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Chapter 1

Introduction

Communication can be defined as the process of exchanging information us-
ing a common system of symbols [Sinha:2001]. These symbols can be any-
thing from shapes and colors to words and sentences in a language. Many
things communicate and many forms of communication exist. There is of
course human language but many animals also communicate with each other
in some form. This is done trough sounds, facial expressions or gestures
and some believe even the movements of a bee are a form of communica-
tion [Frisch:1967]. The complexity of these forms of communication varies
tremendously. While certain monkeys only have a vocabulary of 26 different
calls [Rossie:2002], human language is much more complex with hundreds of
thousands of words available and an unlimited number of combinations to
use these words. Measuring the complexity of a form of communication can
be done by applying certain quantitative measures from information theory
[McCowan:1999].

Communication, however does not only apply to things that have evolved
naturally. Mankind has created various forms of artificial of communication.
Not only fantasy languages but also more practical forms of communication,
like the protocols that machines use to communicate, indexing systems for
libraries or the programming languages that were created so that human
programmers have a way of communicating with computers and instruct
them in what functionality to display. The development of these program-
ming languages started in the middle of the 20th century and has progressed
rapidly. Initially the programmer was required to type the ones and zeros
of the machine code directly, followed by using more and more advanced
languages like Assembly, Fortran or C++ that are translated by a compiler.
The development of the programming languages was necessary to add func-
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CHAPTER 1. INTRODUCTION 6

tionality, but also to make it easier for the human programmer to complete
certain tasks. The development of these programming languages has also
caused the languages to resemble natural languages more closely. Instead of
only displaying the ones and zeros many parts of a computer program con-
sist of commands that are understandable even for an untrained person. It
would therefore be interesting to see if certain phenomena occurring in nat-
ural language can also be found in these programming languages. Perhaps
programming languages can even help us to understand why these things
can be observed in a natural language.

In this thesis certain methods that are used to analyze natural language
and other forms of communication will be examined. The focus will lay
on Zipf’s rank-frequency law, which will be discussed in more detail in the
following chapters. First a short summary will be given of methods that can
be used to analyze both natural language and other forms of communication.
This summary will be followed by an overview of how those methods have
been applied to the analysis of different forms of communication. Zipf’s law
is not just a random phenomena in natural language. Scientists have argued
that the emergence of Zipf law in a natural language text is actually a result
of how these languages evolved [Ferrer:2003]. They base their finding on the
principle of least effort: When a speaker and listener are communicating a
speaker has to put more effort into forming a sentence when different words
are available for use. For example if there are five different words for ”chair”,
each describing a slightly different type of chair the speaker has to decide
which word is best suitable in the sentence he is forming. On the other
hand the listener will know the exact details about the chair if a word is
used that describes a specific type of chair, it will cost him less effort. In
their research Ferrer and Sol argue that Zipf’s law appears in systems using
symbolic reference.

Zipf plots for a natural language often show a more or less pronounced
bulge; the second half of the line shows a slightly steeper slope then the
first part of the Zipf plot. One theory to explain this phenomenon is given
by Ferrer and Sole[Ferrer:2001a][Ferrer:2001b]. Here the bulge in the plot is
explained by the presence of two distinct lexica: A first group of everyday
words that are commonly used in most texts and a group of less frequent
words. This lexicon is called the kernel lexicon by Ferrer, in this thesis it will
be referred to as the A lexicon while the second group will be the B lexicon.
The explanation offered by Ferrer for this phenomenon by theorizing that
the lexica division and the resulting bulge in a Zipf plot is the direct result
of the limits of the human brain. As plots of randomly generated texts, or
monkey languages, do not show this bulge the question arises if the presence
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of such a bulge, in a Zipf plot is an indication for real communication, as
opposed to random data.

• In this thesis the theory of two separate lexica within communicative
data will be further examined. Drawing on the similarities that exist
between natural language and artificial languages, the presence of two
different lexica in these two groups, and absence in random texts,
will be shown. Further parallels can then be drawn to other fields of
research like DNA.

A first step in determining whether or not the presence of a ’bulge’ in a
Zipf plot can be attributed to the presence of two lexica, Lexicon A and B,
is to prove the presence of such groups. In the experiments described later
in this thesis, the natural language text will be split into two groups: one
of frequent, lexicon A words with function words included. A second file
will contain lexicon B, with all remaining words. To further examine this
phenomenon of a bulge being caused because a certain piece of text contains
”meaning”, various corpora of computer languages will be examined for the
presence of two word groups. The major advantage that computer languages
have over natural languages is that a division between daily used ’words’
and others can be more easily made. Keywords, operators and standard
functions are considered ’daily’ words while all other user created identifiers
are considered part of the less frequently used words. These keywords and
standard functions are clearly defined for all program languages described
in this thesis. After separating the two different groups of words for each
corpus into an A and B lexicon, Zipf plots will be created. Because we
assume that the bulge in a Zipf plot is created by the presence of the two
word groups, we expect that at least in one of the plots of the separate
groups such a bulge will not, or at least be less, visible. Because random
texts do not consist out of different types of words a Zipf plot will be created
for one of such texts to show that a bulge like in the non-random data is not
present. If we indeed find that the bulge is absent for random, but present
for non-random texts we can then conclude that the bulge is only present
in communicative texts. Further parallels can then be drawn with other
types of data to see if similar separations of word-group equivalents produce
similar results.

In chapter two methods that are used to examine linguistic like data are
discussed, including entropy and Zipf’s laws. Following this chapter, chapter
three will give a summary on various research area’s where these methods
have been applied. The focus will then shift to the experiments that were
conducted for this thesis. In chapter four an overview will be given of the
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corpora that were collected to perform the experiments. The Experiments
themselves will be described in chapter five. Finally the conclusion will
contain a short discussion on the results that this thesis yielded.



