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“What makes a data set interesting is not only its size but also its complexity, 

where complexity can include such considerations as: 
high dimensionality, a mixture of data types, non-standard data structure, and, 

perhaps most challenging, 
nonhomogeneity; 

that is, different relationships hold between variables 
in different parts of the measurement space” 

 
Breiman, 1984 
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Chapter 1. Introduction 

 
In asset management the focus of institutional investors is shifting from beta-performance to 

alpha-performance. The traditional beta-performance is obtained by following benchmarks like 

the AEX and the 10-Year Bund Index by taking long-positions in these markets. Clients of 

institutional investors increasingly desire an outperformance on those benchmarks. The 

outperformance by institutional investors is achieved by investing a percentage of a portfolio in 

short-positions and using leverage to accelerate gains (but also losses!) on investments bets. 

These developments are also experienced by AEGON Asset Management B.V., the Dutch 

investment division of AEGON N.V.  

 AEGON N.V. is an international insurance company and mainly active on the market of 

life insurance, pension plans, and individual investment products. The Netherlands, Great-

Britain, and the United States are the most important markets for AEGON. Worldwide 

AEGON N.V. manages over €360 billion, of which €60 billion is managed AEGON Asset 

Management B.V. The investment style adopted by AEGON Asset Management is called 

‘enhanced active’. Goal is to beat the benchmark after transaction costs within a strict framework 

of risk control. In practice ‘enhanced active’ means that portfolio managers have the freedom to 

take small restricted positions different from the benchmark. The investment process is designed 

such that relative allocations at all levels within the portfolios can be taken. Risk control is 

present by the reduction in size of relative allocations and the incorporation of active investment 

decisions.  

 

One the most important tools of asset managers to gain alpha-performance are forecast models. 

Successful forecast models enable them to take profitable positions in all kinds of financial assets. 

In most forecast models, available in the literature and used in practice, at any observation all 

(selected) input variables are taken into account. In other words, the influence of all input 

variables on a forecast is considered. Whereas one might argue that not all variables should be 

taken into account at all times. This can very well be illustrated from the viewpoint of financial 

markets. An asset manager probably will not look at the same economic data under all 

circumstances. In fact, it is more likely that the asset manager makes an ordering of economic 

data relevance. This ordering will change over time when market conditions change. E.g. in 

highly volatile markets the asset manager might first look at for example implied volatilities, 

whereas in relative quiet markets macroeconomic data could be leading variables in investment 

decisions. In statistics such relations between variables are called non-linear relations. One of the 

types of models that is designed to reveal non-linear relations in data are called classification 

trees. As the name suggests data is ordered in a tree sequence. At the end of a path followed 

through the tree the model gives a classification label as output. In this thesis we will look at the 

use of classification trees in finance. More specific: “Are classification models useful in 

forecasting the 10-Year Bund Interest Rate movements for investment purposes?”  

To answer our research question we will first look at four classification tree algorithms in Chapter 

2. Within this chapter we will discuss binomial trees in which splits in the tree are only binomial, 

and multiway trees in which each node has as many splits as possible output classes. In Chapter 3 

the empirical framework of this thesis will be described. Also a rough selection of suitable 
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classification models will be made. The next step is to link the use of classification trees to a 

Bund portfolio performance which is done in Chapter 4. In this fourth chapter sensitivity analysis 

with respect to portfolio performances is done and the most robust and highest performing 

classification trees are determined. The consistency of the selected classification model is 

evaluated in section 2 of Chapter 4. The selected models are evaluated through the performance 

and robustness over the second half of 2007 and January 2008 (this period was not included in 

research up to then, therefore we can regard it as an out-of-sample test). Chapter 5 will conclude. 
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Chapter 2. The theoretical framework 
 

Section 1. Classifying data 

 

§ 2.1.1. A classifier or classification rule 

Predicting the most likely condition of an event to occur at a certain time given current 

information is a problem for which one often wants to find an answer. Given a set of predictors 

is it possible to say something about a condition today or in the future? Examples are the 

identification of a disease based on a number of medical symptoms (i.e. a condition today) and 

forecasting the type of weather the day after tomorrow at a certain place based on different 

weather conditions today at different places (i.e. a condition in the future). One can refer to the 

different conditions of an event as classes. The above problem more formally, given a set of 

variables one wants to have a systematic way of predicting what class a case is in. Such a 

systematic way is called a classifier or a classification rule.  

 Let’s describe the above problem more mathematically. Suppose a prediction can be 

categorized as belonging to a class Jj∈ = {1, 2, …,J} The set of (possible) predictor values can 

be denoted by X such that every vector x is a different observation in the set of predictor values. 

“A systematic way of predicting class membership is a rule that assigns a class J to every 

measurement vector x in X. That is, given any x ∈ X, the rule assigns one of the classes j to x.” 
(Breiman et al., 1984). Define d(x) as a function on X such that to every x a class j is assigned, 

thus d: X → J. Such a function d(x) is called the classifier or classification rule. It is also possible to 

define a classifier by defining Aj as the subset of X on which d(x) = j, that is Aj = {x | d(x) = j}. 

Then the classifier is a partition of X into J disjoint subsets A1, A2, …, AJ, j
j

AX ∪= such that for 

each x ∈ Aj the predicted class is j. 

 

§ 2.1.2. The learning sample 

Often one wants to construct a classifier based on available observations that are likely to have 

the same relation between predictor values and a prediction. In the literature such a set of 

available information is called the learning sample. It implies the assumption that another set of 

predictor values will have the same distribution as  the observations in the learning sample. The 

learning sample contains N observations of each predictor variable together with the actual class 

of the prediction variable corresponding to the nth observation (vector). A more formal definition 

is given by Breiman et al.: “A learning sample consists of data (x1, j1), (x2, j2), …, (xN, jN) on N 

cases where xn ∈ X and jn ∈ J, n = 1, 2, …, N. The learning sample is denoted by L; i.e., L = 

{(x1, j1), (x2, j2), …, (xN, jN)}.”  

 Important to note is that there are different types of predictors. Two different types are 

distinguished in the literature: ordered variables and categorical variables. Ordered predictors are real 

numbers and categorical predictors take values in an unordered set.  

 

§ 2.1.3. The purpose of using classification procedures 

The purpose of this thesis is to uncover a possible predictive structure for movements of the 10-

Year Bund interest rate. Hence we are trying to get an understanding of what variables or 
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interactions of economic data drive these movements. The classification procedures we will 

consider in this thesis are called classification tree algorithms. In section 3 we will get into deeper 

detail about these algorithms. Besides quantitative criteria regarding the outcomes of the 

classification trees a more qualitative criterion should be applied to our problem. Namely, “an 

important criterion for a good classification procedure is that it not only produces accurate 

classifiers (within the limits of the data) but that it also provides insight and understanding into the 

predictive structure of the data.” (Breiman et al., 1984). In this thesis we only consider classifiers based 

on variables separately and disregard classifiers that permit linear combinations of different 

variables. The reason is twofold: (i) to limit the possible classifiers; and (ii) there is no reason to 

assume that linear combinations of financial data make sense in our case; even if there are 

reasonable linear combinations present these are very likely to already exist as a separate variable 

(e.g. nominal interest rate – inflation rate ≈ real interest rate). This last argument implies that 

before we apply an algorithm to find a classifier, we should carefully look at the variables 

contained in our learning sample, so the real interest rate should be in our learning sample 

together with the nominal interest rate and the inflation rate.  

 

§ 2.1.4. Misclassification rates 

Classifying data comes together with some other questions: ‘How precise is a classification rule 

and how can we estimate its precision?’ Therefore we introduce the notation R*(d) which denotes 

the misclassification rate of a classification procedure. Of course we cannot say what the exact value 

of R*(d) is, but we can estimate it. Two estimates of the misclassification rate are often used.  

The first one we discuss is based on the intuition that it makes sense to exclude a random 

selection of the learning sample, determine a classification rule with the remainder of the learning 

sample, and use the excluded sample to estimate the misclassification rate of the classification 

rule. Call the remainder of the learning sample L1 and the out-of-sample set L2, thus L = L1 + L2; 

note that it is assumed that by randomly selecting L2 from the learning sample, L2 has the same 

distribution as L1. The misclassification rate can be estimated, called independent test sample estimate, 

by looking how often a case in L2 belonging to class j is not classified as a class j by the 

classification rule that is based on L1. Now we can define R
its(d) as the independent test sample 

estimate of the probability that d will misclassify a new sample drawn from L2, i.e. R
its(d) = [P(d(x) 

≠ y | L2)] = E[R*(d)]. 

 A second method for estimating R*(d) is called V-fold cross validation. Divide the learning 

sample L in V subsets (denoted by L1, L2, …, LV) of nearly equal size. For every v, v = 1, 2, …, 

V, apply an algorithm for constructing a classifier with L - Lv as learning sample, and let d
(v)(x) be 

the resulting classifier. With NV = N/V the number of cases in LV we can define 

∑
∈

≠=
Vnn Lj

nn

v

n

V

vts jxd
N

dR
),(

)()( ))((1
1

)(
x

, as a test sample estimate for R*(d(v)) . If the number V is 

taken large then each of the V classifiers is determined using a learning sample of size N(1 – 

1/V), which is nearly as large as L. Cross-validation assumes that the classifiers d(v), all 

constructed with learning samples almost as large as L, have misclassification rates R*(d(v)), which 

are nearly equal to R*(d). This is called the ‘stable’ assumption for cross-validation. Following the 
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above procedure for all v ∈ V the V-fold cross-validation estimate Rcv(d) can be stated as 

∑
=

=
V

v

vtscv dR
V

dR
1

)( )(
1

)( = E[R*(d)]. 

 The independent test sample estimate is the computational most efficient method to 

estimate the misclassification rate, because a classifier has to be constructed just once. If a 

learning sample is large enough this method of estimation is preferred, i.e. if in the learning 

sample near 1000 observations for each class j are observed (according to Breiman et al.). V-fold 

validation has as advantages that it makes effective use of all observations available and that it 

gives useful information about the stability of the classifier. A classifier with misclassification 

rates that do not differ much for each subset V, is much more reliable than one for which they 

do differ much. 
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Section 2. General tree building procedures 

 

Our framework so far: We have a set of past experiences, called learning sample, and a variable to 

be forecasted that is a set of classes. Given the learning sample we want to find a systematic way, 

called classifier or classification rule, of predicting what class a case is in. The classification procedures 

we discuss in this thesis are called classification tree algorithms. They have in common that they are 

based on minimizing misclassification rates.  

In this section the general tree building procedures will be discussed. 

 

§ 2.2.1. Steps in building a classification tree 

In the literature two types of classification trees are considered: binary trees and multiway trees. 

Binary trees are constructed by repeated splits of subsets of the learning sample X into only two 

mutually exclusive subsets, one starts with splitting the set X itself. Each split is based on one of 

the variables in the set X. Mulitway trees are constructed by repeated splits of subsets of X into 

two or more mutually exclusive subsets. The number of mutually exclusive subsets by which a 

split is divided, depends on both the number of classes J and the way an algorithm is constructed. 

Splitting of a subset stops if a stopping rule (will be discussed in §2.2.3) is satisfied or in case the 

subset is pure, meaning that all yi in the subset belong to the same class j. Subsets that have no 

further splits are called terminal subsets; a class is assigned to each terminal subset. The entire 

construction of a classification tree includes three steps:  

1.) The split selection 

2.) The decision whether to continue splitting a subset or to stop 

3.) The assignment of each terminal node to a class 

 

In theory every multiway tree can be redrawn by a binary tree, since every split in a multiway tree 

can be replicated by a sequence of binary splits.  Nevertheless as we will discuss later on, 

multiway trees do have some advantages above binary trees. The idea is that depending on the 

applied splitting method different non-linear relations are revealed. One should keep in mind that 

selecting a classification tree algorithm is more related to what one wants to forecast and what 

type of dataset is involved, than selecting just the algorithm that minimizes some misclassification 

rate. 

 

§ 2.2.2. Split selection variable 

The split selection procedure is the part that distinguishes different classification tree algorithms 

from each other the most. In general split selection involves two steps: 

1.) The selection of the split variable 

2.) The selection of the split point of a variable 

Which of the two steps to take first is dependent on the chosen algorithm. For example, with 

CART (Breiman et al, 1984) the ‘best’ split for each variable is selected first, then the variable 

with the ‘best’ split is chosen as the to be split variable; whereas with FACT (Loh and 

Vasichsetakul, 1988) first the ‘best’ split variable is chosen and then how to split this ‘best’ 

variable. The selection how to split a variable is also dependent on the choice whether to build a 

binary tree or a multiway tree.  
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Splits can have two forms: 

1.) X ≤ c, with c ∈ (xmin, xmax); if X is an ordered variable 

2.) X ∈ A, with A a non-empty subset of the values taken by X; if X is a categorical 
variable 

Of course, each split selection procedure has its advantages and disadvantages. These and the 

different split selection procedures will be discussed in the next section.  

 

§ 2.2.3.Stop splitting 

As already mentioned the splitting of a subset of X stops if the subset is pure or a stopping rule is 

satisfied. The reason for stop splitting in case a subset of X is pure is straightforward; a subset is 

pure when all yi in the subset belong to the same class j and therefore there is no need for further 

splits, i.e. there is a 0% misclassification rate.  

There are two sorts of stopping rules. Splitting rules of the first sort are very simple and 

can directly be observed when looking at a subset in a node. Three (primitive) stopping rules of 

this first type are: (i) if there are less than n observations in a node stop splitting; (ii) if a node is 

the nth layer in the tree stop splitting; and (iii) if s% of the yi in a node belong to one particular 

subset stop splitting. This sort of stopping rules is not frequently used when building a 

classification tree. 

A second type of stopping rules is misclassification rate dependent. Such stopping rules 

are functions on the probability of misclassifying. Considered are two stopping rules related to 

the probability of misclassifying, namely goodness of split and the minimum cost rule. We will use the 

definition given by Breiman et al. for the impurity function and the impurity measure that we 

need to define goodness of split: 

“An impurity function is a function φ defined on the set of all J-tuples of numbers (p1, …, pJ) 

satisfying pj ≥ 0, j = 1, …, J, Σj pj = 1 with the properties 

(i) φ is a maximum only at the point 








jjj

1
,...,

1
,

1
, 

(ii) φ achieves its minimum only at the points  
(1, 0, …, 0), (0, 1, 0, …, 0), …, (0, 0, …, 0, 1), 

(iii) φ is a symmetric function of p1, …, pj.. 

Given an impurity function φ, define the impurity measure i(t) of any node t as  

i(t) = φ(p(1|t), p(2|t), …, p(J|t)). 

If a split s of a node t sends a proportion pR of the data cases in t to tR and the proportion pL to tL, 

define the decrease in impurity to be 

∆i(s, t) = i(t) – pRi(tR) – pLi(tL). 

Then take the goodness of split φ(s, t) to be ∆i(s, t).” 
In words the goodness of split is a value that reflects the improvement of classifying by splitting a 

set of data into two subsets compared to not splitting the set. In the literature two goodness of 

split stopping rules are often used: the Gini index of diversity and the twoing rule.  
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The Gini index of diversity is defined as:  

 ∑
≠

=
ji

tjptipti )|()|()( . 

With the twoing rule at a node t, with s splitting t into tL and tR, the split s that maximizes

 

2

|)|()|(|
4









−∑

j

R
RL tjptjp

pp
L

 is chosen.  

One can imagine that not in all cases a reasonable assumption is that misclassifying an outcome is 

of equal weight for all variables. Moreover, one could argue that misclassifying an y as a class j, 
that actually belongs to class i, is less desirable than misclassifying an y, that actually belongs to 

class j, as a class i. This is called the non-symmetry of classification costs. For example, assume y 

to be the outcome of an investment strategy with three classes (i) long, (ii) hold, and (iii) short; 

the costs associated with classifying a ‘long’ event as ‘hold’ event could be higher than the costs 

for classifying a ‘hold’ event as ‘long’ event, because in the first case investment opportunities are 

missed (high opportunity costs) and in the second case the costs of going long when there are no 

(negative) shocks are only the transaction costs (in the next period the position could be reduced 

if necessary). 

The different misclassification costs can be represented by a set C with elements C(i|j) 

for every class i and j satisfying (i) C(i|j) ≥ 0, with i ≠ j; and (ii) C(i|j) = 0 if i = j. Then for every 

node t the misclassification costs should be minimized and are defined as: 

 ∑
j

tjpjiC )|()|( . 

The minimization of the classification costs is called the minimum cost rule. 

 Stopping rules are applied such that splitting is stopped in cases like: if β<∆
∈

),(max tsi
Ss

, 

for some threshold value β, then stop splitting (when using goodness of split measures); and if 

the minimum of the misclassification costs is greater than some threshold value β stop splitting. 
The use of such stopping rules has some disadvantages, which we will discuss now. 

 

§ 2.2.4. Pruning 

Classification trees built using one of the stopping rules can give misleading misclassification 

rates. If a very small threshold β is chosen, splitting will in most cases only stop if a node is pure 
(with a corresponding classification error of zero). There is a high probability that all terminal 

nodes consist of only one or two events. Based on the classification error one might think that a 

great job is being done, however if most terminal nodes consist one or two events the tree has no 

predictive power at all. Because all events are specified so precise, there is no reason to assume 

that a new event that follows the same path through the tree, ending in a terminal node with just 

one event from the past, will belong to that one particular class now or in the future. The only 

result we derived from the tree, is that we have split up the data set so far that every event can be 

identified as a unique one, clearly a case of data overfitting. The strengths of classification trees 

are undone, i.e. no non-linear relationships are revealed. 
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 The use of more complicated stopping rules to overcome the problem of overfitting was 

investigated by Breiman et al.: “Using more complicated stopping rules did not help. Depending 

on the thresholding, the splitting was either stopped too soon at some terminal nodes or 

continued too far in other parts of the tree.” The authors give a clear description on how and 

what kind of solution they found: “A satisfactory resolution came only after a fundamental shift 

in focus. Instead of attempting to the splitting at the right set of terminal nodes, continue the 

splitting until all terminal nodes are very small, resulting in a large tree. Selectively prune 

(recombine) this large tree upward, getting a decreasing sequence of subtrees. Then use cross-

validation or test sample estimates to pick out that subtree having the lowest estimated 

misclassification tree (R*(d)).”  

 A selection method often used to prune is minimal cost-complex pruning. The general idea of 

this method is that the cost-complexity measure is a function depending on both the 

misclassification rate and the complexity of the tree. This is comparable with the estimated R2 in 

linear regression, i.e. whether or not to add a node or variable in the tree or regression based on 

the additive explanatory power of that particular node or variable. Define the complexity of any 

tree as |
~
|T  which is the number of terminal nodes. Let α be a non-negative real number that we 

call the complexity parameter. The cost complexity measure Rα(T) can now be defined as 

|
~
|)()( TTRTR αα += . Interpret the cost-complexity parameter as a linear combination of the 

accuracy and the complexity of the tree. α can be interpreted as the complexity cost for every 
extra node in the tree, so if the explanatory power of adding an extra node does not outweigh the 

cost for adding it, the node will be cut off in the tree. Finding the optimal tree with minimal cost-

complex pruning now becomes a minimization problem: )(min))((
max

TRTR
TT

αα α
≤

= , with Tmax the 

tree with the maximum number of nodes (so all nodes are pure consisting of one or more cases). 

 The algorithm for minimal cost-complex pruning is given by Breiman et al.: “Starting 

with T1, the smallest subtree of Tmax satisfying R(T1) = R(Tmax), the heart of minimal cost-

complexity lies in understanding that it works by weakest-link cutting. For any node t ∈ T1, denote 

by {t} the subbranch of Tt consisting of the single node {t}. 

Set αα += )(})({ TRtR . 

For any branch Tt,, define  

|
~

|)()( ttt TTRTR αα += . 

As long as  

})({)( tRTR t αα < , 

the branch Tt has a smaller cost-complexity than the single node {t}. But at some critical value of 

α, the two cost-complexities become equal. At this point the subbranch {t} is smaller than Tt, has 

the same cost-complexity, and is therefore preferable. To find this critical value of α, solve the 
inequality 

})({)( tRTR t αα < , 

getting 

1|
~
|

)()(

−

−
<

t

t

T

TRtR
α         
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By the assumption of R(t) > R(Tt), the critical value on the right of above inequality is positive. 

Define a function g1(t), t ∈ T1, by 








∈∞+

∉
−

−
=

1

1

1
~

,

~
,

1|
~

|

)()(

)(

Tt

Tt
T

TRtR

tg
t

t

 

Then define the weakest link 1t in T1 as the node such that  

)(min)( 111
1

tgtg
Tt∈

=  

and put  

)( 112 tg=α . 

The node 1t is the weakest link in the sense that as the parameter α increases, it is the first node 

such that Rα({t}) becomes equal to Rα(Tt). Then }{ 1t becomes preferable to 
1t

T , and α2 is the 

value of α at which equality occurs.  

Define a new tree 
112 t

TTT −p . 

Now, using T2 instead of T1, find the weakest link in T2.”  

Important is that if there is a multiplicity of weakest links at any stage of the algorithm, i.e. 

if )()( *

kkkk tgtg = , then define *1
kk ttkk TTTT −−=+ . Repeat the minimal cost-complex pruning 

algorithm until the tree only consists of only the initial node (thus the set X as a whole). Note 

that this implies that the number of steps in the algorithm is smaller or equal to the number of 

nodes in Tmax. 

 Weakest-link cutting results in a decreasing sequence of subtrees }{... 121 tTT fff  , 

where Tk = T(αk), α1 = 0. The next step is to select the optimum-sized tree. The procedure proposed 

by Breiman et al. (1984) to find an optimum-sized tree is relatively easy. Their procedure, called 

1-SE rule, is also used in some of the other classification tree algorithms we discuss in the next 

section. The 1-SE rule consists of four steps:  

1.) Determine the misclassification rate R(Tk) for each subtree, found by weakest-link 

cutting, based on the existing learning sample. Obviously R(Tk) increases as |
~

| kT  

decreases. 

2.) Determine the misclassification rate based on V-fold cross validation, i.e. Rcv(Tk), or 

based on a test sample, i.e. Rts(Tk). Both methods are discussed in §2.1.4. Remark that 

Rcv(Tk) or R
ts(Tk) does not necessarily increase as |

~
| kT  decreases! 

3.) Determine the standard error for either Rcv(Tk) or R
ts(Tk). The standard error is defined as 

( )
nsobservatio

RR

#

1 minmin −
. 

4.) Select the smallest tree for which the misclassification rate found in step 2 is within one 

standard error of the misclassification rate found in step 1 (that is why this rule is called 

the 1-SE rule).  

In the literature the 1-SE rule is sometimes debated, because it should overprune the classification 

tree. A popular alternative is to choose in step 4 for the smallest absolute error, called 0-SE rule. 

Nevertheless, it is generally agreed that the ‘best’ of the two prune rules heavily depends on the 



 16 

involved data set. Therefore we will investigate which of two pruning rules is the ‘best’ for our 

data set in the empirical part of this thesis. 

 

§ 2.2.5. The assignment of each terminal node to a class 

The last step in the tree building procedure, the assignment of each terminal node to a class, is 

rather straightforward. That is, define class i to a node t if: 

( ) ( ) ( ) ( )∑ ∑
= = 








≤≤≤
J

i

J

j

JmtjpjmCtjpjiC
1 1

1:||min||  

In other words, node t is assigned to a class i, given the selected optimum-sized tree in case of minimal 

misclassification costs.  

