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Abstract 

Network models are increasingly popular for describing psychological phenomena. Recent years 

translated into rapid methodological advancements, a significant amount of work being dedicated 

to assessing the accuracy of estimated network parameters, after the data has been collected. In 

the current work we suggest an approach, aimed at researchers who wish to know beforehand 

what sample size is roughly needed in order to accurately estimate a hypothesized network 

structure. We employ a simulation study with five design factors (i.e., sample size, network 

architecture, network connectedness, number of nodes, and type of data), and assess the 

estimation performance looking at three indicators: sensitivity, specificity, and edge weights 

correlation. Ours results show that, for both binary and ordinal data, the estimation methods 

work well and, although, not all edges are successfully retrieved (i.e., moderate sensitivity), 

those retrieved can be generally considered accurate (i.e., high specificity). This is further 

confirmed by a high edge weights correlation coefficient. We found that sample sizes ranging 

from 250 to 350 are generally enough to observe moderate sensitivity, high specificity, and high 

edge weights correlation, when the networks are sparse and consist of 20 nodes or less. The 

simulation design and steps discussed in this study are implemented as a freely available 𝑅𝑅 

package called 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 

Keywords:  network models, sample size, accuracy, cross-sectional data, Ising, GGM 
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Sample Size Recommendations for Estimating Cross-Sectional Network Models 

The network approach to psychopathology serves as an increasingly popular framework 

aimed at explaining the onset and maintenance of mental disorders (Borsboom, Cramer, 

Schmittmann, Epskamp, & Waldorp, 2011; Boschloo et al., 2015; Cramer, Waldorp, van der 

Maas, & Borsboom, 2010; Fried et al., 2017). Within this framework, one can investigate the 

extent to which a set of variables (i.e., nodes) are connected to one another (i.e., edges) in a 

network structure. In the field of psychopathology, networks are based on the premise that 

symptoms of a disorder act as a complex dynamical system that casually influence one another 

via direct relationships (Borsboom & Cramer, 2013; Cramer et al., 2016; Schmittmann et al., 

2013).  

Contrary to other fields where networks are constructed (e.g., in social networks an edge 

between two nodes may indicate a friendship relationship), networks describing psychological 

behavior (i.e., psychological networks) are typically estimated. In the case of psychological 

networks, nodes represent observed variables (e.g., symptoms of a disorder) and edges denote 

statistical relationships between these observed variables. Hence, in order to numerically encode 

the relationship between two nodes, this relationship must be estimated under specific statistical 

assumptions (Borsboom & Cramer, 2013; Epskamp & Fried, 2018). The result of this estimation 

is a so-called network structure or graph that can be visually inspected and analyzed by means of 

network inference indicators derived from graph theory (see Epskamp, 2017). 

Being able to accurately estimate statistical parameters is considered to be of the utmost 

importance in network research of clinical phenomena, currently a subject of open debates and 

catalyst of rapid methodological advancements (Borsboom et al., 2017; Borsboom & Cramer, 

2013; Epskamp, Borsboom, & Fried, 2018; Fried & Cramer, 2017). Accurate estimations are an 
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aspiring standard intended for safeguarding against erroneous conclusions and, as such, aims to 

contribute to the robustness and replicability of psychological research (Open Science 

Collaboration, 2015). Current network research embraces this view, declaring it a focal point in 

order for the young field of clinical network modelling to start ‘off the right foot’ (Epskamp et 

al., 2018, p. 196). In the present paper we subscribe to this view by exploring the question of 

accuracy as an interplay between sample size and estimated network parameters.  

The remainder of this paper is structured as follows. First, we outline two popular 

network models for continuous and binary data and we discuss a commonly used regularization 

technique in order to avoid false positives (i.e., estimating relationships between nodes that in 

reality are not present). Next, we present recent work on the topic of reliable estimation of 

network parameters and discuss how the approach proposed in this paper complements it. Then, 

we proceed by presenting the design of the simulation study. Finally, we conclude by discussing 

limitations and points for improvement. 

Pairwise Markov Random Field Models in Psychopathology 

This paper is focused on pairwise Markov random field (PMRF) models for continuous 

and binary data. PMRF models are a popular subclass of network models in clinical research, 

readily applicable to a large number of cross-sectional datasets (Costantini et al., 2015; van 

Borkulo et al., 2014). PMRF models represent conditional (in)dependence relations: two nodes 

are only connected to one another if they are dependent conditional on all other nodes in the 

network. In other words, for two nodes to be connected that relationship cannot be explained by 

any other nodes in the network. In addition, PMRF models have two properties particularly 

useful in the context of psychological research. First property highlights that conditional 

dependence between two variables is consistent with a causal hypothesis, but not sufficient (see 
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Pearl, 2000). Second, PMRF models benefit from being well defined (i.e., a PMRF does not have 

any other equivalent models) making the interpretation less ambiguous (Epskamp, 2017).  

Given that the data are continuous and follow a multivariate normal distribution, the 

appropriate PRMF model is the Gaussian Graphical Model (GGM; Costantini et al., 2015; 

Epskamp & Fried, 2018), also known as a concentration network, or a partial correlation 

network. In this case, conditional independence between two nodes is exactly equivalent to a 

partial correlation of zero. A connection (henceforth: edge) between two nodes reflects these 

partial correlations: the thicker the edge, the higher the partial correlation (henceforth: edge 

weight; see Epskamp & Fried, 2018). The edge weights can be obtained either from the inverse 

of a variance-covariance matrix, or through node-wide regressions, in which case each node is 

regressed on all other nodes (Epskamp & Fried, 2018; Højsgaard, Edwards, & Lauritzen, 2012). 

When data are binary, the appropriate PMRF is the Ising model (van Borkulo et al., 

2014), which holds a similar interpretation as the GGM. This type of PMRF model is based on a 

series of pairwise logistic regressions, resulting in two parameters being estimated for each node. 

The first parameter estimated is the interaction parameter denoted by 𝛽𝛽𝑗𝑗𝑗𝑗, which encodes the 

edge weight between nodes 𝑗𝑗 and 𝑘𝑘. The second parameter is the threshold parameter denoted by 

𝜏𝜏𝑗𝑗 which indicates the activation tendency of node 𝑗𝑗, regardless of neighboring nodes. In the case 

of Ising models, drawing an edge between any two nodes is further influenced by the type of rule 

selected. When the 𝐴𝐴𝐴𝐴𝐴𝐴-rule is used, an edge is drawn between nodes 𝑗𝑗 and 𝑘𝑘 only if both 

regression coefficients (i.e., interaction parameters) 𝛽𝛽𝑗𝑗𝑗𝑗 and 𝛽𝛽𝑗𝑗𝑗𝑗 of the regularized solution (i.e., 

to be explained in detail later) are estimated to be nonzero. In this case, the edge weight is given 

by the average of both parameters. When using the 𝑂𝑂𝑅𝑅-rule, only one coefficient is required to 
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be nonzero for the edge to be drawn. Compared to 𝑂𝑂𝑅𝑅-rule, the 𝐴𝐴𝐴𝐴𝐴𝐴-rule is more conservative 

and results in a sparser network structure.  

Regularization of Network Models 

As with all statistical models that require the estimation of a sizeable number of 

parameters, sampling variation and limited sample sizes are significant threats to the accurate 

estimation of PMRF network models. As mentioned earlier, conditional independence between 

two nodes is equivalent to a partial correlation coefficient of 0. However, due to sampling 

variation, an estimated edge weight will most likely never be exactly 0, but very close around it. 

This results in multiple weak edges that are included in the network structure, that may actually 

prove to be spurious—edges that are not present in reality (Costantini et al., 2015; Epskamp, 

2017). An attempt to overcome the issue of estimating spurious edges is to fit regularized 

PMRFs models. A popular regularization technique, demonstrated to work well for both 

continuous and binary data, is the least absolute shrinkage and selection operator (LASSO; 

Epskamp et al., 2018; Tibshirani, 1996; van Borkulo et al., 2014). 

LASSO entails a two-step approach. In the first step, a range of networks are estimated 

with varying degree of sparsity given by a logarithmically spaced range of tuning parameters 𝜆𝜆 

(lambda; see Epskamp & Fried, 2018; Zhao & Yu, 2006). During the second step, the network 

structure that provides the best fit to the data is selected from the range previously estimated. 

This is typically done by minimizing the Extended Bayesian Information Criterion (EBIC; 

Barber & Drton, 2015; Epskamp et al., 2018; Foygel & Drton, 2011). The EBIC is based on a 

hyperparameter 𝛾𝛾 (gamma) that controls the preference for a sparser network model. The value 

of the hyperparameter 𝛾𝛾 is the responsibility of researcher and it influences the type of network 

structures that are retrieved. For instance, values close to 0 ‘err on the side of discovery’ 
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(Epskamp et al., 2018, p. 6), leading to higher sensitivity, whereas values above . 5 indicate a 

preference for a more parsimonious model, thus resulting in higher specificity.  

An alternative approach to overcome spurious edges is by only drawing edges based on 

significant partial correlation coefficients (Drton & Perlman, 2005). This implies conducting 

multiple significance tests while correcting the 𝛼𝛼 level (e.g., Bonferroni correction) in order to 

keep the Type I error rate under control. However, given the rapidly increasing number of 

network parameters that need to be estimated, multiple testing needs to be conducted at 

extremely low 𝛼𝛼 levels, increasing the Type II error and resulting in low statistical power 

(Epskamp et al., 2018). Therefore, LASSO is the current best practice in the network literature 

on psychopathology, given that the data are already collected. 

