly as
minorly damaged. This is likely due to 57 percent of buildings being minorly
damaged, in combination with an unweighted loss function. Probably, this could
be improved by using a weighted loss function. Still, predicted classes are close
to the diagonal, so the model generally predicts close to correct classes.

77

(a) Model pre-trained on other
wind-type disasters

(b) 600 images from hurricane Matthew
used for fine-tuning

(c) 2100 images from hurricane Matthew
used for fine-tuning

(d) Model trained using all images from
hurricane Matthew

Figure 27: Confusion matrices for predictions of models trained on different
datasets.

78

7 Discussion and Recommendations
This section contains possible explanations for the behaviour of different imple-
mented methods shown in the results. Additionally, recommendations are given
based on the results and added explanations.

Visual interpretation using t-SNE plots
The visual interpretation of the t-SNE plots is discussed first. BALD clearly fo-
cusses more on certain areas, but it still selects datapoints throughout the whole
t-SNE area. Thus, it still obtains information on datapoints throughout all lo-
cations visualized in the t-SNE plot, while focusing more on some areas. When
comparing the behaviour of BatchBALD with BALD using an acquisition batch
size of 500, BatchBALD clearly focuses less on certain areas. It queries data-
points more evenly distributed throughout the t-SNE plot. This is in line with
expectations, as BatchBALD takes into account the overlap in mutual informa-
tion between images selected in a query batch.

When assessing plots with an acquisition batch size of 100 images in each itera-
tion, the behaviour of both is more similar. From a theoretical perspective, this
behaviour is not unexpected. When only few images were previously selected
in a batch, overlap in mutual information is likely to be smaller when acquiring
a new image, leading to more images being acquired from certain regions the
model finds difficult. When a large amount of images has already been acquired
in a batch, a substantial number of images was likely selected from these difficult
regions already, leading to a larger overlap in mutual information. The Batch-
BALD score for new images in these regions is therefore smaller. Therefore, when
a large number of images has already been acquired within a batch, BatchBALD
is more likely to select images from less researched areas of the data as well. Thus,
a larger batch acquisition size could lead to more diverse selection with Batch-
BALD, which in turn results in larger differences with BALD.

Still, it may have been expected that selecting images in smaller batches would
result in a more diverse representation on the data. After having selected images
from the more difficult regions, the model has learned from those images and
should become better at classifying images from those regions. Having gotten
better at predicting in these regions, both BALD and BatchBALD scores should
decrease for similar images, and thus the model can focus more other areas. How-
ever, both heuristics still focus more on some areas of the data, which indicates
that it still finds these regions difficult even though it has already seen similar
datapoints. This could indicate that it still learns more from datapoints that have
substantial overlap with previously selected images compared to images it finds
easier to classify but which do not resemble previously selected data.

For WAAL, the t-SNE plots show expected behaviour as well. Datapoints are

79

chosen reasonably diverse, while still focussing more on some areas compared to
others. This is what would be expected given that it combines uncertainty and
diversity. The t-SNE plots for WAAL show similar query behaviour to Batch-
BALD when the same acquisition batch size is considered, while showing a more
diverse acquisition of labelled datapoints compared to BALD. Given that Batch-
BALD incorporates diversity, while BALD does not, this is consistent with our
expectations.
Interestingly, the t-SNE plots show that WAAL has more difficulties in clustering
together datapoints of similar classes. The labelled datapoints are often close
to datapoints from different classes as well. The t-SNE plots were created by
using the output of the last fully connected layer of the model. The larger dif-
ficulties in clustering datapoints from the same classes together indicates that
the WAAL model did not manage to extract as much information to learn the
difference between the different types of datapoints from the images compared to
other methods. This is also shown by its worse performance using the different
performance metrics.

Given the visual representations, the methods seem to largely behave as expected.
However, considering the comparisons using different performance metrics, none
of the AL methods clearly outperforms random selection, while WAAL even per-
forms worse.

Possible causes of the bad performance of active learning
First some possible causes of the bad performance of AL in general are intro-
duced. Later in this section, possible reasons for WAAL performing even worse
than random and the other AL methods are discussed

A possible explanation for the bad performance of AL could be that for fine-tuning
the model, all images are comparably informative irrespective of how difficult the
model finds classifying them. This could be the case when the main difficulties
for the model are due to factors such as the lighting of the images before and after
the disaster and the angle at which the images are taken. This type of factors are
similar over all images from a new disaster, while possibly different from other
disasters. Therefore, all images contain similar information on these factors. If
such differences are the main difficulty for the pre-trained model, while features it
needs to recognize to classify images are similar given these other differences, its
classification uncertainty does not tell much about how informative images are.
Selecting images based on it therefore would not affect performance compared to
randomly selecting images.
Given these possible differences between the pre-trained data and the new data,
it could be interesting to perform the pre-training differently. At this moment,
pre-training is performed using only the labelled data from previously occurred
disasters. This could potentially be improved by altering the pre-training of the

80

model using a framework inspired by WAAL’s adversarial training. Instead of
using the discriminator for labelled and unlabelled data, it could be used to dis-
criminate between the labelled data from previous disasters and data from the
newly occurred disaster. Given that the feature extractor aims to minimize the
Wasserstein distance, it will thus be trained to extract similar features from both
datasets. Thus, the pre-trained classifier will have learnt to classify based on fea-
tures more similar to those extracted from the newly occurred disaster, possibly
improving results in the new situation. A drawback of such a method is that it
would need pre-training to, at least partly, be performed after the images from
the newly occurred disaster are available. This could slow down the ADA pro-
cess. However, when random acquisition is used for fine-tuning, this WAAL type
pre-training could be performed at the same time as the labelling effort. It could
thus be interesting to test such a method in the future.
Ge et al. (2023) also mention differences in the imaging environments and data
sources, as well as differences in buildings, to result in worse performance of mod-
els trained on data from previous disasters. They suggest a different solution than
the WAAL inspired framework proposed above. Instead of training the model to
extract similar features from images from different disasters, their method aug-
ments images from the previously occurred disasters to resemble the style of the
new data. This is implemented using a framework based on generative adversarial
networks (Ge et al., 2023). 510 could test this method as well.

Furthermore, there are some main differences between the type of data used in
this research and in developing and testing the different AL methods. When test-
ing the AL methods, the used data is always nominal. Examples are the MNIST
dataset, where images of hand-written digits are used, and the CIFAR dataset,
which contains images of objects such as airplanes and cars. In these cases, there
is no degree in how wrong classifications are: if not fully correct, the classification
is completely wrong. In this case, uncertainty in predictions between categories
is therefore closely related to the model not predicting well on this given image.
As xBD data is ordinal, the degree in wrongness of classifications is important.
Predicting major damage in case of a destroyed building is less wrong than pre-
dicting undamaged. Thus, if the model is uncertain about a datapoint belonging
to either of two consecutive classes, this datapoint is probably less informative
compared to an image for which it is uncertain between two classes which are
further away from each other.
Adding to this, the difference between classes is less strict compared to the other
types of datasets. Whereas in CIFAR datasets an image clearly contains e.g. an
airplane or a car, this is more nuanced when classifying damage. Some images
may be majorly damaged, but very close to destroyed. Other buildings could
clearly be majorly damaged, and not that close to destroyed. In this case, the
model should be more uncertain about its prediction of the former compared
to the latter. However, this uncertainty would not be related to the model not

81

knowing how to classify the image, but simply to the images truly being more
uncertain. Thus this image of which the model is more uncertain may not be
more informative.
Therefore, classification uncertainty may not be a correct metric for informa-
tiveness of images in Automated Damage Assessment. Instead regression related
metrics, which account for distance from the true label, could be more appro-
priate. An example of such method, based on the MC dropout method by Gal
et al. (2017), is given by Tsymbalov et al. (2018). They use a regression based
metric of uncertainty. It could be interesting for 510 to implement this method,
especially since the code for Bayesian AL using MC dropout is readily imple-
mented. Using this code, this new method could relatively straightforwardly be
implemented. Still, some other issues are discussed which would not be solved by
simply using methods developed for regression or ordered classification. There-
fore, it is doubtful whether this method, with large similarities to the currently
implemented methods, would yield desirable results.
Deep active learning for image data regressions is less researched compared to
classification. It could be interesting to follow new developments in this area, as
these may provide useful insights for ordinal classification as well.

Besides ADA using another type of classification, the data is more complex as well.
Instead of images of different objects, all images in damage assessments contain
the same object, which is a building. In this application, we aim to classify images
based on differences within these same objects, which is a more challenging task
compared to classifying different objects. The model should learn detailed differ-
ences between images, e.g. it should recognize whether roof elements are missing.
Making it even more challenging, buildings themselves differ as well, with e.g.
the type of roof and size of buildings differing. The model should thus learn to
recognize the damages in before- and after- disaster images of different types of
buildings. Given the difficult task, the model may already be more uncertain by
default. It could thus be uncertain about a large proportion of images, resulting in
less useful selection by uncertainty based AL methods. In particular, there may
be fewer differences in uncertainty-based sampling and random sampling when
the model is more uncertain about many images.

