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1 Introduction

No matter whether we have consciousness or not, time uses its invisible hand
to guide our life and shape our ideas. In our daily life, we realise although not
willing to accept that we are getting older, the computers we use become faster
and faster, and our ipod becomes smaller and smaller and etc, etc.All these go
with time. Theory finds its root in reality. Therefore, poeple introduces the
time into our econometric models and we call it time series.

Time series have wide applications in economics and finance.Well-known
concepts like GDP, interst rates, stock price etc can all be treated by either
simple or complicated time series models. Although economic data usually
have a discrete nature, econometric models generally treat them as continuous
observations. Recent interest has been shown in modelling these time series
with discrete models too. Generally speaking, since these economic series are
positive and evolve stable around their long term mean, they can be regarded
as positive, mean reverting processes no matter which model has been applied
to their evolutions.In addition,since there are many similarities as well as differ-
ences among different types of models, it is the purpose of this thesis to give a
comprehensive comparisons in order to figure out which model will be a suitable
one for a certain type of financial or economic dataset.

The simplest mean reverting model under investigation is autoregressive pro-
cess of order one with Gaussian innovations. Next to this continuous model,
another autoregressive process with only positive innovation will be considered.
Besides these two continuous models, a discrete time series with integer counts
will be introduced too in section 2. Their basic properties will be outlined in
this section and a comparison will be provided to deepen the understanding of
their similarities and differences.

After the models and their properties have been described, simulation will
be carried out in section 3. Two types of estimators from both ordinary least
square and maximum likelihood methods will be derived and a comparison will
be made. I simulate three processes by intentionally choosing the same mean
and variance to see whether they will share similar evolving paths or not.

Although in simulation they didn’t fail to meet with my expectation and
behave quite the similar, the result from handling the real data disperses, which
gives a proof that some economic data can only be analysed by certain types
of models owning to the compatibility of the attributes of data and that of the
models. This analysis will be carried out in section 4.

From building up the models to applying the models to real data sets, it
seems that I do cover the whole research process. Unfortunately, instead of
coming to an end, I am just at the very beginning. Questions still need to be
answered like how to deal with the heteroskedasticity in that integer model,
whether these is possiblity of introducing other types of innovations so that
three models will have more equal basis in a sense of having same number of
parameters, whether we can generalize the model and put them into families
etc. They will be treated in a way no more than an introduction for interested
readers and be handled in section 5.



2 Model Description

To begin with, I would like to present three univariate models together with
their properties. In addition, a comprehensive comparison will be helpful to
distwiguish one from another.

2.1 Autoregressive Model with Gaussian Innovations

It is well known that Dow Jones Industrial Average drops from 13,000 to 12,200
not in one day, but it’s less well known that we may interpret today’s level as
that of yesterday plus a shock which might be for example an announcement
of Federal Reserve about its plan to raise the interest rate level. Likewise, an
autoregressive model described below can be used to model such processes. A
detailed description of autoregressive models can be found in any Econometric
Method textbooks like a Guide to Modern Econometrics from Verbeek(2004).

A time series Yy, Y7 ...... Y,, is a series of variables depending on its own
past, which can be generated by the following model:

Yi = p+a(Yios — ) + (1)

where the disturbance ¢; is labelled as innovation in the model, which has been
generally acknowledged as a white noise process. Each element has F(e;) =
0,E(e?) = 02, and Cov(e,es) = 0 for all s # t. Occasionally, they may be
regarded as identically independent normally distributed.

In addition, the model is called autoregressive because if Y;_; and €; are
uncorrelated, then

E[Y; Vi1 ]=pt+a(Yio1 — p)
Var[Y; |Y;_1]= o2

€

The original autoregression of order one can be of course developed to oder p
or other complicated models like moving average (MA) or autoregressive moving
average (ARMA) models. But here only AR(1) will be paid attention on because
of its simplicity together with its usefulness in modelling financial series.

One of the most important properties is stationarity. A stochastic process
is said to be stationary given that the variances and autocovariance are finite
and independent of time. If a process is stationary, then we may expect that
the process varies around its mean and won’t go explorsive. In this AR(1) case,
the process is stationary, if |a| < 1,& is white noise, then

E[Y;]= p for all t

VarlYi]= %
alt=slg
COV[th }/S]: 1—0123




if |a|> 1, the mean,variance and covariance are not defined.
Other noteable property is autocorrelation. When stationarity is satisfied,
the autocorrelation function or ACF here is defined as:

Corr(Y;,Yy)= alt=l

The ACF is a very useful tool for describing a time series process, because
it helps to determine the type of series by showing how fast it decays, whether
it abruptly drops to zero at some finite lags or gradually tapers off to zero. In
this AR(1) case, the ACF is to be seen declining to zero with a speed decided
by a.

In order to put this AR(1) model into use, we need good estimators for «,
p and o. This AR(1) model has an error term which is normally distributed
with mean of zero and variance of o2. Regardless of the exact distribution of
Y:, the OLS estimator a will be consistent and asymptoticly normal provided
with stationarity and ergodicity, which leads the OLS estimation to be as good
as other estimation methods. ( see Greene "Econometric Analysis’ for details).

