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Chapter 1

Introduction

1 .1 Motivation

Information and communication technology (ICT) is becoming part of every day life . Nowadays, a lot of
people do not even leave their house to get tickets for a concert or buy airline tickets, but simply order
these on the Internet . Another well-known and frequently used application of ICT is electronic banking .
Much of these kinds of Internet services are even accessible via the current generation mobile
phones .

Example

A typical example of an Internet service accessible via mobile phones is the Local Weather Service
(LWS) . This service gives a mobile phone user the weather forecasts for the location where the user is
at that moment . If the user sends a message to the LWS, he will receive a message with the weather
forecasts after some amount of time. Between these two steps, sending a message (step 1 in figure
1 .1) and receiving the information (step 5), some processes take place to make sure that the end user
receives the correct information . First it has to be checked whether the user is authenticated to use
this service (step 2) ; this can for example be checked in a database managed by the LWS service
provider . Next, the location of the user has to be determined (step 3) ; therefore the X- and Y-
coordinates of the user can be determined with some kind of a location service, managed by the end
user's mobile service provider. Subsequently, the weather forecasts for the determined location and
the right time are looked up in a database (step 4) . The Dutch meteorological institute KNMI, for
example, can offer such a weather service .

r--------------------------------------------------- 1

' Databases ~~ ~
~ ~
~ Authentication '~

End user ~ LWS server , ~ . service '
~ ', 2 ~

1 ~ . ---- ~SLA 1 , ~
~ ~ - ', ~- 3 '~ ~~, Location ;

~ ~. 5 ~ ~~ ~X'Y~ ~ service ~
~ ~ 4 ` ~. , i :, ` . ,

~ ~~ -- ~~ '~ - ~
~ ~

~--- ' SLA 2 r ~ Weather ,
~ ~ ~ ; ~ ` .~ service ;
,--~ i ~ i

i
- External ~ --~---- ~~ ~ '

-------------------~partydomain ~--------------------------------

Figure 1.1 Access to Intemet services by a mobile phon e

For the commercial success of this kind of services, the ability to deliver an acceptable quality of
service in terms of the end-to-end response time experienced by the end user is of key importance .
The end-to-end response time depends on the perFormance over the domains managed by external
parties, like the location service provider and the weather service provider in the example. To
guarantee a given quality of service level the provider of the LWS-service needs to negotiate so-called
Service Level Agreements (SLA's) with these external parties . An important question is which
combination of SLA's leads to the preferred end-to-end quality of service .
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Motivated by this . a key performance measure is the mean end-to-end response time experienced by
the end user . This measure, however, does not give any information on what the probabilities are for a
response time that is much higher than the average, or much lower . So, we are also interested in the
variability of the response times .

Queueing model

We translate the problem described above into a performance model . Since delays play a dominant
role, we will use the queueing network approach in this thesis . We assume that the reader has a
background in queueing theory .

Our main interest is in the performance delivered by the LWS service provider (marked by the dotted
area in figure 1 .1) . The additional delay in communication between the end user and the LWS service
domain crossing the radio access network is beyond the scope of this study . The performance of the
application server with significant server-side scripting is CPU-bound, i .e . its processing capacity is
limited by the CPU-speed . This naturally leads to a processor sharing (PS) representation for the
application server . In contrast, database access is typically IIO-bound . Database requests are handled
one by one in order of arrival . This naturally leads to a model with multi-threaded first-come first-
served (FCFS) queues, representing the databases .

These observations lead to the formulation of a queueing network as a performance model for the
LWS-system . We analyse response times of transactions or database requests by modeling them as
sojourn times of customers in an open queueing network . The sojourn time is the total time a customer
spends in the network . In open networks, customers may arrive at any of the nodes, receive service at
one or more nodes, and ultimately leave the network . The nodes represent servers .

O FCFS 1
~ ~

2

1 PS ~

O ~~ ~ 0 FCFS 2
5 4 ~

~

~ FCFS 3

~

Figure 1 .2 Queueing nehvork under in vestigation

The queueing network corresponding to the LWS-system is given in figure 1 .2 . Note that the step
numbers correspond to those in figure 1 .1 . The network consists of a single PS node, representing an
application server, and multiple multi-server FCFS nodes, representing databases . In a PS node the
server divides its capacity equally over all customers in the node and handles them simultaneously . A
multi-server FCFS node consists of multiple parallel servers with the FCFS-discipline sharing a single
queue of waiting customers .
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1 .2 Goa l

The mean total sojourn time in the network is a measure for the average end-to-end response time
experienced by the client . For some networks, an exact expression for the mean total sojourn time
exists . We consider a number of variants of the queueing network in figure 1 .2 . The goal of this project
is to derive exact expressions for the mean total sojourn time in the queueing networks considered if
possible . If this is not possible for a network, then our goal is to develop explicit, fast-to-evaluate and
accurate approximations for the mean total sojourn time in that network .

We are also interested in the variability of the end-to-end response times, which will be measured by
the variance of the total sojourn time in the network . If an exact expression for the mean total sojoum
time in a network exists, then our goal is to develop an explicit, fast-to-evaluate and accurate
approximation for the variance of the total sojourn time in the network .

1 .3 Overview

In chapter 2 we give an overview of literature about sojourn times in queueing networks, related to the
models analysed in this thesis . We will use results from this literature in the following chapters .

In chapter 3 we consider a network with a single PS node and multiple multi-server FCFS nodes with
Bernoulli feedback . The definition of Bernoulli feedback will be given in chapter 2 . In this network the
interarrival and all service times are exponentially distributed . We derive the closed-form expression
for the mean total sojourn time in such a network and obtain an approximate expression for the
variance of the total sojoum time in the network .

In chapter 4 we consider feedforward networks with a PS node and a single-server FCFS node with
generally distributed service times at both nodes . The interarrival times are generally distributed as
well . We approximate the mean sojoum times in this network by using the first and second moments
of the service time distributions and interarrival time distributions .

In chapter 5 we consider a network with a PS node and a single-server FCFS node with Bernoulli
feedback . The arrival process is a Poisson process, while the service times at both nodes are
generally distributed . In this chapter the process of validating some of the results in Boxma et al . [8] is
described and an improved approximation for the mean total sojourn time is given .

Finally, in chapter 6, we summarize the results of this investigation and we propose some possible
extensions and topics for further research .

Approximations for Sojourn Time Distributions in Queueing Networks (



Chapter 2

Literature overview

2.1 Sojourn times in single node s

2.1 .1 PS node

Coffman, Muntz and Trotter [9] derived the transform of the sojourn time distribution for the M~M~1-PS
node. Morrison [21] obtained an integral representation for thís distribution . Ott [22] derived the sojourn
time distribution for the M~G~i-PS case . Ramaswami [23] derived expressions for the first two
moments of the sojourn time distribution for the Gl~vl~i -PS node ; Jagerman and Sengupta [16]
characterized the sojoum time distribution for the GI~M~1-PS node . Sengupta [24] obtained an
approximation for the sojourn time distribution in the GI~G~i-PS node . We will use some of these
results in the following chapters .

Van den Berg [4] derived the correlation between successive sojourn times at the M~G~i -PS node with
feedback, i .e . after being served each customer either immediately arrives at the PS node again or
departs permanently. We use this result in chapter 3 to approximate the variance of the total sojourn
time in a feedback network with a single PS node and multiple FCFS nodes .

2.1.2 FCFS node

Many results are known for the sojourn time distribution in the FCFS queue. We concentrate on results
for an FCFS queue with feedback . Takács [25] determined the Laplace-Stieltjes transform (LST) and
the first two moments of a customer's total sojoum time in an M~G~1-FCFS queue with Bernoulli
feedback, i .e . the probability of feedback does not depend on the number of completed services . Van
den Berg [4] derived the joint distribution of the successive sojoum times of a customer in an M~M~1-
FCFS queue with feedback . He gave expressions for the variance of the sojoum times in an FCFS
node with Bernoulli feedback as well as for the variance of the sojoum times in an FCFS node with
deterministic feedback .

2.2 Sojourn times in networks of queues

2.2.1 Product-form networks

Product-form networks are networks with a closed-form expression for the joint steady state
distribution of the number of customers in each node . In 1957 J.R. Jackson [15] introduced the
product-form distribution . His name is given to a class of product-form networks : Jackson networks .
This class contains open networks, which fulfil the following conditions :

~ The arrival process is a Poisson process, the arrival rate has to be independent of the number
of customers at the nodes in the network ;

~ The service times are exponentially distributed, the service rate at a node may only depend on
the number of customers in that particular node ;

~ The next node visited may depend on the present node, but has to be otherwise independent
of the state of the system .

A more general class of product-form networks is the class of BCMP networks . Baskett, Chandy,
Muntz, and Palacios [3] derived the joint distribution of queue sizes for a large class of networks . This
class contains open, closed, and mixed networks of queues with different classes of customers . The
queueing disciplines in the network may be FCFS and PS, but the network may also consist of last-
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come first-served nodes (LCFS) or infinite server (IS) nodes . For the PS, LCFS, and IS service
discipline the service times may be generally distributed, for the FCFS service díscipline the service
times must be exponentially distributed . Each customer belongs to a single class of customers while
waiting or receiving service at a node, but may change classes and nodes according to fíxed
probabilities at the completion of a service request . Extemal arrival processes must be Poisson
processes .

For product-form networks, an exact expression for the mean sojourn time can be derived . Little's law,
cf. [5], implies that the average time spent in a stable node by a customer is equal to the mean number
of customers present in that node divided by the average number of customers that enter the node per
time unít . Deriving higher order moments or tail probabilities for the sojourn time in a network is more
difficult .

Boxma and Daduna [7] state that, in general, determining sojourn time distributions poses very
complicated problems . An important exception is provided by the sojourn time distribution of a
customer along a path in a product-form network, when this path satisfies certain overtake-free
conditions . The possibility of customers, or their influences, overtaking each other, leads to
dependencies that usually destroy any hope for an analytic solution for sojourn time distributions .
Overtaking occurs when a customer physically overtakes another customer or when the influences
generated by a customer overtake the customer . Overtaking can occur for two reasons. The first is
overtaking due to the ínternal node structure, e.g . in a PS node it is possible that customers can leave
before earlier arrived customers that have a larger service demand . The second reason is overtaking
due to the structure of the network, e .g . in a non-acyclic network .

A network is called acyclic if a customer can never return to a station once visited . In a non-acyclic
network, there can be two kinds of feedback : direct feedback, i .e . a customer immediately retums to a
node after leaving it, and indirect feedback, i .e . a customer returns to a node after some time, e .g .
after visiting another node . In the remainder of this thesis, we will also refer to direct feedback as
short-circuiting. Indirect feedback will also be called delayed feedback . Feedback loops in a non-
acyclic network imply dependent interarrival times at the nodes in the network . Hence, if the external
arrival process at a certain node is a Poisson process and customers are fed back to that node, then
the total arrival process in that node is not a Poisson process in general, not even 'rf the service times
are exponentially distributed .

Boxma and Daduna [7] also remark that the situation for non product-forrn networks is even worse ;
there are almost no explicit results . E.g ., 'rf service times are generally distributed, it is very difficult to
find a closed-form expression for the mean sojoum time . In chapters 4 and 5 we derive
approximations for the mean sojourn times in networks with generally distributed service times at the
nodes .

2.2.2 Feedback queueing networks with a PS node and an FCFS nod e

Van der Mei et al . [20] study response times in a two-node queueing network with feedback . Their
study is motivated by the performance analysis of response times in distributed information systems,
where transactions are handled by iterative server and database actions . System response times are
modelled as sojoum times in an open queueing network with a PS node and a single-server FCFS
node. The network is shown in figure 2 .1 . External customers arrive at the PS node according to a

Poisson process with rate ~ . After receiving service at the PS node a customer proceeds to the FCFS

node with probabilityp, and with probability 1 p the customer departs from the system . After a visit to

the FCFS node, customers are fed back to the PS node. The service requirements at both nodes are
exponentially distributed . The model is a product-form network, so closed-form expressions for the
mean sojourn times in steady state exists . The variance of the sojoum times does not admit an exact
expression ; the complexity is caused by the possibility of overtaking, see section 2 .2 .1 .
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~-~ PS ~ 1 ~ FCFS
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Figure 2.1 Feedback network with a PS node and a single-server FCFS node

The key assumptions for an approximation for the variance of the total sojourn time in this network are :

. The total arrival process at the PS node is a Poisson process with rate ~ . ~(1- p) ;

. The covariances between the successive sojourn times of a customer at the PS node in the
network with delayed feedback are equal to those in a single MIMl1-PS node with direct
feedback. Similarly, the covariances between the successive sojourn times of a customer at
the FCFS node in the network with delayed feedback are equal to those in a single MIMl1-
FCFS node with direct feedback ;

. The total sojourn time at the first i visits to the PS node and the total sojourn time at the firstj
visits to the FCFS node are uncorrelated, for i - 1, . . .,Nt1 andj- 1, . . .,N.

For non-acyclic queueing networks, the first assumption is known not to be true in general, see section
2 .2 .1 . A result of the third assumption is that the covariance between the total sojourn time at the first i
visits to the PS node and the total sojourn time at the first j visits to the FCFS node is assumed to be
negligible . In general, also the third assumption is known to be not true, but observations suggest that
the cross-correlation terms are rather small . The results of a variety of simulation experiments confirm
the conjecture that the cross-correlation terms for the sojourn times of visits to different nodes are
indeed negligible compared to correlation terms of successive visits to the same node .

With these assumptions a new methodology for deriving simple, explicit and fast-to-evaluate
approximations for the variance of the sojourn times is proposed by Van der Mei et al . [20] . Numerical
results demonstrate that the approximations are highly accurate in most model instances .

Boxma et al . [8] extend the model in [20] . The same model as described above is considered, but it is
extended in two ways: general service times are allowed in both nodes and the authors present a
more general approximation method that allows the approximation of sojourn time distributions while
requiring somewhat less restrictive approximation assumptions . To determine approximations for the
distribution of the total sojourn time the LST of the joint distribution of the total sojourn time in the PS
node and the total sojourn time in the FCFS node is used .

The key approximation assumptions in [8] are :

. The total sojourn time at the first j f 1 visits to the PS node is independent of the total sojourn
time at the first j visits to the FCFS node, forj - 1,2, . . . ;

. The total sojourn time at the first j visits to the PS node has the same distribution as the
sojourn time in the PS node short-circuited, i .e . with the FCFS node removed . Similarly, the
total sojourn time at the first j visits to the FCFS node has the same distribution as the sojourn
time in the FCFS node short-circuited, i .e . with the PS node removed .

The motivation for the first assumption is the same as for the third assumption in [20], as given above .
Note that the third assumption in [20] is stronger : it suggests independence of all sojourn times at the
various visits at different nodes of the network . Numerical experiments suggest that the second
assumption works well when one is mainly interested in approximating the total sojourn time
distribution, while one of the two queues has much larger mean sojourn times at each visit than the
other one. In that case the second assumption should be quite accurate for that "bottleneck" queue . I t
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is probably far from accurate for the other queue, but the contribution of the latter queue to the
distribution of the total sojourn time is probably rather small . If the mean sojourn times at both queues
are roughly equal, the authors suggest an improvement of the approximation . Instead of assuming that
the total sojourn time to a node has the same distribution as the sojourn time in that node short-
circuited, they propose to use an interpolation between the two extremes of short-circuiting and
independence of successive sojourn times of a customer at the same queue .

The approximations in [8] are not yet validated . The process of validating and improving a part of the
results from [8] is described in chapter 5 of this thesis .

2.2.3 Feedback queueing network wíth a PS node and multiple FCFS nodes

Gijsen et al . [14J study response times in a feedback queueing network with a single PS node and
multiple single-server FCFS nodes . The network is another extension of the network in (20J . The
motivation for this paper is the same as for [20], it can be found in section 2 .2 .2 . Response times are
modelled as sojourn times in an open queueing network with a PS node, representing an application
server, and multiple FCFS nodes, all representing databases . The network is shown in figure 2 .2 . The
service requirements at all nodes are exponentially distributed. External customers arrive at the PS
node according to a Poisson process with rate ~, . After receiving service at the PS node a customer

proceeds either to FCFS-queue i with probability p;, 0 ~ p, 51 b' i -1, . . ., M, where M is the number

of FCFS nodes in the network, or departs from the system with probability 1- p,
M

p-~p,,0~pS1 .

~ FC
FS

P

~ PS ~ FC
~ FS

3

~ FC
FS

lp

Figure 2.2 Feedback network with a sing~e PS node and multiple multi-server FCFS nodes

The focus in [14] is on the mean and the variance of the sojourn time of an arbitrary customer in the
system . The network is a product-form network, which immediately leads to a closed-form expression
for the mean sojourn times . The variance of the sojourn times does not admit and exact expression,
the complexity is caused by the possibility of overtaking, see section 2 .2 .1 . Hence an approximation
for the variance of the total sojourn time in the network is derived .

The key approximation assumptions in [14] are almost the same as in [20] :

. The total arrival process at the PS node is a Poisson process with rate ~, i(1- p) ;

. The covariances of the successive sojourn times of a customer at the PS node in the network
with delayed feedback may be approximated by those in a single MIMl1-PS node with direct
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feedback . Similarly, the covariances of the successive sojourn times of a customer at each
FCFS node in the network with delayed feedback may be approximated by those in a single
M~M~1-FCFS node with direct feedback ;

~ The total sojoum time at the first i visits to the PS node and the total sojourn time at the first j
visits to the l~h FCFS node are uncorrelated, for i- 1, . . . , Nf 1, j- 1, . . . ,N and k- 1, . . . , M.

In general it is known that the first assumption is not true for non-acyclic networks, see section 2 .2 .1 .
The third assumption implies that the covariance between the total sojourn time at the first i visits to
the PS node and the total sojoum time at the first j visits to the k~ FCFS node is assumed to be
negligible . In general, the third assumption is known not to be true, see section 2 .2 .2 . However,
numerical results demonstrate that for queueing networks with multiple FCFS nodes the impact of
ignoring cross-correlations on the approximation accuracy is even less than for queueing networks
with a single FCFS node like in the previous section .

