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Abstract
Network models are increasingly popular for describing psychological phenomena. Recent years
translated into rapid methodological advancements, a significant amount of work being dedicated
to assessing the accuracy of estimated network parameters, after the data has been collected. In
the current work we suggest an approach, aimed at researchers who wish to know beforehand
what sample size is roughly needed in order to accurately estimate a hypothesized network
structure. We employ a simulation study with five design factors (i.e., sample size, network
architecture, network connectedness, number of nodes, and type of data), and assess the
estimation performance looking at three indicators: sensitivity, specificity, and edge weights
correlation. Ours results show that, for both binary and ordinal data, the estimation methods
work well and, although, not all edges are successfully retrieved (i.e., moderate sensitivity),
those retrieved can be generally considered accurate (i.e., high specificity). This is further
confirmed by a high edge weights correlation coefficient. We found that sample sizes ranging
from 250 to 350 are generally enough to observe moderate sensitivity, high specificity, and high
edge weights correlation, when the networks are sparse and consist of 20 nodes or less. The
simulation design and steps discussed in this study are implemented as a freely available R
package called netPower.

Keywords: network models, sample size, accuracy, cross-sectional data, Ising, GGM
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Sample Size Recommendations for Estimating Cross-Sectional Network Models

The network approach to psychopathology serves as an increasingly popular framework
aimed at explaining the onset and maintenance of mental disorders (Borsboom, Cramer,
Schmittmann, Epskamp, & Waldorp, 2011; Boschloo et al., 2015; Cramer, Waldorp, van der
Maas, & Borsboom, 2010; Fried et al., 2017). Within this framework, one can investigate the
extent to which a set of variables (i.e., nodes) are connected to one another (i.e., edges) in a
network structure. In the field of psychopathology, networks are based on the premise that
symptoms of a disorder act as a complex dynamical system that casually influence one another
via direct relationships (Borsboom & Cramer, 2013; Cramer et al., 2016; Schmittmann et al.,
2013).

Contrary to other fields where networks are constructed (e.g., in social networks an edge
between two nodes may indicate a friendship relationship), networks describing psychological
behavior (i.e., psychological networks) are typically estimated. In the case of psychological
networks, nodes represent observed variables (e.g., symptoms of a disorder) and edges denote
statistical relationships between these observed variables. Hence, in order to numerically encode
the relationship between two nodes, this relationship must be estimated under specific statistical
assumptions (Borsboom & Cramer, 2013; Epskamp & Fried, 2018). The result of this estimation
is a so-called network structure or graph that can be visually inspected and analyzed by means of
network inference indicators derived from graph theory (see Epskamp, 2017).

Being able to accurately estimate statistical parameters is considered to be of the utmost
importance in network research of clinical phenomena, currently a subject of open debates and
catalyst of rapid methodological advancements (Borsboom et al., 2017; Borsboom & Cramer,

2013; Epskamp, Borsboom, & Fried, 2018; Fried & Cramer, 2017). Accurate estimations are an
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aspiring standard intended for safeguarding against erroneous conclusions and, as such, aims to
contribute to the robustness and replicability of psychological research (Open Science
Collaboration, 2015). Current network research embraces this view, declaring it a focal point in
order for the young field of clinical network modelling to start “off the right foot” (Epskamp et
al., 2018, p. 196). In the present paper we subscribe to this view by exploring the question of
accuracy as an interplay between sample size and estimated network parameters.

The remainder of this paper is structured as follows. First, we outline two popular
network models for continuous and binary data and we discuss a commonly used regularization
technique in order to avoid false positives (i.e., estimating relationships between nodes that in
reality are not present). Next, we present recent work on the topic of reliable estimation of
network parameters and discuss how the approach proposed in this paper complements it. Then,
we proceed by presenting the design of the simulation study. Finally, we conclude by discussing
limitations and points for improvement.

Pairwise Markov Random Field Models in Psychopathology

This paper is focused on pairwise Markov random field (PMRF) models for continuous
and binary data. PMRF models are a popular subclass of network models in clinical research,
readily applicable to a large number of cross-sectional datasets (Costantini et al., 2015; van
Borkulo et al., 2014). PMRF models represent conditional (in)dependence relations: two nodes
are only connected to one another if they are dependent conditional on all other nodes in the
network. In other words, for two nodes to be connected that relationship cannot be explained by
any other nodes in the network. In addition, PMRF models have two properties particularly
useful in the context of psychological research. First property highlights that conditional

dependence between two variables is consistent with a causal hypothesis, but not sufficient (see
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Pearl, 2000). Second, PMRF models benefit from being well defined (i.e., a PMRF does not have
any other equivalent models) making the interpretation less ambiguous (Epskamp, 2017).

Given that the data are continuous and follow a multivariate normal distribution, the
appropriate PRMF model is the Gaussian Graphical Model (GGM; Costantini et al., 2015;
Epskamp & Fried, 2018), also known as a concentration network, or a partial correlation
network. In this case, conditional independence between two nodes is exactly equivalent to a
partial correlation of zero. A connection (henceforth: edge) between two nodes reflects these
partial correlations: the thicker the edge, the higher the partial correlation (henceforth: edge
weight; see Epskamp & Fried, 2018). The edge weights can be obtained either from the inverse
of a variance-covariance matrix, or through node-wide regressions, in which case each node is
regressed on all other nodes (Epskamp & Fried, 2018; Hgjsgaard, Edwards, & Lauritzen, 2012).

When data are binary, the appropriate PMRF is the Ising model (van Borkulo et al.,
2014), which holds a similar interpretation as the GGM. This type of PMRF model is based on a
series of pairwise logistic regressions, resulting in two parameters being estimated for each node.
The first parameter estimated is the interaction parameter denoted by f3;,, which encodes the
edge weight between nodes j and k. The second parameter is the threshold parameter denoted by
7; which indicates the activation tendency of node j, regardless of neighboring nodes. In the case
of Ising models, drawing an edge between any two nodes is further influenced by the type of rule
selected. When the AND-rule is used, an edge is drawn between nodes j and k only if both
regression coefficients (i.e., interaction parameters) 8, and g ; of the regularized solution (i.e.,
to be explained in detail later) are estimated to be nonzero. In this case, the edge weight is given

by the average of both parameters. When using the OR-rule, only one coefficient is required to
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be nonzero for the edge to be drawn. Compared to OR-rule, the AND-rule is more conservative
and results in a sparser network structure.
Regularization of Network Models

As with all statistical models that require the estimation of a sizeable number of
parameters, sampling variation and limited sample sizes are significant threats to the accurate
estimation of PMRF network models. As mentioned earlier, conditional independence between
two nodes is equivalent to a partial correlation coefficient of 0. However, due to sampling
variation, an estimated edge weight will most likely never be exactly 0, but very close around it.
This results in multiple weak edges that are included in the network structure, that may actually
prove to be spurious—edges that are not present in reality (Costantini et al., 2015; Epskamp,
2017). An attempt to overcome the issue of estimating spurious edges is to fit regularized
PMRFs models. A popular regularization technique, demonstrated to work well for both
continuous and binary data, is the least absolute shrinkage and selection operator (LASSO;
Epskamp et al., 2018; Tibshirani, 1996; van Borkulo et al., 2014).

LASSO entails a two-step approach. In the first step, a range of networks are estimated
with varying degree of sparsity given by a logarithmically spaced range of tuning parameters 1
(lambda; see Epskamp & Fried, 2018; Zhao & Yu, 2006). During the second step, the network
structure that provides the best fit to the data is selected from the range previously estimated.
This is typically done by minimizing the Extended Bayesian Information Criterion (EBIC;
Barber & Drton, 2015; Epskamp et al., 2018; Foygel & Drton, 2011). The EBIC is based on a
hyperparameter y (gamma) that controls the preference for a sparser network model. The value
of the hyperparameter y is the responsibility of researcher and it influences the type of network

structures that are retrieved. For instance, values close to 0 ‘err on the side of discovery’
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(Epskamp et al., 2018, p. 6), leading to higher sensitivity, whereas values above . 5 indicate a
preference for a more parsimonious model, thus resulting in higher specificity.