Accurate Network Estimations: Before and After the Fact 

The question of accuracy in the context of psychological networks arises from an 

interplay between the limited sample sizes often encountered in cross-sectional data and the 

network methodology with many parameters. While this problem naturally occurs also when 

fitting other models, such as factor models, the main difference is that, generally, network 

models require the estimation of more parameters. For instance, an Ising model (van Borkulo et 

al., 2014) with 14 nodes results in estimating 91 edge weights parameters (i.e., 𝑗𝑗×(𝑗𝑗−1)
2

, where 𝑘𝑘 

represents the number of nodes in the network) and 14 threshold parameters (i.e., one for each 

node in the network). This amounts to 105 parameters for just 14 variables, making it already 

painfully clear that one obviously cannot obtain reliable parameter estimates with only 30 

participants. 

In light of these concerns, Epskamp et al. (2018) proposed an extra step before drawing 

conclusions on estimated network parameters. Their proposal involves a step-by-step procedure 
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for assessing the accuracy and stability of estimated edge weights and centrality indicators. This 

methodology describes three levels of assessment, readily available in the 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑅𝑅 package 

(Epskamp et al., 2018). This methodology is based on bootstrapping techniques, representing an 

approach that can be applied, given that the data are already collected. For example, during the 

first level of assessment, one can investigate how accurately the edge weights were estimated by 

constructing a 95% CI interval around each estimated edge-weight, such that, in 95% of the 

cases, the true value of an edge weight will fall in that interval.  

The methodology introduced by Epskamp et al. (2018) stands out as an important tool for 

gaining insight into the accuracy of estimated network parameters. This methodology can be 

generally categorized as an after-the-fact approach, as it is designed for researchers who want to 

investigate the accuracy of estimated network parameters after the data have been collected. 

Simulation studies show that network models fit on larger sample sizes lead to more accurate 

estimates (Epskamp et al., 2018; Epskamp & Fried, 2018; van Borkulo et al., 2014). But what 

about the increasingly common situation that researchers, with a network approach in mind, plan 

to collect new data and wish to know beforehand what sample size is roughly needed in order to 

accurately estimate a network structure? This is exactly the question this paper aims to answer 

within the context of the Ising and GGM PMRF models.  

The Current Study 

In order to determine the adequate sample size, one is required to have an a priori 

expectation of certain aspects of the network structure, for example the number of nodes and the 

expected sparsity of the global structure. In this paper, we aim at investigating, by means of a 

simulation study, what sample sizes are needed to accurately retrieve network structures 

generated across a broad range of conditions (e.g., number of nodes, sparsity, architecture etc.).  
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We suggest and implement a before-the-fact approach as a simulation design with several 

steps. We start by generating model parameters for various network structures created under 

specific conditions. For example, assuming binary data and a small world architecture with 10 

nodes, this step results in 45 interaction and 10 threshold model parameters. These parameters 

represent the true network parameters, or, simply, the true model, indicating that the exact data 

generating parameters are known. In the next step, we use these parameters to simulate data of 

varying sample sizes, say 100, 200, and 300. Next, we use these simulated data to estimate state-

of-the art Ising models, or GGM when data is assumed ordinal. Finally, for each sample size, we 

investigate the accuracy of these estimated parameters as compared to the true network 

parameters. Ultimately, we aim at providing researchers with concrete sample size 

recommendations for accurately estimating cross-sectional network structures under a wide 

range of conditions. 

Methods 

The approach further discussed in this section is based on a simulation design with five 

factors. For each combination of factors and their levels (i.e., simulation condition, for example, 

a small-world architecture with 10 nodes, a rewiring probability of . 5, and 100 participants) we 

estimated either the Ising model or GGM and monitored the deviations of the estimated 

parameters from the true model parameters. The simulation approach comprises five steps. The 

first step pertains to creating the simulation design by selecting the factors and their levels. The 

remaining four steps describe how the procedure was applied to every simulation condition, 

starting with: generating the true model parameters, generating the data, estimating the 

appropriate PMRF model, and computing the outcome measures. Each step is explained in detail 

below. 
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Simulation Design 

The following factors and their respective levels—resembling but not identical to the 

Ising model validation study (van Borkulo et al., 2014)—were used to set up the broad range of 

simulation conditions under which performance of the Ising and GGM methods were evaluated 

given a certain sample size: 

1. Sample size. Given that our primary goal is to assess the accuracy of network estimation 

at different sample sizes, we selected a wide, but fine-grained range of sizes. The sample 

sizes were picked between 50 and 1000 with increments of 50. This resulted in 20 levels 

as 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {50, 100, 150, … , 900, 950, 1000}. 

2. Network size. Three levels were used: 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 = {10, 20, 30} . 

3. Network architecture. The network architecture was selected to reflect three commonly 

encountered network structures (see Figure 1), namely random (Barabasi & Albert, 

1999), small-world (Watts & Strogatz, 1998), and scale-free (Cohen, Havlin, & Ben-

Avraham, 2004). 

4. Network connectedness. The level of connectedness was selected to generate sparse 

networks, the underlying assumption when using LASSO regularization, a technique 

almost always used when estimating cross-sectional network structures (see Epskamp & 

Fried, 2018; Epskamp, Kruis, & Marsman, 2017). For random networks, whether or not 

an edge is included in the network structure is a function of probability and three levels 

were selected: 𝑛𝑛𝑠𝑠 = {. 1, .2, .3}. For small-world networks, the network structure is 

generated iteratively as a function of two parameters: neighborhood (i.e., the number of 

neighboring nodes any given node is initially connected to), and rewiring probability (𝑛𝑛𝑟𝑟). 

A sparse network was ensured by fixing the neighborhood parameter to 2, followed by 
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varying the level of 𝑛𝑛𝑟𝑟 to obtain different network structures: 𝑛𝑛𝑟𝑟 = {. 1, .5, 1}. Scale-free 

network structures are also generated iteratively and modeled by two parameters: number 

of edges to be added per step, and preferential attachment (𝑛𝑛𝑎𝑎). The number of edges to 

be added per step was fixed to one in order to obtain a sparse graph and the levels of 𝑛𝑛𝑎𝑎 

were varied as: 𝑛𝑛𝑎𝑎 = {1, 2, 3}. Note that for small world and scale-free networks, 

changing the connectedness level did not result in denser network structures, as the 

neighborhood and edges per set were fixed values. However, in the case of random 

networks a higher 𝑛𝑛𝑠𝑠 lead to more edges being included in the network structure, thus a 

denser network. 

5. Type of data. Two data types were used, binary and ordinal. 

The resulting design was a quasi-factorial design with 1080 cells = 20 (sample size) × 3 

(network size) × 3 (network type) × 3 (network connectedness) × 2 (data type). Empirically, 

this can be understood as 27 different kinds of network structures (i.e., size, type, and 

connectedness), examined at 20 different sample sizes, both on binary and ordinal data.  

Procedure 

The following steps describe the order in which the procedure was applied to each 

simulation condition in the factorial design. 

True Model Generation. 

During this step, the true network structure (i.e., true model) was generated as follows: 

- using the 𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖ℎ (Csardi & Nepusz, 2006) package in 𝑅𝑅 version 3.5.1 (R Core Team, 

2017) an undirected and unweighted graph was generated according to the 

configuration of each simulation condition, that is, based on three factors: network 

size, network architecture, and network connectedness. For example, a possible 
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generated network could have a size of 10 nodes and be of type random, in which 

case the connectedness would be operationalized as 𝑛𝑛𝑠𝑠𝑛𝑛𝑒𝑒𝑠𝑠. Let the adjacency matrix 

describing the undirected unweighted generated network structure be represented as 

𝝃𝝃. 

- next, model parameters were generated differently with respect to the appropriate 

PMRF based on the type of data. For both the Ising and GGM models, the number of 

edge weights to sample was determined as 𝑗𝑗×(𝑗𝑗−1)
2

, where 𝑘𝑘 stands for the network 

size factor (i.e., the number of nodes in the network). In the case of Ising model, a 

vector of edge weights 𝜷𝜷 was sampled from the standard normal distribution with a 

mean of 0 and a standard deviation of 1. Then, a vector of threshold parameters 𝝉𝝉 was 

sampled from the standard normal distribution with both the mean and standard 

deviation tied to 𝜷𝜷, and with the sign inverted, in order to ‘prevent nodes with many 

connections to be continuously activated and consequently having no variance’ (van 

Borkulo et al., 2014, p. 8). Finally, the true network structure 𝜽𝜽 was obtained by 

symmetrically mapping 𝜷𝜷 onto the unweighted graph 𝝃𝝃. 

- a similar process was also used for generating GGM model parameters, with several 

additions. First, the edge weights 𝜷𝜷 were uniformly sampled between 0 and 1 and, 

then, symmetrically mapped onto the unweighted graph 𝝃𝝃, obtaining a matrix 𝝎𝝎. To 

obtain a positive definite concentration matrix (i.e., inverse of a covariance matrix, or 

precision matrix), the algorithm described by Yin and Li (2011; see section 4.1), also 

used elsewhere (Epskamp, Rhemtulla, & Borsboom, 2017), was applied on the 𝝎𝝎 

matrix. Finally, the network true structure 𝜽𝜽 was obtained by standardizing the 𝝎𝝎 and 
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inverting the sign, thus obtaining a matrix of partial correlations that served as edge 

weights.  

For both the Ising and GGM models, the edge weights were selected such that they only 

portrayed positive relationships between the nodes in the network. This is assumed to resemble 

empirical network structures of psychopathological phenomena (e.g., Boschloo et al., 2015; 

Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016; McNally et al., 2015; Schmittmann et 

al., 2013). 

Data Generation. 