Chapter 2

Finding similarities in
communication

In this chapter methods deciding on the complexity of a communications
stream will be described. The focus will lie on Zipf’s laws and entropic
measures, as these have both been used in other experiments were human
language was compared to other forms of communication[McCowan:2002].

2.1 Zipf’s laws

Zipf’s laws are two laws of word frequency which apply to natural languages
like English, German, Chinese and Japanese [Zipf:1949]. The most famous
of these two shows a relationship between the frequency of a word and the
rank of that word in a sorted word frequency list. A plot of the log of the
frequency on the Y-axis and the log of the rank on the X-axis results in an
almost straight line with a slope of -1. Variations in the slope of the line
most often occur for the highest and lowest ranking words.

9
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Figure 2.1: A) Linear scale plot of the distribution of AOL users among visited
web sites. B) Distribution of site popularity frequencies on a log-log scale for AOL
users. Please note that the ”bulge” is present, even though this plot does not result
from linguistic observation.

Apart from natural languages this law also applies to random texts, ar-
tificial languages [Cohen:1996] and animal communication [McCowan:1999].
It also holds for very different things like city populations, internet traffic
and financial systems [Li:1999]. Figure 2.1A shows the visits of AOL users to
different websites during one day in December 1997. Figure 2.1A illustrates
what happens when the web visit data is put on a log-log scale; the Zipf dis-
tribution appears. The straight line shows what a perfect Zipf distribution
should look like, the other line shows the actual distribution [Adamic:2002].
This rank-frequency law is often referred to as Zipf’s law, however there
exists a second law for word frequencies by Zipf. The second law is also
known as the number-frequency law and describes a relationship between
words with a certain frequency n and other words with the same frequency.
If a plot is drawn with the log of n on the Y-axis and the log of the number
of other words that also occur n-times on the X-axis the plot approximates a
straight line with slope -0.5[Popescu:2003]. Figure 2.2 shows what happens
when Zipf’s second law is applied to the United States constitution.
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Figure 2.2: A) An example of a plot showing Zipf’s number-frequency law in the US
constitution. There are many words that occur only once, while there are relatively
few that occur more often. B) The same graph, but on a regular scale.

2.2 Other Word Frequency Distributions

There are also other methods that can be used to describe the frequency
distribution of words. In particular several distributions that are used in
various fields of science can be adapted to estimate a total vocabulary size
from a sample. Examples of these are the lognormal distribution [Carol:1967]
and the generalized inverse Gauss-Poisson law [Sichel:1986]. These methods
are included in this thesis to show that alternatives to Zipf also exist.

2.2.1 The lognormal law

The Lognormal Law corresponds with the notion of proportional effect
[Laherrere:1997]. An example of this is the amount of money people in
a country can make. It is much easier for a millionaire to make a thou-
sand Euros than it is for someone with a smaller capital. Similarly a word
that occurs often in a sample has a high probability of occurring often in
the complete vocabulary. The Lognormal Law can be used to calculate
the probability that a certain word will make up a certain percentage of a
complete corpus that the sample was taken from.
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2.2.2 Gauss-Poisson

The Gauss-Poisson distribution, also known as the poisson normal distri-
bution, can be applied in the same way as the lognormal law to estimate
vocabulary size. The Poisson distribution is a discrete probability distri-
bution belonging to certain random variables N that count, among other
things, a number of discrete occurrences that take place during a time-
interval of given length[WikiPoisson:2005]. Given a sample the distribution
can be used to estimate how many times a certain word will occur in the
total corpus. Besides being used in linguistics the distribution applies to
a wide variety of events ranging from the number of times a web server is
accessed per minute, to the number of soldiers that died after being kicked
by horses each year in each corps in the Prussian cavalry1.

2.2.3 Comparison with Zipf

Baayen[Baayen:1993] compared the Lognormal law and the Poisson distri-
bution to a generalization of the Zipf frequency/rank law. He found that the
Zipf law and the Gauss-Poisson law performed better than the lognormal
distribution for estimating vocabulary size, the difference in performance
between Zipf’s law and the Gauss-Poisson law was very small.

2.3 Entropy

Another way of analyzing communicative data is by measuring the entropy,
or unpredictability, within a stream of symbols2. The amount of infor-
mation in such a stream can be estimated by an entropy measurement
[Shannon:1948]. There are several entropic orders which all measure dif-
ferent things. Zero-order entropy measures repertoire diversity and can be
calculated using formula 2.1

H0 = log2 N (2.1)
1This example became famous because of the book ”The Law of Small Numbers”

written by Ladislaus Bortkiewicz. He used the example to illustrate that certain low
frequency events, in a large population follow a Poisson distribution.

2During the creation of this thesis it became apparent that experiments involving
Entropy would not yield results that could help in finding the answers to the questions
that were raised in the introduction. However because many researchers who use Zipfian
measures to analyze data with linguistical properties also use entropy, a short introduction
will be given nevertheless.
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In this formula H0 is the number of bits that are required to represent a
number of events N. In languages these events can be letters, morphemes
or words, depending on what are considered to be the basic elements of
the repertoire. The next order of entropy, first order entropy, is a measure
for the information content of a set of events and can be calculated using
formula 2.2

H1 =
N∑

j=1

−p(Aj) log2 p(Ai) (2.2)

Unlike zero-order entropy, first-order entropy takes into account the prob-
ability of each event occurring. The higher levels of entropy measure the
dependency among communicative signals in sequences of multiple signals.
For example 2nd level entropy measures the likelihood of signal B occurring
when signal A has just been identified. Similarly 3th order entropy measures
the likelihood of a signal C occurring, when A and B have already appeared.
The formula for calculating 2nd order entropy is:

H2(AB) = −p(A1B1) log2(A1B1)−
p(A1B2) log2(A1B2)...− p(A1BN) log2(A1BN)
−p(A2B1) log2(A2B1)−
p(A2B2) log2(A2B2)...− p(A2BN) log2(A2BN)
...
−p(ANB1) log2(ANB1)−
p(ANB2) log2(ANB2)−...− p(ANBN) log2(ANBN)

(2.3)

Higher level entropies can be calculated by taking the entropy from the
previous level and adding the entropy of the next event occurring. For
example 3th level entropy can be calculated using formula 2.4.