An alternative approach to overcome spurious edges is by only drawing edges based on
significant partial correlation coefficients (Drton & Perlman, 2005). This implies conducting
multiple significance tests while correcting the « level (e.g., Bonferroni correction) in order to
keep the Type I error rate under control. However, given the rapidly increasing number of
network parameters that need to be estimated, multiple testing needs to be conducted at
extremely low a levels, increasing the Type Il error and resulting in low statistical power
(Epskamp et al., 2018). Therefore, LASSO is the current best practice in the network literature
on psychopathology, given that the data are already collected.

Accurate Network Estimations: Before and After the Fact

The question of accuracy in the context of psychological networks arises from an
interplay between the limited sample sizes often encountered in cross-sectional data and the
network methodology with many parameters. While this problem naturally occurs also when
fitting other models, such as factor models, the main difference is that, generally, network

models require the estimation of more parameters. For instance, an Ising model (van Borkulo et

kx(k—1)

al., 2014) with 14 nodes results in estimating 91 edge weights parameters (i.e., , Where k

represents the number of nodes in the network) and 14 threshold parameters (i.e., one for each
node in the network). This amounts to 105 parameters for just 14 variables, making it already
painfully clear that one obviously cannot obtain reliable parameter estimates with only 30
participants.

In light of these concerns, Epskamp et al. (2018) proposed an extra step before drawing

conclusions on estimated network parameters. Their proposal involves a step-by-step procedure
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for assessing the accuracy and stability of estimated edge weights and centrality indicators. This
methodology describes three levels of assessment, readily available in the bootnet R package
(Epskamp et al., 2018). This methodology is based on bootstrapping techniques, representing an
approach that can be applied, given that the data are already collected. For example, during the
first level of assessment, one can investigate how accurately the edge weights were estimated by
constructing a 95% CI interval around each estimated edge-weight, such that, in 95% of the
cases, the true value of an edge weight will fall in that interval.

The methodology introduced by Epskamp et al. (2018) stands out as an important tool for
gaining insight into the accuracy of estimated network parameters. This methodology can be
generally categorized as an after-the-fact approach, as it is designed for researchers who want to
investigate the accuracy of estimated network parameters after the data have been collected.
Simulation studies show that network models fit on larger sample sizes lead to more accurate
estimates (Epskamp et al., 2018; Epskamp & Fried, 2018; van Borkulo et al., 2014). But what
about the increasingly common situation that researchers, with a network approach in mind, plan
to collect new data and wish to know beforehand what sample size is roughly needed in order to
accurately estimate a network structure? This is exactly the question this paper aims to answer
within the context of the Ising and GGM PMRF models.

The Current Study

In order to determine the adequate sample size, one is required to have an a priori
expectation of certain aspects of the network structure, for example the number of nodes and the
expected sparsity of the global structure. In this paper, we aim at investigating, by means of a
simulation study, what sample sizes are needed to accurately retrieve network structures

generated across a broad range of conditions (e.g., number of nodes, sparsity, architecture etc.).
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We suggest and implement a before-the-fact approach as a simulation design with several
steps. We start by generating model parameters for various network structures created under
specific conditions. For example, assuming binary data and a small world architecture with 10
nodes, this step results in 45 interaction and 10 threshold model parameters. These parameters
represent the true network parameters, or, simply, the true model, indicating that the exact data
generating parameters are known. In the next step, we use these parameters to simulate data of
varying sample sizes, say 100, 200, and 300. Next, we use these simulated data to estimate state-
of-the art Ising models, or GGM when data is assumed ordinal. Finally, for each sample size, we
investigate the accuracy of these estimated parameters as compared to the true network
parameters. Ultimately, we aim at providing researchers with concrete sample size
recommendations for accurately estimating cross-sectional network structures under a wide
range of conditions.

Methods

The approach further discussed in this section is based on a simulation design with five
factors. For each combination of factors and their levels (i.e., simulation condition, for example,
a small-world architecture with 10 nodes, a rewiring probability of . 5, and 100 participants) we
estimated either the Ising model or GGM and monitored the deviations of the estimated
parameters from the true model parameters. The simulation approach comprises five steps. The
first step pertains to creating the simulation design by selecting the factors and their levels. The
remaining four steps describe how the procedure was applied to every simulation condition,
starting with: generating the true model parameters, generating the data, estimating the
appropriate PMRF model, and computing the outcome measures. Each step is explained in detail

below.
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Simulation Design

The following factors and their respective levels—resembling but not identical to the
Ising model validation study (van Borkulo et al., 2014)—were used to set up the broad range of
simulation conditions under which performance of the Ising and GGM methods were evaluated
given a certain sample size:

1. Sample size. Given that our primary goal is to assess the accuracy of network estimation
at different sample sizes, we selected a wide, but fine-grained range of sizes. The sample
sizes were picked between 50 and 1000 with increments of 50. This resulted in 20 levels
as Ssize = {50,100, 150, ...,900,950,1000}.

2. Network size. Three levels were used: N,,,4.s = {10, 20,30} .

3. Network architecture. The network architecture was selected to reflect three commonly
encountered network structures (see Figure 1), namely random (Barabasi & Albert,
1999), small-world (Watts & Strogatz, 1998), and scale-free (Cohen, Havlin, & Ben-
Avraham, 2004).

4. Network connectedness. The level of connectedness was selected to generate sparse
networks, the underlying assumption when using LASSO regularization, a technique
almost always used when estimating cross-sectional network structures (see Epskamp &
Fried, 2018; Epskamp, Kruis, & Marsman, 2017). For random networks, whether or not
an edge is included in the network structure is a function of probability and three levels
were selected: P, = {. 1,.2,.3}. For small-world networks, the network structure is
generated iteratively as a function of two parameters: neighborhood (i.e., the number of
neighboring nodes any given node is initially connected to), and rewiring probability (B.).

A sparse network was ensured by fixing the neighborhood parameter to 2, followed by
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varying the level of P. to obtain different network structures: P. = {.1,.5, 1}. Scale-free

network structures are also generated iteratively and modeled by two parameters: number

of edges to be added per step, and preferential attachment (P,). The number of edges to

be added per step was fixed to one in order to obtain a sparse graph and the levels of P,

were varied as: P, = {1, 2, 3}. Note that for small world and scale-free networks,

changing the connectedness level did not result in denser network structures, as the
neighborhood and edges per set were fixed values. However, in the case of random

networks a higher P, lead to more edges being included in the network structure, thus a

denser network.

5. Type of data. Two data types were used, binary and ordinal.

The resulting design was a quasi-factorial design with 1080 cells = 20 (sample size) x 3
(network size) x 3 (network type) x 3 (network connectedness) x 2 (data type). Empirically,
this can be understood as 27 different kinds of network structures (i.e., size, type, and
connectedness), examined at 20 different sample sizes, both on binary and ordinal data.
Procedure

The following steps describe the order in which the procedure was applied to each
simulation condition in the factorial design.

True Model Generation.

During this step, the true network structure (i.e., true model) was generated as follows:

- using the igraph (Csardi & Nepusz, 2006) package in R version 3.5.1 (R Core Team,

2017) an undirected and unweighted graph was generated according to the
configuration of each simulation condition, that is, based on three factors: network

size, network architecture, and network connectedness. For example, a possible
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generated network could have a size of 10 nodes and be of type random, in which
case the connectedness would be operationalized as P,44.. Let the adjacency matrix
describing the undirected unweighted generated network structure be represented as
¢

- next, model parameters were generated differently with respect to the appropriate

PMRF based on the type of data. For both the Ising and GGM models, the number of

kx(k—1)

edge weights to sample was determined as , Where k stands for the network

size factor (i.e., the number of nodes in the network). In the case of Ising model, a
vector of edge weights B was sampled from the standard normal distribution with a
mean of 0 and a standard deviation of 1. Then, a vector of threshold parameters T was
sampled from the standard normal distribution with both the mean and standard
deviation tied to B, and with the sign inverted, in order to ‘prevent nodes with many
connections to be continuously activated and consequently having no variance’ (van
Borkulo et al., 2014, p. 8). Finally, the true network structure 8 was obtained by
symmetrically mapping g onto the unweighted graph §.

