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Predicting Subjective Team Performance using 

Multimodal, Single-Modality and Segmented Physiological 

Data 
 

By Frank Arts 

 
Abstract 

In this study, multimodal team coordination measures were compared to single-modality team 
coordination measures to determine how well they can predict subjective team performance. To 

this end, multimodal and single-modality team coordination measures were calculated from 
heart rate variability data and electrodermal activity data found in the EATMINT dataset (Chanel 

et al., 2013), using Cross Recurrence Quantification Analysis and Multidimensional Recurrence 

Quantification Analysis. Multiple linear regression models were generated using both 
multimodal and single-modality team coordination measurements as predictors for eight 

different subjective team performance measures. By comparing the standardized beta 
coefficients of the different team coordination measures, it was found that multimodal 

coordination measures were more important for predicting three out of the eight subjective team 
performance measures. For two out of the eight subjective team performance measures, only 

one of the multimodal team coordination measures was more effective at predicting the 
subjective team performance measure than its single-modality counterpart. 

  Additionally, this study investigates how segments of physiological data can be used for 

predicting subjective team performance. By segmenting the physiological data into windows in 
different ways, the effect of window size and window location on the ability to predict subjective 

team performance was investigated. It was found that some windows were more critical for 
predicting subjective team performance than others, and that smaller window sizes generally 

allowed for more accurate predictions of subjective team performance. 
 

1. Introduction 
There are many issues that we face in society that are too complex to solve individually, either 

due to the complexity or due to the multidisciplinary nature of these issues. As a result, these 
issues require collaboration between different individuals. To ensure that such issues can be 

tackled efficiently, it is important to understand what makes team members work together 
effectively. To do so, a thorough understanding of the underlying mechanisms that play a role 

in team dynamics is required. 
A clear understanding of the different underlying mechanisms that play a role in team 

dynamics could allow for predicting the effectiveness of specific teams to some extent. The 
ability to predict how well a certain team is likely to perform would be invaluable for society. 

Teams that are identified as being likely to underperform could be subjected to intervention 

measures in an attempt to improve their expected performance. For example, internal team 
composition could be changed in an attempt to improve the expected performance.  

If the prediction of team performance is able to distinguish between different aspects 
of team performance, more suitable intervention measures could be applied as needed to 

improve team performance more efficiently. For example, if a lack of communication is 
identified early on, a working environment focusing on improving communication could be 

introduced to supplement the lack of communication. Likewise, if a lack of emotional 

understanding within a team is identified to likely negatively impact the team performance, 
measures could be taken to improve emotional understanding amongst team members. 

Maximizing expected team performance in such a way could save a lot of time and money, but 
would require a thorough understanding of underlying mechanisms in team dynamics. 
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 In this thesis, teams will be investigated from a dynamical systems theory perspective, as 
described by Gorman et al. (2017). They argue that team dynamics should be studied through 

the interactions between team members rather than focusing on the behavior of individual 
team members. According to the dynamical systems theory, synchronization occurs when two 

or more individual components in a dynamical system interact with each other. This 

phenomenon can also be applied to teams, where team members have an effect on each other 
as they become informationally coupled. 

  One modality in which such team coordination effects have been observed is through 
physiological signals. Studies have found that different types of physiological signals synchronize 

to some extent between team members as they work together. For example, physiological 
synchrony has been observed in heart activity, skin conductance and even EEG signals. 

  The link between physiological team coordination and team performance has been 

investigated by many studies. However, the majority of studies investigating physiological team 
coordination have only investigated physiological coordination in dyads (Kazi et al., 2019), and 

they often used only one physiological measurement. Even amongst the studies using teams of 
three members or more or using multiple types of physiological measurements,  many of them 

used methods that are not suitable for processing such multidimensional data. Instead, they 
split up teams into dyads for the actual data analysis, or they analyze the different physiological 

measurements separately. As a result, findings from these studies might be lacking important 
information, as patterns that emerge at higher levels are not discovered when only analyzing 

data pairwise.  

 
Research Questions 

 The present study aims to determine whether patterns embedded across multiple modalities 
might be important for understanding team dynamics, and thus whether it is necessary to use 

analysis techniques that are capable of adequately dealing with multidimensional data. To do 
so, this study aims to investigate how important multimodal team coordination measures are 

when predicting subjective team performance, compared to single-modality team coordination 
measures. To this end, the following research question was generated: 

 

RQ1: How well can multimodal team coordination measures predict subjective team 
performance compared to single-modality team coordination measures? 

 
In addition to this, the present study also aims to investigate how well subjective team 

performance could be predicted based on only a part of the physiological data collected during 
collaborative tasks. Being able to predict subjective team performance based on a small 

segment of physiological data would be useful for society, as problems in teamwork could be 
identified earlier on. This would in turn allow for earlier interventions, potentially avoiding bad 

team performance. 

  From an academical point of view, predicting subjective team performance using only 
a segment of physiological data could improve our understanding of underlying mechanisms of 

subjective team performance. If subjective team performance can be predicted significantly 
based only on a small segment of data, then that segment must be of critical importance 

subjective team performance. Otherwise, the lack of complete data would make it impossible 
to predict subjective team performance. As such, the following research questions were 

generated: 
 

 RQ2: Can segments of physiological data be useful for predicting subjective team performance? 