In this step, either a continuous or a binary dataset was generated, based on the true 

model parameters determined during the previous step. The resulting data were regarded as a 

sample from the unknown population described by the true parameters 𝜷𝜷 and 𝝉𝝉. The number of 

observations matched the level of the sample size design factor for each respective condition 

(i.e., from 50 to 1000). For generating ordinal data only the 𝜷𝜷 edge weights parameters were 

used, and the data were sampled from the multivariate normal distribution, as implemented in the 

𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 function of the 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (Epskamp et al., 2018) package in 𝑅𝑅. In this case, the 

data were generated with five item response steps, that is, resembling a Likert scale with five 

categories. When binary data were generated, the threshold 𝝉𝝉 parameters were also used, 

alongside the 𝜷𝜷 parameters, and the data were obtained using the 𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑆𝑆𝑖𝑖𝑔𝑔𝑖𝑖𝐼𝐼𝑛𝑛𝑛𝑛 package 

(Epskamp, 2015). The binary data generating algorithm was the Metropolis-Hastings algorithm 

(Hastings, 1970).   

In special cases where at least one node (i.e., column) in the sampled data had too little 

variance (i.e., a response category with lower than two observations), 10 resampling attempts 

under the same true model parameters were performed. If data still displayed little variance after 
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a total of 11 sampling attempts, the invariant nodes were removed from the data and this action 

recorded. 

Model Estimation. 

During this step, the estimated network parameters were obtained by fitting the 

appropriate PMRF model to the previously generated data. As a result, the estimated network 

structure 𝜽𝜽� was obtained, described by the estimated edge weights 𝜷𝜷�, and, additionally, the 

thresholds 𝝉𝝉�, when the data were binary. Both Ising and GGM models were fit with LASSO 

regularization. Recommended default values were used for the tuning parameters 𝜆𝜆, and the 

EBIC hyperparameter 𝛾𝛾, as implemented in the 𝐼𝐼𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝐼𝐼𝑖𝑖𝑛𝑛 and 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑅𝑅 packages (Epskamp & 

Fried, 2018; van Borkulo et al., 2014). 

Outcome Measures. 

 In the final step of this procedure, the outcome measures were computed based on the 

deviations of the estimated network structure 𝜽𝜽� from the true network structure 𝜽𝜽. The primary 

outcome measure can be considered a binary classification for whether an edge is correctly 

estimated or not to be non-zero. Therefore, for each cell in the design, retrieval rates were 

investigated with respect to the edges in the true network structure and those in the estimated 

network structure. This implies looking at the proportions of the true/ false positive and negative 

estimated edges. First, the sensitivity and specificity of the estimation were computed (Adams & 

Leveson, 2012; Altman & Bland, 1994; van Borkulo et al., 2014). Sensitivity is regarded as the 

true positive rate (𝑇𝑇𝑛𝑛𝑅𝑅) computed as: 

𝐼𝐼𝑛𝑛𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠 =
# 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛

# 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛 + # 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛
. (1) 

It may also be regarded as the power of the procedure, computed as 1 − 𝛽𝛽,  where 𝛽𝛽 stands for 

Type II error rate, given by the false negative rate (𝐼𝐼𝐴𝐴𝑅𝑅): 
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𝐼𝐼𝐴𝐴𝑅𝑅 =
# 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛

# 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛 + # 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛
. (2) 

In the context of this simulation, sensitivity is interpreted as the proportion of edges in the true 

network structure that were correctly estimated to be non-zero. 

Specificity refers to the true negative rate (𝑇𝑇𝐴𝐴𝑅𝑅) and provides information about the 

proportion of edges in the true network structure that were correctly estimated to be 0 (i.e., 

missing): 

𝐼𝐼𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠 =
# 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛

# 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛 + # 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛 𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛
. (3) 

Type I error rate was also computed, but not reported here, as the false positive rate 

(𝐼𝐼𝑛𝑛𝑅𝑅), equivalent to 1 − 𝐼𝐼𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠: 

𝐼𝐼𝑛𝑛𝑅𝑅 =
# 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛 𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛

# 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝑛𝑛 𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛 + # 𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑛𝑛
. (4) 

Additionally, correlations between the edge weights of the estimated model and those of 

the true model were also computed, in order to get a better understanding of how well they 

resemble each other (Epskamp & Fried, 2018). The edge weights correlation was computed 

between the upper triangle of the true network structure 𝜽𝜽 and the upper triangle of the estimated 

network structure 𝜽𝜽�. In cases where the upper triangles resulted in unequal number of parameters 

(i.e., due to dropping nodes as a result of unsuccessful resampling attempts) the correlation 

coefficient was not computed, and replaced with a 𝐴𝐴𝐴𝐴 constant.  

The procedure described above was applied to every cell in the factorial design and was 

replicated 100 times. That is, for each of the 1080 resulting conditions, we generated a true 

model, generated data based on the true model, estimated the appropriate PMRF on the data, and 

compared the estimated parameters to the true model parameters in terms of retrieval rates and 

edge weights correlations. This process was repeated 100 times for each condition, resulting in 
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estimating 54000 Ising models and 54000 GGM models. Figure 2 illustrates a true network 

structure and the corresponding estimated network structure for a specific simulation condition. 

The code used in this paper is freely available as an 𝑅𝑅 package at 

https://github.com/mihaiconstantin/netPower. The installation, the data used in this paper, and 

the entire replication of the results can be achieved following the instructions provided in the 

README.md file. 

Results 

For each simulation condition, three outcomes were computed as a measure of 

performance: sensitivity, specificity, and edge weights correlation. In this section we report the 

means and standard deviations of each of these outcomes, after 100 replications. We start by 

outlining aggregated trends applicable to both binary and ordinal data, and then zoom in and 

present specific results related to each type of data. Figures 3 and 4 show the change in the mean 

of each outcome measure as a function of sample size, and with respect to the type of data, 

number of nodes, and network architecture. Figures 5 to 9 show the trends for each outcome 

measure using Tuckey boxplots for a better visual understanding of the spread in the outcome 

means (McGill, Tukey, & Larsen, 1978). 

Sensitivity showed moderate mean values when averaged across all simulation conditions 

(𝑀𝑀 = .615, 𝑆𝑆𝐴𝐴 = .280) and increased steadily for each 50 participants added to the sample 

(𝑀𝑀 = .035), with larger gains for sample sizes smaller than 250 (𝑀𝑀 = .093), compared to 

larger samples (𝑀𝑀 = .014). Sensitivity did show more variation in the means for ordinal data 

(𝑆𝑆𝐴𝐴 = .309) compared to binary data (𝑆𝑆𝐴𝐴 = .169), result also clearly visible in the size of the 

boxplots under Figure 6. Furthermore, sensitivity was lower in the simulation conditions 

consisting of random architectures and 30 nodes (𝑀𝑀 = .385, 𝑆𝑆𝐴𝐴 = .272) compared to other 

https://github.com/mihaiconstantin/netPower
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network architectures with the same number of nodes (scale free: 𝑀𝑀 = .665, 𝑆𝑆𝐴𝐴 = .289; small 

world: 𝑀𝑀 = .531, 𝑆𝑆𝐴𝐴 = .250; see Figure 5).  

Specificity was very high when averaged across all conditions (𝑀𝑀 = .942, 𝑆𝑆𝐴𝐴 = .077). 

However, the largest values were observed for binary data (𝑀𝑀 = .990, 𝑆𝑆𝐴𝐴 = .012), where 

across all sample sizes the values generally remained similar (see Figure 8). Contrary, the GGM 

estimation produced somewhat lower values (𝑀𝑀 = .895, 𝑆𝑆𝐴𝐴 = .085). Additionally, GGM also 

resulted in lower specificity for networks with fewer nodes, dropping below . 8. Figure 7 

indicates that, in the case of scale free and small world networks, specificity was less stable as 

the sample size increased, the mean values being spread across a wider interval, however, it 

became more stable as the number of nodes increased. 

Figure 4 shows that the correlation between the edge weights of the true model and the 

estimated model was high and displayed a stable pattern, increasing with sample size across all 

network architectures, for both binary and ordinal data (𝑀𝑀 = .859, 𝑆𝑆𝐴𝐴 = .175). On average, a 

sample size of 250 participants, was associated with a high correlation of 𝑀𝑀 = .818 (𝑆𝑆𝐴𝐴 =

.146) and further increasing sample sizes lead to higher correlation coefficients and smaller 

variation. Figure 9 indicates, furthermore, that the means of the edge weights correlation 

coefficients were larger at smaller sample sizes when the network structure contained fewer 

nodes. Conversely, the coefficients were lowest for random networks with 30 nodes (see Table 

5). The values reported so far on all three outcome measures show that, although some general 

trends can be depicted, such as increasing sensitivity, edge weights correlation, and all-around 

high specificity, these trends potentially vary with respect to the type of data used, therefore, 

requiring a closer inspection. 
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Binary Data 

A closer look for models estimated on binary data indicates that sensitivity only reaches a 

moderate mean, when averaged across all conditions (𝑀𝑀 = .488, 𝑆𝑆𝐴𝐴 = .169). For sample sizes 

smaller than 450 and more than 20 nodes, sensitivity was low, regardless of the network 

structure (𝑀𝑀 = .319, 𝑆𝑆𝐴𝐴 = .139). However, for the same number of nodes, samples larger than 

450 showed an almost double average increase in sensitivity with a very small standard 

deviation (𝑀𝑀 = .580, 𝑆𝑆𝐴𝐴 = .037). As presented in Table 2, sensitivity increased with 𝑀𝑀 = .029 

for each 50 simulated participants added to the sample size. This trend was larger in magnitude 

for samples smaller than 450 (𝑀𝑀 = .051), compared to sample sizes above 450 (𝑀𝑀 = .012), 

suggesting that the sensitivity stabilizes after a given number of participants. Furthermore, this 

trend was also uniformly present across all network structure, regardless of the level of 

connectedness, with a single exception. Namely, sensitivity was slightly lower for random 

networks with 𝑛𝑛𝑠𝑠 = .3 (𝑀𝑀 = .444, 𝑆𝑆𝐴𝐴 = .171), as this type of operationalization also resulted in 

denser networks. Conversely, sensitivity was slightly larger for networks with fewer nodes: 10 

nodes (𝑀𝑀 = .538, 𝑆𝑆𝐴𝐴 = .160), 20 nodes (𝑀𝑀 = .486, 𝑆𝑆𝐴𝐴 = .164), and 30 nodes (𝑀𝑀 = .439,

𝑆𝑆𝐴𝐴 = .168). Finally, we observed the highest values of sensitivity for sparse small world 

networks in combination with 10 nodes (𝑀𝑀 = .579, 𝑆𝑆𝐴𝐴 = .150). 