With these assumptions a new methodology for deriving explicit and fast-to-evaluate approximations
for the variance of the sojourn times is proposed by Gijsen et al . [14] . Numerical results demonstrate
that the approximations are highly accurate in most model instances . In chapter 3 we will extend these
results for a network with multi-server instead of single-server FCFS nodes .

2.2.4 Queueing networks with multi-server FCFS nodes

Whitt [28] describes the software package t~ueueing Network Analyzer ( QNA), which is developed to
calculate approximate congestion measures for networks of queues . The first version of ~NA analyses
open networks of multi-server FCFS nodes and without capacity constraints . The QNA generates an
approximation for the entire probability distribution for the steady state waiting time and approximates
several other network performance measures . The external arrival processes need not to be Poisson
and the service time distributions need not be exponential . This version of QNA uses two parameters
to characterize the arrival processes and service times, one to describe the rate and the other to
describe the variability. The nodes are then analysed as standard GI~G~m queues partially
characterized by the first two moments of the interarrival time and service time distributions .
Congestion measures for the network as a whole are obtained by assuming as an approximation that
the nodes are stochastically independent given the approximate flow parameters .

The ~NA is applicable for networks that satisfy the following requirements :

~ The network is open ;
~ There are no capacity constraints, so there is no limit on the number of customers that can be

in the entire network and each service facility has unlimited waiting space ;
~ There can be any number of servers at each node . These are identical independent servers,

each serving one customer at a time ;
~ Customers are selected for service at each facility according to the FCFS discipline ;
~ There can be any number of customer classes, but customers cannot change classes ;
~ Customers can be created or combined at the nodes .

The general approach is to represent all the arrival processes and service time distributions by a few
parameters . The congestion at each facility is then described by approximation formulas that depend
only on these parameters . The parameters for internal flows are determined by applying elementary
calculus that transforms the parameters for each of the three basic network operations : superposition
or merging, thinning or splitting, and departure or flow through a queue . When the network is acyclic,
the basic operations can be applied successively one at a time . In general, it is necessary to solve a
system of equations or use an iterative method .

In [29] the performance of the ONA is described . ~NA is compared with other approximations of
several open networks of single-server queues and with simulations . The paper illustrates how to
apply ~NA and indicates the quality that can be expected from the approximations . Examples
demonstrate the importance of the variability parameters used in QNA to describe non-Poisson arrival
processes and non-exponential service time distributions .
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In chapter 4 and 5 we will use Whitt's approximation for the mean waiting time in an FCFS queue with
generally distributed interarrival and generally distributed service times . In these chapters, we will use
his approximations for the squared coefficients of variation for the internal flows in case of
superposition, splitting, and departure as well .
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Chapter 3

A feedback queueing network with multi-server FCFS nodes

3.1 Introductio n

In this chapter we extend the model considered by Gijsen et al . [14], see section 2 .2.3, by using multi-
server instead of single-server FCFS nodes . In the next section we will describe the model . In section
3.3 we will do the analysis, divided into results for the mean total sojoum time and results for the
variance of the total sojoum time. In section 3 .4, we discuss some numerical results .

3.2 Model description

First we introduce the notation used in this chapter .

Model Input parameters

M Number of FCFS nodes in the network ;

c,~ Number of servers at the km FCFS node, k- 1, . . .,M;

p Transition probability from the PS node to one of the FCFS nodes ;

pk Transition probability from the PS node to the 1~ FCFS node, k- 1, . . . ,M;

qk Probability of feedback to the 1~" FCFS node, k- 1, . . . ,M;

pW! Probability of waiting before receiving service at the 1~ FCFS node, k- 1, . . . ,M;

~. Extemal arrival rate;

~,~ Arrival rate at the PS node ;

~,Ft Arrival rate at the l~" FCFS node, k- 1, . . . ,M ;

~3~ Mean service time at the PS node ;

~3Fk Mean service time at the kth FCFS node, k- 1, . . . ,M;

pps Load at the PS node ;

pFR Load at the k`h FCFS node, k- 1, . . . ,M.

Random varlables

N Number of returns to the PS node ;

Nk Number of visits to the kih FCFS node, k- 1, . . . ,M;

L~ Stationary number of customers in the PS node ;

LF~ Stationary number of customers in the ~h FCFS node, k- 1, . . .,M;

S~ Sojoum time at the t~ visit to the PS node, i- 1, . . .,N;

SF~ Sojoum time at the t'h visit to the k`h FCFS node, i- 1, . . . ,Nk and k- 1, . . . ,M;

S~ Total sojoum time in the PS node ;
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.~~' A Total sojourn time in the k`h FCFS node, k- 1, . . . ,11 ;

S Total sojourn time in the network .

Here

.a,

P - ~ Pk ~ (3 .1)
k-1

Pk , cf. [6], (3.2)
9k -1-pfpk

-~ck ck ck -~ n n

PWk -
~k Pi k 1}~ 1- n ~k PFk

, cf. [5], (3.3)
Ck . n-~ Ck n.

and
M

N - ~ Nk. (3 .4)
k-1

Model

We consider a network consisting of a single PS node and M multi-server FCFS nodes . The service
times at all nodes are exponentially distributed . External customers arrive at the PS node according to
a Poisson process with rate ~. . After departing from the PS node a customer proceeds to the 1~" FCFS
node with probability pk, and with probability 1 p the customer departs from the system, with p as
defined in (3 .1) . After each visit to any FCFS node customers are fed back to the PS node . An
example of such a network is shown in figure 3 .1 .

0

~ ~ ci

~

p~ ~

~ PS -~ O C2

~ Q

p3

~

M
~ O C3

1-~P, ~
~- ~

Figure 3.1 Network with one PS node and severa~ multi-server FCFS nodes (M-3, c~ --t, cz-2, cj -3)

To ensure stability of the network, we assume that the load at every node is smaller than one .
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Besides the external arrivals at the PS node with rate i: , there are also arrivals that are fed back with

probabilityp . So the total arrival rate at the PS node i s

~.PS -~.f p~, tpZ~.f . ..- ~ . (3.5)
1- p

The mean service time at the PS node is equal to ~3PS . Hence it can be seen that the load at the PS

node is given b y

PPS - 1 ~ p . (3 .6)

The arrival rate at every FCFS node is equal to the probability that a customer goes to that FCFS node
after receiving service at the PS node times the total arrival rate at the PS nod e

~
~Fk s pk ,1C -1, . . . ,M. ( :i.Í)

1- p

Hence it can be seen that the load at the I~`h FCFS node with mean service time QFk and ck servers is

given by

PF -
Pk ~QFk , aC - Í , . . . ,M. (3 .S)k 1-p ~k

The total sojoum time in the given network is defined as the sum of the sojoum times at all nodes in
the network

M Ntl M Nk

`S - SPS f ~ `SF - ~ SPS f k-1 ' 1 SF . (3 .9)
k k
l~ 1~

The sojoum time in a PS node depends on the number of customers tfiat share the service capacity of
that node . The sojoum time in an FCFS node consists of the waiting time in the queue plus the service
time . The number of visits to the PS node is always equal to the number of visits to the FCFS nodes
plus one, because after service completion at one of the FCFS nodes a customer always retums to
the PS node before eventually leaving the system .

3.3 Analysis

3.3.1 Exact result for mean total sojourn time

Similar to the networks in [14] and [20], the networlc in this chapter is a product-form network .
Therefore we can derive an exact result for the mean total sojourn time in the network described in
section 3 .2 . Below we apply Little's law to every node in the network, so that we can calculate a
customer's mean sojoum time at each node separately .

The stationary number of customers in the PS node, LPS, is geometrically distributed, i .e .

P{LPS - I} -(1- pPS )pPS',1 - 0,1, 2, . . . . Hence the mean number of customers in the PS node is

E{LPS } - pPS . (3 .10)
1- pPs
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Now we can derive the mean sojourn time for the i`h visit to the PS node by Little's la w

E{SPS`} -
E{L~} - QPS i -1, . . .,N. (3 .11)
~,~ 1- pPs

The mean number of customers in each multi-server FCFS node is, cf . (5] ,

E{LFk }~ Ck pFt f
PF, Pw,

k- 1, . . . ,M, (3 .12)
1- pFk

where pwt as given in (3 .3) .

Now we can derive the mean sojoum time for the t~ visit to the I~h FCFS node by Little's law

E{SFt`} - E{~ Fk} -~F, f pw' 1 ~P , i-1, . . .,Nk, k -1, . . .,M. (3 .13)
Ft k Ft

The number of times a customer is fed back to the PS node, N, is easily seen to be geometrically

distributed, i .e . P{N - n} -(1- p)p", n - 0,1,2, . . . . Hence

E{N} - 1 p p . (3 .14)

Similarly, the number of times a customer is fed back to the 1~ FCFS node, Nk, is easily seen to be

geometrically distributed, i .e . P{Nk 3 nk }-(1- qk )qk "` , nk - 0,1, . . ., for k -1, . . .M . Hence

E{Nk} - 1 qqk - 1p p , k z 1, . . .,M . (3 .15)

We obtain the following closed-form expression for the mean total sojoum time of an arbitrary
customer

Ntl M Nk M

E{S} - E~ SPS f~~ SFk -(E{N} f 1)E{SPS } f }~ E{Nk }E{SFt }

~í (3 .16)
- 1 ~PS } [~ Pk ~ } Pwk ~Fk

L F1-pl-p~ k-,1-p k ~k 1-pFt
.

The first equation follows by the definition of the total sojourn time (3 .9) . The second equation fotlows
by applying Wald's equation, see [26] . The last equation is obtained by substitution of (3 .11), (3 .13),
(3 .14), and (3 .15) .

3.3.2 Approximation for variance of total sojourn tim e

Boxma and Daduna [7] obtain an expression for the joint distribution of the sojoum time in a product-
form network under certain conditions . One of the conditions is that the paths the customers have to
traverse have the overtake-free property . However, in the network in this chapter overtakíng can
occur. Overtaking introduces correlation between the sojourn times of customer visits at the nodes in
the queueing network . Instead of determining an exact result for the variance of the total sojourn time
in our network, we will develop an approximation for it.
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Note that the successive sojourn times of a customer at the same node are identically distributed . This
can be seen as follows . The model under consideration is a multi-class product-form network, where
the customer classes are defined as follows . Each customer enters the network at the PS node as a
class-0 customer, and its class number is incremented from i to i ti any time the customers jumps
from one node to the next . Then for each customer its class number indicates the number of node
visits since its arrival in the system . According to the Arrival Theorem ( cf ., e .g ., theorem 4 .1 in [5]) at
the instant when a customer jumps from one node to another the joint queue-length distribution of the
network is equal to the stationary joint queue-length distribution of the same network but without the
jumping customer . Note that this is regardless of its class number . This implies that the successive
sojourn times of a customer at the same node are identically distributed .

In appendix B the complete derivation of the approximation for the variance of the total sojoum time in
the network described in section 3 .2 is given . In this section we will just write down the main steps and
results . We start with a general formula for the variance of the total sojourn time by substituting the
definition of the total sojourn time in the network

Ntl M Nt

Var{S} - Var ~ Sps f ~ ~ SFt . (3.1 ~
~- ~-

In appendix B we obtain the following general expression for the variance of the total sojourn time in
the network described in section 3 .2 :

Var{S} -}~ (n f 1)Var {SPS ~(1- p) p" f~~ Cov{SPS , SPS }(1- P)P n }
n`-'6 n- i~ ~

~~ nkVar ~SF.t 1 ~(1- qk )qk nt f~~~ COV{SFt , SFt }(1- Rk )Rk nt t
nLt .-~0 nt-Oir~

M ~ m ntl nt
.~ i2 COV SPS , SFt f(n, , . . ., nM ) f (3 .18)

F'1 nt- nx-~ 1- J-

m m n n
i i~ ~ . .. ~ COV S Ft , }~ S ~ f (n1, . . ., nM ) t

wmnl-0 ntt-0 ~- ~~-1

M

Var ~ Nk ~{Sps } f E{SFt }) ,

where f(nl, . . ., nM ) denotes the joint probability distribution of the number of visits to the FCFS

nodes .

By ignoring the dependencies overtaking can create in the network, we ignore the correlations
between sojourn times. The result is a simple approximation for the variance of the total sojourn time
in the network considered in this chapter. Because we do not take into account the correlations
between sojourn times, we expect this simple approximation to underestimate the variance of the total
sojourn time. This approximation will be used to compare with the final approximation, which follows
under less restrictive assumptions .

Var . S ~ 2} p~ ~~ Z~ M ~k z}
Pw`~-Pw)~Fk z

s,m~{ }~1-p2-p~ 1-p~) ~1-qk QFk ~kz~l-pFk)z
z (3.19)

M
Cjk ~pS ~ Pw, Fk

}~~l-4k)z 1-p~ } Fk }ck~l-pFk )
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For a refined approximation for the variance of the total sojourn time in the network, we start with the
last term in (3 .18) . Since the number of visits to the k~h FCFS node, Nk, is geometrically distributed
with parameter qk, we know tha t

}M~ Var {Nk } - ~ qk 2 . (3 .20)
~í k., (1-qk )

With some calculus, cf. [13], we find that

~Cov{Nk,Nm } -Var{N}-Var }~ Nk - ~ (pk pjZ . (3 .21 )
rm ~1 krm 1 -

By substitution, we obtain

Var M Nk (E{SPS } f E{SF~ }) -~ qk Z(E{SPS } t E{SFk }~ t

~ k-i (1- qk )
3.22( )

k~ (pk p)Z (E{S~ } t E{SFk }~E{S~ } f E{S ~}) .

The expressions for E{SPS1 } and E{SFk' } are given in (3 .11) and (3 .13) respectively .

Now we still need formulas for Var{SPS },Var{SFr },Cov{SPS,SPS },Cov{SFt ,SFk },Cov{S~,SFt }

and Cov{SFk , SFm }, for any i, j- 1,2, . . . , k - 1, . . . , M, and k~ m .

Therefore we use the following approximation assumptions :

1 The arrival process at the PS node is a Poisson process with parameter í~ ~(1- p) .

2 The covariances of the successive sojoum times of a customer at the PS node in the network
with delayed feedback may be approximated by those in a single M~M~1-PS node with direct
feedback . Similarly, the covariances of the successive sojoum times of a customer at the
FCFS node in the network with delayed feedback may be approximated by those in a single
M~M~1-FCFS node with direct feedback .

3 The total sojoum time at the first i visits to the PS node and the total sojourn time at the first j
visits to the Ár1h FCFS node are uncorrelated, for i- 1, . . . , Nt 1, j- 1, . . . ,N and k- 1, . . . , M.

4 Sojoum times of a customer at different FCFS nodes are uncorrelated .

Approxlmatlon assumptlon 1

In general, it is known that the first approximation assumption is not true for the network under
consideration, due to the possibility of feedback . The feedback loop implies dependent interarrival
times at the nodes, which results in violation of the Poisson assumption . However, we need the first
assumption to approximate the variance of the sojoum time in the PS node . Under this approximation
assumption we can use Ott's resuft, cf. [22], for the variance of the sojoum time in an M~M~1-PS node :

2

Var{SPS } ti 2 } pPS ~PS (3 .23)
2 - prs 1- PPs

If we assume that the arrival process at the PS node is a Poison process and all service times are
exponentially distributed, then the arrival process at the FCFS node is a Poisson process as well . We
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derive the variance of the sojourn time in the l~h FCFS node by using the theory about MiMic queues
in [5]

z

Var~.SFk I~ QFk2 }
PW(2- PW)QZk ~k -1, . . .,M . (3 .24)

c~ (1- PFk )

Approximatfon assumptfon 2

Van den Berg [4] derives exact expressions for the covariances of the successive sojoum times for
single-server FCFS and PS queues with direct feedback, where customers upon service completion
are immediately fed back into the system with a given probabiliry. Our model, instead, has a delayed
feedback mechanism : upon departing from the PS node, a customer is first processed by the FCFS
node ('rf not leaving the system immediately) before returning to the PS node . Similarly, after leaving
any FCFS node, a customer is first processed at least once by the PS node before returning to the
same FCFS node . Based on the second approximation assumption, we approximate the covariances
between the successive sojourn times at the same node by the exact resufts in [4] for systems with
direct feedback . In [2iJ the covariances of the successive sojourn times for single-server FCFS and
PS queues are derived from results in [4], we apply the results from [27] .

The covariance between the successive sojourn times at the PS node is given by (4 .25) in [27]

z

Cov~.SPS,SPS }~ z PPSQPS r}1 , i s 1,2, . . .,1 -1,2, . . . . (3.25)
(1- PPS )(2 ' Pps - P f PPS P )

For the covariance between the successive sojourn times at the multi-senrer FCFS nodes we extend
(4 .26) in [27] in a way that is given in appendix B . We derive the following approximate expressio n

~ z

COV~.SF,,SFR~I~Pwr~PF,(1-~Ík)}qkl-1 ~Fkz tPwk(2-Pwk)C z 1~ z~ ( )
k ( P~x ) 3.26

for i-1,2, . . ., k-1,2, . . ., M, and 1-1,2, . . . .

