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Chapter 1

Management Summary

This Thesis aimed to determine the most effective cash flow forecasting meth-
ods for GS Interfer by comparing various models, including ETS, SARIMA,
and LSTM. The forecasts were generated for both weekly and monthly inter-
vals. The results show that the LSTM model outperformed all others regarding
RMSE. For monthly forcasts SARIMA was best in terms of MAE. Therefore
it is recommended to use LSTM models for forecasting the weekly cashflow.
For mothly cashflow it is recommended to use either LSTM or SARIMA. The
study was limited to historical data and did not consider external economic
factors that may influence future cash flows. Therefore, further research into
incorporating external variables into the models is suggested.
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Chapter 2

Introduction

2.1 Research Context and Objectives
Many companies miss significant opportunities by not adequately leveraging
data and machine learning techniques. Cash is a critical driver for mid-market
companies, as its availability directly impacts prospects. A lack of insight
into cash flow can hinder strategic investment decisions, potentially giving
competitors an advantage and decreasing market share.

To address this, mid-market companies often rely on outdated tools for cash
position insight. This thesis aims to explore time series, artificial intelligence,
and machine learning techniques to create an accurate cash flow forecast.

In this thesis, three methodologies are used to construct a forecast. The
first method is exponential smoothing. This method uses weighted averages of
previous observations to predict future values. It decomposes the time series in
an error, trend, and seasonality component to make forecasts. Understanding
and modeling these components allow analysts to make accurate predictions
and gain valuable insight into understanding patterns in the data. The second
method is SARIMA or seasonal auto-regressive integrated moving average. It
is the result of combining auto-regressive models and moving average models.
SARIMA models use past values and past forecast errors to predict future
values. It is important for SARIMA models that the data is stationary. To test
this the Kwiatkowski-Phillips-Schmidt-Shin test and the Augmented Dickey-
Fuller test are used. The last method is the Long Short-term Memory neural
network. This is a variation of a neural network that has an internal memory,
which allows it to retain information about previous inputs. This makes them
suitable for handling time-dependent data.
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2.2 Collaboration with Den of Data and GS
Interfer

This thesis was conducted in collaboration with Den of Data, a consultancy
that seeks to unlock potential through data-driven strategies. Den of Data as-
sists companies by automating data visibility and optimizing processes, thereby
enhancing business outcomes and competitive positioning.

The data used in this research is provided by GS Interfer, a Den of Data
client. GS Interfer supplies fasteners, hinges, locks, hardware, and impulse con-
cepts in tools, painting supplies, and personal protective equipment to hard-
ware store chains across the Netherlands and Belgium. The data consists of
transaction records from GS Interfer.

2.3 Research Questions and Objectives
The primary objective of this thesis is to determine which of the proposed fore-
casting methods can most accurately predict cash flow. In addition, the thesis
explores whether forecasting the income and expenditure separately improves
the forecast. Also, this thesis aims to research whether combining different
forecasting models can improve predictive performance. These objectives will
be addressed by forecasting the cash flow.

2.4 Thesis Structure
This thesis is organized into six chapters. Chapter three introduces the data
that is used to make the forecasts. The data is explained, summarized, and
visualized to make it understandable.

Chapter four introduces the methods that will be used to make the fore-
casts. Each method has a section dedicated to the methodology. This is the
part that explains what the method is and how it works. Each method also
has a section about parameter tuning. In this part, it is explained how the
parameters of the methods are optimized to get feasible forecasts.

In chapter five, the forecasts are made with the methods explained in chap-
ter four. These forecasts will be evaluated on several evaluation methods,
which will also be described. All results will be taken into consideration to
build the final forecast.

Chapter six will provide the conclusion to the research questions. (more
text later)
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2.5 Literature Review
Zhang, Tang, Gao, and Pan (2018) explored optimizing a financial trading
strategy using LSTM neural networks to forecast stock prices based on data
from the SP 500 Index. By employing LSTMs to capture temporal dependen-
cies, they achieved significant improvements over traditional strategies. Their
findings underscore LSTM’s ability to model complex time dependencies effec-
tively.

Singh and Tripathi (2014) conducted a comparative analysis of machine
learning techniques in stock price prediction, using historical stock data. They
examined ARIMA, Exponential Smoothing, and neural networks, revealing
that ARIMA and Exponential Smoothing excelled in stable markets, whereas
neural networks were superior in handling fluctuations, illustrating their adapt-
ability in dynamic environments.

Mishra (2016) compared ARIMA and machine learning methods for fore-
casting financial time series data, drawing from various market indices. Mishra
found ARIMA suitable for stationary data, while neural networks excelled with
non-linear patterns. This research highlights how machine learning models can
adapt to complexities in financial data where traditional methods might falter.

Fischer and Krauss (2018) assessed machine learning’s role in replicating
trading strategies, using a hybrid model combining ARIMA and LSTM with
historical financial data. They found that the hybrid model replicated the
success of the original strategy while adapting to market volatility, suggesting
benefits in leveraging both linear and non-linear patterns within financial data.

Brownlee (2019) evaluated deep learning models, particularly LSTMs, for
financial time series forecasting across multiple assets. His study demonstrated
that LSTM models offered substantial predictive improvements, emphasizing
their utility in complex financial forecasting tasks due to their capacity for
learning long-term dependencies.
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Chapter 3

Data

3.1 Data Source
The dataset used in this study comes from GS Interfer, a supplier based in the
Netherlands and Belgium. GS Interfer provides various hardware products,
including fasteners, hinges, locks, and tools to hardware store chains. The
company also offers impulse concepts in areas such as hand tools, painting
supplies, and personal protective equipment. Additionally, GS Interfer serves
as a service provider for several A-brands. The data comprises transactions
from two key tables: debtor transactions and creditor transactions.

3.2 Data Overview
The data spans the period from 2014 to 2023, with the training data covering
the years 2014 to 2022, and the test data for 2023. The transactions in the
dataset are aggregated at a weekly and monthly level.

3.3 Data Tables

3.3.1 Debtor Transactions
The debtor transactions table consists of the following columns:

• Amount: The monetary amount owed by the debtor.

• Debtor: The identifier for the debtor (e.g., the client).

• Date: The date the payment is due or made.
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3.3.2 Creditor Transactions
The creditor transactions table includes the following columns:

• Amount: The monetary amount owed to the creditor.

• Creditor: The identifier for the creditor.

• Date: The date the payment is due or made.

The data has been pre-processed to provide weekly and monthly summaries,
removing any smaller-scale variations while retaining important trends for fore-
casting.

3.4 Special Payment Arrangements
GS Interfer has several large clients with unique payment arrangements that
deviate from the standard payment terms. For example:

• Client A: Pays one month later, specifically on the 10th of the following
month.

• Client B: Pays three months later, also on the 10th of the month.

For these clients, the transaction dates have been adjusted accordingly
to reflect their delayed payments. This ensures that the forecasting model
captures the actual cash flow dynamics for these clients.

3.5 Data Quality
The dataset does not contain any missing values in either the debtor or creditor
transactions. GS Interfer was formed following the merger of Gebro Sales B.V.
and Interfer B.V. in 2022. Due to the merger, transaction histories for some
customers are missing in the data.

3.6 Cash Flow Calculation
The main target for forecasting in this study is the cash flow, defined as the
difference between debtor and creditor amounts for each period. Additionally,
cash flow will be forecasted both as a combined metric and separately for
debtors and creditors. The goal is to compare the effectiveness of direct cash
flow forecasting versus individual debtor and creditor forecasts, combined to
derive the cash flow.
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3.7 Data Visualizations
To better understand and communicate the patterns in the data, several sum-
mary tables and graphs will be used. Tables 3.1, 3.2 and 3.3 summarize the
data for cashflow, creditors and debtors respectively. Figure 3.1 to figure
3.6 Show the graphs of the cashflow, the creditor transaction and the debtor
transaction on monthly and weekly basis. In the weekly cashflow and debtor
transactions the payment arrangements are clearly visible.