Additionally, experts found that two to three percent of images was labelled
wrongly in the xBD dataset (Gupta et al., 2019). Thus, even human annotators
struggle with the right classification sometimes, which underlines the difficulty of
the task explained before. Especially for AL using uncertainty, the wrong labels
could yield worse results. Likely, the images which are labelled wrongly are those
that are relatively difficult to label. The model is likely to struggle more with
these difficult images as well, yielding a higher uncertainty and hence larger prob-
ability of the wrongly labelled image being chosen.

82

Whereas the bad performance of all active learning methods was not expected,
Saifullah et al. (2023) recently found similar results. Their research focuses on
classifying images of documents. For their research they use multiple models and
datasets. For two of their tests, a model pre-trained on ImageNet is fine-tuned us-
ing a document classification dataset. In both these tests, uncertainty based active
learning significantly outperformed random sampling. In another test, they ex-
periment with a model pre-trained on one document classification dataset, which
is thereafter fine-tuned using another document classification dataset. This set-
ting is similar to the implementation in this thesis. When fine-tuning the model
in such a setting, none of the active learning methods outperforms random se-
lection. Their results indicate that AL does not perform well when fine-tuning
models which are pre-trained on similar data (Saifullah et al., 2023), which is con-
sistent with the findings of this thesis. Additionally, Saifullah et al. (2023) find
that entropy outperforms BALD, indicating that the more sophisticated Bayesian
uncertainty methods do not necessarily improve performance over more straight-
forward uncertainty methods.

The bad performance of WAAL
Especially the bad performance found for WAAL is surprising, given that it out-
performed all other deep AL methods tested by Zhan et al. (2022). Likely, this
performance is mostly due to the training step. WAAL already performed worse
after the random initialization step, when no query step was taken yet. On top,
the query step combines an uncertainty metric somewhat similar to the other AL
methods with diversity. Given that the other AL methods and random acquisi-
tion, which acquires a diverse batch as well, all perform comparably, it is unlikely
that the query itself caused such bad performance. Therefore, the discriminator
sometimes not being able to predict large differences between the labelled and
unlabelled datasets likely did not cause the bad performance either.

There are some differences in this WAAL application and the applications on
which it was previously tested, which is possibly linked to its bad performance.
In their comparison, Zhan et al. (2022) generally do not implement pre-training.
Most tests are done using a model which had not been pre-trained at all, with
few tests being performed with a model pre-trained on ImageNet. In none of
their tests, the model had been pre-trained on a comparable dataset. The WAAL
framework may mostly be useful for such situations. The model would have no
knowledge on the specific data used, and hence using adversarial training could
help the model to more quickly learn some features present in the data.
In this application, the Caladrius model is used, which combines two inception-
v3 models pre-trained on ImageNet. The full model is thereafter pre-trained on
data from different disasters. Thus, the model has previously been trained on
comparable data and already has knowledge of features which are not specific to
the newly occurred disaster. The model mainly needs to fine-tune the previously

83

learned model to a new situation, which may be a more specific task than what
the adversarial training of WAAL is useful for. In this application, the adversar-
ial training procedure could be more interfering with the fine-tuning of the model
than it is useful in obtaining some general knowledge about data.
If the adversarial training indeed does mess with the fine-tuning of the feature
extractor, we would have expected that smaller values of the adversarial training
trade-off parameter µ result in better performance. When tuning this hyperpa-
rameter however, smaller values of µ did not always improve performance. Thus,
this is unlikely to be the only issue causing the bad performance of WAAL.

Another cause could be the configuration of the training procedure using WAAL.
While the hyperparameters were tuned to find a well-working variant, possibly
other combinations would result in better performance. It is possible that the con-
figuration of the other AL methods is simply chosen better compared to WAAL,
leading to the better results. However, given that each of the hyperparameters
for WAAL has been tuned by testing its performance with multiple settings, it is
unlikely that a configuration can be found which leads to similar performance to
other methods, without leading to a large computation time. Finding a config-
uration which leads to WAAL outperforming random acquisition significantly is
even more unlikely.

As previously discussed, Saifullah et al. (2023) found similar results to this thesis
when applying active learning to document classification. By comparing the dif-
ferent scenarios tested in their paper, possible causes of WAAL performing poorly
can be identified. When a model pre-trained on ImageNet is fine-tuned with bal-
anced data, WAAL performs reasonable. In this scenario, it outperforms both
BALD and random sampling, but entropy uncertainty sampling performs slightly
better. As WAAL is outperformed by entropy, while having outperformed this
method in the research by Zhan et al. (2022), this could indicate that WAAL per-
forms worse when applied to tasks where images are similar, such as classifying
different documents instead of finding out the difference between different objects
such as a car and an airplane. The same would hold for classifying damages on
buildings.
Similarly WAAL outperforms random selection and BALD, while being outper-
formed by entropy, in a scenario where the same model is fine-tuned with unbal-
anced data. In this scenario however, its performance is closer to random selection
compared to the previous scenario. Thus, unbalanced data seems to negatively
affect WAAL.
When the model is pre-trained on another document classification dataset, WAAL
even performs worse than all other discussed methods, including random sampling
(Saifullah et al., 2023). Thus, both fine-tuning on unbalanced data, as well as us-
ing a model pre-trained on similar data seem to hurt the performance of WAAL.
Likely, these issues partly caused the bad performance of WAAL in this applica-

84

tion as well.

Modelling for ordinal data
As explained, classification uncertainty may not be the right metric for uncer-
tainty in active learning for Automated Damage Assessment given the ordinal
classes. This insight may have implications on the used loss as well. At this mo-
ment, the Caladrius model aims to minimize the cross-entropy loss, which does
not take into account the degree of wrongness of predictions. However, this degree
of wrongness is relevant in practice. On top, this thesis shows that uncertainty in
nominal classification likely is not a good metric for the informativeness of sam-
ples. This could indicate that minimizing a loss function which does not account
for the order of classes, such as cross-entropy, is not the right choice either.
The model may learn more when it is designed to account for the order of data. It
is therefore recommended that 510 tests the performance of the Caladrius model
using such a method. This could e.g. be implemented by using loss function
inspired by mean absolute error or macro-averaged absolute error, or more so-
phisticated methods designed for ordinal classification in neural networks. For
example, Diaz and Marathe (2019) propose using Soft Ordinal vectors (SORD)
to model the ordinal character of classes. Using this method, the true labels are
transformed into a vector of values, with the highest value assigned to the true
class and this value getting smaller based the distance to the true label, e.g. mea-
sured using absolute error. This SORD vector then resembles the softmax output
for ordinal data more closely, and can be used in combination with conventional
loss functions such as cross entropy (Diaz and Marathe, 2019). Predicting a wrong
label further away from the true label will then be punished harder than closer
wrong predictions.
When redesigning the loss function, another weighting option could be imple-
mented as well. Currently the loss function either gives equal weight to each
observation or to each class. However, the end users of predictions may be more
interested in ensuring that certain classes are predicted well. End users could e.g.
be focused on identifying destroyed buildings, in which case a larger weight for
the destroyed class compared to other classes could be desirable.

Recommendations for fine-tuning models
Whereas AL methods do not outperform random acquisition, fine-tuning the pre-
trained model still results in large performance improvements for each of the
metrics. The large performance improvements could be partly due to transfer-
ring only American data to Haiti. In regions more comparable to those that the
model has been pre-trained on, improvements may be somewhat smaller. Still,
when fine-tuning a model which was pre-trained using data from more compara-
ble regions, Wang (2021) found clear improvements as well, with the accuracy of
the model increasing from 0.47 to 0.76.

85

It is thus recommended that 510 implements fine-tuning of their models using
randomly selected images of the newly occurred disaster. Before implementing
this in practice, some additional research into the fine-tuning should be done.
Most importantly, 510 should conduct research on whether the fine-tuning should
be performed by simply labelling the desired number of datapoints first and re-
training the model using all these datapoints, or to still use an iterative approach
as is used for AL. While the latter may not seem logical considering no AL type
of query is used, this may still improve results. In particular, Saifullah et al.
(2023) find that training the model with random sampling using the iterative AL
type of training results in better performance compared to using the full dataset
in training. Thus, 510 should investigate whether this is the case in the ADA
application as well. Importantly, 510 should also ensure that the model does not
overfit on the small amount of labelled data when fine-tuning a pre-trained model.

To enable practical labelling with volunteers, a user-friendly framework could be
created for the labelling effort. This framework should present volunteers with
one image of a building from before the disaster, and one from this building af-
ter the disaster. They should be able to select a label, after which this label
is automatically added to the dataset. Possibly, the label could be checked by
another volunteer, similarly to the labelling effort used by Gupta et al. (2019), to
ensure consistent labelling. The easiest way to implement such a framework is to
use readily available software, such as Label Studio (Tkachenko et al., 2022) or
the Vertex AI labelling tool. The latter is already used by a similar automated
damage assessment product (SKAI, 2022). Their specific implementation could
be useful to set up a comparable framework.
The labelling framework can be used when labelling images internally within 510
as well. However, if the expectation is that volunteers will not be used often,
simply performing the steps of selecting images to be labelled, adding them to
the labelled dataset and retraining the model could also be done manually, saving
the hassle of creating user-friendly labelling software.
Additionally, clear labelling instructions should be provided when using volun-
teers. Such instructions are included in the other ADA framework (SKAI, 2022),
while the instructions used for the creation of the xBD dataset could be utilized
as well.