Meanwhile, if Y; is assumed to be normally distributed, maximum likelihood
estimator can be derived. The likelihood function with E(Y;)= u, Var(Y;)=

2
1fjﬂwillbe:
L \"1r (Ytua(Yt—lu)ﬂ)
L(p,o,a|Yy,Y7...) = | —— exrp | — 2
(40,00 |¥0. Y3 ) ( %m) 11 p( = )

The derived estimators which need to be sloved simultaneously will be:

Z::l(}/t_ﬂ)(yt—l_ﬂ)
By
D> (YimaYiy)
n(l—a&)

G2=13 (Y — i~ a(Yier — )’

2.2 Poisson Autoregression Model

The second model is a count data time series which might for example be applied
to modelling the evolution of number of injuries. The total number of injuries at
time t can be decomposed into the number of remaining injuries at time t who
are injuried at t-1 together with the number of new injuries arriving the pool
at time t. This process can be described by a series Yy, Y7...... Y, generated
by the following model:

Y = aoY;_ 1 + ¢ (3)

where Y[ is Poisson distributed with mean of Ay and ¢;’s are independently
Poisson distributed, i.e. €¢; ~ Poi(\). The thinning operator ’o’ is defined as:



Yi_
aoYy_1 = 21;11 By
where Bi¢, Bag,....,for t=1,2,... are i.i.d., with
P(th: ):1—P(B“5:0):Ol
Furthermore, B;; and ¢; are assumed to be independent. Consequently, Yy,
Y7,... are also independent from ¢; and this aoY;_1 given Y;_1 is Bin(Y;—1, @)
distributed. Here Y; can be devided into two components: aoY;_1 |Y;—1 and €.

Since the distribution of both of them is already known, the convolution of the
conditional probability of Y; given Y;_; can be derived:

min(ys—1,Yt) y o= ypi—s
P Y = Y_ = _ = t—1 )O{S 1 —« Yt—1—s_ " 4
e Y G

The condtional mean and variance can be obtained:

E(Y, [Yie) = aYioy + A
Var(Yi|Yi—1) = a(l —a)Yee1 + A

When stationarity is satisfied, Y; will be Poisson distributed (see McKen-
z1e(1988) for detailed proof) with

E(Y;) = (li\a)

VG/T(Y;/) = ﬁ

The autocorrelation function (ACF) then will be :

Corr(Y,Ys) = alt=sl for k=1,2...

Similarly, we may further investigate on the OLS estimators and ML estima-
tors. Due to this thinning operator, the original model need to be reformulated
as:

Y, =aY_i +e (5)

. ’ o, .
with a new error term to be €, = ¢, — A+aoY;_; —aY;_;. The conditional mean
and variance of this new error are:

E(e;|Yi-1) =0
Var(e, [Yi1) = A+ ol — )Yy,



After reformulating the original autoregressive model, the OLS estimator « is
easy to be derived. Unfortunately, this OLS estimator remains consistent but
not efficient any more.

Meanwhile, because the distribution of Y; is already known, the ML esti-
mator can be obtained as well.The first derivative of the log-likelihood function
will be (see Freeland and McCabe(2004)):

l n Yi_1 P(Yt—HYt—l—l)—P(Yt\thﬂ
«

= 2t=1 1—a p(Ye|Ye—1)

— 5 p(Vi—1Yi ) —p(YelYi—1)
b= p(Yi]Yi—1)
Let the first derivative to be zero,the ML estimators which are not explicitly
expressed can be approximated.

2.3 Autoregressive Model with Exponential Innovations

An example of the autoregressive model with exponential innovations can be
found in a stochastic volatility model constructed by Nielsen and Shephard(2001).
They have simulated variance of an Orstein-Uhlenbeck type driven by a Lévy
process and this OU process can be at the same time regarded as an AR model
with exponential innovations in discrete form. Interested reader may refer to
this article to get an impression of the possible progress of this type of autore-
gressive model.

This model is again an autoregressive model of order one. A non-negative
time series Yp, Y7 ...... Y, is generated by:

Yi=aY_ 1+ ¢ (6)

where Yp>0 has some fixed initial value and ¢;’s are independently exponentially
distributed with a positive parameter of A, i.e.e; ~ exp(\). « here is a positive
parameter too. Given Y;_q, the conditional mean and variance will be:

E(Y; |Yio1) = oYy +
Var(Y; |Yic1) = 35

1
X
Suppose that the process is stationary or a < 1, then

E(Yt) = A(ll_a)
Va/r(}/t) = m

Meanwhile, the autocorrelation function given stationarity is:

Corr(Yy;,Ys) = alt=sl for k=12...