Approxfmatfon assumptlon 3

In general, the third approximation assumption is known not to be true. However, the product-form
solution for the present model, see Disney and Koenig [11], implies that the numbers of customers at
the two nodes are independent in equilibrium . Gijsen et al . [14] remark that the sojoum time in the
FCFS nodes is closely related to the number of customers at that node in the following way . If a
customer finds nFk customers at the l~h FCFS node upon arrival, then the sojourn time simply consists

of nFktl independent successive exponential phases each with rate ~QFk . This results in an Erlang

distribution with shape parameter nFktl and rate parameter~3FR . For the PS node, the correlation

between the sojoum times and number of customers present upon arrival is less clear, and intuitively
seems to be weaker than for FCFS nodes . These observations suggest that the cross-correlation
terms are rather small . Van der Mei et al . [20] found that the cross-correlation coefficients (between
PS and FCFS nodes) were about a factor two smaller than the correlation coefficient for successive
sojoum times at the PS node. They also found that the correlation coefficient for successive sojoum
times at the FCFS node were about three times larger than the PS node correlation coefficient . These
results confirm the conjecture that the cross-correlation terms for the sojourn times of visits to d'rfferent
nodes are indeed negligible compared to the correlation terms of successive visits to the same node .
Gijnen et al . [14] denote that for queueing networks with several FCFS nodes the impact of ignoring
cross-correlations on the approximation accuracy is even less.
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The third approximation assumption implies that

COV~.SPS,SF ~-~ O,L ~ j. (3.27)
k

Approximation assumpilon 4

As for the third approximation assumption, we know that the fourth approximation assumption is not
true in general . However, for the same reasons as denoted for ignoring the cross-correlations between
the PS node and FCFS nodes, we will also ignore the cross-correlations between two different FCFS
nodes. Finally, the fourth approximation assumption implies tha t

Cov~SFk,SFm }-O,i -1,2, . . .,k ~ m . (3 .28)

Final approxJmafJon

By substitution of equations (3.22) to (3 .28), we finally obtain the following approximation for the
variance of the total sojourn time in a feedback network with a single PS node and several multi-server
FCFS nodes

z Z

Var{S} ~
1 2} PPS ~PS } 2PPPSQPS

1-p2-pPS 1-PPS (1-PPS)2(1-P)Z(2-PPS-PtPPPS)(2-PPS)

~ qk n 2 Pw(2-Pw)~FkZ ~ 2RkZPw,QF,Z((1-PF,)ZckZ fPw,(2-Pw,))

} k-,1- qk 1JFk } ck 2(1- pFk ) Z } k-1 (1- 4k ) Z(1- PF, ) 2(1- 4k PF, f Rk ) ck Z
(3 .29)

M Z
} Rk QPS } } Pwt QFk

Q
k-,(1-qk)z 1-pps ~ ck(1-PFk )

} ~ Pk Pm ~PS } ~ } PwR i~Fk ~ps } ~ } Pw,~ ~Fm

krm (1-p)Z 1- pPS Fk ck(1-PFk) 1-PPS Fm cm(1-PFm) .

As mentioned before, the details of this derivation can be found in appendix B .

3.4 Numerical result s

To assess the accuracy of the approximations for the variance of the sojourn times proposed in
section 3 .3 .2, we have performed numerous numerical experiments, comparing the approximations
with simulations . For every simulation the number of multi-server FCFS nodes is taken equal to three .
We have validated the accuracy of the approximations for many parameter combinations, by varying
the mean service times at all nodes, the number of servers in the FCFS nodes and the values ofpl, p2
and p3 . More details about the simulations can be found in appendix A.

We calculated the point estimates for the variance of the sojoum times, and its 9596 confidence
intervals . By comparing the point estimates based on the simulations with the approximations, we
calculated the relative error of the approximations in the following wa y

e~o - approximation - simulation
x 100, (3.30)

- simulation
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where ~~c is the relative error, approximation is the approximated value of the variance of the total
sojoum time in the network, and simulation is the point estimation of the variance of the total sojourn
time in the network based on the simulations .

To show that the quite complex, but closed-form approximation given in section 3 .3 .2 indeed leads to
a higher level of accuracy than simpler variants of approximations for the variance of the total sojoum
time in the network, we compare our approximation (3 .29) with the simple variant given in (3 .19) .

In the tables below we denote the approximated value of the variance of the total sojoum time (3 .29)
in the network by "appr", the results of the simple approximation (3 .19) by "simple", the point
estimation of the variance of the total sojourn time in the network based on the simulations by "sim",
and the 9596 confidence interval by "9596 c .i ." .

We considered the feedback probabilities, the loads at the nodes, and the number of servers at the
FCFS nodes as given in the tables. For those parameter values we calculated the corresponding

mean service times ~F~ ,~3F2 ,~3F3 and ~3PS . In tables 3.1 to 3 .5 the first three digits of the values for the

mean service times are shown .

Table 3 .1 shows the results for the first case, networks with three identical single-server FCFS nodes
and equal probabilities for visiting each of the FCFS nodes . Furthermore we fixed the external arrival
rate . We varied the feedback probability p and the loads at the nodes pPS and pF. . For every run in

table 3.1 it holds that ~. ~ 1, P~ - Pz - Ps - P ~ 3~ iF, - QFZ -~F, ~ ~i - CZ - C3 a 1 and

PPS - PF, ~ pF2 - pF, .

p ~PS ~F,. pPS pF. sim 9596 c.i. appr Oqo simple 4qo

0.3 0.14 1 .40 0.20 0.20 3.72 3.69, 3.74 3.71 -0,29 3.18 -14.40
0.3 0.35 3.50 0.50 0.50 60.80 59.43, 62.16 61.44 1,05 51 .21 -15.78
0.3 0.56 5.60 0.80 0.80 997.59 926.70, 1068.48 1023.47 2,59 826.77 -17.12
0.6 0.08 0.40 0.20 0.20 1 .81 1 .80, 1 .83 1.82 0,38 1 .22 -33.00
0.6 0.20 1 .00 0.50 0.50 31 .18 30.68, 31 .68 31 .17 -0,02 19.63 -37.05
0.6 0.32 1 .60 0.80 0.80 541 .74 519.20, 564.29 540.39 -0,25 318.29 -41 .25
0.9 0.02 0.07 0.20 0.20 1 .18 1 .18,1 .19 1.18 -0.01 0.49 -58.43
0.9 0.05 0.17 0.50 0.50 20.88 20.60, 21 .16 20.82 -0.29 7.93 -62.04
0.9 0.08 0.27 0.50 0.50 273 .42 262.59,284.26 268.42 -1 .83 90.13 -67.04
0.9 0.08 0.27 0.80 0.80 369.17 348.97,389.36 375.74 1 .78 127.89 -65.36

Table 3 .1 Variance of Uie total sojoum time for a network with three symmetric single-seiver FCFS nodes :
appro~ámations versus simulation s

The results presented in table 3 .1 show that the approximations are highly accurate for all parameter
combinations considered, with a worst-case scenario of only 2 .5996 . Further, the results show that the
approximation is much more accurate than the simple approximation, which shows errors up to 6796!
Our approximations are within the 9596-confidence interval in all cases . Note that the approximation
does not always underestimate or overestimate the simulated variance . In fact, table 3 .1 just
demonstrates that our approximation is accurate for a network with a single PS node and multiple
single-server FCFS nodes .

In table 3 .2 we show results for a network with multi-server FCFS nodes. This second case is a
symmetrical network again : three identical FCFS servers, equal probabilities for visiting each FCFS

node, and fixed extemal arrival rate, ~-1 . For every run in table 3.2 it holds that

P~ - PZ a P3 - 0.3, ~F, -~FZ -~F3 ~ Ci - CZ - C3 ~ 1 and pF~ - pFZ - pF3 .

Unfortunately there is no space for confidence intervals in table 3 .2 and the following tables . For every
run we checked 'rf our approximation is in the 959'a confidence interval, and it is in most cases . It is
remarkable that for the cases where the approximation is not in the 9596 confidence interval, it is
always an overestimation of the simulation value . Apparently, the approximation always overestimate s
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the variance of the sojourn time for the cases we considered . This is probably due to the interpolation
used to approximate the covariance between the sojourn times for successive visits to the same multi-
server FCFS node. Nevertheless the approximation is very close to the simulation value in all cases
considered .

The results presented in table 3 .2 show that our approximation works very well for networks with multi-
server FCFS nodes as well . Again, it can be seen that our approximation is much more accurate than
the simple one .

Qrs ~F ~; PPS PF sim appr poío simple Oqo

0.02 0.33 2 0.20 0.50 22.90 23.67 3.35 9.50 -58.54
0.02 0.53 2 0.20 0.80 271 .43 269.03 -0.88 93.56 -65.53
0.05 0.13 2 0.50 0.20 5.88 6.08 3.53 2.39 -59.34
0.05 0.53 2 0.50 0.80 306.54 306.97 0.14 107.43 -64.95
0.08 0.13 2 0.80 0.20 47.85 48.90 2.20 14.36 -70.00
0.08 0.33 2 0.80 0.50 87.11 90.55 3.95 30.96 -64.46
0.01 0.33 4 0.10 0.25 11 .85 11.90 0.46 5.33 -54.99
0.01 1.20 4 0.10 0.90 1680.76 1637.24 -2.59 550.25 -67.26
0.03 0.13 4 0.25 0.10 2.67 2.70 1.18 1 .17 -56.02
0.08 1.20 4 0.75 0.90 1829.87 1842.08 0.67 629.58 -65.59
0.09 0.13 4 0.90 0.10 230.90 235.73 2.09 59.96 -74.03
0.09 1.00 4 0.90 0.75 692.27 718.54 3.79 246.18 -64.44
0.02 1 .67 10 0.20 0.50 286.38 290.27 1 .36 129.57 -54.75
0.05 0.67 10 0.50 0.20 56.97 57.64 1 .17 25.33 -55 .55
0.08 0.67 10 0.80 0.20 123.59 128.96 4.34 48.69 -60.60
0.08 1 .67 10 0.80 0.50 430.20 440.47 2.39 184.36 -57.1 5

Table 3.2 Variance of the total sojoum 6me for a network with three symmetric multi-server FCFS nodes :
appro~ómations versus simulations

For the results in tables 3 .1 and 3.2 it is assumed that the three FCFS servers are identical . The tables
show that our approximation works very well in the given symmetric cases . To investigate the impact
of asymmetry in the nodes on the accuracy of the approximations, we have also considered a variety
of parameter combinations with more asymmetric characteristics .

In table 3 .3 we show the resufts for three FCFS nodes, with the same number of servers at each of the
nodes. In this case, the probabilities of visiting each of the nodes as well as the service times at the
FCFS nodes are not equal for all FCFS nodes ; in such a way that the loads at the different FCFS
nodes are equal. For every case in table 3.3 it holds that í~ -1, pl ~ pz ~ P3~

~(3F~ ~ j'3F2 ~~3F3 , c, - c2 - c3 Z 1 and pPS - PF, - PFZ - PF, ~ the parameters in this last equation

are all denoted by p in the table.

Pt PZ P3 ~~ QF, QF: QF, c; P sim appr po1o simpte ~010

0.1 0.2 0.3 0.08 0.80 0.40 0.27 1 0.20 1 .97 1 .99 0.87 1 .38 -29.82
0.1 0.2 0.3 0.2 4.00 2.00 1 .33 2 0.50 51 .39 52.73 2.61 35.62 -30.68
0.1 0.2 0.4 0.24 7.20 3.60 1 .80 3 0.80 675.26 685.68 1 .54 390.88 -42 .11
0.1 0.2 0.4 0.06 2.40 1 .20 0.60 4 0.20 13.85 13.85 0.01 9.37 -32.34
0.1 0.3 0.4 0.1 5.00 1 .67 1 .25 5 0.50 122.15 126.17 3.29 71 .35 -41 .59
0.1 0.3 0.4 0.16 9.60 3.20 2.40 6 0.80 949.43 987.05 3.96 494.13 -47.96
0.1 0.3 0.5 0.02 1 .40 0.47 0.28 7 0.20 25 .66 25.84 0.69 12.77 -50.24
0.2 0.3 0.4 0.05 2.00 1 .33 1 .00 8 0.50 208.88 213.75 2.33 95.02 -54.5 1

Table 3 .3 Variance of the total sojoum 6me for an asymmetric network with three different multi-server FCFS
nodes with equal loads: approximations veisus simulation s

The resufts presented in table 3 .3 show that even for an asymmetric network our approximation is still
very accurate .
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In table 3.4 we show the results for three FCFS nodes, with the same number of servers at each of the

nodes . The probability of feedback is 0.9 for all cases . Now the probabilities of a visit to each of the
FCFS nodes are equal, but the mean service times at the FCFS nodes are not equal, and thus the

loads of the three FCFS nodes are not . For every run in table 3 .4 it holds that ~, -1,

R- Pz - P3 - 0.3, ~Fl ~~FZ ~~F3 ~ ci - c2 - c3 Z 1 and pF~ ~ pF2 ~ pF3 .

~F~ ~FZ ~F3 Ci pPS pF~ pFZ pFj Slm áppr 0~0 simple DoJO

0.75 0.50 0.25 3 0.50 0.75 0.50 0.25 79.60 80.62 1 .28 36.54 -54.10
1 .25 1 .00 0.75 5 0.75 0.75 0.60 0.45 233.70 247.77 6.02 100.40 -57.04
2.4 1 .33 0.27 8 0.75 0.90 0.50 0.10 610.90 655.33 7.27 329.00 -46.14

3.00 2 .00 1 .00 10 0.75 0.90 0.60 0.30 1025.38 1102.00 7.47 492.62 -51 .96
Table 3.4 Variance of the total sojoum time for a network with three different multi-server FCFS nodes :

approximations versus simuladons

The results presented in table 3 .4 show that for these asymmetric cases the approximation for the
variance of the total sojourn time is still quite close to the símulation result . Nevertheless the results in
table 3 .4 seems to imply that either the approximation is less accurate for large values for the variance
or the approximation is less accurate for a large number of servers at the FCFS nodes . Both possible
reasons do not directly follow from tables 3 .2 and 3 .3 .

Finally, we consider even more asymmetric network scenarios . In table 3 .5 we present the results for
three asymmetric FCFS nodes . We show different kinds of asymmetry in the network, as can be seen
in the table below .

Pl P2 P3 ~Fl ~FZ ~F3 CI C2 C3 pPS pFl pF2 pFi Slm appr ~q0

0.1 0.2 0.3 3.00 2.00 1 .00 1 2 3 0.50 0.75 0.50 0.25 135.49 131 .78 -2.74
0.1 0.2 0.4 2.25 2.70 1 .69 1 3 5 0.75 0.75 0.60 0.45 211 .61 216.96 2.53
0.1 0.3 0.4 1 .80 0.40 0.15 1 8 9 0.75 0.90 0.08 0.03 638.54 642.47 0.61
0.1 0.3 0.4 1 .80 3.20 1 .35 1 8 9 0.75 0.90 0.60 0.30 904.46 909.08 0.51
0.2 0.3 0.4 1 .00 1 .67 2.00 10 10 10 0.50 0.20 0.50 0.80 386.12 429.41 11 .21
0.3 0.3 0.3 0.40 0.67 0.53 6 4 2 0.80 0.20 0.50 0.80 194.92 199.34 2.26

Table 3 .5 Variance of the fotal sojoum dme for an asymmetric network with three multi-server FCFS nodes :
approximations versus simulations

The results presented in table 3 .5 show that, in most considered cases, our approximation is even for
completely asymmetric networks very accurate . Unfortunately there is no space in the table to
compare our approximation with the simple one; the error is between ~096 and -25R6 . As can be
seen, the difference between the simulated variance and the approximated variance is rather large for
the case in table 3 .5 with a high number of servers at all three FCFS nodes .

Remark on Bernoulll fee~dback

The developed accurate approximation for the variance of the total sojoum time can be applied to a
Bemoulli feedback network with a single PS node and multiple multi-server FCFS nodes . Note that the
feedback mechanism in the example queueing network described in chapter 1 is deterministic . So the
approximation obtained in section 3 .3 .2 cannot directly be used for the decision what the contents of
SLA's in the LWS-example will be . However, a network with Bemoulli feedbadc is a good model 'rf
many different applications use the same databases .

The approximation for the variance of the sojoum time in the Bemoufli feedback network can be used
as an upperbound for the variance of the sojoum time in a network with deterministic feedback and
similar loads, although simulation results showed that ft is a very rough upperbound .

We consider the example queueing network model described in chapter 1 . The loads in a deterministic
network are defined as follows
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P~~s - (Nf 1)~~PS~ (3.31)

pF, - Nk ~.j'3FR , k -1, . . ., M. (3 .32)

N is the number of feedbacks to the PS node and Nk is the number of visits to the l~ FCFS node . In
the example queueing network described in chapter 1 we assumed that the three FCFS nodes in the
network were all visited once, and the PS node four times. So Nfl - 4 and Nk - 1 for k- 1,2,3 . To
approximate the model with deterministic feedback by a model with Bemoulli feedback, we take p and

pk such that 1 - N f 1 and pk ~ Nk , k- 1, . . . ,M.
1- p 1- p

Hence in our example p- 3~4 and pk - 1~4 for p- 1,2,3 . Then we can apply equations (3.11) and
(3.13) to get the following expressions for the mean sojourn times tor the í~ visit to a nod e

E{Sps` } - 4 ~ps , i -1,2, . . ., (3 .33)
1- pps

~
E{SFt' } - F` , i -1,2, . . ., k -1, .2,3. (3.34)

1- pFt

Indeed, these expressions are exact for the product-form network under consideration .

If we apply (3.29) by taking p- 3~4 and pk - 1~4 for p- 1,2,3, then we get a rough upperbound for
the variance of the total sojourn time in the network with deterministíc feedback . We can also take a
very simple expression of the variance of the total sojoum time in a network with feedback as follow s

Z M 2

Var,~{S} ~ 1 2 f Pps ~ QPS ~~ pk QFk2 f
Pw(2 - PW)Q 2k

(3 .35)
1-p2-p~ 1-p~) k-~1-P ck (1-pFk )

Then we get a rough lowerbound for the variance of the total sojoum time in the network with
deterministic feedback . In the table below can be seen that this lowerbound is much closer to the
simulated value than the suggested upperbound is .

