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Conversion rate optimization in  
e-commerce: using machine learning to 

identify website satisfaction in 
clickstream patterns 

 
 
Dragos Tomescu 
 
 
Despite website satisfaction becoming paramount in an increasingly digitalised world and a 
mounting need for better tools which allow practitioners to understand complex clickstream 
behaviour, current applications fail to capture the link between online clickstream behaviour and 
website satisfaction. To address this gap, this study poses the question: how can clickstream 
behavioural patterns, as identified by machine learning algorithms, be visualised in order to identify 
website (dis)satisfaction areas on an e-commerce website? To assess the research question, this 
study proposes an application assessment framework, identifies relevant explainable machine 
learning methodologies and the most important aspects of clickstream data, as related to website 
satisfaction. To link clickstream behaviour to website satisfaction levels, this study argues that 
sessions without (or low) purchase intent should be eliminated before assessing the data. By fitting 
several gradient boosted tree models onto data from a major European e-commerce fashion store, 
this study establishes that static aspects of clickstream data are the most important predictors of 
website satisfaction levels and demonstrates what an application that identifies website 
(dis)satisfaction patterns might look like. Combining static data with the temporal and sequential 
aspects of clickstream data renders the best predictive performance.  

1. Introduction  

As the world becomes increasingly digitalised, user experience design is becoming 
evermore relevant (Chandramohan & Ravindran, 2018; Filipowska et al., 2019; Raphaeli 
et al., 2017). From a web design perspective, user experience designers, web developers 
and marketing professionals (collectively referred to as UX professionals in this study) 
concern themselves with creating web experiences that enable users to achieve various 
tasks with ease, while making a pleasant experience out of it (Cai et al., 2018; Narang et 
al., 2017). Within e-commerce, making a successful purchase is often the central task (Cai 
et al., 2018), and successful task achievement is often referred to as a conversion 
(Gudigantala et al., 2016). 

Efforts to increase conversion are on the rise, yet less than a third of the 
implementations produce results (Econsultancy & RedEye, 2018). A report conducted by 
the CXL Institute and AB Tasty, for example, revealed that better processes and better 
optimizers are two of the top three challenges UX professionals face; increasing conversion 
rates ranked seventh (Gleason, 2019). 

To improve conversion rates, UX professionals gather and analyse users’ feedback 
in order to inform web adjustments, often in an iterative manner (Narang et al., 2017; 
Padidem & Nalini, 2017). Clickstream behaviour pattern visualisation is widely used by 
practitioners to gather user behavioural feedback (Liu et al., 2017). To this end, the need 
for visualising clickstream behaviour has been identified more than a decade ago (see 
Kohavi, Zheng, Lavrač, Motoda, & Fawcett, 2004, for example) and commercial 
clickstream visualisation tools are widely available (Liu et al., 2017).  
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However, clickstream behaviour is often complex and simple visualisations fail to capture 
and illustrate the complexities between clickstream behavioural patterns and conversion 
(Chandramohan & Ravindran, 2018; Filipowska et al., 2019; Liu et al., 2017). Raphaeli et 
al. (2017), for instance, identify that static (i.e. the number of times a particular page was 
viewed), temporal (i.e. session duration, or page dwell time) and sequential (i.e. frequent 
sequences of events in a session) features play a role in explaining online behaviour. In 
spite of this, visualising the complex relationships between conversion rates and 
clickstream behaviour has not been addressed sufficiently (Filipowska et al., 2019; Liu et 
al., 2017). 

Meanwhile, machine learning (ML) has been successfully applied to identify 
clickstream behaviour patterns in order to predict conversion (Bigon et al., 2019). Yet, 
while machine learning is well suited to visualise clickstream patterns (Lundberg et al., 
2020), less effort has been dedicated to visualising the complex relationships between 
clickstream behaviour and conversion (see Filipowska, Kaluzny, & Skrzypek, 2019 for an 
overview). At the same time, UX professionals identify the need of integrating machine 
learning into their practices (Saket et al., 2018), but many practitioners do not know how 
best to leverage its potential (Dove et al., 2017). 

In addition to the challenges associated with visualising (non-)converting 
clickstream behavioural patterns, the link between clickstream behaviour and website 
(dis)satisfaction needs to be established. This is because people visit e-commerce websites 
without necessarily intending to make a purchase (Raphaeli et al., 2017). Visitors might be 
visiting a website to perform a price comparison, or just ‘window shop’, for example. In 
such cases, visualising the (non-)converting behavioural patterns would illustrate 
behavioural differences between, say, visits with a ‘window shopping’ intent and purchase 
intent visits. Thus, without establishing the link between clickstream behaviour and website 
(dis)satisfaction, such visualisations are of limited use to UX professionals because they 
provide noisy (if any) information with regards to website satisfaction levels. 

These challenges leave a wide research gap open, allowing future studies to focus 
on how explainable machine learning (XAI) techniques can be employed to identify and 
visualise the complex relationships between clickstream behaviour and conversion rate. 
From a practitioner’s point of view, such tools could enable UX professionals to extract 
valuable feedback from these complex relationships, and, therefore, increase conversion. 

 This project aims at filling this gap by assessing how machine learning can be used 
to identify and visualise clickstream data patterns, such that UX professionals can gain 
insights into the complex relationships between clickstream behaviour and users’ web 
satisfaction levels through visualisations, as assessed from an e-commerce perspective. To 
inform this assessment, existing literature accompanied by insights drawn from a major 
European e-commerce fashion store’s clickstream data are used. The main research 
question this study addresses is:  
 

RQ: How can clickstream behavioural patterns, as identified by machine learning 
algorithms, be visualised in order to identify website (dis)satisfaction areas on an 
e-commerce website? 

 
To facilitate pattern contrasting, the problem is phrased as a binary classification 
(purchased or not purchased) machine learning problem. This question, in turn, is broken 
down into three sub-research questions (SRQ’s): 
 

SRQ1: Which aspects of clickstream data can predict conversion better? That is, 
do the static, temporal or sequential aspects of clickstream data help predict 
conversion? If so, which of the types renders the best performance? Does	using	
specific	 combinations	 of	 static,	 temporal	 and	 sequential	 data	 outperform	 a	
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model	trained	on	a	single	clickstream	data	type?	Does	using	all	three	data	types	
render	better	performance?	
	
SRQ2: What criteria should be used to assess how good an application aimed at 
illustrating the (non-)converting patters and, by extension, website satisfaction is? 
Specifically, what information should visualisations convey in order to illustrate 
what the differences between the converting and non-converting patterns are? 
And, under what circumstances does contrasting these patterns illustrate website 
(dis)satisfaction? 
 
SRQ3: What XAI methodology, that adheres to the criteria identified in SRQ3 
could be applied	in	order	to	allow	UX	professionals	to	discover	possible	website	
(dis)satisfaction	areas	on	an	e-commerce	website? 

 
To answer the first sub-question, static, temporal, and sequential features, as well as 
combinations thereof, are modelled using an XGBoost algorithm and then, their predictive 
performance is assessed and contrasted. The second and third sub-questions are answered 
in two parts. First, insights drawn from the fields of social sciences, human-computer 
interaction (HCI), and explainable machine learning (XAI) inform an assessment 
framework, denoting what important considerations need to be made in preparing and 
modelling the data and how visualisations should be provided. Second, visualisations 
illustrating the (non-)converting patterns, as learned by a trained ML model, on the 
aforementioned online clickstream data, are produced and assessed against the proposed 
framework. This study concludes that, although combining all aspects of clickstream data 
renders the best predictive performance, static features are the most important features in 
predicting conversion and, by extension, website satisfaction levels. To link online 
clickstream behavioural patterns to website satisfaction, this study argues that sessions 
where purchase intent is low or non-existent should be removed before assessing the data. 

2.Related Work 

This section is made up of five subsections. The first two subsections discuss how 
clickstream behaviour could be related to website (dis)satisfaction, the clickstream feature 
types that could be used to identify (dis)satisfaction and how clickstream data should be 
pre-processed.  

Next, subsections 2.3 and 2.4 focus on identifying relevant explainable machine 
learning methodologies. In Subsection 2.3 insights form the social sciences and the human-
computer interaction (HCI) fields of study are linked to the field of explainable machine 
learning (XAI). Then, in Subsection 2.4, existing XAI methodologies are discussed in light 
of the theoretical framework identified in Subsection 2.3. Based on existing literature, an 
assessment framework is developed next, thus informing SRQ2. Lastly, in Subsection 2.5, 
existing XAI applications aimed at illustrating clickstream behaviour are reviewed in light 
of this assessment framework. 

2.1 Intention to purchase and clickstream data 

Collecting web-satisfaction data from approximately twenty thousand people and 
conversion rates from 85 leading e-commerce stores in the United States, Gudigantala et 
al. (2016) find that, controlling for average item cost, website satisfaction has a statistically 
and economically significant impact on conversion rate. The effect remains positive even 
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when intention to purchase was present at the beginning of the visit. Several other studies 
found that a website’s quality impacts users’ intention to use the website (see Hartono & 
Holsapple, 2019 for an in-depth discussion). This indicates that website satisfaction impacts 
conversion rates. 

However, there are a multitude of reasons for visiting an e-commerce platform, 
ranging from ‘window shopping’, to price comparison and purchasing (Raphaeli et al., 
2017).  And, since machine learning, essentially, picks up the underlying patterns in data 
(Hastie et al., 2009), it would be difficult to attribute the differences between converting 
and non-converting patterns to website satisfaction. For example, sessions where users 
were ‘window shopping’ are less likely to lead to a conversion than sessions where users 
intended to make a purchase, and they might have a different clickstream behavioural 
pattern. Claiming that the clickstream behavioural differences between these two types of 
sessions are linked to website satisfaction would be misleading. Thus, assessing sessions 
where an intention to purchase is present provides an acceptable trade-off between losing 
information related to website satisfaction and removing the noise accompanied by visits 
where no purchase intent was present. 

In spite of the necessity to identify it, understanding intention to purchase is 
multifaceted, and several long and short term variables are likely to impact a visitor’s  intent 
to make a purchase (Lo et al., 2016). It is thus difficult to distinguish sessions that had an 
intention to purchase to begin with, from those that did not.  

Some have been successful at identifying purchase intent though. Zhao et al. 
(2020) illustrate, by using six months’ worth of e-commerce data from etsy.com (a craft 
item e-commerce platform acting as a marketplace), that adding an item to basket “exhibits 
a much higher buying intention”, compared to sessions where no items were added to 
basket (X. Zhao et al., 2020, p. 456).  This indicates that using the add to basket event as a 
proxy for intention to purchase filters out, at least to some extent, sessions where there was 
no intention to purchase. Thus, by filtering out sessions where no items were added to 
basket, the differences between converting and non-converting patterns are more likely to 
be attributed to website satisfaction. This is further illustrated with the aid of a diagram 
below (Figure 1).  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The figure illustrates that besides website satisfaction, other factors 
influence the outcome of a conversion. By treating the add to basket event as 
a proxy for purchase intent and removing sessions for which no items were 
added to basket, the ML visualisations are more likely to reflect behavioural 
patterns related to website satisfaction. 
 

Website 
satisfaction Other (e) Conversion 

(purchase) Predict 

The effect due to visits for reasons 
other than to purchase (such as 
making a price comparison) is 

minimized by removing sessions 
where no items were added to basket.  

Task: Visualise 
clickstream behavioural 
pattern identified by the 

ML algorithm. 
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2.2 Pre-processing and features to be extracted  

In an effort to identify which clickstream behavioural variables correlate with purchases, 
Raphaeli et al. (2017) review existing literature and identify the number of session events, 
session duration, count of pages viewed, the average time spent on a page, and click event 
paths to be correlated to purchasing behaviour. This suggests that click path sequences, 
time spent on events and the nature of the event are likely to help predict conversion. UX 
professionals could, therefore, gain insights by analysing differences between converting 
and non-converting clickstream behavioural patterns by assessing all the above-mentioned 
variables. 

Applications aimed at improving conversion often represent website sessions as 
full-length sequences of clickstream events (such as the sequence viewed page, viewed 
product, added to basket) (see Bigon et al., 2019, for example). While these representations 
might render better predictive performance, event-rich website visits can be difficult to 
visualise (Chandramohan & Ravindran, 2018). Therefore, this study proposes limiting the 
sequential data to a small number of sequences (n-grams).  