Cashflow Weekly Cashflow Monthly
count 521 120
mean 57610 248003
std 573292 446735
min -883609 -1055645
25% -277635 11530
50% -151833 289988
75% 24889 512649
max 2296156 1686737

Table 3.1: Summary Statistics for Cashflow

Creditor Weekly Creditor Monthly
count 521 120
mean -301168 -1310426
std 156339 404904
min -1000016 -2486140
25% -372934 -1553428
50% -272717 -1271818
75% -192464 -1053151
max 215385 -458883

Table 3.2: Summary Statistics for Creditors

Debtor Weekly Debtor Monthly
count 521 120
mean 358778 1558428
std 528938 355679
min -12858 499865
25% 51418 1351157
50% 105218 1537950
75% 182319 1738941
max 2445695 2610594

Table 3.3: Summary Statistics for Debtors
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Figure 3.1: Cashflow monthly

Figure 3.2: Cashflow weekly
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Figure 3.3: Creditor monthly

Figure 3.4: Creditor weekly
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Figure 3.5: Debtor monthly

Figure 3.6: Debtor Weekly
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Chapter 4

Models

4.1 Exponential Smoothing
This section is dedicated to Forecasting models that use Exponential Smooth-
ing otherwise known as ETS models. These models use weighted averages of
previous observations to predict future values. The weight of a previous obser-
vation decreases the further back in time the observation was. In other words,
more recent observations have higher weights associated with them.

The next subsections cover the framework of exponential smoothing mod-
els. First, the methodology is explained. This part covers the different models
that can be made with exponential smoothing. The second part is about pa-
rameter tuning. It covers how the parameters of the models are optimized and
the restrictions they have.

4.1.1 Methodology
ETS models decompose time series into three components: Error, Trend, and
Seasonality. Understanding and modeling these components allow analysts
to make accurate predictions and gain insight into the underlying patterns
in the data. There are several ways to model the components, resulting in
different models. Each model comprises of a measurement equation, which
describes the observed data, along with some state equations that outline how
the unobserved components or states such as level, trend, and seasonality
evolve. As a result, these models are commonly referred to as state space
models.

To differentiate between the different models we use state space notation
ETS(.,.,.) for (Error, Trend, Seasonal). The possibilities for each state is Error
= {A, M}, Trend = {N, A, Ad}, and Seasonal = {N, A, M}. An explanation
for each is given below.

The Error component represents the random fluctuations or noise in the
time series data that cannot be explained by the trend or seasonality. In ETS
modeling there are two states for the Error component: Additive (A) and
Multiplicative (M). The Main difference between additive and multiplicative
errors lies in how they interact with the trend and seasonality components.
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Additive errors assume a constant variance independent of the level of the
time series, while multiplicative errors vary proportionally with the level of
the time series. The choice between additive and multiplicative errors thus
depends on the characteristics of the data.

The trend component captures the systematic pattern of the time series.
It shows the long-term increase or decrease of the data over time. With ex-
ponential smoothing, the trend component allows for adaptive adjustments to
changes in the trend’s direction or magnitude. In the state space models, there
are three options for the trend component: No trend (N), additive trend (A),
or damped Additive trend (Ad).

With no trend, the model does not include the trend component. This
means that the time series is assumed to have no systematic increase or de-
crease over time, but is considered to fluctuate around a constant level, exhibit-
ing only random fluctuations and possibly seasonal patterns. With additive
trend, the model does contain a trend component and therefore assumes the
time series to have a systematic pattern. Forecasts generated with additive
trend have a constant trend indefinitely into the future. This can cause prob-
lems, especially for longer forecast horizons. Gardner & McKenzie (1985) in-
troduced a parameter that dampens the trend by introducing an extra variable
that controls the rate at which the trend approaches zero over time. Therefore,
the importance of the trend component diminishes as the forecast horizon ex-
tends further into the future. In the state space model, this is damped additive
trend.

The seasonality component accounts for the periodic patterns in the time
series data that occur at regular intervals. seasonality can be a result of factors
such as the season of the year, holidays, or business cycles. In the state space
models, there are three options for the seasonality component: No seasonal-
ity (N), additive seasonality (A), or multiplicative seasonality (M). In state
space models with no seasonality, the seasonal component is not included in
the model. This means that the time series is assumed to have no recurring
patterns at regular intervals. Instead, any variations in the data are con-
tributed solely to random fluctuations or a possible trend component. With
additive and multiplicative seasonality, there is a seasonal component included
in the model. The main difference is that additive seasonality assumes constant
seasonal fluctuations added to the level, whereas multiplicative seasonality as-
sumes seasonal fluctuations that vary proportionally with the level of the time
series.
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4.1.2 Parameter Tuning
As stated in the previous section, there are several models that can be made
with ETS. These models can use a form of error, trend and seasonality. There
are two kinds of parameters that have to be tuned. The first parameters that
have to be tuned are the initial state variables level, trend and seasonality.
These are the evolving components of the model that are updated with each
new observation. The second set of parameters are the smoothing parameters.
These parameters determine the balance between actual observations and the
previous state variables. These parameters are noted as α ∈ [0, 1], β ∈ [0, 1],
and γ ∈ [0, 1].

α is the level smoothing parameter. It controls the weight given to the
most recent observation relative to the smoothed level. With values close to
one more weight is given to the most recent data point, allowing the model
to react quickly to changes in the data. This means the model will be more
responsive to short-term fluctuations. Values close to zero weight is given to
the historical smoothed level, meaning the model is less responsive to recent
changes, leading to smoother forecasts that may not capture recent shifts in
the data as quickly.

β is the trend smoothing parameter. This controls how much weight is
given to the most recent trend estimate in updating the trend component of
the model. With values close to 1, the model adapts quickly to changes in the
trend, making it more sensitive to shifts in the trend over time. with values
close to zero, the model reacts more slowly to changes in the trend and gives
more weight to the historical trend, making it more stable but less responsive
to recent changes.

γ is the seasonal smoothing parameter. It controls how much weight is
given to the most recent seasonal observation when updating the seasonal
component. values close to one give more weight to the most recent seasonal
effect, making the model more responsive to recent seasonal variations. When
values are close to zero the model is less sensitive to recent changes in season-
ality and gives more weight to the historical seasonal pattern, leading to more
stable but less responsive seasonal adjustments.
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4.2 SARIMA
SARIMA models or Seasonal Auto Regressive Integrated Moving Average uses
a different approach to forecasting than Exponential Smoothing. As stated in
the previous section, Exponential smoothing combines a trend and seasonality
component to forecast future values. SARIMA models use autocorrelations
within the data to make predictions. It is important with SARIMA that the
underlying data is stationary. Before the methodology is discussed, the concept
of Stationarity and Differencing is explained.

4.2.1 Stationarity and Differencing
Stationarity is an important concept in time series analysis. Stationary time
series are time series whose statistical properties do not depend on time. So,
the behavior of the time series does not change with time. This means that
series with trends, or seasonality are not stationary, as they influence the data
differently at different times. A series with cyclic behavior, but no trend and
seasonality, is stationary. This is due to the uncertainty that arises because
the cycles in the series do not have a fixed length. Therefore, until we observe
the series, it’s impossible to determine the precise locations of the peaks and
troughs within these cycles. An example of a stationary series is a white noise
series.