 
 RQ2a: How does the size of segments of physiological data affect the usefulness for predicting 

subjective team performance? 
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 RQ2b: Which segments of physiological data are more crucial for predicting subjective team 
performance than others? 

 

2. Related Work 
This study will use team coordination measures calculated from heart rate variability and 
electrodermal activity data to predict subjective team performance. The reason for using these 

physiological signals is that heart rate variability coordination has already been shown to 
correlate with team performance (Henning et al. 2001). Additionally, studies have indicated that 

electrodermal activity coordination is related to team performance as well. Ahonen et al. (2018) 
found that a higher skin conductance synchrony at the start of a task was linked to higher team 

performance, while skin conductance synchrony at the end of a task was higher for teams that 
failed their tasks 

 A number of studies have found a correlation between physiological coordination and 

team performance already (Henning et al., 2001, Walker et al. 2013, Ahonen et al. 2016, 
Tschacher & Meier, 2019), but the majority of studies on physiological team coordination have 

focused on dyads (Kazi et al., 2019). Even when studies investigate team coordination in teams 
of three or more members, they often split the groups up into dyads for the actual analysis. For 

example, Elkins et al. (2009) collected data from teams of four members, but due to movement 
artifacts they chose to only look at the highest quality data of two of the four members. Henning, 

Armstead and Ferris (2009) also investigated teams of four participants, but chose to calculate 
team coordination pairwise by splitting up the group into dyads for the analysis, rather than 

calculating multivariate team coordination. 

Additionally, many studies only use one type of physiological measurement in their 
coordination measures (Kazi et al., 2019), or when they use multiple physiological 

measurements they do not combine them into a multimodal coordination measure (Henning et 
al., 2001; Henning et al., 2009; Ahonen et al., 2018). As a result, the team coordination 

measurements calculated in those studies do not capture the patterns in the data that is 
embedded across multiple modalities. 

While only a few studies have looked at physiological coordination in triads or larger 

groups or across more than one modality, there are some studies that have investigated suitable 
methods to measure some type of coordination using multivariate data. For example, 

Richardson et al. (2012) created the cluster-phase method for assessing movement synchrony 
in groups of six, and Wallot et al. (2016) created and demonstrated the MdRQA tool for analyzing 

skin conductance coordination in triads.  
Additionally, Eloy et al. (2019) used MdRQA for assessing speech rate, body movement 

and galvanic skin response coordination in triads on a multimodal level. More specifically, they 
investigated how recurrence across multiple modalities could predict team performance, and 

they found that multimodal recurrence was predictive of the valence of collaboration.  

A search of the literature revealed no studies that compared multimodal coordination 
measures to single-modality coordination measures when predicting team performance. 

However, Fusaroli and Tylén (2016) investigated how two different approaches differ in their 
effectiveness for predicting collective performance of dyads in a collaborative task. While the 

approaches tested in this research are different from the ones in the current study in that they 
pertain to dialog rather than physiological coordination, the statistical analyses are suitable for 

comparing utility of different approaches such as multimodal coordination and single-modality 
coordination measures.  

   

The present study investigates how important multimodal patterns are for predicting subjective 
team performance by answering RQ1. It is important to identify how important multimodal 

coordination measures are compared to single-modality measures, so that future researchers 
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can decide which measures they should incorporate into their studies. In the present study this 

is investigated by comparing single-modality team coordination measures extracted solely from 
heart rate variability (HRV), or solely from electrodermal activity (EDA) to multimodal team 

coordination measures calculated from the combined HRV and EDA signals. 
 In order to effectively compare multimodal team coordination measures to single-

modality team coordination measures, an analysis technique is needed that can calculate 

multimodal team coordination measures in a similar way that other analysis techniques 
calculate single-modality team coordination measures. For this reason, the Multidimensional 

Recurrence Quantification Analysis (MdRQA) and Cross Recurrence Quantification Analysis 
(CRQA) methods were used as described by Wallot and Leonardi (2018).  

These two analyses are both Recurrence Quantification Analyses, with MdRQA being 
capable of calculating team coordination at a multimodal level, and CRQA being very suitable 

for calculating team coordination at single-modality level. Since both analyses are derived from 

Recurrence Quantification Analysis, they also both calculate similar team coordination 
measurements. An explanation of how these two analyses work is given in section 3.3. 

MdRQA can also be used for calculating team coordination in teams with more than 2 
members, making it an important new method for the field of team dynamics. While the current 

study uses data from dyads, hopefully future studies will be able to reproduce the results of this 
study using triads or larger teams without needing to change the analysis techniques. 

 
Aside from comparing multimodal team coordination measures to single-modality team 

coordination measures, the present study also aims to investigate the effectiveness of segments 

of physiological data in predicting subjective team performance. There has been limited 
research into predicting team performance based on smaller segments of data. Henning and 

Korbelak (2005) used physiological coordination of teams to predict the team performance of 
future tasks. They found that higher physiological coordination during a task period before a 

change in control dynamics was made was correlated to a lower team tracking error after a 
change in control dynamics was made, thus improving team performance.  

Schoenherr et al. (2019) investigated how nonverbal (movement) coordination 
between patient and therapist dyads can be used to predict premature termination of 

psychotherapy for social anxiety disorder. Premature termination of psychotherapy sessions 

could be seen as an inverse team performance measure, and movement synchrony is very 
similar in data to physiological synchrony. 