2.3 Explainable ML 

Miller (2019) dubs the XAI field of study as Human-Agent Interaction (HAI) and argues 
that it lies at the intersection of Human-Computer Interaction (HCI), Artificial Intelligence 
(AI), and the Social Sciences fields of study, as illustrated in Figure 2 below.  
 
 

 
 
 
 

 
 
 
 
 
Miller's (2019) study provides a broad taxonomy of what good explainable artificial 
intelligence (XAI) is and argues that most XAI research focused on the AI and HCI fields 
of study, in spite of the fact that, what constitutes a good explanation, is a well-researched 
and mature field of study in the Social Sciences. Miller's (2019) taxonomy of XAI is used 
to inform this project. 

Figure 2. The scope of explainable artificial 
intelligence (XAI). Based on  (Miller, 2019).  
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2.3.1 Human-Agent Interaction and Social Sciences 
In an extensive literature review, Miller (2019) draws insights from the Social Sciences to 
identify four main aspects which characterise best explanation practices. 
 First, Miller (2019, p. 3) argues that explanations should be contrastive, because 
“people do not ask why event P happened, but rather why event P happened instead of some 
event Q”. For UX professionals, this implies that an explanation should allow one to 
determine how a feature affects the likelihood of a session ending in a conversion. 
 The second finding is that people tend to select the aspects of an explanation in a 
biased manner. That is, while people do not typically expect explanations to provide the 
complete picture of an event, they are “adept” at picking a subset of explanations which 
serve them best, rather than the explanations which are most likely to paint an accurate 
picture of the event (Miller, 2019, p. 3). For UX professionals this implies that an 
explanation should clarify which features are the most important for predicting conversion. 
 The third finding is that, in spite of their practical importance, for people, 
probabilities are less important than causes (Miller, 2019).  That is, explaining statistical 
relationships is less likely to be as effective at successfully conveying an explanation as 
assigning a cause. In order to successfully communicate explanations to UX professionals, 
the features most ‘responsible’ for conversion need be identified. This can be achieved by 
illustrating the feature importance (which also satisfies the second finding’s requirements). 
 The fourth finding, “explanations are social”, states that good explanations should 
be presented such that they illustrate both the explainer and the explainee’s beliefs, or 
reference points, much like a conversation does (Miller, 2019, p. 3). This last dimension of 
explanations deals with the narrative aspects of explanation and is deemed outside the scope 
of this project. 
 Taken together, Miller's (2019) four findings indicate that, in order to allow UX 
professionals to assign ‘causes’ while limiting bias in feature selection, the XAI 
visualisations should identify the most important features for predicting an outcome. Then, 
in order to allow for contrastive assessments, the XAI visualisations should illustrate how 
the features impact a prediction made (feature effects).  

2.3.2 Human-Agent Interaction, Human Computer Interaction, and XAI 
The human-computer interaction field of study is broad and draws from several other fields 
of study, from psychology and cognitive sciences, to ergonomics and computer science 
(Dix, 2017). HCI, however, is as much an applied discipline as it is theoretical and 
distinguishing between the two would be difficult, possibly misleading (Dix, 2017), and 
goes beyond the scope of this study. 

From a practitioner’s perspective, Wang et al. (2019) draw on concepts from 
theoretical HCI models and current XAI methodologies, in an effort to develop an XAI 
practitioner-ready framework. Their framework follows a three-step approach – first 
develop an understanding of user reasoning and consider user biases, then identify the most 
suitable XAI representations and, lastly, develop and deploy the XAI representations. 
Figure 3 (in Appendix A), illustrates the links between HCI theoretical models and 
appropriate XAI representation methodologies. 
 Regarding the first step, Miller's (2019) findings help develop an understanding of 
user reasoning, and possible biases. In order for to allow UX professionals to assign 
‘causes’ while limiting bias in feature selection, the XAI visualisations should therefore 
identify the most important features for predicting an outcome. Then, in order to allow for 
contrastive assessments, the XAI visualisations should illustrate how the features impact a 
prediction made (feature effects).  

Regarding suitable XAI representations, as the second step, Wang et al. (2019) 
framework points towards partial dependence plots (PDP), tornado plots or, for image-
recognition tasks, saliency heatmaps, because these representation would allow for 
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contrastive and attributive interpretations. In order to illustrate the features most 
responsible for a prediction, and therefore enhance attribution, feature importance could be 
plotted. The third step, deployment, is outside the scope of this study. 

Summed up as an evaluation framework, XAI applications should be contrastive 
and attributive, while the clickstream features should contain temporal (such as pageview 
dwell time), sequential (i.e. frequent sequences of events in a session), and static 
information (such as number of visits to a specific page).  

Lastly, because the aim of this study is to develop an XAI methodology which 
allows UX professionals to identify possible website dissatisfaction areas on an e-
commerce platform, it is argued that add to basket events should be used as a proxy for 
purchase intent, and sessions without an add to basket event should be removed from the 
analysis. This is because, since users visit an e-commerce platform for multiple reasons, 
contrasting behavioural patterns is likely to reveal user intent patterns (such as ‘window 
shopping’ versus intention to purchase) rather than patterns related to web satisfaction. The 
proposed framework is illustrated in Figure 4 below. 
 
 

Criteria Brief XAI application assessment description 
Purchase 
intent 

In order to be able to attribute feature effects to web satisfaction, 
clickstream data without a purchase intent (task-achievement intent) 
should be removed. 

Contrastable Explanations (visualisations) should allow UX professionals to 
contrast converting patterns against non-converting ones. 

Attributive 
(which) 

Explanations (visualisations) should allow UX professionals to observe 
which are the most important features in determining the outcome of a 
prediction. 

Attributive 
(how) 

Explanations (visualisations) should allow UX professionals to observe 
how a feature determines the prediction outcome. That is, how specific 
values of a feature affect the prediction outcome. 

Features Temporal (such as session duration), sequential (such as common event 
sequences) and static features (such as product detail views, or count 
of items added to basket) should be considered in the analysis. 

 
 
 
 
 
 
 
By reviewing literature aimed at (1) identifying how clickstream data should be pre-
processed and (2) assessing how suitable an XAI methodology is for contrasting converting 
and non-converting clickstream behavioural patterns, a remedy to the sub questions 
addressed in this study has been provided. Therefore, existing applications are assessed 
against this proposed framework. 

2.4 Explainable AI (XAI) methodologies and machine learning algorithms 

2.4.1 Explainable AI methodologies review 
This subsection provides a succinct outline of the methodologies used to visualise, or 
otherwise explain, how supervised machine learning models make use of the input data to 
make a prediction. Tangencies between XAI methodologies and clickstream data 

Figure 4. Assessment framework. The table illustrates the framework used for evaluating 
how ‘good’ an explanation is at allowing UX professionals to identify possible web 
(dis)satisfaction areas on an e-commerce platform. 
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visualisation are briefly discussed too. Lastly, the models and methodologies applied in this 
study are revealed. 

While popular in academia and amongst practitioners, the idea that there is a trade-
off between model accuracy and interpretability is debatable (Rudin, 2019). Rudin (2019) 
makes a compelling argument that, for most data science applications, there is little 
evidence, if any, that black box models, such as neural network or random forest models, 
render better performance than more interpretable models, such as a logistic regression 
model. 

However, Rudin (2019, p. 1) mentions that domain-specific expertise for feature-
engineering purposes is needed in order to develop interpretable models, while emphasising 
that interpretable models are important for “high-stake” decisions, such as explaining a 
bank-loan granting decision. Although using less complex, interpretable, models would 
generate more accurate representations of clickstream behaviour and could be rewarding to 
explore, due to lack of access to domain expertise (UX professionals) and development 
time, this study’s analysis is limited to black box models. 

For black box models, several model agnostic methodologies have been developed 
to aid interpretability via visualisations (see Lundberg & Lee, 2017 or Molnar, 2020 for an 
in-depth overview of some of the model agnistic methodologies). Essentially, model-
agnostic methodologies produce explanations after a model has been trained (post-hoc) by 
learning and illustrating the features’ effect form the predictions a black box model makes 
(Ribeiro et al., 2016). Such methodologies have the advantage of flexibility, thus allowing 
the XAI developer to switch between models with ease; their main disadvantage is that the 
explanation is a representation of the black box model, which can be misleading (Ribeiro 
et al., 2016).  

In order to explain which features are important, this study proposes illustrating a 
model’s variable importance plot, using Fisher et al. (2019) methodology. Fisher et al. 
(2019) methodology compares the original model’s prediction error with the prediction 
errors produced by models where each of the features were shuffled, one at a time. The 
underlying idea behind this methodology is that, if a feature is not very important, then the 
errors will not change much when shuffling a feature. Applying this methodology to 
identify how important a feature is, satisfies the which-attribute aspect of the proposed 
framework (Figure 4). 

Wang et al. (2019), as discussed in the previous subsection, proposed using partial 
dependence plots (PDP) in order to satisfy the how-attribute of the proposed framework. 
PD plots, first proposed by Friedman (2001), illustrate how the outcome of a prediction 
depends on the values of a specific feature. By altering the values of the feature to be 
plotted, while keeping the rest of the features constant, the PD methodology computes the 
average predictions of a model in order to establish feature importance. Note that, because 
the feature of interest’s values are altered while others remain constant, if the altered feature 
is correlated with any of the other features, unrealistic combinations of the feature in 
question are introduced. For example, it might be unlikely that a two-meter-tall person 
weighs less than 50kg (there is a correlation between height and weight), while the PD 
algorithm would introduce such an unrealistic value and force the model to make a 
prediction (Molnar, 2020). Thus, PDP methodology implicitly assumes that there is no (or 
little) correlation between the explanatory variables, which is an unrealistic expectation. 

As an alternative, the accumulated local effects (ALE) plot of a feature, a 
methodology proposed by Apley and Zhu (2016), provides major improvements over the 
PD methodology. ALE’s use the conditional distribution of a feature in order to avoid 
introducing unrealistic values. The algorithm works by dividing a feature’s space is into 
several small intervals and replacing the original feature’s value with small variations of 
the value, as follows. 
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In equation (1) the uncentered effect is calculated (Molnar, 2020). Reading the equation 
from the right, 𝑧!,# represents instance j of interval k. This is the variation of the feature’s 
original value. The difference in prediction outcomes between instance 𝑧!,# and 𝑧!$%,# is 
then calculated, with 𝑥\#

(() as input for the remainder of features associated with the original 
instance, i. Next, differences are summed up for all predictions in the neighbourhood 𝑁#𝑘 
and divided by 𝑛#(𝑘), the number of instances j in interval k, in order to compute the 
average effect. This average effect is then accumulated across the intervals k. 

In other words, variations close to the feature’s original values are inserted into the 
model in order to generate predictions. The differences in outcome predictions made by a 
model are averaged as the feature’s importance. After the procedure from equation (1) is 
completed, the effect is centred to have a mean of zero. 

ALE’s illustrate a feature’s local effect (for a specific feature value) (Apley & Zhu, 
2016). Accumulating the local effects of a feature, allows one to illustrate the ‘global’, 
overall effect of the feature on the prediction outcome (Apley & Zhu, 2016).  

Without impacting on interpretability, ALE’s have two main advantages over 
PDP’s. First, and in contrast to PDP’s, by computing the differences within these intervals, 
the ALE methodology avoids including the effect other correlated features might have on 
the prediction outcome (Molnar, 2020). Second, they are computationally cheaper than 
PDP’s (Molnar, 2020), making them a more suitable choice for application embedment. 

ALE’s main disadvantage is that, depending on the number of intervals chosen, 
the ALE plot can either hide the true complexity of a model (when a small number of 
intervals is chosen) or generate a ‘shaky’ plot, making it difficult to interpret when a large 
number of intervals is chosen (Molnar, 2020). 

2.4.2 Application methodology 
Altogether, the ALE methodology is robust to correlated features, and because the ADL 
strikes a balance between ease of interpretation and true representation (see Molnar, 2020 
for an in-depth comparison of variable effect plotting methodologies), this study proposes 
illustrating the how-attribute via a ALE feature effect plots. 