~F~ ~F~ ~FZ ~F3 Cl CZ C3 pps pFi pFZ pF3 SIryT Upper Lowerbound bound
0,10 0,50 0,40 0,30 1 1 1 0,40 0,50 0,40 0,30 1,99 12,24 1,79
0,05 0,20 0,20 0,20 1 1 1 0,20 0,20 0,20 0,20 0,22 1,44 0,21
0,13 1,00 1,00 1,00 2 2 2 0,50 0,50 0,50 0,50 5,45 38,10 5,08
0,20 1,50 1,50 1,50 2 2 2 0,80 0,75 0,75 0,75 48,01 324,86 39,64
0,05 1,00 1,00 1,00 4 4 4 0,20 0,25 0,25 0,25 3,04 16,85 3,03
0,13 2,00 2,00 2,00 4 4 4 0,50 0,50 0,50 0,50 13,59 87,92 13,37
0,20 3,00 3,00 3,00 4 4 4 0,80 0,75 0,75 0,75 65,56 481,84 56,84
0,20 1,50 1,00 0,75 2 4 6 0,80 0,75 0,25 0,13 29,18 141,52 21,00
0,20 1,00 2,00 3,00 2 3 4 0,80 0,50 0,67 0,75 42,19 258,26 33,49
0,20 7,00 7,00 7,00 10 9 8 0,80 0,70 0,78 0,88 213,56 1625,84 208,58
0,05 2,00 2,00 2,00 10 10 10 0,20 0,20 0,20 0,20 12,02 63,08 12,02

Table 3.6 Numerical results for a netwnrk with a PS node and three multi-server FCFS nodes
and determinisdc feedback

By extending expression ( 3.35), we think that it is possible to obtain a good approximation for the
variance of the total sojourn time in a network with deterministic routing . This is an interesting subject
for further research .
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Chapter 4

A feedforward queueing network with general service times

4.1 Introductio n

In this chapter we study feedforward networks with a PS node and a single-server FCFS node, with
generally distributed interarrival times and generally distributed service times at both nodes . In
feedforvvard networks customers never retum to a queue they have once left, hence feedforvvard
networks are acyclic networics. In the next section we describe the models considered . In section 4 .3
we describe the analysis . We start with sojoum time approximations for both GI~G~1-PS and GI~G~1-
FCFS queues. Then we give the relations between the second moment of the arrival and the
departure process for both the PS and the FCFS node. Next we describe the processes of splitting
and superposition . Finally, we give some numerical results for the networks considered .

4.2 Model description

First we introduce the notation used in this chapter .

Model Input parameters

~, Extemal arrival rate ;

~3~ Mean service time at the PS node ;

~(3F Mean service time at the FCFS node ;

cbF 2 Squared coefficient of variation of the service time distribution at the FCFS node ;

ca~ Z Squared coefficient of variation of the interarrival time distribution at the PS node ;

caF 2 Squared coefficient of variation of the interarrival time distribution at the FCFS node ;

cd~ Z Squared coefficient of variation of the interdeparture time distribution at the PS node ;

cdF 2 Squared coefficient of variation of the interdeparture time distribution at the FCFS node;

a~~~ Laplace-Stieltjes transform (LST) of the distribution function of the interarrival times ;

p~ Load at the PS node ;

pF Load at the FCFS node.

Random varlables

S~ Total sojoum time in the PS node ;

B~ Total service time in the PS node ;

SF Total sojoum time in the FCFS node ;

WF Total waiting time in the FCFS node ;

BF Total service time in the FCFS node ;

S Total sojoum time in the network .
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The squared coefficient of variation (SCV) is a measure of the variability . The SCV of a random

variable rv is defined by :

z - ~2 (rv)c~, - E ~ (rv). (4 .1)

Here 6z (rv) denotes the variance of a random variable rv and E(rv) denotes the mean of this

variable .

Simple network

We first consider a tandem network, i .e . a network in which all customers pass the stations once in the
same order, that consists of a PS node and a single-server FCFS node, see figure 4 .1 . All customers
enter the network at the PS node, receive service at the PS node, go the FCFS node, receive service
at the FCFS node, and finally leave the network . The interarrival time as well as the service times at
both nodes are generally distributed .

~. Í pg FC
FS

Figure 4.1 Tandem nelwork with one PS node and one single-server FCFS node

The mean arrival rate at the PS node in figure 4 .1 is equal to ~, and the mean service time at the PS

node is equal to ~3PS . Hence it can be seen that the load at the PS node is given b y

Prs - ~~PS. (4 .2)

The arrival rate at the FCFS node in figure 4 .1 is also equal to ~, and the mean servíce time at the

FCFS node is equal to ~F . Hence it can be seen that the load at the FCFS node is given b y

PF - ~~F ~ (4.3)

To ensure stability of the network, we assume that the load at each node is smaller than one .

Extended network

We extend the network described above by adding another arrival stream and by adding the possibility
that a customer leaves the network after visiting the PS node. This network is given in flgure 4 .2 . The
network consists of a single PS node and a single-server FCFS node as well . All customers enter the

network at the PS node either from arrival process 1 with arrival rate ~ or from arrival process 2 with

arrival rate ~,, . All customers receive service at the PS node . After service completion at the PS

node, each customer goes to the FCFS node with probability p or leaves the network with probability

1 p. If a customer goes to the FCFS node, he leaves the network after service completion at that
node .
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Figure 4.2 Nehvork with lwo arrival steams with arrival rates ~~ and~.z, with probability p
customers departing from the PS node go to the single-server FCFS node

The mean arrival rate at the PS node in figure 4 .2 is equal to ~ï., f~, and the mean service time at the

PS node is equal to ~3,,s . Now it can be seen that the load at the PS node is given b y

Pps - ~~ } ~z ~Qvs. (4 .4)

The arrival rate at the FCFS node in figure 4 .2 is equal to p~~ f~,Z ) and the mean service time at

the FCFS node is equal to,~3F . Now it can be seen that the load at the FCFS node is given b y

pF - p~~ } ~2 ~~F ~ (4.5)

To ensure stability of the network, we assume that the load at each node is smaller than one .

4.3 Analysis

4.3.1 Sojourn time approximations

The total sojourn time in a network is equal to the sum of the sojourn times in the nodes of the
network :

S - SPS ~ í)~- . (4 .6 )

Generally distributed interarrival times lead to non-product-form networks . Hence both networks under
consideration do not have a closed-form expression for the joint steady state distribution of the number
of customers in the nodes, so that we cannot apply Little's law to obtaín the expression for the mean
sojourn times in the nodes . In the absence of exact results on the mean total sojourn time, we propose
approximations for the mean sojourn times in both nodes .

GI~GH-FCFS queue

For an approximation of the mean sojourn time in the FCFS node in the networks described in the
previous section, we use an approximation for a GIIGl1 system . For a GIIGl1-FCFS server in a
network, especially Whitt's QNA paper [28j contains much useful results, see section 2 .2 .4 . Whitt
gives the following approximation for the mean waiting time in the GIIGl1 queu e

, ,

E W .
QF PF ~~at ~ ~dF -

O{ f } ti 4.7
2(1- pF. )
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~(1'PF) (1-caF~)~ zexp - Z 2 , caF ~ 1
where g- 3PF caF f cbF (4.8)

1, caF Z z 1.

When caF Z ~ 1, (4 .7) is the Kraemer and Langenbach-Belz approximation [18], which is known to

perform well [28] . When caf z ~ 1, the original Kraemer and Langenbach-Belz refinement does not

seem to help, so it is not used . Note that (4 .7) is exact for the M~G~1-FCFS queue having caF Z-1 .

We assume that the service time distribution is given, so ~3F and cbF Z are known. If we also assume

that the interarrival time distríbution is given, then ~. and caF Z are known too. Then we can calculate

the load pF at the FCFS node. Subsequentty, we can substitute everything in (4 .7) and get an
approximation for the mean waiting time . Note that the sojoum time in an FCFS node is equal to the
waiting time plus the service time . Hence we know that

z z

ElSF } - El" F } f E{BF } .: ~F
PF (CaF f CbF ~ ~F ~ (4

.9)

2(1- pF )
where g is defined as in (4 .8) .

GI~G~1-PS queue

For an approximation of the mean sojoum time in the PS node in the networks described in the
previous section, we take into account an isolated GI~G~i-PS node . Sengupta [24) proposes an
approximation for the sojourn time distribution for the GI~G~1-PS node . As input for the approximation
of the mean sojoum time we need the LST of the interarrival time distribution and the mean service

time at the PS node. We assume that the mean service time at the PS node, j'3~ , is known. Assume

that we also know the probability distribution of the interarrival times at the PS node . Then the LST of
the interarrival times a(C) is also known .

Now let 1) denote the smallest posftive root of the equation

r~ - a 1 (1- r~) . (4 .10)
~PS

Sengupta concludes that

SPS e BPSX .
(4 .11)

1- r~

BPS denotes the service time at the PS node . X denotes a random variable, independent of BPS, with
expected value equal to one . Hence it follows that

E{SPS } - E
B~ X - E{BPS }E{X } - ,l3PS ~

(4.12)
1-r~ 1-r~ 1-r~

where r) is the smallest positive root of equation (4 .10) .
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Note that (4 .12) is exact for the M~Gl1-PS queue and the GI~M~1-PS queues, see Ott [22], Jagerman
and Sengupta [16] and Ramaswami [23] . For the M~G~1-PS case this can easily be seen since
l) - pPS 'rf the arrival process is a Poisson process . Sengupta's approximation for the mean sojourn

time gives the same result for a GI~G~1-PS queue and a Glrnll~l-PS queue, since it is only based on
the mean service time and not on the entire service time distribution .

4.3.2 Departure processes at the nodes

In the previous subsection we showed how we can approximate the mean sojourn times in both nodes
of the networks described in section 4 .2 . Therefore we have to know (an approximation of) the SCV's
of the arrival process and the service process at both nodes . We assume that the service time
distribution is known . For the tandem network given in figure 4 .1, it can easily be seen that the arrival
process to the FCFS node is equal to the departure process from the PS node . As far as we know,
there is no expression for the SCV of the departure process from the PS node known yet .

For three different probability distributions of the service time in the PS node ( cb~ 2 smaller than, equal

to and larger than 1) we simulated an isolated PS node . For different SCV's of the arrival process we
measured the SCV's of the departure process . We did this for different loads . For every probability
distribution and for every load considered the relation between the both SCV's was very close to

ce~ Z~ pPS Z f(1 - pPS 2 ~ca~ Z~ (4 .13)

Equation (4 .13) is exact for Poisson arrival processes, where cQ~, 2 s 1 . Then (4 .13) implies

cd~ Z ~ 1 . If p~ ~ 0,(4.13) is exact as well, because then cd~ Z - ca~ 2 . If pps -1, (4.13) is exact

only 'rf the service times are exponentially distributed, because then cd~ Z z cb~ 2 -1 .

PSnode, bad~.8 ~

5 ... .. .. ... .. .. .. ... .. .. ... . ... .. ..... .. .. . ... .. .... ... .. . ... .. ... .. . . . ... ... .. .. ... ~. .. ... . . .. ... .. ... :i .. .. ... .. .. ..~ .. .. .. ... .. ... . .. ... .~ .

N q ~ - -
d

~ 3 . - - --

d ~I ~ ~. , ~
e 2 . - . i

v 1 ~ . - ~ .--I -

o ~ I I
0 1 2 3 4 5 6 7 8 9 10

C ~ aMval a

. ,
--.-- service times exp d'iistributed I

-~- service times H2 distributed i
i

' -;--- service times gamma distribute d

~ Cd"2-Coaci"2tt1-load~l)Ca~2 ~
I

Figure 4 .3 Rela6on between SCV's for arrival and departure process in a PS node
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In figure 4 .3 above relation (4 .13) as well as the simulation results for different SCV's of the arrival
process are given for a PS node with a load equal to 0 .8. In appendix C some pictures of this
relationship can be found .

Whitt obtained an approximate formula for the SCV of the departure process from an FCFS node

z z z 2 z
CdF ~ pF CbF f~1 - PF Í caF . (4 .14)

Note that the approximate formulas for the SCV of the departure process from a PS node (4 .13) and
from a FCFS node (4 .14) are very similar, but there is a difference . The departure process from the
FCFS node depends on the service time variability in that node . Apparentiy, that does not hold for the
PS node. The SCV of the departure process at the PS node just depends on the load in that node and
the arrival process to that node .

We will use (4.13) to determine an approximation for the SCV of the departure process at a PS node,
and thus to determine the SCV of the arrival process at the FCFS node .

4.3.3 Flow through a network

If we extend the tandem network given in figure 4 .1 to the network in figure 4 .2, then we need
equations for the SCV's in case of splitting or merging in the network .

Splltiing

Whitt [28] gives a formula for splitting . He remarks that no further approximation is needed for splitting,
because a renewal process that is split by independent probabilities is again a renewal process . Note
that the process being split is typically not a renewal process! A relation for the SCV's is easy to
obtain, because the renewal-interval distribution in the split stream is a geometrically distributed
random sum of the original renewal intervals . Whitt's formula is applicable for a stream being split into
k streams . In general, 'rf a stream with a parameter c2 is split into k streams, with each being selected
independently acxording to probabilities p~, i - 1, 2, . . ., k, then the t~`h process obtained from the
splitting has SCV c;z given by :

crz ~ P~cz tl- p; . (4.15)

Superposltlon

Whitt [28] also gives formulas for superposition, i .e . the merging of two processes . Whitt remarks that
neither the asymptotic method nor the stationary-interval method alone works well over a wide range
of cases . We do not go into details about these methods, more information about these methods can
be found in [28] . Whitt suggests taking v times the c2 obtained by the asymptotic method and 1-v
times the SCV obtained by the stationary-interval method. However, Whitt refers to Albin [1] [2], who
found that a convex combination of the SCV obtained by the asymptotic method and the exponential
SCV of 1 worked almost as well . As for superposition the stationary-interval method is nonlinear, it
presents difficufties . For these two reasons, instead of the non-linear SCV obtained by the stationary-
interval method Whitt simply uses the value one . As a conclusion Whitt comes up with the following

formula for the superposition SCV c~2 as a function of component SCV's ct2 and the arrival rates ~.; :

ciz -~vi~ ~' c;zfl-vi, (4.16)
~ I ~ ~k

lk
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-I -1

where v~ - 1 f 4(1- p~ ) 2 ~ p;~ 2 -1 . (4.1 ~
~

Whitt [28] suggests v~ as given in (4 .1~, this is based on extensive simulations by Albin as well as on
theoretical results by himself . We simply take the v~ Whitt uses in [28] . In [29] he shows that this
formula gives quite accurate results . The parameter p;~ is defined as the proportion of arrivals to node j
that came from node i, i Z 0 .

4.3.4 Approximation for mean total sojourn tim e

For obtaining the total mean sojourn time in a network, we can simply sum the mean sojourn times in
the nodes in the network is mentioned in (4 .6) . Approximations for these mean sojoum times are given
in section 4 .3 .1

( z z

~.' {S } a E {SPS } f E {`SF } -
~PS } ~F PF `CaF } CbF

f ~F (4.18 )
1-~ 2(1-pF )

As input for these approximations we need the SCV's of the arrival processes to the nodes, therefore
we need the expressions given in section 4 .3 .2 and 4 .3 .3 .

Slmple network

For the simple network, given in figure 4 .1, we know the extemal arrival process . The SCV of the
an-ival process at the PS node is equal to the SCV of the extemal interarrival times . By using (4 .13) we
approximate the SCV of the interdeparture times from the PS node . The SCV of the interarrival times
at the FCFS node is equal to the SCV of the interdeparture times from the PS node .

Hence the mean sojourn time in the network given in figure 4 .1 can be approximated as follows

E {S } -
~PS } ~F pF ~PPS Z f (1- p~ Z )CQ~ Z f Cbp Z ~

~ ~F' (4.19)

1-rl 2(1- pF)
where rl is the smallest positive root of equation (4 .10) and g is defined as in (4 .8) .

Extended network

For the extended network, given in figure 4 .2, we know both extemal arrival process . The arrival
process at the PS node is equal to the merging of both extemal arrival processes, therefore we need
(4 .16) . By using ( 4.13) we approximate the SCV of the interdeparture times from the PS node. The
arrival process at the FCFS node is equal to a geometrical part of the departure process from the PS
node, therefore we use (4.15) .
Hence the mean total sojoum time in the network given in figure 4 .2 can be approximated as follows

E .S -
~PS } ~FPFg

Z f 1- 2 2 1- )2~1
"1C1

2 } ~ZC2 2

{ } P~PPS ( PPS ) ~ - ( PPs
1- rl 2(1- pF ) ~ } ~2 ~ } ~2 (4.20)

fl-[1-2(1-pPS)2J11)}~1-P)f~bF2)fQF~

where ~ is the smallest positive root of equation (4.10), with a(,C) the LST of the total arrival process

at the PS node . The parameter g is defined in (4 .8) .
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4.4 Numerical results

4.4.1 Remarks about Sengupta's approximatio n

By using Sengupta's approximation (4 .12) for the mean sojourn time in an isolated PS node, we
discovered that his method does not work for PS nodes with big SCV for the arrival process . In tables
4.1 and 4 .2 we compare simulation results with Sengupta's approximation for the mean sojoum time in
an isolated PS-node. In the tables we show some remarkable results .

For every case the mean service time is taken equal to one . Thus the load in a single server PS node,

see section 4 .2, is equal to the interarrival rate . The symbol Dolo in the tables below denotes the
percentage error, which is defined in formula (3 .30) .

pPS cQ~ Z simulation approximation Do1o

0.5 2 2.36 2.45 3.83
0.5 4 2.92 3.16 8.24
0.5 6 3.39 3.74 10.45
0.8 2 6.18 6.97 12.76
0.8 4 8.78 10.82 23.21
0.8 6 11.09 14.62 31 .80

Table 4.1 Sengupta's appro~ámation for mean sopum times aompared to simulation results, Cb~ Z- 2 .125.

p~ ca~ Z simulation approximation Do1o

0.5 2 2.50 2.45 -2.19
0.5 4 3.29 3.16 -3.83
0.5 6 4.19 3.74 -10.79
0.8 2 7.15 6.97 -2.50
0.8 4 11.89 10.82 -9.00
0.8 6 17.87 14.62 -18.19

Table 4 .2 Sengupta's approximation for mean sopum times compared to simulaNon results, Cb~ Z- 0 .5 .