- asimilar process was also used for generating GGM model parameters, with several
additions. First, the edge weights B were uniformly sampled between 0 and 1 and,
then, symmetrically mapped onto the unweighted graph &, obtaining a matrix w. To
obtain a positive definite concentration matrix (i.e., inverse of a covariance matrix, or
precision matrix), the algorithm described by Yin and Li (2011; see section 4.1), also
used elsewhere (Epskamp, Rhemtulla, & Borsboom, 2017), was applied on the w

matrix. Finally, the network true structure @ was obtained by standardizing the w and
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inverting the sign, thus obtaining a matrix of partial correlations that served as edge
weights.

For both the Ising and GGM models, the edge weights were selected such that they only
portrayed positive relationships between the nodes in the network. This is assumed to resemble
empirical network structures of psychopathological phenomena (e.g., Boschloo et al., 2015;
Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016; McNally et al., 2015; Schmittmann et
al., 2013).

Data Generation.

In this step, either a continuous or a binary dataset was generated, based on the true
model parameters determined during the previous step. The resulting data were regarded as a
sample from the unknown population described by the true parameters g and . The number of
observations matched the level of the sample size design factor for each respective condition
(i.e., from 50 to 1000). For generating ordinal data only the B edge weights parameters were
used, and the data were sampled from the multivariate normal distribution, as implemented in the
ggmGenerator function of the bootnet (Epskamp et al., 2018) package in R. In this case, the
data were generated with five item response steps, that is, resembling a Likert scale with five
categories. When binary data were generated, the threshold T parameters were also used,
alongside the p parameters, and the data were obtained using the IsingSampler package
(Epskamp, 2015). The binary data generating algorithm was the Metropolis-Hastings algorithm
(Hastings, 1970).

In special cases where at least one node (i.e., column) in the sampled data had too little
variance (i.e., a response category with lower than two observations), 10 resampling attempts

under the same true model parameters were performed. If data still displayed little variance after
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a total of 11 sampling attempts, the invariant nodes were removed from the data and this action
recorded.

Model Estimation.

During this step, the estimated network parameters were obtained by fitting the
appropriate PMRF model to the previously generated data. As a result, the estimated network
structure  was obtained, described by the estimated edge weights 8, and, additionally, the
thresholds %, when the data were binary. Both Ising and GGM models were fit with LASSO
regularization. Recommended default values were used for the tuning parameters A, and the
EBIC hyperparameter y, as implemented in the IsingFit and bootnet R packages (Epskamp &
Fried, 2018; van Borkulo et al., 2014).

Outcome Measures.

In the final step of this procedure, the outcome measures were computed based on the
deviations of the estimated network structure 8 from the true network structure 8. The primary
outcome measure can be considered a binary classification for whether an edge is correctly
estimated or not to be non-zero. Therefore, for each cell in the design, retrieval rates were
investigated with respect to the edges in the true network structure and those in the estimated
network structure. This implies looking at the proportions of the true/ false positive and negative
estimated edges. First, the sensitivity and specificity of the estimation were computed (Adams &
Leveson, 2012; Altman & Bland, 1994; van Borkulo et al., 2014). Sensitivity is regarded as the
true positive rate (TPR) computed as:

# true positive

sensitivity = (D

# true positive + # false negative
It may also be regarded as the power of the procedure, computed as 1 — £, where g stands for

Type 1l error rate, given by the false negative rate (FNR):
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# false negative
FNR = , —. (2)
# false negative + # true positive

In the context of this simulation, sensitivity is interpreted as the proportion of edges in the true
network structure that were correctly estimated to be non-zero.

Specificity refers to the true negative rate (TNR) and provides information about the
proportion of edges in the true network structure that were correctly estimated to be 0 (i.e.,
missing):

# true negative

specificity = 3)

# true negative + # false positive’
Type | error rate was also computed, but not reported here, as the false positive rate
(FPR), equivalent to 1 — specificity:

# false positive
FPR = — —. (4)
# false positive + # true negative

Additionally, correlations between the edge weights of the estimated model and those of
the true model were also computed, in order to get a better understanding of how well they
resemble each other (Epskamp & Fried, 2018). The edge weights correlation was computed
between the upper triangle of the true network structure 8 and the upper triangle of the estimated
network structure 8. In cases where the upper triangles resulted in unequal number of parameters
(i.e., due to dropping nodes as a result of unsuccessful resampling attempts) the correlation
coefficient was not computed, and replaced with a NA constant.

The procedure described above was applied to every cell in the factorial design and was
replicated 100 times. That is, for each of the 1080 resulting conditions, we generated a true
model, generated data based on the true model, estimated the appropriate PMRF on the data, and
compared the estimated parameters to the true model parameters in terms of retrieval rates and

edge weights correlations. This process was repeated 100 times for each condition, resulting in
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estimating 54000 Ising models and 54000 GGM models. Figure 2 illustrates a true network
structure and the corresponding estimated network structure for a specific simulation condition.
The code used in this paper is freely available as an R package at

https://github.com/mihaiconstantin/netPower. The installation, the data used in this paper, and

the entire replication of the results can be achieved following the instructions provided in the
README.md file.
Results

For each simulation condition, three outcomes were computed as a measure of
performance: sensitivity, specificity, and edge weights correlation. In this section we report the
means and standard deviations of each of these outcomes, after 100 replications. We start by
outlining aggregated trends applicable to both binary and ordinal data, and then zoom in and
present specific results related to each type of data. Figures 3 and 4 show the change in the mean
of each outcome measure as a function of sample size, and with respect to the type of data,
number of nodes, and network architecture. Figures 5 to 9 show the trends for each outcome
measure using Tuckey boxplots for a better visual understanding of the spread in the outcome
means (McGill, Tukey, & Larsen, 1978).

Sensitivity showed moderate mean values when averaged across all simulation conditions
(M = .615, SD = .280) and increased steadily for each 50 participants added to the sample
(M = .035), with larger gains for sample sizes smaller than 250 (M = .093), compared to
larger samples (M = .014). Sensitivity did show more variation in the means for ordinal data
(SD = .309) compared to binary data (SD = .169), result also clearly visible in the size of the
boxplots under Figure 6. Furthermore, sensitivity was lower in the simulation conditions

consisting of random architectures and 30 nodes (M = .385, SD = .272) compared to other
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network architectures with the same number of nodes (scale free: M = .665, SD = .289; small
world: M = .531, SD = .250; see Figure 5).

Specificity was very high when averaged across all conditions (M = .942, SD = .077).
However, the largest values were observed for binary data (M = .990, SD = .012), where
across all sample sizes the values generally remained similar (see Figure 8). Contrary, the GGM
estimation produced somewhat lower values (M = .895, SD = .085). Additionally, GGM also
resulted in lower specificity for networks with fewer nodes, dropping below . 8. Figure 7
indicates that, in the case of scale free and small world networks, specificity was less stable as
the sample size increased, the mean values being spread across a wider interval, however, it
became more stable as the number of nodes increased.

Figure 4 shows that the correlation between the edge weights of the true model and the
estimated model was high and displayed a stable pattern, increasing with sample size across all
network architectures, for both binary and ordinal data (M = .859, SD = .175). On average, a
sample size of 250 participants, was associated with a high correlation of M = .818 (SD =
.146) and further increasing sample sizes lead to higher correlation coefficients and smaller
variation. Figure 9 indicates, furthermore, that the means of the edge weights correlation
coefficients were larger at smaller sample sizes when the network structure contained fewer
nodes. Conversely, the coefficients were lowest for random networks with 30 nodes (see Table
5). The values reported so far on all three outcome measures show that, although some general
trends can be depicted, such as increasing sensitivity, edge weights correlation, and all-around
high specificity, these trends potentially vary with respect to the type of data used, therefore,

requiring a closer inspection.
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Binary Data

A closer look for models estimated on binary data indicates that sensitivity only reaches a
moderate mean, when averaged across all conditions (M = .488, SD = .169). For sample sizes
smaller than 450 and more than 20 nodes, sensitivity was low, regardless of the network
structure (M = .319, SD = .139). However, for the same number of nodes, samples larger than
450 showed an almost double average increase in sensitivity with a very small standard
deviation (M = .580, SD = .037). As presented in Table 2, sensitivity increased with M = .029
for each 50 simulated participants added to the sample size. This trend was larger in magnitude
for samples smaller than 450 (M = .051), compared to sample sizes above 450 (M = .012),
suggesting that the sensitivity stabilizes after a given number of participants. Furthermore, this
trend was also uniformly present across all network structure, regardless of the level of
connectedness, with a single exception. Namely, sensitivity was slightly lower for random
networks with P, = .3 (M = .444, SD = .171), as this type of operationalization also resulted in
denser networks. Conversely, sensitivity was slightly larger for networks with fewer nodes: 10
nodes (M = .538, SD =.160), 20 nodes (M = .486, SD = .164), and 30 nodes (M = .439,
SD = .168). Finally, we observed the highest values of sensitivity for sparse small world
networks in combination with 10 nodes (M = .579, SD = .150).