Specificity was high all-around and we did not observe decreasing trends, regardless of 

sample size, network architecture, and operationalization of network connectedness (see Table 

4). Only extremely low variation was observed when networks had 10 nodes (𝑀𝑀 = .985, 𝑆𝑆𝐴𝐴 =

.014; see Figure 8). With respect to the edge weights correlation coefficients, averaging across 

all simulation conditions, we obtained high values with 𝑀𝑀 = .861 and 𝑆𝑆𝐴𝐴 = .134. Bolded values 

in the right-hand side of Table 5 reveal that the correlation coefficients were lower at small 
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sample sizes (i.e., smaller than 200), falling below . 8 (𝑀𝑀 = .653, 𝑆𝑆𝐴𝐴 = .070). On the other 

hand, for samples larger than 200, the mean of the edge weights correlation coefficients was 

very high, reaching 𝑀𝑀 = .913 and 𝑆𝑆𝐴𝐴 = .051. This was observed across all network 

architectures and levels of connectedness. Similar to sensitivity, random networks with highest 

𝑛𝑛𝑠𝑠 resulted in lower edge weights correlation coefficients, as shown in Table 5. 

Overall, the Ising model estimation showed moderate sensitivity, very high all-around 

specificity, and high edge weights correlation. Our simulation results indicate that the trend for 

sensitivity and edge weights correlation is to increase steadily as the sample sizes goes up, 

reaching values around . 5 and . 9, respectively, for 450 participants or more, regardless of the 

number of nodes and network architecture. These results align closely with current simulation 

work on fitting network models to binary datasets (van Borkulo et al., 2014). 

Ordinal Data 

In contrast to binary data, the GGM estimation on ordinal data displayed higher 

sensitivity values (𝑀𝑀 = .742, 𝑆𝑆𝐴𝐴 = .309). Table 1 shows that regardless of network architecture 

and number of nodes, samples sizes larger than 200 generally resulted in an average sensitivity 

value above . 5 (𝑀𝑀 = .830, 𝑆𝑆𝐴𝐴 = .217), a threshold typically seen as ‘acceptable as that at least 

indicates the strongest edges are discovered’ (Epskamp & Fried, 2018, p. 11). A closer inspection 

of the results shows that scale-free networks had the highest sensitivity and lowest variation 

(𝑀𝑀 = .912, 𝑆𝑆𝐴𝐴 = .172). However, this result is subject to caution, as simulation conditions 

including this particular network structure resulted in simulation errors (see Table 6). Out of 

18000 simulation runs that involved scale-free structures, 1092 could not be estimated (i.e., 

roughly 6%). Curiously, the error frequency went up as the number of nodes increased. We 
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backtracked the error to the data generation step of our procedure, where, on some occasions, 

datasets could not be samples based on the model parameters provided. 

For the other network structures, the increase in sensitivity was linear and, on average, 

for each 50 participants, it went up by 𝑀𝑀 = .036 (i.e., for random networks) and 𝑀𝑀 = .045 (i.e., 

for small world networks). Sensitivity was higher for networks with fewer nodes: 10 nodes 

(𝑀𝑀 = .876, 𝑆𝑆𝐴𝐴 = .194), 20 nodes (𝑀𝑀 = .735, 𝑆𝑆𝐴𝐴 = .295), and 30 nodes (𝑀𝑀 = .615, 𝑆𝑆𝐴𝐴 =

.359). Furthermore, Figure 6 also shows multiple outliers indicating that, for networks consisting 

of more nodes, empty structures were more often selected as best fitting by the EBIC model 

selection of LASSO regularization. The reason for this lies in the fact that more nodes resulted in 

denser network structures, which in turn resulted in lower generated partial correlation 

coefficients, making them more susceptible to LASSO. This was particularly the case for random 

networks, where sensitivity further decreased to 0 as the level of 𝑛𝑛𝑠𝑠 increased (i.e., bolded values 

in Table 1 indicate this trend). 

In contrast to the Ising model estimation, the GGM resulted in somewhat lower 

specificity, and larger variation. Table 3 shows that specificity decreased as the sample size 

increased (e.g., 50 simulated participants [𝑀𝑀 = .978, 𝑆𝑆𝐴𝐴 = .043] to 1000 simulated 

participants [𝑀𝑀 = .867, 𝑆𝑆𝐴𝐴 = .085]). This trend was particularly noticeable for small world and 

scale-free networks with 10 nodes, in which case the specificity dropped below . 8. This finding 

was consistent across all levels of connectedness. 

The correlation coefficient between the edge weights of the true model and estimated 

model was high when averaged across all simulation conditions (𝑀𝑀 = .856, 𝑆𝑆𝐴𝐴 = .208). For 

the smallest sample size of 50, the mean of the coefficients was low with 𝑀𝑀 = .430 and 𝑆𝑆𝐴𝐴 =

.243, however, it steadily increased with sample size, reaching 𝑀𝑀 = .958 and 𝑆𝑆𝐴𝐴 = .071 for 
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sample sizes of 1000. Additionally, the values were overall higher for networks with fewer 

nodes, regardless of sample size: 10 nodes (𝑀𝑀 = .922, 𝑆𝑆𝐴𝐴 = .114), 20 nodes (𝑀𝑀 = .867,

𝑆𝑆𝐴𝐴 = .181), and 30 nodes (𝑀𝑀 = .780, 𝑆𝑆𝐴𝐴 = .272). 

Overall, for ordinal data, the sensitivity was moderate to high and it increased with the 

sample size, at a faster rate in the case of scale-free and small world networks with fewer nodes. 

Specificity started high, but decreased as sample size increased, reaching values below . 8 for 

networks with 10 nodes. Finally, the edge weights correlation was relatively high with low 

variation for sample sizes larger than 300. These results are generally, in line with other 

simulations (Epskamp, 2016), however, they are not directly comparable, as different design 

factors were employed. 

Discussion 

In this study we investigated what sample sizes are roughly needed for accurately 

estimating networks structures. To accomplish this, we employed a simulation approach based on 

five design factors: sample size, network architecture, network connectedness, number of nodes, 

and type of data. To capture the performance of the estimation we used recommended indicators 

in the literature on psychological networks, such as, sensitivity, specificity, and edge weights 

correlation (Epskamp & Fried, 2018; van Borkulo et al., 2014). 

Rough Sample Size Recommendations 

Our primary goal was to provide general recommendations for researchers interested in 

knowing beforehand what sample size are roughly needed for a hypothesized network structure. 

On one hand, binary data were estimated with lower sensitivity, but very high specificity all-

around. On the other hand, ordinal data were estimated with higher sensitivity, but lower 

specificity. Furthermore, even though sensitivity was higher for lower sample size, it showed 
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greater variation, compared to the Ising estimation method. Nevertheless, in both cases, 

increasing sample sizes resulted in higher edge weights correlations. Table 7 presents an 

overview of the sample sizes recommended for accurately estimating various network structures. 

Ordinal Data. 

With respect to the number of nodes and network architecture, one can estimate a GGM 

model with 10 nodes and a random architecture with a sample size of 150 and expect the 

sensitivity, specificity, and edge weights correlation to be around . 9. With 200 participants or 

more, for the same architecture, but 20 nodes, one can expect the sensitivity values to be around 

. 8 and the specificity and correlation around . 9, given that the network is sparse (i.e., 𝑛𝑛𝑠𝑠 = .1). 

In case the network is somewhat denser (i.e., 𝑛𝑛𝑠𝑠 = .2, or 𝑛𝑛𝑠𝑠 = .3), similar values can be obtained 

with sample sizes larger than 600. When 30 nodes are used, sparse random networks (i.e., 𝑛𝑛𝑠𝑠 =

.1) can be estimated with around 500 participants, and still observe sensitivity values around . 8, 

and specificity and edge weights correlation values around . 9. For densely connected random 

networks with 30 nodes, one can either use more than 1000 participants in order to obtain 

moderate sensitivity and edge weight correlation values, or drop the number of nodes included, 

as suggested elsewhere (Epskamp et al., 2018). Nevertheless, even with a large number of nodes 

and a denser random network, one can expect the specificity to be close to 1. 

When the researcher hypothesizes a small world network and wishes to study 10 

variables, a sample size of 250 results in the best trade-off between sensitivity and specificity, 

both indicators reaching values close to . 8, and a correlation larger than . 8. Larger sample sizes 

in this scenario are associated with higher sensitivity, but fairly low specificity. For estimating 

small world networks with 20 nodes, at lest 500 participants are needed to ensure the sensitivity 

is around . 8 and specificity and edge weights correlation around . 9. For 30 nodes, similar values 
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can be expected with sample sizes larger than 650 participants. Furthermore, different levels of 

connectedness (i.e., 𝑛𝑛𝑟𝑟 = .1, 𝑛𝑛𝑟𝑟 = .5, and 𝑛𝑛𝑟𝑟 = 1) did not appear to influence the values of the 

performance indicators. 

Scale-free networks were associated with the lowest values for specificity and, 

conversely, highest values for sensitivity and edge weights correlation, along all networks 

structures. For a scale-free network with 10 nodes, one can obtain an optimal value around . 8 for 

specificity and sensitivity (i.e., at the intersection of the two indicators) with only 100 

participants, while still observing a correlation between the edge weights around . 9. For 20 

nodes, values around . 9 on all outcomes indicators can be expected for samples larger than 150. 