  

§ 2.2.6. Advantages of the tree structured approach 

In the next section different classification trees will be discussed together with advantages and 

disadvantages of each particular algorithm. Nevertheless, classifying data by the use of a tree 

structured approach has some major advantages in general which we like to point out before the 

discussion about which algorithm to use is started. Classification trees can be powerful and 

flexible data analyser tools due to these properties: 

1.) Independent of the data structure classification trees can deal with both ordered 

and categorical variables. 

2.) If a tree is formed it can easily be stored and used to classify new data. 

3.) It makes use of conditional information to handle and find nonhomogeneous 

relationships in a proper way. 

4.) Both classification and misclassification rates can be estimated. 

5.) It is invariant under all monotone transformations of individual ordered variables. 

6.) It is very robust with respect to outliers and misclassification points in the learning 

sample.  

7.) The way data is structured in a tree is easy to understand, the results are also easy to 

interpret. 

 

§ 2.2.7. Graphical example of a classification  

To illustrate how a completely classification tree looks we give a graphical example. In figure 1 

(next page) a binomial tree is represented. To each node a variable name is added1 together with 

the corresponding variable split value. At the end of tree path we find the terminal nodes. To 

each terminal node a (investment decision) class is assigned. 

                                                           
1 For the specification of the variable see appendix C 
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Graph 1. An example of a (binomial) classification tree
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Section 3 Classification tree algorithms 

 

In this third section of the theoretical framework five different classification tree algorithms are 

discussed. Two of these algorithms are used to construct binary trees, the other three algorithms 

to construct mulitway trees. In theory every mulitway tree can be rebuilt by a binary tree, since 

every split in a multiway tree can be replicated by a sequence of binary splits. Still we discuss 

mulitway tree building algorithms, because a mulitway classification tree (could) have an 

advantage over a binary tree. Namely, by splitting each subset of the learning sample into two 

disjoint subsets the possibility exists that binary trees end up with terminal nodes (if the 

misclassification rate is allowed to be large enough and the xi’s of a certain class j are dispersed 

enough) for which some class j is not assigned to one of the terminal nodes. This problem can in 

some cases be avoided by the use of multiway splits. Therefore it is also very interesting to consider 

multiway classification trees. 

 

§ 2.3.1. CART 
CART stands for Classification And Regression Trees and is the general name for the classifiers 

developed by Breiman, Friedman, Olshen, and Stone. (1984). We only take the classification tree 

algorithm of Breiman et al. into account and refer to it as CART.  Although the authors of CART 

title THAID as “the ancestor classification programme”, in all the literature since 1984 about 

classification trees the book ‘Classification And Regression Trees’ of Breiman et al. is always used 

as the starting point.  

The CART classification algorithm first determines for each variable the optimal split 

point within a subset. Secondly, it identifies the ‘best’ split variable to divide the subset into two 

smaller disjoint subsets. Such a sequence for the split of a subset is called exhaustive search. In 

CART two splitting rules are suggested: (i) the Gini criterion; and (ii) the twoing criterion. In the 

previous section we referred to these criteria as stopping rules, but the authors of CART prefer 

pruning methods over the use of stopping rules. The reason why both criteria can be used in 

CART as splitting rules is because they have some desirable mathematical properties that we will 

discuss next.  

Focusing on just reducing the misclassification error while building a classification tree is 

optimal for every split, but not necessarily optimal for the tree as a whole. By minimizing 

classification errors stepwise, suboptimal splits are in general to be found due to the linearity in 

misclassification rates. This means that the split of a subset into one ‘pure node’ and a ‘rest 

subset’, which in consecutive splits can be divided into other pure nodes, is not preferred over 

the split of a subset into two ‘less purer nodes’ when the decrease of the misclassification rate is 

the same in both cases; the result is suboptimal splitting. Therefore Breiman et al. argue that the 

use of impurity functions φ that are strictly concave is preferred. Such impurity functions will 
select ‘purer nodes’ over ‘less purer nodes’ and are for that reason more suited for building 

classification trees. In other words, when building a classification tree one wants to find splits 

such that subsets with the highest concentration of some class j are selected. The other 

observations will be put together in the disjoint subset and again in that node a variable splitting 

should be found that separates a class j. Note that the ‘rest subset’ can still contain observations 
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from a class j that are separated from that subset. At that moment only some path in the tree, 

where class j occurs, has been found. Other paths in the tree are very likely to exist, especially if 

the number of classes J is small. 

 Of course impurity functions that are strictly concave should also be well adjusted for 

probability measures. Therefore such impurity functions are defined as the class F of functions 

φ(pi), 0 ≤ pi ≤ 1, with continuous second derivatives on 0 ≤ pi ≤ 1 satisfying: (i) φ(0) = φ(1) = 0; (ii) 

φ(pi) = φ(1 - ∑
≠ ji

jp ); (iii) φ’’(pi) < 0, 0 < pi < 1. Breiman et al. proof that both the Gini criterion 

and the twoing criterion satisfy these conditions. They also study the performance of both criteria 

on different data sets to find out if one of them outperforms the other and they conclude: 

“Choice of a criterion depends on the problem and on what information is desired. The final 

classification rule generated seems to be quite insensitive to the choice.” Remarkably enough the 

authors do not give any statement about which rule is the ‘best’ one to use for splitting for each 

type of data set.  

Rather than using a stopping rule Breiman et al. prefer to use the principal of pruning to 

find a right sized tree. “However, the tentative conclusion we have reached is that within a wide 

range of splitting criteria the properties of the final tree selected are surprisingly insensitive to the 

choice of splitting rule. The criterion used to prune or recombine upward is much more 

important.” The algorithm how to implement pruning in a classification tree building procedure 

is already given in §2.2.4. For our research we will both use the Gini criterion and the twoing rule 

in the CART algorithm and test if one of them is of better use for our purpose. 

 

§ 2.3.2. QUEST 
The Quick, Unbiased, Efficient, Statistical Tree, in short QUEST, is the binary classification tree 

building algorithm introduced by Loh and Shih (1997). This method is said to have no bias 

towards the selection of variables that afford more splits (CART does have this bias), because it 

makes use of a type of discriminant analysis (will be discussed in §2.3.4.). Furthermore, the use of 

discriminant analysis makes it a much faster algorithm than those that make use of exhaustive 

search.  

The QUEST algorithm first selects the variable that will be split and then finds the split 

point of that variable. At first for all ordered variables the levels of statistical significance are 

calculated by the use of the ANOVA F-statistic2. Secondly, for all categorical variables a Pearson 

contingency table Χ2-test of independence1 between the class variable and the categorical variable 

is used. The statistical significance of a categorical variable can easily be approximated with the 

chi-square distribution with (Jt - 1)(Mt – 1) degrees of freedom, where Mt is the number of 

distinct categories present in the learning sample in node t. Based on the F-statistic (ordered 

variables) or the Χ2-test (categorized variables) a P-value1 can be calculated (stage I). “If the 

smallest P-value is less than a predefined threshold (determined via the Bonferroni method for 

multiple comparisons*), the corresponding variable is selected. Otherwise, Levene’s F-test for 

unequal variances1 is computed for each ordered variables (stage II). If the smallest P-value from 

the stage II-tests is less than another Bonferroni threshold, the corresponding variable is selected. 

Otherwise, the variable with the smallest P-value from stage I is selected.” (Loh and Shih, 1997). 

                                                           
2
 A description of this statistical test or a definition of this statistic can be found in Appendix A 
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After the variable split selection for a node, the subset of that node is divided into two 

superclasses before application of the discriminant analysis. Obviously it is possible that those 

two superclasses have unequal variances. To cope with this problem, a modified version of 

quadratic discriminant analysis (QDA) is used. Because ordered variables are different than 

categorical variables, for each type of variable a different split point selection algorithm is used in 

the QUEST method.  

QUEST consists of three algorithms: an algorithm for variable selection (i.e. algorithm 1. 

Variable selection in QUEST3); an algorithm for the split selection in case of an ordered variable 

(i.e. algorithm 2. Split selection for an ordered variable in QUEST2); and an algorithm for the 

split selection in case of a categorical variable (i.e. algorithm 3. Split selection for a categorical 

variable in QUEST2). In QUEST the classification can be constructed with the use of a stopping 

rule or by pruning as introduced by Breiman et al..  

 

§ 2.3.3 CHAID 
CHAID is the technique to classify data and is developed by Kass (1980). CHAID is the 

abbreviation of CHi-squared Automatic Interaction Detection and is mainly based on AID, 

which was introduced by Morgan and Sonquist (1963). The classification algorithm CHAID has 

some adjustments compared to AID that makes it the first classification algorithm that was 

widely used. The general idea of CHAID is that it selects the ‘most significant’ split (in the split 

selection) rather than the ‘most explanatory’; only categorized predictors are considered. By focusing 

on selecting the ‘most explanatory’ (as being done in AID) the number of categories of the 

predictor is taken into account; the AID algorithm is biased in selecting predictors with more 

categories to be the split variable, because the maximization criterion used in this method extends 

over more possibilities. CHAID was developed to undo that bias. 

 In the selection process the best split for each predictor is found first. Then they are 

compared to each other and the best one is chosen. The procedure works like this: per predictor 

all combinations of the categories4 are made and a significance level according to the chi-squared 

test is done. The chi-squared test relates the combinations of the predictor categories to the 

categories of the dependent variable with J-1 degrees of freedom. The combination with the 

highest significance level is selected as the ‘best split’ for that particular predictor. By looking per 

predictor at all the combinations of categories CHAID is a classification algorithms that allow 

multiway splits, for an example of possibilities in a multiway split see footnote 1.  

 We will we not discuss the CHAID algorithm here in any more detail, because our 

financial data is not categorical (at least not in a regular way) and therefore this classification 

algorithm will not be tested. Nevertheless, later developed multiway classification algorithms that 

we will use for our empirical research are based on the ideas of CHAID.  

 

§ 2.3.4. FACT 
Loh and Vanichsetakul (1988) present a method for classification called FACT which stands for 

Fast Algortihm for Classification Trees. The main characteristics of FACT are: (i) multiway splits 

are possible, (ii) uses a direct stopping rule, (iii) is not invariant of monotone transformations of 

                                                           
3
 These algorithms are given in Appendix B 
4 Example: assume a predictor containing the categories 1,2, and 3. Possible combinations are: 1/2/3, 1&2/3, 
1&3/2, and 2&3/1. 
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the individual variables, and (iv) is computationally faster than algorithms that make use of 

exhaustive search.  

 When using FACT the problems of variable selection and split selection are separated. At 

each node the F-statistic in the ANOVA-table is calculated for every ordered variable. We select 

the variable with the largest F-statistic as the variable that will be split at that node. The split 

point selection for that variable is based on the technique Linear Discriminant Analysis (LDA). 

By the use of LDA it is assumed that by splitting a variable into two disjoint subsets the 

probability density functions p(x|y = 0) and p(x|y = 1) are both normally distributed. In other 

words: assume that y consists of four classes; the right splitting point is the one where we can 

make two subsets of y such that the variable x is normally distributed in both subsets (e.g. classes 

1&3 and classes 2&4 could be combined for y, or classes 1&2&4 could be separated from class 

3). Under this assumption, “a split is selected at node t via the discriminant function: 

 )}|(ln{ˆˆ'ˆˆ'ˆ)( 1
2

11 tjpyyd jjjj +Σ−Σ= −− µµµ , 

where y denotes a vector in the space of the larger principal components, jµ̂ is the sample mean 

vector of the jth class, and Σ̂  is the sample pooled estimate of the covariance matrix at the node. 
Each node is split into J subnodes, and an object is channelled into the ith subnode if the latter 

minimizes the estimated expected misclassification cost: 
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To deal with categorical variables in the FACT method they are transformed into ordered 

variables according to the so called CRIMCOORD method5 which we will not discuss here 

(criticism on this transformation method is given by Breiman and Friedman, 1988).  

 In the FACT algorithm a direct stopping rule is used. Splitting is stopped if either the 

node error rate does not decrease, or if there is at most one class in the node with a sample size 

larger or equal to a by the user pre-defined size. The assignment rule is the same as in CART. 

 

§ 2.3.5. CRUISE 
The last (mulitway) classification tree building algorithm we discuss is the CRUISE algorithm 

introduced by Kim and Loh (2001). CRUISE is short for Classification Rule with Unbiased 

Interaction Selection and Estimation. The authors argue that this multiway classification 

algorithm has almost no variable selection bias (just like the QUEST algorithm). Due to the 

unbiasedness of variable selection in the CRUISE algorithm it is preferred over CHAID and 

FACT.  

QUEST first selects the variable that will be split and then selects the split point of that 

variable. For the variable split selection Kim and Loh (2001) present two methods. The first is 

the same as the one used in FACT. The disadvantage of that particular variable split selection 

algorithm is that it is designed for testing the statistical significance of variables with unequal 

mean and variance, but not for testing statistical significance of variables with equal mean and 

variance but with different distributions. Therefore a second variable split selection algorithm is 

suggested. “The idea is to divide the space spanned by a pair of variables into regions and cross-

tabulate the data using the regions as columns and the class labels as rows. The Pearson chi-

                                                           
5
 Algorithm 4. CRIMCOORD transformation for categorical variables, can be found in Appendix B 
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square test of independence will be used to test its statistical significance. If both X1 and X2 are 

categorical variables, their category value pairs may be used to form the columns. If one variable 

is numerical and the other categorical, the former can be converted into a two-category variable 

by grouping its values according to whether they are larger or smaller than their sample median. 

To detect marginal effects we apply the same idea to each variable singly. If the variable is 

categorical, its categories form the columns of the table. If the variable is numerical, the columns 

are formed by dividing the values at the sample quartiles. Thus a set of marginal tables and a set 

of pairwise tables are obtained. The table with the most significant p-value is selected. If it is a 

marginal table, the associated variable is selected to split the node. Otherwise, if it is a pairwise 

table, we can choose the variable in the pair that has the smaller marginal p-value.” 

The two splitting algorithms for CRUISE given by Kim and Loh (2001) can be found in 

Appendix B (they have the names: Algorithm 5. Splitting algorithm 1D in CRUISE and 

Algorithm 6. Splitting algorithm 2D in CRUISE). When the learning sample contains no 

categorical variable splitting algorithm 1D is the same as the splitting algorithm used in FACT (as 

can be found in the appendix). This will also be the case in our empirical research later on. 

Therefore only the 2D splitting algorithm is used for CRUISE in the remainder of this thesis. 

In the CRUISE algorithm linear discriminant analysis is also used to select the variable 

split point. Because LDA best works on data which are normally distributed and there is no 

reason to assume our data has such a distribution, first a Box-Cox transformation has to be 

performed. Box-Cox transformations are used to transform the distribution of data to a normal 

distribution. After a split point is selected the data will be transformed back to their original scale. 

In case of using the FACT split selection algorithm, no Box-Cox transformation (Algorithm 8. 

Box-Cox transformation in Appendix B) has to be performed for variables selected by Levene’s 

test. In the CRUISE algorithm one can again choose to use of the known stopping rules. 



 23 

Chapter 3. The empirical framework 
 

Section 1. Degrees of freedom in model settings 

 

In the previous chapter we discussed the CART with Gini Index, CART with Twoing rule, 

QUEST, FACT, and CRUISE classification algorithms. All these five algorithms are taken into 

consideration to determine which one is a good combination of powerfulness and reliability to 

predict the 10-Year Bund interest rate movement on a short time horizon. With a powerful 

algorithm we mean the one with the highest correct prediction rate of the interest rate 

movement; with a reliable algorithm we mean the one that has robust (statistical) performance 

when small changes in the model settings are made. The use of a classification algorithm brings 

along the decisions about quite a number of degrees of freedom in the model settings. Because 

we do not want to exclude some possible valuable model settings (i.e. choice of degrees of 

freedom) we approach our problem from a very broad perspective. The degrees of freedom we 

will have a closer look at are: 

• Type of input database to use as set of possible explanatory variables 

• The time horizon for which to predict the interest rate movement 

• Number of possible classes to classify the interest rate movement 

• The split minimum to use in the classification algorithms 
 

§ 3.1.1.Type of input database 

In principle every variable can be added to an input database for classification algorithms, 

because the different variable selection procedures are such that they should select the most 

explanatory variables at each variable selection step in an algorithm. On the other hand, a 

problem of classification algorithms is the decrease in selection power of the algorithms when a 

learning sample contains a large number of variables. The larger the dataset, the greater the 

possibility that the algorithms find a relation between one of the variables and the classification 

of the objective while in fact this relation is just random coincidence. We call this overfitting of 

the data set. Furthermore we favor a model that selects variables that make sense from an 

economic perspective. At last, we have to think about whether absolute levels of variables or its 

difference compared to a previous observation has the most possible explanatory power. 

Therefore we choose to consider the following three databases: 

• A database with 81 economic variables from the US and Euro area, 17 of the variables are 

available at a weekly frequency and 64 at a monthly frequency; we look at the difference 

compared to the last known observation, in case of the monthly data we have three times 

a zero and then the monthly difference. Of course the differences are corrected for trends 

if necessary. 

• A database with the (absolute or relative) differences of the 17 economic variables 

available at a weekly frequency as used in the first input database.  

• A combination of the differences of the 17 economic variables available at a weekly 

frequency and 14 risk indicators (like volatility levels) as absolute level or as difference, 

also available at a weekly frequency. 
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All variables and risk indicators are available from January 1999 until October 2007, in total we 

use 455 weeks/observations as learning sample in the classification algorithms. 
 

§ 3.1.2. The time horizon 

For investment purposes we are only interested in the movement of the 10-Year Bund interest 

rate movement over a short time horizon. But because we do not know the time lag of the 

influence of economic data and risk indicators on that movement – possibly we find other 

explanatory variables and risk indicators for different time horizons – we choose to consider the 

following three time horizons: 

• 1 week ahead • 2 weeks ahead • 4 weeks ahead

 

§ 3.1.3. Number of classes to classify interest rate movements 

The main objective of our research is to predict an increasing or decreasing interest rate, so 

investment bets on the interest rate movements can be made. One could argue that it is therefore 

sufficient to classify the interest rate movement in only two classes, an ‘up’ and a ‘down’ class. 

But from an investor perspective an increase or decrease of the interest rate with only a few base 

points in a number of weeks is not very interesting. In fact, classification algorithms will not be 

very successful in classifying interest rate movements correctly with such a classification. Small 

deviations of the interest rate movement are most likely not (strongly) dependent on the 

economic variables which are used as input, possibly other non-data market factors do. Also the 

use of the multiway classification algorithms FACT and CRUISE are not that interesting 

anymore in a two-class classification problem. One could even argue that changes of some 

economic variables only influence large movements of the interest rate, whereas other market 

factors cause the relative smaller changes. To conclude, we have chosen to consider the following 

class combinations of the interest rate movement: 

• 3 classes: a ‘sell’ class (increase in interest rate is expected), a ‘hold’ class, and a ‘buy’ class 

(decrease in interest rate is expected). 

• 4 classes: an ‘strong sell’ class (interest rate is expected to raise heavily), an ‘sell’ class 

(small interest rate raise) and the opposite ‘buy’ class and ‘strong sell’ class. 

• 5 classes: the same as 4 classes only in the middle a ‘hold’ class is incorporated to which 

only very small interest rate movements to both sides belong. 

 

We have predefined the corresponding interest rate movement to the different classes for the 

different time horizons on forehand. The class boundaries are symmetric and chosen such that 

they are easy to interpret and have a relative uniform distribution in the learning sample. An 

overview of the class levels and the number of observations for each class for all time horizons is 

given in table 1. 
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Table 1: Overview of class levels and the number of observations per class for all time horizons 

 

In a further stage of our research we will change the boundaries of these classes to see whether 

portfolio performance for the selected model settings are robust and even as important whether 

the portfolio performance can be improved by such boundary changes. 

 

§ 3.1.4. Split minimum 

We want to compare the statistical performance of the different classification algorithms with 

each other. Therefore we decide not to include pruning, because in case of pruning different 

models will have different pruning levels. Instead we predefine the split minimum in the 

classification trees and we will focus on performance differences as result of the predefined split 

minimum. We are particularly interested if it is more useful to have splits in the tree very deep 

(small split minimum) or are smaller trees more efficient (larger split minimums) for our problem. 

A second reason to look at quite a number of split minimums is to examine if the statistical 

performance of a classification tree does not fluctuate unacceptably when the split minimum is 

changed just a little bit. We will look and compare the results of classification trees with: 

• a split minimum of 10 

• a split minimum of 15 

• a split minimum of 20 

• a split minimum of 25 

• a split minimum of 30 

• a split minimum of 40 

• a split minimum of 50 

1 Week 2 Weeks 4 Weeks 1 Week 2 Weeks 4 Weeks

buy < -5bp < -5bp < -10bp buy 129 164 136

3 classes hold < +5bp < +5bp < +10bp 3 classes hold 205 136 176

sell > +5bp > +5bp > +10bp sell 121 154 140

1 Week 2 Weeks 4 Weeks 1 Week 2 Weeks 4 Weeks

strong buy < -7.5bp < -10bp < -15bp strong buy 90 93 98

4 classes buy < 0bp < 0bp < 0bp 4 classes buy 148 138 137

sell < +7.5bp < +10bp < +15bp sell 127 118 111

strong sell > +7.5bp > +10bp > +15bp strong sell 90 105 106

1 Week 2 Weeks 4 Weeks 1 Week 2 Weeks 4 Weeks

strong buy < -10bp < -15bp < -15bp strong buy 52 48 98

buy < -3bp < -5bp < -5bp buy 118 116 91

5 classes hold < +3bp < +5bp < +5bp 5 classes hold 132 136 88

sell < +10bp < +15bp < +15bp sell 86 98 69

strong sell > 10bp > 15bp > 15bp strong sell 67 56 106

LEVELS OBSERVATIONS
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Section 2. Statistical measures 
 

In total we will consider: 5 algorithms * 3 input databases * 3 time horizons * 3 class divisions * 7 

split minimums = 945 model settings. To reduce this number quickly and efficient before we 

look at the portfolio performance of some models we have to define some criteria on which we 

base our decision to continue with certain model settings. Therefore, different statistical 

performance measures are calculated by taking the average value of the statistics over ten samples 

of 10-fold crossvalidation. So we divide the input database and classify outcomes in ten randomly 

chosen disjoint subsets, for each subset the interest rate movement is predicted based on the 

classification tree estimated by the combination of the other nine subsets. Then the statistical 

averages over the ten subsets are taken. We repeat this process of 10-fold crossvalidation ten 

times to have more reliable outcomes. 