Specificity was high all-around and we did not observe decreasing trends, regardless of
sample size, network architecture, and operationalization of network connectedness (see Table
4). Only extremely low variation was observed when networks had 10 nodes (M = .985, SD =
.014; see Figure 8). With respect to the edge weights correlation coefficients, averaging across
all simulation conditions, we obtained high values with M = .861 and SD = .134. Bolded values

in the right-hand side of Table 5 reveal that the correlation coefficients were lower at small
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sample sizes (i.e., smaller than 200), falling below .8 (M = .653, SD =.070). On the other
hand, for samples larger than 200, the mean of the edge weights correlation coefficients was
very high, reaching M = .913 and SD = .051. This was observed across all network
architectures and levels of connectedness. Similar to sensitivity, random networks with highest
P, resulted in lower edge weights correlation coefficients, as shown in Table 5.

Overall, the Ising model estimation showed moderate sensitivity, very high all-around
specificity, and high edge weights correlation. Our simulation results indicate that the trend for
sensitivity and edge weights correlation is to increase steadily as the sample sizes goes up,
reaching values around . 5 and . 9, respectively, for 450 participants or more, regardless of the
number of nodes and network architecture. These results align closely with current simulation
work on fitting network models to binary datasets (van Borkulo et al., 2014).

Ordinal Data

In contrast to binary data, the GGM estimation on ordinal data displayed higher
sensitivity values (M = .742, SD = .309). Table 1 shows that regardless of network architecture
and number of nodes, samples sizes larger than 200 generally resulted in an average sensitivity
value above .5 (M = .830, SD =.217), a threshold typically seen as ‘acceptable as that at least
indicates the strongest edges are discovered’ (Epskamp & Fried, 2018, p. 11). A closer inspection
of the results shows that scale-free networks had the highest sensitivity and lowest variation
(M = .912, SD = .172). However, this result is subject to caution, as simulation conditions
including this particular network structure resulted in simulation errors (see Table 6). Out of
18000 simulation runs that involved scale-free structures, 1092 could not be estimated (i.e.,

roughly 6%). Curiously, the error frequency went up as the number of nodes increased. We



SAMPLE SIZE RECOMMENDATIONS FOR NETWORK MODELS 20

backtracked the error to the data generation step of our procedure, where, on some occasions,
datasets could not be samples based on the model parameters provided.

For the other network structures, the increase in sensitivity was linear and, on average,
for each 50 participants, it went up by M = .036 (i.e., for random networks) and M = .045 (i.e.,
for small world networks). Sensitivity was higher for networks with fewer nodes: 10 nodes
(M = .876, SD =.194), 20 nodes (M = .735, SD = .295), and 30 nodes (M = .615, SD =
.359). Furthermore, Figure 6 also shows multiple outliers indicating that, for networks consisting
of more nodes, empty structures were more often selected as best fitting by the EBIC model
selection of LASSO regularization. The reason for this lies in the fact that more nodes resulted in
denser network structures, which in turn resulted in lower generated partial correlation
coefficients, making them more susceptible to LASSO. This was particularly the case for random
networks, where sensitivity further decreased to 0 as the level of P, increased (i.e., bolded values
in Table 1 indicate this trend).

In contrast to the Ising model estimation, the GGM resulted in somewhat lower
specificity, and larger variation. Table 3 shows that specificity decreased as the sample size
increased (e.g., 50 simulated participants [M = .978, SD = .043] to 1000 simulated
participants [M = .867, SD = .085]). This trend was particularly noticeable for small world and
scale-free networks with 10 nodes, in which case the specificity dropped below . 8. This finding
was consistent across all levels of connectedness.

The correlation coefficient between the edge weights of the true model and estimated
model was high when averaged across all simulation conditions (M = .856, SD = .208). For
the smallest sample size of 50, the mean of the coefficients was low with M = .430 and SD =

.243, however, it steadily increased with sample size, reaching M = .958 and SD = .071 for
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sample sizes of 1000. Additionally, the values were overall higher for networks with fewer
nodes, regardless of sample size: 10 nodes (M = .922, SD = .114), 20 nodes (M = .867,
SD =.181), and 30 nodes (M =.780, SD = .272).

Overall, for ordinal data, the sensitivity was moderate to high and it increased with the
sample size, at a faster rate in the case of scale-free and small world networks with fewer nodes.
Specificity started high, but decreased as sample size increased, reaching values below . 8 for
networks with 10 nodes. Finally, the edge weights correlation was relatively high with low
variation for sample sizes larger than 300. These results are generally, in line with other
simulations (Epskamp, 2016), however, they are not directly comparable, as different design
factors were employed.

Discussion

In this study we investigated what sample sizes are roughly needed for accurately
estimating networks structures. To accomplish this, we employed a simulation approach based on
five design factors: sample size, network architecture, network connectedness, number of nodes,
and type of data. To capture the performance of the estimation we used recommended indicators
in the literature on psychological networks, such as, sensitivity, specificity, and edge weights
correlation (Epskamp & Fried, 2018; van Borkulo et al., 2014).

Rough Sample Size Recommendations

Our primary goal was to provide general recommendations for researchers interested in
knowing beforehand what sample size are roughly needed for a hypothesized network structure.
On one hand, binary data were estimated with lower sensitivity, but very high specificity all-
around. On the other hand, ordinal data were estimated with higher sensitivity, but lower

specificity. Furthermore, even though sensitivity was higher for lower sample size, it showed
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greater variation, compared to the Ising estimation method. Nevertheless, in both cases,
increasing sample sizes resulted in higher edge weights correlations. Table 7 presents an
overview of the sample sizes recommended for accurately estimating various network structures.

Ordinal Data.

With respect to the number of nodes and network architecture, one can estimate a GGM
model with 10 nodes and a random architecture with a sample size of 150 and expect the
sensitivity, specificity, and edge weights correlation to be around . 9. With 200 participants or
more, for the same architecture, but 20 nodes, one can expect the sensitivity values to be around
.8 and the specificity and correlation around . 9, given that the network is sparse (i.e., P, = .1).
In case the network is somewhat denser (i.e., P, = .2, or P, = .3), similar values can be obtained
with sample sizes larger than 600. When 30 nodes are used, sparse random networks (i.e., P, =
.1) can be estimated with around 500 participants, and still observe sensitivity values around . 8,
and specificity and edge weights correlation values around . 9. For densely connected random
networks with 30 nodes, one can either use more than 1000 participants in order to obtain
moderate sensitivity and edge weight correlation values, or drop the number of nodes included,
as suggested elsewhere (Epskamp et al., 2018). Nevertheless, even with a large number of nodes
and a denser random network, one can expect the specificity to be close to 1.

When the researcher hypothesizes a small world network and wishes to study 10
variables, a sample size of 250 results in the best trade-off between sensitivity and specificity,
both indicators reaching values close to . 8, and a correlation larger than . 8. Larger sample sizes
in this scenario are associated with higher sensitivity, but fairly low specificity. For estimating
small world networks with 20 nodes, at lest 500 participants are needed to ensure the sensitivity

is around . 8 and specificity and edge weights correlation around . 9. For 30 nodes, similar values
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can be expected with sample sizes larger than 650 participants. Furthermore, different levels of
connectedness (i.e., B. = .1, B. = .5, and P. = 1) did not appear to influence the values of the
performance indicators.