A common technique to make a non-stationary time series stationary is
called differencing. It involves computing the difference between two consecu-
tive observations or between an observation and the previous observation from
the same season. Differencing helps to stabilize the mean of a time series by
removing or reducing changes in the level of the series. It therefore reduces
the trend or seasonality component.

Taking the difference between two consecutive observations is sometimes
called "first differences" as the difference is taken with lag one. This means
that the new series looks like this:

y
′

t = yt − yt−1 (4.1)

Sometimes taking only the difference with lag one is not enough to make
the series stationary. It is then necessary to difference the data again. This is
called "second-order differencing". This means that the change in changes is
modeled. The new series looks like:

y
′′

t = y
′

t − y
′

t−1 = yt − 2yt−1 + yt−2 (4.2)

Seasonal differencing involves subtracting observations from earlier seasonal
periods. So this is written as:

y
′

t = yt − yt−m (4.3)

, where m is the number of seasons in a year. These are also called "lag-m
differences". For example: a time series with monthly data has 12 data points
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within a year, so m = 12. Seasonal differencing, in this case, means subtracting
last year’s observation of the same month from this year’s observation. It is
also possible for series to need seasonal differencing and first differencing. let
y

′
t be the seasonal differenced data, Then the twice-differenced series looks as

follows:

y
′′

t = y
′

t−y
′

t−1 = (yt−yt−m)−(yt−1−yt−m−1) = yt−yt−1−yt−m +yt−m−1 (4.4)

The order in which the differencing is applied makes no difference. It is
however recommended to first use seasonal differencing because the resulting
series might be stationary and there is no need for further differencing. Tak-
ing more difference than necessary can cause false autoregressions and should
therefore be avoided.

There is an amount of subjectivity in choosing which differencing to use, as
the modeling process requires choices. A more objective way to decide when
to use differencing is to do a test. In this thesis two statistical methods are
used to determine whether a time series is stationary or non-stationary.

The first statistical test is KPSS (Kwiatkowski-Phillips-Schmidt-Shin) test
(Kwiatkowski et al., 1992). The null hypothesis of the KPSS test is that
the series is stationary. The alternative hypothesis is that the series is non-
stationary. A p-value that is less than the desired significance level means
that the null hypothesis is rejected, resulting in the conclusion that the series
is non-stationary, and thus needs differencing. If the p-value is greater than
the desired significance level, the test fails to reject the null hypothesis. This
means that there is insufficient evidence to reject the null hypothesis. The
KPSS test returns a p-value between 0.01 and 0.1, however, the actual p-value
could be higher or lower.

The second statistical test used in this thesis is the ADF (Augmented
Dickey-Fuller) test. The null hypothesis is that the time series has a unit root,
which means that it is non-stationary. A p-value greater than a significance
threshold would suggest that you cannot reject the null hypothesis, meaning
the series is likely non-stationary.

Both test are used in this thesis. This thesis assumes that a time series is
stationary when the KPSS test has a p-value of higher than 0.05 and the ADF
test has a p-value lower than 0.05

To more easily use differencing in formulas, the backward shift operator B
is introduced.

Byt = yt−1 (4.5)
When two backward shifts are used, the data is shifted back two periods

B(Byt) = B2yt = yt−2 (4.6)

This means that the data of the previous season is denoted as

Bmyt = yt−m (4.7)

A first difference is denoted as

y
′

t = yt − yt−1 = yt −Byt = (1−B)yt (4.8)

17



Similarly, the second order difference is written as

y
′′

t = yt − 2yt−1 + yt−2 = yt − 2Byt + B2yt = (1−B)2yt (4.9)

In general, a difference of order d can be written as

(1−B)dyt (4.10)

A seasonal difference followed by a first difference is denoted as

(1−B)(1−Bm)yt = 1−B −Bm + Bm+1 = yt− yt−1− yt−m + yt−m−1 (4.11)

4.2.2 Methodology
SARIMA combines an auto-regressive model with a moving average model. In
the next subsections, it is explained what these models entail en how SARIMA
combines them.

Auto Regressive Model

Auto-regressive models predict future values of the desired variable using a
weighted sum of its past values, plus a random error term. An autoregressive
model of order p can be written as

yt = c + ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + ϵt (4.12)

, where yt is the desired variable at time t, c is the intercept, ϕ1, ..., ϕp are
autoregressive coefficients, representing the weights of the past observations,
and ϵt is the error term at time t which is assumed to have zero mean and a
constant variance. This is referred to as an AR(p) model. The p in the AR(p)
model determines the number of lagged variables in the model.

Moving Average Model

Moving Average models are similar to Auto-Regressive models. The difference
is that where Auto-Regressive models use past values of the desired variable
itself, whereas Moving Average models use past forecast errors. A model of
order q can be written as

yt = c + ϵt + θ1ϵt−1 + θ2ϵt−2 + ... + θqϵt−q

, where yt is the desired variable at time t, c is the intercept, θ1, ..., θq are
the moving average coefficients, representing the weights assigned to the past
forecast errors, and ϵt is the forecast error at time t which is assumed to have
zero mean and a constant variance. This is referred to as an MA(q) model.
The q in the MA(q) model determines the number of past forecast errors used
in the model. Notice that this is not a regression in the typical sense as ϵt is
not observed
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ARIMA

The result of combining differencing with auto-regressive models and moving
average models is a non-seasonal ARIMA model. This model can be written
as:

yt = c + ϕ1yt−1 + ϕ2yt−2 + ... + ϕpyt−p + θ1ϵt−1 + θ2ϵt−2 + ... + θqϵt−q + ϵt (4.13)

, where yt is the desired variable at time t, c is the intercept, ϕ1, ..., ϕp are the
autoregressive coefficients, θ1, ..., θq are the moving average coefficients, and
ϵt is the forecast error at time t which is assumed to have zero mean and a
constant variance. This is referred to as an ARIMA(p, d, q) model. Where p
determines the number of lagged variables, q determines the number of past
forecast errors, and d is the amount of times first differencing is used.

To work with this formula, it is convenient to convert it to backshift nota-
tion.

(1− ϕ1B − ...− ϕpBp)(1−B)yt = (1− θ1B − ...− θqB
q) (4.14)

(1− ϕ1B − ...− ϕpBp)(1−B)yt = (1− θ1B − ...− θqB
q)

SARIMA

It is possible to extent the ARIMA model with seasonal components, this
is often referred to as SARIMA. SARIMA incorporates seasonal terms that
mirror the structure of non-seasonal components in ARIMA but apply to sea-
sonal lags. The length of this seasonal lag is denoted by s. For monthly
data s = 12 and for weekly data s = 52. The SARIMA model is denoted
as SARIMA(p, d, q)(P, D, Q)s, where p, d and q represent the non seasonal
components that are also present in the ARIMA model. P , D and Q represent
the order of the seasonal auto-regresson, seasonal differencing and seasonal
moving average.

Seasonal auto-regression captures correlations between observations sepa-
rated by the seasonal period. Seasonal moving average captures patterns in
the residuals from previous seasonal periods. Seasonal differencing is similar
to differencing but applied to remove seasonal trends.

4.2.3 Parameter Tuning
There are several parameters that can be tuned for SARIMA models. First the
KPSS and the ADF test are used to see whether the data is stationary. If the
data needs seasonal differencing, D = 1. If the data need differencing, d = 1.
After that the values of p, q, P , and Q can be tuned. To get feasible results,
ACF and PACF can be used, however this does not guaranty that these are
the optimal values for the parameters. Therefore a grid search is used.
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4.3 LSTM Neural Network
In this chapter, the cash flow will be forecasted with a long short-term mem-
ory network or LSTM. This is a form of artificial neural network (ANN). To
understand the theory behind the LSTM, it is essential to first explain the
methodology of the ANN.