H3(ABC) = H2(AB) + HAB(C) (2.4)

in which
HAB(C)

is the entropy of event C, when both A and B have occurred.
Several studies have used entropy to compare animal communication like

dolphins [McCowan:1999], monkeys [McCowan:2002] and whales [Seife:1999]
to human language. A disadvantage of using entropy is the fact that to
obtain reliable results the corpora on which the measurement are done need
to be rather large, this can be a problem and will be discussed further in
the next section.



Chapter 3

Previous research

In this chapter an overview of other attempts to use Zipfian and entropic
measures on corpora with the intent to find linguistic properties will be
discussed. This will include experiments on human, animal and artificial
language corpora but we will also touch on other areas like the search for
extraterrestrial life or DNA.

3.1 Human languages

3.1.1 Zipf

As mentioned earlier, the most famous example of Zipf’s rank-frequency law
is the first example that Zipf himself mentioned in his book[Zipf:1949]. Zipf
shows that when you multiplied the rank of a word in a word frequency list
of the English language by its frequency you roughly get the same number
for all words. Zipf explained his law in terms of principle of least effort. The
term ’law’ is actually not an ideal description for what Zipf discovered as it
is inaccurate for high and low ranking words and only reasonable correct for
the middle ranges, therefor it can only be seen as an approximation. In the
1950s Benot Mandelbrot made modifications to Zipf’s first law which made
it slightly more accurate[Miller:1954]. Ever since Zipf published his rank
frequency law in 1949 it has been used to analyze many natural languages
including English, Russian and Chinese and in all cases Zipf-like behavior
has been observed [Li:1999].

14
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3.2 Animal communication

Many animals communicate in some form. For most animals, communica-
tion is limited to communication driven by instinct; communicative skills
that the animal was born with. Animals born in captivity, with no contact
with other members of their species, generally show the same communica-
tive behavior as their wild counterparts that were raised by their parents.
This includes the growling of a dog when it perceives a threat, the croaking
of a frog at dusk and the signals of courtship certain birds express with
their feathers to impress a potential mate [Nollman:1999]. However, some
animal species learn how to communicate, instead of using their instincts. A
example of animals learning to communicate can be found amongst whales
and dolphins; the language of these animals evolves during their lifetime
and different groups of whales and dolphins from the same species often use
different dialects to communicate. For this paper the way in which a certain
form of communicative skill was acquired by an animal is not important, the
emphasis lies on what kind of similarities or differences there are between
different forms of communication and specifically on how these can be mea-
sured. In the following sections different forms of communication, and the
methods used by other researchers to compare these will be discussed.

3.2.1 Dolphins

Extensive quantitative research on corpora of dolphin communication was
previously conducted by McCowan, Hanser and Doyle. They used both Zip-
fian and entropic measures [McCowan:1999] too compare the communica-
tion of bottlenose dolphins (Tursiops truncatus) to that of human language
[McCowan:2002]. In their research particular interest is paid to the devel-
opment of dolphin communication compared to that of humans. Using the
average slope of the Zipf curve they analyzed the Zipf patterns for differ-
ent age groups among the dolphin population, and compared the results to
the Zipf patterns found in the language of human children, adolescents and
adults. The results showed that although different for dolphins and humans,
both species showed differences across the different age groups. Several in-
stitutions have collected corpora of so called Dolphin whistles. Dolphins
communicate by sending out sound waves, which sound like whistles to hu-
mans. Figure 3.1 shows two examples of dolphin whistles by displaying the
frequency of the whistle in time.
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Figure 3.1: Two dolphin whistles from the Janik corpus

Words versus Characters

In the research conducted by McCowen and her colleagues both entropic
and Zipf measures were used to compare human language to animal com-
munication. A remarkable choice was made to compare words to dolphin
communication in the Zipf experiments, while comparing characters to dol-
phin communication in the experiments which involved entropy. One would
expect that a choice would be made to use either characters or words to
compare to other forms of communication and not to switch between the
two.

3.2.2 Whales

Like dolphins, whales communicate using so called whistles. The type of
whistle depends on the activity of the whale. Unsurprisingly whales that
are resting do not emit as many whistles as a group of whales on the hunt
[Ford:2002]. Different groups of whales vocalize different types and quanti-
ties of whistles; for example groups of killer whales that have been together
for long periods of time tend to communicate more often and emit types
of whistles that more recently formed groups do not use. A possible ex-
planation for this is that as a group of whales stays longer together, the
social ties within the group become more complex and the need for com-
munication increases. Research on whale communication is in its infancy,
but at institutions like the University of Massachusetts scientists are try-
ing to measure how much information whales actually communicate to each
other[Seife:1999]. The whale corpora suffer from the same problems as the
dolphin corpora; insufficient size and the fact that it is hard for a human
observer to classify a whale whistle. A possible solution for this is currently
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being worked on: the adaptation of using neural networks that analyze the
patterns in whale communication and classify these into categories, without
having a prior knowledge of how many categories there are [Murray:1998].