Scale-free networks were associated with the lowest values for specificity and,
conversely, highest values for sensitivity and edge weights correlation, along all networks
structures. For a scale-free network with 10 nodes, one can obtain an optimal value around . 8 for
specificity and sensitivity (i.e., at the intersection of the two indicators) with only 100
participants, while still observing a correlation between the edge weights around . 9. For 20
nodes, values around . 9 on all outcomes indicators can be expected for samples larger than 150.
For larger networks consisting of 30 nodes, similar values can be obtained with samples above
300 participants or more. Similar to small world networks, different levels of connectedness
(ie., P, =1, P, = 2,and P, = 3) did not result in different values for three outcomes measures
investigated.

Binary Data.

Researchers fitting Ising models can expect stable and accurate estimations with respect
to specificity. Regardless of network architecture, connectedness, number of nodes, and sample
size, specificity is expected be very close to 1. When estimating a network structure with 10
nodes, one needs at least 350 participants for obtaining moderate sensitivity values of . 5, but can
expect a high edge weights correlation value around . 9. For 10 nodes and binary data, the type
of network architecture is not expected to influence the values of the outcome measures. For
larger networks with 20 nodes, irrespective of their architecture, one can expect the sensitivity

around . 5 and the correlation close to .9, provided that data from more than 450 participants are
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collected. When small world and scale-free networks with 30 nodes are estimated, one can
expect moderate sensitivity and high correlation for 550 participants or more.

When the expected structure is a random architecture with 30 nodes, researchers also
need to consider the overall network density. For instance, for an operationalization of P, = .1, a
sample size of 450 is adequate for an observed sensitivity of . 5 and an edge weights correlation
around . 9. However, for denser networks with P, = .2, in order to observe the same values, one
needs to collected at least 550 participants. In the case of P, = .3 we could not capture
sensitivity values larger than . 5, indicating the need for even larger sample sizes, or a different
strategy with respect to the nodes included in the network structure.
Limitations and Future Directions

With this study we took a first step in answering multiple calls for tackling the issue of
accurate network parameters estimations from the perspective of an a priori sample size analysis
(Epskamp et al., 2018; Fried & Cramer, 2017). However, our approach reveals at least two
limitations. A first limitation is suggested by the statement that ‘the precise values of sensitivity,
specificity and different correlations are strongly influenced by the expected network structure,
similar to how the expected effect size influences a power analysis’ (Epskamp & Fried, 2018, p.
11). More precisely, this reveals that, although we employed 1080 simulation conditions, we
admittedly only scratched the surface, investigating just 27 different network structures. This
limitation ought to encourage further studies to extend the range of network structures included
in their simulation designs.

A second limitation concerns the way in which we operationalized the network
connectedness factor. In line with previous studies we chose to investigate the idea of how edges

are distributed in the network structure according to different algorithms (i.e., edge probability,
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rewiring probability, and preferential attachment; van Borkulo et al., 2014). While we did not
observe large changes in the means of our outcome measures for different levels of rewiring
probability and preferential attachment, large changes were seen in the case of random networks,
where edges were simply a function of probability. These changes were expected, as the
probability of including an edge in the network is equivalent to the network density, thus,
strongly influencing its sparsity.

For a first improvement, we suggest that further simulations also manipulate the network
density across small world and scale-free architectures. This is particularly relevant for
regularized PMRF models, where the assumption of sparsity is central to the LASSO
methodology (Epskamp, Kruis, et al., 2017). On another note, during this study we constrained
all edge weights to positive values, in order to resemble the generally positive relations between
psychopathology symptoms. Further simulations may consider including an additional design
factor for manipulating the positive ratio of the edge weights, adjusting the current approach to
other fields, such as personality research (e.g., Costantini et al., 2015; Cramer et al., 2012).
Additionally, F1 scores—which simultaneously take into account both precision and specificity
(see; Jardine & van Rijsbergen, 1971; Powers, 2011)—can also be computed to account for
situations in which sparse networks result in high specificity due to the ‘low base rate of
connections’ (van Borkulo et al., 2014, p. 2).

Conclusion

In this paper we discussed a simulation approach suitable for investigating what sample
sizes are roughly needed for arcuately estimating network parameters from cross-sectional data.
We assessed the performance of 27 network structures at 20 sample sizes ranging from 50 to

1000, using state of the art network models for binary and ordinal data. Our simulation results
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come close to those of other studies, showing that sensitivity and specificity increase to 1 as the
sample size goes up (Epskamp, 2016; van Borkulo et al., 2014). This indicates that both Ising
and GGM estimation methods work well and, although, not all edges are successfully retrieved
(i.e., moderate sensitivity), those retrieved can be generally considered accurate (i.e., high
specificity). This is further confirmed by the increasingly high edge weights correlation
coefficient, suggesting that both methods also accurately retrieve the true edge values. As
expected, both sensitivity and edge weights correlation values increased steadily with the sample
size and were consistent across all three network architectures investigated. Generally, the GGM
estimation required smaller sample sizes in order to correctly retrieve the edges and their
weights, however, the retrieval rates were associated with higher variability. The Ising model,
required larger samples to reach moderate sensitivity, however, the performance indicators
showed only extremely low variability.

The approach discussed here is potentially useful for researchers with an idea about an
expected network structure, looking for concrete sample size recommendations before the data
collection plan is initiated. With respect to providing such concrete recommendations, we found
that sample sizes ranging from 250 to 350 are generally enough to observe moderate sensitivity
and high specificity and edge weights correlations, when the networks are sparse and consist of
20 nodes or less. Table 7 provides a complete overview of the sample size recommendations
identified in this study. Furthermore, this approach can be complemented by established tools
aimed at investigating the accuracy of estimated network parameters after the data is collected
(i.e., bootnet; Epskamp et al., 2018). The simulation design and steps discussed in this paper are
implemented as a freely available R package called netPower, which enables researchers to take

informed guesses with respect to how many participants are needed for a hypothesized network



SAMPLE SIZE RECOMMENDATIONS FOR NETWORK MODELS 27

structure and a given number of nodes. Our tool, together with bootnet, is a first step in properly
equipping applied researchers for getting started on the marathon of accurate parameter

estimations in the increasingly popular field of psychological networks.
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Table 1.

Tables

34

Sensitivity as an outcome measure for ordinal data (i.e., GGM) and various simulation conditions: sample

size (i.e., Sgize), number of nodes (i.e., Np,,4e5), Network architecture (i.e., random, scale-free, and small

world), and connectedness (i.e., probability of an edge [P,], preferential attachment [P,], and probability

of rewiring [P,]).