86

8 Conclusion
Fine-tuning a pre-trained model for automated damage assessment after a natu-
ral hazard results in large improvements for all different metrics which were used.
For unweighted metrics, especially the random initialization step using 100 im-
ages results in large improvements. For the macro-averaged metrics, iterations
thereafter have a large contribution to the increased performance as well. This
indicates that the random initialization tunes the model towards mostly predict-
ing the majority class, while overfitting on the small dataset used. When more
data is selected, the model learns to generalize better. Whilst fine-tuning clearly
improves results, none of the AL methods managed to significantly outperform
random selection. As using AL results in a less convenient labelling endeavor
given the necessary iterative process with retraining of the model in between,
it is not useful to implement any of the discussed active learning methods for
ADA after a natural hazard. It is therefore recommended that 510 implements
fine-tuning of their models using randomly selected data from the newly occurred
disaster.

Additionally, it was discussed that models developed for classifying data with
nominal class labels may not be the best choice for this application. Therefore,
it is recommended to test whether incorporating methods developed for ordinal
classification in deep learning could improve the performance.

87

References
Abe, N. (1998). Query learning strategies using boosting and bagging. Proceedings

of the 15th International Conference on Machine Learning (ICML98), pages 1–
9.

Al-Khudhairy, D., Caravaggi, I., and Giada, S. (2005). Structural damage assess-
ments from ikonos data using change detection, object-oriented segmentation,
and classification techniques. Photogrammetric Engineering & Remote Sensing,
71(7):825–837.

Albawi, S., Mohammed, T. A., and Al-Zawi, S. (2017). Understanding of a
convolutional neural network. In 2017 international conference on engineering
and technology (ICET), pages 1–6. IEEE.

Albelwi, S. and Mahmood, A. (2017). A framework for designing the architectures
of deep convolutional neural networks. Entropy, 19(6):242.

Atighehchian, P., Branchaud-Charron, F., Freyberg, J., Pardinas, R., Schell, L.,
and Pearse, G. (2022). Baal, a bayesian active learning library. https://github.
com/baal-org/baal/.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv
preprint arXiv:1607.06450.

Baccianella, S., Esuli, A., and Sebastiani, F. (2009). Evaluation measures for
ordinal regression. In 2009 Ninth international conference on intelligent systems
design and applications, pages 283–287. IEEE.

Balvert, M. (2021). Lecture notes operations research and machine learning:
Optimization of neural networks.

Barrington, L., Ghosh, S., Greene, M., Har-Noy, S., Berger, J., Gill, S., Lin, A.
Y.-M., and Huyck, C. (2011). Crowdsourcing earthquake damage assessment
using remote sensing imagery. Annals of Geophysics, 54(6).

Basha, S. S., Dubey, S. R., Pulabaigari, V., and Mukherjee, S. (2020). Impact
of fully connected layers on performance of convolutional neural networks for
image classification. Neurocomputing, 378:112–119.

Berezina, P. and Liu, D. (2022). Hurricane damage assessment using coupled
convolutional neural networks: a case study of hurricane michael. Geomatics,
Natural Hazards and Risk, 13(1):414–431.

Bottou, L. et al. (1991). Stochastic gradient learning in neural networks. Pro-
ceedings of Neuro-Nımes, 91(8):12.

88

https://github.com/baal-org/baal/
https://github.com/baal-org/baal/

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature
verification using a "siamese" time delay neural network. Advances in neural
information processing systems, 6.

Centre for Research on the Epidemiology of Disasters [CRED] (2023). 2022 dis-
asters in numbers.

Dell’Acqua, F. and Polli, D. A. (2011). Post-event only vhr radar satellite data
for automated damage assessment. Photogrammetric Engineering & Remote
Sensing, 77(10):1037–1043.

Diaz, R. and Marathe, A. (2019). Soft labels for ordinal regression. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages
4738–4747.

Ding, Y., Sohn, J. H., Kawczynski, M. G., Trivedi, H., Harnish, R., Jenkins,
N. W., Lituiev, D., Copeland, T. P., Aboian, M. S., Mari Aparici, C., et al.
(2019). A deep learning model to predict a diagnosis of alzheimer disease by
using 18f-fdg pet of the brain. Radiology, 290(2):456–464.

Dubourg, V., Vanderplas, J., Metzen, J. H., and Lemaitre, G. (2022). Gaus-
sian processes regression: basic introductory example. https://scikit-learn.org/
stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html. Ac-
cessed: 2022-01-02.

Fernandez Galarreta, J., Kerle, N., and Gerke, M. (2015). Uav-based urban
structural damage assessment using object-based image analysis and semantic
reasoning. Natural hazards and earth system sciences, 15(6):1087–1101.

Flanders, D., Hall-Beyer, M., and Pereverzoff, J. (2003). Preliminary evalua-
tion of ecognition object-based software for cut block delineation and feature
extraction. Canadian Journal of Remote Sensing, 29(4):441–452.

Gal, Y. et al. (2016). Uncertainty in deep learning.

Gal, Y. and Ghahramani, Z. (2015). Bayesian convolutional neural networks with
bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In international conference on
machine learning, pages 1050–1059. PMLR.

Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep bayesian active learning
with image data. In International Conference on Machine Learning, pages
1183–1192. PMLR.

89

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html
https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html

Ge, J., Tang, H., Yang, N., and Hu, Y. (2023). Rapid identification of damaged
buildings using incremental learning with transferred data from historical nat-
ural disaster cases. ISPRS Journal of Photogrammetry and Remote Sensing,
195:105–128.

Gholamalinezhad, H. and Khosravi, H. (2020). Pooling methods in deep neural
networks, a review. arXiv preprint arXiv:2009.07485.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang,
X., Wang, G., Cai, J., et al. (2018). Recent advances in convolutional neural
networks. Pattern recognition, 77:354–377.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C.
(2017). Improved training of wasserstein gans. Advances in neural informa-
tion processing systems, 30.

Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., Heim,
E., Choset, H., and Gaston, M. (2019). xbd: A dataset for assessing building
damage from satellite imagery. arXiv preprint arXiv:1911.09296.

Han, W., Coutinho, E., Ruan, H., Li, H., Schuller, B., Yu, X., and Zhu, X. (2016).
Semi-supervised active learning for sound classification in hybrid learning en-
vironments. PloS one, 11(9):e0162075.

Hao, W., Yizhou, W., Yaqin, L., and Zhili, S. (2020). The role of activation func-
tion in cnn. In 2020 2nd International Conference on Information Technology
and Computer Application (ITCA), pages 429–432. IEEE.

Hasegawa, H., Aoki, H., Yamazaki, F., Matsuoka, M., and Sekimoto, I. (2000).
Automated detection of damaged buildings using aerial hdtv images. In Pro-
ceedings of the IEEE 2000 International Geoscience and Remote Sensing Sym-
posium, pages 310–312. IEEE.

Hijazi, S., Kumar, R., Rowen, C., et al. (2015). Using convolutional neural net-
works for image recognition.

Houlsby, N., Huszár, F., Ghahramani, Z., and Lengyel, M. (2011). Bayesian
active learning for classification and preference learning. arXiv preprint
arXiv:1112.5745.

Huyck, C. K., Adams, B. J., Cho, S., Chung, H.-C., and Eguchi, R. T. (2005).
Towards rapid citywide damage mapping using neighborhood edge dissimilar-
ities in very high-resolution optical satellite imagery—application to the 2003
bam, iran, earthquake. Earthquake Spectra, 21(S1):255–266.

90

http://www.deeplearningbook.org

International Committee of the Red Cross [ICRC] and International Federation of
Red Cross and Red Crescent Societies [IFRC] (2008). Guidelines for assessment
in emergencies.

International Federation of Red Cross and Red Crescent Societies [IFRC] (2020).
World disasters report 2020.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on
machine learning, pages 448–456. pmlr.

Jayaraman, V., Chandrasekhar, M., and Rao, U. (1997). Managing the natural
disasters from space technology inputs. Acta Astronautica, 40(2-8):291–325.

Jeggle, T. and Boggero, M. (2018). Post-disaster needs assessment : Lessons from
a decade of experience.

Kerle, N. and Hoffman, R. R. (2013). Collaborative damage mapping for emer-
gency response: the role of cognitive systems engineering. Natural hazards and
earth system sciences, 13(1):97–113.

Kerle, N., Nex, F., Gerke, M., Duarte, D., and Vetrivel, A. (2019). Uav-based
structural damage mapping: A review. ISPRS international journal of geo-
information, 9(1):14.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Kirsch, A., van Amersfoort, J., and Gal, Y. (2019). Batchbald: Efficient and
diverse batch acquisition for deep bayesian active learning.

Koch, G., Zemel, R., Salakhutdinov, R., et al. (2015). Siamese neural networks
for one-shot image recognition. In ICML deep learning workshop, volume 2,
page 0. Lille.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classifica-
tion with deep convolutional neural networks. Communications of the ACM,
60(6):84–90.

Laframboise, M. N. and Loko, M. B. (2012). Natural disasters: mitigating impact,
managing risks.

Lallemant, D., Soden, R., Rubinyi, S., Loos, S., Barns, K., and Bhattacharjee,
G. (2017). Post-disaster damage assessments as catalysts for recovery: A look
at assessments conducted in the wake of the 2015 gorkha, nepal, earthquake.
Earthquake Spectra, 33(1_suppl):435–451.

