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Syntactic properties of skip-thought vectors

Bart Broere

Abstract

Sentence representations are a powerful
method of extracting fixed-width vectors from
sentences, and are useful in domains ranging
from machine translation to image retrieval.
Evaluating the qualities of sentence represen-
tations is often done by employing the repre-
sentations in standardised semantic prediction
tasks. Syntactic properties are to a lesser ex-
tent subject to evaluation.

Here we evaluate the representations gen-
erated by one particular model; the skip-
thoughts model (Kiros et al, 2015). This study
addresses the lack of syntactic evaluation by
employing intermediate hidden states of the
skip-thoughts model in artificial prediction
tasks. The experiments in this study show that
information about syntax is present in skip-
thought vectors. Logistic regression trained on
the hidden states of the skip-thoughts model
is capable of classifying grammatical cate-
gories. However, logistic regression optimised
on word embeddings with context could still
outperform this.

Despite the lack of word isolation in the hid-
den states of the skip-thoughts model, pre-
dicting grammatical categories has proven to
be a promising method of evaluating syntactic
properties present in sentence representations.

1 Introduction

Sentence representations are a type of feature vec-
tors that are increasingly useful in a wide range
of applications (Hill et al, 2016; Le, Mikolov,
2014), ranging from paraphrase detection to image

retrieval. One such model, with a unique approach
is skip-thoughts (Kiros et al, 2015).

The skip-thoughts model (Kiros et al, 2015) maps
sentences that share semantic and syntactic proper-
ties to similar vectors. This is achieved by training
the model to predict the surrounding sentences. It
is an example of an encoder-decoder model (Good-
fellow et al, 2016). The encoder part results in a
hidden state hti (a fixed-length vector). This hid-
den state forms the input to the decoder, which in
training skip-thoughts maximises the log-likelihood
of the surrounding sentences (si−1 and si+1).

In the case of the skip-thoughts model, the de-
coder is only required for training the model. Af-
terwards, it is discarded and the encoder can be used
to generate sentence representations. Skip-thoughts
therefore is an unsupervised model; it does not re-
quire labeled data. It merely needs a continuous
body of text. The setup of the skip-thoughts model is
inspired by the way word embeddings are optimised
(Kiros et al, 2015; Mikolov et al, 2013). The con-
text of the sentences is assumed to be predictive of
the content of the sentence in skip-thoughts, as the
context of words is assumed to be predictive of the
content of words in word embeddings (Mikolov et
al, 2013).

Most experiments with sentence representations
evaluate the semantic qualities of the generated sen-
tence representations, fewer investigate the syntactic
properties (Kiros et al, 2015; Gan et al, 2017).

The main question of this thesis that follows from
this problem is: To what extent are syntactic prop-
erties encoded in skip-thought vectors? This main
research question can be divided in several subques-



tions.

• Can logistic regression trained on skip-
thoughts hidden states correctly classify gram-
matical function of words?

• Does the aforementioned classification outper-
form a baseline of a classifier trained on word
embeddings?

• What are the differences in (mis)classification
between skip-thoughts hidden states and word
embeddings?

This exploratory research aims to address the lack
of syntactic evaluation of models of sentence repre-
sentation. The syntactic properties of skip-thought
vectors are estimated by predicting part-of-speech
(POS) and dependency tags. A pretrained model
available in SpaCy (2017a) has been used to obtain
the tags, which will be the target labels in the new ar-
tificial prediction task. This results in two multiclass
classification problems; one for the POS tags, and
one for the dependency tags. One-versus-rest logis-
tic regression models are optimised on these prob-
lems.

To allow for comparison of the results, a similar
classifier has been trained with the word embeddings
of the skip-thoughts model. This classifier is ex-
pected to model syntactic effects present at word-
level. The hidden states classifier is expected to
model sentence-level syntactic effects, on top of the
word-level. Where the skip-thoughts model encodes
sentence structure, the classifier trained on hidden
states should outperform the classifier trained on
word embeddings.

The experiments indeed show that the hidden
states of the skip-thoughts model offer an advantage
in predicting tags. For POS tags, accuracy is only
slightly better. For the more grammatically fine-
grained dependency tags however, the classification
improves significantly, compared to the single word
embeddings classifier.