Random Scale-free Small world
Ssize Nnodes P.=1 P,=2 P,=.3 P,=1 P,=2 P,=3 P.=1 B=5 B=1
50 10 .616 .367 .140 543 529 .563 .030 .035 .034
20 .052 .003 .001 140 .065 113 .004 .003 .001
30 .002 .000 .000 .010 .004 .001 .000 .001 .001
100 10 923 728 489 910 .885 .898 152 .158 174
20 544 .052 .004 .827 821 .829 .023 .018 027
30 12 .002 .000 769 781 764 .005 .016 .005
150 10 .967 .882 764 .924 .936 .947 403 .458 417
20 .755 A71 .014 .878 901 .884 .093 .098 .087
30 .344 .004 .001 .865 .864 .865 .024 .037 .043
200 10 .981 915 .815 .948 .946 961 .654 .709 .658
20 .822 .378 .038 915 921 .906 .346 .292 .293
30 540 .023 .001 901 901 .895 154 .136 .160
250 10 971 .943 .880 .949 .953 .962 J74 .768 .780
20 .855 457 .093 927 .935 931 511 AT75 478
30 .634 .030 .001 915 .906 912 .382 .337 .293
300 10 973 .936 .896 .962 .967 .962 .820 .820 .819
20 .886 .616 126 .938 .937 .932 .654 .563 591
30 .693 .067 .003 .924 929 929 574 485 476
350 10 977 .954 .890 .970 .967 979 .846 .838 .848
20 .890 .696 .249 .947 .947 .945 711 .660 .678
30 731 JA21 .004 .932 .928 .926 .670 .560 571
400 10 .990 .941 .926 .965 .965 .965 .844 .864 871
20 910 746 314 .947 .953 .948 .765 715 718
30 770 .168 .004 .943 .943 .946 707 .626 .621
450 10 .985 .958 916 .976 974 .967 .878 .875 .875
20 .909 .768 484 .958 .949 .953 779 754 762
30 791 .238 .009 .950 .946 .946 .738 .683 .678
500 10 .983 .950 .933 971 975 970 .878 .886 .880
20 921 .786 498 .957 .954 .964 .796 776 T77
30 .810 .335 .012 .948 941 951 .766 704 .699
550 10 .986 .964 918 .966 975 972 .891 .899 .889
20 .926 .804 .617 .959 .965 .958 .820 .800 797
30 .822 414 .009 .949 .956 951 784 732 .736
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Random Scale-free Small world
Ssize Nnoges P.=1 P,=2 P,=.3 P,=1 P,=2 P,=3 P.=1 B=5 P=1
600 10 .986 961 .930 977 972 979 .892 .898 .902
20 .925 .819 .693 .958 961 .960 .842 .802 .807
30 .832 482 .015 .950 951 .948 .789 752 733
650 10 .986 .959 .943 978 .985 .982 .907 .904 .905
20 .930 .834 701 .956 .962 .962 .849 .821 .824
30 .840 527 .018 .956 953 .955 811 .769 752
700 10 .993 .960 934 .985 978 976 .903 .900 .900
20 942 .831 .735 961 .962 .965 .855 .828 .833
30 .861 .621 .041 .948 957 .958 .819 J77 770
750 10 .992 .968 943 .978 .985 974 .905 917 .906
20 932 .859 .748 .970 .969 .966 .848 .842 .838
30 .863 .602 .081 957 .962 .959 .830 .788 .790
800 10 .990 .959 .945 .981 .982 .985 914 .908 .927
20 .940 .851 754 .969 .966 .966 .867 .852 .843
30 .874 .653 .096 .966 .968 .958 .837 .800 .802
850 10 .990 971 .952 .986 .983 .982 .920 919 912
20 .949 .865 778 .966 963 .969 .865 .844 .847
30 .878 677 112 .966 .955 .959 .848 .807 .814
900 10 .986 .958 .950 .980 .980 976 921 918 .925
20 .944 874 .783 .964 970 .969 877 .861 .866
30 .873 .700 157 .965 .959 963 .846 .823 .826
950 10 .993 979 .945 974 977 .983 .933 .920 919
20 .944 .874 .806 971 972 .978 .890 .865 .869
30 .884 713 243 .966 .960 967 .866 .827 .828
1000 10 997 .976 947 975 .988 .976 935 .929 919
20 .952 .881 .822 971 967 973 .881 877 .873
30 .899 716 .306 .962 .968 961 .864 .834 .829

Note. Values of sensitivity smaller than . 6 are in boldface.
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Table 2.

36

Sensitivity as an outcome measure for binary data (i.e., Ising model) and various simulation conditions:

sample size (i.e., Sgiz), NUMber of nodes (i.e., Ny,,q05), NEtwork architecture (i.e., random, scale-free, and

small world), and connectedness (i.e., probability of an edge [P,], preferential attachment [P, ], and

probability of rewiring [P.]).

Random Scale-free Small world
Ssize Npodes P.=1 P,=.2 P,=.3 P,=1 P,=2 P,=3 P.=1 B=5 PB=1
50 10 126 130 119 134 113 136 135 .143 139
20 .089 .085 .080 .092 .087 .079 .092 .081 .085
30 .065 .056 .047 .063 .065 .069 .069 .059 .064
100 10 .285 225 252 234 .206 .208 251 274 .267
20 .183 178 169 .186 .185 154 174 A71 181
30 .156 142 .095 142 139 152 .164 .140 144
150 10 .328 .302 .308 .284 .308 .304 .328 .356 .362
20 .267 .263 .252 244 .264 .249 273 .252 251
30 222 .203 136 .216 222 .226 244 222 214
200 10 406 .396 407 .358 341 371 421 444 444
20 .320 317 .335 .299 .318 .309 .352 .333 .343
30 .283 .260 .198 276 .289 .287 312 .288 .304
250 10 397 412 443 415 413 409 474 499 479
20 .384 379 .361 .356 342 .365 407 .392 400
30 .342 324 .233 .345 .335 .335 374 .334 .351
300 10 447 460 492 464 459 461 531 .500 519
20 406 416 414 403 .383 .388 449 434 451
30 .383 .369 .220 .379 .369 379 408 .388 .380
350 10 486 497 .537 468 475 .503 573 .567 .569
20 452 450 458 434 427 422 480 471 467
30 427 400 .258 410 .399 .395 451 432 427
400 10 529 515 .538 493 502 522 574 .585 .594
20 486 474 .502 451 445 449 519 492 495
30 456 433 .282 432 449 449 .490 443 462
450 10 557 551 576 .549 490 505 591 .596 .618
20 496 518 .480 493 483 486 547 523 527
30 490 457 313 464 460 451 .504 479 484
500 10 517 581 .606 512 517 .559 .610 .644 .619
20 530 .536 518 514 .504 495 574 542 .549
30 521 466 .333 491 479 489 547 .506 .507
550 10 525 561 .615 .556 570 573 .643 .632 .639
20 .554 .550 .557 519 523 541 .593 .569 .566
30 521 .506 .368 .506 499 .504 570 .549 .540
600 10 .632 .599 .629 .589 578 578 674 .680 .661
20 567 .559 576 527 524 .548 .598 .589 .597
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Random Scale-free Small world
Ssize  Nnodes =1 P=2 P =23 P,=1 P,=2 P,=3 P.=1 B=5 PB=1
30 545 514 332 .539 510 518 .569 .553 .552
650 10 .598 .619 .641 .587 593 579 .670 .674 .685
20 577 .600 .603 .559 .559 549 .615 611 .607
30 557 526 .360 518 529 543 .602 .580 .569
700 10 .604 .608 .659 .623 .605 .590 .686 .685 .695
20 .603 .609 592 .558 571 .558 .624 .615 .607
30 592 554 .330 551 553 554 .599 .592 .589
750 10 .616 .646 .655 .643 .623 .614 .700 719 702
20 .598 .612 611 .581 .598 577 .640 .620 .630
30 593 .568 .380 .569 552 561 .624 .600 .594
800 10 .634 .687 704 .644 .609 .626 702 124 707
20 .630 .658 .622 .580 591 593 .666 .641 .621
30 .603 572 .363 574 582 571 .642 .619 .613
850 10 .644 .696 .700 .654 .636 .658 127 .738 710
20 .627 .649 .629 .620 .603 .602 677 .641 .649
30 .602 577 .396 .595 .589 594 .649 .618 .622
900 10 .649 .648 .693 .649 .656 .647 Jg17 729 .730
20 .618 .646 .662 .608 .622 .628 .665 .668 .661
30 .624 .590 .394 .587 597 591 .657 .637 .630
950 10 .653 671 .694 .646 .676 .631 .740 741 .730
20 .640 677 .663 .616 .625 .637 .687 .661 .682
30 .640 .618 432 .604 .616 .601 672 .629 .632
1000 10 .638 .706 123 .664 .638 .641 .736 123 .746
20 .666 .679 .669 .656 .630 .636 .695 677 672
30 .647 .627 430 .617 .617 611 .670 .653 .661

Note. Values of sensitivity smaller than . 6 are in boldface.
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Table 3.
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Specificity as an outcome measure for ordinal data (i.e., GGM) and various simulation conditions: sample

size (i.e., Sgize), Number of nodes (i.e., N,,,4e5), Network architecture (i.e., random, scale-free, and small

world), and connectedness (i.e., probability of an edge [P,], preferential attachment [P,], and probability

of rewiring [P,]).