Additionally, Carrère and Gottman (1999) used small segments of conversational data 
to predict whether couples would stay together or divorce over a 6-year timespan. They found 

that patterns embedded in the first 3 minutes of quantitative affect data were already enough 
to predict this outcome. 

  Since little research has been done into the use of segments of data for predicting team 
performance, the results of this study will be able to contribute to the understanding of 

important team dynamics patterns located in partial segments of data. Additionally, the study 

will offer a method for locating critical segments in any combination of different types of time-
scale data for predicting subjective team performance. 
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3. Method 
3.1 Dataset 

This work uses the data from the publicly available EATMINT dataset, as described by Chanel et 
al. (2013). This dataset consists of multimodal data recordings of 30 same gender dyads as they 

collaborate remotely. The dyads were asked to use the collaborative environment DREW to 

design a slogan against violence in school in less than 45 minutes. During the first part of the 
experiment, teams were instructed to generate as many slogan ideas as possible. During the 

second part of the experiment, teams were instructed to debate the relevance of their slogan 
ideas, and to suppress the less relevant ideas. For the final part of the experiment teams were 

instructed to find a consensus on the best slogan. During this entire experiment, the team 
members were able to communicate using the DREW environment and orally using headsets, 

but they were not able to see each other.  
  The data provided by this dataset consists of raw unfiltered ECG and EDA signals, as 

well as the responses to a self-report questionnaire on the participants’ emotions and perceived 

collaboration. Additionally, the dataset contains eight factors that describe different aspects of 
the perceived collaboration for each participant: Grounding & Coordination, Degree of Conflict, 

Degree of Convergence, Confrontation & Consensus Building, Co-construction, Emotion 
Management, Emotion Modeling and Transactivity. These eight factors were the result of a 

factorial analysis ran by Chanel et al. (2013) on the self-report questionnaire. The present study 
will be using these eight collaboration factors as different subjective team performance 

measures. In the rest of this paper, these factors will be referred to as ‘Grounding’, ‘Conflict’, 
‘Convergence’, ‘Confrontation’, ‘Co-construction’, ‘Emotion Management’, ‘Emotion Modeling’ 

and ‘Transactivity’. 

 
3.2 Physiological Data 

Heart rate variability 
Heart rate variability was calculated from the raw ECG data. The R peaks were extracted from 

the raw ECG signal using the Pan & Tompkins algorithm as implemented by the rsleep package 
(Bouchequet, 2020) in R (R Core Team, 2020), using a band-pass filter between 0.05 Hz and 40 

Hz as suggested by Chanel et al. (2013). The R peaks time-series were then converted into an 

Inter-Beat Interval (IBI), by splitting the data up into 2-second consecutive and non-overlapping 
windows and calculating the average IBI for each of the 2 second windows.  

The resulting IBI time-series had a sampling rate of 0.5Hz. This specific sampling rate 
was chosen to avoid sampling the same IBI value in two consecutive windows, as a result of no 

new R-peaks appearing in one of the windows. Having repeated values in the IBI time-series as 
a result of inadequate sampling rate could interfere with the integrity of the recurrence analysis. 

However, with this sampling rate this could only occur when a participant’s heart rate rises 
above 120 bpm, which is rare during the type of task that was performed for this experiment. 

   

Electrodermal Activity 
In order to generate multimodal measures using the MdRQA method, the different physiological 

signals need to be sampled at the same sampling rate. For this reason, EDA was also sampled at 
0.5 Hz. To be more specific, EDA was sampled once every 2 seconds, in the exact center of each 

2-second window that the IBI intervals were calculated for. This EDA value was then smoothed 
by taking the average of the surrounding 0.5s window. This resulted in an EDA time-series 

sampled at 0.5Hz, with exactly the same amount of data points as the IBI time-series.  
  As a result of missing data or invalid data, in either the EDA or the ECG data from either 

member of a dyad, dyads 4, 27 and 29 were excluded from the analysis. As a result, only 26 

dyads were used for the final analyses. 
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3.3 Team coordination measures 

In this study, team coordination was evaluated on a multimodal level, in addition to single 
modality levels. For this reason, both Multidimensional Recurrence Quantification Analysis 

(MdRQA) and Cross Recurrence Quantification Analysis (CRQA) were used. These two analyses 
are both recurrence-based analyses, meaning that they both quantify how often the same states 

reoccur in a dynamical system. MdRQA was used for assessing team coordination on the 

multimodal level, while CRQA was used for assessing team coordination within a single modality. 
Both of these recurrence-based analyses make use of recurrence plots, allowing for the same 

team coordination measures to be extracted from the two analyses. 
 

Multidimensional Recurrence Quantification Analysis  
Multidimensional Recurrence Quantification Analysis (MdRQA) is a recurrence-based analysis 

that quantifies how often recurrence patterns occur within a set of two or more time-series. 

MdRQA allows for estimating coordination across multiple time-series, making it a very suitable 
method for evaluating team coordination in groups of three or more participants, or for 

evaluating coordination across multiple modalities.  
MdRQA takes multiple time-series of the same length as input, and compares the state 

that the multiple time-series are in at one point in time to the state that the multiple time-series 
are in at a different point of time. It calculates the distance between two states pairwise to see 

how similar the states are. If the distance between the two states is less than a manually 
determined radius threshold, than the combination of states is marked as a recurrent point. The 

result of this process is a recurrence plot, where the combined time-series is plotted against 

itself, and any combination of two states that is similar to each other is marked with a recurrent 
point. 