 

§ 3.2.1.Statistical measures used 

Error rate:  The percentage of forecasts that are classified incorrectly 

Error rate sell: The percentage of forecasts that is classified as ‘sell’-event, but should 

have been classified as ‘buy’-event 

Error rate buy: The percentage of forecasts that is classified as ‘buy’-event, but should 

have been classified as ‘sell’-event 

Error rate strong sell: The percentage of forecasts that is classified as ‘strong sell’-event, but 

should have been classified as ‘buy’-event or ‘strong buy’-event 

Only available for ‘4 classes case’ and ‘5 classes case’  

Error rate strong buy: The percentage of forecasts that is classified as ‘strong buy’-event, but 

should have been classified as ‘sell’-event or ‘strong sell’-event    

Only available for ‘4 classes case’ and ‘5 classes case’ 

Corr. rate sell: The percentage of forecasts that are classified as ‘sell’-event, which initially 

have been classified as ‘sell’-event 

Corr. rate buy: The percentage of forecasts that are classified as ‘buy’-event, which 

initially have been classified as ‘buy’-event 

Corr. rate strong sell: The percentage of forecasts that are classified as ‘strong sell’-event, which 

initially have been classified as ‘sell’-event or ‘strong sell’-event  

Only available for ‘4 classes case’ and ‘5 classes case’  

Corr. rate strong buy: The percentage of forecasts that are classified as ‘strong buy’-event, and 

which have been classified as ‘buy’-event or ‘strong buy’-event    

Only available for ‘4 classes case’ and ‘5 classes case’ 

Class distribution abs.: The class distribution of the forecasts in absolute numbers 
 

§ 3.2.2. Statistical performance versus portfolio performance 
Different reasons cause us to look at statistical measures for all the different model settings 

instead of looking directly at portfolio performance. Most important is that calculating statistical 

measures by taking 10 samples of 10-fold crossvalidation per model setting enables us to use the 

available learning sample in an efficient way. Taking 10 samples gives us confidence in the 

reliability of statistical measures, because we can ground our decisions for model selection on the 

average and corresponding standard deviation. We can observe directly whether the statistical 
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measures are robust or change heavily when just one of the model settings is changed. It is true 

that this could also be observed if you look at portfolio performance, but then you would just 

have one measure to base your decisions on.  

The distribution of the classification over the classes is valuable information with respect 

to model behaviour. If a classification model, with for example 4 classes, classifies all 

observations as just one or two classes there is no reason to use that model. Other models with 

fewer classes are then more suited to classify data. A model that assigns almost no observations 

to certain classes is not satisfactory and reliable to use for future portfolio management, because 

we assume a constant distribution of interest rate movements over time. Models that assign 

almost no observations to one or more classes are therefore not useful. So, it is very important 

that the classification trees are able to classify data quite close to its ‘true’ distribution. The 

distribution statistics are thus a useful criterion to select the most promising model settings to 

continue our research with.  As rule of thumb we say that if not at least 10% of the observations 

is assigned to each class, a model is not useful, i.e. at least 45 observations (10% of 455) have to 

be assigned to each class. 

A second reason why we do not directly focus on portfolio performance is, because 

measurement of a portfolio performance brings along all kinds of different decision problems. 

Namely, the portfolio performance might be heavily dependent on the selected period over 

which to measure portfolio performance, the re-estimation frequency of the classification trees, 

and whether or not to use rolling windows as learning sample. These degrees of freedom 

regarding portfolio performance will be tested in the next stage of our research if the number of 

model settings is reduced to a much smaller one. 
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Section 3. Eliminating model settings 

 

The most important result found is that models with weekly economic variables and the risk 

indicators as the input database have overall by far the most satisfactory statistical performance6. 

Correct prediction ratios are in general the highest for algorithms using this database and the rule 

of thumb for the distribution of the classification is in most cases satisfied. As it has turned out 

the satisfaction of the rule of thumb is very important for multiway trees. Apparently the use of 

only (weekly available) economic variables is not sufficient enough for classification trees. Also 

from an economic perspective we think that the combination of (frequent available) economic 

data changes and the absolute levels of risk indicators like volatility are indeed a very good 

combination to classify interest rate movements. In case of the largest database, we think that 

especially the large numbers of zeros in the database made it impossible to find variables with 

distinguishing power. Especially the use of Linear Discriminant Analysis (LDA) in some of the 

variable selection steps of the classification algorithms is not suited to deal with large number of 

non-available observations.  

If we only focus on the models with the weekly variables and risk indicators as input 

database the first classification algorithms we can eliminate are the QUEST algorithm and the 

CART with Twoing rule algorithm. The first because QUEST clearly underperforms both the 

CART algorithms when statistical measures are compared. The second is eliminated because it 

has mostly the same outcomes over all model settings as the CART with Gini Index algorithm, 

we prefer that one because it is more often used in practice. So, we will continue our research 

with just one binomial classification tree. This does not mean that the Twoing rule is useless for 

our problem.  

The choice between one of the two multiway classification trees isn’t that easy. Both 

algorithms have in some model settings a very satisfactory and promising performance, but they can 

differ for the same model settings. Therefore both classification tree algorithms will be 

considered in future research.  

The next step is to reduce the number of time horizons. Statistics of models with just one 

week as time horizon are not very robust and correct ratios are clearly below those for models 

with a time horizon of two or four weeks. Apparently, the effect of new economic data and risk 

indicators is not directly reflected in the interest rate in one week, possible it takes more time for 

the new data to be absorbed in the interest rate (and may also depend on other data that become 

available at a later point of time, these are not incorporated in our models).  

We are not able to eliminate one of our three initial choices of class structures. The effect 

of such a choice will hopefully be more revealed when we look at portfolio performance.  

As hoped the statistical performance of the different model settings is quite robust over 

the different split minimums. We like this because the choice of split minimum has apparently 

not a large impact on the model performance and the results are thus more reliable. On the other 

hand we are not able to determine if we should have a low split minimum or a high split 

minimum. Because of the robust outcomes from now on we choose to consider only models 

with a split minimum of 10, 25, and 50. 

                                                           
6 In Appendix D the statistical measure results for the FACT algorithm with economic week data and risk indicators 
can be found as example, other results are omitted to save space 
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Overall we have reduced the number of model settings to: 3 algorithms * 1 input database * 2 

time horizons * 3 class divisions * 3 split minimums = 54 model settings. In the next chapter we 

will try to find satisfactory classification models based on portfolio performance and the 

robustness of that performance.  
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Section 4. Portfolio construction and portfolio measure 
 

The next step in our research is to link forecasts of the 10-Year Bund interest rate movement by 

the use of classification trees to a portfolio strategy. Three possible investment signals about an 

interest rate movement can be given when we classify a new set of economic variables and risk 

indicators based on an estimated classification tree. Which class, i.e. investment action, in which 

model is related to a certain signal is given in the following table.  

Classification signal 3 classes 4 classes 5 classes 

Interest rate is expected to rise sell strong sell strong sell 

    sell sell 

Interest rate is expected to not move much hold xxx hold 

    buy buy 

Interest rate is expected to go down buy strong buy strong buy 

Table 4. Classification signals and corresponding class assignment/investment action 

 

To translate the classification signal into an investment strategy we first have to decide in 

which type of financial product to invest in. We choose to take a position in the 10-Year Bund 

Future7 for two or four weeks depending on our forecast horizon. The price of the 10-Year Bund 

moves in the opposite direction as the interest rate does. The reason is quite simple: Assume that 

the current 10-Year Bund interest rate is equal to the interest rate of an existing 10-Year Bund. If 

the 10-Year Bund interest rate rises, an investor holding the existing 10-Year Bund receives a 

lower return than if he would buy a new Bund with the higher interest rate. So the price of the 

older 10-Year Bund will go down. The opposite holds for a falling interest rate.  

Because we take a position in a future we do not need to invest any money at the time of 

purchase, such a strategy is called a zero-investment strategy. We will take a position every week 

(or no position in case of a ‘mid’ class forecast) in the 10 Year Bund future and take the relative 

return of the position after 2 or 4 weeks, depending on the time horizon, to measure the 

performance of the strategy. Transaction costs and possible margin account obligations are 

ignored. 

 The returns we make on our investment strategy are called α-performance8. To compare 

different returns of the α-performance for investment strategies based on different classification 

models we will look at the Sharpe Ratio. The Sharpe Ratio is a measure of the excess return per 

unit risk in our investment strategies and is introduced by Sharpe (1966).  If a constant risk-free 

rate is assumed the Sharpe Ratio is defined as: 
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−
=       (4.1) 

 

 

                                                           
7 A bond future is a contractual obligation for the contract holder to purchase or sell a bond on a specified date at a 
predetermined price. A bond future can be bought in a future exchange market and the prices and dates are 
determined at the time the future is purchased. 
8 α-performance is a measure of performance on a risk-adjusted basis. Alpha takes the volatility (price risk) of a 
mutual fund and compares its risk-adjusted performance to a benchmark index. The excess return of the fund 
relative to the return of the benchmark index is a fund’s alpha. 



 32 

Formula (4.1) is the Sharpe Ratio for an investment portfolio with an initial investment sum for 

which the risk-free rate could always be earned. Because our strategy is zero-investment strategy 

we cannot earn the risk-free rate on any money and should therefore not be included in the 

Sharpe Ratio to measure the α-performance. So the Sharpe Ratio reduces to: 

   

[ ]
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var
= .      (4.2) 

 

We consider a Sharpe Ratio of 0.5 as a very good alpha-performance, implying that the 

classification model succeeds in forecasting the 10-Year Bund interest rate movement resulting in 

an expected positive return without excessive return volatility. 

 

To test whether the Sharpe Ratios are significant different from 0 at the 95% level we have to 

determine the confidence interval (CI) of the Sharpe Ratios.  

We assume that all weekly returns R1, R2, …, Rt, … RT  are i.i.d.. In our empirical research we 

have 326 weekly returns (i.e. 6.5 years x 52 weeks), so T = 326. Furthermore it holds that: 
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To determine the confidence interval of the Sharpe Ratios we have to know the variance of the 

estimated Sharpe Ratio, which is equal to: 
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Therefore the 95% confidence interval of the weekly and yearly Sharpe Ratios are: 

1086.0ˆ
326

196.1ˆ196.1ˆ ±=⋅±=⋅±= WWWW RSRS
T

RSCI  (4.4) 

( ) 7828.0ˆ1086.0ˆ52 ±=±⋅= YWY RSRSCI      (4.5) 

 

Thus an estimated (yearly) Sharpe Ratio should be larger than 0.7828 to be significant different 

from 0 at the 95% confidence interval. We will give the confidence intervals of the Sharpe Ratios 

in the remainder of this thesis in brackets after the Sharpe Ratio. This level of 0.7828 is larger 

than our desired 0.5 level, nevertheless we feel that a Sharpe Ratio above the 0.5 level is still 

reasonable to focus our attention on. 
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Chapter 4. Portfolio performances 
 
In this chapter the portfolio performance of the classification models with some adjustments will 

be discussed. To compare the robustness of different portfolio performances we will start with 

the standard model settings in §4.1.1. The use of cost functions will be introduced in §4.1.2. and a 

comparison in performance between the use of a rolling window or expanding window can be 

found in §4.1.3. The choice of different class borders will be discussed in §4.1.4. As we will see 

throughout this chapter the FACT algorithm has the best portfolio performance for models with 

3 classes. Testing whether we made a good classification model choice is done in the second 

section of this chapter by looking at portfolio performances over the period outside the test 

period. 

 

 

Section 1. Portfolio performance robustness 
 

§ 4.1.1. Standard models: the portfolio performances 
As discussed in the previous chapter we choose CART with Gini Index as the binomial tree to 

link to a portfolio performance. Because we were not able to make a good choice for the 

multiway trees between the FACT and the CRUISE model, we decided to consider both with 

respect to portfolio performances. In the standard models equal costs for each misclassification 

are assumed. More practically, if a terminal node is reached, i.e. the number of observations in a 

node is less than the split minimum, its class label will automatically correspond to the class with 

the most observations in that node. 

At first we have to determine over which period we will measure a portfolio performance 

and how often we will re-estimate a classification model. We set the time window over which we 

will measure the performance as from 2001 until the half of 2007. It means that for the first 

period the classification models will be estimated with the use of two years of information (the 

years 1999 and 2000). For the estimation of the models over the remaining periods we will use all 

available information up to that period, i.e. we use an expanding window as learning sample. The 

question how often to re-estimate the classification models is more difficult to answer. Therefore 

we decide to use three re-estimation frequencies, so we will consider the portfolio performances 

in case of yearly re-estimation, semi-annually re-estimation, and quarterly re-estimation. A robust 

portfolio performance over the different re-estimation frequencies will definitely strengthen our 

confidence in a classification model. 

 

In Appendix E the yearly average return, yearly average standard deviation of the returns and the 

yearly Sharpe Ratios for the different chosen models can be found per classification algorithm. 

95% confidence intervals of the Sharpe Ratios are given between brackets. 

CART with Gini index: The portfolio performances for the CART algorithm are not that 

good at all. Most promising are the portfolio performances of models with 4 classes and 2 weeks 

time horizon. 7 out of 9 Sharpe Ratios are positive (minimum is -0.02) and  they are very high for 

the portfolios with quarterly re-estimation frequency. Those Sharpe Ratios are 0.55 (CI: -0.23, 

1.33), 0.89 (CI: 0.11, 1.67), and 1.03 (CI: 0.25, 1.81) for a split minimum of respectively 10, 25, 

and 50. Also interesting are the Sharpe Ratios for the model with 3 classes and 2 weeks time 
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horizon, 8 out of 9 Sharpe Ratios are positive. The portfolio performance of the other model 

settings are mostly negative. Furthermore, it isn’t possible to say anything on the development of 

Sharpe Ratios when split minimums are increased or when the re-estimation frequency is higher. 

FACT: Remarkably enough we find completely different portfolio performances for the 

FACT algorithm as than found for the CART with Gini index algorithm. The portfolio 

performance of the models with 3 classes are really good for the FACT algorithm. Only 2 out of 

18 models with 3 classes have a negative Sharpe Ratio (just -0.0004 and –0.0595), and 8 of those 

18 have a Sharpe Ratio above 0.5 (of which 5 Sharpe Ratios are at the 95% confidence interval 

significant different from 0). The best portfolio performance for each model with 3 classes is 

found for the semi-annually re-estimation frequency. The performances of the models with more 

than 3 classes are not good. Although we find three Sharpe Ratios above the 0.5 level for those 

models, we believe that these are just lucky coincidences, because if we look at the same models 

with (small) changes in split minimum or re-estimation frequency, Sharpe Ratios change 

dramatically. Meaning that the results for models with more than 3 classes are not robust. 

CRUISE: The portfolio performances for the models with this algorithm are the worst of 

the three algorithms. Also for this multiway tree algorithm we find only robust positive Sharpe 

Ratios for models with 3 classes. Nevertheless, these Sharpe Ratios are far below the levels as 

found for the FACT algorithm. 

 

From the analysis of the standard models we cannot choose one of the algorithms to be the best 

or most promising one yet. A very interesting observation is that CART performs well for 

models with 4 classes whereas FACT and CRUISE only perform well for models with 3 classes. 

This could be explained by how the two types, binomial versus multiway, classification trees 

work. The division of a set by a split of a variable into 4 or 5 disjoint subsets is not successful in 

our case, but mulitway trees with 3 classes per node are relatively well performing. Most likely we 

loose too much valuable information if we split a set into too many subsets to label terminal 

nodes correctly. Graphically one could say that we get a short and broad tree in these cases, the 

end of the tree is reached too fast. Whereas this is probably not the case when there are only 

three classes. For the CART algorithm that has binomial variable splits, we argue that especially 

the ‘choice’ of more classes in terminal nodes is of great value. At each step of the algorithm a 

subset of the larger set is separated such that one class is typical for that variable split. The larger 

the choice in classes the more easily it leads to a smaller split sub sample with less ‘noisy’ 

observations, but with a higher purity of a certain class in that subset. A hypothetical example 

where we focus on the error rate of the right distribution: 

 3 classes 4 classes 

Distribution node (40, 30, 30) (35, 25, 20, 20) 

split left distr. (15, 15, 15) (10, 15, 10, 15) 

split right distr. (25, 15, 15) (25, 10, 10, 5) 

# samples right 55 50 

err right distr. 30/55 = 6/11 25/50 =1/2 

Table 5. Classification example 

 

The error rate in the right split decreases in case of 4 classes even while the number of samples is 

also smaller compared to the case of 3 classes. In the next paragraph we will see if the 
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performances of models with different number of classes also hold when differences in 

classification costs are included.  

 

§ 4.1.2. Misclassification Costs 
Relaxing the assumption of equal misclassifications costs makes sense, especially in a financial 

context. From an investor’s point of view it is even not true that each type of prediction error has 

the same effect on a portfolio performance. Assume the three class model, the three possible 

classes/investment signals are (i) ‘buy’, (ii) ‘hold’, and (iii) ‘sell’. Let’s think from the perspective 

of a risk averse investor, the investor wants to have some confidence that the chance (based on 

historical data) of taking a ‘buy’ position’ while Bund prices will go down is relative small. On the 

other hand he does not care much if the Bund price does not change significantly. So, the costs 

of misclassifying a ‘hold’ event as ‘buy’ event’ are much smaller than the costs of misclassifying a 

‘sell’ event as ‘buy’ event. For example, assume we have a terminal node and we have to assign a 

class label to this node. Given 5 ‘buy’ observations, 1 ‘hold’ observations, and 4 ‘buy’ 

observations in the standard model the class label ‘buy’ would be assigned to the terminal node, 

but a risk aversion investor would rather want to assign the class label ‘hold’ because he does not 

have enough confidence in the fact that he will make money with such a decisions. In fact it 

could be that the ‘sell’ shocks are much larger than the ‘buy’ shocks and assigning ‘buy’ to this 

node is then a loosing money strategy. Unequal misclassification costs could prevent this problem 

as we point out in the next example: 

Possible misclassification matrix     

3 classes sell hold buy Numb. obs. Misclassification costs 

sell 0 1 3 #5 Costs assigning class label 1 5*0 + 1*1 + 4*3 = 13 

hold 1 0 1 #1 Costs assigning class label 2 5*1 + 1*0 + 4*1 = 9 

buy 3 1 0 #4 Costs assigning class label 3 5*3 + 1*1 + 4*0 = 16 

     Assign class label: label 2: 'hold’ position 

Table 6. Misclassification example 

 

With a ‘hold’ position as resulting class label, risks of opposite investment decisions are reduced; 

Sharpe Ratios give us the information whether the (possible) loss of returns are compensated by 

the reduction in volatility of the returns. 

 In the above sample misclassification costs are symmetric, i.e. misclassifying a ‘hold’ event 

as ‘buy’ event has the same costs as misclassifying a ‘buy’ event as ‘hold’ event. Also this does not 

have to be the case for an investor. Let’s repeat the example from §2.2.3.: “The costs associated 

with classifying a ‘buy’ event as ‘hold’ event could be higher than the costs for classifying a ‘hold’ 

event as ‘buy’ event, because in the first case investment opportunities are missed (high 

opportunity costs) and in the second case the costs of going buy when there are no (negative) 

shocks are only the transaction costs.” This is called asymmetry of misclassification costs. 

 

 We introduce two cost matrices to test whether our thoughts about misclassification 

make sense in our investor setting. The first cost matrix we propose has only ‘symmetric non-

equal misclassification costs’ and the second is a cost matrix with ‘non-symmetric non-equal 

misclassification costs’. Note that for the matrix with non-symmetric misclassification costs and 4 

classes it makes no sense from an investor perspective to include non-symmetric misclassification 



 36 

costs and are thus not incorporated, because we only have the buy and sell signal. Instead we 

look at another set of non-equal misclassification costs. 

 

Table 7. Suggested misclassification cost matrices 

 

In Appendix E the yearly average returns, yearly average standard deviation of the returns and the 

yearly Sharpe Ratios for the different model choices can be found per classification algorithm for 

both misclassification matrices. The most important results are discussed per algorithm and per 

suggested misclassification cost matrix.  

• Symmetric non-equal misclassification cost matrices 
CART with Gini index: By using the cost matrix no specific improvements for the 

portfolio performances are found. The Sharpe Ratios of the most promising model (4 classes and 

4 weeks time horizon) have not increased. On the other hand 5 out of 9 Sharpe Ratios did not 

change at all and the other 4 Sharpe Ratios have decreased minimally. This indicates that the 

CART algorithm is robust for changing the cost matrix from equal misclassification costs to a 

cost matrix with symmetric non-equal misclassification costs. Unfortunately, the Sharpe Ratios 

for the models with 3 classes, 2 weeks time horizon, and quarterly re-estimation frequency are all 

negative, instead of positive in the standard model.  

FACT: No clear improvements of Sharpe Ratios are found for models with the FACT 

algorithm. Good with respect to model robustness is to see that the portfolio performances for 

models with 3 classes are still positive. 

CRUISE: Although we observe much more Sharpe Ratios above the 0.5 level as we saw earlier 

(11 versus 2), we also observe a lot of decreasing Sharpe Ratios for different models. We do not 

see any structure in the improvements. Also the performances of the 3 class models, which had 

the highest Sharpe Ratios in the standard models, became worse. 

• Non-symmetric non-equal misclassification cost matrices 

CART with Gini index: The results have not improved at all. The Sharpe Ratios for the 

models with 4 classes and 4 weeks time horizon have become worse. Clearly, the use of the non-

symmetric non-equal misclassification cost matrices is not very helpful to improve portfolio 

performances for models with the CART algorithm. 

3 classes sell hold buy 3 classes sell hold buy

sell 0 1 3 sell 0 0,5 2

hold 1 0 1 hold 1 0 1

buy 3 1 0 buy 2 0,5 0

4 classes upup up down downdown 4 classes upup up down downdown

upup 0 1 3 3 upup 0 0,5 1 2

up 1 0 3 3 up 0,5 0 1 2

down 3 3 0 1 down 2 1 0 0,5

downdown 3 3 1 0 downdown 2 1 0,5 0

5 classes upup up mid down downdown 5 classes upup up mid down downdown

upup 0 1 1 3 3 upup 0 0,5 1 2 2

up 1 0 1 3 3 up 0,5 0 1 2 2

= 1 1 0 1 1 = 2 1 0 1 2

down 3 3 1 0 1 down 2 2 1 0 0,5

downdown 3 3 1 1 0 downdown 2 2 1 0,5 0

Symmetric non-equal misclassification cost matrices Non-symmetric non-equal misclassification cost matrices
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FACT: We find really great Sharpe Ratios for the models with 3 classes. If we look at the 

portfolios that are re-estimated at a semi-annually and quarterly frequency then we find that 10 

out of 12 Sharpe Ratios are above the 0.5 level. If we also include the portfolios with yearly re-

estimation, none of the Sharpe Ratios is negative (the smallest is 0.07). For models with more 

classes we do not observe robust improvements. 

CRUISE: With exception of the models with 4 classes and yearly and semi-annually re-estimation 

frequency, all Sharpe Ratios have decreased. When using the non-symmetric non-equal 

misclassification cost matrices the CRUISE algorithm again performs the worst of the three 

algorithms. 

  

 At the end of this paragraph we can conclude that the introduction of both symmetric 

and non-symmetric non-equal misclassification costs in our investor setting did not lead to 

improvements in portfolio performances, with one exception. The exception is the use of the 

non-symmetric non-equal misclassification cost matrix for 3 classes when using the FACT 

algorithm. It had the result that none of the 18 Sharpe Ratios for the models with 3 classes, two 

time horizons, and three re-estimation frequencies were negative. In fact 9 of 18 were above the 

0.5 level. That we did not find any other improvements by the introduction of both non-equal 

misclassification costs does not mean they could not be of great value in some (model) settings. 