For larger networks consisting of 30 nodes, similar values can be obtained with samples above 

300 participants or more. Similar to small world networks, different levels of connectedness 

(i.e., 𝑛𝑛𝑎𝑎 = 1, 𝑛𝑛𝑎𝑎 = 2, and 𝑛𝑛𝑎𝑎 = 3) did not result in different values for three outcomes measures 

investigated. 

Binary Data. 

Researchers fitting Ising models can expect stable and accurate estimations with respect 

to specificity. Regardless of network architecture, connectedness, number of nodes, and sample 

size, specificity is expected be very close to 1. When estimating a network structure with 10 

nodes, one needs at least 350 participants for obtaining moderate sensitivity values of . 5, but can 

expect a high edge weights correlation value around . 9. For 10 nodes and binary data, the type 

of network architecture is not expected to influence the values of the outcome measures. For 

larger networks with 20 nodes, irrespective of their architecture, one can expect the sensitivity 

around . 5 and the correlation close to . 9, provided that data from more than 450 participants are 
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collected. When small world and scale-free networks with 30 nodes are estimated, one can 

expect moderate sensitivity and high correlation for 550 participants or more.  

When the expected structure is a random architecture with 30 nodes, researchers also 

need to consider the overall network density. For instance, for an operationalization of 𝑛𝑛𝑠𝑠 = .1, a 

sample size of 450 is adequate for an observed sensitivity of . 5 and an edge weights correlation 

around . 9. However, for denser networks with 𝑛𝑛𝑠𝑠 = .2, in order to observe the same values, one 

needs to collected at least 550 participants. In the case of 𝑛𝑛𝑠𝑠 = .3 we could not capture 

sensitivity values larger than . 5, indicating the need for even larger sample sizes, or a different 

strategy with respect to the nodes included in the network structure. 

Limitations and Future Directions 

With this study we took a first step in answering multiple calls for tackling the issue of 

accurate network parameters estimations from the perspective of an a priori sample size analysis 

(Epskamp et al., 2018; Fried & Cramer, 2017). However, our approach reveals at least two 

limitations. A first limitation is suggested by the statement that ‘the precise values of sensitivity, 

specificity and different correlations are strongly influenced by the expected network structure, 

similar to how the expected effect size influences a power analysis’ (Epskamp & Fried, 2018, p. 

11). More precisely, this reveals that, although we employed 1080 simulation conditions, we 

admittedly only scratched the surface, investigating just 27 different network structures. This 

limitation ought to encourage further studies to extend the range of network structures included 

in their simulation designs. 

A second limitation concerns the way in which we operationalized the network 

connectedness factor. In line with previous studies we chose to investigate the idea of how edges 

are distributed in the network structure according to different algorithms (i.e., edge probability, 
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rewiring probability, and preferential attachment; van Borkulo et al., 2014). While we did not 

observe large changes in the means of our outcome measures for different levels of rewiring 

probability and preferential attachment, large changes were seen in the case of random networks, 

where edges were simply a function of probability. These changes were expected, as the 

probability of including an edge in the network is equivalent to the network density, thus, 

strongly influencing its sparsity. 

For a first improvement, we suggest that further simulations also manipulate the network 

density across small world and scale-free architectures. This is particularly relevant for 

regularized PMRF models, where the assumption of sparsity is central to the LASSO 

methodology (Epskamp, Kruis, et al., 2017). On another note, during this study we constrained 

all edge weights to positive values, in order to resemble the generally positive relations between 

psychopathology symptoms. Further simulations may consider including an additional design 

factor for manipulating the positive ratio of the edge weights, adjusting the current approach to 

other fields, such as personality research (e.g., Costantini et al., 2015; Cramer et al., 2012). 

Additionally, 𝐼𝐼1 scores—which simultaneously take into account both precision and specificity 

(see; Jardine & van Rijsbergen, 1971; Powers, 2011)—can also be computed to account for 

situations in which sparse networks result in high specificity due to the ‘low base rate of 

connections’ (van Borkulo et al., 2014, p. 2). 

Conclusion 

In this paper we discussed a simulation approach suitable for investigating what sample 

sizes are roughly needed for arcuately estimating network parameters from cross-sectional data. 

We assessed the performance of 27 network structures at 20 sample sizes ranging from 50 to 

1000, using state of the art network models for binary and ordinal data. Our simulation results 
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come close to those of  other studies, showing that sensitivity and specificity increase to 1 as the 

sample size goes up (Epskamp, 2016; van Borkulo et al., 2014). This indicates that both Ising 

and GGM estimation methods work well and, although, not all edges are successfully retrieved 

(i.e., moderate sensitivity), those retrieved can be generally considered accurate (i.e., high 

specificity). This is further confirmed by the increasingly high edge weights correlation 

coefficient, suggesting that both methods also accurately retrieve the true edge values. As 

expected, both sensitivity and edge weights correlation values increased steadily with the sample 

size and were consistent across all three network architectures investigated. Generally, the GGM 

estimation required smaller sample sizes in order to correctly retrieve the edges and their 

weights, however, the retrieval rates were associated with higher variability. The Ising model, 

required larger samples to reach moderate sensitivity, however, the performance indicators 

showed only extremely low variability.  

The approach discussed here is potentially useful for researchers with an idea about an 

expected network structure, looking for concrete sample size recommendations before the data 

collection plan is initiated. With respect to providing such concrete recommendations, we found 

that sample sizes ranging from 250 to 350 are generally enough to observe moderate sensitivity 

and high specificity and edge weights correlations, when the networks are sparse and consist of 

20 nodes or less. Table 7 provides a complete overview of the sample size recommendations 

identified in this study. Furthermore, this approach can be complemented by established tools 

aimed at investigating the accuracy of estimated network parameters after the data is collected 

(i.e., bootnet; Epskamp et al., 2018). The simulation design and steps discussed in this paper are 

implemented as a freely available 𝑅𝑅 package called 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, which enables researchers to take 

informed guesses with respect to how many participants are needed for a hypothesized network 
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structure and a given number of nodes. Our tool, together with 𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, is a first step in properly 

equipping applied researchers for getting started on the marathon of accurate parameter 

estimations in the increasingly popular field of psychological networks. 
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Tables 

Table 1.  

Sensitivity as an outcome measure for ordinal data (i.e., GGM) and various simulation conditions: sample 

size (i.e., 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), number of nodes (i.e., 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠), network architecture (i.e., random, scale-free, and small 

world), and connectedness (i.e., probability of an edge [𝑛𝑛𝑠𝑠], preferential attachment [𝑛𝑛𝑎𝑎], and probability 

of rewiring [𝑛𝑛𝑟𝑟]). 

     Random   Scale-free   Small world 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠   𝑛𝑛𝑠𝑠 = .1 𝑛𝑛𝑠𝑠 = .2 𝑛𝑛𝑠𝑠 = .3   𝑛𝑛𝑎𝑎 = 1 𝑛𝑛𝑎𝑎 = 2 𝑛𝑛𝑎𝑎 = 3   𝑛𝑛𝑟𝑟 = .1 𝑛𝑛𝑟𝑟 = .5 𝑛𝑛𝑟𝑟 = 1 
50 10   .616   .367   .140    .543   .529   .563    .030   .035   .034  

 20   .052   .003   .001    .140   .065   .113    .004   .003   .001  
 30   .002   .000   .000    .010   .004   .001    .000   .001   .001  

100 10   .923   .728   .489    .910   .885   .898    .152   .158   .174  
 20   .544   .052   .004    .827   .821   .829    .023   .018   .027  
 30   .112   .002   .000    .769   .781   .764    .005   .016   .005  

150 10   .967   .882   .764    .924   .936   .947    .403   .458   .417  
 20   .755   .171   .014    .878   .901   .884    .093   .098   .087  
 30   .344   .004   .001    .865   .864   .865    .024   .037   .043  

200 10   .981   .915   .815    .948   .946   .961    .654   .709   .658  
 20   .822   .378   .038    .915   .921   .906    .346   .292   .293  
 30   .540   .023   .001    .901   .901   .895    .154   .136   .160  

250 10   .971   .943   .880    .949   .953   .962    .774   .768   .780  
 20   .855   .457   .093    .927   .935   .931    .511   .475   .478  
 30   .634   .030   .001    .915   .906   .912    .382   .337   .293  

300 10   .973   .936   .896    .962   .967   .962    .820   .820   .819  
 20   .886   .616   .126    .938   .937   .932    .654   .563   .591  
 30   .693   .067   .003    .924   .929   .929    .574   .485   .476  

350 10   .977   .954   .890    .970   .967   .979    .846   .838   .848  
 20   .890   .696   .249    .947   .947   .945    .711   .660   .678  
 30   .731   .121   .004    .932   .928   .926    .670   .560   .571  

400 10   .990   .941   .926    .965   .965   .965    .844   .864   .871  
 20   .910   .746   .314    .947   .953   .948    .765   .715   .718  
 30   .770   .168   .004    .943   .943   .946    .707   .626   .621  

450 10   .985   .958   .916    .976   .974   .967    .878   .875   .875  
 20   .909   .768   .484    .958   .949   .953    .779   .754   .762  
 30   .791   .238   .009    .950   .946   .946    .738   .683   .678  

500 10   .983   .950   .933    .971   .975   .970    .878   .886   .880  
 20   .921   .786   .498    .957   .954   .964    .796   .776   .777  
 30   .810   .335   .012    .948   .941   .951    .766   .704   .699  

550 10   .986   .964   .918    .966   .975   .972    .891   .899   .889  
 20   .926   .804   .617    .959   .965   .958    .820   .800   .797  
 30   .822   .414   .009    .949   .956   .951    .784   .732   .736  
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     Random   Scale-free   Small world 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠   𝑛𝑛𝑠𝑠 = .1 𝑛𝑛𝑠𝑠 = .2 𝑛𝑛𝑠𝑠 = .3   𝑛𝑛𝑎𝑎 = 1 𝑛𝑛𝑎𝑎 = 2 𝑛𝑛𝑎𝑎 = 3   𝑛𝑛𝑟𝑟 = .1 𝑛𝑛𝑟𝑟 = .5 𝑛𝑛𝑟𝑟 = 1 
600 10   .986   .961   .930    .977   .972   .979    .892   .898   .902  