Once again,I would like to find out OLS estimators and ML estimators.
OLS estimator consistent but not efficient can again easliy be found through
the normal regression procedure. Because the error should be non-negative, the
ML estimator can be derived from the following maximum likelihood equation
(see Nielsen and Shephard(1999))

n 1 (< . . Y,
A "exp {)\ (;Yt — atzzlYQ1> } 1 (mm1<t<n <Y}_1> > a> (7)

The two ML estimators can be summarized as:

A : Y,
a = MiNi<i<n (Ytil)

A= (Z?:l Y — 5‘2?:1 Yio1)/n

Up to now, we have got an impression of three models in terms of their
formulation, explaination of the error term, ACF etc. Since they look alike with
each other, it will be beneficial to put these properties together. For simplicity,
hereafter the model with Gaussian innovation, the one with Poisson innovation
and the one with exponential innovation will be respectively named AR(1)-N,
INAR(1)-P and AR(1)-E.

2.4 Similarities and Differences

These three autoregressive models of order one have something in common. In
the first place, they are similar because of the way in which they have been
formulated. All of them can be regarded as a process Y; depends on its past
which has some makovian property and a shock €; uncorrelated with this past
Y1

Although three series of €, have own distinctive distributions, they can be
centerized such that all of them have a mean of zero. They will be expressed in
AR(1)-N, INAR(1)-P and AR(1)-E model respectively as:

"

€ = €
1"
€ =€ —A+aoY,_ 1 —aY
1"
€ =€ —1/\

Given stationarity, equation(1),(3)and(6) can be all rewritten as:

Yt = ay—1+ ¢ (8)

where y; = Y; — p in AR(1)-N model, y; = ¥; — 12-, INAR(1)-P and y; =
Besides they are similar in form, they have quite a lot of similarities which

can be clarified with the help of Table 1.



Model AR(1)-N INAR(1)-P AR(1)-E
1

E(Y:|Y:—1) pt oY —p) aYi 1+ A, aYi_1 + /\%
Var(Y:|Yi—1) o? a(l—a)Yi_1+ Ay =

Ap ©
E(Y;) " a Xe=a)
Vart) o = (=)
Corr(Y, Ys) als—tl als—tl als—tl

Table 1: Overview of Properties

The above table tells that all of their conditional mean can be expressed
as a component linear in past observation plus some constant. The conditional
variances are constant in two out of three models whereas INAR(1)-P model ex-
hibits an ARCH behaviour, which is linear in past observation with a coefficient
related to the thinning parameter «. Besides these, all ACF are the same.

Meanwhile, as already described above, all three models will have an easily
approached OLS estimator «, which will be consistent in all these cases. If we
apply the model only to financial time series and impose stationarity, a will
always lie in (0,1).

Although at the first glance three models are similar in mathematical ex-
pressions, unfortunately,they still differ from each other with regard to quite a
few aspects such as the distribution of their innovations, the characteristic of
the investigated time series, the estimators from maximum likelihood method
and the field in which the models can be applied etc. Table 2. presents some of
the differences.

Model AR(1)-N INAR(1)-P AR(1)-E
Distribution of e; N(0,02) Poi(\,) Exp(Xe)
Type of variable (e;,Y;) continuous discrete  continuous
Range of variable (€;,Y;) (—o0,+00) [0, +00) [0, +00)

Table 2: Overview of some differences

Finally,we may take a look at the difference arising from the asymptotic
property of the ML estimators. In AR(1)-N and INAR(1)-P, estimators satisfy-
ing some regular conditions can be proven to be asymptotic normally distributed
(see Freeland and McCabe(2004) and Appendix).That is :

Vn(é —a) = N(0,02)

While in the last model, & has another asymptotic distribution, i.e



P(w > y) — exp(—y) as n — 00
After multipling v/n, (& — «) in INAR(1)-P converges to some distribution in-
stead of being degenerating. Therefore the estimator is called y/n consistent.
However, the estimator in AR(1)-E is n consistent, because here n(& — «) con-
verges to a certain distribution.

After getting some impression on the properties, we’d like to continue with
empirical results to further exploring these models.

3 Some Examples from Literature and Simula-
tion

Since AR(1)-N is the simplest and most widely used model in financial time
series, it is available in all kinds of financial or business articles. The empirical
result of this type will be omitted here.

3.1 Application of INAR(1)-P Model

One example is presented by Kurt Brannas and Shahiduzzaman Quoreshi in
2004. They use an INARMA model which can be rewritten by this INAR
model to model the number of transaction of stocks per minute. In their work,
estimation is carried out by seeking the conditional and feasible generalized
least squares (CLS(FGLS) estimators for the standard INMA(q) model together
with a GMM procedure. Standard AIC and SBIC have been used to find the
lag length. Estimators from both methods have been compared in terms of
fit, impact of explanatory variables on A and on standard errors etc. Finally,
conclusion has been drawn about the advantages and disadvantages in using
two estimations for forecasting number of transaction.

In addition, this model has been carried out to model the monthly guest
nights in a hotel(see Kurt Brannas,Jorgen Hellstrom, Jonas Nordstrom(2002)),
monthly claims (R.K.Freeland(2002) etc).