Figure 4.1 visualizes a possible configuration of a neural network. A neural
network contains neurons and layers. There are three types of layers. The first
layer on the left is the input layer. This is where the data is inputted in the
model. The second layer is the hidden layer. It is possible to have multiple
hidden layers, however, for simplicity, there is only one hidden layer used in the
example. The last layer is called the output layer. This is where the forecast
of the cash flow is produced.

Figure 4.1: Simple neural network

As shown by the arrows in Figure 4.1, the data in a neural network flows
from left to right. Each neuron is connected to all the neurons in the next
layer. The connection between two neurons is given by a weight w. The
weight between neurons determines the importance of that connection. To get
the value of a neuron other than the input neurons, the weighted sum is taken
of all input values and a bias term is added. The resulting weighted sum for
each node is given by equation 4.1. In this equation, z is the weighted sum,
wi is the weight associated with input i, xi is the value of input i, and b is the
bias term for this neuron. The bias term is added to make adjustments to the
model so it can fit the data better. After that, an activation function g is used
to capture non-linearity (Efron and Hastie, 2021).

z =
n∑
i

(wi=1 × xi) + b (4.15)

In equations 4.2 and 4.3 below, the vector notation is given for the weighted
sum before and after the activation function. In equation 4.2, W k−1 represents
the matrix of weights going from layer l−1 to layer l. In the example of figure
4.1, the matrix W 1 would be a 2 × 3 matrix, since the are 2 neurons in the
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input layer and 3 neurons in the hidden layer. In equation 4.3, the non-linear
activation function gl is used. This function is applied element-wise, which
means the function is used on each neuron individually. The result of equation
4.3 is called the activation vector denoted by a(l).

zl = W l−1al−1 + bl−1 (4.16)
al = gl(zl) (4.17)

To get a forecast for cash flow, the data has to go through the neural
network. This happens layer by layer. For each layer, equations 4.2 and 4.3
are used to calculate the values of the neurons in that layer. This happens
until the output layer is reached. This process is called forward propagation.

The neural network learns by adjusting the weights and biases. It does
this by minimizing a loss function denoted by L[y, f(x)]. Where L denotes
the loss function, y denotes the true value, and f(x) denotes the output of the
model. There are several different loss functions. For this thesis, the mean
squared error is used. The mean squared error is denoted in equation 4.4. A
loss function aims to calculate a score on how wrong the output of the model is
compared to the true value. For mean squared error, larger errors are punished
more heavily. There are n observations in the training data. In equation 4.5
the objective function of a neural network is given.

L[yi, f(xi; W )] = 1
n

n∑
i=1

(yi − f(xi; W ))2 (4.18)

min
W
{ 1

n

n∑
i=1

L[yi, f(xi; W )]} (4.19)

To train the model, backpropagation, and gradient descent are used. First,
the weights and biases must be initialized. This is done by randomly assigning
each weight and bias a normally distributed value with zero mean and a small
variation. Secondly, forward propagation is done to get a value for each neuron.
The next step is to compute the error term δl. Now that the output and the
loss are computed, the weights and biases can be updated such that the loss
is reduced. This is where backpropagation is used. Backpropagation relies
heavily on the chain rule. For any function that depends on intermediate
variables, we can compute derivatives layer-by-layer. As the name suggests,
backpropagation starts at the output layer and works backward to the first
hidden layer. The derivative of the output layer is given by equation 4.6.

∂L

∂z[L] = ∂L

∂a[L] · g
(l)′(z[L]) (4.20)

Where L denotes the loss function, z[L] denotes the vector of weighted
sums in the output layer and g(l)′(z[L]) denotes the derivative of the activation
function at layer L. For each of the hidden layers, the error term δl is given
by equation 4.7.

δ[l] =
(
W [l+1]δ[l+1]

)
⊙ g(l)′(z[l]) (4.21)
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Where ⊙ denotes element-wise multiplication. After all δ[l] are calculated
for each layer the derivatives for the weights and biases for each layer l can be
calculated as denoted in equation 4.8 and 4.9 respectively.

∂L

∂W [l] = δ[l] · (a[l−1])T (4.22)
∂L

∂b[l] = δ[l] (4.23)

Finally, the gradient descent will be applied to update the weights and
biases. The updates are shown in equations 4.10 and 4.11.

W [l] ← W [l] − λ
∂L

∂W [l] (4.24)

b[l] ← b[l] − λ
∂L

∂b[l] (4.25)

Where λ ∈ (0, 1] is the learning rate. The learning rate determines the
speed at which the values are updated. This process of backpropagation is
repeated until a certain stopping criterion is met.

4.3.1 Methodology
So far the basic concept of an artificial neural network is explained. However,
in this thesis, LSTM networks are used. LSTM is a form of a neural network
more suited for time series data. The next part will explain why LSTM is
more suited for the data used in this thesis.

ANNs are feedforward networks, which means that they only process in-
formation in one direction and treat each input as independent of the other.
However, in time series data, each point is dependent on previous points. Be-
cause of this ANNs have no memory or awareness of previous inputs, which
limits the ability to recognizance trends and long-term dependencies.

Recurrent Neural Networks (RNN) contain internal memory that allows
them to retain information about previous inputs. This makes them suitable
for handling time-dependent data, where past information can inform future
predictions. In Figure 4.2 a RNN is visualised. The theory behind an RNN is
similar to that of an ANN, however, a RNN has a feedback loop. This feedback
loop makes it possible for the network to have a memory. On the right side of
the figure, the network is unfolded. Here it is shown that the network can be
seen as multiple copies of a structure where information can be passed between
them.

Similar to an ANN, backpropagation en gradient descent are used to train
the network. This can however cause a problem called vanishing or exploding
gradients. Vanishing gradients are caused by backpropagating gradients in
a long sequence, gradients can shrink to a value close to zero, causing the
network to "forget" earlier parts of the sequence. Similarly exploding gradients
happen when gradients become excessively large during backpropagation, they
cause the weights to grow uncontrollably, leading to instability in the model.
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Figure 4.2: Recurrent neural network

The reason this happens in RNNs is because the same weights are repeatedly
applied across each time step in a sequence, effectively creating a very deep
network where the number of layers corresponds to the length of the sequence.
If the gradients of these repeated layers are even slightly greater than one, they
can grow exponentially with the length of the sequence.

To mitigate this problem, a long short-term network is proposed by Hochre-
iter and Schmidhuber (1997). LSTMs introduce a mechanism called gated
memory cells that allow the network to decide which information to retain,
update, or discard over time. This mechanism not only dissolves the vanish-
ing or exploding gradient problem but also allows the network to remember
relevant long-term patterns while discarding irrelevant information.

In Figure 4.3 the network of a LSTM is visualized. The network contains
three input components. The first component is the cell state ct. This is
where the long-term memory is saved. The second component is the hidden
state ht. This represents the short-term memory and is updated at each time
step. The third component is the input at time t xt. Three gates control how
the information flows in the network. The first gate is the forget gate ft. This
gate decides what part of the previous cell state should be forgotten. The
second gate is the input gate it. This controls what new information should
be added to the cell state. The third gate is the output gate ot. This gate
controls what part of the cell state should be outputted to the hidden state.
All gates will be explained further.

Figure 4.3: LSTM neural network
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Before the gates are explained further, there are 2 activation functions used
in the network that are important to understand. Therefore, these functions
are explained first. The two functions are the sigmoid function and the hy-
perbolic tangent function. In Figure 4.3, these functions are symbolized by σ
and tanh respectively. The sigmoid function turns a value x ∈ R to a value
y ∈ [0, 1] and the hyperbolic tangent function turns a value x ∈ R to a value
y ∈ [−1, 1]. The functions are shown in Figure 4.4 and denoted in equations
4.12 and 4.13 respectively.