A qualitative comparison of the error between the
models for predicting POS tags shows that this im-
provement is mainly caused by ambiguous words.
These are for example words that could either be a
noun or a verb, depending on the context.

Syntactic performance is not only a desirable
property if the tasks are syntactic. These properties

also improve semantic prediction tasks. The role of
a word has implications for the meaning of a word.
It therefore is of academic and practical relevance to
evaluate syntactic qualities of these representations,
in an effort to improve the underlying models.

The experimental setup that has been developed
can be used to evaluate syntactic properties of other
models of obtaining sentence representations, such
as the recently proposed CNN-LSTM model (Gan et
al, 2017). Future work could focus on standardising
an evaluation task, comparable to the tasks that are
used in evaluation of semantic properties.

2 Related work

2.1 Syntax in natural language

One of the most prevailing definition of syntax in
sentences is that it studies the principles and pro-
cesses by which sentences are constructed (Chom-
sky, 1957). A related concept is that of grammati-
cality; the idea that a sentence can be grammatically
correct, without containing any semantic informa-
tion (Chomsky, 1957). This point is generally illus-
trated by making sentences with words that have no
meaning. Despite the lack of meaning of the indi-
vidual words, such sentences can still be considered
grammatically correct by native speakers of the lan-
guage.

Grammaticality does not apply in the other direc-
tion however. Grammatical properties of words are
essential in determining the meaning of a sentence.

Information about syntax can also be enclosed at
the word level. For many words, its basic grammati-
cal function (e.g. noun or verb) can be deduced from
the word alone. Some words are more ambiguous,
and require syntactic context to be able to determine
the grammatical function. Grammatical functions
that depend more heavily on sentence structure (e.g.
object or subject) can often not be deduced from the
word alone. In the experiments, this difference has
been observed between part-of-speech and depen-
dency tags.

2.2 Sentence representations

Since some of the classic work showed that dis-
tributed representations of language offer signifi-
cant benefits over localist approaches of encoding
language (Elman, 1991), lots of progress has been



made. Several unsupervised approaches performed
well (Le, Mikolov, 2014; Kiros et al, 2015; Gan et
al, 2017).

Sentence representations with a distributed nature
offer two major advantages. Firstly, relative tem-
poral positions are encoded similarly, despite any
offsets (Elman, 1990). Representations are there-
fore less sensitive to absolute position, which is im-
portant in encoding language. Secondly, distributed
representations allow for fixed-length vectors (El-
man, 1990).

Common approaches of representing sentences
are based on the frequency of words (bag-of-words),
sometimes adjusted for frequency in the entire
dataset (tf-idf). The main disadvantage of this kind
of approach is the lack of word order in the vector
representing the sentence. A strength that should not
be overlooked is its simplicity.

The strong suit of unsupervised setups, as op-
posed to supervised setups, is the generic nature of
the resulting representations. Supervised setups tend
to produce sentence representations that are more
limited in applicability. Evaluation of supervised
setups is more straightforward however. The same
metric that has been used in training the model can
be used to evaluate it.

Inspired by the skip-thoughts model, Gan et al
(2017)have used a convolutional neural network as
an encoder, instead of an RNN. Rather than predict-
ing two surrounding sentences in training, Gan et al
(2017) optimise on predicting multiple future sen-
tences. Finally, in a composite model, the authors
combine an autoencoder with a future sentence pre-
dictor.

Many of the unsupervised models are autoen-
coders. Besides autoencoders, more complex
encoder-decoder setups have been used succesfully;
examples are CNN-LSTM (Gan et al, 2017), RNN-
RNN (Kiros et al, 2015) and even RNN-CNN (Tang
et al, 2017) setups. Besides experimentation with
network architecture, researchers search to adapt
cost functions to improve hidden states in encoder-
decoder models.

Recent work showed that supervised methods of
learning sentence representations also have a place
in the landscape of natural language processing, and
tried to offer a solution for stagnating progress in un-
supervised methods (Conneau et al, 2017; Socher et
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Figure 1: The skip-thoughts loss function, adapted from
Kiros et al (2015)

al, 2013). Conneau et al (2017) developed a super-
vised setup based on predicting Natural Language
Inference tags.