91

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,
521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324.

Li, P., Xu, H., and Guo, J. (2010). Urban building damage detection from very
high resolution imagery using ocsvm and spatial features. International Journal
of Remote Sensing, 31(13):3393–3409.

Liquet, B., Moka, S., and Nazarathy, Y. (2023). The mathematical engineering
of deep learning.

Liu, B., Zou, D., Feng, L., Feng, S., Fu, P., and Li, J. (2019). An fpga-based cnn
accelerator integrating depthwise separable convolution. Electronics, 8(3):281.

Liu, Y., Starzyk, J. A., and Zhu, Z. (2008). Optimized approximation algorithm
in neural networks without overfitting. IEEE transactions on neural networks,
19(6):983–995.

Loshchilov, I. and Hutter, F. (2016). Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983.

Ma, H., Liu, Y., Ren, Y., Wang, D., Yu, L., and Yu, J. (2020). Improved cnn
classification method for groups of buildings damaged by earthquake, based on
high resolution remote sensing images. Remote Sensing, 12(2):260.

Marmanis, D., Datcu, M., Esch, T., and Stilla, U. (2015). Deep learning earth
observation classification using imagenet pretrained networks. IEEE Geoscience
and Remote Sensing Letters, 13(1):105–109.

Mehrjou, A., Khodabandeh, M., and Mori, G. (2018). Distribution aware active
learning. arXiv preprint arXiv:1805.08916.

Mishkin, D., Sergievskiy, N., and Matas, J. (2017). Systematic evaluation of
convolution neural network advances on the imagenet. Computer vision and
image understanding, 161:11–19.

Mitomi, H., Yamazaki, F., and Matsuoka, M. (2001). Development of automated
extraction method for building damage area based on maximum likelihood clas-
sifier. In Proceedings of the 8th International Conference on Structural Safety
and Reliability, page 8.

Naeim, F., Hagie, S., Alimoradi, A., and Miranda, E. (2006). Automated post-
earthquake damage assessment of instrumented buildings. In Advances in earth-
quake engineering for urban risk reduction, pages 117–134. Springer.

92

Nex, F., Duarte, D., Steenbeek, A., and Kerle, N. (2019). Towards real-time build-
ing damage mapping with low-cost uav solutions. Remote sensing, 11(3):287.

Nielsen, M. A. (2015). Neural networks and deep learning, volume 25. Determi-
nation press San Francisco, CA, USA.

Norouzzadeh, M. S., Morris, D., Beery, S., Joshi, N., Jojic, N., and Clune, J.
(2021). A deep active learning system for species identification and counting in
camera trap images. Methods in ecology and evolution, 12(1):150–161.

Nwankpa, C., Ijomah, W., Gachagan, A., and Marshall, S. (2018). Activation
functions: Comparison of trends in practice and research for deep learning.
arXiv preprint arXiv:1811.03378.

O’Shea, K. and Nash, R. (2015). An introduction to convolutional neural net-
works. arXiv preprint arXiv:1511.08458.

Ozisik, D. and Kerle, N. (2004). Post-earthquake damage assessment using satel-
lite and airborne data in the case of the 1999 kocaeli earthquake, turkey. In
Proc. of the XXth ISPRS congress: Geo-imagery bridging continents, pages
686–691.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345–1359.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

Saifullah, S., Agne, S., Dengel, A., and Ahmed, S. (2023). Analyzing the potential
of active learning for document image classification. International Journal on
Document Analysis and Recognition (IJDAR), pages 1–23.

Sener, O. and Savarese, S. (2017). Active learning for convolutional neural net-
works: A core-set approach. arXiv preprint arXiv:1708.00489.

Settles, B. (2009). Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin–Madison.

Settles, B., Craven, M., and Ray, S. (2007). Multiple-instance active learning.
Advances in neural information processing systems, 20.

Seung, H. S., Opper, M., and Sompolinsky, H. (1992). Query by committee. In
Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
COLT ’92, page 287–294, New York, NY, USA. Association for Computing
Machinery.

Shao, J., Tang, L., Liu, M., Shao, G., Sun, L., and Qiu, Q. (2020). Bdd-net: A
general protocol for mapping buildings damaged by a wide range of disasters
based on satellite imagery. Remote Sensing, 12(10):1670.

93

Shui, C., Zhou, F., Gagné, C., and Wang, B. (2020). Deep active learning: Unified
and principled method for query and training. In International Conference on
Artificial Intelligence and Statistics, pages 1308–1318. PMLR.

SKAI (2022). SKAI damage assessment instructions. https://github.com/google-
research/skai/blob/main/docs/assessment_instructions.md.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958.

Sun, Y., Zhang, J., Meng, Y., Yang, J., and Gui, G. (2019). Smart phone-
based intelligent invoice classification method using deep learning. IEEE access,
7:118046–118054.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826.

Taha, A. A. and Hanbury, A. (2015). Metrics for evaluating 3d medical image
segmentation: analysis, selection, and tool. BMC medical imaging, 15(1):1–28.

Tiede, D., Lang, S., Füreder, P., Hölbling, D., Hoffmann, C., and Zeil, P. (2011).
Automated damage indication for rapid geospatial reporting. Photogrammetric
Engineering & Remote Sensing, 77(9):933–942.

Tkachenko, M., Malyuk, M., Holmanyuk, A., and Liubimov, N. (2022). Label
Studio: Data labeling software. https://github.com/heartexlabs/label-studio.

Tsymbalov, E., Panov, M., and Shapeev, A. (2018). Dropout-based active learn-
ing for regression. In Analysis of Images, Social Networks and Texts: 7th In-
ternational Conference, AIST 2018, Moscow, Russia, July 5–7, 2018, Revised
Selected Papers 7, pages 247–258. Springer.

Valentijn, T., Margutti, J., van den Homberg, M., and Laaksonen, J. (2020).
Multi-hazard and spatial transferability of a cnn for automated building damage
assessment. Remote Sensing, 12(17):2839.

Van den Bogaart, S. (2021). The use of active learning in automated damage
assessment. Master’s thesis, Maastricht University.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal
of machine learning research, 9(11).

94

Van Westen, C. (2000). Remote sensing for natural disaster management. In-
ternational archives of photogrammetry and remote sensing, 33(B7/4; PART
7):1609–1617.

Vetrivel, A., Gerke, M., Kerle, N., Nex, F., and Vosselman, G. (2018). Disaster
damage detection through synergistic use of deep learning and 3d point cloud
features derived from very high resolution oblique aerial images, and multiple-
kernel-learning. ISPRS journal of photogrammetry and remote sensing, 140:45–
59.

Vetrivel, A., Gerke, M., Kerle, N., and Vosselman, G. (2015). Identification of
damage in buildings based on gaps in 3d point clouds from very high resolution
oblique airborne images. ISPRS journal of photogrammetry and remote sensing,
105:61–78.

Vetrivel, A., Kerle, N., Gerke, M., Nex, F., and Vosselman, G. (2016). Towards
automated satellite image segmentation and classification for assessing disaster
damage using data-specific features with incremental learning.

Wang, M. (2021). Active learning for improved damage detection and disaster
response. Bachelor’s thesis, Harvard College.

Westrope, C., Banick, R., and Levine, M. (2014). Groundtruthing openstreetmap
building damage assessment. Procedia engineering, 78:29–39.

Xu, J. Z., Lu, W., Li, Z., Khaitan, P., and Zaytseva, V. (2019). Building dam-
age detection in satellite imagery using convolutional neural networks. arXiv
preprint arXiv:1910.06444.

Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K. (2018). Convolu-
tional neural networks: an overview and application in radiology. Insights into
imaging, 9(4):611–629.

Yamazaki, F. (2001). Applications of remote sensing and gis for damage assess-
ment. Structural Safety and Reliability, 1:12.

Yang, W., Zhang, X., and Luo, P. (2021). Transferability of convolutional neural
network models for identifying damaged buildings due to earthquake. Remote
Sensing, 13(3):504.

Zafar, A., Aamir, M., Mohd Nawi, N., Arshad, A., Riaz, S., Alruban, A., Dutta,
A. K., and Almotairi, S. (2022). A comparison of pooling methods for convo-
lutional neural networks. Applied Sciences, 12(17):8643.

Zhan, X., Wang, Q., Huang, K.-h., Xiong, H., Dou, D., and Chan, A. B. (2022). A
comparative survey of deep active learning. arXiv preprint arXiv:2203.13450.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive into deep learning.
arXiv preprint arXiv:2106.11342.

95

Appendices

A List of Acronyms
Below, abbreviations used throughout the thesis are listed. Abbreviations which
are only used within one section are not listed.

ADA Automated Damage Assessment

AL Active Learning

BALD Bayesian Active Learning by Disagreement

BCNN Bayesian Convoltional Neural Network

BNN Bayesian Neural Network

CNN Convolutional Neural Network

MAE Mean Absolute Error

MAAE Macro-Averaged Absolute Error

MC Monte Carlo

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

WAAL Wasserstein Adversarial Active Learning

96

B Appendix to Section 4: Methodology
B.1 Comparison different AL methods

Table B.1: Ranking of different AL algorithms for multiple datasets based on its
accuracy on different acquisition sizes. A win is defined as outperforming another
model by at least 0.5 percent, a loss as being outperformed by at least 0.5 percent
and a tie in between these. Source: Zhan et al. (2022).