Figure 4.4: sigmoid and tanh function

σ(x) = 1
1 + e−x

(4.26)

tanh(x) = ex − e−x

ex + e−x
(4.27)

Now that the functions are clear, the gates can be explained. First the
forget gate. The forget gate has two inputs xt and ht−1. These inputs are
multiplied by their weights and summed, and the bias is added to get a result.
This result is then used as input for the sigmoid function, which converts it
into a value between zero and one. This output is then multiplied by ct−1.
Because the output of the sigmoid function is a number between zero and one,
the forget gate can be seen as the gate where a percentage of the long-term
memory is forgotten. The forget gate is given by equation 4.14. Where Wf is
the weight matrix of the forget gate, ht−1 is the hidden state at time t− 1 and
xt is the input at time t.

f(t) = σ(Wf × ht−1 + Wf ∗ xt) (4.28)

The second gate is the input gate. This gate has two inputs xt and ht−1.
The input gate contains two blocks that together determine the new informa-
tion that is added to the long-term memory. The first block determines the
percentage of the potential memory to remember. Similar to the forget state,
the inputs are multiplied by weights, and summed, and the bias is added to
get a result. This result is then used as input for the sigmoid function, which
converts it into a value between zero and one. This is similar to the forget
gate, however, the weights and biases differ, resulting in a different outcome.
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This is shown in equation 4.15 The second Block determines the potential
long-term memory. The inputs are again multiplied by weights and summed,
and the bias is added to get a result. The weights and bias are different for
this block which results in a different outcome. This result is then used as
input for the hyperbolic tangent function resulting in an output in the range
of [−1, 1]. The hyperbolic tangent function is used because it makes negative
values possible. This is necessary when dealing with a negative trend. This is
shown in equation 4.16. The output of the input gate is the multiplication of
the output of the two blocks. To get the new long-term memory the output of
the forget gate and input gate are added. This is shown in equation 4.17.

it = σ(Wi × ht−1 + Wi × xt + bi) (4.29)
c̃t = tanh(Wc × ht−1 + Wc × xt + bc) (4.30)
ct = ft × ct−1 + it · c̃t (4.31)

Lastly, the output gate is explained. The output gate has the same input
as the other gates xt and ht−1. In this gate, the same procedure is applied.
The equation is given by 4.18. This output is multiplied with the hyperbolic
tangent function of ct. This is given by equation 4.19.

ot = σ(Wo × ht−1 + Wo × xt + bi) (4.32)
ht = ot × tanh(ct) (4.33)

Algorithm 1 Long short-term memory network
Ensure: : Training data set with independent variables p

y; A vector with true values
λ; Learning rate
E; Number of iterations
Give weights Wf , Wi and Wo random starting values such that W ∼
N (0, 0.1)
for e = 1 to E do

Forward propagation
Backpropagation w.r.t. all weights
Apply gradient descent for all gates;
Wf ← Wf + λδWf

Wi ← Wi + λδWi

Wo ← Wo + λδWo

if Stopping criteria is met then
Break the for loop

end if
end for
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4.3.2 Parameter Tuning
To develop a log short-term network, several important parameters have to be
tuned. Optimizing these parameters can improve predictive performance. In
this section, the parameters that need tuning are explained.

The first important parameter of the LSTM that needs to be tuned is the
number of hidden layers. An increase in hidden layers also means an increase
in the complexity of the network. This can help the model find more difficult
historical patterns. However, this comes with a cost as it can cause overfitting
and has a high computational demand. The second parameter that has to
be tuned is the number of neurons in the hidden layers. More neurons in
each layer increase the complexity of the model such that it can learn complex
relationships, however, too many neurons can lead to overfitting. Stathakis
(2009) has investigated how many hidden layers and nodes are optimal for a
neural network. First, the number of neurons should be between the size of the
input and the size of the output. The range for the number of hidden layers
is smaller. For any non-linear complex problem, one or two hidden layers are
sufficient.

The third parameter is the learning rate. This parameter is necessary for
gradient descent and determines the speed at which the model converges to an
optimal solution. Small learning rates provide stable convergence, however, if
the learning rate is too small the local minimum might not be reached. Larger
learning rates accelerate learning but might lead to instability. In this thesis,
the Adam optimizer is used during the learning process. The Adam optimizer
or Adaptive Moment Estimation, is well suited for training neural networks as
it computes individual adaptive learning rates for different parameters.

The fourth parameter that has to be tuned is the amount of epochs. An
epoch refers to a single pass through the entire training dataset by the model
during the learning process. During each epoch, the LSTM processes all train-
ing data once and updates its weights to minimize prediction errors. Multiple
epochs are typically required to allow the model to learn effectively from the
data, as each epoch refines the model’s understanding of underlying patterns.
By using a higher number of epochs, an LSTM can improve its accuracy, but
too many epochs can lead to overfitting. To prevent this an early stopping
criteria is used. If the error is not reduced for several epochs then the stopping
criteria are met and the model will stop training.

Another parameter that is used in LSTM is the amount of lag variables.
Lag variables refer to the amount of previous data points as input. For this
thesis, the amount of lag variables used for LSTM is ten.

For neural networks, it is possible to divide the data in batches. This means
that the network is not trained one data point at a time, but that we calculate
the gradient descent over several data points. This reduces the amount of
memory used thus decreasing the computation time. With small batches, each
update to the model parameters is based on a limited sample of the data. This
introduces more noise in the gradient descent steps, which can help the model
generalize better. Small batches require more iterations to process the same
amount of data, potentially making training slower. Larger batches produce
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more stable gradient updates, which can make the model converge faster per
epoch. Keskar et al. (2017) found that large-batch training can negatively
impact generalization in deep learning models, leading them to converge to
sharp minima that overfit the training data but fail to generalize well to new
data.

It is important to scale the data for the last network. As a consequence of
using the sigmoid and the hyperbolic tangent function, the data needs to be
normalized. Therefore the data will be normalized with zero mean and a stan-
dard deviation of one. To prevent the look-ahead bias, the mean and deviation
will only be calculated over the training data and not the test data. If the test
data was used in the normalization, then the network would have information
about the future. In addition to this, every batch is also normalized. Batch
normalization, researched by Ioffe and Szegedy (2015), reduces internal covari-
ate shifts and accelerates convergence. The method normalizes the activations
of each layer using the mean and variance from the batch, enabling the use of
higher learning rates, and in some cases eliminating the need for Dropout.
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Chapter 5

Results

5.1 Evaluation Criteria
To evaluate the forecasts made in this thesis there need to be evaluation cri-
teria. All forecasts are evaluated on three criteria. These are the Root Mean
Squared Error (RMSE), the Mean Absolute Error (MAE), and the Mean Ab-
solute Percentage Error. These criteria are given by equations 5.1-5.3. RMSE
punishes larger errors more heavily, while MAE punishes proportional to the
error. MAPE is a percentage error which means that it punishes errors concern-
ing the true value. Percentage errors have the disadvantage of being undefined
if the true value is zero and having extreme values if true values are close to
zero. In some of the tables in the section Numerical Results, this is the case.
They also have the disadvantage that they put a heavier penalty on negative
errors than on positive errors.

RMSE =

√√√√ 1
T

T∑
t=1

(yt − ŷt)2 (5.1)

MAE = 1
T

T∑
t=1
|yt − ŷt| (5.2)

MAPE = 1
T

T∑
t=1
|yt − ŷt

yt

| (5.3)

5.2 Numerical results
In this section, the results are shown for all forecasts made. In each section,
results are shown on a weekly and monthly basis for each method. For cases
where parameter tuning was necessary, there are also tables to show the opti-
mal value.
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5.2.1 Exponential Smoothing
In this section, the results for exponential smoothing are shown. Parameter
tuning is optimized by the Python function used. Therefore the only tables
that are shown are for the evaluation criteria.