  An example of such a recurrence plot can be found in figure 1a. The black cells in this 
image represent the recurrent points, while the white cells represent non-recurrent points. 

Since the MdRQA recurrence plot compares a combined time-series to itself, the diagonal line 
of identity always consists of recurrent points, as a state is always identical to itself. A recurrent 

point close to the line of identity indicates that two states were similar to each other with a 
short lag in between, whereas a recurrent point further away from the line of identity indicates 

that two states were similar to each other with a longer lag in between. Finally, it should be 

noted that the MdRQA recurrence plot is mirrored in the line of identity, as any combination of 
two states that is found on one side of the line of identity is also found on the other side of the 

line of identity, with the same distance measure. 
 

Cross Recurrence Quantification Analysis 
Like MdRQA, Cross Recurrence Quantification Analysis (CRQA) is also a recurrence-based 

analysis. However, CRQA focuses on comparing only two timeseries. Instead of grouping all 
time-series together and comparing that combined time-series to itself, CRQA compares two 

separate time-series to each other. It compares each data point in one time-series to each data 

point in the other time-series. If the distance between the two values is larger than a manually 
selected radius threshold, than the combination of these two data points is marked as a 

recurrent point.  
  An example of a partial CRQA recurrence plot can be found in figure 1b and 1c. Each 

black cell represents a moment in time where the value of one of the time-series was very similar 
to the value of the other time-series. Once again, the recurrent points closer to the center 

diagonal represent recurrence at smaller lag, while recurrent points further away from the 
center diagonal represent recurrence at greater lag. Unlike the MdRQA-generated recurrence 

plot, the CRQA recurrence plot does not have a line of identity. The reason for this is that two 

different time-series are compared, so the values from the two time-series at any given time do 
not have to match. Additionally, the CRQA recurrence plot is not symmetrical. 
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Figure 1. 
Recurrence plots generated by (a) MdRQA using IBI and EDA signals, (b) CRQA using EDA signals and (c) 
CRQA using IBI signals. All three recurrence plots were generated using the same 100s segment of data. 

 
 
Team coordination measures 

 The recurrence plots generated by CRQA and MdRQA can be used to extract different team 
coordination measures. One common measure extracted from recurrence plots is the 

recurrence rate. Recurrence rate describes the percentage of points within a recurrent plot that 
are marked as recurrent points. Recurrence rate can be used as an estimate for team-level 

regularity, with high recurrence rate indicating that a lot of states have previously occurred in 

the set of time-series, thus indicating high team-level regularity. This measurement does not 
look at further nuances such as the lag between the first and second state, or the context of 

how close other recurrent points are. Recurrence rate can be calculated by dividing the total 
number of recurrent points by the size of the recurrence plot.  

Another measure that can be extracted from recurrence plots is determinism, which 
describes the percentage of recurrent points that are diagonally adjacent to other recurrent 

points. Determinism focuses on sequences of recurrence rather than individual recurrent points, 
as diagonally adjacent points in the recurrence plot directly follow each other chronologically. 

This means that the determinism measure is higher when there are more continuous sequences 

of recurrence. Determinism is calculated by dividing the number of diagonally adjacent 
recurrent points by the total number of recurrent points in the recurrence plot. 

  Recurrence rate (%REC) and determinism (%DET) were measured on both multimodal 
and single-modality levels. Multimodal %REC and %DET were extracted from the recurrence 

plots generated by the MdRQA function (Wallot & Leonardi, 2018), using z-score normalized IBI 
time-series from both team members of a dyad as well as the z-score normalized EDA time-

series from both team members as input. For the single-modality measurements, %REC and 
%DET in the IBI modality were extracted using the CRQA function (Wallot & Leonardi, 2018) with 

only the z-score normalized IBI time-series of both members of a dyad as input. Additionally, the 

%REC and %DET in the EDA modality were measured using CRQA with only the z-score 
normalized EDA time-series of both members of a dyad as input. In total six different team 

coordination measures were extracted from each dyad. 
To allow for comparing of team coordination measures between dyads, the analyses 

used to measure the team coordination measures need to use the same parameters. For this 
study, that means that a single radius threshold needed to be specified for all MdRQA analyses, 

another radius threshold needed to be specified for the CRQA analyses on the IBI level, and yet 
another radius threshold needed to be specified for the CRQA analyses on the EDA level. As 

recommended by Wallot and Leonardi (2018), the radius parameter was determined by 

adjusting it until the %REC for all dyads was between 1% and 5%. This resulted in a radius of 0.35 
for the MdRQA method, a radius of 0.07 for the CRQA method on the IBI level, and a radius of 

0.078 for the CRQA method on the EDA level. 
To account for the differences in range for the different time-series, z-score 

normalization was used for all time-series. Without such normalization, the measures would 
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have been based on differences in magnitude rather than sequential similarity (Wallot & 

Leonardi, 2018). Additionally, prior to calculating the %REC and %DET for the MdRQA recurrence 
plots, the line of identity was removed to avoid skewed measures.  