 20   .925   .819   .693    .958   .961   .960    .842   .802   .807  
 30   .832   .482   .015    .950   .951   .948    .789   .752   .733  

650 10   .986   .959   .943    .978   .985   .982    .907   .904   .905  
 20   .930   .834   .701    .956   .962   .962    .849   .821   .824  
 30   .840   .527   .018    .956   .953   .955    .811   .769   .752  

700 10   .993   .960   .934    .985   .978   .976    .903   .900   .900  
 20   .942   .831   .735    .961   .962   .965    .855   .828   .833  
 30   .861   .621   .041    .948   .957   .958    .819   .777   .770  

750 10   .992   .968   .943    .978   .985   .974    .905   .917   .906  
 20   .932   .859   .748    .970   .969   .966    .848   .842   .838  
 30   .863   .602   .081    .957   .962   .959    .830   .788   .790  

800 10   .990   .959   .945    .981   .982   .985    .914   .908   .927  
 20   .940   .851   .754    .969   .966   .966    .867   .852   .843  
 30   .874   .653   .096    .966   .968   .958    .837   .800   .802  

850 10   .990   .971   .952    .986   .983   .982    .920   .919   .912  
 20   .949   .865   .778    .966   .963   .969    .865   .844   .847  
 30   .878   .677   .112    .966   .955   .959    .848   .807   .814  

900 10   .986   .958   .950    .980   .980   .976    .921   .918   .925  
 20   .944   .874   .783    .964   .970   .969    .877   .861   .866  
 30   .873   .700   .157    .965   .959   .963    .846   .823   .826  

950 10   .993   .979   .945    .974   .977   .983    .933   .920   .919  
 20   .944   .874   .806    .971   .972   .978    .890   .865   .869  
 30   .884   .713   .243    .966   .960   .967    .866   .827   .828  

1000 10   .997   .976   .947    .975   .988   .976    .935   .929   .919  
 20   .952   .881   .822    .971   .967   .973    .881   .877   .873  

  30    .899   .716   .306     .962   .968   .961     .864   .834   .829  

Note. Values of sensitivity smaller than . 6 are in boldface. 
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Table 2. 

Sensitivity as an outcome measure for binary data (i.e., Ising model) and various simulation conditions: 

sample size (i.e., 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), number of nodes (i.e., 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠), network architecture (i.e., random, scale-free, and 

small world), and connectedness (i.e., probability of an edge [𝑛𝑛𝑠𝑠], preferential attachment [𝑛𝑛𝑎𝑎], and 

probability of rewiring [𝑛𝑛𝑟𝑟]). 

     Random   Scale-free   Small world 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠   𝑛𝑛𝑠𝑠 = .1 𝑛𝑛𝑠𝑠 = .2 𝑛𝑛𝑠𝑠 = .3   𝑛𝑛𝑎𝑎 = 1 𝑛𝑛𝑎𝑎 = 2 𝑛𝑛𝑎𝑎 = 3   𝑛𝑛𝑟𝑟 = .1 𝑛𝑛𝑟𝑟 = .5 𝑛𝑛𝑟𝑟 = 1 
50 10   .126   .130   .119    .134   .113   .136    .135   .143   .139  

 20   .089   .085   .080    .092   .087   .079    .092   .081   .085  
 30   .065   .056   .047    .063   .065   .069    .069   .059   .064  

100 10   .285   .225   .252    .234   .206   .208    .251   .274   .267  
 20   .183   .178   .169    .186   .185   .154    .174   .171   .181  
 30   .156   .142   .095    .142   .139   .152    .164   .140   .144  

150 10   .328   .302   .308    .284   .308   .304    .328   .356   .362  
 20   .267   .263   .252    .244   .264   .249    .273   .252   .251  
 30   .222   .203   .136    .216   .222   .226    .244   .222   .214  

200 10   .406   .396   .407    .358   .341   .371    .421   .444   .444  
 20   .320   .317   .335    .299   .318   .309    .352   .333   .343  
 30   .283   .260   .198    .276   .289   .287    .312   .288   .304  

250 10   .397   .412   .443    .415   .413   .409    .474   .499   .479  
 20   .384   .379   .361    .356   .342   .365    .407   .392   .400  
 30   .342   .324   .233    .345   .335   .335    .374   .334   .351  

300 10   .447   .460   .492    .464   .459   .461    .531   .500   .519  
 20   .406   .416   .414    .403   .383   .388    .449   .434   .451  
 30   .383   .369   .220    .379   .369   .379    .408   .388   .380  

350 10   .486   .497   .537    .468   .475   .503    .573   .567   .569  
 20   .452   .450   .458    .434   .427   .422    .480   .471   .467  
 30   .427   .400   .258    .410   .399   .395    .451   .432   .427  

400 10   .529   .515   .538    .493   .502   .522    .574   .585   .594  
 20   .486   .474   .502    .451   .445   .449    .519   .492   .495  
 30   .456   .433   .282    .432   .449   .449    .490   .443   .462  

450 10   .557   .551   .576    .549   .490   .505    .591   .596   .618  
 20   .496   .518   .480    .493   .483   .486    .547   .523   .527  
 30   .490   .457   .313    .464   .460   .451    .504   .479   .484  

500 10   .517   .581   .606    .512   .517   .559    .610   .644   .619  
 20   .530   .536   .518    .514   .504   .495    .574   .542   .549  
 30   .521   .466   .333    .491   .479   .489    .547   .506   .507  

550 10   .525   .561   .615    .556   .570   .573    .643   .632   .639  
 20   .554   .550   .557    .519   .523   .541    .593   .569   .566  
 30   .521   .506   .368    .506   .499   .504    .570   .549   .540  

600 10   .632   .599   .629    .589   .578   .578    .674   .680   .661  
 20   .567   .559   .576    .527   .524   .548    .598   .589   .597  
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     Random   Scale-free   Small world 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠   𝑛𝑛𝑠𝑠 = .1 𝑛𝑛𝑠𝑠 = .2 𝑛𝑛𝑠𝑠 = .3   𝑛𝑛𝑎𝑎 = 1 𝑛𝑛𝑎𝑎 = 2 𝑛𝑛𝑎𝑎 = 3   𝑛𝑛𝑟𝑟 = .1 𝑛𝑛𝑟𝑟 = .5 𝑛𝑛𝑟𝑟 = 1 

 30   .545   .514   .332    .539   .510   .518    .569   .553   .552  
650 10   .598   .619   .641    .587   .593   .579    .670   .674   .685  

 20   .577   .600   .603    .559   .559   .549    .615   .611   .607  
 30   .557   .526   .360    .518   .529   .543    .602   .580   .569  

700 10   .604   .608   .659    .623   .605   .590    .686   .685   .695  
 20   .603   .609   .592    .558   .571   .558    .624   .615   .607  
 30   .592   .554   .330    .551   .553   .554    .599   .592   .589  

750 10   .616   .646   .655    .643   .623   .614    .700   .719   .702  
 20   .598   .612   .611    .581   .598   .577    .640   .620   .630  
 30   .593   .568   .380    .569   .552   .561    .624   .600   .594  

800 10   .634   .687   .704    .644   .609   .626    .702   .724   .707  
 20   .630   .658   .622    .580   .591   .593    .666   .641   .621  
 30   .603   .572   .363    .574   .582   .571    .642   .619   .613  

850 10   .644   .696   .700    .654   .636   .658    .727   .738   .710  
 20   .627   .649   .629    .620   .603   .602    .677   .641   .649  
 30   .602   .577   .396    .595   .589   .594    .649   .618   .622  

900 10   .649   .648   .693    .649   .656   .647    .717   .729   .730  
 20   .618   .646   .662    .608   .622   .628    .665   .668   .661  
 30   .624   .590   .394    .587   .597   .591    .657   .637   .630  

950 10   .653   .671   .694    .646   .676   .631    .740   .741   .730  
 20   .640   .677   .663    .616   .625   .637    .687   .661   .682  
 30   .640   .618   .432    .604   .616   .601    .672   .629   .632  

1000 10   .638   .706   .723    .664   .638   .641    .736   .723   .746  
 20   .666   .679   .669    .656   .630   .636    .695   .677   .672  

  30    .647   .627   .430     .617   .617   .611     .670   .653   .661  

Note. Values of sensitivity smaller than . 6 are in boldface. 
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Table 3. 

Specificity as an outcome measure for ordinal data (i.e., GGM) and various simulation conditions: sample 

size (i.e., 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), number of nodes (i.e., 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠), network architecture (i.e., random, scale-free, and small 

world), and connectedness (i.e., probability of an edge [𝑛𝑛𝑠𝑠], preferential attachment [𝑛𝑛𝑎𝑎], and probability 

of rewiring [𝑛𝑛𝑟𝑟]). 