Results per time series

For monthly cashflow, the Season and trend method is best in terms of RMSE
and MAE. For the weekly data, the Season and trend method is best in terms of
RMSE and MAE. For both monthly and weekly data the models that contain
seasonality perform better. For the monthly creditor transactions, the damped
trend model performs best in all criteria. For the weekly creditor transactions,
the model with a seasonality component but no trend component is best for
all criteria. For Monthly debtor transactions, the season without trend model
is best for RMSE, but the damped trend method is best for MAE and MAPE.
For Weekly debtor transactions, the season and no trend model is best for
RMSE and MAE.

Cashflow Monthly RMSE MAE MAPE
ETS - Simple 517092 441094 189
ETS - Trend 545017 456866 206
ETS - Trend Damped 518546 441898 190
ETS - Season no trend 465784 368964 158
ETS - Season and trend 455463 363908 154
ETS - Season and damped trend 467206 370679 160

Table 5.1: Forecasting model performance of ETS models

Cashflow Weekly RMSE MAE MAPE
ETS - Simple 630411 529752 139
ETS - Trend 633109 537716 154
ETS - Trend Damped 630194 528531 138
ETS - Season no trend 435740 284253 102
ETS - Season and trend 432398 278063 111
ETS - Season and damped trend 437268 287058 102

Table 5.2: Forecasting model performance of ETS models
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Creditor Monthly RMSE MAE MAPE
ETS - Simple 777813 722277 39
ETS - Trend 915774 856712 46
ETS - Trend Damped 629809 584452 32
ETS - Season no trend 636909 590320 33
ETS - Season and trend 767267 730482 41
ETS - Season and damped trend 668165 624268 35

Table 5.3: Forecasting model performance of ETS models

Creditor Weekly RMSE MAE MAPE
ETS - Simple 235121 171129 36
ETS - Trend 257603 192786 40
ETS - Trend Damped 240995 176973 37
ETS - Season no trend 226459 166355 37
ETS - Season and trend 228494 167879 37
ETS - Season and damped trend 226574 166455 37

Table 5.4: Performance of ETS Models (Test Data)

Debtor Monthly RMSE MAE MAPE
ETS - Simple 502188 362477 18
ETS - Trend 527723 388804 19
ETS - Trend Damped 483639 339517 16
ETS - Season no trend 464656 357688 18
ETS - Season and trend 531089 395523 20
ETS - Season and damped trend 475379 364532 18

Table 5.5: Performance of ETS Models (Test Data)

Debtor Weekly RMSE MAE MAPE
ETS - Simple 573853 422770 360
ETS - Trend 607972 362762 191
ETS - Trend Damped 571140 436214 391
ETS - Season no trend 414215 215407 107
ETS - Season and trend 416566 221776 109
ETS - Season and damped trend 416449 220942 112

Table 5.6: Forecasting model performance of ETS models
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Conclusion Exponential Smoothing

Tables 5.7 and 5.8 show the best-performing models for each time series based
on RMSE and MAE respectively together with the evaluation criteria. To
see what the best methods are to forecast the cash flow with ETS based on
RMSE and MAE, the evaluations of the cash flow and combined cash flow are
compared. This is shown in Tables 5.9 and 5.10. Week cash flow is the forecast
made with the Season and trend model. Week combined is a forecast created by
combining the best forecasts of Credit week and Debit week. Month cashflow
and Month combined are made in a similar matter. According to Tables 5.9
and 5.10, it is best to use the original forecast for weekly and monthly data.

Time Series Model RMSE MAE MAPE
Cashflow Monthly ETS - Season and trend 455463 363908 154
Cashflow Weekly ETS - Season and trend 432398 278063 111
Creditor Monthly ETS - Trend Damped 629809 584452 32
Creditor Weekly ETS - Season and damped trend 226574 166455 37
Debtor Monthly ETS - Season no trend 464656 357688 18
Debtor Weekly ETS - Season no trend 414215 215407 107

Table 5.7: Best Performing Models Based on RMSE

Time Series Model RMSE MAE MAPE
Cashflow Monthly ETS - Season and trend 455463 363908 154
Cashflow Weekly ETS - Season and trend 432398 278063 111
Creditor Monthly ETS - Trend Damped 629809 584452 32
Creditor Weekly ETS - Season and damped trend 226574 166455 37
Debtor Monthly ETS – Trend Damped 483639 339517 16
Debtor Weekly ETS - Season no trend 414215 215407 107

Table 5.8: Best Performing Models Based on MAE

Method RMSE MAE MAPE
Week Combined 433912 285545 106
Week Cashflow 432397 278062 110
Month Combined 564972 486437 207
Month Cashflow 455463 363908 154

Table 5.9: Forecasting model performance of ETS models
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Method RMSE MAE MAPE
Week Combined 433912 285545 106
Week Cashflow 432397 278062 110
Month Combined 473765 414489 162
Month Cashflow 455463 363908 154

Table 5.10: Forecasting model performance of ETS models

5.2.2 SARIMA
In this section, the results for AARIMA are shown. Parameter tuning is nec-
essary. To determine if the time series are stationary the ADF test and the
KPSS test are used. Table 5.11 shows that all series are stationary. This means
that differencing is not necessary. Now the other parameters are tuned with
grid search. To be complete d and D are allowed to be one. For each time
series, the top 5 best performing SARIMA models based on RMSE and MAE
are shown in tables 5.12-5.16 and tables 5.17-5.22 respectively.

(p,d,q) (P,D,Q,s) RMSE
(0,0,1) (1,1,1,52) 210240
(1,0,0) (0,1,0,52) 230894
(0,1,1) (0,0,0,52) 236083
(2,1,2) (0,0,0,52) 237119
(0,1,1) (1,0,1,52) 238720

Table 5.11: Top 5 SARIMA models based on RMSE for week credit

(p,d,q) (P,D,Q,s) RMSE
(2,1,2) (1,0,1,52) 406033
(2,1,0) (1,1,0,52) 408165
(2,1,0) (0,1,1,52) 408763
(0,1,0) (1,1,0,52) 409173
(1,0,1) (0,1,1,52) 413447

Table 5.12: Top 5 SARIMA models based on RMSE for week debit

(p,d,q) (P,D,Q,s) RMSE
(1,0,2) (0,1,0,52) 440998
(1,0,2) (1,0,1,52) 441112
(2,0,1) (1,1,1,52) 441677
(2,1,1) (0,1,0,52) 441988
(2,0,2) (0,0,1,52) 486562

Table 5.13: Top 5 SARIMA models based on RMSE for week cashflow
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(p,d,q) (P,D,Q,s) RMSE
(0,0,2) (0,1,0,12) 686409
(2,0,2) (0,1,1,12) 717383
(1,0,1) (0,1,1,12) 727650
(1,1,1) (0,0,1,12) 886904
(0,1,0) (1,1,1,12) 944404

Table 5.14: Top 5 SARIMA models based on RMSE for month credit

(p,d,q) (P,D,Q,s) RMSE
(1,0,2) (0,1,1,12) 481184
(2,0,2) (0,1,1,12) 483981
(1,1,1) (0,1,1,12) 514551
(1,0,2) (1,1,0,12) 517414
(2,1,1) (0,0,1,12) 533299