Further research, beyond the scope of this thesis, should be done to find the direct influence of 

non-equal misclassification cost matrices on the performance of investment strategies. In that 

stage one could also link this to the expected, desired, or initial distribution of classes. Implying 

that the class distribution of the learning sample is not necessarily always in line with the future 

(desired) class distribution. Such inequalities could probably be resolved by the use of 

misclassification cost matrices. 

 At this stage of our research we decide to drop the CART with Gini index algorithm as a 

good model for 10-Year Bund investment purposes. Although we find some promising results 

for the models with 4 classes and 4 weeks time horizon, we observe that the Sharpe Ratios for 

the FACT algorithm for models with 3 classes are much higher and we believe that those 

portfolio performances are more robust. We also drop the CRUISE algorithm as a good model 

for Bund investment purposes. Even though it showed some satisfying results for models with 3 

classes, the FACT algorithm outperformed (based on Sharpe Ratios) these results. So, to test 

whether our choice for the use of an expanding window for the learning sample is a correct one, 

only the FACT algorithm is used.  

 

§ 4.1.3. Expanding window versus rolling window 
So far we only considered portfolio performances of models estimated with a learning sample 

collected by an expanding window; for every re-estimation we use all available information up to 

that moment in time. From a statistical point of view it is correct to do so. Namely, when using 

the classification algorithms we assume that the input is independently and identical distributed. 

In other words, it should hold that the distribution of our data, i.e. economic variables and risk 

indicators, does not change over time. An expanding window covers more data over time and it 

is therefore likely that, from this perspective, the data better fits its real (non-observable) 

distribution, i.e. the more data points, the more we are close to a data distribution (law of large 

numbers). 
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On the other hand this statistical behaviour has not to be true in financial practice. Why 

should we assume independently and identical distributed data? It is quite possible that the 

distribution of economic data changes over time by for example change in volatility; also the 

clustering of data is a well-known economic phenomenon. For our problem we can test this by 

using a rolling window as learning sample. A rolling window means that we only use the past n 

observations as learning sample for the re-estimation of a classification tree. We take a period of 

2 years to test portfolio performance of models re-estimated with a rolling window, so there are 

always 104 observations in our learning sample.  

The results for the FACT algorithm have definitely not improved. If we focus on the 

models with three classes for 13 of the 18 Sharpe Ratios we find lower values then in the 

standard model. Also the number of Sharpe Ratios above the 0.5 level has decreased to just 4 

(compared to 10 in the standard model). For the models with more than 3 classes we find the 

most positive Sharpe Ratios for models with yearly re-estimation, just one is negative. On the 

other hand we find the most negative Sharpe Ratios for the models with quarterly re-estimation, 

just 4 are positive. Remark that these last results are not that important as the outcomes for the 

models with 3 classes, because the performances of these classes are much lower.  

We can conclude this paragraph by stating that 2 years of data is overall a too short 

horizon to use as learning sample. One could also test the use of other rolling window lengths, 

but we decide to skip these tests. Main reason is the relative small size of our data set for which 

we therefore favour the use of an expanding window. 

 

§ 4.1.4. Change of class boundaries  
 In this paragraph we will test whether portfolio results for the FACT algorithm are robust 

or even can be improved when the class boundaries are changed. We have chosen to look only at 

models with 3 classes. Because the number of models is reduced to just to two, the model with 3 

classes and 2 weeks horizons and the model with 3 classes and 4 weeks time horizon, it is also 

more easy to test the robustness of the portfolio performance with respect to the split minimum. 

Therefore we will include split minimums of 10, 15, 20, 25, 35, and 50.   

So far all research on model performances is based on a rather classification of the interest rate 

movements (see § 3.1.3.). Class boundaries have been chosen such that opposite movements are 

symmetric and the level of movement is easy to interpret, e.g. 3 classes and 4 weeks time horizon: 

a ‘sell’ classification if the increase is larger than 10 base points, a ‘hold’ classification if the 

change is no larger than 10 base points, and a ‘buy’ classification if the decrease is larger than 10 

base points. The predefined classification of interest rate movements could have influenced our 

research. We do not have any guarantee that we will have the similar portfolio results for models 

with a (slightly) different input classification of the interest rate movements. Therefore we will 

study the robustness of the portfolio performances with respect to changes in class boundaries. 

We suggest three types of class boundary settings to classify the interest rate movements (keeping 

the number of possible class movements the same, thus 3), still satisfying the symmetry 

requirement.  
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The three adjusted class boundary settings are chosen such that: 

• the number of observations are almost equal over all classes 

• the extreme movements have twice as much observations as the less extreme movements 

• the extreme movements have half the observations as the less extreme movements 

Important to remark is that class label assignment in the models is based on a cost matrix with 

equal misclassifications as in the standard models. Thus, the misclassification costs of extreme 

movements in the opposite direction are three times the misclassification costs of other classes. 

The use of the last two class boundary settings will definitely have an impact on the model 

performance, but we cannot say on beforehand whether we expect extreme movements to be 

more or less predicted. Consequently, the first suggested class boundary change is the best 

proposal to test the robustness of our model choice. The adjusted class boundary settings can be 

found in table 8 together with the number of observations in the total learning sample: 

Table 8. Suggested class boundary settings 

 

In Appendix E the yearly returns, yearly standard deviation of the returns and the yearly Sharpe 

Ratios can be found per adjusted class boundary setting for the two models we have selected up 

to now. The most important results are discussed. 

•  Class boundary setting 1 (equal distribution of observations per class) 

 2 weeks time horizon: The results are superb. If we exclude the Sharpe Ratios of the models 

with a split minimum of 50 we observe only Sharpe Ratios above the 0.5 level. The 

minimum Sharpe Ratio is 0.74 (CI: -0.04, 1.52) and the maximum 1.37 (CI: 0.59, 2.15). 

Another important result to note is that (with exception of the model with a split 

minimum of 15) the Sharpe Ratio increases when the re-estimation frequency increases as 

shown in the graph 2. It means that with this choice of the class boundaries, including 

recent financial data in our model estimation leads to even improved forecasting ability of 

the model.  

4 weeks time horizon: The results for this model are even better (if we again exclude the split 

minimum of 50). All Sharpe Ratios are above the 0.5 level, with 0.59 (CI: -0.19, 1.37) the 

lowest and 1.60 (0.82, 2.38) as the highest. Remarkable is that these extremes are found 

for exact the same model settings as in the 2 weeks time horizon case. We find the 

minimums for the models with a split minimum of 10 and yearly re-estimation frequency, 

and we find the maximums for the models with also a split minimum of 10 but with 

quarterly re-estimation frequency. We think we can explain this as follows: if a model is 

very large (i.e. small split minimum) the end of the trees are very sensitive to just a small 

adj1 adj2 adj3 adj1 adj2 adj3

3 classes sell < -5.5bp < -3bp < -8bp 3 classes sell 158 192 129

2 weeks hold < +5.5bp < +3bp < +8bp 2 weeks hold 147 79 199

buy > +5.5bp > +3bp > +8bp buy 149 183 126

adj1 adj2 adj3 adj1 adj2 adj3

3 classes sell < -9bp < -6bp < -12bp 3 classes sell 147 177 122

4 weeks hold < +9bp < +6bp < +12bp 4 weeks hold 153 111 204

buy > +9bp > +6bp > +12bp buy 152 164 126

LEVELS OBSERVATIONS
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number of observations. Therefore it is important ‘to keep the ends of the tree up-to-

date’. When the trees are only re-estimated yearly, they are thus not really ‘fine-tuned’ 

with respect to recent developments in financial markets. 

 

Graphs 2 and 3: Sharpe Ratio versus re-estimation frequency 

  

• Class boundary setting 2 (the ‘sell’ and ‘buy’ class are twice as large as the ‘hold’ class) 

2 weeks time horizon: The portfolio performances are negative for the higher split 

minimums. The Sharpe Ratios are positive for the split minimums smaller than 35, but all 

below the 0.5 level. For those models we observe again increasing Sharpe Ratios if the re-

estimation frequency is higher (with exception of the model with a split minimum of 15). 

4 weeks time horizon: The portfolio performances for these models are all positive. If we 

again exclude the model with a split minimum of 50 we observe for the models with 

semi-annually re-estimation frequency and quarterly re-estimation frequency only Sharpe 

Ratios above the 0.5 level. Although these Sharpe Ratios are lower than for the models 

with class boundary setting 1, we can conclude that these high Sharpe Ratios are robust to 

changes in the class boundaries.  

• Class boundary setting 3 (the ‘mid’ class is twice as large as the ‘sell’ and ‘buy’ class) 

2 weeks time horizon: Portfolio performances have worsened dramatically. 4 of the 18 

Sharpe Ratios are negative and none is above the 0.5 level.  

4 weeks time horizon: Portfolio performances are dramatic. Just 6 of the 12 Sharpe Ratios 

are positive (the highest is 0.12). We can conclude from this test that the FACT algorithm 

does not succeed in forecasting only extreme interest rate movements. It needs more 

information on smaller changes in the interest rate to determine whether we might 

expected changes of the interest rate within a month time. 

 

To conclude this paragraph we argue that the FACT with Gini index model is robust (enough) 

for changes in the class borders as long as the group of ‘hold’ events is not too dominant. If the 

borders are changed to drastically in that way the models will fail to give positive performances. 

A very nice result of this sensitivity analysis with respect to class borders is that we found very 
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good performance improvements for the both time horizons. Also very important is that we have 

found that portfolio performance increases for higher re-estimation frequencies. 

We think that based on all sensitivity analyses in this section that the FACT model with 3 classes 

is a good model to get alpha-performance whether ones to take bets for a horizon of 2 weeks or 

4 weeks. To test whether this conclusion is correct we will look at the portfolio performance of 

these model for the period July 2007-January 2008 which is not included in our research so far.  
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Section 2. Out-of-sample portfolio performances 

 

In our analysis we have reduced the number of models that are useful in predicting interest rate 

movements for investment purposes to just two. These two are: 

• FACT algorithm with 3 classes and 2 weeks time horizon 

• FACT algorithm with 3 classes and 4 weeks time horizon 

The selection of the two is based on statistical measures (Chapter 3) and portfolio performances 

(Chapter 4) that are all based on a data set containing data of the period January 1999-June 2007. 

To test whether our analysis has resulted in the selection of two useful models we will look at the 

portfolio performance of the two models over the period July 2007-January 2008. During this 

period large chocks in financial markets are found as result of the problems with subprime 

mortgages (this period is called the credit crunch), and the (upcoming) recession in the United 

States.  

 

In the previous section we found that the higher the re-estimation frequency the better the 

portfolio performance of the model. We argued that this is the result of ‘keeping the ends of the 

tree up-to-date’. If this statement holds it will also be tested for the period July 2007-January 

2008. In the previous section we also did find that the highest Sharpe Ratios were found for 

models with a split minimum of 10, which is our smallest choice for the split minimum. We will 

check if we find the same result for the new data set. We did find such good Sharpe Ratios for 

the FACT algorithm when we used an equal distribution over the classes. Therefore we have 

taken the class borders such that we have an equal distribution over the classes for this out-of-

sample test. 

 

In Appendix E the positions taken every week together with the corresponding realized return 

can be found for all the different models. In table 9 we give an overview of the results with the 

absolute return realized over the seven months and the corresponding Sharpe Ratio. 

 
3 classes 2 weeks

return Sh. Ratio return Sh. Ratio return Sh. Ratio

splitmin 10 4,35% 0,58 -9,28% -1,25 -8,08% -1,06

splitmin 15 -4,72% -0,58 -9,28% -1,25 -8,08% -1,06

splitmin 20 -3,76% -0,46 -4,35% -0,57 -6,60% -0,85

splitmin 25 0,09% 0,01 -3,46% -0,42 -5,47% -0,65

splitmin 35 2,10% 0,25 -3,46% -0,42 -5,47% -0,65

splitmin 50 -1,18% -0,14 -14,15% -1,73 -19,43% -2,44

3 classes 4 weeks

return Sh. Ratio return Sh. Ratio return Sh. Ratio

splitmin 10 11,80% 1,83 6,12% 0,93 -0,79% -0,12

splitmin 15 11,80% 1,83 6,12% 0,93 -0,79% -0,12

splitmin 20 7,53% 1,11 -7,60% -0,97 -14,51% -1,93

splitmin 25 7,53% 1,11 -7,60% -0,97 -14,51% -1,93

splitmin 35 7,53% 1,11 -7,60% -0,97 -14,51% -1,93

splitmin 50 -0,33% -0,05 -7,60% -0,97 -14,51% -1,93

quarterly re-est. semi-annualy re-est. no re-est.

quarterly re-est. semi-annualy re-est. no re-est.

 
Table 9. Out-of-sample results 
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We will discuss the results per model: 

3 classes and 2 weeks time horizon: Only positive returns are earned if the trees are re-estimated 

quarterly. The returns over the different split minimums differ significantly. Remarkable is that 

we find the two highest Sharpe Ratios, split minimum of 10 and 35, were also in our sensitivity 

analysis found for these two split minimums. When we look at the returns per quarter (see 

appendix) then we find negative returns for all split minimums in the third quarter of 2007 and 

the same (positive) return for the first month of 2008 for all split minimums. So, the differences 

in returns are mainly the result of the difference in return in the fourth quarter of 2007. Now we 

also have the position taken as result of the interest rate forecast per split minimum, we can 

clearly see that the diversity in positions decrease when the split minimum increases. This can be 

explained by the fact that if a tree is relative small (i.e. large split minimum) there are fewer paths 

to different forecasts and thus one will often observe the same forecast if no extreme changes in 

economic data are found.  

3 classes and 4 weeks time horizon: Again returns increase when the trees are more frequently re-

estimated. The smaller the split minimum the higher the return (and Sharpe Ratio), but it does 

not change per split minimum change, which is very good with respect to robustness. Apparently, 

for the model with 4 weeks time horizon the portfolio performance is not heavily dependent on 

the split minimum chosen. We also observe almost no changes in the forecasts as the split 

minimum increases. Furthermore we see that the performance of the model with 4 weeks time 

horizon for these seven months is better than for the model with 2 weeks time horizon, just as 

we had for the original data set in § 4.1.4. 

 

This out-of-sample test has confirmed again that the FACT models with 3 classes are a good 

choice for Bund investment purposes, but only if the models are re-estimated at a quarterly re-estimation 

frequency. Recent developments in financial markets are thus very incorporate as learning in FACT 

algorithm. We also observed that forecasts change less often as the split minimum in the model 

increases. From an investment perspective it is not desired that a model gives the same signal 

over a long period of time. Therefore we argue that it is better to have a small split minimum in 

the FACT algorithm. Based on the performance over the complete period January 1999-January 

2008 we suggest a split minimum of 10. If we have to choose between the FACT model with a 

time horizon of 2 weeks of with 4 weeks, we would choose for a time horizon of 4 weeks. 

Apparently, the FACT model is most successful in forecasting interest rate movement over the 

longest time horizon. Thus, to conclude we suggest the FACT algorithm with 3 classes, 4 weeks 

time horizon, split minimum of 10, and class borders chosen such that class have an equal 

number of observations as the most useful model for 10-Year Bund investment purposes. 
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Chapter 5. Conclusion 
 

Goal of this Master Thesis was to investigate whether classification trees are useful for 10 Year 

Bund investment purposes. We started with a description of what classification trees actually are 

and how they are constructed. Classification trees assign a class outcome to the values of a set of 

variables. In our research economic data and risk indicators are used to classify 10-Year Bund 

interest rate movements. We discussed the CART, QUEST, FACT, and CRUISE algorithms to 

construct classification trees. These algorithms can be categorized as binomial trees and multiway 

trees. In binomial trees, the CART and QUEST algorithms, a node in the tree is split in two 

nodes. In multiway trees, the FACT and CRUISE algorithms, each node is divided into a number 

of nodes equal to the number of classes possible.  

 The next step was to determine which classification algorithm was the most successful in 

forecasting interest rate movements. Unfortunately, for each algorithm a large number of 

different degrees of freedom are possible within classification models. We considered the 

following degrees of freedom: 1.) what type of data set to use; 2.) the time horizon over which to 

forecast the interest rate movements; 3.) the number of classes to divide interest rate movements 

into; and 4.) the split minimum to use in the classification trees. To reduce the number of 

possible model settings effectively we decided to first look at different statistical measures like the 

error rate. At an early stage we could drop the QUEST algorithm, because it clearly 

underperformed compared to CART, the other binomial tree algorithm. Also the number of 

degrees of freedom in the models was easily reduced. Most important result is that we chose to 

use a dataset with weekly relative differences of economic data and both relative differences and 

absolute levels of certain risk indicators like volatility levels. A second result we found is that 

classification models are more successful forecasting interest rate movements over longer time 

horizons (2 and 4 weeks) than shorter time horizons (1 week).  

 The last stage of our research focused on the robustness of the selected classification 

models with respect to portfolio performances. We used Sharpe Ratios to measure the portfolio 

performance for investments in the 10-Year Bund that are based on the interest rate movement 

forecasts in the models. First we looked at the Sharpe Ratios in the standard models. Secondly, 

we introduced different non-symmetric misclassification matrices. The use of non-symmetric 

classification costs did not improve Sharpe Ratios. At this stage of the research we were able to 

make a decision about which classification tree algorithm had the best portfolio performance. We 

dropped the CART and CRUISE algorithms and continued our research with the FACT 

algorithm only. For the FACT algorithm we found that our initial choice of using a expanding 

window for the learning sample was a good one compared to the use of a rolling window. Next, 

to test whether portfolio performances of the FACT models were robust to changes in the 

borders used to classify interest rate movements, we suggested some different class borders. A 

second objective was to discover if portfolio performance could be improved by using other class 

borders. We got superb results for the class borders chosen such that all classes have an equal 

number of observations in the learning sample. Sharpe Ratios far above the desired 0.5 level were 

found. Best performing were the FACT models with 3 classes and time horizons of 2 and 4 

weeks. As a final test we looked at the performance of these models over the period July 2007-

January 2008 that was not included in our research so far. If the models were re-estimated 
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quarterly and the split minimum was low we still found good portfolio performances over this 

instable period in financial markets.  

Finally, we believe we can say that there is indeed a classification algorithm that might be 

useful for 10-Year Bund investment purposes. We conclude that the FACT algorithm with 3 

classes, 4 weeks time horizon, split minimum of 10, and class borders chosen such that class have 

an equal number of observations is the most useful classification model. 

  

Of course there are some drawbacks to our method of research. Most importantly is that 

we have no guarantee that our findings are the result of overfitting. We have tested four 

classification algorithms with so many degrees of freedoms in the model settings that it is clearly 

very likely that we were going to find one model that would give good portfolio performances. 

On the other hand we did find good portfolio performances over the period July 2007-January 

2008 for the models selected as the most useful over the period January 1999-June 2007. For 

those selected models we were also able to find reasonable explanations why a tree should be re-

estimated frequently and why the split minimum should not be large. A second drawback of our 

method of research is that we have found a classification model that is only suited for forecasting 

10-Year Bund interest rate movements. There is no general framework to determine what a good 

model choice is for interest rates with other maturities. Finally, the classification of the interest 

rate movements is arbitrarily and up to the user to choose together with the corresponding class 

borders. Though, a class border choice such that the number of classes assigned to each class in 

the learning sample is equal, seems reasonable and turned out to be a very successful one in our 

research.  

Further research should be done on the classification of movements of interest rates with 

other maturities. If the FACT algorithm would also be useful for those classifications, it would 

strengthen our conclusion that classification algorithms can be helpful to determine Bund 

investments. For the FACT algorithm itself, more research is needed to find a rule (of thumb) to 

determine an optimal split minimum. A closer look at the stability of classification trees when 

they are re-estimated is also necessary. The more robust they are, the more confidence one will 

have in classification tree forecasts. At last, if a longer data series come available, the effectiveness 

of the use of an expanding window for the learning sample could be questioned. 
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Appendix A. Statistical tests and definitions 

 

ANOVA F-statistic:  
A ratio of the Between Group Variation divided by the Within Group Variation 
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with: 
n = number of individuals all together 
I = number of groups 

X  = mean of entire data set 

X  Group i has: 
ni = # of individuals in group i 
xij = value for individal j in group i 

ix  = mean for group I 

ix  si = standard deviationn for group i 
 
Contingency table: 
In statistics contingency tables are used to record and analyse the relationship between two or 

more variable, most usually categorical variables. 

 

Pearson’s chi-square test: 
Tests a null hypothesis that the relative frequencies of occurrence of observed events follow a 

specified frequency distribution. The events are assumed to be independent and have the same 

distribution, and the outcomes of each event must be mutually exclusive.  

Chi-square is calculated by finding the difference between each observed and theoretical 
frequency for each possible outcome, squaring them, dividing each by the theoretical frequency, 
and taking the sum of the results. The number of degrees of freedom is equal to the number of 
possible outcomes, minus 1: 
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where  
Oi = an observed frequency 
Ei = an expected (theoretical) frequency, asserted by the null hypothesis 
n = the number of possible outcomes of each event 
 
A test of independence assesses whether paired observations on two variables, expressed in a 
contingency table, are independent of each other.  
A chi-sqaure probability of 0.05 or less is commpnly interpreted as justification for rejecting the 
null hypothesis that the row variable is unrelated (that is, only randomly related) to the column 
variable. The alternate hypothesis is accepted that both the variables have an associated 
relationship. 
 
P-value for F-statistic: 
Compare to F(I-1, n-1)-distribution with 
 I-1 = degrees of freedom in numerator (# groups –1) 
 n –I = degrees of freedom in denominator (rest of df) 

In general one rejects a null hypothesis if the calculated p-value is smaller than the 100%(1-α) level. 
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P-value for chi-square 
Compare to X((Jt – 1)(Mt – 1)), (Jt – 1)(Mt – 1) is the degrees of freedom 

• Jt the number of classes at node t 

• Mt the number of distinct categories in node t (of the categorical variable) 
 

Bonferroni method for multiple comparisons 
The more test on a data set are performed, the more likely it is that one rejects the null 
hypothesis while in fact the hypothesis is true (i.e. a Type I error). This is a consequence of the 
used methodology: If the number of tests increases, it is more likely to find in one or more cases 
a rare event such that we reject the null hypothesis. This problem is called the inflation of the 
alpha level. To correct for this one can use the Bonferroni method. 

Define: α  the significance level = ‘probability of making a Type I error’ 

1-α ‘probability of not making a Type I error’ 

(1-α)C ‘probability of not making a Type I error for a family of C tests’ 
α[PT] alpha per test = ‘probability of making a Type I error when dealing only with one 

specific test’ 

α[PF] alpha per family of tests = ‘probability of making at least one Type I error for the 
whole family of tests’ 

α[PT] = number of significant tests/total number of tests 
α[PF] = number of families with at least 1 Type I error/total number of families 

 α[PF] = 1 – (1 - α[PT])C 
 α[PT] = 1 – (1 - α[PF])1/C 
Bonferonni correction of α[PT]) is done by setting the critical signifance level equal to 
 α[PT]) = α[PC]/C 
 
Levene’s F-test: 
Levene’s F-test is used to test if k samples have equal variances. Equal variances across samples is 
called homogeneity of variance.  
The Levene test is defined as:  
Given a variable Y with sample of size N divided into k subgroups, where Ni is the sample size 
of the ith subgroup, the Levene test statistic is defined as: 
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 Zij = |Yij - iY |,  the mean of the ith subgroup 

 •iZ   the group means of the Zij 

. ••Z   the overall mean of the Zij  

 
For Levene’s F-statistic 
0% point = 0 
50% point = 0.9339 
75% point = 1.2964 
90% point = 1.7021 
95% point = 1.9856 
99% point = 2.6109 
99.9% point = 3.4789 
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Appendix B. Classification algorithms 
 
Algorithm 1. Variable selection in QUEST 

Let α € (0,1) be a pre-specified level of significance. Assume that X1, …, 
1KX  are ordered 

variables and 11+KX , …, XK are categorical variables. Given node t, let xij
(k) denote the value of 

the kth variable for the ith case in the jth class (i = 1,…, Nj
(t); j = 1, …, Jt; k = 1, …, K1). 