     Random   Scale-free   Small world 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠   𝑛𝑛𝑠𝑠 = .1 𝑛𝑛𝑠𝑠 = .2 𝑛𝑛𝑠𝑠 = .3   𝑛𝑛𝑎𝑎 = 1 𝑛𝑛𝑎𝑎 = 2 𝑛𝑛𝑎𝑎 = 3   𝑛𝑛𝑟𝑟 = .1 𝑛𝑛𝑟𝑟 = .5 𝑛𝑛𝑟𝑟 = 1 
50 10   .961   .958   .974    .863   .857   .876    .996   .994   .995  

 20   1   1   1    .967   .996   .979    1   1   1  
 30   1   1   1    .997   1   1    1   1   1  

100 10   .920   .901   .925    .792   .782   .782    .982   .975   .961  
 20   .981   .999   1    .936   .925   .910    1   1   1  
 30   .998   1   1    .959   .953   .955    1   1   1  

150 10   .931   .856   .859    .780   .764   .785    .915   .888   .911  
 20   .968   .993   1    .914   .890   .900    .997   .996   .997  
 30   .993   1   1    .937   .949   .950    1   1   1  

200 10   .931   .867   .861    .765   .776   .763    .854   .833   .843  
 20   .958   .978   .999    .899   .899   .909    .984   .987   .985  
 30   .986   1   1    .940   .940   .935    .997   .997   .998  

250 10   .916   .862   .814    .771   .782   .765    .796   .802   .779  
 20   .953   .975   .995    .896   .885   .891    .973   .970   .972  
 30   .980   1   1    .928   .940   .931    .991   .992   .994  

300 10   .924   .873   .816    .756   .748   .759    .791   .796   .773  
 20   .954   .962   .993    .878   .891   .899    .962   .963   .956  
 30   .977   .999   1    .931   .921   .923    .982   .986   .987  

350 10   .924   .868   .794    .762   .755   .747    .766   .752   .770  
 20   .948   .950   .981    .888   .876   .880    .951   .950   .943  
 30   .973   .997   1    .921   .925   .934    .979   .981   .980  

400 10   .908   .856   .800    .757   .765   .751    .769   .735   .760  
 20   .947   .941   .976    .877   .866   .880    .946   .942   .939  
 30   .969   .995   1    .931   .922   .913    .975   .977   .979  

450 10   .918   .843   .799    .765   .746   .771    .757   .754   .739  
 20   .943   .932   .954    .871   .893   .862    .942   .930   .928  
 30   .969   .994   1    .916   .920   .922    .971   .970   .971  

500 10   .926   .851   .787    .751   .741   .746    .737   .750   .752  
 20   .949   .931   .957    .889   .884   .859    .937   .926   .926  
 30   .967   .989   1    .913   .932   .915    .968   .970   .969  

550 10   .926   .856   .784    .759   .739   .755    .744   .746   .753  
 20   .941   .929   .934    .867   .893   .877    .936   .924   .919  
 30   .966   .985   1    .911   .920   .915    .966   .964   .963  

600 10   .911   .836   .807    .757   .760   .748    .734   .741   .741  
 20   .938   .922   .909    .886   .862   .884    .925   .917   .918  
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     Random   Scale-free   Small world 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠   𝑛𝑛𝑠𝑠 = .1 𝑛𝑛𝑠𝑠 = .2 𝑛𝑛𝑠𝑠 = .3   𝑛𝑛𝑎𝑎 = 1 𝑛𝑛𝑎𝑎 = 2 𝑛𝑛𝑎𝑎 = 3   𝑛𝑛𝑟𝑟 = .1 𝑛𝑛𝑟𝑟 = .5 𝑛𝑛𝑟𝑟 = 1 

 30   .962   .977   1    .922   .911   .920    .965   .966   .966  
650 10   .907   .843   .781    .757   .746   .762    .751   .727   .732  

 20   .938   .910   .914    .877   .872   .868    .927   .912   .912  
 30   .962   .976   1    .921   .925   .922    .963   .961   .963  

700 10   .926   .854   .790    .745   .732   .763    .748   .717   .741  
 20   .938   .914   .903    .886   .871   .875    .925   .904   .912  
 30   .962   .966   1    .919   .913   .921    .962   .959   .960  

750 10   .926   .836   .788    .763   .747   .763    .742   .719   .735  
 20   .938   .911   .889    .877   .871   .865    .925   .911   .909  
 30   .958   .969   .998    .913   .912   .913    .964   .960   .957  

800 10   .917   .834   .789    .748   .757   .754    .743   .720   .722  
 20   .937   .905   .895    .880   .877   .875    .919   .905   .904  
 30   .960   .961   .997    .911   .907   .909    .962   .957   .956  

850 10   .913   .831   .784    .754   .736   .747    .730   .732   .703  
 20   .937   .906   .892    .861   .875   .863    .925   .910   .905  
 30   .958   .958   .996    .914   .920   .913    .960   .957   .955  

900 10   .902   .843   .796    .725   .756   .760    .732   .726   .696  
 20   .939   .907   .885    .869   .875   .871    .915   .900   .899  
 30   .961   .956   .994    .912   .911   .902    .960   .952   .953  

950 10   .910   .843   .780    .762   .764   .740    .738   .713   .712  
 20   .937   .905   .879    .852   .855   .865    .918   .899   .900  
 30   .960   .953   .988    .907   .906   .907    .958   .953   .950  

1000 10   .920   .839   .772    .762   .733   .748    .713   .717   .697  
 20   .933   .902   .872    .863   .873   .860    .916   .899   .906  

  30    .956   .952   .982     .910   .904   .915     .960   .952   .952  

Note. Values of specificity smaller than . 8 are in boldface. 
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Table 4. 

Specificity as an outcome measure for binary data (i.e., Ising model) and various simulation conditions: 

sample size (i.e., 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), number of nodes (i.e., 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠), network architecture (i.e., random, scale-free, and 

small world), and connectedness (i.e., probability of an edge [𝑛𝑛𝑠𝑠], preferential attachment [𝑛𝑛𝑎𝑎], and 

probability of rewiring [𝑛𝑛𝑟𝑟]). 

     Random   Scale-free   Small world 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠   𝑛𝑛𝑠𝑠 = .1 𝑛𝑛𝑠𝑠 = .2 𝑛𝑛𝑠𝑠 = .3   𝑛𝑛𝑎𝑎 = 1 𝑛𝑛𝑎𝑎 = 2 𝑛𝑛𝑎𝑎 = 3   𝑛𝑛𝑟𝑟 = .1 𝑛𝑛𝑟𝑟 = .5 𝑛𝑛𝑟𝑟 = 1 
50 10   .995   .994   .993    .990   .994   .990    .988   .986   .991  

 20   .999   .998   .995    .998   .998   .998    .998   .997   .998  
 30   .999   .997   .985    1   1   1    .999   1   .999  

100 10   .996   .996   .993    .995   .997   .993    .987   .984   .984  
 20   .998   .997   .990    .998   .998   .999    .998   .997   .997  
 30   .999   .996   .979    1   .999   1    .999   .999   .999  

150 10   .996   .996   .990    .998   .995   .995    .983   .981   .979  
 20   .999   .996   .986    .999   .998   .999    .996   .996   .996  
 30   .999   .993   .974    1   1   1    .998   .998   .998  

200 10   .997   .995   .987    .996   .996   .994    .976   .969   .979  
 20   .999   .994   .984    .999   .999   .998    .996   .994   .994  
 30   .999   .993   .967    1   1   1    .998   .998   .997  

250 10   .997   .995   .987    .994   .994   .995    .974   .971   .971  
 20   .998   .993   .980    .998   .999   .998    .995   .992   .994  
 30   .998   .990   .961    .999   1   1    .998   .997   .997  

300 10   .998   .993   .985    .995   .995   .995    .969   .972   .973  
 20   .998   .993   .979    .998   .998   .999    .994   .991   .991  
 30   .998   .988   .967    1   .999   .999    .997   .997   .997  

350 10   .998   .993   .988    .997   .993   .994    .968   .964   .963  
 20   .998   .993   .976    .998   .998   .999    .993   .992   .992  
 30   .998   .989   .966    .999   1   .999    .997   .996   .996  

400 10   .998   .995   .987    .995   .993   .992    .970   .959   .966  
 20   .998   .993   .972    .999   .998   .998    .992   .992   .991  
 30   .998   .987   .964    .999   1   .999    .997   .996   .995  

450 10   .997   .993   .987    .995   .993   .994    .972   .966   .965  
 20   .997   .991   .976    .998   .998   .997    .992   .991   .990  
 30   .998   .986   .956    .999   .999   .998    .997   .996   .995  

500 10   .997   .994   .983    .998   .993   .994    .963   .966   .963  
 20   .998   .991   .976    .998   .998   .998    .991   .990   .989  
 30   .998   .987   .955    1   .999   .999    .996   .995   .995  

550 10   .998   .993   .984    .995   .994   .995    .962   .962   .973  
 20   .998   .991   .973    .998   .998   .998    .991   .989   .990  
 30   .998   .985   .949    .999   .999   .999    .996   .995   .995  

600 10   .998   .994   .983    .995   .997   .994    .960   .957   .966  
 20   .998   .989   .971    .998   .998   .998    .992   .989   .988  
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     Random   Scale-free   Small world 
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠   𝑛𝑛𝑠𝑠 = .1 𝑛𝑛𝑠𝑠 = .2 𝑛𝑛𝑠𝑠 = .3   𝑛𝑛𝑎𝑎 = 1 𝑛𝑛𝑎𝑎 = 2 𝑛𝑛𝑎𝑎 = 3   𝑛𝑛𝑟𝑟 = .1 𝑛𝑛𝑟𝑟 = .5 𝑛𝑛𝑟𝑟 = 1 

 30   .997   .984   .957    .999   .999   .999    .996   .994   .994  
650 10   .998   .992   .988    .994   .996   .996    .963   .956   .957  

 20   .997   .990   .966    .998   .998   .998    .991   .988   .989  
 30   .997   .985   .958    .999   .998   .999    .995   .995   .994  

700 10   .998   .993   .985    .993   .994   .994    .964   .963   .961  
 20   .997   .988   .969    .998   .997   .997    .991   .988   .990  
 30   .997   .984   .957    1   .998   .999    .996   .994   .994  

750 10   .997   .992   .981    .995   .994   .995    .959   .953   .959  
 20   .998   .989   .969    .998   .997   .998    .991   .988   .988  
 30   .997   .983   .953    .999   .999   .999    .995   .994   .994  

800 10   .997   .993   .984    .994   .994   .994    .963   .956   .961  
 20   .998   .988   .965    .998   .998   .998    .990   .989   .989  
 30   .997   .983   .954    .999   .999   .999    .995   .994   .993  

850 10   .997   .992   .982    .995   .992   .995    .955   .961   .968  
 20   .997   .990   .970    .997   .998   .997    .987   .988   .987  
 30   .997   .983   .954    .998   .999   .999    .995   .994   .993  

900 10   .997   .994   .983    .994   .996   .993    .965   .950   .959  
 20   .998   .988   .963    .998   .997   .998    .991   .988   .987  
 30   .998   .984   .952    .999   .999   .999    .996   .994   .994  

950 10   .998   .992   .981    .995   .993   .993    .962   .960   .964  
 20   .998   .988   .964    .999   .998   .998    .989   .987   .988  
 30   .997   .979   .944    .999   .999   .998    .995   .994   .994  

1000 10   .997   .992   .982    .994   .992   .994    .959   .959   .960  
 20   .997   .989   .962    .997   .998   .998    .989   .986   .985  

  30    .997   .979   .948     .999   .998   .998     .995   .993   .993  
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Table 5. 

