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Abstract

The rise in daily credit card usage has led to an increase in fraudu-
lent transactions, resulting in significant financial losses to institutions
and the government. This study investigated the effectiveness of var-
ious autoencoder models combined with a Multilayer Perceptron
(MLP) classifier for credit card fraud detection using the European
Cardholders dataset from Kaggle, which exhibits significant class
imbalance. The Borderline-SMOTE technique was applied to address
this imbalance. Three models were compared: a standalone MLP, an
MLP combined with a standard autoencoder, and an MLP integrated
with a Variational Autoencoder (VAE). The standalone MLP model
achieved the best performance with a precision of 0.77, a recall of
0.82, and an F1 score of 0.79. The integration of a standard autoen-
coder with the MLP did not significantly improve performance by
showing lower precision and recall. Conversely, the VAE-integrated
MLP model exhibited significant enhancement over the standard au-
toencoder model by capturing complex data patterns and achieving a
precision of 0.82 and recall of 0.66. Further analysis found that both
autoencoder and VAE-integrated models exhibited high recall but low
precision across different transaction amounts and temporal intervals.
These findings highlight the necessity of incorporating additional
features to determine fraudulent transactions accurately. The results
of this thesis highlight the potential of the VAE-integrated model
in capturing meaningful representations from the dataset; future re-
search is therefore encouraged to leverage the strengths of both VAEs
and MLPs on hybrid models for fraud detection systems.

1 data source , ethics , code , and technology statement

The research conducted in this study did not involve the collection of
data from human participants or animals. The European Cardholders
dataset utilized in this thesis was retrieved from Kaggle and is subject
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2 introduction 2

to a Database Contents License (DbCL). The data employed in this study
is publicly available here for all interested parties. The author of this
thesis acknowledges that they do not have any legal claim to the data.
The code associated with this thesis can be accessed via the provided
GitHub repository link. Part of the code was adapted from this GitHub
repository and the Kaggle repository. All figures and tables presented in
this study were made by the author. A generative language model, namely
ChatGPT, was utilized to refine the author’s original content and served
as a debugging tool for resolving coding errors. For spell-checking and
grammar corrections, Grammarly was used. To enhance the specificity of
the writing, the author utilized Quillbot. A comprehensive overview of all
software used in this study is provided in Table 7 found in the Appendix
C.

2 introduction

Anomaly detection, or outlier detection, is the process of classifying and
identifying data points or patterns that are unusual or deviate significantly
from the expected behavior within a dataset (Chandola et al., 2009; In-
jadat et al., 2018; Mehrotra et al., 2017). The primary objective of this
process is to detect anomalous or abnormal data that potentially indicate
errors, fraud, or suspicious activities within a given dataset. Anomaly
detection is widely applicable in various domains including cybersecurity,
finance, manufacturing, healthcare, and others. The significance of this
task lies in its capacity to discover hidden insights, detect potential threats,
or discern unexpected behavior through the examination of both normal
and anomalous patterns in the dataset. Anomalies in the dataset provide
crucial insights into the characteristics of the data point. For instance,
unusual network activity, anomalous behavior on the heart rhythm dia-
gram, or unauthorized credit card transactions offer critical information
about unprotected data that has direct implications for individuals and
society. Given the importance of these applications, the task of anomaly
detection has consistently attracted attention, leading to the introduction
and development of numerous approaches over the years (Habeeb et al.,
2019; Mrozek et al., 2020). Furthermore, with the continuous expansion
of data volume and complexity across several domains, the relevance of
anomaly detection techniques will only increase (Pang et al., 2021).

Anomaly detection is extensively employed in the financial industry
to detect fraud, identify market irregularities, and monitor trading activi-
ties. In the financial sector, the detection of fraudulent activities is often
determined by unusual credit card transactions. In recent years, the ad-
vancement in technology has led to a rise in cashless transactions and credit

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://github.com/ElaGuven/Master-s-Thesis
https://github.com/curiousily/Credit-Card-Fraud-Detection-using-Autoencoders-in-Keras
https://github.com/curiousily/Credit-Card-Fraud-Detection-using-Autoencoders-in-Keras
https://www.kaggle.com/code/robinteuwens/anomaly-detection-with-auto-encoders
https://app.grammarly.com/
https://quillbot.com/


2 introduction 3

card usage, which has consequently led to a notable increase in fraudulent
transactions (Ounacer et al., 2018; Varmedja et al., 2019; H. Zhu et al.,
2020). Given the substantial prevalence of credit card fraud, particularly
in online marketplaces, the establishment of robust mechanisms for early
fraud detection is imperative (Porwal & Mukund, 2018). Such mechanisms
are designed to protect both customers and organizations from the adverse
impacts of fraudulent transactions with high risks and costs.

Credit card fraud detection covers not only technical aspects but also
represents a societal concern with significant implications for individuals
and businesses on a global scale (Caroline Cynthia & Thomas George,
2021). Additionally, the effects of credit card fraud extend beyond financial
losses, as it undermines trust in online transactions and can cause harm to
the reputation of businesses. As a result, organizations have prioritized the
development of robust fraud detection systems to maintain the integrity of
financial systems.