Table 5.15: Top 5 SARIMA models based on RMSE for month debit

(p,d,q) (P,D,Q,s) RMSE
(2,0,0) (1,0,1,12) 419787
(1,1,1) (1,1,0,12) 430372
(1,1,1) (1,1,1,12) 456482
(1,0,1) (1,0,1,12) 460481
(2,0,2) (0,1,1,12) 480436

Table 5.16: Top 5 SARIMA models based on RMSE for month cashflow

(p,d,q) (P,D,Q,s) MAE
(0,0,1) (1,1,1,52) 145856
(0,0,0) (1,1,1,52) 145916
(0,0,2) (0,1,1,52) 146910
(0,0,1) (0,1,0,52) 163901
(2,0,2) (1,1,0,52) 172505

Table 5.17: Top 5 SARIMA models based on MAE for week credit

(p,d,q) (P,D,Q,s) MAE
(1,1,0) (0,1,0,52) 201674
(2,0,0) (1,1,1,52) 207894
(2,1,0) (1,0,0,52) 208050
(2,0,0) (0,1,1,52) 211159
(2,0,0) (1,1,0,52) 213846

Table 5.18: Top 5 SARIMA models based on MAE for week debit

33



(p,d,q) (P,D,Q,s) MAE
(1,1,1) (0,1,0,52) 284537
(2,0,0) (0,1,0,52) 284729
(0,1,2) (0,1,0,52) 285043
(2,0,0) (1,1,0,52) 286750
(1,0,2) (1,1,0,52) 288027

Table 5.19: Top 5 SARIMA models based on MAE for week cashflow

(p,d,q) (P,D,Q,s) MAE
(0,0,0) (0,1,1,12) 587550
(0,0,1) (0,1,0,12) 618124
(0,0,1) (1,1,0,12) 626565
(1,0,0) (1,1,1,12) 645900
(2,0,0) (0,1,1,12) 667860

Table 5.20: Top 5 SARIMA models based on MAE for month credit

(p,d,q) (P,D,Q,s) MAE
(0,0,1) (0,1,1,12) 367043
(2,0,0) (0,1,1,12) 367058
(2,0,0) (1,1,1,12) 367572
(0,0,1) (1,1,1,12) 368321
(1,0,2) (0,1,1,12) 373207

Table 5.21: Top 5 SARIMA models based on MAE for month debit

(p,d,q) (P,D,Q,s) MAE
(2,1,1) (1,1,0,12) 344779
(1,0,2) (1,1,0,12) 345564
(0,0,2) (0,0,1,12) 352422
(2,0,0) (1,0,1,12) 353507
(0,0,1) (1,1,1,12) 354610

Table 5.22: Top 5 SARIMA models based on MAE for month cashflow
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Conclusion SARIMA

Tables 5.23 and 5.24 show the best SARIMA models based on RMSE and
MAE respectively for each time series. To see what the best method is to
forecast the cash flow with SARIMA, the evaluations of the cash flow and
combined cash flow are compared. For RMSE this is shown in Table 5.25.
Week cashflow is the forecast created by the best performing SARIMA model
for forecasting weekly cashflow SARIMA(1,0,2)(0,1,0,52). Week combined is
a forecast created by combining the best forecasts of Credit week and Debit
week. Month cashflow and Month combined are made in a similar matter. For
weekly forecasts, it depends on the criteria of whether the original forecast
or the combined forecast is better. For monthly data, however, the original
forecast performs better than the combined forecast.

For MAE this is shown in Table 5.26. Week cashflow is the forecast cre-
ated by the best performing SARIMA model for forecasting weekly cashflow
SARIMA(2,1,1) (1,1,0,12). Week combined is a forecast created by combining
the best forecasts of Credit week and Debit week. Month cashflow and Month
combined are made in a similar matter. For weekly forecasts, it depends on
the criteria of whether the original forecast or the combined forecast is bet-
ter. For monthly data, however, the original forecast performs better than the
combined forecast.

Time Series (p,d,q) (P,D,Q,s) RMSE
Week credit (0,0,1) (1,1,1,52) 210240
Week debtor (2,1,2) (1,0,1,52) 406033

Week cashflow (1,0,2) (0,1,0,52) 440998
Month credit (0,0,2) (0,1,0,12) 686409
Month debit (1,0,2) (0,1,1,12) 481184

Month Cashflow (2,0,0) (1,0,1,12) 419787

Table 5.23: Best performing SARIMA model based on RMSE for each time
series

Time Series (p,d,q) (P,D,Q,s) MAE
Week credit (0,0,1) (1,1,1,52) 145856
Week debtor (1,1,0) (0,1,0,52) 201674

Week cashflow (1,1,1) (0,1,0,52) 284537
Month credit (0,0,0) (0,1,1,12) 587550
Month debit (0,0,1) (0,1,1,12) 367043

Month Cashflow (2,1,1) (1,1,0,12) 344779

Table 5.24: Best performing SARIMA model based on MAE for each time
series
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Name RMSE MAE MAPE
Week cashflow 440998 284149 97
Week combined 439729 316163 89
Month cashflow 419787 353507 134
Month combined 489105 397124 191

Table 5.25: Performance of SARIMA Forecasting Models

Name RMSE MAE MAPE
Week cashflow 441812 284537 94
Week combined 441348 289732 97
Month cashflow 428250 344779 152
Month combined 464371 369625 167

Table 5.26: Performance of SARIMA Forecasting Models

5.2.3 LSTM
Parameter Tuning

As stated earlier in this thesis a number of parameters need to be tuned.
The tests are done in the order of the tables. The results are taken into
account when testing the next parameter. The LSTM models are tuned with
RMSE and MAE. These results can be found in tables 5.27-5.30 and 5.31-5.34
respectively. In table 5.27 the number of hidden layers is tested. There are
three time series that are better off with one hidden layer and three-time series
that are better off with two hidden layers. The next parameter that is tested
is the number of neurons. Note that the networks have different amounts of
layers based on previous results. In Table 5.28 it is shown that for a four-time
series, it was best to have 50 neurons and for a two-time series it was best to
have 100 neurons. In table 5.29 the RMSE for the amount of epochs is shown.
For three series it was best to have 100 epochs, for 2 series it was best to have
200 epochs and for one it was best to have 400 epochs. Table 5.30 shows the
optimal batch size for each series. For three series it was best to have a batch
size of 32 and for three series it was best to have a batch size of 64. The
optimal parameters for each series are shown in Table 5.35

In table 5.31 the number of hidden layers is tested. There are four time
series that are better off with one hidden layer and two-time series that are
better off with two hidden layers. The next parameter that is tested is the
number of neurons. In Table 5.32 it is shown that for a four-time series, it
was best to have 50 neurons and for a two-time series it was best to have 100
neurons. In Table 5.33 the MAE for the amount of epochs is shown. For one
series it was best to have 100 epochs, it was also for one series to have 200
epochs. It was for three series best to have 300 epochs and for one series it
was best to have 400 epochs. Table 5.34 shows the optimal batch size for each
series. For the series it was best to have a batch size of 64, for the 2 series it
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was best to have a batch size of 16 and for one series it was best to have a
batch size of 32. The optimal parameters for each series are shown in Table
36.