1.) If K1 ≥ 1, compute the ANOVA F-statistic Fk for each Xk, k = 1, …, K1. Let k1 be the 

smallest integer such that 
1k

F  = max{Fk : k = 1, …, K1} and define 

{ }
1)(,11 Prˆ

kJtNJ FF
tt
>= −−α , where 

21 ,vvF denotes the F-distribution with ν1 and ν2 

degrees of freedom. 

2.) If K > K1, compute the P-value of the aontingency table chi-square test of 

independence between class labels and category values for k = K1 + 1, … ,K. The 

degrees of freedom in each case are given by (nr –1)x(nc –1), where nr and nc are the 

numbers of rows and columns of the table with nonzero totals. Let k2 be the smallest 

integer such that ( ) ( ){ }KKkkk ,...,1:ˆminˆ
12 +== ββ  and define ( )22

ˆˆ kβα = . 

3.) Define k’ = k1 if ;ˆˆ
21 αα ≤ otherwise define k’ = k2. 

4.) If ( ) K/ˆ,ˆmin 21 ααα < , select variable Xk’ to split the node. 

5.) Otherwise. If ( ) K/ˆ,ˆmin 21 ααα ≥ , then 

a. Compute the ANOVA F-statistic Fk
(z) (k = 1, …, K1) for the ordered variables 

based on the absolute deviations ||
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xtNx . Let k’’ be the smallest integer such that Fk’’
(z) = 

max{Fk
(z) : k = 1, … ,K1}. 

b. Compute { })(

'')(,1Pr~ z

kJtNJ FF
tt
>= −−α . If α~< α/(K + K1), select variable Xk’’ 

to split the node. Otherwise select variable Xk’’. 

 

Algorithm 2. Split selection for an ordered variable in QUEST 
Let X be the selected variable to split node t. 

1.) Apply the 2-means clustering algorithm of Hartigan and Wong (1979) to divide the Jt 

classes into two superclasses A and B, using the two most extreme sample means as initial 

cluster centers. If the sample means are identical, let A contain the most populous class 

and B contain the other classes. 

2.) Let Ax and s2A denote the sample mean and variance of superclass A. Similarly, let Bx  

and s2B denote the corresponding quantities for superclass B. Let ( ) ( )∑ ∈
=

Aj
tjptAp ||  

and ( ) ( )tAptBp |1| −=  denote the superclass priors. 

3.) Take logs on both sides of the equation 

( ) ( ){ } ( ) ( ){ }BBBAAA sxxstBpsxxstAp /|/| 11 −=− −− φφ  to obtain the quadratic equation 

ax2 + bx + c = 0, where 

a. = s2A – s
2
B 
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b. = ( )222 ABBA sxsx ⋅−⋅  

c.  = ( ) ( ) ( ){ } ( ){ }[ ]ABBABAAB stBpstApsssxsx |/|log2 2222

+⋅−⋅ . 

If a = 0 and BA xx ≠ , there is only one root given by 

( ) ( ) ( ) ( ){ }tBptApsxxxxx ABABA |/|log2/ 21−
−−+= .  

The equation has no roots if a = 0 and BA xx = . 

4.) The node is split at X = d where d is defined as follows: 

a. If a = 0 then 
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b. Else, if a ≠ 0, then: 

i. If b2 – 4ac < 0, define ( ) 2/BA xxd += . It can be verified that b2 – 4ac ≥ 0 

if P(A| t) = P(B| t). 

ii. Else, If b2 – 4ac ≥ 0, then: 

1. Define d to be the root (2a)-1{-b ± acb 42 − } that is closer to 

Ax , provided this yield two nonempty nodes. 

2. Otherwise, define ( ) 2/BA xxd += . 

 

Algorithm 3. Split selection for a categorical variable in QUEST 
Suppose X is a categorical variable taking values in the set {c1, …, cM}. 

1.) Transform each value of X into an M-dimensional dummy column vector v = (v1, …, 

vM)’, where 




=
,0

,1
1v

otherwise

cX l=,
 

Let V be the N x M data matrix consisting of the v-values. 

2.) Let I denote the N x N identify matrix and let 1 be an N-column of 1’s. Let H = I – N-

111’ denote the centering matrix and obtain the singular value decomposition HV =  

PDQ’ with D = diag(d1, …, dM) such that d1≥ … ≥ dM ≥ 0. 

3.) Let ε be the machine precision, i.e., the smallest floating point number such that if u = 1 

+ ε, then u > 1. Define an eigenvalue dm as ‘positive’ if it satisfies dm > max(M, N)d1ε, and 

as ‘zero’ otherwise (Mathworks, 1991). The rank r of T is defined to be the number of 

‘positive’ eigenvalues. Let F denote the M x r submatrix of Q consisting of its first r 

columns and let U = diag(d1
-1, …, dr

-1). 

4.) Reduce the dimension of v by the transforming it to  y = F’v. 

5.) Define for each j the M x Nj matrix Lj = ( )vvvv
jj

−−
)()(

,...,  and let G bet the N x M 

matrix G = (L1, …, LJ)’, so that B = G’G. Perform a singular value decomposition of the 

matrix GFU and let a be the eigenvector associated with the largest eigenvalue. 

6.) Transform each v to ζ = a’UF’v. This maps each cl to a ζ-value. 

7.) Apply algorithm 1 to the ζ data values to split the node. 

8.) Re-express a split of the form ‘ζ ≤ ζ0’ to the form ‘X ∈A’. 
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Algorithm 4. CRIMCOORD transformation for categorical variables 
1.) Suppose X takes categorical values α1, ..., αc. 
2.) Define V = (v1, ..., vc) where vi = I(X = ai). 
3.) Transform the V-vectors to principal component axes and drop components with near 

zero variance. 
4.) Project the reduced-dimensional V-data onto the largest contingency crimcoord ζ. 

Replace X with the real-valued ζ in the rest of the algorithm. 
 
Algorithm 5. Splitting algorithm 1D in CRUISE 

Let α be a selected significance level (default is 0.05). Suppose X1, ..., 1KX are numerical and 

11+KX , ..., XK are categorical variables. 

1.) Carry out an ANOVA analysis on each numerical variable and compute its p-value. 

Suppose 
1KX  has the smallest p-value 1α̂ . 

2.) For each categorical variable, form a contingency table with the categorical values as rows 

and class values as columns and find its χ2 p-value. Let the smallest p-value be 2α̂  and the 

associated variable be 
2KX . 

3.) Define 
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4.) If ( ) K/ˆ,ˆmin 21 ααα < (first Bonferroni correction), choose Xk’ as the split variable. 

5.) Otherwise, find the p-value for Levene’s F-test on absolute deviations about the class 
mean foe each numerical variable. Suppose Xk’’ has smallest p-value α

~ . 
a. If α~< α/(K + K1), choose Xk’’ (second Bonferroni correction) 
b. Otherwise, choose Xk’. 

 
Algorithm 6. Splitting algorithm 2D in CRUISE 

Suppose X1, ..., 1KX are numerical and 11+KX , ..., XK are categorical variables. Let Jt be the 

number of classes represented at node t. 
1.) Marginal test for each numerical variable X: 

a. Divide the data into four groups at the sample quartiles of X. 
b. Construct a Jt x 4 contingency table with classes as rows and groups as columns. 
c. Compute the Pearson χ2 statistic with ν  = 3(Jt – 1) degrees of freedom. 
d. Convert χ2 to an appropriate standard normal value with the Peizer-Pratt 

transformation 
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where W = χ2 - ν + 1.  
Let zn denote the largest among the K1 z-values. 

2.) Marginal test for each categorical variable X: Let C denote the number of categories of X. 
a. Construct a Jt x C contingency table with classes as rows and the C categories as 

columns, 
b. Compute the Pearson χ2 statistic with (Jt – 1)(C – 1) degrees of freedom. 
c. Use the Peizer-Pratt transformation (1) to convert it to a z-value. 
Let zc denote the largest among the (K – K1) z-values. 

3.) Interaction test for each pair of numerical variables (Xk, Xk’): 
a. Divide the (Xk, Xk’) space into four quadrants as the sample medians. 
b. Construct a Jt x 4 contingency table with classes as rows and the quadrants as 

columns. 
c. Compute the Pearson χ2 statistic with 3(Jt – 1) degrees of freedom. 
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d. Use the Peizer-Pratt transformation (1) to convert t to a z-value. 
Let znn denote the largest among the K1(K1 – 1)/2 z-values. 

4.) Interaction test for each pair of categorical variables: Use pairs of categorical values to 
form the groups in the table. If the pair of variables take C1 and C2 categorical values, a Jt 
x C1C2 table is obtained. Let zcc denote the largest among the (K – K1)(K – K1 – 1)/2 z-
values. 

5.) Interaction tests for pairs (Xk, Xk’) where Xk is numerical and Xk’ is categorical: If Xk’ 
takes C values, obtain a Jt x 2C table. Let znc denote the largest among the K1(K – K1) z-
values. 

 
Let f* be the bootstrap value from Algorithm 7 (Bootstrap bias correction) and define 

{ }ncccnncn zzzfzzfz ,,*,,*max* = . 

1. If f*zn = z*, select the numerical variable with the largest z. 
2. If zc = z*, select a categorical variable with the largest z. 
3. If f*znn = z*, select the numerical variable in the pair with the larger z. 
4. If zcc = z*, select the categorical variable in the pair with the larger z. 
5. If znc = z*, select the categorical variable in the interacting pair.  

 
Algorithm 7. Bootstrap bias correction 

1.) Create a bootstrap learning sample by copying the values of the variable and 
bootstrapping the Y columns so that the response variable is independent of the 
predictors. 

2.) Apply steps 1-5 in Algorithm 2 (Splitting algorithm 2D) to the bootstrap sample to get 
five sets of z-values. 

3.) Given f > 1, select a numerical variable if f max{zn, znn} ≥ max{zc, zcc, znc}. Otherwise, 
select a categorical variable. 

4.) Repeat steps 1-3 many times with several values of f. Let W(f) be the proportion of times 
that a numerical variable is selected. 

5.) Linearly interpolate if necessary to find f* such that W(f*) equals the proportion of 
numerical variables in the data. 

 
Algorithm 8. Box-Cox transformation 
Suppose X is the selected variable. If X is categorical, its values are first transformed to 
crimcoord values. 

1.) Let x(i) denote the i
th order statistic. Define θ = 0 if x(1) > 0 and θ = 2x(1) – x(2) otherwise. 

2.) Given λ, define 
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3.) Let λ̂ be the minimizer of [ ] ( )∑∑ ∑∑
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the ith value of X in class j and 
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jx is the sample class mean of their transformed values. 

4.) Transform each x value to )ˆ(λx . 
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Appendix C. Selected Variables 
 

M = Monthly available data 
W =Weekly available data 
RI = Risk indicator (available at weekly frequency) 
 
GER = Germany 
EUR = Euro zone 
US = United States 
Em. Mar = Emerging markets 
 
Change = absolute change taken as variable 
Stationair (xx) = Equilibrium level is xx, absolute change taken as variable 
Absolute = absolute value taken as variable 
Trend = variable contains trend, relative difference taken as variable 
MoM = monthly change taken as variable 
YoY = yearly change taken as variable 

 
 

Name Start data Month/Week/RI GER/EUR/US Quote type Description 

EUBCI jan-95 M EUR Change Economy Indicator 

EUESEMU jan-95 M EUR Stationair (100) Economic Sentiment 

EUCCEMU jan-95 M EUR Absolute Consumer Confidence 

CPEXEMU mrt-96 M EUR Trend Consumer Prices 

PPTXEMU jan-95 M EUR Trend Producer Prices Industry 

EUITEMU jan-95 M EUR Trend Industrial Production 

CPALEMU mrt-96 M EUR Trend Harmonized Consumer Prices 

ECMSM3 jan-95 M EUR Trend Money Supply M3 

OLEDEU12 jan-95 M EUR Trend OECD Leading Indicators EU12 

GRIMP95 jan-95 M GER Stationair (100) Import Prices 

GRIFPBUS jan-95 M GER Stationair (100) Business Climate 

GRIFPEX jan-95 M GER Stationair (100) Business Expectations 

PCE CONC jan-95 M US Trend Personal Consumption Expenditures 

PITL jan-95 M US Trend Personal Income (SAAR) 

PCE CORE jan-95 M US Trend Personal Consumption Expenditures  

NFP TCH jan-95 M US Absolute Employees on Nonfarm payrolls 

IP CHNG jan-95 M US MoM Industrial Production 

DGNOTOT jan-95 M US Trend Durable Goods New Orders 

NAPMNEWO jan-95 M US Stationair (50) Manufacturing 

NAPM PMI jan-95 M US Stationair (50) Manufacturing 

NAPMBACK jan-95 M US Stationair (50) Manufacturing 

USHBMIDX jan-95 M US Stationair (50) Home Builders Index 

GRIFOBSI jan-95 M EUR Stationair (100) Business Climate 

GEINYY jan-95 M GER YoY Industrial Production 

RSSAEMUM apr-95 M EUR MoM Retail Sales Volume 

RSWAEMUY apr-96 M EUR YoY Retail Sales Volume 

GRCP20MM jan-95 M GER MoM Consumer Prices 

GRCP20YY jan-95 M GER YoY Consumer Prices 

GRCP2HMM apr-95 M GER MoM Harmonized Consumer Prices 

GRCP2HYY mrt-96 M GER YoY Harmonized Consumer Prices 

NAPMPRIC jan-95 M US Stationair (50) Purchasing costss 

GRZEWI jan-95 M GER Change Economic Expectations 

GRZECURR jan-95 M GER Change Economic Sentiment 

PPI CHNG jan-95 M US Change Producer Prices 

PPI YOY jan-95 M US YoY Producer Prices 

PXFECHNG jan-95 M US Change Producer Prices 

PPI XYOY jan-95 M US YoY Producer Prices 

RSTAMOM jan-95 M US MoM Adjusted Retail&Food Services 

MTIBCHNG jan-95 M US Change Manufacturing&Trade 

GRFRIAMM jan-95 M GER MoM Retail Sales Constant 

GRFRINYY jan-95 M GER YoY Retail Sales Constant 
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EUICEMU jan-95 M EUR Change Manufacturing 

EUSCEMU may-95 M EUR Change Services 

PITLCHNG jan-95 M US Change Personal Income 

PCE CRCH jan-95 M US Change Personal Consumption Expenditure 

PCE DEFY jan-95 M US Change Personal Consumption Expenditure 

PCE CMOM jan-95 M US MoM Personal Consumption Expenditure 

PCE CYOY jan-95 M US YoY Personal Consumption Expenditure 

GRUECHNG jan-95 M GER Change Unemployment 

GRUEPR jan-95 M GER Stationair (10) Unemployment 

TMNOCHNG jan-95 M US Change Manufacturing New Orders 

UMRTEMU jan-95 M EUR Change Unemployment 

USURTOT jan-95 M US Rate Unemployment 

NAPMNMAN aug-97 M US Stationair (50) Non-Manufacturing 

EUITEMUM jan-95 M EUR MoM Industrial Production 

EUIPEMUY jan-95 M EUR YoY Industrial Production 

GRIFPCA jan-95 M GER Stationair (100) Economic Sentiment 

NHSLTOT jan-95 M US Absolute New (1-familiy) Houses Sold 

NHSLCHNG jan-95 M US Change New (1-familiy) Houses Sold 

GRPFIYOY jan-95 M GER YoY Producer Prices 

GRPFIMOM jan-95 M GER MoM Producer Prices 

IMP1CHNG jan-95 M US Change Import Prices 

IMP1YOY% jan-95 M US YoY Import Prices 

CONCCONF jan-95 M US Stationair (100) Consumer Confidence 

      

SX5E jan-95 W US Trend Euro STOXX 50 

M1 jan-95 W US Trend Money Supply M1 

US0003M jan-95 W US Interest Rate 3M Interest Rate 

SPX jan-95 W US Trend S&P 500 

GSINER jan-95 W US Trend Industrial 

CRY jan-95 W WORLD Trend Commodity market 

CL1  jan-95 W WORLD Trend Oil 

GC1  jan-95 W WORLD Trend Gold 

GETB1 jan-95 W GER Interest Rate 6 Month rate 

EU0003M jan-95 W EUR Interest Rate 3M Interest Rate 

INJCJC jan-95 W US Nominal Initial Job Claims 

INJCSP jan-95 W US Nominal Continuing Job Claims 

EURR002W jan-99 W EUR Interest Rate Refi 

ACNFCOMF jan-95 W US Stationair (0) ABC News\Washington Post US Survey 

EURUSD  jan-99 W EUR Change EUR/USD 

EURGBP  jan-99 W EUR Change EUR/GBP 

EURJPY  jan-99 W EUR Change EUR/JPY 

JPMVXYG7 jan-99 RI G7 Nominal 3-month FX volatility G7 

VIX jan-99 RI US Nominal US equity implied volatility (ie. VIX) 

MSELEGF jan-99 RI Em. Mar. Trend EM Equities 

EUSS10 jan-99 RI EUR Change Swap spreads 

USSP10 jan-99 RI US Change Swap spreads 

JYSS10 jan-99 RI Japan Change Swap spreads 

JPEMSOSD jan-99 RI Em. Mar. Change EM Bond Spreads (over Treasuries) 

EURUSDV1Y CMPN  jan-99 RI Euro/Dollar Volatility level 1-year FX volatility (GHI) 

EURJPYV1Y CMPN  jan-99 RI Euro/Yen Volatility level 1-year FX volatility (GHI) 

USDJPYV1Y CMPN  jan-99 RI Dollar/Yen Volatility level 1-year FX volatility (GHI) 
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Appendix D. Statistical measures FACT: weekly data and risk indicators 
 

Upup = ‘strong sell’-event; Up = ‘sell’-event;  
Down = ‘buy’-event; Downdown = ‘strong buy’-event 
3c = 3 classes; 4c = 4 classes; 5c = 5 classes;  WDRI = Weekly Data and Risk Indicators 
1W = 1 week time horizon; 2W = 2 week time horizon; 4W = 4 week time horizon; 
Note that all number are the average of 10 sample of 10-fold crossvalidation 

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

3c_WDRI_1W 0,6009 0,6007 0,5989 0,5978 0,6108 0,6088 0,6198

3c_WDRI_2W 0,6474 0,6452 0,6549 0,6366 0,6533 0,6527 0,6535

3c_WDRI_4W 0,5869 0,5788 0,5960 0,6035 0,6099 0,6124 0,6104

4c_WDRI_1W 0,7125 0,7147 0,7152 0,7158 0,7180 0,7266 0,7295

4c_WDRI_2W 0,7333 0,7328 0,7311 0,7249 0,7209 0,7502 0,7320

4c_WDRI_4W 0,7286 0,7173 0,7239 0,7217 0,7128 0,7144 0,7199

5c_WDRI_1W 0,7429 0,7475 0,7530 0,7517 0,7528 0,7549 0,7444

5c_WDRI_2W 0,7238 0,7410 0,7355 0,7408 0,7348 0,7414 0,7526

5c_WDRI_4W 0,7509 0,7456 0,7509 0,7584 0,7608 0,7681 0,7812

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

3c_WDRI_1W 0,2670 0,2873 0,2808 0,2701 0,2789 0,2783 0,2724

3c_WDRI_2W 0,3405 0,3226 0,3304 0,3327 0,3548 0,3339 0,3312

3c_WDRI_4W 0,2243 0,2174 0,2267 0,2322 0,2424 0,2378 0,2388

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

3c_WDRI_1W 0,2897 0,2566 0,2753 0,2913 0,2760 0,2752 0,2737

3c_WDRI_2W 0,3552 0,3631 0,3544 0,3822 0,3602 0,3619 0,3731

3c_WDRI_4W 0,4093 0,4252 0,4143 0,4118 0,3934 0,3904 0,4043

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

3c_WDRI_1W 0,2828 0,2643 0,2763 0,2933 0,2760 0,2791 0,2728

3c_WDRI_2W 0,3099 0,3022 0,3205 0,2902 0,3136 0,3115 0,2969

3c_WDRI_4W 0,1980 0,2043 0,2140 0,2234 0,2238 0,2516 0,2409

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

3c_WDRI_1W 0,2710 0,3129 0,3024 0,2912 0,2880 0,2918 0,2790

3c_WDRI_2W 0,3898 0,3988 0,3808 0,3963 0,3729 0,3817 0,3815

3c_WDRI_4W 0,4201 0,4228 0,3880 0,3733 0,3736 0,3595 0,3561

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

3c_WDRI_1W 74 80 85 90 91 91 97

3c_WDRI_2W 164 160 169 158 154 152 157

3c_WDRI_4W 141 135 141 131 133 139 130

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

3c_WDRI_1W 312 306 297 291 278 277 275

3c_WDRI_2W 114 121 115 131 133 133 146

3c_WDRI_4W 186 194 184 198 198 198 208

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

3c_WDRI_1W 69 69 73 74 86 88 83

3c_WDRI_2W 177 173 170 165 167 169 151

3c_WDRI_4W 125 123 126 123 121 115 114

PREDICTION: # UP

PREDICTION: # MID

PREDICTION: # DOWN

ERROR RATE

ERROR RATE UP

ERROR RATE DOWN

CORRECT RATE UP

CORRECT RATE DOWN
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min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 47 51 57 58 58 66 67

4c_WDRI_2W 92 91 86 92 86 85 85

4c_WDRI_4W 79 86 77 87 92 93 95

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 130 134 131 137 138 139 152

4c_WDRI_2W 117 126 124 127 126 133 135

4c_WDRI_4W 122 133 130 130 127 126 126

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 243 226 216 201 202 199 177

4c_WDRI_2W 181 175 174 171 174 167 161

4c_WDRI_4W 189 167 181 166 165 164 157

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 35 44 51 60 57 52 59

4c_WDRI_2W 65 62 71 65 69 69 73

4c_WDRI_4W 63 66 65 70 69 69 76

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

5c_WDRI_1W 46 46 41 37 40 43 43

5c_WDRI_2W 14 18 26 28 30 32 34

5c_WDRI_4W 124 122 118 115 108 109 106

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

5c_WDRI_1W 58 55 67 65 63 70 76

5c_WDRI_2W 70 76 98 94 93 102 106

5c_WDRI_4W 37 39 47 49 50 57 66

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

5c_WDRI_1W 215 207 206 211 203 203 198

5c_WDRI_2W 246 227 210 211 207 195 183

5c_WDRI_4W 97 110 98 104 108 113 104

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

5c_WDRI_1W 125 133 123 123 127 117 112

5c_WDRI_2W 120 123 109 106 111 106 111

5c_WDRI_4W 105 100 94 100 102 94 99

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

5c_WDRI_1W 11 14 18 19 22 23 26

5c_WDRI_2W 4 10 12 15 14 19 20

5c_WDRI_4W 90 81 95 84 84 80 77

PREDICTION: # UPUP

PREDICTION: # UP

PREDICTION: # DOWN

PREDICTION: # DOWNDOWN

PREDICTION: # MID

PREDICTION: # DOWNDOWN

PREDICTION: # UPUP

PREDICTION: # UP

PREDICTION: # DOWN
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min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,1947 0,1914 0,1885 0,1929 0,1842 0,1934 0,1880