 
Subjective Team Performance 

 The eight different collaboration factors resulting from the factorial analysis ran by Chanel et al. 

(2013) on the self-report questionnaire were used as subjective team performance measures. 
For each collaboration factor, the score for the two members of a dyad was averaged to obtain 

a dyad-level score. An explanation of each factor can be found in table 1. 
 

Table 1 
Factors used as a measure of subjective team performance (source: Chanel et al., 2013) 

Factor Name Description of main items related to each factor 
(loadings in parenthesis) 

Grounding & Coordination Maintaining a shared understanding (.88); managing the 

progress of the task (.80); managing the quality of the 
relation (.75); providing/asking for clarification (.73) 

Degree of Conflict Relational conflict (.83); conflict of ideas (.79); 
competition (.62); emotional tension (.60)  

Degree of Convergence Action synchrony (.77); mutual understanding (.74); 
conceptual convergence (.72); emotional convergence 

(.61); symmetry in roles and responsibilities (.68) 

Confrontation & Consensus 
building 

Discussing about disagreements (.82); defending and 
arguing ideas (.80); confronting different points of view 

(.73); negotiating and finding compromises (.68) 

Co-Construction Building together new ideas (.88); deepening and 

broadening ideas (.69); co-elaborating of ideas (0.67) 

Emotion Management Communicating on the emotions of others (.88 & .79); 
communicating on one’s own emotions (.68 & .75); 

adapting to the emotions of others (.50 & .66); partner’s 
effort to understand his/her own emotions (.72); partner’s 

effort to understand emotions in others (.61)  

Emotion Modeling Comparing emotions (.90 & .77); imagining reactions to 
emotions (.83 & .61); participant’s effort to understand 

emotions in others (.61); participant’s effort to appear 
able to control his/her own emotions (.66)  

Transactivity Defending and arguing ideas (.74 & .61); understanding 
the partner’s point of view (.57 & .77); providing points 

of view (.65 & .53); referring and building upon the 

partner’s ideas (.60 & .55)  

 

4. Results 
The descriptives of team coordination measures extracted from the MdRQA and CRQA analyses 
can be found in table 2. The team-level collaboration factors, which function as subjective team 

performance measures, can also be found in table 2.  
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Table 2 
Descriptives of the six team coordination measures and the eight collaboration factors 

Team coordination measure Mean SD Range 

Multimodal  
%REC – IBI + EDA 

3.29 0.58 2.26 – 4.82 

Multimodal  

%DET – IBI + EDA 

40.03 7.83 25.71 – 60.69 

Single Modality  

%REC – IBI 

4.12 0.22 3.89 – 4.75 

Single Modality  

%DET – IBI 

11.32 1.36 9.07 – 15.10 

Single Modality  
%REC – EDA 

4.42 0.28 3.84 – 4.94 

Single Modality  
%DET – EDA 

47.58 14.50 26.43 – 79.24 

 

Collaboration Factor 

Mean SD Range 

Grounding & 

Coordination 

-0.02 0.67 -1.46 – 1.39 

Degree of Conflict -0.01 0.69 -0.92 – 2.18 

Degree of 

Convergence 

-0.02 0.61 -1.56 – 1.16 

Confrontation & 

Consensus building 

0.07 0.62 -1.39 – 1.53 

Co-Construction -0.06 0.84 -1.35 – 1.51 

Emotion 

Management 

0.01 0.75 -1.1 – 1.61 

Emotion Modeling 0.02 0.79 -1.28 – 2.02 

Transactivity 0.03 0.71 -1.21 – 1.26 

 
(RQ1) How well can multimodal team coordination measures predict subjective team 

performance compared to single-modality team coordination measures? 
In order to compare multimodal team coordination measures to single-modality team 

coordination measures, multiple linear regression models were generated using both 
multimodal team coordination measures and single-modality team coordination measures as 

predictors. Since eight different collaboration factors represent subjective team performance, 

eight different multiple linear regression models were generated, one for each collaboration 
factor.   

Each multiple linear regression model included six predictor variables: %REC and %DET 
at the multimodal level, %REC and %DET of the IBI signals and %REC and %DET of the EDA signals. 

These six predictors were checked for multicollinearity, but no predictors were removed as the 
strongest correlation between predictors was .72. The adjusted R2 values and confidence 

intervals of the multiple linear regression models are visualized in Figure 2. While each of these 
regression models did not significantly predict the collaboration factors at a 95% confidence 

interval, internal comparisons of how strong the effect of each predictor is on the collaboration 

factor can be made. 
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Figure 2 
The adjusted R2 values and confidence intervals for the multiple linear regression models predicting each 
of the eight collaboration factors. ‘Grounding’, ‘Conflict’ and ‘Confrontation’ had an R-squared value of less 
than 0. 

 
  The effectiveness of the six predictors was examined by generating the standardized 

beta coefficients. The standardized beta coefficients allow for comparing how strong the effect 

of each team coordination measure is on the collaboration factor. Figure 3 shows the 
standardized beta coefficients for all six predictors for every collaboration factor. The exact 

values of each standardized beta coefficient can be found in Appendix A.  
The results indicate that the multimodal team coordination measures have a stronger 

effect on ‘Co-Construction’, ‘Emotion Modeling’ and ‘Transactivity’ than the single-modality 
team coordination measures, as the multimodal standardized beta coefficients are larger.  