B.2 Performance metrics and their interpretation

Accuracy
In classification, accuracy simply divides the number of correct predictions by
the total number of datapoints. Thus, the accuracy represents the fraction of
correctly classified datapoints.

Macro F1-score
To explain the macro F1-score, first precision and recall must be introduced. For
the notation, some additional terms are introduced. For a given class, a prediction
is true positive when correctly predicted to be in this class, false positive when
incorrectly predicted to be in this class, true negative when correctly predicted
not to belong to this class and false negative when incorrectly predicted not to
belong to this class. Let the number of true positives, false positives, true nega-
tives and false negatives be denoted with TP , FP , TN and FN respectively.

The precision for a given class is the fraction of the datapoints predicted to be in

97

the class that actually belong to that class. Using the TP/FP/TN/FN notation,
we get:

precision = TP

TP + FP
(34)

The recall is the fraction of datapoints that belong to the given class which are
actually predicted to be in that class:

recall = TP

TP + FN
(35)

The F1-score is the harmonic mean of the precision and recall, hence a high F1-
score is obtained when a model performs well in both precision and recall. The
F1-score is calculated as follows (Taha and Hanbury, 2015):

F1 = 2 ∗ precision ∗ recall

precision + recall
(36)

For each class, an F1-score is calculated separately. To obtain a score representing
the full model, an average over these scores for the classes must be taken. There
are different methods by which this average can be calculated, e.g. by weight-
ing the score by the number of datapoints belonging to this class respectively.
For this application however, macro averaging is used. This means that each
class is given equal weight, so it simply takes the average of all computed F1-
scores. Compared to accuracy, the macro F1-score therefore represents all classes
fairly. When a model would simply predict all datapoints in the majority class,
this would result in a small macro F1-score, while the accuracy could still be high.

Mean Absolute Error
To take into account the degree of wrongness, the Mean Absolute Error (MAE)
is used. MAE is often used as a performance metric for regression. It does not
focus on whether or not a prediction is exactly correct, but on the distance be-
tween the prediction and the true value, as is usually important for regression.
As this research deals with ordinal classes, MAE can provide valuable insights in
this application. As given by the name, it simply computes the absolute error for
each observation and averages over this:

MAE = 1
n

n∑
i=1

|yi − ŷi| (37)

Where yi is the true class of datapoint i and ŷi is the prediction of the model.
This prediction is returned as an integer of 1-4, representing no damage, minor
damage, major damage and detroyed repsectively. Thus when a building with
minor damage destroyed is predicted to be destroyed, |yi − ŷi| = |2 − 4| = 2.

Macro Averaged Absolute Error
For the MAAE, the frequency of each class in the true labels is calculated first.

98

Each datapoint is then assigned a weight wi = 1
fi∗C

, where fi is the frequency of
the true label of datapoint i in the full dataset evaluated on and C is the total
number of classes. Thus, when a datapoint is part of a class which occurs more
often in the dataset, it is given a lower weight in the score calculation. Using
these weights, the MAAE is defined as follows:

MAAE =
n∑

i=1
wi|yi − ŷi| (38)

Important to note is that weights wi sum up to one. Hence, the MAAE still
represents an average absolute error, but with different weighting. Whereas the
regular MAE formulation gives equal weight to each observation, MAAE gives
equal weight to each class. While calculated slightly different, this metric is sim-
ilar to the macro-averaged mean absolute error introduced by Baccianella et al.
(2009).

B.3 Confusion Matrices

To explain how confusion matrices work, an example is given in Figure B.1. This
Figure contains the confusion matrix for validation data using a model created
by retraining the pre-trained model using the full training data from hurricane
Matthew.

Here, on the x-axis the predicted and on the y-axis the true labels are given. In
the horizontal rows, the number of datapoints with the given true label which are
predicted into each class are given, with the percentage of datapoints predicted in
these classes given between brackets. The diagonal thus contains correctly classi-
fied datapoints, and the further away from the diagonal datapoints are predicted,
the worse the prediction is. A good model would hence result in a large propor-
tion of datapoints close to the diagonal and only few datapoints being predicted
into categories far away from the diagonal.

99

Figure B.1: Example of a confusion matrix, made using predictions on validation
data with a model trained on the full dataset of hurricane Matthew.

100

C Appendix to Section 5: Results configuration of hyper-
parameters

This Appendix contains all figures and tables used to configure hyperparameters
as introduced in Section 5. On top, a detailed explanation on each decision is
given.
First, the results for general hyperparameters will be explained, after which they
are explained for hyperparameters that are only relevant for certain methods. In
all tests, the same seed is used such that the initial random acquisition is the
same over all compared runs. All plots are zoomed in on results after the random
initial acquisition, as the random acquisitition is the same over all models and
hence not informative.

C.1 Configuration of general hyperparameters

Epochs per active iteration
In Figure C.1 the results for different settings of epochs per training iteration are
provided. When macro-averaged metrics are used, using only 5 epochs in each
active iteration clearly results in worse performance. Hence the models seems
to mostly struggle with generalizing the model for all classes when only using
few epochs. The performance of using 20 and 50 epochs is comparable. For an
acquisition batch size of 100, 20 epochs are used when comparing the different AL
methods as using more epochs is time consuming and does not seem to improve
performance32.
For other acquisition batch sizes, which result in a different number of active
iterations, the number of epochs in each iteration are rescaled accordingly. E.g.
when an acquisition batch size of 500 is used, the number of epochs is set to 100.
This way, the total number of epochs used is the same.

32This differs from the number of epochs used by Van den Bogaart (2021) and Valentijn et al.
(2020) to train Caladrius, who used 50 and 100 epochs respectively. A main difference is that
the model is trained iteratively in different active iterations, whereas both Van den Bogaart
(2021) and Valentijn et al. (2020) only train the model once on a dataset. Therefore, their
methods need more epochs in a training step for to achieve good performance given the training
step is only executed once.

101

(a) Accuracy (b) Macro-F1

(c) MAE (d) MAAE

Figure C.1: Results of using different number of epochs: 5, 20 and 50.

Reinitialization of model
Next reinitializing the model after each active iteration is compared to not reini-
tializing the model in Figure C.2. The results mainly differ when using macro
averaged metrics. For both random and BatchBALD, not using reinitialization
results in a better macro F1 and MAAE score. Therefore, no reinitialization will
be used in the remainder of this research.

102

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Ac

cu
ra

cy
BatchBALD
BatchBALD reinitialized
Random reinitialized
Random
All weighted
All unweighted

(a) Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.35

0.40

0.45

0.50

0.55

M
ac

ro
 F

1

BatchBALD
BatchBALD reinitialized
Random reinitialized
Random
All weighted
All unweighted

(b) Macro-F1

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

M
AE

BatchBALD
BatchBALD reinitialized
Random reinitialized
Random
All weighted
All unweighted

(c) MAE

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
AA

E

BatchBALD
BatchBALD reinitialized
Random reinitialized
Random
All weighted
All unweighted

(d) MAAE

Figure C.2: Comparison using reinitialization (dot-dashed lines) with no reinitial-
ization (solid lines) for Random and BatchBALD acquisition.

Weighted loss function
In Figure C.3, the comparison of using a weighted and unweighted loss function are
provided. When accuracy and MAE are used, models trained with unweighted
loss clearly show better performance. This is as may be expected, since these
metrics do not take into account the number of images in each class. When the
macro-averaged metrics are used, performances of both loss types are comparable.
Hence, weighted loss does seem to outperform unweighted loss for minority classes,

103

but not by much given that the better performance of unweighted loss in majority
classes compensates for this. Additionally, in Section 4.4.1 it was explained that
AL aims to select the most useful datapoints, in which case unweighted loss
seems appropriate. Combining this with the comparable macro-averaged results
and better unweighted results, the unweighted loss function will be used in the
remainder of this research. However, in case good performance in the worst class
is preferred, weighted loss could be useful as it performs better in minority classes.

0 500 1000 1500 2000
Labelled images

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

BatchBALD unweighted
BatchBALD weighted
BALD weighted
BALD unweighted
random weighted
random unweighted
All weighted
All unweighted

(a) Accuracy

0 500 1000 1500 2000
Labelled images

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

BatchBALD unweighted
BatchBALD weighted
BALD weighted
BALD unweighted
random weighted
random unweighted
All weighted
All unweighted

(b) Macro-F1

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.4

0.5

0.6

0.7

0.8

0.9

M
AE

BatchBALD unweighted
BatchBALD weighted
BALD weighted
BALD unweighted
random weighted
random unweighted
All weighted
All unweighted

(c) MAE

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
AA

E

BatchBALD unweighted
BatchBALD weighted
BALD weighted
BALD unweighted
random weighted
random unweighted
All weighted
All unweighted

(d) MAAE

Figure C.3: Comparison using unweighted loss function (solid lines) with weighted
loss function (dot-dashed lines) for different AL methods.