In table 4 .1 the service times are hyperexponentially distributed, so the SCV for the service times is
larger than one . We vary the SCV for the interarrival times . In table 4 .2 the service times have a
gamma distríbution with the SCV smaller than one. Again we vary the SCV for the interarrival times .

Note that Sengupta's approximation gives the same results for mean sojoum time in both tables,
although the SCV's for the service process are different . For a SCV for the service process bigger than
one, the approximation overestimates the mean sojourn time in the PS node . For a SCV for the
service process smaller than one, the approximation underestimates the mean sojoum time in the PS
node. Sengupta notes that his mean sojourn time approximation is exact for the M~G~1 and the GI~M~1
cases. Cohen remarks in the second edition of [10] that the mean sojourn time in a M~G~1-PS node
only depends on the first moment of the service time distribution, not on the distribution itself . Our
simulation results show that this is not the case for the GI~G~i-PS queue, however it seems that
Sengupta assumed this .

To verify 'rf there was no mistake in our simulation model we reconstructed some of Sengupta's data .
For the sojourn time distribution of H~JMi1-PS and H~JH~J1-PS queues some tail probabilities are given
in table 4 .3 .

As shown in table 4 .3, our simulation experiments gave almost exactly the same results for some tail
probabilities as his experiments did . So we conclude that our simulation model is valid . Sengupta
either did not test his method for large values for the squared coefficients or he was content with a
rather small accuracy for big values of the SCV . In practice, the SCV's of an arrival process will
probably not be very big . As can be seen in the tables in [24], Sengupta's method gives appropriat e
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results for tail probabilities in case of SCV's of the interarrival and service process smaller than or
equal to two .

Z Z P{sojourntime 5 x}
~, ca~ cb~ x Sengupta's Sengupta's Our ~~o

roximation simulation simulation
0.8 2.0 1 .0 1.5 0.320 0.318 0.318 0.63

0.8 2.0 1.0 3.0 0.483 0.485 0.485 -0.41

0.8 2.0 1.0 4.5 0.587 0.594 0.594 -1 .18

0.8 2.0 2.0 1 .5 0.370 0.382 0.384 -3.14

0.8 2.0 2.0 3.0 0.534 0.551 0.551 -3.09
Table 4 .3 Some tail probabilities for the sojoum time in a PS-node with general disfributed interarrival times

4.4.2 Results for simple network

For the network described in section 4 .2 and given in fígure 4 .1, we compared the approximations for
the SCV's of the departure processes from both nodes with simulation results . We also compared
approximations for the mean sojoum times in both nodes with simulation results .

~ C Z PPS ~6~ 2 pF Cb Z Cd~ 2- CaF 2 CdF Z
E{`SPS I El`SF I

apg F
sim r sim r sim a r sim r

0.40 1 .38 0.32 2.13 0.50 1 .67 1 .33 1 .34 1 .40 1 .42 1 .24 1 .24 3.15 3.13
0.50 2.13 0.40 2.13 0.63 1 .67 1 .90 1 .95 1 .84 1 .84 1 .54 1 .59 5.11 5.01
0.30 1 .08 0.30 2.13 0.45 2.92 1 .07 1 .08 1 .45 1 .45 1 .45 1 .45 3.98 3.95
0.40 1 .38 0.40 2.13 0.60 2.92 1 .30 1 .32 1 .88 1 .90 1 .77 1 .79 6.30 6.27
0.50 2.13 0.50 2.13 0.75 2.92 1 .84 1 .84 2.39 2.45 2.38 2.50 12.38 12.22
0.60 4.56 0.60 2.13 0.90 2.92 3.39 3.28 3.08 2.99 4.16 4.75 47.79 43.33

Table 4.4 Appro~ámations compared b simulation results for a simple networ k

As we expected, the approximations are very accurate for the simple network . For the last case, the
approximations for the mean sojoum times are not that good. For the mean sojoum time in the PS
node, we think that it is due to Sengupta's approximation, see the previous subsection for remarks
about that approximation . In the pictures in appendix C, it can be seen that (4.13) becomes worse for
large SCV of the arrival process at the PS node as well . In the table it can be seen that Whitt's
approximation for the mean sojoum time in an FCFS node is not very accurate for large values of
SCV's too .

We compared the approximations for the mean total sojoum times given in the previous section with
the exact expression for the mean total sojoum time in case of Mrnlljl node s

E IS 1- ~rs } i3F
. (4 .21)t I 1- pPS 1- P

F

The approximations developed in this chapter are much more accurate than (4 .21) in all considered
cases .

4.4.3 Results for extended network

For the extended network described in section 4 .2 and given in figure 4 .2, we compared the
approximations for the SCV's of the arrival processes to and departure processes from both nodes
with simulation results . We also compared approximations for the mean sojoum times in both node s
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with simulation results . In the tables below we give the characteristics and the results respectively for a
number of parameter combinations .

Nr. I~.1 Ca~ Z I~.Z Ca2 Z PPS Cbrs z PF CbF 2 p

1 1 1 0.50 1 .38 0.75 2.13 0.60 1 .67 0.8
2 1 1 0.50 1 .38 0.30 2.13 0.48 1 .67 0.8
3 1 1 1.00 1 .38 0.80 2.13 0.80 1 .67 0.8
4 1 1 1.50 1 .38 0.75 2.13 0.80 1 .67 0.8
5 1 1 2.00 1 .38 0.60 2.13 0.96 1 .67 0.8
6 1 1 0.50 1 .67 0.75 2.92 0.38 2.13 0.5
7 1 1 0.50 1 .67 0.75 2.92 0.60 2.13 0.8
8 1 1 1 .00 1 .67 0.80 2.92 0.80 2.13 0.8
9 1 1 1 .50 1 .67 0.75 2.92 0.80 2.13 0.8
10 1 1 1 .00 2.13 0.80 2.13 0.80 1 .67 0.8
11 1 1 0.50 2.92 0.75 2.92 0.75 2.13 0.5
12 1 1 0.50 4.56 0.75 2.92 0.60 2.13 0.8

Table 4 .5 Characteristics of the extended netw~ork for different parameter combination s

Nr. ca~ 2 Cdrs Z CaF Z CdF 2 E{`SPS I El`SF J

sim r sim r sim a r sim r sim a r sim r
1 1 .04 1 .15 1 .01 1 .06 1 .03 1 .05 1 .26 1 .27 2.06 2.03 1 .51 1 .50
2 1 .03 7.35 1 .03 6.78 1 .03 5.62 1 .18 4.71 0.29 0.29 0.90 0.90
3 1 .09 1 .21 1 .05 1 .07 1 .04 1 .06 1 .46 1 .45 2.09 2.07 3.27 3.19
4 1 .12 1 .26 1 .04 1 .11 1 .04 1 .09 1 .43 1 .46 1 .28 1 .25 2.68 2.57

5 1 .16 1 .37 1 .10 1 .24 1 .09 1 .19 1 .61 1 .63 0.53 0.52 13.68 13.58

6 1 .05 1 .25 1 .03 1 .11 1 .03 1 .06 1 .19 1 .21 2.06 2.04 0.98 0.97
7 1 .07 1 .25 1 .03 1 .11 1 .03 1 .09 1 .46 1 .46 2.10 2.04 1 .70 1 .68
8 1 .13 1 .36 1 .05 1 .13 1 .04 1 .10 1 .72 1 .76 2.12 2.11 3.80 3.66
9 1 .18 1 .46 1 .09 1 .20 1 .08 1 .16 1 .73 1 .78 1 .29 1 .29 3.02 2.96
10 1 .21 1 .61 1 .10 1 .22 1 .09 1 .18 1 .48 1 .49 2.26 2.16 3.43 3.22
11 1 .11 1 .73 1 .06 1 .32 1 .07 1 .16 1 .68 1 .70 2.23 2.09 6.05 5.73
12 1 .16 2.35 1 .10 1 .59 1 .10 1 .47 1 .49 1 .71 2.35 2.11 1 .83 1 .69

Table 4.6 Results for the extended network, the row numbers correspond to the numbers in table 4 .5

Afthough the approximations for the SCV's are not always accurate, the approximate SCV's lead to
accurate approximations for the mean sojoum times in the nodes . Hence, not only for the simple
network, but also for the extended network, the approximations for the mean sojoum times in the
nodes are very accurate .

Again, we compared the approximations for the mean total sojoum times given in the previous section
with the exact expression for the mean total sojourn time in case of exponentially distributed service
times . In all cases, the approximations developed in this chapter are much more accurate than (4 .21) .

We think that the approximations for the SCV's of arrival and departure processes at and the mean
sojoum times in PS nodes and single-server FCFS nodes are also applicable to networks consisting of
more PS and single-server FCFS nodes wíth non-exponentially distributed interarrival and service
times . However, we are not sure 'rf the approximations still work well for networks in which overtaking
can take place. Nevertheless, in the next chapter we will apply some of the results to a feedbadc
network .

We think that the results presented in this chapter can easily be extend to approximations for
variances of the total sojourn time in the networks described in section 4 .2, this is an interesting topic
for further research .
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Chapter 5

A two-node feedback queueing network with general service times

5.1 Introductio n

Boxma et al . [8] describe a method for approximating sojoum time distributions in open queueing
networks . The authors restrict themselves to a two-node open queueing network with a PS node and a
single-server FCFS node, we will described the model in the next section . In section 5.3 the
approximations for the mean total sojoum time given in [8] are described and an improved
approximation for the mean total sojoum time is given . In the next section we will describe the model .
In section 5 .4, we give some numerical results, which are used to validate the approximations for the
mean total sojoum by Boxma et al . [8] and the improved approximation .

5.2 Model description

First we introduce the notation used in this chapter .

Model lnput parameters

~, Extemal interarrival rate ;

p Probability of feedback to the FCFS node after leaving the PS node ;

~PS Mean service time at the PS node;

~3F Mean service time at the FCFS node ;

~(3F2~ Second moment of the service time distribution in the FCFS node;

p~ Load at the PS node ;

pF Load at the FCFS node .

Random variables

S Total sojourn time in the network ;

SPS Total sojourn time in the PS node;

SF Total sojourn time in the FCFS node ;

S~~ Total sojoum time at the first j visits to the PS node ;

SF'~ Total sojoum time at the first j visits to the FCFS node ;

QF Total sojoum time in the FCFS node short-circuited ;

QPS~ Total sojoum time in the PS node short-circuited at the first j visits to that node ;

o.F'~ Total sojourn time in the FCFS node short-circuited at the first j visits to that node.

Model

We consider a two-node open queueing network with a PS node and a single-server FCFS node .

External customers arrive at the PS node according to a Poisson process with rate ~, . A departing
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customer subsequently enters the FCFS node with probability p, and leaves the system with
probability 1 p. Upon departure from the FCFS node, a customer always returns to the PS node. The
service times at all visits to both nodes are independent random variables with means ~(3P5 and ~3F ,

at the PS and FCFS node respectively .

~-~ PS ~ 1 ~ FCFS

lp

Figure 5.1 Feedback nehvork considered with a PS node and a single-server FCFS node

The external arrival rate is equal to ~, . Beside the external arrivals at the PS node, there are also
internal arrivals, i .e . arrívals that are fed back with probability p . So the mean arrival rate at the PS
node is

~,PS - ~, f p~, f pZ~, f . . . - ~ . (5.1)
1- p

The mean service time at the PS node is equal to,~3PS . Hence it can be seen that the total load at the

PS node is given by

PPS - ~ ~rs (5.2)
P

The arrival rate at the FCFS node is equal to the probability that a customer goes to the FCFS node
after visiting the PS node times the total arrival rate at the FCFS nod e

~
~F - lp p. (5 .3)

The mean service time at the FCFS node is equal to QF. . Hence it can be seen that the total load at

the FCFS node is given by

P~QF
PF - 1- p (5.4)

5.3 Analysis

5. 3.1 Distribution of the total sojourn time

It is hard to obtain exact results for the sojourn time distributions in queueing networks, if some form of
overtaking of customers (or their effects) occurs, cf. [7] and section 2.2 .2 . In the model considered in
this chapter, both the PS service discipline and feedback induce such overtaking . As mentioned
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before, an exact result for the mean sojourn times is not known in case of general service time
distributions at the FCFS node . Hence we take recourse to approximations .

The approximation assumptions are :

~ SPS{l~ and SF'~ are independent, j - 0,1, . . . ;

~ SPS~ has the same distribution as 6PS~ and similarly SF'~ has the same distribution as QF'~ .

Now the Laplace-Stieltjes transform (LST) of the joint distribution of the total sojourn times in both

nodes can be approximated as follows, for w1,w2 a 0

~ t,~ -~ ~~
E[e-~S~-~ZSF ] - ~ (1- p)PkE[e ~s ~Zs ]

(5 .5)~

`" ~ ~1- P)PkE[e-~`~~r~~ ]E[e-~Za~k' ] .

Boxma et al . [8] refer to Doshi and Kaufman [12] for the LST for an MIG~i-FCFS queue with feedback
and to Ott [22] for the LST for an MIGl1-PS queue, but they remark that these LST expressions are

quite complicated . At this moment, we are satisfied with obtaining an expression for the mean of Sps~

and SF'~ , and hence of SPS and SF . Relatively easy expressions for the mean of these random

variables can be taken from [22] and [25] . In the remainder of this section we will concentrate on the
mean sojoum times. Hence we do not need to use the LST anymore . In the following subsections we
will first describe the two approximations given in [8] and after that we give an improved
approximation .

5.3.2 First approximation for mean total sojourn time

For approximatíng the mean total sojourn time, we need tha t

EJSl - m (1- k J ik}'i l t EJS~k~ l EJS l f EJS l
l J-~l P)P (EISPS I l F ~J- l PSI l FI' (5 .6)

Now we need justjj one approximation assumption :

~ S~~ has the same distribution as QPS and similarly SF't has the same distribution as 6F'i .

For the PS node we know that

E~,1{S~}s~(1-P)PkE~rsir~ti~~~(1-p)~pk(kfl) l~ps - 1 1 1QPS

. ( .~PPS P Pps 5

The second step follows from, see, e.g ., section 3 .2 .1 ,

ktl kilEl~~~kt~~ 1- ~ ErTPSc~i 1-~ Qrs -(k f 1) QPS (5 .8)N 1 ;., N 1 ; ., 1- p ps 1- PPs

Note that (5.~ and (5.8) are exact for the network described in section 5 .2 with exponentially
distributed service times instead of generally distributed senrice times at the PS node .
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In an earlier version of [8] we discovered a mistake in the approximation for the mean sojourn time in
the FCFS node and a few other small mistakes . See appendix D for the old approximation with
mistake and some explanation about the mistakes .

By using formula (35) of Takács [25] it follows for the FCFS node that

~ ~ ~ k 1 ~~k) 1 P~~F(2) f Z~F (1- P~QF )
EaPPrl SF - P~ (1- P)P - E F )

- P 2((1- P) - P~QF ) (5.9)

~
- P F ~~(Q ~Z) - 2j'3 `) P

1- p 1- pF
2 F F 1- pF '

Note that for exponentially distributed service times at the FCFS node, ~3FtZ) - 2~FZ - 0. Then

expression (5.9) is equal to the exact expression for the sojourn time in an M~MIi-FCFS node in a
product-form network .

Combining (5.7) and (5.9) gives the following approximation for the total sojoum time in the given
network

EQ~i1 {S} - E~~r1 {SPS } f EQPPi1 {SF }

- 1 QPS } P QF } ~ (~ t2) - 2,a `' ) p
(5 .10)

1- p 1- pps 1- p 1- pF 2 F F 1- pF '

Numerical experiments, cf . [8], suggest that the used approximation assumption works well when one
is mainly interested in approximating the total sojoum time, while one of the queues has much larger
mean sojoum times at each visit than the other . Then the assumption should be quite accurate for that
"bottleneck" queue. It is probably far from accurate for the other queue, but the contribution of the
latter queue to the variance of the total sojoum time is probably rather small . So the given
approximation for the mean total sojourn time works well in that spec'rfic case, but not in other cases .

5.3.3 Second approximation for mean total sojourn time

If the mean sojourn times at both queues are roughly equal, then the first approximation of the mean
total sojoum time can be improved in the following way . Define a weight w as follows

PSE~~~~~ ~
w-EQP~ fE6F1)

(5 .11)

We know that

E l~PS I -1 ~PPS
.

(5 .12)

According to Van den Berg [4]

E ~6F ) ~ - {JF } ~ (~F (2) - Z~F z )
p 1- PPF . (5 .13)

1-pF 2 1-p 1-pF

Replacing the mean sojoum times at both nodes by weighted sums of inean sojoum times that
correspond to the two extreme cases of short-circuiting (i .e ., immediate feedback to the same queue)
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and independence of successive sojourn times of a customer at the same queue ( i .e ., feedback after a
long time) leads to

x

Ea~Z {SPS } - ~ (1- P)Pk (wE{6PS}'~ } f (1- w)(E{6PS})kf' ) (5.14)

and

m

EaPPr2l~F } - ~ (1- P)Pk (ll - W)E{QFk~ } f w(E{Qp~ })k ) . (5 .15)

Now we can motivate the choice of w as defined in (5 .11) . As can be seen, w- 0 corresponds to the
case that the sojoum time for the first visit to the PS node is equal to zero, so one can conclude that
the PS node "hardly" exists . In that case, the mean sojourn time in the PS node will be approximated
by zero . The mean sojourn time in the FCFS node will be approximated by the mean sojourn time in

an FCFS node with direct feedback, so as 'rf the PS node does not exist . For w - 1 it is the other way
around, then one can conclude that the FCFS node "hardly" exists . The mean sojoum time in the PS
node will be approximated by the mean sojourn time in a PS node with direct feedback, so as 'rf the
FCFS node does not exist. The mean sojourn time in the FCFS node will be approximated by zero . So

these two extreme cases are covered correctly by this choice of w . In general, the weight gives the
ratio between the mean sojoum time of the first visit to the PS node and the mean total sojoum time of

the first visit to both nodes . So 'rf w- 0 .5, this means that the first visit to the PS node by a customer
takes the same time as the first visit to the FCFS node by that customer .