For ‘Emotion Management’ and ‘Confrontation’, the results are mixed. In terms of  
recurrence rate, the multimodal measurement has a stronger effect on ‘Emotion Management’ 

than the single-modality measurements, while for determinism the single-modality 

measurements have a larger effect on ‘Emotion Management’ than the multimodal 
measurement. For ‘Confrontation’ the opposite is true, as the single-modality recurrence rate 

measurements have a larger effect on ‘Confrontation’ than the multimodal recurrence rate, 
while the multimodal determinism measure has a larger effect than the single-modality 

determinism measures. 
Finally, for the factors ‘Grounding’, ‘Conflict’ and ‘Convergence’, the single-modality 

measurements have a stronger effect than the multimodal measurements. 
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Figure 3  
Standardized beta coefficients of the single-modality and multimodal team coordination measures in eight 
different regression models; grouped by collaboration factor 

(RQ2) Can segments of physiological data be useful for predicting subjective team performance? 
To investigate how useful segments of physiological data are for predicting subjective team 

performance, team coordination measures extracted from segments of physiological data were 
tested in multiple linear regression models to see how well they can predict subjective team 

performance. To this end, the existing recurrence plots were split up into non-overlapping 

windows along the diagonal line. An example of this can be seen in Figure 4. Team coordination 
measures were extracted from these segmented windows, and multiple linear regression 

models were generated based on those team coordination measures. In this way, the effect of 
segmented window size and segmented window location could be evaluated for different 

window sizes and different collaboration factors. This in turn allows for answering RQ2a and 
RQ2b as well. 

 
Figure 4 
An example of how segmented windows can be extracted from the recurrence plot. This example shows 
the recurrence plot of the MdRQA analysis, with the red rectangles showing the segmented windows that 

are extracted. The window size in this example is 20%, resulting in a total of 5 windows. 

 
Three different windowing sizes were used in this approach: A window size of 50%, resulting in 
two non-overlapping windows; a window size of 20%, resulting in five non-overlapping windows 

and a window size of 10%, resulting in ten non-overlapping windows. For every window, the six 
team coordination measures were calculated. Eight regression models were generated, one for 

every collaboration factor, using the six team coordination measures as predictors. The adjusted 
R2 values for these regression models can be seen in Figure 5a for a window size of 50%, Figure 

5b for a window size of 20% and Figure 5c for a window size of 10%. 
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Figure 5 
The adjusted R2 values and confidence intervals for the regression models predicting the eight different 
collaboration factors for each window. The window size is (a) 50%, (b) 20%, (c) 10%. 
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Window size 50% 

For the window size of 50%, only the regression models predicting ‘Co-construction’ and 
‘Emotion Management’ were able to predict team performance to some extent, as their 

adjusted R2 values were larger than 0. However, only the regression model predicting ‘Emotion 
Management’ based on data in window 2 was able to significantly predict `Emotion 

Management`, as 0 was not in the confidence interval (Adj. R2 = 0.192, p < 0.05). 

 
Window size 20% 

For the window size of 20%, more regression models were able to predict team performance to 
some extent, having adjusted R2 values higher than 0. Both window 2 and window 4 produced 

some significant regression models. The team coordination measures based on window 2 were 
able to significantly predict 31.5% of the variability in the factor ‘Emotion Management’ (Adj. R2 

= 0.315, p < 0.05). The team coordination measures based on window 4 were able to significantly 

predict 25.8% of the variability in the collaboration factor ‘Grounding’ (Adj. R2 = 0.258, p < 0.05), 
21.0% of the variability in the collaboration factor ‘Emotion Management’ (Adj. R2

 = 0.210, p < 

0.05) and 28.3% of the variability in the collaboration factor ‘Emotion Modeling’ (Adj R2 = 0.283, 
p < 0.05). 

 
Window size 10% 

For the window size of 10%, every collaboration factor could be predicted by at least one of the 
windows to some extent, having an adjusted R2 value higher than 0. However, for the 

collaboration factors ‘Co-Construction’, ‘Emotion Modeling’ and ‘Transactivity’ no significant 

models were generated. Collaboration factors ‘Grounding’, ‘Conflict’ and ‘Confrontation’ each 
had one window for which the regression model based on that data was able to significantly 

predict the collaboration factor. The collaboration factor ‘Convergence’ was significantly 
predicted by two different regression models based on different windows, and the collaboration 

factor ‘Emotion Management’ was significantly predicted by as much as five different regression 
models based on different windows. 

 The regression model that significantly predicted ‘Grounding’ was based on window 8 
and accounted for 46.6% of the variability in the data (Adj. R2 = 0.466, p < 0.01). The regression 

model that significantly predicted ‘Conflict’ was based on window 7 and accounted for 33.1% of 

the variability in the data (Adj. R2 = 0.331, p < 0.01). The regression model that significantly 
predicted ‘Confrontation’ was based on window 7 and accounted for 25.4% of the variability in 

the data (Adj. R2 = 0.254, p < 0.05). 
 Two regression models were able to significantly predict ‘Convergence’. The regression 

model based on window 5 accounted for 24.1% of the variability in the data (Adj. R2 = 0.254, p 
< 0.05) , while the regression model based on window 1 accounted for 19.7% of the variability 

in the data (Adj. R2 = 0.197, p < 0.05). 
 Five regression models were able to significantly predict ‘Emotion Management’. These 

were the models based on window 7 (Adj. R2 = 0.463, p < 0.01), window 2 (Adj. R2 = 0.321, p < 

0.01), window 5 (Adj. R2 = 0.271, p < 0.01), window 4 (Adj. R2 = 0.228, p < 0.05) and window 3 
(Adj. R2 = 0.207, p < 0.05). 