104

Acquisition batch size
Furthermore, the influence of the acquisition batch size on performance is assessed.
The results are provided in Figure C.4. The performance of acquiring batches of
50 (dotted lines) and 100 (solid lines) images per iteration are comparable using
all metrics. With a small difference, acquiring 50 images in each iteration seems
to perform better. However, acquiring the images in twice as large batches makes
the training procedure more convenient in practice, while also decreasing training
time. Therefore, acquiring 100 images each iteration is preferred.
When 500 images are acquired, two options are implemented: using warm restart
(dashed lines) or not (dash-dotted lines). When no warm restart is used, the
model only performs well using unweighted metrics. This could be explained by
the model quickly moving towards a relatively good solution, which in this case
would be predicting most images into the majority class. This solution is next
finetuned to a local optimum with a small learning rate. With warm restart used,
acquisition batches of 500 images yield good results for macro averaged metrics
as well. Hence, using warm restart seems to help the model generalize over all
classes, instead of focussing on majority classes.

Given these results and the practical considerations explained below, two scenarios
will be tested in more detail:

• Acquiring 500 images using an acquisition batch size of 100

• Acquiring 2000 images using an acquisition batch size of 500 with warm
restart

These scenarios simulate different types of settings in which AL could be im-
plemented by 510. The first scenario simulates a relatively small scale disaster,
where resources are likely limited. In such case, data would have to be labelled
internally by employees of 510. Consequently, the total number of images that
can be labelled is small. Therefore, only 500 images are labelled in this scenario.
An acquisition batch size of 100 is used. This way, models which are trained on
data from previous AL iterations are used in the acquisition of new data. When
only one iteration of 500 images was used, all data would be acquired by only
using the model trained on the random initialized data. This could make the
final results more dependent on this initialization.

The second scenario simulates a larger disaster which captures a lot of media
attention. In this case, 510 is more likely to have a group of volunteers available
to label data. In this situation, it is possible to label a larger total amount of
images. A dataset of 2000 images will thus be labelled in this scenario. When
using groups of volunteers, labelling larger batches of data each time is more con-
venient. When an acquisition batch size of 100 is used, 510 has to ask volunteers
to label a small amount of images 20 times, while having to wait on the volunteers

105

to be finished labelling before retraining and selecting a new to-be-labelled batch
in each of these 20 iterations. Increasing the acquisition batch size could simplify
this procedure substantially. When using an acquisition batch size of 500, volun-
teers would only have to be asked for help in 4 different iterations with retraining
in between. Additionally, labelling 500 images could be done in groups where one
expert helps volunteers with images they are unsure of. Therefore, an acquisition
batch size of 500 with warm restart will be used to simulate this scenario.

106

0 500 1000 1500 2000
Labelled images

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Ac

cu
ra

cy

BatchBALD 50
BatchBALD 100
BatchBALD 500
BatchBALD restart
BALD 50
BALD 100
BALD 500
BALD 500 restart
Random 50
Random 100
Random 500
Random 500 restart
All weighted
All unweighted

(a) Accuracy

0 500 1000 1500 2000
Labelled images

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

BatchBALD 50
BatchBALD 100
BatchBALD 500
BatchBALD 500 restart
BALD 50
BALD 100
BALD 500
BALD 500 restart
Random 50
Random 100
Random 500
Random 500 restart
All weighted
All unweighted

(b) Macro-F1

0 500 1000 1500 2000
Labelled images

0.35

0.40

0.45

0.50

0.55

0.60

0.65

M
AE

BatchBALD 50
BatchBALD 100
BatchBALD 500
BatchBALD 500 restart
BALD 50
BALD 100
BALD 500
BALD 500 restart
Random 50
Random 100
Random 500
Random 500 restart
All weighted
All unweighted

(c) MAE

0 500 1000 1500 2000
Labelled images

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
AA

E

BatchBALD 50
BatchBALD 100
BatchBALD 500
BatchBALD 500 restart
BALD 50
BALD 100
BALD 500
BALD 500 restart
Random 50
Random 100
Random 500
Random 500 restart
All weighted
All unweighted

(d) MAAE

Figure C.4: Comparison using different acquisition sizes for different AL methods:
50 (dotted), 100 (solid), 500 with warm restart (dashed) and 500 without warm
restart (dash-dotted).

C.2 Configuration of hyperparameters for Bayesian AL methods

BALD
As explained in Section 4.4.2, the number of MC dropout models (T) must be
set when using BALD. Therefore, BALD is run with T equal to 2, 5, 10 and 15.
The results are displayed in Figure C.5. While in theory a higher value for T
is linked to a better estimation of uncertainty and hence should result in better

107

performance, this is not clear from these results. There is no clear link between a
higher T and better performance, with all scores being close to each other. This
could indicate that T does not influence results for BALD, but it could also be due
to randomness, since simple luck plays a part in the performance as well. Thus
no conclusive answer can be given from the plots. Therefore the recommended
value by Gal and Ghahramani (2016) (T = 10) is used to compare BALD with
other methods.

0 500 1000 1500 2000
Labelled images

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Ac
cu

ra
cy

T: 2
T: 5
T: 10
T: 15
All weighted
All unweighted

(a) Accuracy

0 500 1000 1500 2000
Labelled images

0.35

0.40

0.45

0.50

0.55

M
ac

ro
 F

1

T: 2
T: 5
T: 10
T: 15
All weighted
All unweighted

(b) Macro-F1

0 500 1000 1500 2000
Labelled images

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
AE

T: 2
T: 5
T: 10
T: 15
All weighted
All unweighted

(c) MAE

0 500 1000 1500 2000
Labelled images

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
AA

E

T: 2
T: 5
T: 10
T: 15
All weighted
All unweighted

(d) MAAE

Figure C.5: Comparison of using different numbers of mc dropout models (2, 5,
10 and 15) for BALD.

108

BatchBALD
For BatchBALD different combinations of T and s are tried, as explained in Sec-
tion 4.4.2. It would be expected that both an increased T and s would lead to
better performance. In Figure C.6, the results are shown. The extremely small
value s = 25, which is plotted in red and used in combination with T = 10 to
assess the influence of an extremely small s, shows generally worse performance
than most other combinations. Still, it is comparable with some other combina-
tions which would not be expected. Similarly, the combination of a small T = 5
with s = 500 plotted in blue performs relatively bad which could be expected
given the small T . On the other hand, when fixing T = 5, s = 1000 plotted in
orange generally performs better than s = 2000 plotted in dark green, which is
the reverse of what would be expected. Similarly when fixing T = 10, s = 500
plotted in brown performs similar to s = 2000 in grey. When fixing s = 500,
T = 10 plotted in brown also outperforms T = 15 plotted in light green. Both
these findings for T = 10 with s = 500 are the reverse of what would be expected,
as a higher T and s should both result in better estimation of the joint mutual
information.

Two possible explanations are possible. Firstly it could be the case that the pa-
rameters set do not have a large influence on performance, at least when not set
extremely small. Another explanation is that the randomness in AL has such a
large influence that no clear relationship between these settings and performance
can be found using a few runs. As no clear conclusion can be made given the
results, other considerations are made similarly to BALD. Firstly, T is fixed to
10 as this makes BatchBALD more comparable with BALD, since T is the same.
Therefore it would be clear that differences in performances are due to the dif-
ferences in query strategies instead of T . s is chosen not too small, such that
BatchBALD estimations can be made more similar to the paper by Kirsch et al.
(2019). This way, results will more clearly reflect whether BatchBALD works
well in this application, instead of having the possibility that too small values of
s negatively influenced the query strategy too much. On the other hand, s is not
chosen too big given the increasing computation time. Given these considerations,
as well as its reasonable results in the tests combined with T = 10, s is set to 500.
Querying 100 images using this strategy takes approximately 20 minutes. With
an average training time slightly above 10 minutes per iteration, this means a full
iteration takes a bit longer than 30 minutes, which is the waiting time target set
with 51033.

33While a waiting time of around 30 minutes is desirable, it is not a necessity for an algorithm
to be useful to 510. If longer waiting times would yield significantly better performance, this
could still be useful in practice.

109

0 500 1000 1500 2000
Labelled images

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Ac

cu
ra

cy
T 5, s: 500
T 5, s: 1000
T 5, s: 2000
T 10, s: 25
T 10, s: 250
T 10, s: 500
T 10, s: 1000
T 10, s: 2000
T 15, s: 500
All weighted
All unweighted

(a) Accuracy

0 500 1000 1500 2000
Labelled images

0.40

0.45

0.50

0.55

M
ac

ro
 F

1

T: 5, s: 500
T: 5, s: 1000
T: 5, s: 2000
T: 10, s: 25
T: 10, s: 250
T: 10, s: 500
T: 10, s: 1000
T: 10, s: 2000
T: 15, s: 500
All weighted
All unweighted

(b) Macro-F1

0 500 1000 1500 2000
Labelled images

0.40

0.45

0.50

0.55

0.60

M
AE

T: 5, s: 500
T: 5, s: 1000
T: 5, s: 2000
T: 10, s: 25
T: 10, s: 250
T: 10, s: 500
T: 10, s: 1000
T: 10, s: 2000
T: 15, s: 500
All weighted
All unweighted

(c) MAE

0 500 1000 1500 2000
Labelled images

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
AA

E

T: 5, s: 500
T: 5, s: 1000
T: 5, s: 2000
T: 10, s: 25
T: 10, s: 250
T: 10, s: 500
T: 10, s: 1000
T: 10, s: 2000
T: 15, s: 500
All weighted
All unweighted

(d) MAAE

Figure C.6: Comparison of using different values of T and s for BatchBALD.