3.2 Application of AR(1)-E Model

Unfortunately, there is almost no empirical result available by using this AR(1)-
E model. It has been mentioned by A.Lawrance and P.Levis(1985) about their
use in estimating wind velocity. Furthermore, B.Nielsen and N.Shepard men-
tioned the use of this model in their continuous time linear stochastic volatility
models which has only been illustrated by a Gamma process in their well known
paper(Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses
in financial times)



3.3 a Small Experiment

In this section, I would like to present an example from simulation to further
compare the characteristcs of these three models and to see how close these
models could be with each other. Since the three models can be formulated
similarly,same mean and variance will be chozen for three models. Other pa-
rameters can be expressed in originally chozen ap and Ay.

A
n= 12
o2 = (1+ ao0)hpo
_ 1
Ae = %0

The simulation procedure will be elaborated in the appendix.

In this simulation, 2500 series of each model have been generated and each
series has 1000 time periods. The initial v is assigned to be 0.8 and Ajo to be
1.8. By applying the equations above, all series regardless of which model they
belong to have an expectation and variance of 9. With a same Yj and all errors
in different models generated from the inverse of same CDF value, these series
are indeed very similar. The figure below is abridged from one simulation.

25 T

—— AR(1)-E
INAR(1)-P
— AR(1)-N

o 20 40 60 80 160 1‘20 14‘10 1%0 1é0 200
Figure 1: simulation of three series

It is not difficult to discern from the above colourful lines that they go
through a lot of common ups and downs. Although sometimes one of them
might deviate more than the others to give a summit, generally they exhibit a
mean reverting property.

Not only the figure gives us an impression that those series are alike, but
also the OLS and ML estimators of all three models will be very close to each
other since they are derived from the series generated with the same means

10



and variances. Table 3 offers an overview of all estimators from these 2500
simulations.

Method Estimators AR(1)-N INAR(1)-P AR(1)-E

OLS o] 0.7957 0.7958 0.7960
Std(&) 0.0189 0.0191 0.0192
MLE & 0.7957 0.8006 0.8002
Std(&) 0.0187 0.0061 0.0002

Table 3: value of OLS and ML estimators from 2500 simulations

Just as expected, the OLS estimators & in three models are very close to
each other, not only in terms of their means but also the standard deviations.
All these & are lower than the o used to generate the dataset. The ML es-
timators in all three models seem to perform better than their corresponding
OLS estimators, not only because they are closer to the original value of 0.8,
but also because they have a much smaller variance especially in INAR(1)-P
and AR(1)-E models. This is of course another proof of the optimality of ML
estimators.

Besides the average of OLS and ML estimators of a, I have derived value of
all other estimators. For example, i and & from OLS and ML in AR(1)-N are
again very close to each other, respectively 8.999,3.2355 and 8.999,3.229. While
there tends to be quite a big gap for ):p, with 1.8396 from OLS and 1.8035 from
ML. The latter one is more accurate and closer to our original value 1.8.The
same happens to X, in AR(1)-E with value of 0.5448 from OLS and 0.5741 from
MLE.

4 Empirical Analysis by Applying Three AR(1)
Models

After investigating on the similarity with a simulation, I am eager to know how
three models will behave when dealing with the same data sets. In the coming
subsections, transaction data and interest rate will be used.

4.1 Analysis of Transaction Data

The first data set that I have used is the number of transactions per minute of
IBM stock in February 2005. This data set includes 19 transaction days and
each day contains 390 minutes allowing for buying and selling the stocks. The
summary statistics of these 19 days have been presented in the Table 4.

The averages of number of transactions per minute in all 19 days are around
41, with their maximum of 50 and minimum of 36.333. The standard deviations
behave the same, with values around 17. Therefore, the number of transaction

11



date Average Standard deviation

Feb 01 39.715 18.442
Feb 02 37.741 19.846
Feb 03 40.579 16.936
Feb 04 40.492 17.753
Feb 05 34.754 14.938
Feb 06 40.115 16.829
Feb 07 41.738 18.002
Feb 08 42.990 18.189
Feb 09 39.846 14.964
Feb 10 37.982 17.234
Feb 11 46.592 18.367
Feb 12 45.926 18.837
Feb 13 40.121 18.626
Feb 14 36.605 15.236
Feb 15 50.087 18.005
Feb 16 43.636 17.777
Feb 17 41.723 18.176
Feb 18 36.333 17.07
Feb 19 41.067 16.442

Table 4: summary statistics of number of transactions

per minute from each day can roughly be regarded as independent distributed
with the same distribution.
The result of average of & will be presented in the Table 5:

Estimators AR(1)-N INAR(1)-P AR(1)-E

OLS & 0.3788 0.3788  0.3788
Std(&) 0.0845 0.0845  0.0845
MLE & 0.3768 0.3494  0.1632
Std(a) 0.0860 0.0407  0.0628