In spite of the wide variety of methodologies available for XAI, the largest body 
of literature dealing with the complexities of clickstream data visualisation is limited to 
pattern mining (see Filipowska et al., 2019 for a brief overview), and Markov-based models 
(see Brainerd & Blue, 2001; Frhan, 2017; Kateja et al., 2014, for example). For predicting 
conversion form clickstream behaviour, however, a wider range of models, including 
Markov-based models, neural networks (see Koehn et al., 2020, for a brief review), or tree-
based models (Mokryn et al., 2019; Sheil & Rana, 2018), or even combinations of models 
(Mokryn et al., 2019), have been implemented and rendered comparative predictive 
performance. Lastly, Koehn et al. (2020, p. 1) note that recurrent neural networks (RNN’s) 
and “conventional classifiers” identify “different patterns in clickstream data” and 
recommend that different classes of machine learning algorithms should be used together, 
in order to capture them. 

This study uses the XGBoost tree-based model to illustrate the methodology. This 
choice is justified by the fact that Mokryn et al. (2019), find the algorithm to render good 
performance when compared to other best-in-class algorithms, on similarly pre-processed 
clickstream data. This methodology could be applied to other classes of ML algorithms, or 
even combinations thereof, as suggested by Koehn et al. (2020). However, since a 
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performance comparison between classes of machine learning algorithms is beyond the 
scope of this project, and because of implementation time constraints, other classes of ML 
algorithms, or combinations thereof, will not be considered in this study. 

2.5 Existing applications 

Filipowska et al. (2019) propose a process mining system to assess clickstream data, 
whereby desirable navigation sequences are correlated with actual navigation sequences, 
as identified via a pattern mining algorithm. Filipowska et al. (2019) first use the data to 
identify clickstream patterns, and then they relate it to the desired clickstream paths and 
task-achievement, by means of a correlation matrix, as their explanatory visualisation. Such 
a system would allow UX professionals to contrast the navigational patterns intended for 
task-achievement against the actual clickstream patterns which most frequently lead to 
conversion.  
 Filipowska et al. (2019) incorporates sequential features but no temporal or static 
features are included in their analysis. While it could be argued that the correlation matrix 
between desirable and actual sequences allows one to contrast converting patterns against 
non-converting, and that such contrasts could allow UX professionals to attribute 
conversion (or lack thereof) to specific sequences, Filipowska et al. (2019) study does not 
illustrate how specific features influence conversion. 

Similar to Filipowska et al. (2019) study, Raphaeli et al. (2017) use the event paths 
as input for a sequential pattern mining application, in an effort to compare purchasing 
behaviour between mobile and PC e-commerce platforms. The paths are captured 
differently, however. First, the event paths are captured by classifying events as up, down 
or same, where up is a page which was visited for the first time during the session, down if 
a previous page was visited next in the sequence, and same if the same page is visited again 
(as the result of, say, refreshing the page). Then, the sequences of up, down and same are 
summed up further as either fingers (down-up-down), upstairs (sequential up, with the 
possibility of same occurring in-between), downstairs (sequential down, with the 
possibility of same occurring in-between), or mountain (a combination of upstairs and 
downstairs). Figure 5 illustrates these sequences. 
 

 
 

 
 
 
 
 

Figure 5. Mock session illustrating the Automatic Pattern 
Discovery (APD) sequence classification technique. The figure 
illustrates a fictive sequence of (a) a mountain, (b) a finger, and 
(c) an upstairs sequence. Based on Raphaeli et al. (2017). 
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After encoding the clickstream data into the above-mentioned  sequences, Raphaeli et al. 
(2017) spilt the data into buying and non-buying sessions and apply a pattern mining 
algorithm to identify the most common patterns. Contrasting the most common buying and 
non-buying patterns could allow UX professionals to identify areas which need attention 
on an e-commerce platform.  

In contrast to Filipowska et al. (2019) study, Raphaeli et al. (2017) make use of 
the temporal aspects of clickstream data in order to identify differences in temporal 
behaviour between buying and non-buying sessions. The temporal analysis is limited to 
contrasting the aggregate statistical characteristics between converting and non-converting 
sessions, however. Specifically, Raphaeli et al. (2017) conduct t-tests to check for 
statistically significant differences in session duration and average page duration between 
converting and non-converting sessions. While these temporal behaviour insights could be 
insightful to UX professionals, they fail to capture more complex relationships between 
temporal behaviour and the likelihood that a purchase is going to be made during a session. 

While Raphaeli et al. (2017) study is contrastable and it captures sequential and 
temporal aspects of clickstream behaviour, it does not make use of any stationary data, and 
attribution is limited to which features are linked to conversion, without explaining how. 

Several other studies have applied pattern mining algorithms to assess clickstream 
data, including Dias and Ferreira (2017), Liu et al. (2017, 2016), and Su and Chen (2014), 
with varying degrees of focus on pattern visualisation. However, they all fail to capture the 
temporal aspects of clickstream behaviour and the how aspects of attribution. 

Another popular way of visualising clickstream data is by means of Markov 
chains.  

Brainerd and Blue (2001) make use of Markov chains to visualise clickstream data. 
Their visualisation (observed in Figure 6, below) shows the overall flow of clickstream 
events. By adjusting the directional arrow’s thickness to represent the proportion of 
sessions which followed a particular subsequent event, Brainerd and Blue (2001) allow UX 
professionals to contrast converting and non-converting patterns. It also allows for what-
attribution and the Markov chain implicitly captures static information. 
 

 
 Figure 6. Clickstream event flow, starting 

from the shopping cart, illustrating the 
differences between buying and non-buying 
sessions. Reprinted from (Brainerd & Blue, 
2001, p. 4).  
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The main limitations of Brainerd and Blue (2001) study are threefold. First, their 
methodology does not include any temporal aspects of a session. Second, much like the 
pattern mining applications, the how aspects of attribution are not captured by their 
application either. Third, because sessions tend to be long (some more than 200 events), 
and because of the numerous combinations of click paths that take place on an e-commerce 
platform, an overall click path visualisation would be large and difficult to visualise. 

More recent methodologies, such as VizClick (Kateja et al., 2014) or WebClickViz 
(Frhan, 2017), made progress with regards to the visual representation of lengthy, complex 
patterns, making Markov chain-based applications easier to visualise. However, the how 
aspects of attribution and the temporal aspects of a session have not been included in these 
recent methodologies either. 

Neural networks, and other black box models can also be used for visualisation 
(see Krause et al., 2016, for example). Though their intent is to advance conversion rate 
prediction performance, Chandramohan and Ravindran (2018) study captures sequential, 
static and temporal elements of clickstream data and produce visualisations which could be 
valuable to UX professionals. After training a neural network model, they present a 
heatmap illustrating which of the features are important for predicting conversion, for each 
event in a clickstream sequence, as illustrated in Figure 7, below. 

 
 

 
 
 
The visualisation in Figure 7 illustrates a set of 14 categorical features and how they 
become more (darker) or less (lighter) important in predicting a converting clickstream (a 
purchase). Although Chandramohan and Ravindran (2018) admit to having difficulty 
interpreting visualisation of numerical features, this visualisation provides contrastable and 
attributive insights. The sessions are capped at 30 events, however, and allowing for 
lengthier sessions could make the interpretation of such visualisations more cumbersome. 

Other existing methodologies, either illustrate how the proportion of clicks form 
one page to another flow (i.e. product detail view – add to basket) (J. Zhao et al., 2015), 
which fail to capture complex relationships; apply lengthy, in-depth analyses which are too 
broad in scope for an informative XAI tool (G. Wang et al., 2016; Wei et al., 2012); or 
enrich their clickstream data with additional, personal information (Conglei Shi et al., 
2015).  

Overall, the literature on visualising clickstream behaviour has three main 
limitations. First, none of the applications intended at assessing website usability deal with 
visit intent. If intention to purchase is not, at least to some extent, present at the beginning 

Figure 7. Feature “excitation” in a neural 
network. Reprinted from Chandramohan 
and Ravindran (2018, p. 9).  
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of a session, the patterns identified, however well explained, would be misleading. This is 
because the patterns identified are likely to describe sessions where users were not 
concerned with purchasing at the time of visit. Second, most applications do not focus on 
all three behavioural aspects of clickstream behaviour. While most focus on the sequential 
aspects, fewer focus on the temporal or static aspects of a session, and none focused on all 
three. Third, most studies provide contrastable explanations and focus on the which aspects 
of attribution, neglecting the how aspects of attribution. 

Altogether, these limitations leave a wide gap open for research on clickstream 
data visualisation methodologies which encapsulate the complexities of static, sequential 
and temporal aspects of online behaviour, as they relate to conversion. 

3. Experimental Setup  

The entire experiment was conducted in the R programming language (version 3.6.3), with 
RStudio (version 1.2.5042) as the interactive development environment (IDE). The data 
pre-processing was completed using the tidyverse library (Tidyverse, n.d.). The algorithmic 
modelling was implemented using the tidymodels library (Tidymodels, n.d.). Other 
packages used peripherally will be mentioned in the methodology subsection. 

This rest of the section is made up of two subsections. The first describes the data, 
its provenance, characteristics, and how it has been pre-processed for this project. The 
second subsection provides a detailed description of this study’s methodology. 

3.1 Data  

The clickstream data is extracted from a major European fashion e-commerce store, as 
observed over the period starting June 6th, 2018 until July 7th, 2018 (a month). The data has 
been made available by Tooso, an AI-based retail solutions start-up, and it is originally 
described and used by Bigon et al. (2019).  
 The raw dataset is made up of approximatively 5.43 million clickstream events 
observed over 443,663 web visits (~12.2 events per visit). A clickstream event can 
represent a page visit, a product detail view, that a product was added to basket, that a 
product was removed from basket, that a purchase was made, or an undetermined click 
action. Each of the events is accompanied by a timestamp, which allows for a session to be 
observed in the sequence the events took place. Lastly, a hashed product code and web 
address are also available but these features are disregarded in this analysis. 
 To isolate sessions for which an intention to purchase was present, at least in part, 
all sessions for which no products were added to the basket are removed. The remaining 
clickstream events represent 40,0076 sessions – that is 9.03% of the all the sessions 
observed over the period. All events which occurred after a purchase event are removed 
from the remainder of the sessions. That’s about 200,000 events.  

Then, after removing all sessions with less than 10 events or more than 200, in line 
with Bigon et al. (2019), a total of 33,386 sessions are left, with a mean of 44.71 events per 
session. The events per session histogram below (Figure 8) illustrates a positively skewed 
distribution, with most sessions made up of less than 50 clickstream events. Switching 
between events took an average of 46.3 seconds, with an upper quartile of 43 seconds (also 
positively skewed, as illustrated in Figure 9, Appendix B). 
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Next, the clickstream data is aggregated at session level (sessionalised), such that each 
session is represented by ten variables, six static and four temporal. Five of the static 
features illustrate the number of times a visitor had a pageview, a product detail view, an 
undetermined click, and an item added or removed form basket. The sixth static feature is 
the count of total events per session. The temporal features represent the average time, in 
seconds, a user spent on performing specific events. Three are computed as the average 
time per session spent on a pageview, a product detail pageview, or an add to basket event. 
The fourth temporal feature represents the total session duration. Because by the time a user 
removes the item from the basket, the website has already been experienced, and since most 
sessions do not contain an undetermined click event, the click dwell time and remove from 
basket dwell time features are left out of the analysis. 
 Of the 33,386 observed sessions, 597 of them are missing values for one or more 
of the features. This is could be due to various reasons regarding the way sessions were 
logged. The observations missing the time taken to add to basket, for example, occur 
because the first event taking place in a session is the add to basket event. These sessions 
are dropped from the summarised dataset, such that 32,789 sessions are now observed. 
 The sessionalised dataset is enriched with sequential behavioural features next. To 
capture the sequences, the 2 and 3 n-grams of events are computed using the ngram package 
(R-project.org, 2017). Then, sequences occurring at least 5% of the time are identified, for 
each of the n-grams calculated. The procedure identifies 11 n-grams -  six digram sequences 
and five trigram sequences, as illustrated in Figure 10, Appendix B. Finally, the dataset is 
enriched with the 11 additional features, each representing the number of times such a 
sequence occurred. 

It should be noted that, since purchase events are the target variable, all purchase 
events were removed before summarising the data, in order to ‘blind’ the model any 
possible information regarding conversion outcome. The summarised dataset is enriched 
with the binarized target variable, purchased, afterwards.  