3.2.3 Squirrel Monkeys

The squirrel monkey (Saimiri sciureus) is a small primate that can be found
in South-America. The squirrel monkey has 26 distinctly different calls
which are used to stay in touch when foraging, barking when angry or to
warn other members of the group when a threat is spotted [Rossie:2002].
One of the things that makes the communication of these monkeys inter-
esting is that it is relatively easy to classify most calls. The monkeys have
several warning calls, but the reaction of the group when a certain call is
heard often gives away it’s meaning. For example when a monkey gives
the ’eagle alarm call’ the group of monkeys will look at the sky to spot
the threat before finding cover in the bushes. Previous researchers have
compared the complexity of the squirrel monkey calls to that of bottlenose
dolphins and human language using a Zipf coefficient and entropy measures
[McCowan:2002].

3.2.4 Bees

Biologists have since long noted that honeybees perform a sort of dance
upon their return to their hive. The behavior was first described by Aristo-
tle [Aristotle:330BC] and is known as the bee- or waggle-dance. This dance
forms the basis for one of the two main theories about how honeybees man-
age to communicate with each other [Frisch:1967]. According to the dance
theory the bees returning with nectar use the circular and zigzag motions
of the dance to communicate the location of the source of the nectar to the
other bees in his comb. (See figure 3.2). According to this theory the dance
contains information about the direction (relative to the sun) and distance
of the food source. The alternative theory about how bees located their
sources of food claims that the bee-dance would not be able to pinpoint the
exact location of the nectar; however, according to supporters of the dance
theory the dance is only used to give the other bees a very general idea of
the nectar source [Sebeok:1990][Wenner:1967][Wenner:2002]. Attempts to
use linguistic methods to do further research on the bee-dance have so far
been hampered by inadequate corpora of dance date [Paijmans:2004].
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Figure 3.2: Two bees dancing, on the left side indicating a food source far away,
on the right, a source nearby.

3.3 DNA

Deoxyribonucleic acid, or DNA, is a nucleic acid which carries genetic in-
structions for the biological development of all cellular forms of life and many
viruses [WikiDNA:2004]. In other words; DNA can be seen as a blueprint
for a lifework, a sequence of instructions to create a living organism. DNA
is encoded with four so called basepairs1; the sequence in which these occur
on a certain strand of DNA determine the function of that piece of DNA.
DNA can be roughly divided into two groups, coding DNA and non-coding
DNA. The first group of coding DNA consists out of strands of DNA which
contain instructions for making proteins and other cell products. The sec-
ond group of non-coding DNA makes up the largest part of the DNA of
complex organisms like humans. Some parts of the non- coding DNA are
involved in the regulation of the coding part of the DNA. However, not much
is known about the non-coding part of DNA and it is often referred to as
junk DNA as it has no apparent function. Because DNA shows a strong
resemblance to a descriptive text with the four basepairs as its alphabet,
researchers have employed linguistic methods to analyze the properties of
DNA. Some researchers have even argued that a grammar can be formed for

1The bases can be abbreviated as A, T, C, and G; each base ”pairs up” with only
one other base: A+T, T+A, C+G and G+C; that is, an ”A” on one strand of double-
stranded DNA will ”mate” properly only with a ”T” on the other, complementary strand.
The order does matter: A+T is not the same as T+A, just as C+G is not the same as
G+C. However, since there are just four possible combinations, naming only one base on
the conventionally chosen side of the strand is enough to describe the sequence
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DNA that make use of the X-bar principle and C-command2 relation used
in linguistic syntactic theory [Vides:1992]. Researchers have also used Zipf’s
rank-frequency law on DNA, for example such an experiment was conducted
in 1994 by Mantegna et al. [Mantegna:1994]. The results of their experiment

Figure 3.3: Separate Zipf plots for non-coding and putative coding regions of a
DNA sequence of yeast chromosome III.

shows that although the coding parts of the DNA does not follow Zipf’s law
the non-coding part does (figure 3.3). From these results they concluded that
non-coding DNA more strongly resemblance natural language than coding
DNA does. However, as argued by Niyogi and Berwick [Niyogi:1995] just
because a certain phenomenon follows Zipf’s law does not necessarily mean
it resembles a natural language more closely than something that does not
follow Zipf’s law. After all, Zipf’s law also holds for many things apart from
natural languages and therefore one should be careful in assuming that it
can be used to measure the degree in which a phenomenon is similar to a
natural language, when it is not entirely clear if what is being researched is
a language at all.

2Both are concepts in government and binding theory which applies to natural lan-
guage. See http://www.criticism.com/linguistics/govt-binding-basics1.php for
more information.
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3.4 SETI

The SETI (Search for Extra-Terrestrial Intelligence) project is a program
which searches for intelligent life on other planets, not by visiting those plan-
ets, but by analyzing signals from outer space [SETI]. These signals are col-
lected using large radio telescopes and subsequently analyzed to determine
wether the signal is just noise or an actual message from an extra-terrestrial
intelligence. Because the galaxy is so large (there are more stars than there
are grains of sand on all of Earth’s beaches) and the SETI project is limited
by the number of radio telescopes and amount of computer processing time
available, the researchers at SETI have made certain assumptions. The first
group of assumptions narrow down the number of stars that the telescopes
are pointed at to collect signals. SETI scientists assume that any alien life
form will be somewhat similar to the life forms found on earth, they will
probably be based on some form of carbon chemistry and will require the
presence of liquid water. Furthermore planets around suns similar to our
own sun have a higher chance of hosting intelligent life. Large suns have a
relatively short lifespan so the chance of intelligent life developing around
does suns is smaller. Small suns emit a relatively small amount of heat and
energy, which means that planets in those solar systems will be colder and
less likely to have liquid water. The 2nd assumption that is made at the SETI
project is that aliens will use a radio signal within the useful radio spectrum
to communicate. Although the assumptions described above narrow down
the search space significantly it is still extremely large. An added problem
for the SETI project is that no one knows exactly what the alien signal will
look like, the possibility exists that a signal from an alien intelligence was
already received, but that it was not recognized. Recently researchers at the
SETI institute have been studying quantitative measures from information
theory like entropy and zipf to see if these might be useful in their search
for extra-terrestrial intelligence. Using the ”language” of whales and dol-
phins they are attempting to find a better understanding of intelligence as
a evolutionary adaption and possibly also new methods to analyze possible
signals from intelligence on distant worlds[Hanser:2002][Richards:2004].