The short-circuiting case is exactly the same as the first approximation with the same assumption . For
the other case, independence of successive sojoum times of a customer at the same queue, we need
another assumption, namely :

~ Customers arrive at both nodes according to a Poisson process .

This assumption is more or less the same as the first assumption in section 3 .3 .2. So we assume
M~G~1 severs: exponentially distributed interarrival times and generally distributed service times at
both nodes .

For the approximation of the mean sojoum time at the PS node (5 .14), this method gives exactly the
same result as before, i .e . ,

Ea~r2 {S~ } ~ ~ (1- p)Pk (wE~ps~kt~~ }f (1- w)(k f 1)El~PS~~~ ~
„ (5.16)

z(1- P)~ Pk (~k f 1) ~ps f(1- w)(k f 1) QFS )- 1 QFs

1- pFS 1- pFS 1- p 1- pPs

The result for the approximation of the mean sojoum time at the FCFS node is not as simple as for the
PS node. By substituting (5.9) and (5.13) in (5.15) this method gives another result than before,
derived below

E {S } [~~ 1- k' 1-w E ~k~}fwkE~ ~'~})
appr2 F - P J, ( P)P -(( )~F F

- p}~ (1- p)Pk-1(1- w)E {QF~k~ }fP~ (1- P)Pk-~wkE l~ F~l~ }
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- (1- w) P ~F ~. ~ (QF ~~~ - 2~3F ` ) P
1- p 1- pF 2 1- pF

f w P QF ~~(~ ~2~ - 2~3 ~) P 1- PpF (5 .1 ~
1- p 1- pF 2 F F 1- p 1- pF

- P ~F f~(~3 ~2~-2~ ') P 1-wfwl-PpF
1- p 1- pF 2 F F 1- pF 1- p

If the service times at the FCFS node are exponentially distributed, then ~3F~2~ - 2~3F2 - 0, and thus
(5 .1 ~ is exact .

Finally, the second approximation for the mean total sojoum time becomes :

1 QPs
EQPprz {S } ~ 1- 1-

P pps (5 .18)

} P ~F f~(j'3 ~2~-2~3 '`) P 1-wfw 1-PPF
1- p 1- pF 2 F F 1- pF 1- p

5.3.4 Third approximation for mean total sojourn time

The second approximation from [8], see the previous subsection, still gives rather bad results, as can
be read in section 5 .4 . So we extend the second approximation and to improve it for some cases .
Again we take an interpolation between two extreme cases, the case are the same as for the second
approximation . Again, for the short-circuiting case we use just one assumption :

~ S~~ has the same distribution as QPS and similarly SF'~ has the same distribution as ~F'~ .

For the independence case, we no longer assume that customers arrive at both nodes according to a
Poisson process . Instead of M~G~1 servers we assume GIIG~1 servers . In the literature there are some
results for GI~G~1-PS as well as for GI~G~1-FCFS queues, these results are already mentioned in
chapter 4 .

For the PS node we use results from a paper by Sengupta [24] . He proposes an approximation for the
sojourn time distribution for the GI~G~1-PS queue. As input we need the LST of the interarrival time
distribution at the PS node and the mean service time at the PS node . The mean service time at the

PS node is known and denoted by ~3PS . For the LST of the interarrival time distribution we need the

mean and SCV's of the arrival process at the PS node . Note that the arrival process at the PS node
consists of extemal arrivals and arrivals that are fed back . So the total arrival process at the PS node
is the sum of the extemal arrival process, for which we know the arrival rate ~, , and the internal arrival
process, which is equal to the departure process from the FCFS node .

Assume that we know the mean and SCV of the total arrival process at the PS node . In the appendix
of Tijms [26] it is given how a hyperexponential distribution of order two (Hz) can be used for a two-
moment fit . A H2 density is a mixture of two exponentials with different means . A random variable

having the H2 density is distributed with probability pl as an exponential variable with mean 1~ f.[1

and with probability pZ -1- pl as an exponential variable with meanl~ pz . In generat, a H2 density
has three parameters, and therefore is not uniquely determined by fts first two moments .
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For a two-moment fit the H2 density with balanced means is often used. In case of balanced means,

the normalization pl ~,u, - pz ~ ftz is used. The parameters of the H2 density having balanced means

and fitting the first two moments of a positive random variable X with cX2 z 1 are

z

Pt - 2 1}
cX z

t 1 ' Pz -1- p, . (5.19)
X

p' - E{X } ~ Pz - E{X } ~
(5.20)

We use the HZ distribution with bafanced means to approximate the total arrival process at the PS
node, i .e . the external arrivals and the arrivals that are fed back after visiting the FCFS node .

The LST of a HZ distribution is given by, cf . [5 ]

a~~) - P~ p Pt ~. t Pz P p} ~. . (5 .21)

Now let rj denote the smallest positive root of the equatio n

1
~1-a ~ ~1-~7) -P~ il }Pz iz

~ f~~ } ~1- ~1) f~a } ~1- ~1)
~PS ~PS

2 2

1 1} cX z-1 1 1- cx z-1 (5.22)

2 cx2 fl 2 cxz f l
- f .

lf
cxz -1 } ~, 1-r~ 1- cxz -1 } ~. 1-~7

cxz f1 1-P QPS cxz fl 1-P QPs

Note that one solution of (5 .22) will be 1 . The other two solutions follow by solving the remaining
second-order equation, one of the solutions will be larger than one, and the other solution wilt be
smaller than one . That last solution is the one we are looking for .

In section 4 .3 .1 Sengupta's approximation of the mean sojourn time in a PS node is given . In the
notation of this chapter it follows that

E{QPS~~~} - QP~
, (5 .23)

where rj is the smallest positive root of (5 .22) .

Now we can write the interpolation for the PS node as follows

Eappr3 ~~PS ~ - ~ ~1 - p)Pk (wE~PS~ktl) lf (1- w)(k f 1)E~PS(1) ~I

1 (5.24)
- w ~PS

f ~1 - W )
~PS

1- p 1- ppS 1-~
.
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Note that for exponentially distributed service times at the PS node r~ - pPS . Then (5 .24) is equal to

(5.~ and (5.18) . Hence, (5 .24) is an exact expression for the mean sojoum time at the PS node if the
service times are exponentially distributed .

For the FCFS node we use approximations from Whitt's oNA [28]

E J ~~J QF PF (~aF 2 f onF 2 l~
(5 .25)

l"F~- G(1-PF) '

) (1-c 2 2
2(1 - pF l ap ) 2

exp - 2 2 , caF ~ 1
where g- 3PF caF t cbF (5 .26)

1, ca Z Z 1.
F

Whitt [28] shows how to eliminate immediate feedback . By giving an example in his ~NA performance
paper [29] he notes that this procedure can also be applied to almost immediate feedback, i .e . for
example with one node in between . The first step of the configuring procedure is quite simple : the new
service time is regarded as a geometric mixture of the n-fold convolution of the old service time
distribution . Some of the parameters are changed now in the following way

QF -1~ P 7

2 2 (5.2~
cbt. - P f(1- P)cbF 7

p ~ O .

When we eliminate feedback in this way, we no longer count the times a customer is fed back as
separate visits. So 'rf we now calculate the mean sojoum time in the FCFS node for a customer with
these new parameters (5 .2~, we just have to multiply it byp, because the FCFS node is not visited at
all with probability 1- p, and then we have the mean sojourn time in the FCFS node for a custome r

P m(1- P)Pk-'kE~Ft't }- p ~F PF `
caF Z f p f(1- p)c6F z 1~ } QF

~ 1-p 2(1-pF) 1-P
(5 .28)

a
- P QF f~ ~2~ 2 2 f ~F C Z t 1- ? P8

1- p 1- pF 2 QF - QF 1- P aF
g(1- PF ) 7

where g is as defined in (5 .26) .

Now we can express the interpolation for the approximation of the mean sojourn time at the FCFS
node as follow s

E aPPr3 {SF Í- P~~1- P) P k-~ ((1- w)E ~F ~k) } f wkE N F tl)1 )

- (1 - W)
P ~F f ~ ~~F(2) - Z~F ~ ) p f (5 .29 )1- p 1- pF 2 1- pF

z
w P QF }~ ~2) 2 2~ QF c Z} 1- ? P8

1- p 1- pF 2~F - QF 1- p aF g~1- PF ) .
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We already mentioned that the first term is exact if the service times are exponentially distributed . If
the service times are exponentially distributed and the interarrival process at the FCFS node is a
Poisson process, then the second term is exact as well . This can be seen as follows . We noticed

before that ~3Fi2~ - 2~3F2 - 0'rf the service times at the FCFS node are exponentially distributed .

Further we know that if the interarrival process at the FCFS node is a Poisson process, then

~F Z caF 2 t 1- ?- 0 as well, because then caF Z- g- 1 .
1-p g

Now we need the SCV of the arrival processes at both nodes . The arrival process at the PS node is
composed of extemal arrivals and departures from the FCFS node . The arrival process at the FCFS
node consists of departures from the PS node that will be routed to the FCFS node with probabilityp .
Note that the network in this chapter is a feedback network, hence all SCV's depends on each other .

In section 4 .3.2 the SCV of interdeparture times from a PS node is given as function of the SCV of
interarrival times at a PS node, that is :

ca~ Z~ pps 2 f (1- pPS Z)CQ~ Z . (5 .30)

As mentioned in section 4 .3.3, Whitt gives a formula for splitting . We apply Whitt's formula to our

network. In our model the departure process from the PS node, with parametercd~2, is split into two

streams. Customers go to the FCFS node with probabilityp and leave the network with probability 1 p .
The arrival process at the FCFS node now has SCV given by:

caF 2~- pcd~ 2 t 1- p. (5 .31)

Whitt also gives a formula for the SCV of an interdeparture time in an FCFS node, see section 4 .3 .2 :

CdF Z- pF ZCbF 2 f(1- pF 2)CaF 2 . (5.32)

Still we do not know the SCV of the total arrival process at the PS node . Whitt also gives formulas for
superposition, see formula 4.1 in section 4 .3 .3 . If we apply this formula to our case, we get :

P~

ca~ 2~- v p~ cQO z f 1- p~ cdF Z t 1- v- v~(1- p)C~ Z f pcdF Z)f 1- v, (5.33)
I ~~ ~f
l 1-p 1-p

-,

where v- 1 t 4(1- p~ ) Z 2 2-1 . (5.34)
(1-P) } P

Now we have equations for the SCV's of all arrival and departure processes in the network . We can
solve this set of equations, such that all unknown SCV's can be calculated 'rf the feedback probability

p, the extemal arrival rate ~. , the SCV of the extemal arrivals, and the loads at both nodes are known .
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The resulting set of equations i s

ce~ Z~ prs 2 t(1- p~ 2)~Q~ z

caf2 .. pcd~2 fl- p
(5 .35)

CdF 2 . . pF ZcbF Z t(1 -
pF 2)CaF 2

ca~z ~v~(1-P)c~2 f pcdFz~tl-v .

Because in our model new customers arrive at the PS node according to a Poisson process, the SCV

of the extemal arrivals, coo2 , is equal to one . By solving this set of equations, we get an expression for

the SCV of the arrival process at the FCFS node

Z 1-PZV(1-PPS2)(1-pF2~bFZ) (5 .36)

caF ~ 1- P 2 v(1- PPS 2)(1- pF 2 )

where v is as given in (5 .34) .

By substitution of this expression in (5 .29) for the mean sojourn tíme at the FCFS node we finally get
an approximation of the mean sojoum time at the FCFS node in our network .

The expression for the SCV of the arrival process at the PS node is

v 2(1-c Z )Ca~ 2 ~ 1- P PF 2 bF 2
(5.3~

1- p v(1- pps )(1- PF )

We can fit a H2 distribution function for the total arrival process at the PS node by substituting

cx2 - ca~2 as in (5 .3~ and E{X }- 1 ~p in (5.19) and (5.20) . With the LST of this distribution we

can solve t~ , and finally with this ~ we can approximate the mean sojoum time in the PS node as in

(5 .24) .

Finally, the third approximation for the mean total sojourn time in the two-node feedback network with
generally distributed service times is

EaPPr3
{S }- 1 ti.t, QPS f(1- w) QPs

1-p 1-pps 1-~7

~ ~
f(1- w)1 p 1- F} 2(QF ~Z~ - 2~3F `)1 P (5 .38)

P pF pF
2

f W p QF }?. ~3Fc2i - 2~3F 2} ~F Ca 2 f 1- ? Pg

1- p 1- pF 2 1-P ~ g(1-pF )

For completeness, we refer to the definitions of the variables used in this approximation : w is given in

(5.11), ~ is the smallest positive root of (5 .22), caF 2 is given in (5 .36) and g is defined in (5 .26) .
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Remark about general arrival proces s

In this chapter we assume that the external arrival process is a Poisson process . Nevertheless, we
think that the third approximation is also applicable for the same network with generally distributed

interarrival times . Then the set of equations (5 .35) has to be solved again for the given cao 2 .

5.4 Numerical results

Simulation is used to validate the approximations for the mean total sojoum time in the network given
in section 5 .2 .

We will compare the first and the second approximation from [8] to show that the second
approximation gives better results than the first approximation for the case where the mean sojoum
times in the PS and FCFS node are roughly equal . In fact, the second approximation is a special case
of the first approximation . So the results for the cases in which one of the queues has much larger
mean sojoum times at each visit than the other one should be the same for both methods . So this can
be used to ver'rfy the approximations when comparing to the simulation results .

We also use simulations to validate the improvement of the approximation for the mean total sojoum
time in the network, given in section 5 .3 .4. In the tables below we compare the simulation results to
the three approximations and give the percentage error defined as in (3 .30) .

In the first table we give numerical results for different cases with exponentially distributed service
times at both nodes . As can be seen in the table, all approximations work very well, the error is at
most about 1 96 and in most cases even below 0.496 . This is as expected, because the mean total
sojourn time has a product-form solution in this network . We used these cases to verify that all
approximations give that solution for the simple case with exponentially distributed service times,
independent of the load at both nodes .

p ~ PPS PF c~s 2 cF Z Appr 1 Dolo Appr 2 Dolo Appr 3 Dolo

0.2 0.72 0.9 0.1 1 1 12.65 0.02 12.65 0.02 12.65 0.02
0.5 0.45 0.9 0.1 1 1 20.25 1 .03 20.25 1 .03 20.25 1 .03
0.8 0.18 0.9 0.1 1 1 50.62 -0.30 50.62 -0.30 50.62 -0.30
0.2 0.08 0.1 0.9 1 1 113.89 -0.08 113.89 -0.08 113.89 -0.08
0.5 0.05 0.1 0.9 1 1 182.22 0.35 182.22 0.35 182.22 0.35
0.8 0.04 0.1 0.9 1 1 227.78 -0.18 227.78 -0.18 227.78 -0.18
0.2 0.64 0.8 0.8 1 1 12.50 -0.38 12.50 -0.38 12.50 -0.38
0.5 0.4 0.8 0.8 1 1 20.00 0.35 20.00 0.35 20.00 0.35
0.8 0.16 0.8 0.8 1 1 50.00 0.26 50.00 0.26 50.00 0.26
Table 5 .1 Approximations for btal mean sojoum time in feedback network with a PS node and a FCFS node,

with exponential service times at both nodes

Now we know that our simulation model is valid and our approximations work well for the simple case
with exponentially distributed service times . A next step is applying the approximations to networks
with generally distributed senrice times . We first use hyperexponentially distributed service times with
balanced means, but the method is also applicable to other service time distributions .

In the second table we illustrate the remark of Boxma et al . that the second assumption for the first
approximation works well when one of the two queues has much larger mean sojoum times at each
visit than the other. If the load at one of the nodes is much higher than at the other node in the
network, then the mean sojourn time at that first node will be larger than the mean sojoum time at the
other node in the network too. This is true for the cases shown in table 5 .2 .

For the cases shown in table 5 .2 all three approximations work well . The relative error is still small,
smaller than 296 in all cases, and even smaller than 196 in most cases . Note that the relative error is
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sometimes negative and sometimes positive . This means that it is not the case that the approximation
always underestimates or overestimates the mean total sojoum time . So we can conclude that all
three approximations work well for the cases given in tables 5 .1 and 5 .2 .

~ Prs PF ~n~ 2 cbF 2 Sim Appr 1 ~~o Appr 2 ~qo Appr 3 Oqo

0.36 0.9 0.1 1 .67 1 .67 25.16 25.31 0.61 25.32 0.64 25.32 0.65
0.09 0.9 0.1 1 .67 4.56 100.82 101 .28 0.46 101 .43 0.61 101 .47 0.65
0.36 0.9 0.1 4.56 4.56 25.60 25.32 - 1 .10 25.36 -0.95 25.37 -0.91
0.09 0.9 0.1 4.56 1 .67 103.18 101 .24 -1 .88 101 .27 -1 .85 101 .28 -1 .85
0.01 0.1 0.9 1 .67 1 .67 958.54 965.11 0.69 965.31 0.71 965.74 0.75
0.04 0.1 0.9 1 .67 4.56 302.01 299.78 -0.74 299.97 -0.67 300.41 -0.53
0.04 0.1 0.9 4.56 4.56 299.44 299.78 0.11 299.97 0.18 300.41 0.32
0.01 0.1 0.9 4.56 1 .67 951 .23 965.11 1 .46 965.31 1 .48 965.74 1 .53

Table 5.2 Approximations for total mean sojoum time in feedback network with a PS node and a FCFS node,
with general service times at both nodes

As mentioned before, the cases in given in tables 5 .1 and 5.2 are not the real problem. The second
approximation is an improvement of the first approximation for cases where the mean sojoum times at
both queues are roughly equal . In table 5 .3 we show some cases where the load at the two nodes is
equal . As a result the mean sojoum times at both nodes will be roughly equal . Again we give the
values for all three approximations and compare these with the simulation results . Here p

denotes p~ x pF .