 

5. Discussion 
One of the goals of this study was to investigate how multimodal team coordination measures 

compare to single-modality team coordination measures in how well they can predict team 
performance (RQ1). By comparing the standardized beta coefficients within regression models 

containing both multimodal and single-modality team coordination measures, it was found that 

for some collaboration factors multimodal team coordination was more important than single-
modality team coordination measures, while for other collaboration factors the opposite was 

true. 
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  Particularly for the collaboration factors ‘Co-Construction’, ‘Emotion Modeling’ and 

‘Transactivity’, multimodal team coordination measures had more predictive power than single-
modality team coordination measures. This indicates that the underlying mechanisms that 

influence these collaboration factors likely take place on the multimodal level more than on 
single-modality levels. Subsequently, this means that studies interested in these collaboration 

factors should include both heart rate variability and electrodermal activity measurements and 

should employ analyses that are suitable for capturing multimodal interaction patterns.  
  For the collaboration factors ‘Grounding’, ‘Conflict’ and ‘Convergence’, multimodal 

team coordination had less predictive power than single-modality team coordination measures. 
This indicates that for these collaboration factors, underlying mechanisms likely take place 

within a single modality, or at least not across the two modalities that were investigated in this 
study. Future studies that focus on predicting these collaboration factors do not need to employ 

analyses that are suitable for capturing multimodal interaction patterns, or they should 

investigate other modalities that might have an effect on these collaboration factors. 
  Finally, for the collaboration factors ‘Emotion Management’ and ‘Confrontation’, the 

results were mixed. For both factors, one of the multimodal team coordination measures had a 
larger effect on the collaboration factor than its single-modality counterparts, while the other 

multimodal team coordination measure had a smaller effect on the collaboration factor than its 
single-modality counterparts. A possible explanation for this is that determinism and recurrence 

measure different aspects of team coordination, and the underlying mechanisms influencing 
these collaboration factors might be represented multimodally for one of these aspects, while 

they are not represented on the multimodal level for the other aspect.  

 
The second goal of this study was to investigate how segments of physiological data could be 

used to predict subjective team performance (RQ2). In order to do so, the effect of segment size 
of physiological data used for predicting subjective team performance was investigated. 

Additionally, the effect of the location of the segment in the physiological data was also 
examined.  

  It was found that team coordination measures calculated from smaller windows of 
physiological data were generally able to predict more variability in the subjective team 

performance measures than team coordination measures calculated from larger windows of 

physiological data. Additionally, for most of the collaboration factors, the best performing 
regression models among the models based on 10% windows were able to statistically 

significantly predict the collaboration factors, while for the 50% windows only ‘Emotion 
Management’ could be predicted significantly. 

  The one exception to this is the ‘Emotion Modeling’ factor. This factor was predicted 
significantly using the fourth 20% segment, while no 10% or 50% segments were able to 

significantly predict this collaboration factor. A possible explanation for why this collaboration 
factor cannot be predicted significantly by the 10% segments while it can be predicted by a 20% 

segment, is that recurrence patterns related to ‘Emotion Modeling’ require more context than 

the 10% segments are able to provide. If recurrence patterns happening in the 60%-80% range 
of the data are critical for predicting ‘Emotion Modeling’, it makes sense that only the 20% 

window was able to predict this factor. 
  Since some of the segments appear to be more critical for predicting certain 

collaboration factors than others, future research into these collaboration factors can focus 
more on these segments to get better insights into how physiological recurrence is related to 

these factors. Alternatively, research on subjective team performance can incorporate this 
knowledge in their design, so that they can make more accurate predictions of subjective team 

performance. Furthermore, they would only need a limited amount of data to be able to predict 

subjective team performance. This could make research using physiological data more robust to 
corrupt data or movement artifacts, because as long as the critical segments are intact, the 

subjective team performance measures can still be predicted. 
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 6. Conclusion 
One of the goals of this study was to investigate how well multimodal team coordination 

measures could predict subjective team performance in comparison to single-modality team 
coordination measures. The results of this study showed that for three out of eight collaboration 

factors multimodal team coordination measures were more important for prediction than the 

single-modality variants, and for two out of the eight collaboration factors one of the 
multimodal team coordination measures was better at predicting the collaboration factors than 

the single-modality variant. Future studies investigating ‘Co-Construction’, ‘Emotion Modeling’, 
‘Transactivity’, ‘Emotion Management’ and ‘Confrontation’ should consider adding multimodal 

coordination measures, as for these factors it appears that underlying mechanisms are 
embedded at the multimodal level. 

  The second goal of this study was to investigate the effectiveness of segmented 
physiological data in predicting subjective team performance. It was found that some critical 

smaller segments of the physiological data were sufficient for significantly predicting five out of 

eight collaboration factors. This implies that underlying mechanisms within the investigated 
modalities that are important for predicting subjective team performance can be located using 

this approach.  
Future research should investigate whether similar results can be found in experiments 

where teams perform different types of collaborative tasks. Additionally, future research should 
investigate whether the addition of more modalities could further enhance the ability to predict 

subjective team performance. For example, the addition of eye-gaze coordination or movement 
coordination could further capture multimodal patterns related to subjective team 

performance.  