Table 5: value of OLS and ML estimators from transaction data

Given the assumption that Y;_; and € are independent in all three models,
the OLS estimators will always be consist. Therefore, it is better that I derive
the OLS estimators first. As expected, OLS esimators in all three models will be
the same, around 0.3788. If the MLEs are consistent too, the estimated « from
MLE should be round the value of OLS estimator. The results of MLE are quite
controversial. First of all, AR(1)-E seems not to be a right model here, because
the result of MLE is quite different from that of OLS. The test of consistency
can be performed later. Secondly, We see the MLE and OLS estimator in

12



AR(1)-N are very close to each other in terms of both the average values of the
esimators and the standard deviations. Althoug at this moement, it can not
be directly concluded that this model will be the most suitable one, at least
we may conclude that the AR(1)-N model can be used to analyse the process
of this transaction data. Another promising result comes from the INAR(1)-P
model. MLE is quite close to OLS estimator, which shows it is most likely that
this MLE is consistent.In addition, the standard deviation is the lowest among
all models. All in all, INAR(1)-P might be a good model to describe the process
of this transaction data.

In order to test whether the OLS and ML estimators from the above three
models are consistent, I have performed the Hausman Test. The detailed intro-
duction of this test can be found in Appendix together with the adjustment I
made. Because the a5 is efficient in AR(1)-N model, &p;s and @, behave the
same. Therefore, it is not necessary to apply the Hausman test for estimators
derived from AR(1)-N model. Using siginficant level of 0.05,I apply Hausman
Test to the other two models, resulting in the critical value of Xio.%: 3.8415,
and Try ar(1)—p=5.7500, Ty r(1)— p=401.0827. Quite disappointing, the consis-
tency of average of both OLS estimator and ML estimators has to be rejected, 1
can only conclude that OLS estimator is consistent but MLE not. Therefore, it
seems that at this moment only AR(1)-N model is the suitable model to analyse
this transaction data.

4.2 Analysis of Term Structure

In this section, I will use three models to analyse data sets of term structure.
The data set contains monthly interest rates taken from McCulloch and Kwon
(1993).The series start in December 1946 and finish in February 1991 with total
T=531. In order to adapt to the INAR(1)-P model, all data are expressed in
1:1000, which means if R1=132, then the original value is 0.132. In addition,
R120 represents 10 year interest rate.

The following Table 6 gives the descriptive statistics of this data set:

Interest Rate Average Standard Deviation
R1 48.1940 31.9384
R2 50.0621 32.5330
R3 51.2524 32.8765
R5 52.8945 33.2358
R6 53.4727 33.4371
R11 55.0414 33.5431
R12 55.2618 33.5374
R36 58.2222 33.0427
R60 59.7326 32.6770

R120 61.5744 31.8948

Table 6: summary statistics of short term and long term interest rates

13



The average of interest rate increases with the increase of length of the
maturity,since investors will require higher return for long term bonds than
short term ones to compensate the uncertainty in a long time horizon. The
volatility of bonds with different maturities remains almost the same.

I applied again three models to see whether these models will be the right
ones to analyse term structure, the value of OLS and ML estimators of param-
eter a will be summarised below:

Interest Rate OLS estimators ML estimators
AR(1)-N INAR(1)-P  AR(1)-E

R1 0.9803 0.9754 0.9530 0.1667
R2 0.9835 0.9785 0.9605 0.4167
R3 0.9846 0.9796 0.9625 0.5000
RS 0.9854 0.9804 0.9634 0.5714
R6 0.9853 0.9803 0.9633 0.6071
R11 0.986 0.981 0.9650 0.7143
R12 0.9864 0.9814 0.9654 0.7059
R36 0.9902 0.985 0.9731 0.7879
R60 0.9922 0.9869 0.9772 0.8387
R120 0.9943 0.9889 0.9823 0.8387

Table 7: value of OLS and ML estimators for term structure

First of all, after comparing the MLE from AR(1)-E model, I can already
conclude that this AR(1)-E model won’t be useful in analysing the interest
rates, since there is really big gap between the OLS estimators and MLEs. The
MLE of AR(1)-N won’t give us much information. As the OLS estimators in
AR(1)-N are efficient, I don’t care really about the result of MLEs in AR(1)-N.
Fortunately, it seems the values of MLEs from INAR(1)-P model are still quite
close to their OLS estimators, therefore it is likely that INAR(1)-P model can
be used to analyse the term structure. I am again going to use Hausman Test
described in the Appendix to test the consistency of two types of estimators.
Here, I don’t need further adaption and just run the normal Hausman Test.

Hausman Test has been run for each serie of interest rate, the test results
can be compared with the critical value of x7 ; 5=3.8415.

All of these values are larger than the critical value. Therefore, I have to
reject the null hypothesis and accept the alternative hypothesis that MLEs are
not consistent. This leads to the conclusion that neither INAR(1)-P nor AR(1)-
E model will be suitable for analysing the term structure here.