The pre-processed dataset is made up of 21 explanatory variables, with a total of 
32,789 sessions observed. Of the 21 features, 11 are sequential, 6 are static and 4 temporal. 
The conversion rate is 18.76% (6,512 of the sessions had a purchase). Figure 11 in 
Appendix B presents the dataset’s summary statistics. 

Figure 8. Histogram illustrating the events per session. 
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3.2 Method / Models 

The focus of this analysis is to visualise the clickstream behavioural patterns leading to a 
conversion and contrast them against the patterns which do not lead to a conversion, by 
illustrating how the features impact the prediction outcome. 

The proposed methodology is made up of three parts. First, a preparatory analysis 
is performed, in order to ‘get to know’ the data, its characteristics, and conduct the 
preliminary preparations before modelling. Then, in order to facilitate fine-grained 
hyperparameter tuning, a two-stage modelling process is proposed. Third, the explanatory 
visualisations are produced. The remainder of this subsection describes these parts in detail. 

3.2.1 Preparatory analysis 
In this project a session’s purchase outcome is the target variable. Hence, the problem is 
treated as a binary classification problem, where the outcome of a session is either a 
purchase or not. 

Before continuing with the modelling, the sessionalised dataset is split randomly 
in two stratified subsets, such that 70% of the data (22,953 observed sessions) are used for 
training the algorithms (henceforth referred to as the training dataset) and the remaining 
30% of the data (9,836 observed sessions) is used to assess how well the trained model is 
performing on ‘unseen’ (testing) dataset. The testing subset is therefore excluded from all 
but the final performance assessment part of the analysis process. 

A Pearson correlation matrix is then produced as illustrated in Figure 12, Appendix 
B. Because some pairs of variables are nearly collinear (correlation > 0.9), highly correlated 
variables are removed at random, for each pair, such that only one of the highly correlated 
features remains. Note that, with the exception of the add to basket feature (which is among 
the removed features), only features of the same type are highly correlated. More 
specifically, sequential features tend to be highly correlated with other sequential features. 

 The sessionalised dataset is now made up of 15 features (6 removed), five static, 
four temporal, and six sequential. The removed features are clearly marked in Figure 11, 
Appendix B. 

An initial visual analysis, contrasting the 15 explanatory variables’ converting and 
non-converting probability distribution functions (PDF), is conducted before modelling. 
Three figures are produced to this end and are illustrated in Appendix C. Figure 13 
illustrates the 5 static features’ PDFs, Figure 14 illustrates the 4 temporal features’ PDFS, 
and Figure 15 illustrating the 6 sequential features’ PDFs. 

Finally, the training data is downsampled, so that an equal amount of purchasing 
and non-purchasing sessions is observed in the training subset (12,304 sessions observed 
after downsampling). 

3.2.2 Modelling 
The modelling and evaluation process is carried out in the tidymodels library, which 
provides a collection of R packages, altogether facilitating a beginning-to-end machine 
learning modelling framework (Tidymodels, n.d.). 
  A boosted tree algorithm is an ensemble algorithm which works by ‘boosting’ the 
observations for which a previously fitted decision tree predicted erroneously (Hastie et al., 
2006). A boosted tree algorithm works stagewise, initiating with a decision tree on the data. 
Then, it computes the residuals (erroneous predictions), and selects them in order to fit 
another tree (hence boosting them). Each consequent tree updates the previous one, to form 
ensemble of trees, until some stop criteria is reached. The model is implemented in R via 
the XGBoost package (Chen et al., 2020), which is a considerably faster implementation of 
the boosted tree algorithm methodology (Chen & Guestrin, 2016). 
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 The aim of this application is to train a model which ‘learns’ how to correctly 
identify the positive class – a purchase being made. Imposing a threshold to make a 
prediction should involve business consideration. Because it illustrates how the model 
performs at various thresholds, this project proposes the receiver operating characteristic 
area under the curve (AUC) as the key performance metric. 
 
3.2.2.1 Hyperparameter tuning procedure and model fitting methodology 
Four hyperparameters are tuned, the learning rate, the number of trees, maximum tree 
depth, and the number of features sampled at each split. The learning rate acts as a shrinkage 
parameter, limiting the weight the boosted model assigns to each tree in the ensemble 
(Hastie et al., 2006). The higher it is, the higher the chance of overfitting, but lower chance 
of a sub-optimised model (Hastie et al., 2006). Conversely, lower learning rates tend to 
render more generalisable models, but also bear the risk of a model with sub-optimal 
prediction power (Hastie et al., 2006). The number of trees specifies how many trees should 
be used in the ensemble (Hastie et al., 2006). Much like the learning rate, the more trees, 
the more learning the model does, but at the risk of overfitting (Hastie et al., 2006). The 
tree depth limits the number of splits each tree has (Hastie et al., 2006). The depth of a tree 
allows the algorithm to learn the interaction effects between features. The lower it is, the 
less complex relationships are learned (Hastie et al., 2006). The number of features instructs 
the algorithm how many of the features to select, at random, every time a tree is modelled 
(Hastie et al., 2006). Lower numbers minimise the chance that one feature masks the effect 
of another, when correlated (Hastie et al., 2006). Lastly, the splits were limited to a 
minimum of 10 observations. 

The hyperparameter tuning process is performed in two stages. In the first stage, 
20 models are 10-fold cross-validated on the training subset, using a randomly generated 
hyperparameter grid. Hence, each hyperparameter setup is trained 10 times. The average 
performance, as measured by the area under the curve (AUC), is computed for each of the 
20 setups. Then, the results are visually inspected, via hyperparameter-performance plots 
(see Figure 23 in the next section for an example), and the best performing hyperparameter 
ranges are noted and used to inform the second stage. 

Since the hyperparameter grid was set at random and only 20 combinations (of 4 
hyperparameters) were generated, it is likely that one hyperparameter’s performance may 
have been influenced by another hyperparameter. Thus, the hyperparameters’ performance 
serves as a rough guideline for further fine-tuning the models. 

In the second stage, the hyperparameters are also randomly generated, but they are 
now restricted to within the ranges identified in the first stage, thus focusing on fine-tuning 
the hyperparameters in order to identify the best performing hyperparameter setup. Sixteen 
models are 10-fold cross-validated on the training subset to this end. 

Finally, the XGBoost algorithm, with best performing hyperparameter setup, is 
used to train the model on the entire training subset (downsampled). This final model is 
then used to produce predictions on the test subset, evaluate final performance, and generate 
the explanatory visualisations. 
 
3.2.2.2 Models fitted 
In order to validate SRQ1, seven models are fitted using the above-mentioned 
hyperparameter tuning procedure. Three of the models are fitted on each of the clickstream 
data types - one containing the static features alone, one containing the temporal features 
alone, and one containing the sequential features alone. All features’ types are identified in 
Appendix B, Figure 11. Three of the models are fitted on combinations of two types of 
clickstream features, one on static and temporal features, one on static and sequential 
features and another on temporal and sequential features. The seventh model is fitted on all 
15 features (5 static, 4 temporal and 6 sequential).  
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3.3.3 Explanation visualisations 
As mentioned in the Related Work section, two types of visualisations are used to illustrate 
differences in clickstream behaviour between converting and non-converting patterns – the 
feature importance plot and the feature effect plot. To compute the feature importance and 
effect, the so-far-unseen, test data subset is used.  

The feature importance plot is generated with the vip package (Greenwell et al., 
2020). The package’s variable importance procedure follows the permutation methodology 
proposed by Fisher et al. (2019). Additionally, the package allows for the permutation 
procedure to be carried out multiple times, and the variable importance is returned as the 
average results of the permutation procedures. For this project the procedure was repeated 
ten times. 

The feature effect plots are generated using the iml package (Molnar et al., 2018). 
A plot is produced for each of the features, with the number of intervals (over which the 
values are calculated) set to 20 – iml’s default value. None of the plots looked ‘shaky’, so 
no optimisation on the number of intervals was performed. 

4. Results  

Two main aspects of the analysis are reported in this section. First, the results rendered by 
each of the seven fitted models are briefly discussed. Second, the explanatory visualisations 
are presented. 

4.1 Model tuning and performance 

The performance rendered by each of the seven fitted models is discussed in this subsection, 
whereby their respective performance is compared and contrasted. 

4.1.1 Model performance by clickstream feature types 
Seven models were fitted, three for each of the three clickstream feature types, and four 
made up of combinations of feature types, as described in subsection 3.2.2. Each models’ 
hyperparameter setup was 10-fold cross validated on the training subset in both fitting 
stages. The target variable is a session’s binary purchase outcome (buy or no buy). 
 The first stage of the hyperparameter tuning process involved 20 models with 
randomly generated hyperparameters. The first stage’s performance was used to inform 
how the hyperparameters’ ranges should be limited during the second stage of the fitting 
process. Figures 16 to 22, in Appendix D, provide detailed descriptions of each 
hyperparameter setup and its performance, for each of the seven fitted models. The figures 
also describe how the hyperparameter ranges were restricted for the second stage of the 
hyperparameter setup.  

Aside from the tables illustrated in Figures 16 to 22 (Appendix D), four plots were 
produced (one for each hyperparameter tuned), as illustrated in Figure 23 below. This was 
in order to facilitate a visual inspection informing on how the models’ performance changes 
as the hyperparameters change. During the first stage, the minimum and maximum 
performance across the seven models ranged in the AUC score from 0.5 (chance 
performance) to 0.7833. Figure 31 illustrates each of the models’ first stage scores below. 
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Figure 23. First stage hyperparameter grid performance – static, temporal and 
sequential features model (all features model).  The graphs above illustrate how 
performance varied with the hyperparameter value. The hyperparameter values are 
randomly generated and performance is 10-fold-cross-validated on the 
downsampled training dataset (12304 observed sessions). The performance metric 
is the area under the curve (AUC). Note that the hyperparameter combinations were 
generated at random, meaning that one hyperparameter’s observed performance 
may have been influenced by another hyperparameter’s value. These graphs serve 
as guidelines only, in order to limit the range allowed in the second stage of the 
hyperparameter tuning process. From the graphs, the hyperparameter were limited 
to the following ranges: 

• Number	of	trees:	between	700	and	1400	
• Tree	depth:	between	5	and	10	
• Features	allowed:	between	7	and	9	
• Learning	rate:	between	0.005	and	0.03	

 
NOTE: Six more similar figures were produced from the tables (illustrated in Figures 
16 to 22), in order to inform the second stage of the hyperparameter tuning process, 
for each of the six remaining models. 
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For the second hyperparameter tuning process, sixteen hyperparameter combinations were 
fitted for each of the seven models. The hyperparameter grid was randomly generated 
again, but this time limited to within the best performing ranges identified during the first 
hyperparameter tuning stage, described in subsection 3.2.2. Figures 24 to 30, in Appendix 
E, provide detailed descriptions of each hyperparameter setup and its respective 
performance during the second hyperparameter tuning stage, for each of the seven models. 
Note that the aforementioned figures also illustrate the best-performing hyperparameter 
setup for each model. In the second stage of the hyperparameter fitting stage, the fitted 
models’ performance ranged in AUC score from 0.6544 to 0.7987 across the models, as 
illustrated in Figure 31 below. 
 
 

First 
hyperparameter 

tuning stage 
 

Second 
hyperparameter 

tuning stage 
 

Feature 
type 

Min. 
ROC-
AUC 

Max. 
ROC-
AUC 

Min. 
ROC-
AUC 

Max. 
ROC-
AUC 

Number 
of 

features 

Best model’s 
test ROC-

AUC 
Static 0.5 0.7575 0.7561 0.7601 5 0.7646 

Temporal 0.5 0.669 0.6423 0.6544 4 0.6674 
Sequential 0.5 0.7314 0.7313 0.7354 6 0.7488 
Static and 
temporal 

0.5 0.7748 0.7753 0.7798 9 0.7853 

Static and 
sequential 

0.5 0.7782 0.7874 0.7907 11 0.8018 

Temporal 
and 

sequential 

0.5 0.7475 0.7462 0.7528 10 0.7658 

 All feature 
types 

0.5 0.7833 0.7754 0.7987 15 0.8072 

 
 
 
 
 
 
 
 
 
Overall, all the tuned models were skilled to predict conversions well above chance level. 
The temporal clickstream features rendered the weakest performance among the seven 
models, while the model containing all feature types (that is static, temporal and sequential) 
rendered the best performance. Note that the differences between the tuned models’ 
performance on the 10-fold cross-validated train subset is coherent with the differences in 
performance rendered when the tuned models were tested on the test subset. This indicates 
that the differences in performance identified are robust and generalisable, at least to this 
dataset. 
 Figure 32 below illustrates each of the fitted models’ performance on the test data 
subset. The models are sorted by performance in ascending order from left to right. From 
the figure, the temporal data rendered the poorest performance at predicting conversion, 
followed by the sequential and the static features.  