Distributed representations do have drawbacks
however. It is for example not possible to directly
link a logical grammatical function to a single scalar
in the vector, although these effects can sometimes
be observed (Kádár et al, 2016).

The skip-thoughts model, an RNN-RNN encoder-
decoder model, optimises the hidden state hti to pre-
dict the words in the sentences surrounding a sen-
tence (see Figure 1). Therefore, to train the skip-
thoughts model, a continuous body of text is re-
quired. Kiros et al (2015) used the BookCorpus
(Zhu et al, 2015) for this.

The skip-thoughts model learns sentence repre-
sentations from the sentences that form the con-
text. This method has some similarity to the original
method of learning word representations (Mikolov
et al, 2013). The underpinning notion of learning
from context has been transferred to the domain of
sentence representations.

The skip-thoughts model uses Recurrent Neural
Networks with Gated Recurrent Units for both the
encoder and decoder part of the setup. Two variants
of the skip-thoughts model exist: uni-skip and bi-
skip. As the name suggest, uni-skip is an encoder
that preserves sentence order (unidirectional). Bi-
skip uses two encoders, one of which is given the
sentence in reverse order. Since the encoders iter-
ate over the words in the sentence, it is possible to
use the intermediate hidden states (hti) for the exper-
iments in this study.

Both variants of the model have two RNN de-
coders: one for predicting the previous and one for
predicting the next sentence (si−1, si+1). The com-
bination of these two variants, used in this study, is
called combine-skip. It simply is a concatenation of
the vectors produced by uni-skip and bi-skip.

Finally, to make the model more generally usable,



Kiros et al (2015) train a linear mapping between
the vast set of words that appear in word2vec and
the more limited set of words used in training. Since
the same BookCorpus is used in this study’s exper-
iments, this vocabulary expansion has not been ap-
plied.

2.3 Evaluating sentence representations
Evaluations of sentence representations are mostly
semantic artificial prediction tasks. The skip-
thoughts model has been evaluated on tasks like im-
age retrieval, semantic similarity scoring and para-
phrase detection (Kiros et al, 2015). Le, Mikolov
(2014) evaluate their model using sentiment analy-
sis on the Stanford Treebank and IMDB datasets.

Although, evaluation tasks of sentence represen-
tations are predominantly semantic, recent research
shows some interesting new ideas for evaluating sen-
tence representations. Li et al (2015) show that
RNNs to generate sentence embeddings pay selec-
tive attention to words that are important for the pre-
diction task. For this, the authors use saliency scores
for words, as a way of measuring the influence of a
single word towards the final classification. This is
achieved by training a classifier that learns saliency
scores for combinations of input and labels.

A similar approach to estimate salience of words
involves omitting tokens from the sentence, and es-
timating the effect this incurs (Kádár et al, 2016).
This has been done by measuring the distance be-
tween sentence representations with the word in-
cluded and omitted. Among other observations, this
experiment showed that the evaluated IMAGINET

(Chrupała et al, 2015) model is sensitive to the gram-
matical role of words: “The image prediction path-
way (...) learns to treat the same input token differ-
ently depending on its grammatical functions in the
sentence (Kádár et al, 2016)”.

The strategy of omission has also been applied
succesfully by Li et al (2016). Besides estimating
the importance of a certain word in the sentence, Li
et al (2016) estimate the importance of a dimension
in a vector. In short, Li et al (2016) calculate im-
portance as the relative difference between the log-
likelihoods of the correct class, with and without one
vector dimension omitted. Omission is not used as
an evaluation technique in the current study, since
it would break the grammatical structure of the sen-

tence, likely reducing the quality of all (intermedi-
ate) hidden states.

Several of these evaluations conclude that setups
for obtaining sentence representations learn syntac-
tic properties; even if the evaluation task is semantic
(Kádár et al, 2016; Li et al, 2016; Li et al, 2015).

Strictly syntactic evaluation tasks are less com-
monplace. Classic work by Elman (1991) has a
strong syntactic focus, as the simple recurrent net-
work is trained to predict the next word in the se-
quence. This predictive ability of the model is evi-
dence that abstract structure is encoded in internal
representation (Elman, 1991). However, this ap-
proach is not transferable to the distributed sentence
representations of today.