3.5 Some notes on the collection of corpora

The following section will describe some issues that arise in collecting dif-
ferent types of corpora, and what attempts have been made to collect these
types of corpora. In order to determine whether or not methods used in
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Figure 3.4: An example of a radio signal received by SETI, in this case the signal
turned out to be nothing more than background noise.

linguistical analysis can also be used in other forms of communication and
data, a first step has to be the collection of corpora containing such data.
Preferably these corpora should be in a form which makes it easy to ap-
ply the methods described in the earlier chapters. The basic feature these
methods all have in common is the fact that they can be applied to human
natural language texts, with tokens being the basic elements which make
up the texts. Because of this a corpus should preferably be plain text with
clear rules as to what a basic element is. Another thing that the methods
described earlier have in common is that they produce more accurate results
given larger quantities of data. Having not enough data will produce results
which could be very inaccurate.

3.5.1 Problems with animal corpora

A major problem when one wants to perform quantitative research on animal
communication is the lack or inaccessibility of animal corpora of sufficient
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size. Collecting a corpora of animal communication is generally a slow and
expensive process. Specialized equipment is often needed to record animal
sounds or gestures and after the process of collection is completed the col-
lected data has to be analyzed by experts who should then convert it to a
workable form. This is the main reason for the lack of large animal corpora;
the corpora that do exist contain small quantities of data usually from a
small group of animals.

Another problem with corpora containing animal communication is de-
termining from which elements animal communication is made up. If a
method is to be used which requires a word frequency list of a human corpus
then it should be possible to define a similar structure from the animal data.
For dolphins, several methods of classifying their whistles into categories ex-
ist. These methods vary from letting human experts classify the whistles to
letting a computer distinguish them. Unfortunately the different methods
do not always classify the same whistles into the same categories, one of the
reasons again seems to be the small size of the corpora [Janik:1999]. A possi-
ble solution to the lack of objective comprehensive repertoire models is using
self-organizing neural networks to handle the classification [Murray:1998].

3.5.2 DNA

Collecting a corpora of DNA is relatively easy because the human genome
and complete DNA analysis of other creates have been made publicly avail-
able3. It would therefor be possible to apply the linguistic methods which
were discussed earlier to DNA.

3.5.3 Artificial language corpora

Universal Decimal Classification system

The universal decimal classification system (UDC) is a multilingual classi-
fication scheme that can be used to index and later retrieve documents on
any subject. It was derived from the decimal classification system of Melvil
Dewey4 at the beginning of the 20th century [UDC:2001]. UDC was used
extensively in libraries to classify the contents of books. UDC can be seen
as an artificial language, it describes the contents of a document using a set
of numbers.

3The human genome is available at project Gutenberg; http://www.gutenberg.org/.
4The Dewey Decimal classification system was first published in 1876
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Computer languages

Languages created by humans to program computers are called computer
languages. These languages vary from very low-level machine language and
assembly to higher level languages like C++ and Delphi. As many as 2500
dialects, variants, versions and implementations of computer languages have
been cataloged [ComputerLanguageList:1991]. Collecting corpora of com-
puter languages varies in difficulty, depending on the language being col-
lected; some languages have been widely used while others were only used in
one single project. One easy way of creating a corpus is by collecting source
code published under the GNU license [GNUProject:2004]. The source code
of software published under the GNU licensed is always included with the
program, sources for operating systems like Linux, and C compilers are all
available. Because of the large diversity in computer languages it would be
interesting to see what differences exist between different languages, espe-
cially between older, relatively low level languages like Fortran and newer,
higher level languages like C++. A problem that does arise when one wants
to collect different kinds of programming languages is the fact that not all
of them are available in the same quantity. While popular languages like C
which are still used a lot are widely availably, source code written in For-
tran or assembly are much harder to find. This can be largely be explained
due to the fact that when languages like Fortran were commonly used the
internet was still in it’s early stages of development and much less software
was made available to the general public.

Other artificial languages

A natural language is defined as being a language which has been learned by
humans as a mother language; learned in the critical period roughly between
birth and puberty when language acquisition occurs naturally. Besides com-
puter languages humans have also designed other none natural languages.
Examples of these are Klingon5 and the Elvish language6. Another example
of an artificial language is the language called simplified English which was
used by the Fokker company in manuals for airplanes. Simplified English is
based on English however, simpler words than in the original manuals were
used, and complex structures like passive sentences were avoided so mechan-
ics with only basic English skills could read and understand the manuals.

5Created by fans of the television show Startrek
6Created by fans of the books by J.R.R. Tolkien



Chapter 4

The data sets

This chapter describes the steps that were taken to collect and prepare the
corpora for the experiments that will be described later on in this thesis. Ad-
ditionally the properties of the corpora will be explored and the reasons why
certain choices were made during the preparation of the different corpora
will be explained.

4.1 English corpus

To use as an example to determine the minimum amount of tokens needed
to create a accurate Zipf plot the book War and Peace by Leo Tolstoy was
selected to serve as a corpus for the English language. A natural language
was chosen because it is known that the Zipf phenomena occurs in languages
like English. For the other experiments involving natural language the book
Moby Dick was by Herman Melville was used, as this book was also used by
other scientists for Zipf related research[Ferrer:2002].