Figure 31. Model performance by hyperparameter tuning stage. The table illustrates 
the minimum and maximum performance, as measured by the ROC-AUC, for each 
of the seven models trained, along with the feature type(s) and the corresponding 
number of features. The test performance of a model’s best performing 
hyperparameter setup is also shown, as shown in the last column. 



Data Science & Society 2020 

 22 

Looking at the models fitted on combinations of different clickstream feature types, the 
temporal and sequential combination of features rendered the poorest performance, 
followed by the static and temporal, and the static and sequential combinations. Lastly, the 
model fitted on all feature types (static, temporal and sequential) rendered the best 
performance. Note that the performance of the static and sequential combination of features 
is close to the performance rendered by the model fitted on all feature types. Also note that 
the model fitted on the static features renders comparable performance to the model fitted 
on the combination of temporal and sequential features. 

 
 

 
 
 
 
 
 

 
 
 

 
 
Lastly, Figures 33 and 34 below illustrate the seven models’ ROC curve and precision-
recall plots, respectively. Figure 33 suggests that none of the models rendered any 
differences in specificity-sensitivity trade-off, while the precision-recall plot in Figure 34, 
suggests that none of the models rendered any differences in precision-recall trade-off, and 
further confirms that all of the models are skilled to predict purchases from the clickstream 
data well above chance level. 
 

Figure 32. Models’ test performance at predicting a purchase (conversion). The 
barplot illustrates each of the fitted and tuned models’ performance on the test subset 
of the clickstream data. The models are denoted by the feature types used and are 
sorted from least to best performing, as measured by the ROC-AUC. The least 
performing model was fitted on the temporal features of the clickstream dataset, 
while the best performing model was fitted on all the feature types (static, temporal 
and sequential).  
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Figure 33. The seven models’ ROC curve plots. The plots illustrate each of the fitted 
and tuned models’ performance on the test subset of the clickstream data. The 
models are denoted by the feature types used and are sorted from least to best 
performing, as measured by the ROC-AUC. The least performing model was fitted 
on the temporal features of the clickstream dataset, while the best performing model 
was fitted on all the feature types (static, temporal and sequential).  

Figure 34. The seven models’ precision-recall plots. The precision-recall 
illustrate each of the fitted and tuned models’ performance on the test subset of 
the clickstream data. A precision of 0.188, illustrated by the dashed line, indicates 
chance performance at predicting purchase events on the test data subset. All 
models make predictions which are above chance-performance level. 
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4.2 Explanatory visualisations 

The explanatory visualisations are extracted from the best-performing model – the model 
fitted on all feature types, 15 features in total. Five features were static, four temporal, and 
six sequential. Two types of explanatory visualisations are produced – a feature importance 
plot and 15 feature effect plots.  

The feature importance plot, shown in Figure 35 below, illustrates the 15 features’ 
importance in predicting the purchase outcome of a session. Features with higher 
importance values are, therefore, more important in predicting conversion. The feature 
importance plot allows UX professionals to attribute importance (what attribution) to each 
of the features used in the modelling process. 

The figure illustrates that the five most important features are static and sequential 
in nature. Note that this is in line with the finding illustrated in Figure 32, which illustrates 
that the static and sequential features render the best predictive performance. The following 
five features seem noticeably less important for predicting the purchase outcome. The least 
important five features are a combination of a static, a temporal, and three sequential 
features. 

 
 

 
 

 
 
 
 
 
The variable effect plots are produced, illustrated and discussed next. Figures 36, 37 and 
38, below, present the static, temporal and sequential features’ effect plots, respectively. 

From Figure 36, the model predicts that the more pageviews (the most important 
predictor) take place in a session, the more likely it is that a purchase is made during the 

Figure 35. Feature importance plot.  
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session. The effect seems to plateau after about 50 pageviews. On the other hand, the more 
products’ details are viewed (the third most important predictor), the less likely it is that a 
purchase is made during the session. Then, sessions where some items were removed from 
basket are more likely to lead to a purchase. This is especially interesting since the remove 
from basket event is the fourth most important predictor. Lastly, events per session and the 
number of indeterministic clicks seem to give somewhat mixed and uninformative results. 
The number indeterministic clicks seem to predict a purchase at first, but this effect drops 
just as sharply after two to three click events occur. The events per session feature seems 
to predict a purchase when few events occur, or many. Note that, since these two features 
are amongst the least important predictors, their interpretation may not provide insights 
even if their results appeared more informative. 

 
 

 
 
 
 
 
 
From Figure 37, the model predicts that the higher the pageview dwell time is, the more 
likely a session is to end with a purchase. Note that although this effect drops slightly as 
the dwell time increases, the rug plot below the line illustrates that the number of 
observations rapidly diminishes after dwell time reaches about 200 seconds – thus, the 
results where few observations are available should be interpreted with caution, if at all. 
Next, the time spent on viewing a product’s detail page rapidly and negatively impacts the 
likelihood that a purchase is made. This effect is especially interesting because the number 
of product detail views also impacts the likelihood of a purchase negatively. The add to 
basket dwell time and a session’s duration seems to be rendering mixed results. This is 
perhaps negligible, given the two features’ importance.  

Figure 36. Static features’ ALE effect plots.  
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From Figure 38, the product detail > pageview > product detail clickstream sequence, the 
pageview > pageview > product detail sequence, and the > product detail > add to basket 
sequence negatively impact the likelihood that a purchase is made during a session. These 
findings link with the previous findings that product detail pageviews and product detail 
dwell time impact the likelihood to purchase negatively. The add to basket > pageview, as 
well as the subsequent addition of items to basket positively impact the likelihood that a 
purchase is made during the session. Lastly, subsequent pageviews also impact the 
likelihood that a purchase is made positively, which is in line with the finding that multiple 
pageviews tend to lead to a purchase (from Figure 36). 
 Altogether, the feature effect plots tend to produce overlapping results between the 
feature types. That is, findings related to the same areas of the website can be represented 
in the static, temporal and sequential aspects of clickstream data. For example, Figure 36 
illustrates that more pageviews (a static feature) are negatively associated with conversion, 
which is also reflected in Figure 38, which shows that the product detail > pageview > 
product detail sequence (a sequential feature) is negatively associated with conversion. 

Figure 37. Temporal features’ ALE effect plots.  
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5. Discussion  

In this section the researched questions posed in this study are addressed first. Then, 
limitations and future studies are briefly discussed. 

5.1 Addressing the research questions 

This main research question addressed in this study is: 
 

RQ: How can clickstream behavioural patterns, as identified by machine learning 
algorithms, be visualised in order to identify website (dis)satisfaction areas on an 
e-commerce website? 

 

Figure 38. Sequential features’ ALE effect plots.  
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This question, in turn, gave rise to three sub-questions. The nature of the study implies that 
the three research sub-questions have to be addressed before the main research question 
can be addressed. Each the SRQ’s is addressed individually next. 
 

SRQ1: Which aspects of clickstream data can predict conversion better? That is, 
do the static, temporal or sequential aspects of clickstream data help predict 
conversion? If so, which of the types renders the best performance? Does	using	
specific	 combinations	 of	 static,	 temporal	 and	 sequential	 data	 outperform	 a	
model	trained	on	a	single	clickstream	data	type?	Does	using	all	three	data	types	
render	better	performance?	

 
Seven models were fitted and contrasted in order to answer SRQ1. Three of the models 
were fitted on individual aspects of clickstream data - static, temporal and sequential 
aspects that is. Then, combinations of the three clickstream data aspects were fitted as four 
separate models – three considering sets of two feature types, such as static and temporal, 
and one considering all of them together.  

The results highlighted that all feature types predict conversion above chance level, 
as illustrated in Figures 32 to 34. Then, as highlighted in Figure 32, the results indicate that, 
of all feature types, the static aspects of clickstream data can predict conversion best, 
followed by the sequential and temporal aspects respectively. All models fitted on 
combinations of static, temporal and sequential data rendered better performance than 
fitting a model on a single aspect of clickstream data. Additionally, making use of all 
aspects of clickstream data rendered the best predictive performance.  

However, the differences in predictive performance between the different aspects 
of clickstream data were not always large. While making use of all aspects of clickstream 
data rendered the best predictive performance, the combination of static and sequential 
features rendered comparable performance (an AUC of 0.8072 for all data types, compared 
with an AUC of 0.8018 rendered by the combination of static and sequential features). The 
difference between the model fitted on the static data alone, and the model fitted on the 
temporal and sequential data combined was also minuscule (an AUC of 0.7658 for the 
model fitted on the temporal and sequential features com, compared with an AUC of 0.7646 
rendered by the model fitted on the static features).  

As an additional evaluation, in order to assess the models’ performance at different 
threshold levels, Figures 33 and 34 compared the specificity-sensitivity trade-off and the 
precision-recall trade-offs between the seven models. A visual inspection of the plots 
revealed no noticeable differences amongst the models. SRQ2 is answered next. 
	

SRQ2: What criteria should be used to assess how good an application aimed at 
illustrating the (non-)converting patters and, by extension, website satisfaction is? 
Specifically, what information should visualisations convey in order to illustrate 
what the differences between the converting and non-converting patterns are? 
And, under what circumstances does contrasting these patterns illustrate website 
(dis)satisfaction? 

 
To inform SRQ2, existing literature was consulted. Therefore, the assessment framework 
illustrated in Figure 4 describes how XAI visualisations should be illustrated in order to 
allow people, and UX professionals by extension, to identify the differences between 
converting and non-converting clickstream behavioural patterns. Specifically, the 
framework proposes that an XAI methodology is suitable to illustrate such (non-
)converting patterns on an e-commerce website successfully, if: 

• The	explanations	are	such	that	UX	professionals	can	contrast	converting	
and	non-converting	patterns,	
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• The	 explanations	 are	 such	 that	 UX	 professionals	 can	 identify	 the	 most	
important	 behavioural	 aspects	 (expressed	 as	 features)	 which	 lead	 to	
conversion,	and	

• The	explanations	are	such	that	UX	professionals	can	identify	how	a	feature	
impacts	the	prediction	outcome.	

 
Lastly, the link between conversion and website (dis)satisfaction was also informed by the 
literature. As illustrated in Figure 1 (and discussed in sub-section 2.1), assessing sessions 
where an intention to purchase is present provides an acceptable trade-off between losing 
information related to website satisfaction and removing the noise accompanied by visits 
where no purchase intent was present. This is because people visit e-commerce platforms 
for multiple reasons other than to make a purchase and, unless information related to these 
alternative reasons is removed, contrasting converting against non-converting patterns is 
more likely to reveal differences in behaviour related to, say, window shopping versus 
purchasing, rather than to illustrate website navigational patterns which are likely to alter 
website satisfaction levels. Thus, removing sessions without a purchase intent provides a 
context whereby the contrasted patterns are more likely be attributed to website satisfaction 
levels. 

 
SRQ3: What XAI methodology, that adheres to the criteria identified in SRQ2, 
could be applied	 in	 order	 to	 allow	UX	 professionals	 identify	 possible	website	
(dis)satisfaction	areas	on	an	e-commerce	website? 

 
The assessment framework identified is summarised in Figure 4, and is, to a large extent, 
reiterated above in order to answer SRQ2. Briefly, it states that explanations should allow 
UX professionals to contrast converting and non-converting patterns by illustrating which 
are the most important features in predicting conversion, and how each of the features used 
for modelling affect the likelihood of a conversion. It further states that sessions where no 
purchase intent was present should be removed in order to increase the chances that the 
patterns identified are related to website satisfaction levels, rather than to alternative visit 
reasons, such as price comparison, or window shopping. Lastly, the proposed framework 
indicates that static, temporal and sequential aspects of clickstream data should be 
considered. 
 The answer to SRQ3 was informed by existing literature and demonstrated through 
an application. In order to illustrate which are the most important features, this study 
proposes a model-agnostic methodology, as first described by Fisher et al. (2019).  