Adi et al (2017) recently proposed a methodology
to evaluate syntactic properties of sentence represen-
tations. The main idea is to adopt artificial predic-
tion tasks to evaluate sentence representations. Adi
et al (2017) have opted to predict sentence length,
word content and word order. A surprising result
is that an encoder-decoder’s ability to recreate sen-
tences (the BLEU task) does not necessarily mean it
will do well on other artificial prediction tasks. This
finding underlines the need for more syntactic pre-
diction tasks.

The aformentioned related work shows a need for
syntactic evaluation metrics. Saliency or importance
scores have not been used in the newly developed
experimental setup, although there is a special fo-
cus on the word-level of sentence representations. A
unique element of this study is the use of the inter-
mediate hidden states of sentence representations at
one word in the sentence, instead of using the final
hidden state of an encoder-decoder model as a sen-
tence representation. Finally, the idea of formulat-
ing artificial prediction tasks to compare models has
been incorporated in this study’s experimental setup.

3 Experimental setup

3.1 Experiments to measure syntactic
properties

To estimate the syntactic properties, an artificial pre-
diction task has been conceived, as suggested by Adi
et al (2017). The artificial task that has been formu-
lated is predicting grammatical categories of words.
The grammatical categories that have been chosen



are part-of-speech (POS) tags and dependency tags
(Nivre et al, 2017). To do so, a logistic regression
classifier has been optimised. The accuracy that can
be achieved gives an indication of the syntactic prop-
erties of the sentence representations. It could allow
for future comparison of several models.

Other classifiers, such as a multilayer perceptron,
would probably be able to achieve better results. It
would however make it harder to separate properties
of the vectors from abstraction abilities of the algo-
rithm. This consideration has led to the choice of
logistic regression.

3.2 Hyperparameter search

The hyperparameters have been tuned by searching
a grid (see Table 1).

Hyperparameter Set of values
Regularisation method L1, L2
Inverse regularisation 0.8, 1.0, 1.2, 2
strength (C)
Class weight Balanced (adjusting

weights inversely
proportional to class
frequencies), unbalanced

Table 1: Hyperparameters that have been optimised
(cross-validated grid search)

Some of the best hyperparameters were found at
the extreme ends of the search grid. This means bet-
ter parameters are likely to be found.

3.3 Data

The training dataset consists of 10,000 sentences
randomly sampled from the BookCorpus (2015).
These sentences contain a total of 131,200 words,
119,282 of which are subsequent to the previous
word. The test dataset consists of 2,500 sentences,
32,886 words, of which 29,881 are subsequent to the
previous word.

This corpus already had tokenisation applied by
NLTK (Bird et al, 2009). To prepare the corpus
for the experiments, the hidden states for the words
of the model have been generated with the skip-
thoughts model, word embeddings have been looked
up in the unidirectional skip-thoughts model and the

target POS and dependency tags have been gener-
ated.

3.4 Feature vectors

In the prediction task, four types of feature vectors
have been used. The first consisted of word em-
beddings from the skip-thoughts model for a sin-
gle word (wt

i). The second was similar, but with
the word embedding of the previous word concate-
nated (wt

i , w
t−1
i ). Finally, the third extended this

with the word embedding for the subsequent word
(wt

i , w
t−1
i , wt+1

i ). These types of concatenations re-
quire that there are previous and subsequent words
within the same sentence. For first and last words
of the sentence, the feature vectors have been zero-
padded in the respective locations.

The final type of feature vectors is central to the
evaluation of the skip-thoughts model. These are the
hidden states of the skip-thoughts model, at the po-
sition of a word (hti).

3.5 Target labels

The target labels for the multi-class classification
task have been obtained by using SpaCy (2017a).
The sentences of BookCorpus have been anno-
tated by the models included in this software. For
each word in the dataset, a part-of-speech tag
and a dependency tag has been generated, with
the en core web sm model developed by SpaCy.
These serve as a proxy for ground-truth data. Ac-
curacy of these tags is reported at 97.04% for part-
of-speech tags, and at 89.80% for dependency tags
(SpaCy, 2017b).

3.6 Repeating experiments

All code to repeat the experiments in this experi-
mental setup has been uploaded to an online reposi-
tory1. This repository uses scikit-learn’s (Pedregosa
et al, 2011) implementation of logistic regression.
Besides that, the Theano (2016) implementation of
the skip-thoughts model was adapted to produce the
intermediate hidden states. This adaptation has also
been uploaded2.