14



Interest Rate R1 R2 R3 R5 R6
TS of INAR(1)-P | 11.1318 9.5725 9.4222 10.1282 10.0037
TS of AR(1)-E 9884.7 5813.4 4570.7 3585.9  2955.3
R11 R12 R36 R60 R120
9.6776  9.9934 9.4937 9.5865  8.8101
1620.1  1782.7 1344 1003.2 1480.2

Table 8: result of Hausman test for interest rate

4.3 a Summary of Empirical Analysis

After analysing these two data sets, we probably realize although these three
models behave very much similarly in the simulation with same mean and vari-
ance, they still have their own attributes when dealing with real data. This
helps us to distinguish models, to match the models with real data and to seek
for more possiblities besides the classic model with Gaussian innovations. Al-
though T have to reject the consistency in two examples for both INAR(1)-P
and AR(1)-E, I still discern that INAR(1)-P might be an option to grasp the
process of number of transactions in unit period of time, since on one side I have
seen the ML estimators very close to that of OLS, on the other side the Haus-
man Test won’t fail if I just raise the significant level to 0.01, which has been
also widely used in tests. In addition, AR(1)-E seems not to be an good option
to analyse these discrete data sets, since its innovation varies continuously. Its
MLE comes from the minimum of Y;/Y;_1, which means a single extreme value
will lead the estimated value to be completely different. This is not rare to see
in discrete transaction accounts. It holds the same in case of analysing interest
rate which has been integerized.

Till now, I have treated two examples with the models proposed. I can’t help
thinking whether there are still other models as extentions to INAR(1)-P and
possibly more suitable for the transaction data or even other types of financial
data sets,if the INAR(1)-P is not yet completely satisfactory in analying the
transaction data. The question leads to the next topic: the generalization of
the AR(1) models.

5 Heteroskedasticity and Extension of AR(1) Mod-
els

5.1 Heteroskedasticity

Heteroskedasticity allowing a variation in the variance of errors is a counterpart
of homoskedasticity, which violates one of the standard weak Gauss-Markov
assumptions. As a result, the OLS estimators may be relatively inefficient al-
though they may still be unbiased or consistent. In this case, generally speaking,
econometricians would like to apply GLM (Generalized Linear Method) instead
of OLM to capture the heteroskedasticity.
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We have seen in section 2.2 that in INAR(1)-P,the conditional variance of
Y; or equivalently that of €; is not a constant but a value depending on Y;_;.
Obviously,this is a sign of heterskedasticity, which comes up very often in integer
autoregressive models, like INAR(p) or INARMA (p) models. However,recent
literature didn’t show much enthusiasm about heteroskedasticity. They adopt
either other approaches like GMM or just leave OLS as estimation result.

To see the difference between OLS and GLS estimators, I derive the GLS
estimators by using the simulation data sets. The difference between the OLS
and GLS estimators is quite trivial, the average of ay;5=0.7960, which is sightly
different from ay,;;=0.7958 in Table 3. In addition, the standard deviations
lie very close too, with Std(ag;s)=0.0198 and Std(ags)=0.0191. Therefore,
it seems the OLS is quite satisfactory in this case and there is no need to
particularly derive the GLS estimators. The procedure of deriving the GLS will
be found in appendix.

5.2 Extension of AR(1) Models

I have introduced in the paper three simplest AR(1) models, with classical
Gaussian innovation, Poisson innovation and Exponential innovation respec-
tively. These models can easily be extended to other members of their own
distribution families. One of the benefits for such extension is that there might
be less restrictions to the behavior of variables which may be reflected by the
parameters. For example, by imposing the Poisson innovation, I have to assume
the unconditional mean of the series equal to its unconditional variance,which is
manifestly a big disadvantage of AR(1) model with Poisson distribution. This
happens to AR(1)-E too, the unconditional variance is the square of uncon-
ditional mean. These restrictions probably partially explain why the last two
models tend to be not useful. Another reason for such extension is that compari-
son might be carried out with the family such that the most suitable analyse tool
can distinguish itself out which helps us to model the process more accurately.

Grunwald, Hydnman and Tedesco have summarised almost all the AR(1)
models appearing in literature in (A United View of Linear AR(1) Models).
They group all these models into classes by some characteristics of the inno-
vations like integer variables, varying in positive real line, whole real line etc
which I have also mentioned in introduction of the AR(1) models. Accord-
ing to their summary, a large variety of distributions come into models either
through the innovations or through the series variable itself. As we already
know , INAR(1)-P model is a combination of two parts, the thinning operator
with Binomial distribution and the Poisson innvoation. One of the close fami-
lies of Poisson innvoation is Negative Binomial with discrete nature, therefore
I expect that Negative Binomial can take the place of Poisson distribution and
present its own attributes. In terms of AR(1)-E model, it will be quite natural
to link this Exponential distribution to Gamma distribution, since the first one
is just a special case of the latter one. This extension does enable people to cope
with series such as non-negative stochastic variance o2 which seems beyond the
capability of AR(1)-E. As a result, we still have a lot of choices within AR(1)
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non-Gaussian models to deal with all sorts of financial data.