Then, in order to illustrate how the features impact the prediction outcome, this 
study proposes the accumulated local effects (ALE) methodology for plotting feature 
effects, as originally described by  (Apley & Zhu, 2016). This is because the ALE 
methodology is model agnostic, the results are robust to correlation effects, and the 
algorithm is computationally cheap. 

In order to remove sessions where no purchase intent was present, this study 
proposes that sessions where no items were added to basket are removed. This is based on 
literature which identified that sessions where items were added to basket were 
considerably more likely to have a purchase intent. 

Consideration towards the three clickstream data aspects were twofold. First, 
seven models were fitted on individual feature types and combinations thereof, and their 
respective predictive performance was compared and contrasted. Then, the model 
rendering the best predictive performance (the model fitted on all feature types, in this case) 
was used to produce the feature importance plot and the feature effects plots. Then, the 
plots were interpreted in order to compare and contrast the converting and non-converting 
patterns. 
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Answering the three sub-research questions culminates with an overarching answer, in the 
form of a proposed methodology, to the main research question: How can clickstream 
behavioural patterns, as identified by machine learning algorithms, be visualised in order 
to identify website (dis)satisfaction areas on an e-commerce website? This is summarised 
below, in short: 
 

• First,	 summarise	 the	 clickstream	 data	 at	 session	 level	 (sessionalise	 the	
data),	such	that	static,	temporal	and	sequential	features	are	extracted,	

• Then,	identify,	or	use	a	proxy	for	purchase	intent	(such	as	the	add	to	basket	
event)	and	remove	all	sessions	without	purchase	intent,	

• Next,	fit	multiple	models	on	the	sessionalised	dataset	in	order	to	determine	
how	the	static,	temporal	and	sequential	aspects	of	clickstream	data	impact	
predictive	performance,	then	

• Use	a	permutation-based	algorithm	to	identify	and	plot	the	most	important	
features,	and	

• Then,	use	the	ALE	methodology	to	illustrate	how	the	features	impact	the	
model.	

• Lastly,	compare	and	contrast	the	identified	patterns.	
 

 
This proposed methodology produced explanations which allow UX professionals to 
contrast patterns, identify important features (what attribution), and, identify how each of 
the features impact the prediction outcome (how attribution). And, since sessions without 
a purchase intent are removed from the data, the resulting patterns (and visualisations) are 
more likely to be attributed to website (dis)satisfaction. 

From an academic perspective, both contributions filled a wide gap in the 
literature. Because of the limited literature on the topic, the assessment framework is the 
first of its kind, thus paving the way for future work to build upon it. Then, by linking the 
methodology to the assessment framework and current XAI visualisation methodologies, 
this paper contributed to the literature by providing a robust methodology for identifying 
complex clickstream behavioural patterns, as they relate to web satisfaction, and visualising 
them.  

From a practitioner’s perspective, this study’s contributions are twofold. First, by 
developing a literature-backed assessment framework, future applications could be 
developed with these criteria as a guideline. This could inform practitioners wanting to 
assess such a tool, and developers aiming to develop one. Second, the proposed XAI 
methodology informs the development of future XAI applications aimed at illustrating 
website satisfaction levels. This methodology could be extended to websites other than e-
commerce, or event to mobile application assessments. 

5.2 Considerations, limitations and future work 

5.2.1 Assessment framework considerations and future studies 
SRQ1 identified that some (combinations of) aspects of clickstream data are better at 
predicting conversion than others. The static clickstream features were the best individual 
clickstream data aspect at predicting performance, while the combination of static and 
sequential features produced predictive performance comparable to the model fitted on all 
feature types. Additionally, the ALE plots illustrated that there the insights derived from 
one aspect of clickstream data overlap with insights extracted from another. This suggests 
that not all aspects of feature data need to be used. Performance-wise, the static and 



Data Science & Society 2020 

 31 

sequential aspects of clickstream data tend to render the best results. However, temporal 
clickstream data could reveal patterns which are relevant to UX professionals. In practice, 
performance and domain-specific considerations should be addressed, before developing 
such an application. 

Next, the proposed assessment framework states that only sessions where there 
was a purchase intent should be analysed, so that differences between converting and non-
converting behavioural patterns are illustrating web (dis)satisfaction areas. This in itself is 
a limitation both because website satisfaction could lead to purchase intent, and because, 
even if a session has purchase intent, visitors could decide not to make a purchase due to 
reasons other than website (dis)satisfaction. Such information is lost by applying the 
proposed methodology. 

Lastly, in order to remove sessions without purchase intent, the add to basket event 
was used as a proxy, which is an imperfect measure of purchase intent. Future studies could 
experiment with different methodologies of identifying purchase intent, such as training a 
machine learning model to predict purchase intent.  

5.2.2 Modelling limitations and future studies 
Four main limitations are identified with the modelling.  

First, the sequential information is limited to digrams and trigrams. Future studies 
could include more, or higher order, n-grams into the analysis. This could improve model 
performance and reveal interesting patterns.  

Second, this study was limited to one class of machine learning algorithm. Existing 
literature finds that different classes of models identify different aspects of clickstream 
behaviour. Future studies could focus on comparing and contrasting the behavioural 
patterns identified by various classes of machine learning algorithms. 
 Third, due to time and computing resources constraints, limited model tuning was 
performed. Fine-grained hyperparameter tuning could have rendered better predictive 
performance.  Experimenting with different sampling techniques, such as upsampling or 
leaving the dataset unbalanced, could have rendered better results also. 

Lastly, interaction effects between variables were not considered for illustrative 
purposes in this study. Such illustrations would add a new dimension to the methodology 
and it should be considered in future studies. 
 

5.2.3 Interpretation-related limitations and future studies 
The explanations produced, have not been tested in practice. Future studies could test how 
useful these applications are for practicing UX professionals. Notably, in sub-section 4.2 
the interpretations dealt with how the features impact the models but did not discuss 
whether such findings inform UX professionals about a website’s (dis)satisfaction, or 
whether such insights are useful to UX professionals. While the existence of clickstream 
visualisation software and an identified need for better clickstream visualisation tools 
suggests that these insights might be useful, this should also be tested in practice. 

6. Conclusion  

This study began by arguing that, while the importance of a user’s website satisfaction is 
becoming increasingly important, a wide gap in the literature regarding the visualisation of 
complex behavioural clickstream patterns, for website satisfaction levels, exists. It then 
proposed that, since machine learning is good at picking up underlying patterns in the data, 
such patterns could be visualised by applying XAI methodologies. However, since the 
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conjunction between XAI and UX design is yet an underexploited field of study, an 
assessment framework was informed and developed by reviewing existing literature on 
clickstream data applications and literature that links social sciences, human-computer 
interaction and XAI methodologies together. 
 The proposed framework, illustrated in Figure 4, proposes that XAI applications 
aimed at illustrating how clickstream behavioural patterns are linked to website satisfaction 
should consider the static (i.e. number of pageviews), temporal (i.e. product detail dwell 
time), and sequential (i.e. a user viewed the product detail and added it to basket, in that 
sequence) aspects of clickstream data. It then states that, in order to minimise the chance 
that the observed behavioural pattern contrast is due to reasons other than website 
satisfaction (such as price comparison), sessions without an intention to purchase should 
be removed. Lastly, it states that explanations should allow UX professionals to contrast 
the converting and non-converting patterns, identify which are the most important features, 
and how each of the features impacts the prediction outcome. 

To illustrate how an application would fit within the framework, an application 
using clickstream data from a major European e-commerce fashion store was performed. 
To this end, seven XGBoost models were fitted on individual aspects of clickstream data 
and combinations thereof, in order to identify which aspects of clickstream data best predict 
conversion. The findings suggest that static clickstream data predicts conversion the best. 
Combining static data with other types of clickstream data renders considerably better 
predictions. In order to illustrate feature importance, a permutation-based algorithm was 
proposed. How the features impact the model was illustrated via ALE plots. This study 
concludes that the combination of feature importance plots and ALE plots allows UX 
professionals to contrast patterns, while illustrating what features impact conversion, and 
how they impact it. As long as sessions for which purchase intent was highly likely, linking 
conversion to website satisfaction levels is implicit. 

The assessment framework paves the way for future studies to build upon it, while 
providing practitioners with an application-assessment tool. The proposed methodology 
provides practitioners with an example application to inform future developments and 
establishes best XAI practices for future studies to build upon. 
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Appendix A: Wang et al. (2019) HCI-XAI  Framework 
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Appendix B: Descriptive statistics  

 

 

 

 

 

 

n n-gram event sequence Freq. count % of total 

2 pageview > product detail 358,213 24.66% 

2 pageview > pageview 310,246 21.35% 

2 Product detail > pageview 280,618 19.32% 

2 Add to basket > add to basket 145,227 9.99% 

2 Product detail > add to basket 83,846 5.77% 

2 add to basket > pageview 78,584 5.41% 

3 pageview > product detail > pageview 250,069 17.62% 

3 product detail > pageview > product detail 202,821 14.23% 

3 pageview > pageview > pageview 190,531 13.43% 

3 add to basket > add to basket > add to basket 135,692 9.56% 

3 pageview > pageview > product detail 92,547 6.52% 

Figure 9. Histogram illustrating the time between clickstream events 

Figure 10. Table illustrating the most frequent 2 and 3 event n-grams. 



Data Science & Society 2020 

 40 

Feature Type Mean Std. Dev. Min Median Max 
Pageview Static 22.23 16.46 1 17 134 
Product detail Static 13.89 12.98 1 10 173 
Add to basket* Static 6.82 17.53 1 2 185 
Remove from basket Static 1.06 2.59 0 0 72 
click Static 0.61 2.25 0 0 40 
Session duration (s) Temporal 2035.52 1753.45 44 1514 20269 
Session events Static 44.61 34.69 10 33 199 
Pageview avg time (s) Temporal 49.37 44.24 0 36.06 1421 
Detail avg time (s) Temporal 69.82 65.69 0 53 1742 
Add avg time (s) Temporal 41.24 76.1 0 25 1755 
Pageview> detail* Sequential 10.77 10.45 0 7 87 
Pageview> pageview* Sequential 5.54 4.8 0 4 57 
Detail> pageview* Sequential 8.34 9.19 0 5 83 
Add>add Sequential 2.09 8.73 0 0 92 
Detail>add Sequential 2.51 2.7 0 2 38 
Add>pageview Sequential 2.32 2.59 0 1 37 
Pageview>detail>pageview* Sequential 4.77 5.24 0 3 46 
Pageview 3x Sequential 2.72 2.79 0 2 38 
Detail>pageview>detail Sequential 3.87 4.53 0 2 44 
Add 3x* Sequential 1.29 5.77 0 0 61 
Pageview>pageview>detail Sequential 2.77 2.35 0 2 22 

 

* = feature dropped before modelling due to high correlation (>0.9) with other features. 

Figure 11. Summary statistics of the pre-processed dataset 
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Figure 12. Pearson correlations of the sessionalised dataset. The correlation matrix in 
this figure indicates the correlations between the explanatory variables, as observed on 
the training subset of the sessionalised dataframe. Some of the correlations are near-
perfect (> 0.9), illustrating collinearity between them. 
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Appendix C: Contrasting probability distribution functions by purchase outcome 

 

 
 
 

Figure 13. Static features’ PDFs contrasted by 
purchase outcome. Converting sessions tend to 
have more pageviews and events per session 
but less product detail views. 
 