4.2 C++ corpus

4.2.1 Description of the corpus

The C++ corpus that was collected to be used in the various experiments
consists of all C and C++ files1 that make up the source code for GCC2.
GCC is a open source compiler for C and C++ and is widely used across

1.c, .h and .cpp files
2Version 3.2.1
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the world. The corpus consists of 6938 different files with a total size of
37.2MB.

4.2.2 Preparation of the C++ corpus

The first step that has to be taken to prepare the C++ corpus for use
in our experiments is the removal of all the comments in the source code.
These sections of commentary usually consist of natural language and are
also removed by the compiler when the program is translated into machine
language. Comments are not considered to be a part of the programming
language. The next step in the preparation process is the tokenization of
the source code. In C++ a code fragment like: for(x=0;x<y;x++); has
the same meaning as: for ( x = 0 ; x < y ; x++ ) ; Therefor it is im-
portant that things like brackets and semicolons are identified as separate
tokens. For our experiments all brackets ( ’(’,’)’, ’<’, ’>’, ’[’, ’]’
), and the C/C++ operators are seen as separate tokens.

4.2.3 Identifiers and Variables

In most programming languages, including C++, programmers have the
option to name their variables and functions so the source code becomes
more readable. For example a variable that may be used to iterate trough
a loop could be called ’Iterator’. Often these variables have names that are
derived from natural languages. Because of this it could be argued that
these identifiers should be removed from the list of C++ ”words” or at the
very least given a unique name avoid natural language polluting the pro-
gramming language, and interfering with the experiment. However, unlike
comments, identifiers and variables are an integral part of the programming
language, and although they are renamed internally by the compiler when
the translation to machine code is made, excluding them would result in a
loss of information. In natural language we refer to objects everyday. For
example when we use ”John” or ”Mary” in a conversation we are referring
to a certain person. If we use the word John in a completely different situa-
tion we might be referring to a completely different person. Therefor, when
calculating the Zipf slope or Entropy of a natural language we do not replace
every reference to a object by a unique identifier, we are interested in words
that are being used and not the objects that are being referred. Similarly in
programming languages variables with the same name in different modules
could be referring to the same piece of data and therefor it would mean a
loss of data if the variables were to be renamed. Although it is true that
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variables like ”i” are often used to describe different variables that do not
relate to each other in any way, the same is also true for natural languages.
For example the word ”the man” could be used to refer to billions of differ-
ent objects but when calculating entropy or the Zipf curve or entropy for a
language is still counted as one word.

4.2.4 Result of Source Code Preparation

After the source code has been prepared by removing comments and tok-
enizing whatever is left over the final result consists of 32.0MB of C/C++
code, containing 126142 types of tokens.

4.3 Fortran Corpus

Because the Fortran programming language is not as popular as it used
to be it is much harder to find Fortran source code in sufficient amounts.
Because Fortran code that had a similar function as the code in the C++
corpus (Compiling code) other types of programs were collected from various
source. After tokenization of the complete Fortran corpus, with the exclusion
of any comments, the Corpus has a total size of 29.2MB containing 34246
token types.

4.4 Assembly and Bitcode Corpora

The assembly corpus consists of a total of 7.01MB of compiler related as-
sembly code. To prepare the corpus for the experiments described later on
in this thesis only that comments had to be removed. This yielded a final
corpus size of 4.81MB. The bitcode corpus consists of all the binary files in-
cluded in the Borland Delphi 7 compiler and IDE. No further preparations
had to be made for this corpus.

4.5 Size of Corpora

4.5.1 Determining the minimum corpus size for a Zipf plot

The Zipf measure strongly depends on the amount of data available. As the
Zipf plot actually depends on the frequency of words in a corpus, selecting
a corpus that is too small will generate inaccurate results. To make sure
that the corpora which were collected for the various experiments described
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Table 4.1: Corpora sizes
Name Size Types Tokens Percentage

of Total Corpus
C++ Complete 32.0MB 126142 5778504 100%
C++ Keywords - 250 3257590 56.37%

C++ No Keywords - 125892 2520914 43.63%
Fortran Complete 29.2MB 34246 2357688 100%
Fortran Keywords - 259 1409842 59.80%

Fortran no Keywords - 33987 947846 40.20%
Assembly Complete 4.81MB 18634 574770 100%

Bit code 39.5MB 256 13513044 100%
War and Peace 3.11MB 17503 572180 100%

Moby Dick 2.29MB 16983 523286 100%
Moby Dick

Function Words - 215 123231 23.55%
Moby Dick no

Function Words - 16768 400055 76.45%

in this thesis are of sufficient size a Zipf plot was created of a corpus of
English, in this case the book War and Peace. Furthermore, Zipf plots
were created of progressively smaller parts of the book. When a certain
plot deviates strongly from the complete corpus plot this is an indication
that the selected part of the corpus has become to small too yield accurate
results. The sizes of the various corpora used in the experiments which will
be described in the next chapters can be viewed in table 4.1.



Chapter 5

Experiments

5.1 Natural language, Zipf curve bulge and two
groups of words

To compare the artificial programming languages to a natural language, the
obvious procedure is to perform the same actions on a the text as on the
programming languages. We shall use the book Moby Dick in these first
experiments, the same book was used in other Zipf related experiments by
other researchers [Ferrer:2002]. As the words in Moby Dick have to be sepa-
rated into two different groups, the contents of each group has to be decided.
As the first group should contain words that are used on a daily basis it would
be a logical choice to select function words and other frequently used sup-
porting words into this group. The words that were selected to make up the
A lexicon, can be separated in several categories[Leech:2001][Ferrer:2001b].

• Pronouns and determiners, like ”ourselves”, ”your” and ”such”.

• Prepositions, like ”during”, ”before” and ”depending on”.

• Conjunctions, like ”and”, ”though” and ”albeit”.

• Interjections and discourse particles, like ”yes”, ”goodbye” and ”oh”.