The second approximation is always closer to the simulation result than the first one . However, as can
be seen, the second approximation still gives bad results in most cases where the feedback probability
is rather high . From these, and much more, numerical results, we concluded that the development of
the third approximation, see section 5 .3.4, was needed for cases with a high feedback probability,
equal load at both nodes, and non-exponentially distributed service times at at least the FCFS node .
For most cases the third approximation is very close to the simulation value, in one case in the table
the third approximation is worse than the second .

Nr. P ~, P cb~ 2 cbF Z Sim Appr 1 Oqo Appr 2 Oqo Appr 3 Aqo

1 0.5 0.20 0.80 1 .67 1 .67 44.09 42.67 -3.24 42.83 -2.87 44.26 0.37
2 0.5 0.80 0.80 1 .67 1 .67 11 .05 10.67 -3.50 10.71 -3.14 11 .06 0.09
3 0.8 0.08 0.80 1 .00 4.56 154.08 114.22 -25.87 118.16 -23.32 153.73 -0.23
4 0.8 0.10 0.50 1 .00 4.56 24.55 21 .78 -11 .28 23.00 -6.31 23.60 -3.87
5 0.8 0.10 0.50 4.56 4.56 23.48 21 .78 -7.25 23.00 -2.05 23.60 0.50
6 0.8 0.10 0.50 1 .67 4.56 24.21 21 .78 -10.04 23.00 -5.01 23.60 -2.53
7 0.8 0.08 0.80 1 .67 1 .67 109.55 102.67 -6.29 103.57 -5.46 110.34 0.72
8 0.8 0.32 0.80 1 .67 1 .67 27.44 25 .67 -6.47 25.89 -5.65 27.58 0.52
9 0.8 0.08 0.80 1 .67 4.56 145.18 114.22 -21 .33 118.16 -18.61 153. 73 5.89

10 0.8 0.08 0.80 4.56 4.56 133.10 114.22 -14.18 118.16 - 11 .22 153.73 15 .50
11 0.8 0.32 0.80 4.56 1 .67 26.81 25 .67 -4.26 25.89 -3.42 27.58 2.90
12 0.8 0.08 0.80 4.56 1 .67 107.95 102 .67 -4.90 103.57 -4.06 110.34 2.21

Table 5.3 Appro~ámations for total mean sojoum time in feedback netrvnrk with a PS node and a FCFS node,
with general service dmes at both nodes and equal load at both nodes .

We want to know 'rf the third approximation gives better or at least good results for the mean sojoum
times at both nodes separately as well . So below we give the results for the mean sojoum time at the
PS node and the FCFS node separately. Note that the case numbers in table 5 .4 and table 5 .5 are the
same as in table 5 .3 . So the characteristics of the simulated networks in table 5 .4 and table 5 .5 can be
found in table 5 .3 .
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~ i i ~

Nr . cb~ ` Appr ca~ ` Sim Appr 1 4~Io Appr 2 0~o Appr 3 ~ ~o

1 1.67 1.19 21 .12 20.00 -5.31 20.00 -5.31 21 .05 -0.32
2 1.67 1.19 5.27 5.00 -5.17 5.00 -5.17 5.26 -0.18
3 1.00 2.83 76.22 50.00 -34.40 50.00 -34.40 73.45 -3.64
4 1.00 1.64 11 .97 10.00 -16.45 10.00 -16.45 10.98 -8.27
5 4.56 1.64 11 .10 10.00 -9.94 10.00 -9.94 10.98 -1 .13
6 1.67 1.64 11 .71 10.00 -14.57 10.00 -14.57 10.98 -6.21
7 1.67 1.34 54.25 50.00 -7.83 50.00 -7.83 53.95 -0.55
8 1.67 1.34 13.59 12.50 -7.99 12.50 -7.99 13.49 -0.71
9 1.67 2.83 70.46 50.00 -29.04 50.00 -29.04 73.45 4.24
10 4.56 2.83 61 .68 50.00 -18.94 50.00 -18.94 73.45 19.07
11 4.56 1.34 13.12 12.50 -4.75 12.50 -4.75 13.49 2.78
12 4.56 1.34 52.53 50.00 -4.81 50.00 -4.81 53.95 2.71

Table 5.4 Approximations for the mean sojoum time in the PS node,
the numbers correspond b the numbers in G9ble 5 . 3

Table 5 .4 shows that the third approximation gives better results for the mean sojoum time at the PS
node than the first and second approximations do . Note that all three approximations of the mean
sojourn time at the PS node do not distinguish between the second moment of the service time at the
PS node. Compare, e.g ., case number 3, 9, and 10 with different SCV's for the service times . For the
first and second approximation we assume that the PS node is a M~G~1-PS node. For the third
approximation we used Sengupta's approximation, see section 4 .4.1 . In that section we give some
remarks about Sengupta's approximation . It is probably due to the combination of a large SCV for the
service time and a large approximate SCV for the interarrival process that the third approximation is
still bad for the tenth case .

Nr. cbF Z Appr caF 2 Sim Appr 1 ~olo Appr 2 Oqo Appr 3 Dolo

1 1.67 1.03 22.97 22.67 -1 .33 22.83 -0.63 22.75 -0.97
2 1.67 1.03 5.78 5.67 -1 .98 5.71 -1.29 5.69 -1 .63
3 4.56 1.53 77.86 64.222 -17.52 68.159 -12.46 67.88 -12.82
4 4.56 1.38 12.58 11 .778 -6.36 12.997 3.34 12.11 -3.74
5 4.56 1.38 12.38 11 .78 -4.83 13.00 5.03 12.11 -2.16
6 4.56 1.38 12.50 11 .78 -5.80 13.00 3.95 12.11 -3.17
7 1.67 1.10 55.30 52.67 -4.77 53.57 -3.14 53.50 -3.25
8 1.67 1 .10 13.86 13.17 -4.98 13.39 -3.35 13.38 -3.47
9 4.56 1 .53 74.72 64.22 -14.05 68.16 -8.78 67.88 -9.16
10 4.56 1 .53 71 .42 64.22 -10.07 68.16 -4.56 67.88 -4.95
11 1 .67 1 .10 13.69 13.17 -3.79 13.39 -2.14 13.38 -2.26
12 1 .67 1 .10 55.43 52.67 -4.98 53.57 -3.35 53.50 -3.47

Table 5.5 Appro~timations for the mean so~oum time in ihe FCFS node,
the numbers correspond to the numbers in table 5 . 3

Table 5 .5 shows that the third approximation for the mean sojourn time at the FCFS node does not
give a sign'rficant improvement compared to the second approximation . For the second approximation
we assumed that the FCFS node is an M~G~i-FCFS node, for the third approximation we assumed a
GI~G~1-FCFS node . The SCV for the arrival process is also approximated . The approximations for
these squared coefficients are given in the table . These approximated coefficients are not compared to
the simulated values, this is an interesting topic for further research . We do not know much about the
influence of the approximations for the SCV's yet. Although in chapter 4 the accuracy of the SCV
approximations did not seem to be important for getting accurate approximations of the mean sojoum
times. But intuitively, it is also possible that inaccuracies in the approximations for the SCV's in the
network lead to large errors in the mean sojoum time approximations .
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Gamma distributed service time s

In this chapter, we developed approximations for a network with generally distributed service times . By
applying the developed approximations to a network with hyperexponentially distributed service times,
we showed that the approximations are accurate for that case . We applied the approximations to a
network with gamma distributed service times as well . Instead of the HZ fit we fit a gamma distribution
on the interarrival times at the PS node .

The parameters of the gamma density fitting the first two moments of a positive random variable X

with cX Z a 1 are

1
rP - 2 . (5 .39)

C x

~ - E{X }
(5 .40)

The LST of a gamma distribution is given by, cf . [5]

a(~) - lf~ f ~)~ (5
.41)

Now we can approximate the mean total sojoum time in the network by using (5.38), let r7 denote the
smallest positive root of the equation

i
1 ~.~ z

2 1- p

rj ~ a 1 (1- rj) - ca~ ~ . (5 .42)
~~ 1 } 1-r~

21- P QPs~ co -~ ~

In table 5 .6 below we give results for gamma distributed service times with the SCV's of the senrice
time distributions at both nodes smaller than or equal to one . The approximation works for SCV's of
service times larger than one as well, we already showed this for the hyperexponential distribution
above .

p ~ pPS C6~ Z PF CbF Z Slm Appr 1 0~0 Appr 2 Oq0 Appr 3 0~0

0.5 0.80 0.8 0.50 0.8 1 .00 10.05 10.00 -0.46 10.00 -0.46 10.00 -0.46
0.8 0.20 0.8 0.50 0.8 1 .00 40.54 40.00 -1 .33 40.00 -1 .33 40.00 -1 .33
0.5 0.40 0.8 1 .00 0.8 0.50 18.26 19.00 4.07 18.93 3.67 17.42 -4.61
0.8 0.16 0.8 1 .00 0.8 0.50 45.14 49.00 8.54 48.63 7.72 42.70 -5.42
0.5 0.40 0.8 1 .00 0.8 0.25 17.01 18.50 8.75 18.39 8.08 16.47 -3.19
0.8 0.16 0.8 1 .00 0.8 0.25 42.68 48.50 13.63 47.93 12.30 40.16 -5.92
0.5 0.45 0.9 1 .00 0.9 0.25 33.50 36.63 9.31 36.50 8.93 32.54 -2.88
0.8 0.18 0.9 1 .00 0.9 0.25 83.69 96.63 15.45 95.99 14.70 80.17 -4.21
0.5 0.25 0.5 1 .00 0.8 0.25 16.84 17.60 4.54 17.54 4.16 16.82 -0.09
0.8 0.10 0.5 1 .00 0.8 0.25 44.47 47.60 7.03 47.25 6.24 43.97 -1 .13
0.5 0.10 0.2 1 .00 0.5 0.25 11 .30 11 .56 2.34 11 .50 1 .82 11 .09 -1 .84
0.8 0.04 0.2 1 .00 0.5 0.25 29.45 30.31 2.94 29.97 1 .77 28.30 -3 .89

Table 5 .6 Approwmations for tofal mean sojoum time in feedback netwiork with a PS node and a
FCFS node, with gamma distributed service times at both nodes .
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In table 5 .6 we show that for several parameter combinations our third approximation for the mean
total sojourn time is rather accurate. We show some interesting cases, such as equal loads at both
nodes. As one can see, the third approximation is for most cases closer to the simulated value than
the second approximation . If the second approximation is better than the third approximation, then the
third approximation is an accurate approximation as well . It is remaricable that the third approximation
underestimates the simulated values in all cases considered in table 5 .6 . We think that the used
approximation for the mean waiting time in the FCFS node is an underestimation . This is probably due
to the elimination of feedback, we applied forrnulas for eliminating direct feedback to a network with
indirect feedback . Note that Whitt [29] remarks that his approximation works well 'rf the percentage
error is, e.g., about 1096. So we conclude that our approximation works well too, resuiting in a
percentage error of maximum about 696 for the mean total sojourn time in the considered cases, with
one exception of 1596 .
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Chapter 6

Summary and further research

6.1 Summary of the results

In this thesis we obtain approximations for the mean as well as the variance of the total sojoum time in
a feedback network with a single PS node and several multi-server FCFS nodes . In this network the
interarrival times as well as the service times are exponentially distributed . We extend the network in
[14] to a network with mum-server instead of single-server FCFS nodes .

We also obtain an approximation for the mean total sojoum time in a feedforward network with a PS
node and a single-server FCFS node . In this network the interarrival times as well as the service times
at both nodes are generally distributed . Two-moment approximations for mean sojourn times in GI~Gl1
nodes are used to approximate the mean sojourn times in the networks considered . An important
result in this chapter is an approximate expression for the squared coefficient of variation of the
departure process from a PS node .

Finally we improve an approximation for the mean total sojourn time in a feedback network with a PS
node and a single-server FCFS node. In this network the extemal arrival process is a Poisson process
and the service times are generally distributed . Besides validating approximations developed by
Boxma et al . [8], these approximations for the mean total sojoum time in the network are improved .

We validated all approximations by comparing approximations with simulation values . Therefore we
run a lot of simulations . We conclude that the resulting approximations obtained in this thesis are all
explicit, accurate, and quite fast-to-evaluate approximations .

6.2 Topics for further research

The resufts for approximations for mean total sojoum times in networks with general service times can
be extend for networks with multiple multi-sever FCFS nodes, as discussed in chapter 3 . To this end,
the results from chapter 3 and 5 have to be combined, which addresses an interesting topic for further
research .

The networks under consideration can also be extended by taking into account muftiple PS nodes .

In this thesis we mainly concentrate on the mean of the total sojourn time in a network. A topic for
further research is to extend the current approximatíons for the mean and variances of the total
sojoum time to the complete sojoum time distribution .

Another interesting extension would be to obtain approximations for the sojourn time in networks with
deterministic instead of Bemoulli feedback, which significan~y enhances the application possibilities of
the model .

Another potential model extension is to include muftiple customer types that may each be govemed by
different feedback schemes .
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Appendix A

Simulations in Extend

We used the computer package Extend (see www .imaginethatinc.com) to simulate our queueing
networks . Extend is a general-purpose simulation program . We used it for the validation of analytic
expressions for the sojourn time in a queueing network .

With Extend it is possible to create a block diagram of a process where each block describes one part
of the process . In Extend the process is laid out in a two-dimensional drawing environment and Extend
has the possibility to show animation, so that customers can be seen while moving through the
network. It is possible to create models quickly because Extend comes with the blocks that are needed
for most simulations . The models can be built without even having to type an equation . But it is also
possible to create custom blocks for specialized applications .

For the ver'rfication of the simulation models we used different techniques . First of all we always
started to build a simple model, e .g . an isolated PS node, and run that model, before building a final
model . The simplified model's output can be compared with its true characteristics to verify this model .

For a final model it is also possible to ver'rfy the model by comparing its output to its true
characteristics . For example, rf the feedback probability in a feedback network is set to zero, then the
model is no longer a feedback model, but becomes a feedforward network . Thus the results can be
compared with known results for a feedforward network . Another example is setting the load close to

one. Often, heavy-traffic expressions are known .

For the calculation of the mean and variance of the sojourn times in our networks in Extend, we
calculate the total sojourn time of every customer by subtracting its start time from its end time . We
use the standard functions in Extend to calculate the mean and variance of all sojourn times . For
higher-order moments long runs are needed, cf . Law and Kelton [19] .

For each parameter case we ran ten simulation runs and calculated the means over the ten runs for
the output parameters .

For our research we need the network in steady state, however, the simulation network always starts
empty. Therefore we did not measure the performance measures during a so-called warm-up period
for every run . The warm-up period was chosen long enough to guarantee that the model was in steady
state .

For the calculation of confidence intervals we used formula (4 .12) on page 255 of Law and Kelton [19]

On the next page an example of a simulation model in Extend is given . It is a feedback network with a
PS node and a single-server FCFS node . The feedback mechanism is Bemoulli feedback . The green
balls represents customers in the network . We measure the total sojoum time in the network by
subtracting the start time from the end time of a customer in the network . Next we calculate the mean
and variance of the total sojoum times in the network and send these performance measures tor every
run to a file .
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Appendix B

Supplement to subsection 3.3.2

Here we give the complete derivation of the approximation for the variance of the total sojoum time,
the main part of it can also be found in section 4 .3 .2 .

Like in [14] we rewrite the variance of the sojoum time in the following wa y

Ntl M N

VQT{S}LVRT ~SpS t~~SFt (B1)

i- i-

Ntl M Nt

s E Var ~f SPS }~i ~ SFt ~ N1, . . .,NM
~- ,-

Nil M Nt

f Var E ~ S~ f}~ ~ SFt ~ N,, . . ., NM (B2)
~- ~í ~-

m m ntl M n
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m ntl M m nt
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The first step follows from the definition of the total sojourn time . The second step follows directly from
the classical formula for rewriting a variance : Var{X }- E{Var{X ~ Y}} f Var{E{X ~ Y}} . The next

equation is then obtained by conditioning with respect to the event {N, - n,, . . ., N,y - nMy}. Then we

use the classical formula: Var~ (X ~} -~(var{X }~ .The final equation follows from the fact that

the successive sojoum times SPS,i -1, . .N t 1 are identically distributed, similarly the successive

sojoum times SFk , j-1, . . .Nk are identically distributed for each k - 1, . . . ,M.

Since the number of visits to the k~ FCFS node, Nk, is geometrically distributed with parameter qk, we
know that

}M~ Var{Nk } - ~ qk 2. (66)
~í k-, (1-Rk )

In [13] the variation of the number of returns to the PS node is written in the following wa y

M M -1 M -1

Var(N~ - Var ~ Nk ~ Var ~ Nk f Var(NM ~ t 2Cov ~ Nk , NM -

M -1 M -1

- Var ~ Nk f Var(NM ~ f 2}~ Cov(Nk , NM ~ z (B~
M ~`'f

- ~ Var (Nk ~ t }~ Cov(Nk , N~ ~ .
~.!