Finally, this study did not look into overlapping segments of physiological data, and only 
evaluated a few different window sizes. It is possible that the performance of regression models 

based on team coordination calculated from segments of physiological data would be 
completely different if different segments were considered, with either larger or smaller sizes, 

or shifted along the temporal axis by some percentage. A more complete understanding of 
underlying recurrence patterns affecting the different subjective team performance measures 

could arise by investigating more variations of data segments. Unfortunately, a more nuanced 

approach that could look into these differences was outside of the scope of this study.  
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Self-reflection 
This section is a required component of the CSAI Bachelor Thesis. 

 

Scientific Research Process 
During the bachelor thesis project, I have learned a lot about the scientific research project. I 
was initially planning to collect my own data as part of a research project under Travis J. 

Wiltshire. However, due to the Corona regulations, this experiment was canceled. As a result, I 
had to come up with a new research proposal, where I would use an existing dataset instead of 

collecting my own data. While I struggled in finding a suitable dataset for my research questions, 
my supervisor was able to help me out by suggesting multiple datasets. Unfortunately, my old 

research questions could not be answered using the available datasets, so I had to change my 
research questions and plan of analysis in a short amount of time. 

  Partly as a result of these hasty revisions, I have run into several issues later on in the 

scientific research process. My initial plan of analysis was not suitable for answering my research 
questions perfectly, but thanks to the help of my supervisor I was able to find a better way for 

answering my research questions. Likewise, I found out that some of the theories that I was 
initially planning to use did not really apply to my new research questions. 

  In future research projects, I will need to be more careful in formulating my research 
questions and plan of analysis to avoid running into these kinds of issues. Especially when 

conducting my own experiment, I should prepare a slightly broader theoretical background, so 
that I can more easily adjust my research questions. Additionally, I should look into existing 

datasets more as a backup plan, even when I plan to collect my own data. 

 

Conducting Analyses 
I ran into a few issues when conducting my analyses. When I created my research proposal, I did 

not yet fully understand how the MdRQA technique worked. I only found out later that the 
different time-series that were used in the MdRQA needed to be of the same length, with the 

same sampling rate. As a result, I had to adjust my initial plan for calculating heart rate variability 
and use inter-beat intervals instead of using SDNN measures. Fortunately, this had little impact 

on my final thesis project, as inter-beat intervals are still a valid measurement for heart rate 

variability. 
  In future research projects, I will need to make sure that I have a more thorough 

understanding of the methods of analysis that I plan to use prior to creating a research proposal. 
It would especially be a good idea to make sure that I have part of the dataset available before 

writing the research proposal, so that I can test out the methods of analysis with a small sample 
of the data. 

 

Poster Presentation 

One part of the thesis project was the poster presentation, where we were had to create a 
poster for our thesis project and present the posters in an exhibition-like setting. Due to the 

Corona regulations, the exhibition-like setting was canceled, but video presentations were 
uploaded online instead. I found that the creation of a scientific poster was incredibly difficult 

and struggled with deciding which information was important enough to include on the poster 
and which information was redundant. Based on the feedback from my supervisor, as well as by 

comparing my poster to the posters of classmates, I realized that I had included way too much 
text on my poster, and my poster looked incredibly bland. 

  In the future, I will be very selective in which information to add to my research 

proposal. Rather than include a lot of text, I will try to visualize important aspects of the 
research. If for future projects I can get access to the dataset earlier on, I would include some 

better visualizations of the data that I work with. 
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Writing the Thesis 
As a result of the Corona regulations, all students had to work from home for the majority of 

this semester. I struggled with focusing on my thesis in my home-working environment, and as 
a result fell behind on my planning for writing the academic report. 

  In the future I should make sure that my working environment is suitable for writing a 

thesis. Additionally, I should put more effort into staying on track with my planning, so that I am 
better able to receive feedback on my work. Finally, if all else fails, I should contact my supervisor 

sooner so that they can help me out, rather than try to fix everything myself. 
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Appendix A: Standardized Beta Coefficients of the single-modality and multimodal team 

coordination measures in eight different regression models 
 

 

 

Team 
coordination 
measurement 

Grounding Conflict Convergence Confrontation Co-
construction 

Emotion 
Management 

Emotion 
Modeling 

Transactivity 

%Recurrence 
IBI + EDA 

0.305 -0.074 0.395 -0.383 -0.262 -0.368 -0.131 -0.401 

%Determinism 
IBI + EDA 

0.112 -0.412 0.213 -0.457 -0.504 -0.509 -0.150 -0.452 

%Recurrence 
IBI 

0.133 0.080 0.157 0.333 0.631 0.537 0.764 0.917 

%Determinism 
IBI 

-0.556 0.159 -0.159 0.313 1.091 0.390 0.369 1.137 

%Recurrence 
EDA 

-0.877 0.353 -0.364 0.613 1.619 0.799 0.795 1.385 

%Determinism 
EDA 

0.794 -0.285 0.074 -1.001 -2.312 -0.755 -1.077 -2.246 