• Commonly used verbs, like ”have” and ”be”.1

1These words lists can be downloaded from the companion website for Word Frequen-
cies in Written and Spoken English: based on the British National Corpus[Leech:2001]:
http://www.comp.lancs.ac.uk/computing/research/ucrel/bncfreq/

28
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5.2 Programming languages, Zipf curve bulges and
two groups of words

Before the existence of two distinctly different types of words can be assumed
in a natural language corpora, by means of comparing it to a programming
language, is showing that a bulge also exists in the programming language’s
Zipf plots. The second part of the experiment will be to separate the Zipf
plots into the A and B lexicon. The experiments described here will be per-
formed on the Fortran and C++ corpora. These two corpora were selected
because they both have a large number of distinguishable keywords and
operators and because they offer sufficient possibilities for a programmer to
add custom variable and function names. For the C++ corpus the keywords
are defined as all functions described in the C99 standard[C9X:2000] and the
standard library; the Ansi Fortran 90 standard was used to extract the key-
words and functions from the Fortran corpus[Chivers:2005]. One could argue
that the keywords make up the largest part of the most frequently occurring
words in the corpus, so simply selecting the 200 most frequent words would
have the same effect. However, this is not the case: Many keywords are not
frequent at all, while certain other words like the variables ”X” and ”foo”
are extremely frequent. The C++ function words are to the C++ corpus
what the frequently used verbs like have and be are for the English corpus.
Because a clear separation into an A and B lexicon for the assembly and
bitcode corpora is not easily done only the properties of the full corpora
were examined in this thesis.

5.3 Zipf in random corpora

Intuitively it is obvious that a random text does not contain two different
type of word groups. After all, all words in the text are randomly generated
and therefor they are all equal. To prove that this is indeed the case and the
subsequent bulge in the Zipf plot are only inherent to data with meaning,
randomly generated corpora will be created. Zipf plots of these corpora will
be made and then analyzed for the existence or absence of such a bulge. To
prevent a inaccurate result due to word length variations in the random and
other corpora, the random corpora will consist of the same number of words,
with the same word length, as their non-random counterparts [Ferrer:2002].
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5.3.1 Determining the rough minimum corpora size for a
Zipf plot

Figure 5.1: Zipf curves for selecting increasingly smaller numbers of words from
War And Peace.

Figure 5.1 shows the result for the experiment that was done to determine
the minimum size of a corpora needed to draw a accurate Zipf plot. Although
a clear threshold is not visible in the diagrams the smaller corpora sizes
progressively produce more erratic Zipf plots. However, all plots of 142552
words and more do not show any noteworthy differences from each other,
and therefore it can be safely assumed that selecting a corpus of at least
150000 words should be sufficient to create accurate Zipf plots.

5.3.2 Zipf curve bulge and two groups of words in English

As can be seen in figure 5.2A the presence of two separate word groups is
not immediately apparent. This is mostly due to the fact that the word
’the’ occurs very frequently when compared to the other words in the top
10 of most frequently occurring words. The high frequency of this single
word causes the sharp angle right at the start of the plot. If one were to
remove that word from the frequency list then the presence of two slopes
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and a bulge in the Zipf plot would become much more visible. Figure 5.2B
shows the plot for Moby Dick with all function words removed. As can be
seen the plot follows an ideal Zipf distribution quite nicely. Finally, figure
5.2C shows that when only using function words in a plot, that plot will not
resemble a Zipf distribution anymore.

5.3.3 Zipf curve bulge and two groups of words in C++

As can been seen in figure 5.3A the C++ corpus shows a clear bulge in its
Zipf plot. The first part of the graph is almost horizontal, then suddenly
drops and then continues on a more steady line. The more abrupt change in
this plot when compared to the plot of natural languages can be explained,
if we assume the presence of two word groups, by the fact that the division
in an programming language in an A and B lexicon is much more clear
than it would be in a natural language. Figures 5.3B and 5.3C show what
happens if you split the C++ keywords from the rest of the corpus. The
plot of the keywords clearly no longer shows any resemblance to a standard
Zipf plot with a slope of -1. However, the Zipf plot of the corpus where the
C++ keywords had been removed has become an almost perfect, straight
line following the slope that Zipf’s first law predicts.

5.3.4 Zipf curve bulge and two groups of words in Fortran

In the three fortran Zipf plots in figure 5.4 the same effects as in the plots for
the C++ corpus which were discussed in the previous section can be seen.
As was the case with the C++ corpus the Zipf plot of the Fortran corpus
where the keywords were removed adheres much closer to Zipf’s law, while
the plot showing only the keywords no longer resembles a straight line.
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Figure 5.2: A) Word frequency distribution on a log-log scale for English. The
straight line shows an ideal Zipf distribution. B) Word frequency distribution for the
same corpus, but with all function words removed. C) Word frequency distribution
on a log-log scale for the function words in English.
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Figure 5.3: A) Word frequency distribution on a log-log scale for the C++ corpus.
The straight line shows an ideal Zipf distribution. B)Word frequency distribution
on a log-log scale for the C++ corpus, with all C++ keywords removed. The
straight line shows an ideal Zipf distribution. C)Word frequency distribution on a
log-log scale for the C++ corpus, with everything but the C++ keywords removed.
The straight line shows an ideal Zipf distribution.