Figure 14. Temporal features’ PDFs contrasted by purchase outcome. Converting 
sessions tend to spend less time viewing product details and the dwell time to add 
to basket is shorter, while pageviews tend to take longer. 
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Figure 15. Sequential features’ PDFs contrasted by purchase outcome. 
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Appendix D: Hyperparameter tuning first stage results 

Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

4 1161 9 0.0003 0.7575 10 0.0047 
4 776 8 0.0001 0.757 10 0.0045 
1 402 14 0.0052 0.7548 10 0.0049 
3 1685 13 0.0000 0.7542 10 0.0044 
5 1008 9 0.0001 0.7532 10 0.0046 
5 1533 11 0.0001 0.7502 10 0.0048 
4 1962 2 0.0001 0.7463 10 0.0047 
3 234 5 0.0225 0.7456 10 0.0046 
5 935 7 0.0022 0.745 10 0.0048 
2 1297 5 0.0001 0.7425 10 0.0043 
2 889 3 0.0001 0.7421 10 0.0045 
1 400 11 0.0001 0.7394 10 0.0054 
5 1386 10 0.0472 0.7392 10 0.0038 
6 692 15 0.0001 0.7388 10 0.0056 
6 1790 2 0.0001 0.7376 10 0.0057 
2 527 12 0.0001 0.7345 10 0.0043 
3 1460 2 0.0008 0.7241 10 0.005 
3 1825 12 0.0001 0.7148 10 0.0049 
2 189 4 0.0001 0.5 10 0 
4 63 6 0.0001 0.5 10 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. First stage hyperparamter grid results – static features model. This table 
illustrates the performance results (rounded to 4 decimal places) for the first stage 
of the hyperparameter tuning procedure, ordered by performance. Each of the 20 
setups is randomly generated and 10-fold-cross-validated on the downsampled 
training dataset (12304 observed sessions). The performance metric is the area 
under the curve (AUC). Based on these results, the hyperparameter grid was 
restricted during the second hyperparameter tuning stage as follows: 

• Number	of	trees:	between	750	and	1400	
• Tree	depth:	between	7	and	9	
• Features	allowed:	between	4	and	6	
• Learning	rate:	>=		0.005	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

2 234 2 0.0225 0.669 10 0.0049 
4 935 3 0.0022 0.6649 10 0.0046 
3 1962 5 0.0001 0.663 10 0.0041 
3 1533 7 0.0001 0.6602 10 0.0044 
3 1161 9 0.0003 0.6592 10 0.0045 
2 1460 2 0.0008 0.6581 10 0.005 
1 402 11 0.0052 0.6567 10 0.0045 
3 1008 9 0.0001 0.6566 10 0.0047 
2 1685 8 0.0001 0.6515 10 0.0061 
3 776 14 0.0001 0.6496 10 0.0044 
1 527 5 0.0001 0.6476 10 0.0033 
2 1825 2 0.0001 0.646 10 0.0053 
2 1297 13 0.0001 0.6419 10 0.006 
1 889 10 0.0001 0.6353 10 0.0036 
1 400 12 0.0001 0.6342 10 0.0038 
4 692 12 0.0001 0.6319 10 0.0038 
4 1790 15 0.0001 0.6316 10 0.003 
3 1386 11 0.0472 0.6269 10 0.0061 
2 189 4 0.0001 0.5 10 0 
3 63 6 0.0001 0.5 10 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. First stage hyperparameter grid results – temporal features model. This 
table illustrates the performance results (rounded to 4 decimal places) for the first 
stage of the hyperparameter tuning procedure, ordered by performance. Each of the 
20 setups is randomly generated and 10-fold-cross-validated on the downsampled 
training dataset (12304 observed sessions). The performance metric is the area 
under the curve (AUC). Based on these results, the hyperparameter grid was 
restricted during the second hyperparameter tuning stage as follows: 

• Number	of	trees:	between	800	and	1200	
• Tree	depth:	between	7	and	9	
• Features	allowed:	between	1	and	2	
• Learning	rate:	between	0.005	and	0.03	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

4 1161 9 0.0003 0.7314 10 0.004 
4 776 14 0.0001 0.7309 10 0.0036 
3 1685 8 0.0001 0.7305 10 0.004 
3 234 2 0.0225 0.7296 10 0.0043 
1 402 11 0.0052 0.7291 10 0.0038 
4 1962 5 0.0001 0.7289 10 0.0044 
5 1533 7 0.0001 0.7284 10 0.004 
5 1008 9 0.0001 0.7276 10 0.0041 
5 935 3 0.0022 0.7274 10 0.0044 
2 1297 13 0.0001 0.7239 10 0.0039 
2 889 10 0.0001 0.7237 10 0.004 
2 527 5 0.0001 0.7215 10 0.0046 
3 1460 2 0.0008 0.7189 10 0.0044 
5 1386 11 0.0472 0.7131 10 0.0038 
1 400 12 0.0001 0.7125 10 0.0039 
6 692 12 0.0001 0.7123 10 0.0036 
6 1790 15 0.0001 0.7114 10 0.0038 
3 1825 2 0.0001 0.7044 10 0.0043 
2 189 4 0.0001 0.5 10 0 
4 63 6 0.0001 0.5 10 0 

 
 
 
 
 
 
 
 
 
  

Figure 18. First stage hyperparameter grid results – sequential features model. This 
table illustrates the performance results (rounded to 4 decimal places) for the first 
stage of the hyperparameter tuning procedure, ordered by performance. Each of the 
20 setups is randomly generated and 10-fold-cross-validated on the downsampled 
training dataset (12304 observed sessions). The performance metric is the area 
under the curve (AUC). Based on these results, the hyperparameter grid was 
restricted during the second hyperparameter tuning stage as follows: 

• Number	of	trees:	between	750	and	1400	
• Tree	depth:	between	7	and	9	
• Features	allowed:	between	5	and	6	
• Learning	rate:	>=		0.005	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

6 776 14 0.0001 0.7748 10 0.0043 
7 1161 9 0.0003 0.7734 10 0.0044 
5 1685 8 0.0001 0.7733 10 0.004 
1 402 11 0.0052 0.7702 10 0.0046 
8 1008 9 0.0001 0.7669 10 0.0043 
3 1297 13 0.0001 0.7661 10 0.0036 
4 234 2 0.0225 0.7642 10 0.0042 
8 1533 7 0.0001 0.763 10 0.0042 
6 1962 5 0.0001 0.7628 10 0.0042 
9 935 3 0.0022 0.7593 10 0.0045 
9 1790 15 0.0001 0.757 10 0.0045 
2 889 10 0.0001 0.7513 10 0.0036 
8 1386 11 0.0472 0.7492 10 0.0039 
2 527 5 0.0001 0.7488 10 0.0042 
5 1460 2 0.0008 0.7398 10 0.0047 
1 400 12 0.0001 0.7372 10 0.0039 
10 692 12 0.0001 0.734 10 0.004 
5 1825 2 0.0001 0.7275 10 0.0045 
3 189 4 0.0001 0.5 10 0 
7 63 6 0.0001 0.5 10 0 

 
 
 
 
 
 
 
 
 
  

Figure 19. First stage hyperparameter grid results – static and temporal features 
model. This table illustrates the performance results (rounded to 4 decimal places) 
for the first stage of the hyperparameter tuning procedure, ordered by performance. 
Each of the 20 setups is randomly generated and 10-fold-cross-validated on the 
downsampled training dataset (12304 observed sessions). The performance metric 
is the area under the curve (AUC). Based on these results, the hyperparameter grid 
was restricted during the second hyperparameter tuning stage as follows: 

• Number	of	trees:	between	750	and	1400	
• Tree	depth:	between	7	and	9	
• Features	allowed:	between	5	and	6	
• Learning	rate:	>=		0.005	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

7 1161 9 0.0003 0.7782 10 0.0043 
7 776 14 0.0001 0.7774 10 0.0041 
5 1685 8 0.0001 0.7764 10 0.0041 
8 1386 11 0.0472 0.7739 10 0.0038 
9 1008 9 0.0001 0.7717 10 0.0043 
3 1297 13 0.0001 0.7689 10 0.0039 
6 1962 5 0.0001 0.768 10 0.0043 
9 1533 7 0.0001 0.7678 10 0.0045 
10 1790 15 0.0001 0.7667 10 0.0041 
3 527 5 0.0001 0.7649 10 0.0045 
2 402 11 0.0052 0.7649 10 0.0038 
4 234 2 0.0225 0.7625 10 0.0041 
10 935 3 0.0022 0.7598 10 0.0041 
2 889 10 0.0001 0.7582 10 0.0041 
1 400 12 0.0001 0.7519 10 0.0042 
11 692 12 0.0001 0.7507 10 0.0042 
5 1460 2 0.0008 0.746 10 0.0051 
6 1825 2 0.0001 0.732 10 0.0051 
4 189 4 0.0001 0.5 10 0 
8 63 6 0.0001 0.5 10 0 

 
 
 
 
 
 
 
 
 
  

Figure 20. First stage hyperparameter grid results – static and sequential features 
model. This table illustrates the performance results (rounded to 4 decimal places) 
for the first stage of the hyperparameter tuning procedure, ordered by performance. 
Each of the 20 setups is randomly generated and 10-fold-cross-validated on the 
downsampled training dataset (12304 observed sessions). The performance metric 
is the area under the curve (AUC). Based on these results, the hyperparameter grid 
was restricted during the second hyperparameter tuning stage as follows: 

• Number	of	trees:	between	1000	and	1400	
• Tree	depth:	between	7	and	9	
• Features	allowed:	between	5	and	7	
• Learning	rate:	>=		0.005	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

5 1685 8 0.0001 0.7475 10 0.0043 
6 776 14 0.0001 0.7461 10 0.0038 
7 1161 9 0.0003 0.7447 10 0.004 
4 234 2 0.0225 0.7443 10 0.0042 
1 402 11 0.0052 0.7408 10 0.0048 
3 1297 13 0.0001 0.7406 10 0.0039 
9 935 3 0.0022 0.7391 10 0.0039 
6 1962 5 0.0001 0.7385 10 0.004 
8 1008 9 0.0001 0.7373 10 0.0041 
8 1533 7 0.0001 0.7354 10 0.0038 
2 527 5 0.0001 0.735 10 0.0044 
2 889 10 0.0001 0.7327 10 0.0041 
9 1790 15 0.0001 0.7268 10 0.0036 
5 1460 2 0.0008 0.7267 10 0.0042 
8 1386 11 0.0472 0.7206 10 0.0046 
5 1825 2 0.0001 0.7124 10 0.005 
1 400 12 0.0001 0.7062 10 0.0043 
10 692 12 0.0001 0.7029 10 0.0041 
3 189 4 0.0001 0.5 10 0 
7 63 6 0.0001 0.5 10 0 

 
 
 
 
 
 
 
 
 
 
  

Figure 21. First stage hyperparameter grid results – temporal and sequential 
features model. This table illustrates the performance results (rounded to 4 decimal 
places) for the first stage of the hyperparameter tuning procedure, ordered by 
performance. Each of the 20 setups is randomly generated and 10-fold-cross-
validated on the downsampled training dataset (12304 observed sessions). The 
performance metric is the area under the curve (AUC). Based on these results, the 
hyperparameter grid was restricted during the second hyperparameter tuning stage 
as follows: 

• Number	of	trees:	between	750	and	1400	
• Tree	depth:	between	7	and	9	
• Features	allowed:	between	5	and	7	
• Learning	rate:	>=		0.005	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

10 1161 9 0.0003 0.7833 10 0.0039 
7 1685 8 0.0001 0.7832 10 0.0038 
9 776 14 0.0001 0.7831 10 0.0038 
4 1297 13 0.0001 0.7790 10 0.004 
12 1008 9 0.0001 0.7750 10 0.0041 
11 1386 11 0.0472 0.7742 10 0.004 
6 234 2 0.0225 0.7739 10 0.004 
9 1962 5 0.0001 0.7725 10 0.004 
12 1533 7 0.0001 0.7724 10 0.004 
3 527 5 0.0001 0.7708 10 0.0043 
13 935 3 0.0022 0.7702 10 0.0042 
2 402 11 0.0052 0.7671 10 0.0036 
2 889 10 0.0001 0.7620 10 0.004 
14 1790 15 0.0001 0.7549 10 0.0054 
7 1460 2 0.0008 0.7520 10 0.0049 
1 400 12 0.0001 0.7430 10 0.0045 
8 1825 2 0.0001 0.7391 10 0.0056 
15 692 12 0.0001 0.7385 10 0.005 
5 189 4 0.0001 0.5 10 0 
11 63 6 0.0001 0.5 10 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22. First stage hyperparameter grid results – static, temporal and sequential 
features model (all features model). This table illustrates the performance results 
(rounded to 4 decimal places) for the first stage of the hyperparameter tuning 
procedure, ordered by performance. Each of the 20 setups is randomly generated 
and 10-fold-cross-validated on the downsampled training dataset (12304 observed 
sessions). The performance metric is the area under the curve (AUC). Based on these 
results, the hyperparameter grid was restricted during the second hyperparameter 
tuning stage as follows: 

• Number	of	trees:	between	750	and	1400	
• Tree	depth:	between	7	and	9	
• Features	allowed:	between	5	and	10	
• Learning	rate:	>=		0.005	
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Appendix E: Hyperparameter tuning second stage results 

Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

5 880 7 0.0052 0.7601 10 0.0047 
5 1101 7 0.0084 0.7586 10 0.0047 
4 958 8 0.0062 0.7584 10 0.0045 
6 844 7 0.0097 0.7582 10 0.0047 
5 1104 7 0.0098 0.7581 10 0.0047 
4 844 8 0.0099 0.7579 10 0.0044 
6 1232 7 0.0084 0.7578 10 0.0048 
4 1270 8 0.0061 0.7576 10 0.0044 
5 1389 8 0.0064 0.7575 10 0.0047 
6 995 8 0.0091 0.7574 10 0.0046 
5 1191 8 0.0097 0.7567 10 0.0047 
4 1179 8 0.0094 0.7566 10 0.0044 
4 1100 9 0.0078 0.7565 10 0.0044 
4 1065 9 0.0089 0.7563 10 0.0045 
4 993 9 0.0089 0.7563 10 0.0045 
4 1064 9 0.0092 0.7561 10 0.0045 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 24. Second stage hyperparameter grid results – static features model. This 
table illustrates the performance results for the second stage of the hyperparameter 
tuning procedure, ordered by performance. Each of the 16 randomly generated 
setups limits the hyperparameters within the ranges identified during the first stage. 
Note that, since 4 hyperparameters were tuned, each hyperparameter is evaluated 
twice, holding all other hyperparameters constant. All setups are 10-fold-cross-
validated on the downsampled training dataset (12304 observed sessions). The 
performance metric is the area under the curve (AUC). The best-performing setup 
for the XGBoost algorithm is as follows: 

• Number	of	trees:	880	
• Tree	depth:	7	
• Features	allowed:	5	
• Learning	rate:	between	0.0052	
• Minimum	observations	for	another	split:	10	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

2 1045 8 0.0055 0.6544 10 0.0066 
1 1087 9 0.0109 0.653 10 0.0055 
2 1154 7 0.0126 0.6512 10 0.0065 
1 1114 7 0.0229 0.6501 10 0.0057 
1 1116 7 0.0261 0.6488 10 0.0056 
1 927 8 0.0271 0.6486 10 0.0054 
2 1128 7 0.0197 0.6485 10 0.0065 
1 1008 9 0.0202 0.6479 10 0.0055 
1 1150 7 0.0298 0.6472 10 0.0058 
1 1112 8 0.0254 0.6466 10 0.0053 
1 930 8 0.0285 0.6455 10 0.0055 
2 1153 7 0.0255 0.6451 10 0.0064 
2 894 8 0.0253 0.6449 10 0.0068 
2 1151 8 0.0192 0.6444 10 0.0066 
2 808 9 0.0284 0.6428 10 0.0067 
2 1154 8 0.0261 0.6423 10 0.0065 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 25. Second stage hyperparameter grid results –temporal features model. This 
table illustrates the performance results for the second stage of the hyperparameter 
tuning procedure, ordered by performance. Each of the 16 randomly generated 
setups limits the hyperparameters within the ranges identified during the first stage. 
Note that, since 4 hyperparameters were tuned, each hyperparameter is evaluated 
twice, holding all other hyperparameters constant. All setups are 10-fold-cross-
validated on the downsampled training dataset (12304 observed sessions). The 
performance metric is the area under the curve (AUC). The best-performing setup 
for the XGBoost algorithm is as follows: 

• Number	of	trees:	1045	
• Tree	depth:	8	
• Features	allowed:	2	
• Learning	rate:	between	0.0055	
• Minimum	observations	for	another	split:	10	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

6 1191 7 0.0051 0.7354 10 0.0038 
6 1065 7 0.0061 0.7352 10 0.0038 
5 844 7 0.0092 0.7352 10 0.0036 
6 844 7 0.0084 0.7351 10 0.0037 
5 1232 7 0.0064 0.7351 10 0.0036 
5 958 7 0.0086 0.735 10 0.0036 
5 1064 7 0.0094 0.7347 10 0.0036 
6 993 8 0.0052 0.7342 10 0.0037 
5 1389 8 0.0062 0.7338 10 0.0037 
6 1100 8 0.0065 0.7336 10 0.0036 
5 995 8 0.0097 0.7332 10 0.0035 
6 1104 8 0.0091 0.7331 10 0.0034 
6 1101 8 0.0092 0.7329 10 0.0034 
5 1179 9 0.01 0.7314 10 0.0035 
6 1270 9 0.0078 0.7313 10 0.0036 
6 880 9 0.0097 0.7313 10 0.0036 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 26. Second stage hyperparameter grid results –sequential features model. 
This table illustrates the performance results for the second stage of the 
hyperparameter tuning procedure, ordered by performance. Each of the 16 randomly 
generated setups limits the hyperparameters within the ranges identified during the 
first stage. Note that, since 4 hyperparameters were tuned, each hyperparameter is 
evaluated twice, holding all other hyperparameters constant. All setups are 10-fold-
cross-validated on the downsampled training dataset (12304 observed sessions). The 
performance metric is the area under the curve (AUC). The best-performing setup 
for the XGBoost algorithm is as follows: 

• Number	of	trees:	1191	
• Tree	depth:	7	
• Features	allowed:	6	
• Learning	rate:	between	0.0051	
• Minimum	observations	for	another	split:	10	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

6 1191 7 0.0051 0.7798 10 0.0042 
5 1232 7 0.0064 0.7797 10 0.0042 
5 958 7 0.0086 0.7794 10 0.0041 
6 1065 7 0.0061 0.7793 10 0.0043 
6 844 7 0.0084 0.7792 10 0.0042 
6 993 8 0.0052 0.7791 10 0.0043 
5 844 7 0.0092 0.7788 10 0.0042 
5 1064 7 0.0094 0.7786 10 0.0041 
5 1389 8 0.0062 0.7784 10 0.0042 
6 1100 8 0.0065 0.7781 10 0.0043 
5 995 8 0.0097 0.7771 10 0.0042 
6 1101 8 0.0092 0.7768 10 0.0043 
6 880 9 0.0097 0.7765 10 0.0043 
6 1104 8 0.0091 0.7761 10 0.0042 
6 1270 9 0.0078 0.7755 10 0.0043 
5 1179 9 0.01 0.7753 10 0.0042 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 27. Second stage hyperparameter grid results – static and temporal features 
model. This table illustrates the performance results for the second stage of the 
hyperparameter tuning procedure, ordered by performance. Each of the 16 randomly 
generated setups limits the hyperparameters within the ranges identified during the 
first stage. Note that, since 4 hyperparameters were tuned, each hyperparameter is 
evaluated twice, holding all other hyperparameters constant. All setups are 10-fold-
cross-validated on the downsampled training dataset (12304 observed sessions). The 
performance metric is the area under the curve (AUC). The best-performing setup 
for the XGBoost algorithm is as follows: 

• Number	of	trees:	1191	
• Tree	depth:	7	
• Features	allowed:	6	
• Learning	rate:	between	0.0051	
• Minimum	observations	for	another	split:	10	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

7 1328 7 0.0086 0.7907 10 0.0039 
6 1351 7 0.0084 0.7907 10 0.0039 
7 1208 7 0.0094 0.7906 10 0.004 
7 1354 7 0.0098 0.7903 10 0.0039 
6 1130 7 0.0064 0.7899 10 0.004 
7 1312 7 0.0051 0.7897 10 0.0039 
6 1127 8 0.0091 0.7897 10 0.004 
7 1354 8 0.0092 0.7896 10 0.0039 
6 1316 8 0.0062 0.7896 10 0.0041 
6 1008 7 0.0061 0.7896 10 0.004 
5 1287 8 0.0052 0.789 10 0.0041 
5 1350 8 0.0097 0.7885 10 0.0039 
5 1094 8 0.0065 0.7884 10 0.0041 
5 1353 9 0.0084 0.7882 10 0.0039 
5 1245 9 0.0078 0.7881 10 0.004 
5 1314 9 0.0097 0.7874 10 0.0038 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 28. Second stage hyperparameter grid results – static and sequential features 
model. This table illustrates the performance results for the second stage of the 
hyperparameter tuning procedure, ordered by performance. Each of the 16 randomly 
generated setups limits the hyperparameters within the ranges identified during the 
first stage. Note that, since 4 hyperparameters were tuned, each hyperparameter is 
evaluated twice, holding all other hyperparameters constant. All setups are 10-fold-
cross-validated on the downsampled training dataset (12304 observed sessions). The 
performance metric is the area under the curve (AUC). The best-performing setup 
for the XGBoost algorithm is as follows: 

• Number	of	trees:	1328	
• Tree	depth:	7	
• Features	allowed:	7	
• Learning	rate:	between	0.0086	
• Minimum	observations	for	another	split:	10	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

6 880 7 0.0052 0.7528 10 0.0044 
7 844 7 0.0097 0.7519 10 0.0045 
6 1101 7 0.0084 0.7512 10 0.0045 
5 958 8 0.0062 0.7508 10 0.0046 
5 1270 8 0.0061 0.7505 10 0.0045 
7 1232 7 0.0084 0.7504 10 0.0046 
5 844 8 0.0099 0.7504 10 0.0046 
6 1389 8 0.0064 0.7503 10 0.0048 
6 1104 7 0.0098 0.7501 10 0.0046 
7 995 8 0.0091 0.7499 10 0.0048 
5 993 9 0.0089 0.7482 10 0.0047 
5 1179 8 0.0094 0.7481 10 0.0046 
5 1065 9 0.0089 0.748 10 0.0046 
5 1100 9 0.0078 0.7477 10 0.0045 
6 1191 8 0.0097 0.7473 10 0.0047 
5 1064 9 0.0092 0.7462 10 0.0047 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 29. Second stage hyperparameter grid results – temporal and sequential 
features model. This table illustrates the performance results for the second stage of 
the hyperparameter tuning procedure, ordered by performance. Each of the 16 
randomly generated setups limits the hyperparameters within the ranges identified 
during the first stage. Note that, since 4 hyperparameters were tuned, each 
hyperparameter is evaluated twice, holding all other hyperparameters constant. All 
setups are 10-fold-cross-validated on the downsampled training dataset (12304 
observed sessions). The performance metric is the area under the curve (AUC). The 
best-performing setup for the XGBoost algorithm is as follows: 

• Number	of	trees:	880	
• Tree	depth:	7	
• Features	allowed:	6	
• Learning	rate:	between	0.0052	
• Minimum	observations	for	another	split:	10	
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Features 
allowed 

Trees Tree 
depth 

Learn rate Mean AUC n Std. 
error 

9 1400 5 0.0116 0.7987 10 0.0039 
7 1400 5 0.0116 0.7986 10 0.0039 
7 750 5 0.0116 0.7973 10 0.0037 
9 750 5 0.0116 0.7971 10 0.0038 
9 750 10 0.0116 0.796 10 0.0041 
7 750 10 0.0116 0.7954 10 0.004 
9 1400 10 0.0116 0.7945 10 0.004 
7 1400 10 0.0116 0.7936 10 0.0039 
9 750 5 0.0715 0.7917 10 0.0037 
7 750 5 0.0715 0.7915 10 0.0038 
7 1400 5 0.0715 0.7842 10 0.0037 
9 1400 5 0.0715 0.7838 10 0.0036 
7 750 10 0.0715 0.7826 10 0.0036 
9 750 10 0.0715 0.7816 10 0.0034 
9 1400 10 0.0715 0.7757 10 0.0034 
7 1400 10 0.0715 0.7754 10 0.0037 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30. Second stage hyperparameter grid results – static, temporal and 
sequential features model (all features model). This table illustrates the 
performance results for the second stage of the hyperparameter tuning procedure, 
ordered by performance. Each of the 16 randomly generated setups limits the 
hyperparameters within the ranges identified during the first stage. Note that, since 
4 hyperparameters were tuned, each hyperparameter is evaluated twice, holding all 
other hyperparameters constant. All setups are 10-fold-cross-validated on the 
downsampled training dataset (12304 observed sessions). The performance metric 
is the area under the curve (AUC). The best-performing setup for the XGBoost 
algorithm is as follows: 

• Number	of	trees:	1400	
• Tree	depth:	5	
• Features	allowed:	9	
• Learning	rate:	between	0.0116	
• Minimum	observations	for	another	split:	10	

 
 