1https://github.com/bartbroere/
syntactic-properties-of-skip-thought-vectors/

2https://github.com/bartbroere/
skip-thoughts/

https://github.com/bartbroere/syntactic-properties-of-skip-thought-vectors/
https://github.com/bartbroere/syntactic-properties-of-skip-thought-vectors/
https://github.com/bartbroere/skip-thoughts/
https://github.com/bartbroere/skip-thoughts/


The same conventions for notation as Kiros et al
(2015) use, are used throughout this thesis
h is the hidden state
w is the word
s is the range of words in the sentence.
Subscript i is the position of the sentence.
Superscript t is the position of the word.

4 Results

Isolating grammatical effects caused by syntax from
those caused by syntactic properties at the word-
level resulted in a few observations. First of all, pre-
dicting dependency tags is a harder task than pre-
dicting POS tags, as expected. The primary cause
for this is the higher number of classes in this task.
Grammatical function in dependency graphs is also
more fine-grained than in POS tags; one word could
potentially be placed in a wider range of classes.

Table 2 shows that the skip-thoughts hidden states
offer an advantage over word embeddings, mostly in
predicting dependency tags. The table also shows
that performance with word embeddings overtakes
the hidden states classifier, if previous and subse-
quent word embeddings are included in the feature
vectors. For most real-life applications however,
where sentences are instances, concatenating word
embeddings would not be a viable option, since this
results in variable-sized feature vectors.

Since the differences between the classifiers are
larger in predicting dependency tags, the following
section will focus on the reasons for this. Table 3
shows the accuracies in predicting dependency tags,
achieved by the logistic regression optimised on sev-
eral of the feature vectors. The columns with RER
show the Relative Error Reduction that the hidden
states classifier achieves over the three classifiers op-
timised on word embeddings.3

Table 3 shows that the hidden states classifier
mostly does not outperform the classifier with three
concatenated word embeddings. Two significant
cases where the hidden states classifier did outper-
form the word embeddings however, are among oth-
ers the classification of the root of the sentence (de-

3To save time in computation, the experiments with two and
three word embeddings have been repeated with an optimal set
of hyperparameters found in a previous, similar experiment.
These experiments therefore have no standard deviation of cross
validated accuracy in Table 2.

A selection of verbs (VERB) in their context,
that the word embeddings classifier tagged
incorrectly, but the hidden states classifier
tagged correctly
we have developed this event to directly
address the issues unique to earth .
i answer it to find the army nurse
i glance in my rearview mirror to see sawyer
and ryan - our security for the day - climb
into the audi suv .
more likely it will just piss him off .
youre beautiful , like he said , and surprisingly
he scratches his head .

Figure 2: Differences in classification of verbs between
the single word embedding and hidden states classifiers,
in the part-of-speech task

pendency tag ROOT), and the classification of ob-
jects of prepositions (dependency tag pobj). This
could indicate improved syntactic sensitivity, since
these are highly grammatically dependent tags.

Looking at the errors in prediction on a test set
also revealed some patterns. The dependency tag
classifier tends to overfit on frequent classes like the
subject and root of a sentence. These are classes
that are present in every correct sentence. The POS
tag classifier displays the same behaviour, but with
nouns and verbs.

Selecting the words that the hidden states classi-
fier predicted correctly, but the single word embed-
dings model misclassified, confirms the hypothesis
that syntactic context is present in skip-thought vec-
tors. Figure 2 shows that this set of words contains
mostly ambiguous words, where the sentence struc-
ture is essential in determining its grammatical func-
tion: address, answer, glance, piss, scratches.

Figure 3 shows that the same is the case for nouns.
Instances where the hidden states classifier outper-
forms the word embeddings baseline are mostly am-
biguous words, like: fight, hope, look, study, will.