Hidden Layers RMSE One RMSE Two
Credit Week 252727 321641
Credit Month 306380 383043
Debit Week 298357 293873
Debit Month 921471 959913
Cashflow Week 360777 342625
Cashflow Month 588315 400393

Table 5.27: RMSE Comparison between One and Two Hidden Layer Models

Number of Neurons RMSE 50 RMSE 100 RMSE 200
Credit Week 175779 208411 245978
Credit Month 325913 312039 325638
Debit Week 270874 284688 341604
Debit Month 773283 941981 928449
Cashflow Week 325240 350755 433990
Cashflow Month 496024 445699 488636

Table 5.28: RMSE Comparison for Different Neuron Counts in LSTM Layers

Epochs RMSE 100 RMSE 200 RMSE 300 RMSE 400
Credit Week 164400 186697 168887 179048
Credit Month 256203 270093 318336 327688
Debit Week 293779 312259 298709 287951
Debit Month 628284 767364 812935 785650
Cashflow Week 311327 307685 323296 338746
Cashflow Month 356956 353670 360261 495338

Table 5.29: RMSE Comparison for Different Epoch Counts in LSTM Training

Batch Size RMSE 16 RMSE 32 RMSE 64
Credit Week 179553 171708 168118
Credit Month 286519 276629 276743
Debit Week 274439 270049 296187
Debit Month 644918 662898 627370
Cashflow Week 368267 287925 359275
Cashflow Month 466028 390295 359766

Table 5.30: RMSE Comparison for Different Batch Sizes in LSTM Training
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Hidden Layers MAE One MAE Two
Credit Week 172818 218358
Credit Month 228445 225828
Debit Week 171188 184066
Debit Month 625511 863648
Cashflow Week 229085 267985
Cashflow Month 556606 324027

Table 5.31: MAE Comparison between One and Two Hidden Layer Models

Number of Neurons MAE 50 MAE 100 MAE 200
Credit Week 128482 213060 202053
Credit Month 206857 260960 265782
Debit Week 181397 185969 182991
Debit Month 674449 658136 677917
Cashflow Week 223051 215981 238169
Cashflow Month 350880 394461 384322

Table 5.32: MAE Comparison for Different Neuron Counts in LSTM Layers

Epochs MAE 100 MAE 200 MAE 300 MAE 400
Credit Week 141141 121423 144874 157472
Credit Month 188436 186573 174856 174980
Debit Week 293779 312259 298709 287951
Debit Month 617112 637988 682771 556098
Cashflow Week 224421 238005 236401 237323
Cashflow Month 320186 416336 318175 366009

Table 5.33: MAE Comparison for Different Epoch Counts in LSTM Training

Batch Size MAE 16 MAE 32 MAE 64
Credit Week 168574 144040 130167
Credit Month 247420 237021 201657
Debit Week 187706 183732 182121
Debit Month 654702 753982 679713
Cashflow Week 227673 230074 237885
Cashflow Month 414755 358230 363975

Table 5.34: MAE Comparison for Different Batch Sizes in LSTM Training
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Conclusion LSTM

To see what the best methods are to forecast the cash flow with LSTM con-
cerning RMSE and MAE, the evaluations of the cash flow and combined cash
flow are compared. This is shown in table 5.35 and 5.36. Week cash flow is a
forecast created by an LSTM with the parameters that were best for forecast-
ing weekly cash flow. Week combined is a forecast created by combining the
forecasts of Credit week and Debit week. Month cashflow and Month com-
bined are made in a similar matter. According to table 5.35, it is best not to
combine the forecasts of debit and credit week, but use the cashflow forecast.
According to table 5.36, it is better for weekly forecasts to use the forecast cre-
ated by combining the forecasts of credit week and debit week. For monthly
data, however, we can see that the original forecast performs better than the
combined forecast.

Parameters layers Neurons Epochs Batch Size RMSE
Credit Week 1 50 100 64 168118
Credit Month 1 100 100 32 276629
Debit Week 2 100 400 32 270049
Debit Month 1 50 100 64 627370
Cashflow Week 2 50 200 32 287925
Cashflow Month 2 100 200 64 359766

Table 5.35: optimal LSTM parameters for time series

Parameters layers Neurons Epochs Batch Size MAE
Credit Week 1 50 200 64 130167
Credit Month 1 50 300 64 201657
Debit Week 2 50 300 64 182121
Debit Month 1 100 400 16 654702
Cashflow Week 2 100 100 16 227673
Cashflow Month 2 50 300 32 358230

Table 5.36: optimal LSTM parameters for time series

Name RMSE MAE MAPE
Week cashflow 287925 229722 191
Week combined 290121 221365 130
Month cashflow 359766 319221 98
Month combined 530213 442580 162

Table 5.37: Performance of LSTM Forecasting Models
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Name RMSE MAE MAPE
Week cashflow 298416 227673 166
Week combined 283316 212057 140
Month cashflow 456788 358230 198
Month combined 867921 678392 230

Table 5.38: Performance of LSTM Forecasting Models
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5.3 Final result
In Table 5.39 and Table 3.40 the best models for each method are used to
minimize the RMSE and MAE respectively.

In Table 5.39, LSTM outperforms ETS and ARIMA for every time series
except for Debtor Monthly. Since the best-performing forecasts for weekly
and monthly cash flow in the LSTM method was done on cash flow data,
these are the best ways to forecast the weekly and monthly cash flow overall.
The forecasts can be seen in Figures 5.1-5.3

In Table 5.40, LSTM outperforms ETS and ARIMA for every time series
except for Debtor Monthly and Cashflow Monthly. Since the best-performing
forecast for weekly cash flow in the LSTM method was determined to be the
combined forecast of Credit week and Debit week, this is the best way to fore-
cast the weekly cash flow overall. For the monthly forecast, the best forecast
came from a SARIMA network that forecasts cash flow every month.

Both tables 5.39 and 5.40 show that LSTM does not work well for monthly
debtor transactions.

Time Series ETS RMSE SARIMA RMSE LSTM RMSE
Cashflow Monthly 455463 419787 359766
Cashflow Weekly 432398 439729 287925
Creditor Monthly 629809 686409 276629
Creditor Weekly 226574 210240 168118
Debtor Monthly 483639 481184 627370
Debtor Weekly 414215 406033 270049

Table 5.39: RMSE for Best Performing Models for Each Time Series (ETS,
ARIMA, and LSTM)

Time Series ETS MAE SARIMA MAE LSTM MAE
Cashflow Monthly 363908 344779 358230
Cashflow Weekly 278063 284537 212057
Creditor Monthly 584452 587550 201657
Creditor Weekly 166455 145856 130167
Debtor Monthly 339517 367043 654702
Debtor Weekly 215407 201674 182121

Table 5.40: MAE Comparison of Best Performing Models for Each Time Series
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(a) Weekly Cashflow (b) Monthly Cashflow

Figure 5.1: Best LSTM model for Cashflow

(a) Weekly Transactions (b) Monthly Transactions

Figure 5.2: Best LSTM model for Creditor Transactions

(a) Weekly Transactions (b) Monthly Transactions

Figure 5.3: Best LSTM model for Debtor Transactions
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Chapter 6

Conclusion

This research set out to explore the best methods for forecasting cash flow for
GS Interfer, comparing the accuracy of machine learning techniques.

The methods were tuned to minimize the root mean squared error and the
mean absolute error. The results show that LSTM outperformed all others
for weekly and monthly data in terms of RMSE. LSTM also outperformed the
others in weekly forecasts in terms of MAE. For monthly cashflow regarding
MAE, SARIMA had the best forecast.

These results highlight the importance of choosing the right forecasting
model and demonstrate that machine learning methods can significantly im-
prove forecasting accuracy for cash flow management.

One limitation of this study is that it does not account for external factors
such as market trends, which could influence cash flow. Additionally, the scope
of the data was limited to historical debtor and creditor transactions, without
considering broader financial variables.

Further research could integrate external economic indicators into the fore-
casting models or test hybrid models that combine both traditional and ma-
chine learning techniques to enhance predictive power.

Overall, this thesis shows that adopting machine learning methods, particu-
larly LSTM models, can lead to more accurate and reliable cash flow forecasts,
ultimately helping businesses optimize their financial strategies and decision-
making processes.
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