C.3 Configuration hyperparameters WAAL

Next, the results of the configuration of WAAL hyperparameters is discussed,
as well as general hyperparameters which are altered due to the different type
of training used. While previously 20 active iterations of 100 images were used
for hyperparameter tuning, the settings discussed in Section C.1 are used here.
Therefore, hyperparameters are tuned for two situations: five active iterations of
acquiring 100 datapoints and 4 active iterations of selecting 500 datapoints. Only
when it could be expected that a desirable hyperparameter setting depends on

110

this situation, both are tested. Else, only the situation with an acquisition batch
size of 100 is tested to reduce computation times.

Epochs
Firstly, the type of epochs are discussed. In Section 4.4.3, five different options
were discussed. These options are tested separately for the two scenarios chosen
for other AL methods: using an acquisition batch size of 100 and 500. When an
acquisition batch size of 100 is used, the training type epochs are set to 20. Op-
tion 4 as discussed in Section 4.4.3 uses 50 epochs. For an acquisition batch size
of 500, the training type epochs are set to 100, similarly to the selected number
for other AL methods. Given that 100 training type epochs for WAAL is time
consuming, the fourth option discussed in Section 4.4.3 is not tested.

In Figure C.7 the results are displayed for an acquisition batch size of 100. Using
the unweighted metrics, using 20 training set epochs for each network performs
the best, while being closely followed by using 50 train set epochs for each of the
networks and using 20 train set epochs for the classifier and feature extractor while
using a full WAAL epoch for the discriminator. When macro-averaged metrics are
used, using 50 train set epochs and using five WAAL epochs clearly outperform
the other methods. The smaller numbers of epochs seem to find a good unweighted
performance, while using more epochs results in the networks predicting in classes
with less labelled data better. Thus, smaller numbers of epochs seem sufficient
for the model to tune the model to a new class distribution, while overfitting on
majority classes. More epochs result in better performance in other classes as well.

Given that using 50 train set epochs works well with each type of metric, while
being significantly faster than using five full WAAL epochs as well34, 50 train
set epochs will be used for an acquisition batch size of 100. The training of the
discriminator is stopped after these 50 train set epochs as well. Finishing the full
WAAL epoch for the discriminator (in purple) does not outperform simply stop-
ping training after 50 train set epochs (in red), while being more time consuming.

34The full iterative training takes approximately 3.5 hours using 50 train set epochs, while
five full WAAL epochs take approximately 11.5 hours.

111

100 200 300 400 500 600
Labelled images

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

20 ep clf; 1 WAAL ep dis & fea
20 ep clf & fea; 1 WAAL ep dis
20 ep clf, dis & fea
50 ep clf, dis & fea
50 ep clf & feap; WAAL epoch finished dis
5 WAAL ep clf, dis & fea
All weighted
All unweighted

(a) Accuracy

0 100 200 300 400 500 600
Labelled images

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

20 ep clf; 1 WAAL ep dis & fea
20 ep clf & fea; 1 WAAL ep dis
20 ep clf, dis & fea
50 ep clf, dis & fea
50 ep clf & feap; WAAL epoch finished dis
5 WAAL ep clf, dis & fea
All weighted
All unweighted

(b) Macro-F1

0 100 200 300 400 500 600
Labelled images

0.4

0.5

0.6

0.7

0.8

M
AE

20 ep clf; 1 WAAL ep dis & fea
20 ep clf & fea; 1 WAAL ep dis
20 ep clf, dis & fea
50 ep clf, dis & fea
50 ep clf & feap; WAAL epoch finished dis
5 WAAL ep clf, dis & fea
All weighted
All unweighted

(c) MAE

0 100 200 300 400 500 600
Labelled images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
AA

E

20 ep clf; 1 WAAL ep dis & fea
20 ep clf & fea; 1 WAAL ep dis
20 ep clf, dis & fea
50 ep clf, dis & fea
50 ep clf & feap; WAAL epoch finished dis
5 WAAL ep clf, dis & fea
All weighted
All unweighted

(d) MAAE

Figure C.7: Comparison of using numbers of epochs for WAAL using an acquisi-
tion batch size of 100.

Figure C.8 similarly the results are shown for and acquisition batch size of 500.
For the unweighted metrics, using 100 train set epochs (in green) performs the
worst. After having selected 2000 datapoints using active learning, 5 WAAL type
epochs (in red) and 100 train set epochs for the classifier while finishing the last
WAAL epoch for the discriminator and feature extractor (in blue) perform the
best. Only finishing the WAAL epoch for the discriminator (in orange) performs
well in the first iterations of acquiring 500 datapoints, but less in the last itera-
tion.
When the macro F1-score is considered, using 5 WAAL type epochs performs the
worst, with 100 train set epochs and 100 train set epochs while finishing the last
WAAL epoch for the discriminator perform the best. Using MAAE, 100 train set
epochs performs the best after acquiring 2000 images with ative learning. Using
100 train set epochs while continuing the training of the discriminator for the last
WAAL epoch outperforms the other settings when less datapoints were acquired.

Given that 100 train set epochs and continuing the training of the discriminator
in the last WAAL epoch performs reasonably well for each metric after having ac-
quired 2000 datapoints with active learning, while generally outperforming other
setting when less data is acquired, this is chosen as setting for an acquisition size
of 500 datapoints per active iteration.

112

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

100 ep clf; finish ep dis & fea
100 ep clf & fea; finish ep dis
100 ep clf, dis & fea
5 WAAL ep clf, dis & fea
All weighted
All unweighted

(a) Accuracy

0 500 1000 1500 2000
Labelled images

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

100 ep clf; finish ep dis & fea
100 ep clf & fea; finish ep dis
100 ep clf, dis & fea
5 WAAL ep clf, dis & fea
All weighted
All unweighted

(b) Macro-F1

0 250 500 750 1000 1250 1500 1750 2000
Labelled images

0.35

0.40

0.45

0.50

0.55

0.60

0.65

M
AE

100 ep clf; finish ep dis & fea
100 ep clf & fea; finish ep dis
100 ep clf, dis & fea
5 WAAL ep clf, dis & fea
All weighted
All unweighted

(c) MAE

0 500 1000 1500 2000
Labelled images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
AA

E

100 ep clf; finish ep dis & fea
100 ep clf & fea; finish ep dis
100 ep clf, dis & fea
5 WAAL ep clf, dis & fea
All weighted
All unweighted

(d) MAAE

Figure C.8: Comparison of using numbers of epochs for WAAL using an acquisi-
tion batch size of 500.

Optimizer and learning rate
Next the optimizer and learning rate are chosen. This is only tested for an acqui-
sition batch size of 100, given its smaller computation time. Results are displayed
in Figure C.9. For each metric, using Adam as optimizer with a learning rate
of 0.001 (the solid blue line) performs similar to the best other combination or
better. On top, Adam with a learning rate of 0.001 is used for the other AL
methods as well. Given its good performance, as well as being more comparable
to other methods, Adam with a learning rate of 0.001 is used. Additionally, the
learning rate reduction as explained in Section 4.4.3 is used from this moment as
well, making it more comparable to the other AL methods. Figure C.10 displays
results of using Adam with a constant learning rate of 0.001 and with a reducing
learning rate while starting with 0.001. Results are comparable, with the main
difference being that the reducing learning rate gives more stable improvements
for macro-averaged metrics, while those improvements are more fluctuating when
using a constant learning rate.

113

0 100 200 300 400 500 600
Labelled images

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Adam, lr: 0.001
Adam, lr: 0.01
SGD, lr: 0.001
SGD, lr: 0.01
All weighted
All unweighted

(a) Accuracy

0 100 200 300 400 500 600
Labelled images

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

Adam, lr: 0.001
Adam, lr: 0.01
SGD, lr: 0.001
SGD, lr: 0.01
All weighted
All unweighted

(b) Macro-F1

0 100 200 300 400 500 600
Labelled images

0.4

0.5

0.6

0.7

0.8

M
AE

Adam, lr: 0.001
Adam, lr: 0.01
SGD, lr: 0.001
SGD, lr: 0.01
All weighted
All unweighted

(c) MAE

0 100 200 300 400 500 600
Labelled images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
AA

E

Adam, lr: 0.001
Adam, lr: 0.01
SGD, lr: 0.001
SGD, lr: 0.01
All weighted
All unweighted

(d) MAAE

Figure C.9: Comparison of using different optimizers and learning rates for
WAAL.

0 100 200 300 400 500 600
Labelled images

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

constant learning rate
learning rate reduction
All weighted
All unweighted

(a) Accuracy

0 100 200 300 400 500 600
Labelled images

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

constant learning rate
learning rate reduction
All weighted
All unweighted

(b) Macro-F1

0 100 200 300 400 500 600
Labelled images

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
AE

constant learning rate
learning rate reduction
All weighted
All unweighted

(c) MAE

0 100 200 300 400 500 600
Labelled images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
AA

E

constant learning rate
learning rate reduction
All weighted
All unweighted

(d) MAAE

Figure C.10: Comparison performance of WAAL using constant and reducing
learning rates.