Correlation between edge weights as an outcome measure for ordinal (i.e., GGM) and binary (i.e., Ising model) data for various simulation 

conditions: sample size (i.e., 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), number of nodes (i.e., 10, 20, and 30), and network architecture (i.e., random, scale-free, and small world). 

  GGM   Ising 
 Random   Scale-free   Small world  Random   Scale-free   Small world 

Size 10 20 30   10 20 30   10 20 30   10 20 30   10 20 30   10 20 30 
50 .756 .352 .129  .745 .612 .443  .331 .275 .225  .568 .443 .337  .550 .489 .433  .486 .446 .415 
100 .839 .536 .261  .873 .871 .850  .549 .391 .309  .719 .622 .502  .704 .641 .607  .679 .616 .607 
150 .918 .621 .400  .927 .920 .916  .695 .508 .426  .788 .722 .612  .771 .748 .720  .758 .721 .707 
200 .939 .701 .476  .945 .943 .940  .782 .680 .574  .843 .777 .665  .828 .799 .789  .824 .802 .781 
250 .950 .727 .478  .959 .953 .953  .826 .763 .694  .859 .811 .716  .857 .840 .828  .857 .841 .820 
300 .960 .776 .521  .965 .962 .958  .857 .826 .798  .894 .844 .734  .887 .863 .860  .875 .868 .850 
350 .965 .806 .546  .969 .968 .966  .880 .865 .842  .904 .863 .772  .901 .881 .877  .897 .886 .874 
400 .970 .845 .561  .974 .970 .971  .890 .890 .871  .914 .883 .784  .908 .895 .896  .905 .900 .892 
450 .973 .879 .602  .976 .973 .974  .910 .904 .891  .925 .889 .801  .915 .915 .904  .918 .914 .905 
500 .977 .886 .640  .978 .977 .976  .915 .915 .904  .929 .905 .821  .921 .922 .914  .926 .921 .913 
550 .978 .908 .655  .981 .980 .977  .924 .924 .916  .937 .916 .832  .940 .930 .925  .932 .928 .924 
600 .981 .923 .672  .984 .982 .980  .931 .931 .923  .944 .916 .826  .942 .934 .929  .943 .936 .927 
650 .981 .926 .686  .983 .982 .983  .934 .939 .933  .946 .927 .841  .949 .942 .935  .944 .941 .937 
700 .983 .932 .723  .985 .984 .983  .941 .943 .937  .950 .932 .833  .948 .944 .938  .951 .945 .940 
750 .985 .939 .742  .988 .984 .983  .944 .947 .943  .956 .935 .854  .954 .947 .939  .951 .948 .942 
800 .986 .943 .753  .988 .987 .983  .945 .951 .948  .962 .938 .857  .956 .950 .948  .954 .951 .948 
850 .987 .949 .777  .988 .986 .986  .950 .953 .950  .960 .944 .858  .964 .955 .951  .959 .956 .950 
900 .986 .951 .780  .989 .988 .986  .953 .957 .954  .962 .950 .862  .963 .959 .952  .961 .958 .956 
950 .988 .955 .822  .990 .987 .986  .955 .960 .956  .966 .949 .881  .962 .961 .956  .965 .960 .956 
1000 .989 .959 .833   .990 .987 .987   .958 .961 .959   .965 .955 .876   .965 .962 .959   .966 .963 .961 

Note. Correlation are computed between the upper triangle of the true model (i.e., the model that generated the data) and the estimated model. 

Correlation coefficients smaller than . 8 are in boldface.
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Table 6. 

Network structures that resulted in simulation errors and the frequency of occurrence. 

𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 Architecture Connectedness Data Frequency 
10 scale free 𝑛𝑛𝑎𝑎 = 1 ordinal (GGM) 24 
10 scale free 𝑛𝑛𝑎𝑎 = 2 ordinal (GGM) 24 
10 scale free 𝑛𝑛𝑎𝑎 = 3 ordinal (GGM) 20 
20 scale free 𝑛𝑛𝑎𝑎 = 1 ordinal (GGM) 116 
20 scale free 𝑛𝑛𝑎𝑎 = 2 ordinal (GGM) 115 
20 scale free 𝑛𝑛𝑎𝑎 = 3 ordinal (GGM) 124 
30 scale free 𝑛𝑛𝑎𝑎 = 1 ordinal (GGM) 199 
30 scale free 𝑛𝑛𝑎𝑎 = 2 ordinal (GGM) 242 
30 scale free 𝑛𝑛𝑎𝑎 = 3 ordinal (GGM) 228 

Note. There were only 1092 errors out of 108000 simulation runs, at a rate of . 01, occurring only for 

scale free networks, more frequently as the number of nodes increased. 
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Table 7.  

Sample size recommendations for accurately estimating 27 network structure, from ordinal (i.e., GGM) 

and binary (i.e., Ising) cross-sectional data. In case of ordinal data, the sample sizes suggested are aimed 

at obtaining values of sensitivity and edge weights correlation around . 8, and values of specificity larger 

than . 9. For binary data, the sample sizes presented are aimed to obtain moderate sensitivity around . 5, 

edge weights correlation around . 8, and specificity larger than . 9. 

    GGM  Ising 
Architecture  Connectedness  10 20 30  10 20 30 
Random  𝑛𝑛𝑠𝑠 = .1  150 200 500  350 450 450 
  𝑛𝑛𝑠𝑠 = .2  200 550 900  350 450 550 
  𝑛𝑛𝑠𝑠 = .3  200 600 1000  350 600 1000 
Scale-free  𝑛𝑛𝑎𝑎 = 1  100 150 150  400 450 550 
  𝑛𝑛𝑎𝑎 = 2  100 150 150  400 500 550 
  𝑛𝑛𝑎𝑎 = 3  100 150 150  400 500 550 
Small world  𝑛𝑛𝑟𝑟 = .1  250 500 650  300 400 450 
  𝑛𝑛𝑟𝑟 = .5  300 550 800  300 450 500 
  𝑛𝑛𝑟𝑟 = 1  250 600 800  300 400 500 

Note. Values in boldface indicate that larger samples than those studied here are needed. 
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Figures 

 

 

Figure 1. Example of unweighted graphs consisting of 30 nodes and representative for three different network architectures: random 

network (i.e., probability of an edge being included in the network structure is . 1), small world network (i.e., rewiring probability is . 1 

and neighborhood parameter is 2), and scale-free network (i.e., power of prudential attachment and number of edges added per 

iteration are 1). Weighted variants of these networks were constructed by mapping generated model parameters onto them, obtaining 

true network structures against which the estimated network structures were compared. 

Random Small world Scale-free
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Figure 2. Example of a true network structure (i.e., on the left) and the estimated network structure (i.e., on the right). The true 

network structure corresponds to a random architecture, with 10 nodes and a probability of a connection of . 2. The estimated network 

structure was obtained from simulated ordinal data consisting of 150 participants. The closer the resemblance between the two 

network structures, the more accurate the estimation. For this example, sensitivity is . 785, specificity is . 934, and the edge weights 

correlation is . 873. 
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Figure 3. Sensitivity, specificity and edge weights correlation of simulated data. Horizontal panels indicate the type of data used and 

vertical panels the number of nodes in the network structure. The color of the lines indicates different outcome measures. The edge 

weights correlation was computed between the upper triangle of the data generating model (i.e., true model) and estimated model. 
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Figure 4. Sensitivity, specificity and edge weights correlation of simulated data. Horizontal panels indicate the type of data used and 

vertical panels the network architecture. The color of the lines indicates different outcome measures. The edge weights correlation was 

computed between the upper triangle of the data generating model (i.e., true model) and estimated model. 
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Figure 5. Sensitivity of simulated data presented in Tukey boxplots. Vertical panels indicate the number of nodes in the network 

structure and the color of the boxplots indicates different network structures. 
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Figure 6. Sensitivity of simulated data presented in Tukey boxplots. Vertical panels indicate the number of nodes in the network 

structure and the color of the boxplots indicates different types of data and the network models used for estimation. 

  

10 nodes
20 nodes

30 nodes

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Sample size

Se
ns

iti
vit

y
Type of data Binary (Ising) Ordinal (GGM)



SAMPLE SIZE RECOMMENDATIONS FOR NETWORK MODELS 51 

 

Figure 7. Specificity of simulated data presented in Tukey boxplots. Vertical panels indicate the number of nodes in the network 

structure and the color of the boxplots indicates different network structures. 
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Figure 8. Specificity of simulated data presented in Tukey boxplots. Vertical panels indicate the number of nodes in the network 

structure and the color of the boxplots indicates different types of data and the network models used for estimation. 
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Figure 9. Edge weights correlation between the upper triangle of the data generating model and the estimated model, presented in 

Tukey boxplots. Vertical panels indicate the number of nodes in the network structure and the color of the boxplots indicates different 

network structures. 
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