Random Scale-free Small world
Ssize Npodes P.=1 P,=2 P,=.3 P,=1 P,=2 P,=3 P.=1 B=5 B=1
50 10 961 .958 974 .863 .857 .876 .996 .994 .995
20 1 1 1 .967 .996 979 1 1 1
30 1 1 1 .997 1 1 1 1 1
100 10 .920 901 925 792 782 782 .982 975 961
20 .981 .999 1 .936 925 910 1 1 1
30 .998 1 1 .959 .953 .955 1 1 1
150 10 931 .856 .859 .780 764 .785 915 .888 911
20 .968 .993 1 914 .890 .900 .997 .996 .997
30 .993 1 1 .937 .949 .950 1 1 1
200 10 931 .867 .861 .765 776 .763 .854 .833 .843
20 .958 .978 .999 .899 .899 .909 .984 .987 .985
30 .986 1 1 .940 .940 .935 .997 .997 .998
250 10 916 .862 .814 771 782 .765 .796 .802 779
20 .953 975 .995 .896 .885 .891 973 .970 972
30 .980 1 1 .928 .940 931 991 .992 .994
300 10 .924 .873 .816 .756 748 759 791 .796 773
20 .954 .962 .993 .878 .891 .899 .962 .963 .956
30 977 .999 1 931 921 923 .982 .986 .987
350 10 .924 .868 794 762 .755 747 .766 752 770
20 .948 .950 .981 .888 .876 .880 951 .950 .943
30 973 .997 1 921 .925 .934 979 .981 .980
400 10 .908 .856 .800 757 .765 751 .769 .735 .760
20 .947 .941 .976 877 .866 .880 .946 .942 .939
30 .969 .995 1 931 922 913 975 977 979
450 10 918 .843 .799 .765 746 J71 757 754 .739
20 .943 932 .954 871 .893 .862 .942 .930 .928
30 .969 .994 1 916 .920 922 971 .970 971
500 10 .926 .851 787 751 741 746 737 .750 752
20 .949 931 .957 .889 .884 .859 .937 .926 .926
30 .967 .989 1 913 .932 915 .968 .970 .969
550 10 .926 .856 784 759 739 .755 744 746 .753
20 941 929 .934 .867 .893 877 .936 .924 919
30 .966 .985 1 911 .920 915 .966 .964 .963
600 10 911 .836 .807 757 .760 .748 734 741 741
20 .938 922 .909 .886 .862 .884 .925 917 918
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Random Scale-free Small world
Ssize Nnoges P.=1 P,=2 P,=.3 P,=1 P,=2 P,=3 P.=1 B=5 P=1
30 .962 977 1 .922 911 .920 .965 .966 .966
650 10 907 .843 781 757 746 762 751 127 732
20 .938 910 914 877 .872 .868 927 912 912
30 .962 976 1 921 925 922 .963 961 963
700 10 .926 .854 .790 745 732 .763 .748 717 741
20 .938 914 .903 .886 871 .875 .925 .904 912
30 .962 .966 1 919 913 921 .962 .959 .960
750 10 .926 .836 .788 763 J47 763 742 719 735
20 .938 911 .889 877 871 .865 925 911 .909
30 .958 .969 .998 913 912 913 .964 .960 .957
800 10 917 .834 .789 748 157 154 743 720 122
20 937 .905 .895 .880 877 .875 919 .905 .904
30 .960 961 997 911 907 .909 .962 957 .956
850 10 913 .831 784 754 .736 JT47 .730 732 .703
20 937 .906 .892 .861 .875 .863 925 910 .905
30 .958 .958 .996 914 .920 913 .960 .957 .955
900 10 .902 .843 .796 125 .756 .760 732 726 .696
20 .939 907 .885 .869 .875 871 915 .900 .899
30 961 .956 .994 912 911 .902 .960 .952 .953
950 10 910 .843 .780 762 764 740 .738 713 712
20 937 .905 .879 .852 .855 .865 918 .899 .900
30 .960 .953 .988 .907 .906 907 .958 .953 .950
1000 10 .920 .839 172 762 733 748 713 Jg17 .697
20 .933 .902 .872 .863 .873 .860 916 .899 .906
30 .956 952 .982 910 .904 915 .960 .952 .952

Note. Values of specificity smaller than . 8 are in boldface.
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Table 4.

Specificity as an outcome measure for binary data (i.e., Ising model) and various simulation conditions:
sample size (i.e., Sgiz), NUMber of nodes (i.e., Ny,,q05), NEtwork architecture (i.e., random, scale-free, and
small world), and connectedness (i.e., probability of an edge [P,], preferential attachment [P, ], and

probability of rewiring [P.]).

Random Scale-free Small world
Ssize Npodes P.=1 P,=2 P,=.3 P,=1 P,=2 P,=3 P.=1 B=5 B=1
50 10 .995 .994 .993 .990 .994 .990 .988 .986 991
20 .999 .998 .995 .998 .998 .998 .998 .997 .998
30 .999 .997 .985 1 1 1 .999 1 .999
100 10 .996 .996 .993 .995 .997 .993 .987 .984 .984
20 .998 .997 .990 .998 .998 .999 .998 .997 .997
30 .999 .996 979 1 .999 1 .999 .999 .999
150 10 .996 .996 .990 .998 .995 .995 .983 .981 979
20 .999 .996 .986 .999 .998 .999 .996 .996 .996
30 .999 .993 974 1 1 1 .998 .998 .998
200 10 .997 .995 .987 .996 .996 .994 .976 .969 979
20 .999 .994 .984 .999 .999 .998 .996 .994 .994
30 .999 .993 .967 1 1 1 .998 .998 .997
250 10 .997 .995 .987 .994 .994 .995 974 971 971
20 .998 .993 .980 .998 .999 .998 .995 .992 .994
30 .998 .990 961 .999 1 1 .998 .997 .997
300 10 .998 .993 .985 .995 .995 .995 .969 972 973
20 .998 .993 979 .998 .998 .999 .994 991 991
30 .998 .988 .967 1 .999 .999 .997 .997 .997
350 10 .998 .993 .988 .997 .993 .994 .968 .964 .963
20 .998 .993 .976 .998 .998 .999 .993 .992 .992
30 .998 .989 .966 .999 1 .999 .997 .996 .996
400 10 .998 .995 .987 .995 .993 .992 .970 .959 .966
20 .998 .993 972 .999 .998 .998 .992 .992 991
30 .998 .987 .964 .999 1 .999 .997 .996 .995
450 10 .997 .993 .987 .995 .993 .994 972 .966 .965
20 .997 991 .976 .998 .998 .997 .992 991 .990
30 .998 .986 .956 .999 .999 .998 .997 .996 .995
500 10 .997 .994 .983 .998 .993 .994 .963 .966 .963
20 .998 991 976 .998 .998 .998 991 .990 .989
30 .998 .987 .955 1 .999 .999 .996 .995 .995
550 10 .998 .993 .984 .995 .994 .995 .962 .962 973
20 .998 991 973 .998 .998 .998 991 .989 .990
30 .998 .985 .949 .999 .999 .999 .996 .995 .995
600 10 .998 .994 .983 .995 .997 .994 .960 .957 .966

20 .998 .989 971 .998 .998 .998 .992 .989 .988
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Random Scale-free Small world
Ssize Nnoges P.=1 P,=2 P,=.3 P,=1 P,=2 P,=3 P.=1 B=5 P=1
30 .997 .984 957 .999 .999 .999 .996 .994 .994
650 10 .998 992 .988 .994 .996 .996 .963 .956 .957
20 997 .990 .966 .998 .998 .998 991 .988 .989
30 997 .985 .958 .999 .998 .999 .995 .995 .994
700 10 .998 .993 .985 .993 .994 .994 .964 .963 961
20 997 .988 .969 .998 997 997 991 .988 .990
30 997 .984 957 1 .998 .999 .996 .994 .994
750 10 997 .992 .981 .995 .994 .995 .959 .953 .959
20 .998 .989 .969 .998 997 .998 991 .988 .988
30 .997 .983 .953 .999 .999 .999 .995 .994 .994
800 10 .997 .993 .984 .994 .994 .994 .963 .956 .961
20 .998 .988 .965 .998 .998 .998 .990 .989 .989
30 .997 .983 .954 .999 .999 .999 .995 .994 .993
850 10 997 992 .982 .995 .992 .995 .955 961 .968
20 997 .990 .970 .997 .998 997 .987 .988 .987
30 997 .983 .954 .998 .999 .999 .995 .994 .993
900 10 997 .994 .983 .994 .996 .993 .965 .950 .959
20 .998 .988 .963 .998 997 .998 991 .988 .987
30 .998 .984 .952 .999 .999 .999 .996 .994 .994
950 10 .998 .992 .981 .995 .993 .993 .962 .960 .964
20 .998 .988 .964 .999 .998 .998 .989 .987 .988
30 .997 979 .944 .999 .999 .998 .995 .994 .994
1000 10 .997 .992 .982 .994 .992 .994 .959 .959 .960
20 .997 .989 .962 .997 .998 .998 .989 .986 .985

30 997 979 .948 999 .998 .998 .995 .993 .993
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Table 5.