114

Wasserstein distance balancing parameter (C0)
As explained in Section 4.4.3, the Wasserstein distance balancing parameter is set
by assessing the output of the discriminator. In Table C.1, the results are shown
for all implemented settings. The mean output and standard deviation of the
output are given for both the labelled and unlabelled data for each query step.
Using C0 = L

U
and C0 = 0.5 give similar results, with the results in query steps

three up to five being identical. The average output of discriminator is close to
one for both the labelled and unlabelled data. Thus the discriminator seems to
have difficulties to find differences between labelled and unlabelled data. This is
probably partly due to both values of C0 putting more importance on the unla-
belled data in training, resulting in the discriminator reaching good performance
by simply predicting almost all points to be unlabelled. The standard deviation
is small as well, especially for the unlabelled dataset. Given that there is barely
a difference in the output of the discriminator for unlabelled data, these values of
C0 are not very useful for the query step which uses this output to ensure diversity
in the selected datapoints.

C0 = 1 yields more desirable results. Predicted values are not always close to one
and the standard deviation for unlabelled data is larger, making the discriminator
more useful for the query step. While the average output is larger for unlabelled
data compared to labelled data as expected when maximizing the Wasserstein
loss given in Equation (28), differences are small in some query steps. To verify
its performance using more different runs, Table C.2 contains the results of using
C0 = 1 for multiple runs. The results are comparable, with usually the output
for the unlabelled data larger than the output of the labelled data. In run 1
however, the output is larger for the labelled dataset compared to the unlabelled
datasets in two query steps. Thus, even when C0 = 1, the discriminator does not
always perform as desired. This could be due to the small amount of labelled
data it can train on. However, this issue would then be expected to get smaller
after multiple query steps, which does not happen very clearly. Another possi-
ble cause is that the data is difficult in general, which is explained more detailed
in the discussion, making discriminating between similar datasets difficult as well.

In further research, C0 = 1 is used given its better performance relative to the
other tested values.

115

Table C.1: Discriminator output for labelled and unlabelled data in different
query steps, comparing different settings of C0. L and U refer to the number of
labelled and unlabelled datapoints in the query step.

mean (std)
C0 value L/U 0.5 1

Data type Labelled Unlabelled Labelled Unlabelled Labelled Unlabelled

Query
step

1 0.9595 (0.1969) 0.9989 (0.0264) 0.9157 (0.2715) 0.9877 (0.0953) 0.8028 (0.2896) 0.8681 (0.2019)
2 0.9600 (0.1965) 0.9996 (0.0196) 0.9392 (0.2245) 0.9888 (0.0877) 0.7032 (0.3921) 0.7864 (0.3340)
3 0.9600 (0.1963) 0.9999 (0.0088) 0.9600 (0.1963) 0.9999 (0.0088) 0.4156 (0.3895) 0.5962 (0.3639)
4 1.0 (0.0) 0.9990 (0.0319) 1.0 (0.0) 0.9990 (0.0319) 0.4466 (0.4487) 0.6216 (0.4257)
5 0.9920 (0.0892) 0.9993 (0.0266) 0.9920 (0.0892) 0.9993 (0.0266) 0.2916 (0.3885) 0.4262 (0.4211)

Table C.2: Discriminator output for labelled and unlabelled data in different
query steps, comparing different runs with C0 = 1.

mean (std)
Run 1 Run 2 Run 3 Run 4

Data type Labelled Unlabelled Labelled Unlabelled Labelled Unlabelled Labelled Unlabelled

Query
step

1 0.8185 (0.2530) 0.8966 (0.1342) 0.4046 (0.1229) 0.4342 (0.0891) 0.1621 (0.1285) 0.1708 (0.1103) 0.9022 (0.2675) 0.9436 (0.1750)
2 0.2646 (0.3587) 0.2757 (0.3720) 0.1730 (0.1559) 0.1832 (0.1248) 0.6502 (0.4556) 0.9405 (0.2089) 0.1484 (0.2823) 0.1766 (0.2955)
3 0.2968 (0.3964) 0.2874 (0.3915) 0.7077 (0.3878) 0.8843 (0.2391) 0.7190 (0.4452) 0.9263 (0.2557) 0.2764 (0.4061) 0.3103 (0.4220)
4 0.2647 (0.3957) 0.2121 (0.3585) 0.8045 (0.3671) 0.8806 (0.2956) 0.8312 (0.3705) 0.9522 (0.2097) 0.3082 (0.4237) 0.3746 (0.4508)
5 0.8114 (0.3433) 0.8269 (0.3103) 0.7521 (0.4101) 0.8163 (0.3655) 0.7574 (0.4247) 0.9003 (0.2955) 0.2464 (0.4124) 0.3417 (0.4580)

Classification and Wasserstein distance loss trade-off for training (µ)
In Figure C.11, the results for different values of µ are given. µ = 0.01 (in orange)
results in the best performance for each of the metrics. Therefore, µ = 0.01 is
chosen, which is the setting used previously already35.

35Of course, the best performance of µ = 0.01 could partly be due to this. Other hyperpa-
rameters were tuned using this setting, and may hence be chosen to work well in combination
with µ = 0.01, while other settings may have worked well with other previously determined
hyperparameter settings.

116

100 200 300 400 500 600
Labelled images

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

: 0.001
: 0.01
: 0.1
: 1

All weighted
All unweighted

(a) Accuracy

0 100 200 300 400 500 600
Labelled images

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

: 0.001
: 0.01
: 0.1
: 1

All weighted
All unweighted

(b) Macro-F1

0 100 200 300 400 500 600
Labelled images

0.4

0.5

0.6

0.7

0.8

0.9

M
AE

: 0.001
: 0.01
: 0.1
: 1

All weighted
All unweighted

(c) MAE

0 100 200 300 400 500 600
Labelled images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
AA

E

: 0.001
: 0.01
: 0.1
: 1

All weighted
All unweighted

(d) MAAE

Figure C.11: Comparison of using different loss trade-off parameters µ.

Diversity and uncertainty trade-off for query (ϕ)
In Figure C.12, the comparison is displayed for different settings of ϕ. Results are
generally similar, but ϕ = 2 (in green) shows more fluctuating performance for
MAE, while ϕ = 10 (in blue) shows worse performance in some active iterations
when assessing the macro F1-score. ϕ = 5 (in orange) most consistently performs
well and is therefore chosen.

117

0 100 200 300 400 500 600
Labelled images

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Ac
cu

ra
cy

: 10
: 5
: 2

All weighted
All unweighted

(a) Accuracy

0 100 200 300 400 500 600
Labelled images

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ac

ro
 F

1

: 10
: 5
: 2

All weighted
All unweighted

(b) Macro-F1

0 100 200 300 400 500 600
Labelled images

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
AE

: 10
: 5
: 2

All weighted
All unweighted

(c) MAE

0 100 200 300 400 500 600
Labelled images

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
AA

E

: 10
: 5
: 2

All weighted
All unweighted

(d) MAAE

Figure C.12: Comparison of using different loss trade-off parameters µ.

118

D Appendix to Section 6: Results
D.1 Appendix t-SNE plots

(a) iteration 1 (b) iteration 2

(c) iteration 3 (d) iteration 4

Figure D.1: t-SNE plots for Random in different active iterations, using four
active iterations selecting 500 images in each iteration. Training is performed
using 100 epochs in each iteration with warm restart each 20 epochs.

119

	Introduction
	Literature overview
	Automated damage assessment
	Using aerial imagery for damage assessment
	Using satellite imagery for damage assessment

	Convolutional Neural Networks
	Convolutional layer
	Activation Function
	Pooling layer
	Fully connected layer
	Training of a CNN
	Dropout
	CNN model 510

	Measuring uncertainty in neural networks
	Transfer Learning
	Transferability models for automated damage assessment
	Fine-tuning after transfer learning

	Active Learning
	Exploitation
	Diversity
	Combining diversity and exploitation

	Data
	xBD dataset
	Data of the disasters used in this research
	Data examples

	Methodology
	Transfer Learning
	Deep Active Learning
	Bayesian Neural Networks
	Bayesian Active Learning by Disagreement
	BatchBALD
	Wasserstein Adversarial Active Learning
	Overview implemented methods

	Performance evaluation
	Performance metrics and their interpretation
	Confusion Matrices
	t-Distributed Stochastic Neighbor Embedding
	Baseline model

	Configuration of hyperparameters
	Configuration of general hyperparameters
	Configuration of hyperparameters for Bayesian AL methods
	Configuration hyperparameters WAAL

	Results configuration of hyperparameters
	Configuration of general hyperparameters
	Configuration of hyperparameters for Bayesian AL methods
	Configuration hyperparameters WAAL

	Results
	Visual results t-SNE
	Results comparing different AL methods
	Acquisition batch size of 100
	Acquisition batch size of 500

	Comparison pre-trained model, fine-tuning and training on full data with confusion matrices

	Discussion and Recommendations
	Conclusion
	Appendices
	List of Acronyms
	Appendix to Section 4: Methodology
	Comparison different AL methods
	Performance metrics and their interpretation
	Confusion Matrices

	Appendix to Section 5: Results configuration of hyperparameters
	Configuration of general hyperparameters
	Configuration of hyperparameters for Bayesian AL methods
	Configuration hyperparameters WAAL

	Appendix to Section 6: Results
	Appendix t-SNE plots