6 Conclusion

I have proposed in the first place three time series models of order one in this
thesis and make a comparison of their properties from which we do see how
similar these models can be. Although in simulation they still share more or
less the similar sample paths, they do behave totally different when the real data
sets have been used. This tells us that they are still essentially different and
have their own domains for application, which helps us to build up the suitable
parametric models for certain types of data.

There are still possibilities for extensions of the models. The extension
of the model helps to ensure that all models will have the same number of
parameters which vary more freely and all properties including the conditional
expectation and variance can be set equal. With this extension, investigation
can be furthered to see whether they will behave more similarly and finally share
their domains of application.
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7 Appendix
7.1 Deriving ML estimator in AR(1)-N

The log-likelihood function is defined as follows:
2
LogL = —n(logV/2m + logo.) — D1, ((“7“70‘2(;2’17”)) )

Hereafter come the first derivative of the log-likelihood function, respectively
Iy lo., & together with the expressions of their ML estimators.

ey (Vi —p—a(Yi — )

~ Zzl: (Yt—(XYt—l)
B = ni=a)

lo. = _J% + ?13 Y (Y —aY)?

o2 =LY (Y~ p—a(Yios — p))?

€

I, =

lo = 553 2opy (2(Y: — p = a(Yeor — 1) (Y1 — 1)

b4 = 2 V=WV —i)
N Z:;l(n_l_ﬂ)z

7.2 Asymptotic Attributes of Parameters in INAR(1)-P

The first derivatives regarding o and A of log-likelihood function have been given
in section 2.2. The second derivatives will be given as follows: (see Freeland
and McCabe for more concise expressions)

P(Y:|Yi-1)

2
LY (o DPY=20Yi=2) (Y POG—1IYia—1)
P(Y:|Yi—1) P(Yy|Yi—1)

2
_ n P(Y;—2|Y;-1) P(Y;—1]Y;-1)
b = ,\12Zt1{ p(ytm,l1 - ( P(th,l)1 ) }

[— 1 Zn AaY; o P(Y;—2|Yi_1)  AP(Yi—1|Y;_1)aP(Y;—1]Y;_;—1)
aX = Xa(l—a) Lot=1 P(Y:|Y:_1) P(Y:|Y:i—1)2

o 1 n 202Y, 1 P(Yi—1|Y;_1—1) 9
laa*m Zt:l{ t o t —a‘Y;

Given the second derivatives, the maximum likelihood estimators & and A
jointly have the following asymptotic distribution:

G-o B
\/ﬁ(;\_/\ > = N (0,171)
Where the matrix [ is fisher’s information matrix which contains the second

derivatives of log-likelihood function. Furthermore, we can abridge the asymp-
totic distribution of & from the above joint distribution, namely what we have

already seen in section 2.4 :
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Vn(d — a) = N(0,V) with V as the element at position 1 x 1 in I~!

Or it can be rewritten as:

& = N(a,tV)

7.3 Simulation Procedure

Step One: data generation
1. Generate random variables F of R000x2500 £ < [0 1] | Vf; € F.By doing so,
we get respectively the value for three errors, which satisfy P(e, > e;,) = 1— fi,
P(€p26ip):1—fi, P(€ezeie):1_fi~
2. Use norminv, poissinv and expinv and a given Ao to get series of three errors.
3. Give oy, generate the Y, from nomal distribution with p = Xp9/(1 — ) and
02 = X\po/(1 — ). Let Yy = Yy, and Y, be the integer part of Yoy,.
4. Use equation (1),(6) and given agto generate series of Y; in AR(1)-N and
AR(1)-E
5. Distinguish two occasions in generating Y; in AR(1)-P.

5.1 When Y;_; > 0, generate aoY;_1by using Bin(Y;_1,«) and then use
equation (3)to get Y;

5.2 When Y;_; = 0, let aoY;_; = 0, then use equation (3)to get Y;.

Step Two: OLS estimators
1. Create two series Y; and Y;_; from the origianl series Y;. This process is
conducted for all those 2500 scenarios from three types of models
2. Apply normal regression procedure for OLS estimators with Y; dependent
variable and a constant and Y;_; as explanatory variables.

Step Three: Derive ML estimators
1. AR(1)-N estimators
n Y _5 Y = ~
1.1 create an error term from & — Zt:ln(t—uw
i (Yio1—0)

S imavi)

n(l—a&)

1.2 Use iteration to find & such that the above error term is close to zero
under a certain requirement for accuracy .

1.3 Insert & in the formulas for other likelihood estimators mentioned in the

paper to get estimators for p and o.

and substitute i with

the formula fi=

2. AR(1)-P estimators
2.1 Create a function for conditional probability P(Y;|Y;—1).

2.1.1 Case one: when Y;_1 < Y%, use equation 4 and let s vary from 0 to Y;_1.

2.1.2 Case two: when Y;_1 > Y;, use equation 4 and let s vary from 0 to Y;.
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2.2 Create a function to obtain the derivative of log-likelihood function
against «

2.2.1 Compute P(Y; —1|Y;_; — 1) and let P(Y; —1|Y;_; — 1) =0, whenever
Y, 1—1=0o0rY;,—1=0

Yic1 p(Ye—1]Ye—1—1)—p(Yi|Ye—1)

2.2.2 Compute 1= AN

1000 observations.
2.2.3 Insert ag and App as begin value, adjust ag to get a I, under required
accuracy as close as possible to zero.

and aggregate the result for

3. AR(1)-E estimators
Y,

3.1 Use formula & = mini<i<n (T:l) to get &.
3.2 Plug the @ in the formula A = (37 V; —a Y1, ;1) /n and A can be
obtained.