4c_WDRI_2W 0,2488 0,2438 0,2436 0,2465 0,2384 0,2575 0,2334

4c_WDRI_4W 0,2034 0,2027 0,2083 0,2048 0,2004 0,2095 0,1951

5c_WDRI_1W 0,1546 0,1380 0,1380 0,1590 0,1546 0,1455 0,1251

5c_WDRI_2W 0,1114 0,1207 0,1237 0,1132 0,1051 0,1031 0,1123

5c_WDRI_4W 0,2310 0,2166 0,2067 0,2383 0,2254 0,2183 0,2139

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,2085 0,2053 0,1963 0,2152 0,1930 0,2079 0,2192

4c_WDRI_2W 0,1700 0,1639 0,1820 0,1657 0,1780 0,1797 0,1897

4c_WDRI_4W 0,1557 0,1816 0,1668 0,1681 0,1580 0,1564 0,2037

5c_WDRI_1W 0,0883 0,1749 0,1443 0,1422 0,1863 0,1408 0,1997

5c_WDRI_2W 0,0889 0,1798 0,2060 0,1275 0,1541 0,1726 0,1651

5c_WDRI_4W 0,1694 0,1994 0,2178 0,1789 0,2044 0,2006 0,2116

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,2746 0,2762 0,2818 0,2822 0,2769 0,2783 0,2797

4c_WDRI_2W 0,2683 0,2675 0,2730 0,2671 0,2577 0,2680 0,2778

4c_WDRI_4W 0,2545 0,2369 0,2480 0,2454 0,2439 0,2398 0,2374

5c_WDRI_1W 0,1965 0,2027 0,1996 0,2101 0,1768 0,1827 0,2087

5c_WDRI_2W 0,2065 0,2182 0,2102 0,2062 0,2082 0,2169 0,2032

5c_WDRI_4W 0,1193 0,1156 0,1091 0,1127 0,1256 0,1306 0,1226

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,2521 0,2766 0,2678 0,2383 0,2833 0,2856 0,2784

4c_WDRI_2W 0,2629 0,3197 0,3061 0,2800 0,2882 0,2622 0,2722

4c_WDRI_4W 0,2628 0,2633 0,2526 0,2539 0,2166 0,2464 0,2336

5c_WDRI_1W 0,1772 0,2124 0,1503 0,1513 0,1281 0,1598 0,1719

5c_WDRI_2W 0,2111 0,1883 0,1428 0,1486 0,1968 0,2166 0,1527

5c_WDRI_4W 0,1454 0,1266 0,1249 0,1458 0,1499 0,1411 0,1469

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,3233 0,3248 0,3066 0,3072 0,3115 0,3152 0,3251

4c_WDRI_2W 0,3169 0,3028 0,2954 0,3068 0,2986 0,2947 0,3115

4c_WDRI_4W 0,2381 0,2223 0,2416 0,2487 0,2425 0,2476 0,2481

5c_WDRI_1W 0,1816 0,2076 0,2282 0,2421 0,2485 0,1863 0,2047

5c_WDRI_2W 0,2093 0,2205 0,1967 0,2075 0,2407 0,2217 0,1563

5c_WDRI_4W 0,1926 0,1814 0,2005 0,1807 0,1837 0,1934 0,2025

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,3275 0,3280 0,3339 0,3385 0,3278 0,3468 0,3261

4c_WDRI_2W 0,3273 0,3253 0,3452 0,3102 0,3109 0,3243 0,3071

4c_WDRI_4W 0,3215 0,3232 0,3139 0,3121 0,2988 0,3041 0,3087

5c_WDRI_1W 0,3034 0,3018 0,2792 0,2818 0,2707 0,2841 0,2763

5c_WDRI_2W 0,2518 0,2489 0,2440 0,2624 0,2427 0,2352 0,2764

5c_WDRI_4W 0,1833 0,1718 0,1882 0,2064 0,2170 0,1805 0,1709

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,1824 0,1946 0,1837 0,1759 0,2058 0,1988 0,2144

4c_WDRI_2W 0,1610 0,1969 0,1790 0,1971 0,1802 0,1898 0,1613

4c_WDRI_4W 0,1484 0,1679 0,1655 0,1552 0,1639 0,1655 0,1694

5c_WDRI_1W 0,1430 0,1052 0,1057 0,1258 0,1039 0,0851 0,1315

5c_WDRI_2W 0,0988 0,1120 0,0980 0,0935 0,0973 0,1075 0,0880

5c_WDRI_4W 0,1563 0,1718 0,1698 0,1904 0,1834 0,1914 0,1987

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,1825 0,1803 0,1871 0,1869 0,1784 0,1794 0,1859

4c_WDRI_2W 0,2132 0,2130 0,2207 0,2013 0,2156 0,2096 0,2303

4c_WDRI_4W 0,2229 0,2144 0,2112 0,2160 0,2026 0,2100 0,2049

5c_WDRI_1W 0,0845 0,0778 0,0789 0,0774 0,0723 0,0762 0,1024

5c_WDRI_2W 0,1082 0,1046 0,1052 0,1204 0,1216 0,0941 0,1067

5c_WDRI_4W 0,1672 0,1773 0,1801 0,1700 0,1709 0,2106 0,1842

PREDICTED: UP, OBSERVED: DOWNDOWN

PREDICTED: DOWNDOWN, OBSERVED: UP

PREDICTED: UPUP, OBSERVED: DOWNDOWN

PREDICTED: UPUP, OBSERVED: DOWN

PREDICTED: UP, OBSERVED: DOWN

PREDICTED: DOWN, OBSERVED: UPUP

PREDICTED: DOWNDOWN, OBSERVED: UPUP

PREDICTED: DOWN, OBSERVED: UP
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min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,1802 0,1862 0,2201 0,2189 0,2041 0,2032 0,1718

4c_WDRI_2W 0,2609 0,2514 0,2645 0,2501 0,2640 0,2153 0,2819

4c_WDRI_4W 0,3413 0,3433 0,3290 0,3218 0,3266 0,3120 0,3057

5c_WDRI_1W 0,2098 0,2075 0,1749 0,1717 0,2159 0,1966 0,1892

5c_WDRI_2W 0,1559 0,1699 0,1766 0,1807 0,1501 0,1337 0,1972

5c_WDRI_4W 0,2907 0,2906 0,2859 0,2867 0,2851 0,2837 0,2670

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,2081 0,2157 0,2038 0,1878 0,2154 0,1973 0,2127

4c_WDRI_2W 0,2158 0,2287 0,2208 0,2377 0,2235 0,2424 0,2182

4c_WDRI_4W 0,2513 0,2287 0,2483 0,2514 0,2533 0,2543 0,2483

5c_WDRI_1W 0,1234 0,1396 0,1419 0,1271 0,1364 0,1630 0,1407

5c_WDRI_2W 0,1472 0,1395 0,1518 0,1377 0,1383 0,1510 0,1186

5c_WDRI_4W 0,3028 0,2938 0,2760 0,3228 0,2790 0,2783 0,2929

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,3141 0,2944 0,2896 0,2981 0,2786 0,2829 0,2887

4c_WDRI_2W 0,2612 0,2490 0,2611 0,2460 0,2572 0,3002 0,2454

4c_WDRI_4W 0,2722 0,2665 0,2639 0,2743 0,2670 0,2750 0,2768

5c_WDRI_1W 0,2036 0,2085 0,2140 0,2074 0,2019 0,2420 0,1891

5c_WDRI_2W 0,2241 0,1919 0,2328 0,2183 0,2146 0,2393 0,2916

5c_WDRI_4W 0,1846 0,1942 0,1825 0,1694 0,1714 0,1737 0,1942

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,2819 0,2760 0,2753 0,2868 0,2784 0,2767 0,2753

4c_WDRI_2W 0,2438 0,2330 0,2133 0,2507 0,2500 0,2237 0,2445

4c_WDRI_4W 0,2043 0,2337 0,2266 0,2205 0,2454 0,2317 0,2381

5c_WDRI_1W 0,2120 0,2029 0,2208 0,2265 0,2398 0,2092 0,2070

5c_WDRI_2W 0,2420 0,2415 0,2177 0,2200 0,2205 0,2206 0,2085

5c_WDRI_4W 0,1536 0,1599 0,1642 0,1389 0,1399 0,1580 0,1431

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,3224 0,3269 0,3256 0,3200 0,3303 0,3170 0,3291

4c_WDRI_2W 0,2852 0,3025 0,3076 0,3027 0,3150 0,2909 0,2951

4c_WDRI_4W 0,3020 0,3158 0,3059 0,3132 0,3129 0,3213 0,3203

5c_WDRI_1W 0,2503 0,2475 0,2514 0,2421 0,2336 0,2507 0,2716

5c_WDRI_2W 0,2646 0,2329 0,2676 0,2568 0,2873 0,2866 0,2610

5c_WDRI_4W 0,2386 0,2560 0,2445 0,2434 0,2482 0,2352 0,2064

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,3269 0,2969 0,3263 0,3272 0,3271 0,3169 0,3085

4c_WDRI_2W 0,3014 0,2567 0,2325 0,2783 0,2783 0,3086 0,3065

4c_WDRI_4W 0,3620 0,3330 0,3485 0,3294 0,3738 0,3330 0,3313

5c_WDRI_1W 0,3000 0,1899 0,2295 0,2631 0,2460 0,2776 0,2539

5c_WDRI_2W 0,1667 0,2260 0,2051 0,2515 0,2620 0,2217 0,2599

5c_WDRI_4W 0,2124 0,2160 0,2237 0,2183 0,2014 0,2212 0,2241

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,2084 0,2055 0,2041 0,2049 0,2086 0,2114 0,2033

4c_WDRI_2W 0,1993 0,1834 0,1752 0,1858 0,1887 0,1887 0,1947

4c_WDRI_4W 0,2401 0,2447 0,2378 0,2366 0,2428 0,2295 0,2473

5c_WDRI_1W 0,0994 0,1176 0,1176 0,0966 0,1162 0,1088 0,1048

5c_WDRI_2W 0,0974 0,1026 0,0975 0,1007 0,0888 0,0885 0,0968

5c_WDRI_4W 0,2541 0,2524 0,2748 0,2410 0,2387 0,2327 0,2675

min split 50 min split 40 min split 30 min split 25 min split 20 min split 15 min split 10

4c_WDRI_1W 0,2125 0,2212 0,2095 0,2192 0,1966 0,1896 0,1939

4c_WDRI_2W 0,2657 0,2598 0,2794 0,2759 0,2555 0,2494 0,2317

4c_WDRI_4W 0,2195 0,2221 0,2321 0,2486 0,2517 0,2642 0,2314

5c_WDRI_1W 0,1062 0,0886 0,0572 0,0745 0,0947 0,1095 0,1085

5c_WDRI_2W 0,1917 0,0458 0,0709 0,1039 0,1090 0,1003 0,0971

5c_WDRI_4W 0,2584 0,2475 0,2374 0,2376 0,2352 0,2139 0,2097

PREDICTED: UPUP, OBSERVED: UPUP

PREDICTED: UP, OBSERVED: UPUP

PREDICTED: UPUP, OBSERVED: UP

PREDICTED: UP, OBSERVED: UP

PREDICTED: DOWN, OBSERVED: DOWN

PREDICTED: DOWNDOWN, OBSERVED: DOWN

PREDICTED: DOWN, OBSERVED: DOWNDOWN

PREDICTED: DOWNDOWN, OBSERVED: DOWNDOWN
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Appendix E. Portfolio performances 
 

All Sharpe Ratios above the 0.5 level are highlighted 

 

 

 

 

  

CART standard model

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 -0,0126 0,0320 -0,3937 0,0024 0,0312 0,0770 0,0092 0,0374 0,2459

3 classes 2 weeks split 25 0,0122 0,0412 0,2962 0,0204 0,0405 0,5032 0,0070 0,0428 0,1646

3 classes 2 weeks split 50 0,0019 0,0441 0,0424 0,0146 0,0428 0,3415 0,0008 0,0401 0,0200

3 classes 4 weeks split 10 -0,0267 0,0595 -0,4486 0,0283 0,0571 0,4952 0,0277 0,0496 0,5579

3 classes 4 weeks split 25 -0,0404 0,0603 -0,6698 -0,0037 0,0599 -0,0610 0,0096 0,0510 0,1891

3 classes 4 weeks split 50 -0,0417 0,0624 -0,6678 -0,0373 0,0559 -0,6670 -0,0243 0,0514 -0,4739

4 classes 2 weeks split 10 -0,0219 0,0669 -0,3266 0,0247 0,0661 0,3741 -0,0159 0,0662 -0,2397

4 classes 2 weeks split 25 -0,0149 0,0670 -0,2225 0,0205 0,0662 0,3095 -0,0005 0,0662 -0,0071

4 classes 2 weeks split 50 -0,0218 0,0669 -0,3259 -0,0069 0,0662 -0,1040 -0,0397 0,0660 -0,6012

4 classes 4 weeks split 10 0,0129 0,0950 0,1358 0,0409 0,0949 0,4314 0,0525 0,0948 0,5542

4 classes 4 weeks split 25 -0,0004 0,0950 -0,0046 -0,0017 0,0951 -0,0174 0,0842 0,0943 0,8929

4 classes 4 weeks split 50 0,0382 0,0949 0,4025 0,0206 0,0950 0,2164 0,0967 0,0941 1,0270

5 classes 2 weeks split 10 0,0070 0,0585 0,1191 0,0068 0,0563 0,1205 -0,0159 0,0560 -0,2841

5 classes 2 weeks split 25 0,0094 0,0601 0,1560 0,0212 0,0585 0,3625 -0,0041 0,0579 -0,0712

5 classes 2 weeks split 50 0,0042 0,0591 0,0710 -0,0004 0,0598 -0,0065 0,0085 0,0590 0,1449

5 classes 4 weeks split 10 -0,0475 0,0879 -0,5408 -0,0345 0,0859 -0,4015 -0,0163 0,0883 -0,1847

5 classes 4 weeks split 25 -0,0175 0,0942 -0,1857 -0,0131 0,0897 -0,1460 0,0108 0,0908 0,1186

5 classes 4 weeks split 50 -0,0298 0,0920 -0,3233 -0,0975 0,0859 -1,1359 -0,0799 0,0902 -0,8856

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

FACT standard model

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0196 0,0577 0,3401 0,0505 0,0590 0,8553 0,0485 0,0596 0,8136

3 classes 2 weeks split 25 0,0106 0,0550 0,1919 0,0341 0,0551 0,6183 0,0196 0,0571 0,3432

3 classes 2 weeks split 50 0,0000 0,0629 -0,0004 0,0265 0,0631 0,4204 0,0226 0,0622 0,3638

3 classes 4 weeks split 10 0,0422 0,0716 0,5897 0,0662 0,0704 0,9408 0,0654 0,0721 0,9069

3 classes 4 weeks split 25 0,0564 0,0730 0,7722 0,0625 0,0729 0,8577 0,0165 0,0713 0,2314

3 classes 4 weeks split 50 0,0272 0,0617 0,4416 0,0284 0,0632 0,4496 -0,0041 0,0682 -0,0595

4 classes 2 weeks split 10 -0,0011 0,0671 -0,0166 -0,0178 0,0661 -0,2687 -0,0137 0,0661 -0,2075

4 classes 2 weeks split 25 -0,0031 0,0671 -0,0462 -0,0325 0,0660 -0,4931 0,0104 0,0661 0,1566

4 classes 2 weeks split 50 0,0155 0,0671 0,2306 -0,0158 0,0661 -0,2383 0,0107 0,0661 0,1617

4 classes 4 weeks split 10 -0,0305 0,0954 -0,3198 0,0143 0,0953 0,1506 0,0359 0,0952 0,3769

4 classes 4 weeks split 25 -0,0363 0,0954 -0,3809 0,0082 0,0953 0,0861 0,0532 0,0950 0,5601

4 classes 4 weeks split 50 -0,0995 0,0945 -1,0525 -0,0632 0,0949 -0,6661 -0,0071 0,0953 -0,0750

5 classes 2 weeks split 10 0,0000 0,0560 -0,0006 -0,0076 0,0559 -0,1364 -0,0180 0,0557 -0,3240

5 classes 2 weeks split 25 0,0344 0,0515 0,6686 0,0252 0,0569 0,4421 -0,0252 0,0557 -0,4537

5 classes 2 weeks split 50 0,0046 0,0497 0,0929 0,0332 0,0533 0,6227 -0,0226 0,0538 -0,4201

5 classes 4 weeks split 10 0,0046 0,0831 0,0559 -0,0038 0,0846 -0,0449 -0,0055 0,0858 -0,0641

5 classes 4 weeks split 25 -0,0350 0,0859 -0,4080 0,0002 0,0876 0,0020 -0,0386 0,0875 -0,4412

5 classes 4 weeks split 50 -0,0192 0,0866 -0,2212 0,0109 0,0889 0,1227 -0,0295 0,0852 -0,3468

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

CRUISE standard model

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 -0,0032 0,0567 -0,0572 0,0086 0,0528 0,1631 0,0160 0,0555 0,2878

3 classes 2 weeks split 25 0,0205 0,0565 0,3633 0,0119 0,0551 0,2155 0,0015 0,0573 0,0269

3 classes 2 weeks split 50 0,0089 0,0617 0,1448 0,0056 0,0593 0,0951 0,0055 0,0629 0,0878

3 classes 4 weeks split 10 0,0043 0,0645 0,0668 -0,0095 0,0675 -0,1402 0,0331 0,0689 0,4798

3 classes 4 weeks split 25 0,0273 0,0694 0,3941 0,0040 0,0704 0,0570 0,0505 0,0723 0,6984

3 classes 4 weeks split 50 0,0321 0,0741 0,4325 0,0110 0,0758 0,1447 0,0157 0,0679 0,2306

4 classes 2 weeks split 10 -0,0257 0,0670 -0,3842 -0,0406 0,0659 -0,6160 -0,0329 0,0660 -0,4987

4 classes 2 weeks split 25 -0,0163 0,0670 -0,2430 -0,0360 0,0659 -0,5462 0,0138 0,0661 0,2082

4 classes 2 weeks split 50 -0,0336 0,0669 -0,5028 -0,0291 0,0660 -0,4404 0,0084 0,0661 0,1267

4 classes 4 weeks split 10 0,0529 0,0952 0,5553 -0,0042 0,0953 -0,0439 -0,0290 0,0952 -0,3041

4 classes 4 weeks split 25 0,0173 0,0955 0,1813 0,0000 0,0953 -0,0004 -0,0237 0,0952 -0,2491

4 classes 4 weeks split 50 -0,0121 0,0955 -0,1269 0,0140 0,0953 0,1471 0,0615 0,0949 0,6478

5 classes 2 weeks split 10 -0,0247 0,0448 -0,5504 -0,0131 0,0445 -0,2935 0,0017 0,0455 0,0377

5 classes 2 weeks split 25 0,0115 0,0475 0,2426 0,0089 0,0476 0,1873 -0,0018 0,0449 -0,0402

5 classes 2 weeks split 50 0,0250 0,0554 0,4519 0,0123 0,0499 0,2467 -0,0138 0,0468 -0,2953

5 classes 4 weeks split 10 0,0093 0,0816 0,1136 0,0226 0,0805 0,2803 0,0177 0,0838 0,2107

5 classes 4 weeks split 25 0,0360 0,0747 0,4816 0,0104 0,0821 0,1270 -0,0066 0,0848 -0,0783

5 classes 4 weeks split 50 -0,0096 0,0776 -0,1237 -0,0535 0,0831 -0,6444 -0,0497 0,0861 -0,5767

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation
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CART with symmetric non-equal misclassification costs

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 -0,0071 0,0336 -0,2126 0,0118 0,0379 0,3123 -0,0170 0,0387 -0,4382

3 classes 2 weeks split 25 -0,0028 0,0375 -0,0741 0,0141 0,0401 0,3509 -0,0231 0,0372 -0,6219

3 classes 2 weeks split 50 0,0173 0,0350 0,4939 0,0165 0,0396 0,4168 -0,0205 0,0352 -0,5838

3 classes 4 weeks split 10 -0,0362 0,0472 -0,7683 -0,0032 0,0495 -0,0637 -0,0045 0,0533 -0,0845

3 classes 4 weeks split 25 -0,0351 0,0550 -0,6381 -0,0168 0,0489 -0,3437 -0,0013 0,0473 -0,0273

3 classes 4 weeks split 50 -0,0388 0,0553 -0,7012 -0,0347 0,0464 -0,7468 -0,0142 0,0457 -0,3112

4 classes 2 weeks split 10 -0,0349 0,0668 -0,5225 0,0151 0,0662 0,2278 -0,0219 0,0662 -0,3309

4 classes 2 weeks split 25 -0,0150 0,0670 -0,2234 0,0213 0,0662 0,3219 -0,0030 0,0662 -0,0448

4 classes 2 weeks split 50 -0,0299 0,0669 -0,4467 0,0034 0,0662 0,0508 -0,0207 0,0662 -0,3122

4 classes 4 weeks split 10 0,0129 0,0950 0,1358 0,0346 0,0949 0,3650 0,0525 0,0948 0,5542

4 classes 4 weeks split 25 -0,0004 0,0950 -0,0046 -0,0017 0,0951 -0,0174 0,0754 0,0945 0,7985

4 classes 4 weeks split 50 0,0110 0,0950 0,1162 -0,0001 0,0951 -0,0010 0,0947 0,0941 1,0054

5 classes 2 weeks split 10 -0,0181 0,0523 -0,3455 0,0006 0,0518 0,0112 -0,0134 0,0522 -0,2575

5 classes 2 weeks split 25 -0,0060 0,0449 -0,1335 -0,0012 0,0453 -0,0267 -0,0278 0,0474 -0,5856

5 classes 2 weeks split 50 0,0000 0,0346 -0,0011 0,0108 0,0340 0,3177 -0,0089 0,0377 -0,2360

5 classes 4 weeks split 10 -0,0183 0,0824 -0,2219 -0,0168 0,0807 -0,2082 0,0229 0,0795 0,2883

5 classes 4 weeks split 25 -0,0300 0,0838 -0,3579 -0,0159 0,0793 -0,2009 0,0139 0,0764 0,1818

5 classes 4 weeks split 50 -0,0139 0,0784 -0,1778 -0,0304 0,0699 -0,4351 -0,0232 0,0682 -0,3395

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

FACT with symmetric non-equal misclassification costs

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0146 0,0495 0,2958 0,0292 0,0472 0,6192 0,0285 0,0458 0,6221