Ne~ it is obtained that

~Cov{Nk,Nm}-Var{N}-~Var{Nk}- P 2 -~ ( qqk)2 -k~ (Pk~)Z (~)
.m (1- p~ k-~ 1-

By substitution, we obtai n

Ntl M N M

Var ~ E{SPS } f ~ }~ E{SF4 } - Var }~ Nk (E{S~ } f E{SFk }~
M ~f ~f

- ~Var{Nk }(E{SPS } f E{SFt }~ t

~ Cov{Nk , Nm }(E{SPS } f E{SFk }~E{S ps } f E{S ~ }~ (gg)
r m

- ~ (1 qqk ) 2 (E{SPS } f E{SFk }~ f

~ Pk Pm 2 ~E{S~ } t E{SFk }~E{SPS } t E{S ~}~ .
kxm (1-P)

Here we know, see section 3 .3 .1 :

E{SPS~ } - Qrs (B10)
1- pPs
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E{SFk'} ~ ~3Fk } ~W` 1 ~p . (B11)
k Ft

Now we still need formulas for Var{SPS },COV{SPS,S~ },Var{SF4 },COV{SFt ,SFk },COV{SPS,SFk }

and Cov{SFt,SFm},foranyi, j- 1,2, . . .,k~m.

Under the first approximation assumption, see section 4 .3.2, we can use Ott's result [22] for the
variance of the sojoum time in an M~M~1-PS system .

z

Var~.SPS } - 2 } pPS Qrs . (B12)
2 - pPS 1- PPs

In [27J it is given that

z

Cov ~( ` S't' p~~~ B1 3CPS~ Ps ~- 2 rtl ' ( )
(1-Pps) (2-PPS -PtPPSP)

Then by substitution it follows that

m
~ COVlSPS ~ SPS }(1- P)P"

n- ~NI

- }-~ }-~ 2(nfl-1)
1- 2

2PpsQrs2 }
,fl (1-P)P"

ó 7'í ( Pps )( Pps P PPrs )
Z ~ Itl ~

-2 pPSQps (1j P) ~ 1 ~(nfl-1)p"
2

(1- p~s 1-1 2- pPS - P} PPPS "-
It l

- 2 pPS QPS 2(1- P) ~ P 1
z L. 2

(1- PPS ) r-1 2- prs - P t PPPS (1- P)
(614)

z
1

2PPS QPS Z P(1- P) 2- pPS - P f PPPs

- (1-pPS)Z (1-P)z 1- p
2-PPS -PtPPPs

z z
2PPSQPS P 1 2- Pps - P t PPPs

-(1-PPS)Z (1-P) 2-PPS -PtPPps 2-Prs -2PtPPPs
z

2PPps Qrs

- (1-PPS)Z(1-P)Z(2-PPS -PfPPPS)(2-PPS )

The variance of the sojourn time in the l~h FCFS node can be derived from the theory about M~M~c
queues in [5J . Here the distribution of the sojourn time of a customer in a multi-server FCS-node is
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obtained as the convolution of the waiting time and the service time distribution . This leads to the
following expression for the sojourn time distribution in a multi-server FCFS-node

P{S s y} -1- e-`" f Pw ~e-`" - e-~"cl-v~y 1 y Z a (B, 5)
1-c(1- p)

This is a Cox CZ distribution consisting of an exponentially distributed service phase and an

exponentially distributed waiting phase. With probabilityl- pw the sojoum time is exponentially

distributed with rate f.t , and with probability pw the sojoum time is exponentially distributed with

rate cft(1- p) . The moments of a Cox Cw distribution are given in [5] . We can obtain the variance of

the sojoum time in a multi-server FCFS-node and apply this to our case

2

Var~.Si }3 ~ z } Pw(2-PW)QFk .
(B,6)

t (
F Ck211-PFk)Z

In [27] it is also given that

COV~.Si S.it! 1- pFt IPFk (1- P) } P)1-1 QFt Z
. ( ~, J B,

FR Fk (1 - pFt ) 2

This does not directly hold for a multi-server FCFS node . So we need to develop an approximation for

the Cov~.SFt,SFt`} in case of a model with multi-server FCFS nodes instead of single-server FCFS

nodes. The correlation between SFk and SFkI is defined as

Cov~S'r S`rr }~
COrr~SFk , SFk! - F` F` (B, 8)

Var ` Var '}`F4 Ft

As an approximation for this correlation we can take an interpolation between light and heavy traffic .
The probability that the system is in a heavy traffic situation is equal to the probability that a customer
has to wait ; this is pw, as defined in formula (3.3) . The correlation in heavy traffic with multi-server

nodes can be approximated by the correlation for single server nodes, but by taking ~Fk ~ ck as the

mean service time . This can be explained as follows : in heavy traffic the system is always busy, that is
why a customer always has to wait . If the system is always busy, so all servers are occupied, this
means that we can simply divide the mean service time by the number of servers to get the mean
service time per server. The probability that the system is in light traffic is equal to 1 p„,. If customers
do not have to wait, we can say that the correlation between the different visits to an FCFS node is
almost zero .

So we assume that the correlation between two successive sojoum times of a customer exists of the
waiting probability times of some expression for the correlation plus the non-waiting probability times
zero. In a single-server FCFS node the waiting probability is equal to the load . So we approximate the

correlation between SFk and SFk1 as follows
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( ~ ~~r ~

COrr~SF SF'}- p C'orr~S
Ft,SFk )~MIMI lwithcN

t(1-p ) 0
k ~ t wt PF "'t

` (619)

- pW" COrr {SFk ~`SFtr ~I M~MI1wilhcN

PFt

The covariance between two successive sojoum times SF and SFk of a customer when this customer

is fed back at least n times is given in [13 ]

COV~S i S i ;l }-
PFt (PF, (1- Rk ) t qk )1-1 QFR z .

BZO~ ( )Ft Ft (1 - PFk ) Z

Hence we can determine the correlation between two successive sojoum times SF and SF k of a
customer when this customer is fed back at least n times

COV
tc 1 sitl

Corr {SFR,SFtI}-
rFk' Ft

Var ` Var it r
Ft Fk

z (B21)

- PFt (PF, (1- Rk ) f qk )1-1 ~Fk z 1- PFt
- pF, (PF, (1- Rk ) t qk )1-1 .

(1- PFt ) ~Ft

Then we can determine an approximation for the covariation between SFk andSFkk by filling in the

right expressions for the toad

t itr : it! t itlCov{,S , S } - Corr ~.S ~ , S } Var ~ Var ~
Fk F~ Fk Fk Ft Fk

- pwt COrr{SFt,`SFtI }IMIMllwithcp var('Fk ~
PFk (622)

2
y l ~

- Pwk ~PF, (1- qrc ) f qrc 1-1 ~Fk 2} Pwt ~2 - pwt J ~k z(1 PFk ) z .

Then by substitution it follows that

~
~ ~ Cov{S ` , S' }(1- q,~ )qk "`Fk F~

"~-0~~~

~ n-1 2

- ~o~ unk
-1)PWt (PFt (1- qk ) f qrc )r ~ QFt z } Pwt ~2 - pwt ) 1- ~F' z C z (1- qk )qk "` ~

t ( PFt ) k

-2pwt(1-qk (1- PF,)zckzQFtztPwk(2-PWt)QF,z
~ (PFt(1-qk)}qk)rl~(nrc-1)qk"t

(1 ' PFt ) crc ~ "t -r
( z m r.i

Pwt ll - qk )QFk z z r-1 ~Ík
-2 (1-PFt)zckz ~(1-PFt) crr fPwt(2-Pwt))~(PFt(1-qk)fqrc)

(1-qk)z
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~PW,~F,~ z z Rkz(1-4k) 11- ) c f (2- ))- 1- ) z c z~( PF~ k PWk PWk z
( PFk k (1-qk) 1-qk(PF,(1-4k)t4k)

qkz 2Pw,~F,z (1- PFt)zckzfPWk(2-Pwk )
- z z z z (623)

(1- Rk )(1- PFk ) ck 1- 4k PFk } 4k PFk - qk

2qk zPWk QFk z((1- PF, ) z ck z t PWk (2 - Pwk ))

- (1-qk)z(1-PFk)z(1-qkPFk }Rk)ckz
.

From the third approximation assumption, it follows that

COV ~PS , SF } - ~ . (624)
á

From the fourth approximation assumption, it follows that

COV~.SF ,SFm }- ~ . (B25)
k

Then finally we obtain the following approximation for the variance of the total sojourn time in the given
network

Var{S} -}~ (n t 1)Var ~.SPS ~(1- p) p" f~~ Cov{SPS , S~s }(1- P)P n f
nó~ n- trj

~ L nkVar ~Fk 1 ~1 - qk )qk nt f ~ ~ ~ COVl~Fk ~ ~Fk }(1- Rk )qk nk }
nt ~0 n~ -0 t N~

M ~m1 ~~1 ntl nk

Z~ L . . . L COV ~SpS,~SFk Í(n1, . . .,nM )f

nt~0 n,r-0 ~- J-

0o m nk n

~ ~ . .. ~ COV ~ S F.k , ~ S ~ f (nl , . . ., nM ) ~F

~mnt-0 nM-0 1- 1-
(62Ó)

Var ~ Nk ({SPS } f E{`SFk }
)

2 Z
- 1 2 f PPS ~PS } 2PPPS QPs

1-p2-pPS 1-PPS (1-PPS)z(1-P)z(2-PPS-P}PPPS)(2-PPS )

~ qk ~ z Pw(2-PW)QFk2 ~ 29kzPW,QF,z((1'PFk)zckz tPWk(2-PWt))

} k-11- qk ~ } ck z(1- PFk ) z } k-1 (1- qk ) z(1- PFk ) z(1- qk PF, f 4k ) ck z

t~ ( qk ~E{S' } f E{S' }~ t~ Pk Pm ~E{S 1 } f E{S 1}~E{S 1 } f E{S' }) .
k-1 li-qk)Z

PS Fk
kmm(1-

p)Z PS Ft PS F~
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Appendix C

Pictures belonging to subsection 4.3.2

In the pictures below the relation between the squared coefficient of the arrival process and the
squared coefficient of the departure process is shown . Every picture corresponds with a fixed load at
the PS node . For different SCV's of the arrival process (X-axis) we measured the SCV's of the
departure process (Y-axis) . For every probability distribution and for every load the relation between

the both SCV's was very close to cd 2~ pPS 2 f(1- pPS Z)cQ Z . This equation is given in the pictures

below to compare it with the simulated relations .

PS-node, Ioad-0.2 !~
; 8 ~. .....~ .. ....~ ...~.. .--. .~...~.. ..~. .. .. ..~ ... .. .. .. ..T ..... ... .. .. .. ..~ .......- .. .. ....~. ...~.~~ ~....... .~.... .~.. ... ... .. .. ..... .. ... .~ ..~ ~ .~.. .. .......------- . ..~.~. ..~ .. ... ..~, . .. ~ ..~..~ ....~. .~ ..

~
7

~f
6

~

A .C ~ .

I' de .
p ~~, art 4

~ res
~
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2
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0

0 1 2 3 4 5 6 7 8 9 10 !,

C"2 arrivals

~- Cd"2-1oad"2f(1-load"2)Ca" 2

service times H2 ~
~
~

Figure 61 SCV's of the departure process at a PS node with load 0.2 related to the SCV's of fhe arrival process
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PS-node, Ioad-0.5 ~
; 8 .. .. . ... .. . .. ... .. ...r .. ..,.. ... . . .. ..... .. ..~...~.~ .. .. .M1. .~ .. ..... .. ., .. ... .. ....... .. ... ...... .. .,.... ............~ ... ... ... ..~ .. ....~.~. .. . . ... .. ..~~~.. ..,I i r .. .. ..... -.w~.. ... ~..~ .
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Figure 82 SCV's of the departure process at a PS node with load 0 .5 related to the SCV's of the arrival process
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Figure 83 SCV's of the departure process at a PS node with load 0 .8 related to the SCV's of the arrival process
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Figure 64 SCV s of the departure process at a PS node with load 0 .9 related to the SCV's of the arrival process
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Appendix D

Supplement to section 5.3

In a previous version of Boxma et al . [8] we found a few mistakes :

~ The load at the FCFS node is said to be ppF - P~QF . This has to be pF - P~QF .

1-p 1-p

~ The authors write that: It now follows from formula (35) of Takács [25] that :

E{SFJ~P ~ ~1-P)Pk-~E
r,., .F~k){- P ~F ~ ..~2lf~F(2) -Z~F.~~ P ~F

~ N 1-p 1-pF 2 1-pl-pF ~

instead of

~ k 1 (k) 1 - P ~F ~ (2) z P

E{SF{-P~~1-P)P E~F J-1-p 1-pF }2~QF -2QF )1-pF ~

Probably the authors made more than one mistake by deriving this formula . We think that they
used the wrong definition of the load at the FCFS-node given above. And probably they forgot to
replace Takács' ~. by p~. .

~ Furthermore the authors write that : "According to Van den Berg [4], formulas (2 .64) and (2.65) :

~ ~ -
~F

~ l~ (2) - ~ 2 )
1 1- PPF

EUF1

1-pF }2 F 2 F 1-p 1-pF ~

and for j - 2,3, . . . :

E~~F~1 ~ -1 ~pF } 2 l~F (2) - Z~F 2
)PF 1 } ~ PFPF

~~~
F } P)J-Z' ~

Here E~6F. l} is the mean sojoum time of the ~~h visit of a customer to the M~G~1-FCFS queue

with instantaneous Bernoulli feedback .

The authors forgot to replace Van den Berg's ~, by p~ .
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Now we check the following relations :
~ m k

E{QF }- p~ (1- p)Pk-lE{QF~k) }- p~ (1- P)Pk-1 ~ E{6F k}
,-

ao k

- pE{QF ~} t~(1- P)Pk-1 ~ E{rTF,~ }
1 '

by substituting Van den Berg's [4] formulas for E{~F,1 } and E{6F,k } :

E ~ ~l) } - ~F } p~ (Q ~z) - 2~3 2 )
1 1- PPF

F 1- pF 2 F F 1- p 1- pF '

E~F(k) ~- ~F ~
. p~ l~F(2) - Z~F z )PF 1}

p- PPF
(P~Q f P)k-2 ~ k- 2,3, . . . .

1- pF 2 1- pF

We can show that calculating the sojoum time in an M~G~1-FCFS queue per customer by summing the
sojourn times for every visit by Van den Berg's equations gives Takács' [25] equation.

E{SF }~ P m(1- P)Pk-IE~F~k) ~' P~(1- P)Pk-~E k~F,i
~ ~ ~

- p m (1- p)Pk-1 E l~F .~ I} k E l~F ; 1
~ ~

- P~(1- p)Pk-~ ~F } P~ ~Fc2) - 2~F z) 1 1- PPF }
~ 1-pF 2 1-p 1-pF

~ ` 1 ~F
~ ~~ V' F (2) - Z~F 2PF )1 }

P - PPF
(p~Q f p)i-2

jL2 PF PF

~ ~

- p}~ (1- p)Pk-1
F

~i 1- pF

~~ c2) 2 P 1- PPF
( - Q )}p~2 `~F 2 F 1-p 1-pF

~ 1~F
~. 2(~F~z) - 2{~FZ )PPF 1}

P- PPF
(p~Q f p)i-2

j 2 PF PF

~
- 1 P 1 QF

~ P~(1- P)Pk 2(~F~2) - 2~3F2)
P PF

P 1- PPF
~ PPF 1} P

- PPF 1- (P~Q t P)k-1
)

1- p 1- pF 1- PF 1- (P~Q } P)

P QF ~ cz) z P PPF
-1- p 1- pF } 2(~F - 2QF )(1- pF ) 2-(1- pF ) Z

- p 1 ~F ~- ~ (~3 ~2) - 2,Q ' ) P
1-p 1-pF 2 F F 1-pF

'
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Now, rf we use Whitt's [28] formula for the mean waiting time in a GI~G~1-FCFS queue for obtaining the
mean sojoum time in an M~Gl1-FCFS queue, we can show that this gives the same result as Takács
too :

z
E rSF l- ~F PF

1 t p f(1- p)cbF } ~F

i r 1-pl-pF 2 1-p
~ (2'

ltpt(1-p) F Z - 1

- ~F P~F ~ 1 ~F } ~F 1 - PF

1- p 1- p 1- pF 2 1- pF 1- p

z (2)
- 1 ~ ~F P

(1 - p)
~F } 2 p - PF ~F } ~F

1-p 21- pF 1-P QFZ 1-pF 1-PF

- 1 ~ p ~ (2) ~- 2 p p Z - P~F~ ~F } ~F

1-p 21- pF F 1-p ~1F 1-p 1-pF 1-PF

- 1 ~, p ~3 (2) } 2 P ,Q Z-?~ P 2QF Z } QF
1-p 21-pF F 1-p F 21-pF. 1-p 1-pF

- 1 ~ p ~F(Z) f 2 p ~FZ -
2~F2 } ~F

1- p 21- pF 1- p 1- p 1- pF

- 1 ~F ~- ~ (~F.(2) - 2~F2 ) P

1- p 1- pF 2 1- pF ~

In Blanc [5] a formula for the mean waiting time of a customer in the M~Gl1 system with the FCFS
service discipline is given in formula (6.26) . This equation is also known as the Pollaczek-14iintchine
formula . By summing the mean waiting time and the mean service time, we get an equation for the
mean sojoum time in an M~G~1-FCFS node

2
E~Fi~- PF ~F(2) }~F - PF ~F (1fCbF2)f~F'

1- PF 2~F `1 - PF 1 2

Note that this holds for M~G~1-FCFS nodes without feedback .

We can rewrite this as follows

EI„ i ~- PF ~F(2) } ~ - P~F~ 1 ~F(2) } ~ - P ~ ~F(Z) } ~F - ~FPF

~JF 1-PF 2~F F- 1-p 1-PF 2~F F-1-p 21-PF 1-PF 1-PF

- P ~ ~F(2) - I~F P~F~ } ~F - P ~ ~F(2) - 2~FZ } ~F -

1-p 21- pF 1- pF 1- p 1- pF 1- p 2 1-PF 1-PF 1-PF

- ~F } ~ (~F(Z) - 2~F2 ) p 1 .
1- pF 2 1- p 1- pF

This is not exactly the same equation as Takács' equation, because this equation does not hold for
feedback, while Takács' equation holds for immediate feedback .
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