7.4 Introduction of Hausman Test and Its Adjusted Use
7.4.1 Hausman Test

Hausman Test is meant to evaluate the significance of an estimator against its
alternatives. Now we have two different estimators dy;; and Q. for parameter
. Suppose there exists a set Spoep under which both estimators are consistent,
with /n(@mie — @) to be efficient and /(n)(@s — @) less efficient. Suppose
at the same time there exists another set S; under which &, is consistent and
Qe NOt. Since these two sets are mutually exclusive, then we can construct a
test: HO: both Qe and Qs consistent,q,e efficient and a5 not against Hl:
Oo1s consistent and @,,;. not. This is what Hausman Test does. With the fact
that \/(n)((@os — @) — (Qmie — a)) will be normally distributed with center of
zero under HO, test statistics turns out to be:

(aols - 6[\mle)/(Vvar(&ols - amle))_l(aols - 6‘\mle)
with v/n(@es — @) = N(0,nVar(Qos))
and v/n(Qmie — @) = N(0,nVar(Qmi.))

Under the null hypothesis, the test statistics will be x2 distributed, where k
refers to the number of estimators in the factor @, which is one here.

In addition, under HO, we can replace (Var(Qois — Qmie)) "L by (Var(Qos) —
Var(@me)) !, so that we can easily derive the test statistics. I will not prove
the above statement here, but interested readers can refer to Gelbach’s lecture
notes for detailed proof together with the discussion of use of this test.

As a summary, Hausman Test is formulated as:

HO: @, is consistent, Q. is consistent and efficient.

H1: @, is consistent but @, not.

Test Statistics: T = (Go1s — Qmic) (Var(@ors) — Var(@mie)) ™ (@ots — Gmie),
which is x? distributed.
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7.4.2 Adjusted Hausman Test

We are going to adjust the test to make it applicable in our two cases sepa-
rately.First of all since we assume that the transaction data of each day will
be identically independently distributed, as a result they will have the same
parameter «. Therefore Qorsand Qumpe can be regarded as the estimators for
parameter o too. We use Qorsand Qe 1O perform this Hausman test.

HO: @, is consistent, Qe is consistent and efficient.

H1: Qs is consistent but Qe not.

Test Statistics: T = (Qos — &mle)/(Var(aols) —Var(@mie)) H (Qors — Qmie),
which is x? distributed.

Second adjustment is to derive the & for both OLS estimator and ML esti-
mator. We have in total 19 i.i.d series of transaction data. Therefore,we can
get the average and variance of the average directly:

= 19 «
o= % Doy
= 1 19 ~
Var(a) = 15z 2= Var(d;)

Here, each @; has the same distribution described in section 7.2, namely & =
N(o, 1V) with V situated at 1 x 1 in 1.

To perform the Hausman Test, we still need to make additional adjustment
for Var(@me) in AR(1)-E. As we have seen in the introduction of this test,
both of these estimators are sqrt(n) consistent, therefore, we can directly use
the variance of these estimators. While in AR(1)-E model, as we have seen
in section 2.4, the asymptotic distribution of « is n consistent, which means
this MLE converge to its mean with much faster speed than that of its OLS
counterpart. As a result, the variance of MLE is so minute that we can set it
to zero.

7.5 Derivation of GLS
The conditional variance in INAR(1)-P is derived as: Var(Y; |Yi—1)= A+ a(l —

a)Y;_1, which is equivalent to the following:
Var(e, [Yi-1) = A+ a(l— )Y
Cov(e,€1Yi—1,..Ys21) =0, with s # ¢

Taking 02 = Var(e, |Yi—1) together with equation (5), we discern if we divide
both sides of equation (5) by dy:

!
Yy _ oY 4+ &

dt Ot dt

equation (5) then can be rewritten as:

Zt = OéZt_l + v (9)

. Yi_ . . . .
with Z; = }7%, Ziq1 = ;}1 and vy = d;. After this transformation, the variance
: ’

of the new error term , that is var(v;) = var(%) = 1. By doing so, we have
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eliminated the heteroskedasticity in the conditional variance and the estimator
derived through equation (9) is GLS estimator, dgs. In addition, the term
used for transformation J; is the estimator of the conditional variance and the
residual of the regression based on equation (5)can be used as an estimator for
O¢t.
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