CHAPTER 5. EXPERIMENTS 34

Figure 5.4: A:Word frequency distribution on a log-log scale for the Fortran corpus.
The straight line shows an ideal Zipf distribution. B:Word frequency distribution
on a log-log scale for the Fortran corpus, with all Fortran keywords removed. The
straight line shows an ideal Zipf distribution. C:Word frequency distribution on a
log-log scale for the Fortran corpus, with only the Fortran keywords. The straight
line shows an ideal Zipf distribution.
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Table 5.1: Average Zipf plot slope for the various corpora
Name Rank Start Rank End Average Slope

Moby Dick Total 1 16983 -0.95
Moby Dick Total Head 1 250 -0.68
Moby Dick Total Tail 250 16983 -1.08
Moby Dick Lexicon B 1 16768 -0.77

CPP Total 1 126142 -1.15
CPP Total Head 1 90 -0.65
CPP Total Tail 90 126142 -1.21
CPP Lexicon B 1 125892 -0.92
Fortran Total 1 34246 -1.22

Fortran Total Head 1 85 -0.62
Fortran Total Tail 85 34246 -1.47
Fortran Lexicon B 1 33987 -0.97

5.3.5 The bulge examined more closely

Table 5.1 shows the various angles of inclination for the corpora that were
separated into an A and a B corpus. The large differences in the inclination
rates of the heads (the part of the graph before the bulge) and tails (the
part after the bulge) of the plots for the complete corpora are especially
striking. The differences in inclines between the two parts of the graphs
for the Moby Dick, C++ and Fortran corpora are -0.40, -0.50 and -0.60
respectively. These differences in slope clearly show that a bulge is present
in all three diagrams.
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5.3.6 Zipf in random corpora

Figure 5.5: Zipf plots for three randomly generated corpora.

As can be seen in figure 5.5 the plots of the corpora that were created
from the English corpus and two of the programming language corpora don’t
show a bulge. Instead they all show step-like behavior, which can be ex-
plained by the random nature of the corpus. Because character frequencies
in the different corpora are totally random, and all characters have the same
chance of occurring words of the same length have the same frequency. The
first part of the Zipf plots all consist of words of one ’letter’ the second step
are those words consisting out of two letters and so on. The reason that the
’steps’ of the plot for the English corpus are less wide can be explained by the
fact that the programming languages use a larger collection of characters,
so their random corpora have a larger vocabulary. For example characters
like ”(” or ”=” would not occur in a novel like War and Peace while they’de
be seen frequently in a piece of source code.



CHAPTER 5. EXPERIMENTS 37

5.3.7 Zipf in low-level programming languages

Figure 5.6: Word frequency distribution on a log-log scale for the 32-bit corpus.

As can be seen in figure 5.6 the Zipf plot of the bitcode corpus does not
resemble those of the other programming languages even though it resembles
a straight line. One of the main causes of this is that the bitcode has a very
limited lexicon. The assembly corpus however, already resembles greatly
the other programming languages. A difference that can be seen in the Zipf
plot for the assembly corpus though is that it seems to have multiple bulges.
Starting with a straight line the plot continues less steeply after the first
bulge, only to bulge once more to continue on in slightly steeper fashion.
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Figure 5.7: Word frequency distribution on a log-log scale for the Assembly corpus.



Chapter 6

Conclusion

The various Zipf plots of the different programming languages discussed
in this thesis show that programming languages also adhere to Zipf’s first
law. The exception is the binary corpus, but this is most likely due to the
limited size of the binary lexicon. When comparing the plots in figures 5.3A,
5.4A and 5.7 there does not seem to be a discernable difference between the
three. This indicates that the change or progress in programming languages
as they have developed over the years cannot be shown by the use of Zipfian
measures. When separating the function words from the other words in the
English text it is clear that the function words by themselves do not show
Zipfian behavior.

The remaining words in the English text however, are even more Zip-
fian. The same is true for the C++ and Fortran programming languages,
when the keywords are split from the rest of the corpus the keywords no
longer follow Zipf, while the rest of the corpus does. For the programming
language corpora it is also clear that after the Keywords are removed the
rank-frequency plot more closely follows a slope of -1. This effect although
present is less clear in the natural language text. One possible reason to ex-
plain this is the fact that it is much harder to define what an actual function
word is and what is not, for programming languages the difference between
the two groups can be easier to distinguish, if one follows the standards that
were created for programming languages to select the different word groups.
Secondly the text that was used in the experiment, Moby Dick was written
by one author about one subject. Words like ’whale’ are very frequent in the
book, so frequent that it approaches the levels of high frequency function
words. These two issues could interfere with getting a clear result. A major
difference between random texts and natural and programming languages is
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the fact that random texts do not have different word groups.
To conclude, we have established that the results of the experiments

described in this thesis show that it is indeed likely that the different word
groups in both natural, and artificial languages like programming languages
reveal themselves as a slight curve in the plot of a Zipf diagram for a complete
text. From the above it can be concluded that the original hypothesis as
defined in the introduction still holds true. It does indeed seem likely that
communicative texts, both of natural and artificial nature, consists of two
different lexica. These lexica in turn cause the bulge in Zipf plots. When
separating the lexica the first group shows no resemblance to a Zipf plot
while the second group does.

In the section about DNA an experiment was described were Zipf plots
were created for DNA that was also split into two groups; coding and non-
coding DNA. Like in the experiments described here earlier one part of DNA
did follow Zipf’s first law while the second group did not (see figure 3.3).
This raises the question if a Zipf plot could be used to determine wether or
not an unclassified piece of data is random noise, or actually contains some
form of meaning. Although this thesis does not claim to hold the answer to
that question the experiments described here do show that texts containing
communicative data could be separated from random texts by using Zipfian
measures.

Finally lets consider figure 2.1 again. Although the AOL user data is
neither a language or even a communication environment the bulge in the
Zipf plot is still present. This leads to the hypothesis that other collections
of data cited in articles about Zipf’s law, also consist of two ’lexica’. For the
AOL data this could for example be the presence of two user groups in the
data. A possible next step for future researchers would be to examine wether
the phenomena of a bulge in a Zipf plot in other types of data can also be
explained by the presence of two lexica, or two types of data equivalent to
lexica.
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