3 classes 2 weeks split 25 0,0047 0,0396 0,1176 0,0075 0,0337 0,2220 0,0038 0,0323 0,1185

3 classes 2 weeks split 50 0,0026 0,0220 0,1164 0,0066 0,0171 0,3863 0,0064 0,0199 0,3222

3 classes 4 weeks split 10 0,0360 0,0590 0,6107 0,0698 0,0606 1,1510 0,0341 0,0624 0,5470

3 classes 4 weeks split 25 0,0092 0,0242 0,3806 0,0090 0,0309 0,2907 0,0034 0,0323 0,1063

3 classes 4 weeks split 50 -0,0094 0,0195 -0,4845 -0,0087 0,0287 -0,3017 -0,0156 0,0275 -0,5667

4 classes 2 weeks split 10 -0,0107 0,0671 -0,1594 -0,0241 0,0660 -0,3646 -0,0193 0,0661 -0,2916

4 classes 2 weeks split 25 -0,0063 0,0671 -0,0941 -0,0195 0,0661 -0,2953 0,0001 0,0661 0,0022

4 classes 2 weeks split 50 -0,0046 0,0671 -0,0682 -0,0332 0,0660 -0,5038 0,0141 0,0661 0,2134

4 classes 4 weeks split 10 -0,0237 0,0955 -0,2478 0,0216 0,0952 0,2267 0,0283 0,0952 0,2976

4 classes 4 weeks split 25 -0,0377 0,0954 -0,3957 0,0394 0,0951 0,4139 0,0459 0,0951 0,4829

4 classes 4 weeks split 50 -0,0628 0,0951 -0,6605 0,0069 0,0953 0,0720 0,0074 0,0953 0,0779

5 classes 2 weeks split 10 0,0140 0,0387 0,3615 0,0051 0,0416 0,1214 -0,0036 0,0387 -0,0930

5 classes 2 weeks split 25 0,0055 0,0201 0,2743 -0,0040 0,0243 -0,1645 -0,0144 0,0259 -0,5556

5 classes 2 weeks split 50 0,0040 0,0159 0,2489 0,0014 0,0174 0,0827 -0,0120 0,0228 -0,5233

5 classes 4 weeks split 10 -0,0210 0,0555 -0,3781 0,0008 0,0626 0,0132 0,0165 0,0617 0,2678

5 classes 4 weeks split 25 -0,0437 0,0497 -0,8791 -0,0401 0,0514 -0,7806 -0,0075 0,0485 -0,1555

5 classes 4 weeks split 50 -0,0181 0,0345 -0,5231 -0,0044 0,0369 -0,1189 0,0070 0,0311 0,2268

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

CRUISE with symmetric non-equal misclassification costs

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0044 0,0298 0,1493 0,0171 0,0280 0,6108 0,0198 0,0354 0,5590

3 classes 2 weeks split 25 0,0018 0,0238 0,0770 0,0139 0,0224 0,6196 0,0061 0,0247 0,2460

3 classes 2 weeks split 50 -0,0004 0,0010 -0,4083 0,0085 0,0110 0,7725 0,0183 0,0177 1,0295

3 classes 4 weeks split 10 0,0437 0,0502 0,8714 -0,0323 0,0518 -0,6233 0,0239 0,0578 0,4129

3 classes 4 weeks split 25 0,0340 0,0590 0,5765 -0,0133 0,0551 -0,2409 0,0068 0,0498 0,1361

3 classes 4 weeks split 50 -0,0002 0,0181 -0,0112 -0,0196 0,0320 -0,6147 -0,0208 0,0249 -0,8329

4 classes 2 weeks split 10 -0,0305 0,0670 -0,4553 -0,0482 0,0658 -0,7323 -0,0397 0,0659 -0,6028

4 classes 2 weeks split 25 0,0004 0,0671 0,0065 -0,0271 0,0660 -0,4103 -0,0027 0,0661 -0,0407

4 classes 2 weeks split 50 -0,0487 0,0667 -0,7301 -0,0264 0,0660 -0,3991 0,0041 0,0661 0,0620

4 classes 4 weeks split 10 0,0383 0,0954 0,4013 0,0017 0,0953 0,0176 -0,0475 0,0951 -0,4994

4 classes 4 weeks split 25 0,0112 0,0955 0,1173 0,0282 0,0952 0,2962 -0,0324 0,0952 -0,3406

4 classes 4 weeks split 50 -0,0074 0,0955 -0,0771 0,0766 0,0947 0,8085 0,0739 0,0947 0,7806

5 classes 2 weeks split 10 -0,0248 0,0259 -0,9558 -0,0072 0,0246 -0,2922 0,0045 0,0268 0,1669

5 classes 2 weeks split 25 -0,0075 0,0088 -0,8524 -0,0034 0,0144 -0,2360 0,0026 0,0130 0,1981

5 classes 2 weeks split 50 -0,0017 0,0043 -0,3835 0,0001 0,0084 0,0171 -0,0017 0,0075 -0,2202

5 classes 4 weeks split 10 0,0536 0,0595 0,9011 0,0287 0,0622 0,4619 0,0429 0,0586 0,7329

5 classes 4 weeks split 25 0,0390 0,0411 0,9478 0,0042 0,0394 0,1059 0,0204 0,0440 0,4626

5 classes 4 weeks split 50 0,0183 0,0208 0,8776 0,0001 0,0166 0,0058 -0,0050 0,0172 -0,2923

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation
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CART with non-symmetric non-equal misclassification costs

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0008 0,0331 0,0228 0,0030 0,0307 0,0984 -0,0099 0,0374 -0,2654

3 classes 2 weeks split 25 -0,0092 0,0274 -0,3373 -0,0102 0,0288 -0,3561 -0,0176 0,0292 -0,6032

3 classes 2 weeks split 50 0,0077 0,0300 0,2563 -0,0095 0,0295 -0,3233 -0,0133 0,0274 -0,4842

3 classes 4 weeks split 10 -0,0515 0,0567 -0,9079 0,0023 0,0538 0,0433 0,0101 0,0502 0,2014

3 classes 4 weeks split 25 -0,0315 0,0607 -0,5189 0,0043 0,0505 0,0859 0,0204 0,0468 0,4370

3 classes 4 weeks split 50 -0,0056 0,0522 -0,1081 0,0004 0,0400 0,0091 0,0067 0,0330 0,2036

4 classes 2 weeks split 10 -0,0149 0,0670 -0,2232 0,0194 0,0662 0,2935 -0,0090 0,0662 -0,1353

4 classes 2 weeks split 25 0,0014 0,0670 0,0206 0,0316 0,0661 0,4789 0,0036 0,0662 0,0551

4 classes 2 weeks split 50 -0,0288 0,0669 -0,4308 0,0050 0,0662 0,0762 -0,0305 0,0661 -0,4614

4 classes 4 weeks split 10 0,0084 0,0950 0,0885 0,0250 0,0950 0,2627 0,0204 0,0950 0,2151

4 classes 4 weeks split 25 -0,0001 0,0950 -0,0012 -0,0063 0,0951 -0,0664 0,0571 0,0947 0,6023

4 classes 4 weeks split 50 0,0110 0,0950 0,1162 -0,0098 0,0951 -0,1035 0,1025 0,0940 1,0904

5 classes 2 weeks split 10 0,0100 0,0501 0,1995 -0,0111 0,0546 -0,2028 0,0345 0,0539 0,6414

5 classes 2 weeks split 25 -0,0143 0,0504 -0,2846 -0,0103 0,0508 -0,2035 -0,0053 0,0488 -0,1091

5 classes 2 weeks split 50 -0,0207 0,0478 -0,4330 -0,0273 0,0458 -0,5972 -0,0002 0,0466 -0,0034

5 classes 4 weeks split 10 -0,0433 0,0851 -0,5085 -0,0284 0,0824 -0,3449 -0,0336 0,0823 -0,4087

5 classes 4 weeks split 25 -0,0262 0,0833 -0,3144 -0,0003 0,0793 -0,0037 0,0125 0,0758 0,1653

5 classes 4 weeks split 50 -0,0327 0,0792 -0,4131 -0,0111 0,0773 -0,1432 -0,0062 0,0772 -0,0799

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

FACT with non-symmetric non-equal misclassification costs

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0211 0,0578 0,3656 0,0482 0,0584 0,8252 0,0517 0,0608 0,8511

3 classes 2 weeks split 25 0,0085 0,0524 0,1622 0,0337 0,0537 0,6281 0,0287 0,0564 0,5092

3 classes 2 weeks split 50 0,0042 0,0567 0,0740 0,0492 0,0578 0,8506 0,0351 0,0529 0,6637

3 classes 4 weeks split 10 0,0406 0,0812 0,4999 0,0675 0,0821 0,8224 0,0592 0,0850 0,6966

3 classes 4 weeks split 25 0,0700 0,0735 0,9522 0,0696 0,0790 0,8810 0,0399 0,0718 0,5552

3 classes 4 weeks split 50 0,0129 0,0550 0,2337 0,0333 0,0686 0,4850 0,0215 0,0659 0,3262

4 classes 2 weeks split 10 0,0017 0,0671 0,0254 -0,0261 0,0660 -0,3951 -0,0056 0,0661 -0,0845

4 classes 2 weeks split 25 -0,0156 0,0670 -0,2322 -0,0145 0,0661 -0,2199 0,0210 0,0661 0,3173

4 classes 2 weeks split 50 -0,0046 0,0671 -0,0682 0,0083 0,0661 0,1254 0,0155 0,0661 0,2345

4 classes 4 weeks split 10 -0,0335 0,0954 -0,3514 0,0146 0,0953 0,1533 0,0127 0,0953 0,1336

4 classes 4 weeks split 25 -0,0449 0,0953 -0,4708 0,0199 0,0952 0,2085 0,0509 0,0950 0,5362

4 classes 4 weeks split 50 -0,0646 0,0951 -0,6796 0,0037 0,0953 0,0384 0,0704 0,0948 0,7422

5 classes 2 weeks split 10 0,0018 0,0575 0,0313 0,0030 0,0594 0,0507 -0,0218 0,0559 -0,3894

5 classes 2 weeks split 25 0,0383 0,0506 0,7569 0,0310 0,0567 0,5467 -0,0136 0,0554 -0,2460

5 classes 2 weeks split 50 0,0453 0,0513 0,8830 0,0463 0,0542 0,8549 -0,0021 0,0544 -0,0384

5 classes 4 weeks split 10 -0,0190 0,0868 -0,2190 0,0155 0,0868 0,1783 0,0336 0,0848 0,3958

5 classes 4 weeks split 25 -0,0684 0,0901 -0,7596 0,0013 0,0903 0,0140 0,0283 0,0901 0,3147

5 classes 4 weeks split 50 -0,0561 0,0894 -0,6281 -0,0016 0,0890 -0,0179 0,0140 0,0860 0,1625

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

CRUISE with non-symmetric non-equal misclassification costs

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 -0,0075 0,0516 -0,1451 0,0117 0,0478 0,2443 0,0261 0,0510 0,5125

3 classes 2 weeks split 25 0,0162 0,0531 0,3052 0,0118 0,0511 0,2309 0,0033 0,0504 0,0658

3 classes 2 weeks split 50 -0,0062 0,0505 -0,1229 0,0034 0,0524 0,0653 0,0084 0,0535 0,1569

3 classes 4 weeks split 10 0,0094 0,0806 0,1167 0,0212 0,0801 0,2652 0,0406 0,0795 0,5104

3 classes 4 weeks split 25 0,0215 0,0707 0,3036 -0,0086 0,0721 -0,1191 0,0341 0,0720 0,4730

3 classes 4 weeks split 50 0,0160 0,0676 0,2360 -0,0242 0,0700 -0,3455 0,0338 0,0699 0,4840

4 classes 2 weeks split 10 -0,0076 0,0671 -0,1138 -0,0316 0,0660 -0,4795 -0,0213 0,0661 -0,3222

4 classes 2 weeks split 25 0,0177 0,0670 0,2643 -0,0077 0,0661 -0,1168 0,0106 0,0661 0,1605

4 classes 2 weeks split 50 0,0050 0,0671 0,0739 -0,0110 0,0661 -0,1664 0,0031 0,0661 0,0463

4 classes 4 weeks split 10 0,0441 0,0953 0,4622 0,0397 0,0951 0,4169 -0,0242 0,0952 -0,2542

4 classes 4 weeks split 25 0,0556 0,0952 0,5837 0,0554 0,0950 0,5829 0,0145 0,0953 0,1525

4 classes 4 weeks split 50 0,0633 0,0951 0,6653 0,0908 0,0944 0,9615 0,0811 0,0946 0,8574

5 classes 2 weeks split 10 -0,0172 0,0468 -0,3664 0,0048 0,0469 0,1033 0,0069 0,0483 0,1431

5 classes 2 weeks split 25 0,0122 0,0474 0,2584 0,0051 0,0473 0,1071 -0,0081 0,0474 -0,1710

5 classes 2 weeks split 50 0,0462 0,0506 0,9124 0,0152 0,0497 0,3051 0,0089 0,0501 0,1768

5 classes 4 weeks split 10 -0,0244 0,0896 -0,2721 0,0110 0,0855 0,1285 0,0503 0,0885 0,5685

5 classes 4 weeks split 25 0,0141 0,0821 0,1716 0,0305 0,0864 0,3532 0,0181 0,0893 0,2023

5 classes 4 weeks split 50 -0,0278 0,0831 -0,3346 -0,0431 0,0857 -0,5031 -0,0175 0,0879 -0,1995

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation
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FACT with rolling window

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0084 0,0566 0,1491 0,0282 0,0544 0,5178 0,0160 0,0541 0,2958

3 classes 2 weeks split 25 0,0062 0,0587 0,1058 0,0028 0,0578 0,0487 0,0113 0,0564 0,2005

3 classes 2 weeks split 50 0,0267 0,0579 0,4608 0,0411 0,0590 0,6972 0,0152 0,0586 0,2604

3 classes 4 weeks split 10 -0,0562 0,0683 -0,8218 -0,0337 0,0653 -0,5155 -0,0450 0,0589 -0,7654

3 classes 4 weeks split 25 0,0628 0,0741 0,8473 0,0183 0,0691 0,2645 -0,0075 0,0657 -0,1148

3 classes 4 weeks split 50 0,0526 0,0773 0,6811 0,0170 0,0749 0,2266 0,0123 0,0676 0,1822

4 classes 2 weeks split 10 -0,0094 0,0671 -0,1402 0,0009 0,0661 0,0138 0,0029 0,0661 0,0440

4 classes 2 weeks split 25 0,0001 0,0671 0,0014 -0,0207 0,0661 -0,3129 -0,0406 0,0659 -0,6157

4 classes 2 weeks split 50 0,0002 0,0671 0,0027 -0,0067 0,0661 -0,1019 -0,0533 0,0657 -0,8110

4 classes 4 weeks split 10 0,0013 0,0955 0,0132 0,0431 0,0951 0,4529 -0,0174 0,0953 -0,1825

4 classes 4 weeks split 25 0,0384 0,0954 0,4032 0,0297 0,0952 0,3119 -0,0148 0,0953 -0,1558

4 classes 4 weeks split 50 0,0516 0,0952 0,5421 0,0154 0,0953 0,1613 -0,0193 0,0952 -0,2027

5 classes 2 weeks split 10 0,0230 0,0498 0,4627 -0,0256 0,0504 -0,5085 -0,0288 0,0496 -0,5812

5 classes 2 weeks split 25 0,0033 0,0447 0,0729 -0,0081 0,0467 -0,1730 -0,0231 0,0475 -0,4854

5 classes 2 weeks split 50 0,0061 0,0362 0,1699 -0,0107 0,0409 -0,2609 -0,0469 0,0425 -1,1034

5 classes 4 weeks split 10 0,0179 0,0788 0,2274 -0,0292 0,0805 -0,3620 0,0102 0,0852 0,1202

5 classes 4 weeks split 25 0,0356 0,0823 0,4319 -0,0352 0,0828 -0,4254 0,0211 0,0835 0,2532

5 classes 4 weeks split 50 0,0464 0,0809 0,5732 0,0003 0,0834 0,0038 0,0043 0,0823 0,0528

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

FACT with class boundary setting 1

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0380 0,0516 0,7365 0,0429 0,0528 0,8113 0,0725 0,0531 1,3657

3 classes 2 weeks split 15 0,0499 0,0532 0,9380 0,0485 0,0544 0,8904 0,0662 0,0541 1,2233

3 classes 2 weeks split 20 0,0542 0,0551 0,9833 0,0582 0,0557 1,0454 0,0680 0,0547 1,2420

3 classes 2 weeks split 25 0,0482 0,0558 0,8640 0,0545 0,0561 0,9712 0,0647 0,0556 1,1635

3 classes 2 weeks split 35 0,0525 0,0584 0,8992 0,0550 0,0569 0,9667 0,0768 0,0568 1,3519

3 classes 2 weeks split 50 0,0033 0,0605 0,0540 0,0171 0,0582 0,2944 0,0531 0,0594 0,8928

3 classes 4 weeks split 10 0,0353 0,0599 0,5890 0,0785 0,0542 1,4478 0,0853 0,0531 1,6080

3 classes 4 weeks split 15 0,0468 0,0604 0,7763 0,0662 0,0539 1,2298 0,0768 0,0539 1,4249

3 classes 4 weeks split 20 0,0519 0,0576 0,9005 0,0682 0,0519 1,3133 0,0703 0,0525 1,3389

3 classes 4 weeks split 25 0,0514 0,0576 0,8928 0,0657 0,0526 1,2503 0,0670 0,0505 1,3257

3 classes 4 weeks split 35 0,0366 0,0596 0,6139 0,0355 0,0571 0,6218 0,0642 0,0545 1,1782

3 classes 4 weeks split 50 -0,0011 0,0527 -0,0211 -0,0054 0,0514 -0,1058 0,0343 0,0518 0,6625

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

FACT with class boundary setting 2

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0129 0,0626 0,2054 0,0241 0,0624 0,3858 0,0258 0,0634 0,4072

3 classes 2 weeks split 15 0,0076 0,0651 0,1171 0,0073 0,0637 0,1140 0,0013 0,0641 0,0202

3 classes 2 weeks split 20 -0,0031 0,0657 -0,0476 0,0140 0,0643 0,2170 0,0181 0,0644 0,2809

3 classes 2 weeks split 25 -0,0063 0,0657 -0,0952 0,0117 0,0644 0,1823 0,0164 0,0644 0,2551

3 classes 2 weeks split 35 -0,0225 0,0656 -0,3425 -0,0068 0,0648 -0,1045 -0,0023 0,0650 -0,0351

3 classes 2 weeks split 50 -0,0487 0,0662 -0,7354 -0,0345 0,0655 -0,5270 -0,0485 0,0654 -0,7427

3 classes 4 weeks split 10 0,0266 0,0590 0,4505 0,0350 0,0554 0,6321 0,0547 0,0569 0,9619

3 classes 4 weeks split 15 0,0325 0,0597 0,5445 0,0423 0,0557 0,7589 0,0600 0,0575 1,0448

3 classes 4 weeks split 20 0,0291 0,0596 0,4877 0,0481 0,0555 0,8653 0,0533 0,0550 0,9682

3 classes 4 weeks split 25 0,0296 0,0607 0,4882 0,0619 0,0557 1,1109 0,0338 0,0550 0,6151

3 classes 4 weeks split 35 0,0122 0,0629 0,1936 0,0577 0,0581 0,9933 0,0483 0,0574 0,8416

3 classes 4 weeks split 50 0,0066 0,0620 0,1058 0,0366 0,0575 0,6360 0,0196 0,0573 0,3417

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation

FACT with class boundary setting 3

return volatility Sharpe Ratio return volatility Sharpe Ratio return volatility Sharpe Ratio

3 classes 2 weeks split 10 0,0175 0,0504 0,3467 -0,0024 0,0503 -0,0473 -0,0049 0,0481 -0,1016

3 classes 2 weeks split 15 0,0191 0,0515 0,3706 0,0036 0,0516 0,0704 0,0052 0,0501 0,1037

3 classes 2 weeks split 20 0,0130 0,0481 0,2695 -0,0051 0,0500 -0,1027 0,0075 0,0504 0,1494

3 classes 2 weeks split 25 0,0074 0,0492 0,1495 -0,0091 0,0506 -0,1797 0,0045 0,0513 0,0869

3 classes 2 weeks split 35 -0,0016 0,0509 -0,0322 0,0066 0,0516 0,1287 0,0241 0,0507 0,4755

3 classes 2 weeks split 50 0,0001 0,0566 0,0019 0,0121 0,0545 0,2219 0,0084 0,0521 0,1604

3 classes 4 weeks split 10 -0,0033 0,0494 -0,0662 -0,0052 0,0498 -0,1052 0,0038 0,0520 0,0740

3 classes 4 weeks split 15 -0,0065 0,0479 -0,1368 -0,0051 0,0492 -0,1031 -0,0002 0,0510 -0,0039

3 classes 4 weeks split 20 -0,0052 0,0508 -0,1021 -0,0132 0,0519 -0,2534 0,0015 0,0521 0,0287

3 classes 4 weeks split 25 -0,0127 0,0520 -0,2437 -0,0173 0,0509 -0,3406 0,0011 0,0519 0,0216

3 classes 4 weeks split 35 -0,0213 0,0523 -0,4081 -0,0096 0,0538 -0,1793 -0,0023 0,0525 -0,0443

3 classes 4 weeks split 50 -0,0065 0,0544 -0,1198 0,0010 0,0548 0,0178 0,0065 0,0521 0,1244