Correlation between edge weights as an outcome measure for ordinal (i.e., GGM) and binary (i.e., Ising model) data for various simulation

conditions: sample size (i.e., S;,.), number of nodes (i.e., 10, 20, and 30), and network architecture (i.e., random, scale-free, and small world).

GGM Ising
Random Scale-free Small world Random Scale-free Small world

Size 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
50 756 .352 .129 745 612 443 331 .275 225 568 .443 337 550 .489 .433 486 446 415
100 .839 .536 .261 873 .871 .850 549 391 .309 719 622 .502 .704 641 .607 679 .616 .607
150 .918 .621 .400 927 920 .916 695 508 .426 .788 722 612 J71 748 720 758 721 707
200 .939 .701 .476 945 943 .940 .782 .680 .574 843 777 .665 828 799 .789 824 802 .781
250 .950 .727 .478 959 953 .953 826 .763 .694 859 .811 .716 .857 .840 .828 857 .841 .820
300 .960 .776 .521 965 .962 .958 857 .826 .798 894 844 734 .887 .863 .860 875 .868 .850
350 .965 .806 .546 969 .968 .966 .880 .865 .842 904 .863 .772 901 .881 .877 897 .886 .874
400 970 .845 561 974 970 971 890 .890 .871 914 883 .784 908 .895 .896 905 .900 .892
450 973 .879 .602 976 973 974 910 .904 .891 925 .889 .801 915 915 .904 918 914 .905
500 .977 .886 .640 978 977 976 915 915 .904 929 905 .821 921 922 914 926 921 913
550 .978 .908 .655 981 .980 .977 924 924 916 937 916 .832 940 930 .925 932 928 .924
600 .981 .923 .672 984 982 .980 931 .931 .923 944 916 .826 942 934 929 943 936 .927
650 .981 .926 .686 983 .982 .983 934 939 .933 946 927 .841 949 942 935 944 941 937
700 .983 .932 .723 985 .984 .983 941 943 937 950 .932 .833 948 944 938 951 945 .940
750 .985 .939 .742 .988 .984 .983 944 947 943 956 .935 .854 954 947 939 951 .948 .942
800 .986 .943 .753 .988 .987 .983 945 951 .948 962 .938 .857 956 .950 .948 954 951 .948
850 .987 .949 777 .988 .986 .986 950 .953 .950 960 .944 .858 964 955 951 959 956 .950
900 .986 .951 .780 989 .988 .986 953 957 .954 962 950 .862 963 .959 .952 961 .958 .956
950 .988 .955 .822 990 .987 .986 955 .960 .956 966 .949 .881 962 961 .956 965 .960 .956
1000 .989 .959 .833 990 .987 .987 958 .961 .959 965 955 .876 965 962 .959 966 .963 .961

Note. Correlation are computed between the upper triangle of the true model (i.e., the model that generated the data) and the estimated model.

Correlation coefficients smaller than . 8 are in boldface.
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Table 6.

Network structures that resulted in simulation errors and the frequency of occurrence.

43

Npodes Architecture Connectedness Data Frequency
10 scale free P,=1 ordinal (GGM) 24
10 scale free P, =2 ordinal (GGM) 24
10 scale free P, =3 ordinal (GGM) 20
20 scale free P,=1 ordinal (GGM) 116
20 scale free P, =2 ordinal (GGM) 115
20 scale free P,=3 ordinal (GGM) 124
30 scale free P,=1 ordinal (GGM) 199
30 scale free P, =2 ordinal (GGM) 242
30 scale free P, =3 ordinal (GGM) 228

Note. There were only 1092 errors out of 10800

(e)

scale free networks, more frequently as the number of nodes increased.

simulation runs, at a rate of . 01, occurring only for
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Table 7.

Sample size recommendations for accurately estimating 27 network structure, from ordinal (i.e., GGM)

and binary (i.e., Ising) cross-sectional data. In case of ordinal data, the sample sizes suggested are aimed
at obtaining values of sensitivity and edge weights correlation around . 8, and values of specificity larger
than . 9. For binary data, the sample sizes presented are aimed to obtain moderate sensitivity around . 5,

edge weights correlation around . 8, and specificity larger than . 9.

GGM Ising
Architecture Connectedness 10 20 30 10 20 30
Random P,=.1 150 200 500 350 450 450
P,=.2 200 550 900 350 450 550
P,=.3 200 600 1000 350 600 1000
Scale-free P,=1 100 150 150 400 450 550
P, =2 100 150 150 400 500 550
P,=3 100 150 150 400 500 550
Small world P=.1 250 500 650 300 400 450
B.=.5 300 550 800 300 450 500
B = 250 600 800 300 400 500

Note. Values in boldface indicate that larger samples than those studied here are needed.
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Figure 1. Example of unweighted graphs consisting of 30 nodes and representative for three different network architectures: random
network (i.e., probability of an edge being included in the network structure is . 1), small world network (i.e., rewiring probability is . 1
and neighborhood parameter is 2), and scale-free network (i.e., power of prudential attachment and number of edges added per
iteration are 1). Weighted variants of these networks were constructed by mapping generated model parameters onto them, obtaining

true network structures against which the estimated network structures were compared.
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Figure 2. Example of a true network structure (i.e., on the left) and the estimated network structure (i.e., on the right). The true
network structure corresponds to a random architecture, with 10 nodes and a probability of a connection of . 2. The estimated network
structure was obtained from simulated ordinal data consisting of 150 participants. The closer the resemblance between the two

network structures, the more accurate the estimation. For this example, sensitivity is . 785, specificity is . 934, and the edge weights

correlation is . 873.
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Figure 3. Sensitivity, specificity and edge weights correlation of simulated data.
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Horizontal panels indicate the type of data used and

vertical panels the number of nodes in the network structure. The color of the lines indicates different outcome measures. The edge

weights correlation was computed between the upper triangle of the data generating model (i.e., true model) and estimated model.
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Figure 4. Sensitivity, specificity and edge weights correlation of simulated data.
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Horizontal panels indicate the type of data used and

vertical panels the network architecture. The color of the lines indicates different outcome measures. The edge weights correlation was

computed between the upper triangle of the data generating model (i.e., true model) and estimated model.
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Figure 5. Sensitivity of simulated data presented in Tukey boxplots. Vertical panels indicate the number of nodes in the network

structure and the color of the boxplots indicates different network structures.
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Figure 6. Sensitivity of simulated data presented in Tukey boxplots. Vertical panels indicate the number of nodes in the network

structure and the color of the boxplots indicates different types of data and the network models used for estimation.
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Figure 7. Specificity of simulated data presented in Tukey boxplots. Vertical panels indicate the number of nodes in the network

structure and the color of the boxplots indicates different network structures.
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Figure 8. Specificity of simulated data presented in Tukey boxplots. Vertical panels indicate the number of nodes in the network

structure and the color of the boxplots indicates different types of data and the network models used for estimation.
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Figure 9. Edge weights correlation between the upper triangle of the data generating model and the estimated model, presented in
Tukey boxplots. Vertical panels indicate the number of nodes in the network structure and the color of the boxplots indicates different

network structures.
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