4.1 Limitations

One major limitation of the experiments that have
been conducted is the lack of ground-truth data,
instead of the used close-to-ground-truth data. It
is however expected that the results are similar
if ground-truth data would have been used, since



Feature vectors Target labels Accuracy (standard Accuracy
deviation in cross-validation) (test set)

Word embeddings: wt
i POS tags 0.9323 (0.0006) 0.9340

Word embeddings: wt
i w

t−1
i POS tags 0.9595 0.9533

Word embeddings: wt
i w

t−1
i wt+1

i POS tags 0.9794 0.9688
Hidden states: hti POS tags 0.9460 (0.0006) 0.9497
Word embeddings: wt

i Dependency tags 0.6979 (0.0011) 0.6990
Word embeddings: wt

i w
t−1
i Dependency tags 0.7886 0.7659

Word embeddings: wt
i w

t−1
i wt+1

i Dependency tags 0.8490 0.8206
Hidden states: hti Dependency tags 0.8169 (0.0011) 0.8218

Table 2: Scores of the most performant logistic regression models

A selection of nouns (NOUN) in their context,
that the word embeddings classifier tagged
incorrectly, but the hidden states classifier
tagged correctly
this is not your fight .
there was absolutely no hope .
he gave her an impressed look .
in a cluttered study carrel on the fifth level
of the law library , between the racks of thick ,
seldom-used law books , darby shaw scanned
a printout of the supreme court ’s docket .
i sat on the chopping block , lacking the will
to rise .

Figure 3: Differences in classification of nouns between
the single word embedding and hidden states
classifiers, in the part-of-speech task

SpaCy’s tags are reported to quite accurate (SpaCy,
2017b).

Unfortunately, the BookCorpus has not been di-
vided in a train, development and test set. All data
has been used in training the skip-thoughts model.
This means that the data used in this evaluation is
technically not unseen data. The prediction task,
however, is not the same, making it an allowable
compromise.

Although the sequential nature is a strength of
the skip-thoughts model in many respects, it poses a
limitation to the isolation of the experiments in this
thesis. The hidden states at the word level hti do not
isolate the latest processed word (t). (Kiros et al,
2015) state that hti “can be interpreted as the repre-
sentation of the sequence w1

i ... wt
i”. To predict syn-

tactic categories, a classifier has to isolate the current
word from this representation of a sequence.

Yet, despite this potential handicap of the data, the
hidden state classifier outperforms the single word
embeddings classifier. Looking at the instances
where the hidden state classifier outperformed the
word embedding classifier indicated that these are
mostly ambiguous words. The context that is re-
quired for correct classification of these ambiguous
words can be provided by either surrounding word
embeddings, or by the hidden states of the skip-
thoughts model.

The experiments with the task of predicting de-
pendency tags also suffer from the drawback that the
data limits the task to predicting the dependency tag,
but not the dependency arc.

The limitations mentioned here open several av-
enues towards future work, which will be discussed
in the next section.

4.2 Future work

There are two directions, although not mutually ex-
clusive, future work could take to improve sentence
representations. The first direction would obey the
philosophy of doing one thing and doing it well.
This direction would most likely result in ever more
accurate POS-tagging models and better semantic
sentence representations. This approach has the flaw
that several applications could benefit from the com-
bination of these models, and would have to incor-
porate several models.