Yearly re-estimation Semi-annually re-estimation Quarterly re-estimation
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Appendix F. Out-of-sample investment decisions and performance  
 

splitmin 10 prediction payoff prediction payoff prediction payoff

sell -2,77% sell -1,30% hold 0,00%

sell -2,15% buy 2,63% sell 1,72%

sell -1,26% sell -1,00% sell 0,10%

sell -0,61% buy 1,25% sell -0,24%

hold 0,00% buy 0,45% sell 0,24%

sell -1,55% sell 0,52% 1,82%

sell -0,64% sell 1,34%

hold 0,00% sell 1,94% Tot. Ret 4,35%

hold 0,00% sell 1,11% Volatility 1,35%

buy -1,79% buy 0,70%

sell 2,02% hold 0,00%

buy 0,79% hold 0,00%

hold 0,00% buy 2,85%

-7,96% 10,49%

splitmin 15 prediction payoff prediction payoff prediction payoff

sell -2,77% sell -1,30% hold 0,00%

sell -2,15% buy 2,63% sell 1,72%

sell -1,26% sell -1,00% sell 0,10%

sell -0,61% buy 1,25% sell -0,24%

hold 0,00% buy 0,45% sell 0,24%

sell -1,55% sell 0,52% 1,82%

sell -0,64% sell 1,34%

hold 0,00% buy -1,94% Tot. Ret -4,72%

hold 0,00% buy -1,11% Volatility 1,45%

buy -1,79% buy 0,70%

sell 2,02% hold 0,00%

buy 0,79% sell -2,97%

hold 0,00% buy 2,85%

-7,96% 1,43%

splitmin 20 prediction payoff prediction payoff prediction payoff

sell -2,77% sell -1,30% hold 0,00%

sell -2,15% buy 2,63% sell 1,72%

sell -1,26% sell -1,00% sell 0,10%

sell -0,61% buy 1,25% sell -0,24%

hold 0,00% buy 0,45% sell 0,24%

sell -1,55% sell 0,52% 1,82%

sell -0,64% sell 1,34%

hold 0,00% buy -1,94% Tot. Ret -3,76%

sell 0,96% buy -1,11% Volatility 1,46%

buy -1,79% buy 0,70%

sell 2,02% hold 0,00%

buy 0,79% sell -2,97%

hold 0,00% buy 2,85%

-7,01% 1,43%

Q3 2007

Q3 2007

Q4 2007

Q4 2007

Q4 2007Q3 2007

3 classes and 2 weeks time horizon

jan-08

jan-08

jan-08
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splitmin 25 prediction payoff prediction payoff prediction payoff

sell -2,77% sell -1,30% hold 0,00%

sell -2,15% buy 2,63% sell 1,72%

sell -1,26% hold 0,00% sell 0,10%

sell -0,61% buy 1,25% sell -0,24%

sell -0,72% buy 0,45% sell 0,24%

sell -1,55% sell 0,52% 1,82%

sell -0,64% sell 1,34%

sell 0,95% buy -1,94% Tot. Ret 0,09%

sell 0,96% buy -1,11% Volatility 1,48%

sell 1,79% buy 0,70%

sell 2,02% hold 0,00%

buy 0,79% sell -2,97%

sell -0,96% buy 2,85%

-4,15% 2,42%

splitmin 35 prediction payoff prediction payoff prediction payoff

sell -2,77% sell -1,30% hold 0,00%

sell -2,15% buy 2,63% sell 1,72%

sell -1,26% hold 0,00% sell 0,10%

sell -0,61% buy 1,25% sell -0,24%

sell -0,72% buy 0,45% sell 0,24%

sell -1,55% sell 0,52% 1,82%

sell -0,64% sell 1,34%

sell 0,95% buy -1,94% Tot. Ret 2,10%

sell 0,96% buy -1,11% Volatility 1,53%

sell 1,79% buy 0,70%

sell 2,02% buy 2,01%

buy 0,79% sell -2,97%

sell -0,96% buy 2,85%

-4,15% 4,43%

splitmin 50 prediction payoff prediction payoff prediction payoff

sell -2,77% sell -1,30% hold 0,00%

sell -2,15% buy 2,63% sell 1,72%

sell -1,26% hold 0,00% sell 0,10%

sell -0,61% hold 0,00% sell -0,24%

sell -0,72% hold 0,00% sell 0,24%

sell -1,55% sell 0,52% 1,82%

sell -0,64% sell 1,34%

sell 0,95% buy -1,94% Tot. Ret -1,18%

sell 0,96% buy -1,11% Volatility 1,51%

sell 1,79% buy 0,70%

sell 2,02% buy 2,01%

sell -0,79% sell -2,97%

sell -0,96% buy 2,85%

-5,73% 2,74%

Q3 2007 Q4 2007

Q4 2007Q3 2007

Q3 2007 jan-08

jan-08

jan-08

Q4 2007
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splitmin 10 prediction payoff prediction payoff splitmin 25 prediction payoff prediction payoff

sell -2,77% hold 0,00% c -2,77% hold 0,00%

sell -2,15% buy 1,72% sell -2,15% buy 1,72%

sell -1,26% buy 0,10% sell -1,26% buy 0,10%

sell -0,61% buy -0,24% sell -0,61% buy -0,24%

hold 0,00% buy 0,24% sell -0,72% buy 0,24%

sell -1,55% 1,82% sell -1,55% 1,82%

sell -0,64% sell -0,64%

hold 0,00% Tot. Ret -9,28% sell 0,95% Tot. Ret -3,46%

hold 0,00% Volatility 1,33% sell 0,96% Volatility 1,49%

buy -1,79% sell 1,79%

sell 2,02% sell 2,02%

buy 0,79% buy 0,79%

hold 0,00% sell -0,96%

buy 1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

sell -1,25% sell -1,25%

hold 0,00% sell -0,45%

sell 0,52% sell 0,52%

buy -1,34% sell 1,34%

buy -1,94% sell 1,94%

hold 0,00% sell 1,11%

buy 0,70% buy 0,70%

hold 0,00% hold 0,00%

sell -2,97% sell -2,97%

buy 2,85% buy 2,85%

-11,10% -5,28%

splitmin 15 prediction payoff prediction payoff splitmin 35 prediction payoff prediction payoff

sell -2,77% hold 0,00% sell -2,77% hold 0,00%

sell -2,15% buy 1,72% sell -2,15% buy 1,72%

sell -1,26% buy 0,10% sell -1,26% buy 0,10%

sell -0,61% buy -0,24% sell -0,61% buy -0,24%

hold 0,00% buy 0,24% sell -0,72% buy 0,24%

sell -1,55% 1,82% sell -1,55% 1,82%

sell -0,64% sell -0,64%

hold 0,00% Tot. Ret -9,28% sell 0,95% Tot. Ret -3,46%

hold 0,00% Volatility 1,33% sell 0,96% Volatility 1,49%

buy -1,79% sell 1,79%

sell 2,02% sell 2,02%

buy 0,79% buy 0,79%

hold 0,00% sell -0,96%

buy 1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

sell -1,25% sell -1,25%

hold 0,00% sell -0,45%

sell 0,52% sell 0,52%

buy -1,34% sell 1,34%

buy -1,94% sell 1,94%

hold 0,00% sell 1,11%

buy 0,70% buy 0,70%

hold 0,00% hold 0,00%

sell -2,97% sell -2,97%

buy 2,85% buy 2,85%

-11,10% -5,28%

jan-08

2nd half 2007

2nd half 2007

jan-08

3 classes and 2 weeks time horizon

2nd half 2007

2nd half 2007

jan-08

jan-08

splitmin 20 prediction payoff prediction payoff splitmin 50 prediction payoff prediction payoff

sell -2,77% hold 0,00% sell -2,77% hold 0,00%

sell -2,15% buy 1,72% sell -2,15% buy 1,72%

sell -1,26% buy 0,10% sell -1,26% buy 0,10%

sell -0,61% buy -0,24% sell -0,61% buy -0,24%

hold 0,00% buy 0,24% sell -0,72% buy 0,24%

sell -1,55% 1,82% sell -1,55% 1,82%

sell -0,64% sell -0,64%

hold 0,00% Tot. Ret -4,35% sell 0,95% Tot. Ret -14,15%

sell 0,96% Volatility 1,36% sell 0,96% Volatility 1,47%

buy -1,79% sell 1,79%

sell 2,02% sell 2,02%

buy 0,79% sell -0,79%

hold 0,00% sell -0,96%

sell -1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

sell -1,25% sell -1,25%

hold 0,00% sell -0,45%

sell 0,52% sell 0,52%

sell 1,34% sell 1,34%

sell 1,94% sell 1,94%

hold 0,00% sell 1,11%

buy 0,70% sell -0,70%

hold 0,00% sell -2,01%

sell -2,97% sell -2,97%

buy 2,85% sell -2,85%

-6,17% -15,97%

2nd half 20072nd half 2007 jan-08 jan-08
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splitmin 10 prediction payoff splitmin 25 prediction payoff

sell -2,77% sell -2,77%

sell -2,15% sell -2,15%

sell -1,26% sell -1,26%

sell -0,61% sell -0,61%

hold 0,00% sell -0,72%

sell -1,55% sell -1,55%

sell -0,64% sell -0,64%

hold 0,00% sell 0,95%

hold 0,00% sell 0,96%

buy -1,79% sell 1,79%

sell 2,02% sell 2,02%

buy 0,79% buy 0,79%

hold 0,00% sell -0,96%

buy 1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

sell -1,25% sell -1,25%

hold 0,00% sell -0,45%

sell 0,52% sell 0,52%

buy -1,34% sell 1,34%

buy -1,94% sell 1,94%

hold 0,00% sell 1,11%

buy 0,70% buy 0,70%

hold 0,00% hold 0,00%

sell -2,97% sell -2,97%

buy 2,85% buy 2,85%

buy 1,64% buy 1,64%

buy 1,72% sell -1,72%

sell -0,10% sell -0,10%

hold 0,00% sell 0,24%

sell -0,24% volatility sell -0,24% volatility

-8,08% 1,37% -5,47% 1,52%

splitmin 15 prediction payoff splitmin 35 prediction payoff

sell -2,77% sell -2,77%

sell -2,15% sell -2,15%

sell -1,26% sell -1,26%

sell -0,61% sell -0,61%

hold 0,00% sell -0,72%

sell -1,55% sell -1,55%

sell -0,64% sell -0,64%

hold 0,00% sell 0,95%

hold 0,00% sell 0,96%

buy -1,79% sell 1,79%

sell 2,02% sell 2,02%

buy 0,79% buy 0,79%

hold 0,00% sell -0,96%

buy 1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

sell -1,25% sell -1,25%

hold 0,00% sell -0,45%

sell 0,52% sell 0,52%

buy -1,34% sell 1,34%

buy -1,94% sell 1,94%

hold 0,00% sell 1,11%

buy 0,70% buy 0,70%

hold 0,00% hold 0,00%

sell -2,97% sell -2,97%

buy 2,85% buy 2,85%

buy 1,64% buy 1,64%

buy 1,72% sell -1,72%

sell -0,10% sell -0,10%

hold 0,00% sell 0,24%

sell -0,24% volatility sell -0,24% volatility

-8,08% 1,37% -5,47% 1,52%

3 classes and 2 weeks time horizon

2nd half hold007

2nd half hold007

2nd half hold007

2nd half hold007

splitmin 20 prediction payoff splitmin 50 prediction payoff

sell -2,77% sell -2,77%

sell -2,15% sell -2,15%

sell -1,26% sell -1,26%

sell -0,61% sell -0,61%

hold 0,00% sell -0,72%

sell -1,55% sell -1,55%

sell -0,64% sell -0,64%

hold 0,00% sell 0,95%

sell 0,96% sell 0,96%

buy -1,79% sell 1,79%

sell 2,02% sell 2,02%

buy 0,79% sell -0,79%

hold 0,00% sell -0,96%

sell -1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

sell -1,25% sell -1,25%

hold 0,00% sell -0,45%

sell 0,52% sell 0,52%

sell 1,34% sell 1,34%

sell 1,94% sell 1,94%

hold 0,00% sell 1,11%

buy 0,70% sell -0,70%

hold 0,00% sell -2,01%

sell -2,97% sell -2,97%

buy 2,85% sell -2,85%

buy 1,64% sell -1,64%

sell -1,72% sell -1,72%

sell -0,10% sell -0,10%

hold 0,00% sell 0,24%

sell -0,24% volatility sell -0,24% volatility

-6,60% 1,39% -19,43% 1,43%

2nd half hold007 2nd half hold007
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splitmin 10 prediction payoff prediction payoff prediction payoff

hold 0,00% buy 1,30% buy 1,64%

hold 0,00% buy 2,63% buy 1,72%

buy 1,26% sell -1,00% buy 0,10%

sell -0,61% buy 1,25% buy -0,24%

sell -0,72% buy 0,45% buy 0,24%

sell -1,55% hold 0,00% 3,46%

sell -0,64% hold 0,00%

sell 0,95% hold 0,00% Tot. Ret 11,80%

sell 0,96% hold 0,00% Volatility 1,16%

sell 1,79% sell -0,70%

sell 2,02% sell -2,01%

hold 0,00% buy 2,97%

hold 0,00% hold 0,00%

3,45% 4,89%

splitmin 15 prediction payoff prediction payoff prediction payoff

hold 0,00% buy 1,30% buy 1,64%

hold 0,00% buy 2,63% buy 1,72%

buy 1,26% sell -1,00% buy 0,10%

sell -0,61% buy 1,25% buy -0,24%

sell -0,72% buy 0,45% buy 0,24%

sell -1,55% hold 0,00% 3,46%

sell -0,64% hold 0,00%

sell 0,95% hold 0,00% Tot. Ret 11,80%

sell 0,96% hold 0,00% Volatility 1,16%

sell 1,79% sell -0,70%

sell 2,02% sell -2,01%

hold 0,00% buy 2,97%

hold 0,00% hold 0,00%

3,45% 4,89%

splitmin 20 prediction payoff prediction payoff prediction payoff

hold 0,00% buy 1,30% buy 1,64%

hold 0,00% buy 2,63% buy 1,72%

sell -1,26% sell -1,00% buy 0,10%

sell -0,61% buy 1,25% buy -0,24%

sell -0,72% buy 0,45% buy 0,24%

sell -1,55% hold 0,00% 3,46%

sell -0,64% hold 0,00%

sell 0,95% hold 0,00% Tot. Ret 7,53%

sell 0,96% hold 0,00% Volatility 1,22%

sell 1,79% sell -0,70%

sell 2,02% sell -2,01%

sell -0,79% buy 2,97%

sell -0,96% hold 0,00%

-0,82% 4,89%

Q3 2007

Q3 2007

Q4 2007

Q4 2007

Q4 2007Q3 2007

3 classes and 4 weeks time horizon

jan-08

jan-08

jan-08
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splitmin 25 prediction payoff prediction payoff prediction payoff

hold 0,00% buy 1,30% buy 1,64%

hold 0,00% buy 2,63% buy 1,72%

sell -1,26% sell -1,00% buy 0,10%

sell -0,61% buy 1,25% buy -0,24%

sell -0,72% buy 0,45% buy 0,24%

sell -1,55% hold 0,00% 3,46%

sell -0,64% hold 0,00%

sell 0,95% hold 0,00% Tot. Ret 7,53%

sell 0,96% hold 0,00% Volatility 1,22%

sell 1,79% sell -0,70%

sell 2,02% sell -2,01%

sell -0,79% buy 2,97%

sell -0,96% hold 0,00%

-0,82% 4,89%

splitmin 35 prediction payoff prediction payoff prediction payoff

hold 0,00% buy 1,30% buy 1,64%

hold 0,00% buy 2,63% buy 1,72%

sell -1,26% sell -1,00% buy 0,10%

sell -0,61% buy 1,25% buy -0,24%

sell -0,72% buy 0,45% buy 0,24%

sell -1,55% hold 0,00% 3,46%

sell -0,64% hold 0,00%

sell 0,95% hold 0,00% Tot. Ret 7,53%

sell 0,96% hold 0,00% Volatility 1,22%

sell 1,79% sell -0,70%

sell 2,02% sell -2,01%

sell -0,79% buy 2,97%

sell -0,96% hold 0,00%

-0,82% 4,89%

splitmin 50 prediction payoff prediction payoff prediction payoff

hold 0,00% sell -1,30% buy 1,64%

hold 0,00% sell -2,63% buy 1,72%

sell -1,26% sell -1,00% buy 0,10%

sell -0,61% buy 1,25% buy -0,24%

sell -0,72% buy 0,45% buy 0,24%

sell -1,55% hold 0,00% 3,46%

sell -0,64% hold 0,00%

sell 0,95% hold 0,00% Tot. Ret -0,33%

sell 0,96% hold 0,00% Volatility 1,24%

sell 1,79% sell -0,70%

sell 2,02% sell -2,01%

sell -0,79% buy 2,97%

sell -0,96% hold 0,00%

-0,82% -2,97%

Q3 2007 Q4 2007

Q4 2007Q3 2007

Q3 2007 jan-08

jan-08

jan-08

Q4 2007
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splitmin 10 prediction payoff prediction payoff splitmin 25 prediction payoff prediction payoff

hold 0,00% buy 1,64% hold 0,00% buy 1,64%

hold 0,00% buy 1,72% hold 0,00% buy 1,72%

buy 1,26% buy 0,10% sell -1,26% buy 0,10%

sell -0,61% buy -0,24% sell -0,61% buy -0,24%

sell -0,72% buy 0,24% sell -0,72% buy 0,24%

sell -1,55% 3,46% sell -1,55% 3,46%

sell -0,64% sell -0,64%

sell 0,95% Tot. Ret 6,12% sell 0,95% Tot. Ret -7,60%

sell 0,96% Volatility 1,18% sell 0,96% Volatility 1,41%

sell 1,79% sell 1,79%

sell 2,02% sell 2,02%

hold 0,00% sell -0,79%

hold 0,00% sell -0,96%

buy 1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

hold 0,00% sell -1,25%

sell -0,45% sell -0,45%

sell 0,52% sell 0,52%

sell 1,34% sell 1,34%

sell 1,94% sell 1,94%

sell 1,11% sell 1,11%

sell -0,70% sell -0,70%

sell -2,01% sell -2,01%

hold 0,00% sell -2,97%

sell -2,85% sell -2,85%

2,66% -11,06%

splitmin 15 prediction payoff prediction payoff splitmin 35 prediction payoff prediction payoff

hold 0,00% buy 1,64% hold 0,00% buy 1,64%

hold 0,00% buy 1,72% hold 0,00% buy 1,72%

buy 1,26% buy 0,10% sell -1,26% buy 0,10%

sell -0,61% buy -0,24% sell -0,61% buy -0,24%

sell -0,72% buy 0,24% sell -0,72% buy 0,24%

sell -1,55% 3,46% sell -1,55% 3,46%

sell -0,64% sell -0,64%

sell 0,95% Tot. Ret 6,12% sell 0,95% Tot. Ret -7,60%

sell 0,96% Volatility 1,18% sell 0,96% Volatility 1,41%

sell 1,79% sell 1,79%

sell 2,02% sell 2,02%

hold 0,00% sell -0,79%

hold 0,00% sell -0,96%

buy 1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

hold 0,00% sell -1,25%

sell -0,45% sell -0,45%

sell 0,52% sell 0,52%

sell 1,34% sell 1,34%

sell 1,94% sell 1,94%

sell 1,11% sell 1,11%

sell -0,70% sell -0,70%

sell -2,01% sell -2,01%

hold 0,00% sell -2,97%

sell -2,85% sell -2,85%

2,66% -11,06%

jan 208

2nd half 2007

2nd half 2007

jan 208

3 classes and 4 weeks time horizon

2nd half 2007

2nd half 2007

jan 208

jan 208

splitmin 20 prediction payoff prediction payoff splitmin 50 prediction payoff prediction payoff

hold 0,00% buy 1,64% hold 0,00% buy 1,64%

hold 0,00% buy 1,72% hold 0,00% buy 1,72%

sell -1,26% buy 0,10% sell -1,26% buy 0,10%

sell -0,61% buy -0,24% sell -0,61% buy -0,24%

sell -0,72% buy 0,24% sell -0,72% buy 0,24%

sell -1,55% 3,46% sell -1,55% 3,46%

sell -0,64% sell -0,64%

sell 0,95% Tot. Ret -7,60% sell 0,95% Tot. Ret -7,60%

sell 0,96% Volatility 1,41% sell 0,96% Volatility 1,41%

sell 1,79% sell 1,79%

sell 2,02% sell 2,02%

sell -0,79% sell -0,79%

sell -0,96% sell -0,96%

sell -1,30% sell -1,30%

sell -2,63% sell -2,63%

sell -1,00% sell -1,00%

sell -1,25% sell -1,25%

sell -0,45% sell -0,45%

sell 0,52% sell 0,52%

sell 1,34% sell 1,34%

sell 1,94% sell 1,94%

sell 1,11% sell 1,11%

sell -0,70% sell -0,70%

sell -2,01% sell -2,01%

sell -2,97% sell -2,97%

sell -2,85% sell -2,85%

-11,06% -11,06%

2nd half 20072nd half 2007 jan 208 jan 208
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splitmin 10 prediction payoff splitmin 25 prediction payoff

hold 0,00% hold 0,00%

hold 0,00% hold 0,00%

buy 1,26% sell -1,26%

sell -0,61% sell -0,61%

sell -0,72% sell -0,72%

sell -1,55% sell -1,55%

sell -0,64% sell -0,64%

sell 0,95% sell 0,95%

sell 0,96% sell 0,96%

sell 1,79% sell 1,79%

sell 2,02% sell 2,02%

hold 0,00% sell -0,79%

hold 0,00% sell -0,96%

buy 1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

hold 0,00% sell -1,25%

sell -0,45% sell -0,45%

sell 0,52% sell 0,52%

sell 1,34% sell 1,34%

sell 1,94% sell 1,94%

sell 1,11% sell 1,11%

sell -0,70% sell -0,70%

sell -2,01% sell -2,01%

hold 0,00% sell -2,97%

sell -2,85% sell -2,85%

sell -1,64% sell -1,64%

sell -1,72% sell -1,72%

sell -0,10% sell -0,10%

sell 0,24% sell 0,24%

sell -0,24% volatility sell -0,24% volatility

-0,79% 1,19% -14,51% 1,35%

splitmin 15 prediction payoff splitmin 35 prediction payoff

hold 0,00% hold 0,00%

hold 0,00% hold 0,00%

buy 1,26% sell -1,26%

sell -0,61% sell -0,61%

sell -0,72% sell -0,72%

sell -1,55% sell -1,55%

sell -0,64% sell -0,64%

sell 0,95% sell 0,95%

sell 0,96% sell 0,96%

sell 1,79% sell 1,79%

sell 2,02% sell 2,02%

hold 0,00% sell -0,79%

hold 0,00% sell -0,96%

buy 1,30% sell -1,30%

hold 0,00% sell -2,63%

sell -1,00% sell -1,00%

hold 0,00% sell -1,25%

sell -0,45% sell -0,45%

sell 0,52% sell 0,52%

sell 1,34% sell 1,34%

sell 1,94% sell 1,94%

sell 1,11% sell 1,11%

sell -0,70% sell -0,70%

sell -2,01% sell -2,01%

hold 0,00% sell -2,97%

sell -2,85% sell -2,85%

sell -1,64% sell -1,64%

sell -1,72% sell -1,72%

sell -0,10% sell -0,10%

sell 0,24% sell 0,24%

sell -0,24% volatility sell -0,24% volatility

-0,79% 1,19% -14,51% 1,35%

3 classes and 4 weeks time horizon

2nd half 2007

2nd half 2007

2nd half 2007

2nd half 2007

splitmin 20 prediction payoff splitmin 50 prediction payoff

hold 0,00% hold 0,00%

hold 0,00% hold 0,00%

sell -1,26% sell -1,26%

sell -0,61% sell -0,61%

sell -0,72% sell -0,72%

sell -1,55% sell -1,55%

sell -0,64% sell -0,64%

sell 0,95% sell 0,95%

sell 0,96% sell 0,96%

sell 1,79% sell 1,79%

sell 2,02% sell 2,02%

sell -0,79% sell -0,79%

sell -0,96% sell -0,96%

sell -1,30% sell -1,30%

sell -2,63% sell -2,63%

sell -1,00% sell -1,00%

sell -1,25% sell -1,25%

sell -0,45% sell -0,45%

sell 0,52% sell 0,52%

sell 1,34% sell 1,34%

sell 1,94% sell 1,94%

sell 1,11% sell 1,11%

sell -0,70% sell -0,70%

sell -2,01% sell -2,01%

sell -2,97% sell -2,97%

sell -2,85% sell -2,85%

sell -1,64% sell -1,64%

sell -1,72% sell -1,72%

sell -0,10% sell -0,10%

sell 0,24% sell 0,24%

sell -0,24% volatility sell -0,24% volatility

-14,51% 1,35% -14,51% 1,35%

2nd half 2007 2nd half 2007
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