The second direction is a more holistic approach,
that continues to try to optimise sentence represen-
tations for better performance at both syntactic and
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acl 171 0.05 0.30 0.28 0.20 15.43 -14.17 -11.38
acomp 347 0.49 0.80 0.80 0.78 57.30 -7.04 -11.76
advcl 716 0.16 0.20 0.22 0.59 51.25 49.04 47.48
advmod 1700 0.84 0.86 0.90 0.85 8.76 -8.23 -53.37
amod 919 0.75 0.82 0.88 0.81 25.43 -2.37 -61.68
appos 124 0.01 0.16 0.19 0.13 12.20 -3.85 -8.00
attr 253 0.02 0.22 0.25 0.55 54.44 42.64 40.21
aux 1514 0.88 0.86 0.95 0.84 -37.78 -16.98 -249.30
auxpass 150 0.04 0.11 0.81 0.17 13.89 6.77 -327.59
case 121 0.97 0.96 0.94 0.96 -25.00 0.00 28.57
cc 948 0.98 0.98 0.99 0.98 0.00 0.00 -7.14
ccomp 673 0.02 0.10 0.12 0.42 41.45 35.82 34.96
compound 411 0.15 0.15 0.72 0.09 -6.90 -6.90 -217.95
conj 961 0.02 0.43 0.44 0.66 65.60 40.84 39.85
det 2191 0.97 0.97 0.99 0.97 -1.56 9.72 -195.45
dobj 1897 0.36 0.55 0.63 0.73 57.86 40.68 26.87
intj 114 0.59 0.48 0.68 0.56 -6.38 15.25 -35.14
mark 499 0.82 0.78 0.84 0.78 -21.11 0.91 -34.57
neg 369 0.97 0.97 0.99 0.97 0.00 0.00 -450.00
npadvmod 139 0.27 0.44 0.51 0.41 18.81 -5.13 -20.59
nsubj 3472 0.77 0.81 0.90 0.88 48.64 35.86 -20.99
nsubjpass 106 0.00 0.00 0.03 0.00 0.00 0.00 -2.91
pcomp 118 0.14 0.62 0.59 0.38 28.43 -62.22 -52.08
pobj 2181 0.54 0.70 0.79 0.85 67.33 50.61 28.19
poss 1023 0.90 0.87 0.98 0.89 -11.54 12.78 -582.35
prep 2494 0.86 0.92 0.97 0.93 53.48 16.92 -101.20
prt 257 0.77 0.75 0.81 0.75 -6.78 1.56 -28.57
punct 5316 1.00 1.00 1.00 1.00 -50.00 -50.00 -50.00
relcl 325 0.00 0.19 0.20 0.41 40.92 27.27 26.15
ROOT 2454 0.70 0.73 0.76 0.81 36.19 28.64 20.00
xcomp 443 0.22 0.79 0.80 0.67 57.56 -53.68 -64.04

Table 3: Scores per class in predicting dependency tags, and relative error reduction over the hidden states classifier.
Classes with less than 100 instances in the test set have been left out of this table.



semantic evaluation metrics. It is not unlikely that
semantic performance will improve if syntactic re-
lations are encoded better. The exploration of the
field showed that successes have been booked with
both supervised and unsupervised methods. Com-
bining unsupervised and supervised elements in a
single loss function, could result in even better sen-
tence representations.

Future work in evaluating sentence representa-
tions that could elaborate on the findings in this the-
sis could try to predict complete dependency graphs
from sentence representations, as an auxiliary pre-
diction task. The practical implication of such ex-
periments is that the experiments would also predict
the dependency arcs, not only the tags. Devising
an experimental setup for this is more challenging,
but most likely would result in more detailed con-
clusions by better isolating syntax.

Simply training the classifiers with more in-
stances is also likely to generate better results. This
is possible: acquiring data is cheap because it can
be generated with SpaCy. Adding more instances
would probably eventually require an out-of-core
experimental setup.

Repeating the experiments in this thesis with ac-
tual ground-truth data is also an interesting avenue
of research. This would also bring a standardised
syntactic evaluation task closer.

Similarly, applying this auxiliary prediction task
to other methods of obtaining sentence represen-
tation could give more insight in what types of
encoder-decoder setups perform well at encoding
syntactic properties. It would also tell more about
the feasibility of this evaluation setup.

5 Conclusion

On both tasks the hidden states classifier performed
better than the single word embeddings classifier,
showing that the syntax of the skip-thoughts hidden
states offers an advantage over single word embed-
dings.

By using the artificial tasks of predicting POS and
dependency tags, the presence of syntactic proper-
ties in skip-thought vectors has been explored. Lo-
gistic regression optimised on skip-thoughts hidden
states is relatively successful in predicting grammat-
ical functions of tokens. This is especially true if

the grammatical function depends more heavily on
syntax, as was the case in predicting some of the de-
pendency tags.

Although similar performance could also be
achieved by concatenating word embeddings, sen-
tence representations offer the advantage of fixed-
width vectors. In representing sentences, the length
of concatenated word embeddings would depend on
the length of the sentence, which is often not desir-
able.

Predicting grammatical functions of words from
intermediate hidden states has proven to be a useful
method of estimating syntax in sentence representa-
tions. This method has been applied to skip-thought
vectors, showing that these vectors are relatively ca-
pable of predicting grammatical categories. To see
if this method is suitable as an evaluation metric, it
can be applied to other models in future work.
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