Several recent studies have used machine learning and data mining
to identify fraudulent transactions (Bin Sulaiman et al., 2022; Mrozek et
al., 2020; Tiwari et al., 2021). Supervised methods like random forest,
K-nearest neighborhood (KNN), support vector machine (SVM), and lo-
gistic regression are commonly used for fraud detection on a large scale
compared to unsupervised methods (Bin Sulaiman et al., 2022; Ngai et al.,
2011). Employing supervised methods requires a labelled dataset to classify
transactions as legitimate or fraudulent. Obtaining labelled datasets in real-
world situations is challenging due to computational expenses. Therefore,
the effectiveness of these techniques heavily relies on training with labelled
data (Ounacer et al., 2018).

On the other hand, unsupervised learning doesn’t require labelling
transactions as genuine or fraudulent, resulting in substantial cost savings
in time and resources. As emphasized in the research by Malini and Pushpa,
employing unsupervised methods for credit card fraud detection offers
efficiency and flexibility. Nevertheless, these methods are not prevalent
in credit card fraud detection compared to other research areas (Fanai &
Abbasimehr, 2023). Hence, deep learning models and neural networks
in an unsupervised manner continue to gain interest and are recognized
as effective for fraud detection (Georgieva et al., 2019). Although deep
anomaly detection methods have indeed made notable advancements in
enhancing the effectiveness of fraud detection (Dubey et al., 2020; Majhi et
al., 2019; Patidar, Sharma, et al., 2011), the complexity of this task persists
due to the diverse nature of fraudulent activities (Bin Sulaiman et al.,
2022; Sehrawat & Singh, 2023). Fraud detection is increasingly challenging
due to the continuous evolution of fraudulent behavior patterns. Since
fraudsters always find a way to show fraudulent activities as legitimate
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ones, two transactions may exhibit comparable attributes. Furthermore,
there has been a decline in the percentage of fraudulent data points in the
overall dataset as the quantity of online transaction datasets has grown.
Consequently, it becomes more difficult to locate them over time (Porwal
& Mukund, 2018). Due to the ever-changing nature of fraudsters’ activities
and their continuous development in behavior, it remains necessary to
develop new approaches for credit card fraud detection (Hejazi & Singh,
2013; Malini & Pushpa, 2017; Mrozek et al., 2020). There are many ways
available to improve the fraud detector.

This study employs an anomaly detection method using two types
of autoencoders combined with a Multilayer Perceptron (MLP) model to
enhance existing credit card fraud detectors and evaluate their effective-
ness. Although limited research exists on using autoencoders for credit
card fraud detection, they offer a promising approach due to their ability
to gain better representations of input data (Fanai & Abbasimehr, 2023;
Misra et al., 2020). Subsequently, these representations are fed into an MLP,
which is used in a supervised approach to further improve fraud detec-
tion. Additionally, the autoencoders’ ability to uncover hidden patterns
within lower dimensional datasets makes them particularly well-suited
for identifying irregularities and anomalies that may indicate fraudulent
transactions (Z. Chen et al., 2018; Fanai & Abbasimehr, 2023; Pumsirirat &
Liu, 2018).

3 motivation & research questions

Recent research on fraud detection has made significant progress by uti-
lizing supervised and unsupervised methods. Thus, this task is often
regarded as a resolved issue. Some studies have shown a high level of
accuracy, exceeding 0.90 on the Credit Card Fraud Detection dataset (Dal
Pozzolo et al., 2015; Ogwueleka, 2011). However, detecting credit card
fraud remains difficult. A key challenge arises from the unclear nature of
fraud detection datasets, where precise estimations regarding the types
and prevalence of fraudulent activities remain elusive (Zamini & Montazer,
2018). In addition, machine learning models may have difficulty identifying
fraudulent activities as fraud if new fraudulent transactions don’t exhibit
similar traits to historical data (Pumsirirat & Liu, 2018). These incidents
have highlighted credit card fraud as a persistent concern that requires
attention to develop more effective fraud detection systems.

Notwithstanding progress in current methodologies, there are still
limitations in the following areas concerning credit card fraud detection:
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• The absence of accessible public datasets for credit card fraud de-
tection: Banks and financial institutions are now increasingly able to
obtain large-scale credit card transaction datasets due to the growing
popularity of e-payment methods. Unfortunately, having access to
these credit card transaction datasets for investigation purposes is
highly challenging due to security and data privacy concerns, as high-
lighted in the study by H. Zhu et al. Banks are hesitant to disclose
their customers’ data explicitly because of the General Data Protec-
tion Regulation (GDPR), as discussed in a review by Bin Sulaiman
et al. The combination of these factors makes it hard to find a public
dataset, thereby hindering the development of adequately trained
fraud detection systems (Saia & Carta, 2019).

The European Cardholders dataset, as introduced by Dal Pozzolo
et al., is widely used for training fraud detection algorithms due to its
incorporation of daily credit transactions. While this dataset might
encourage progress in credit fraud detection, a substantial training
dataset is still necessary to comprehensively address fraudulent ac-
tivities (Bin Sulaiman et al., 2022). Training the algorithms on new
datasets will significantly enhance feature extraction from the dataset
and improve fraud detection dramatically. Therefore, credit card
fraud detection can be improved by analyzing additional datasets
containing a variety of fraudulent activities.

Collecting a large number of fraudulent transactions in a single
dataset poses a significant challenge, and it may not be feasible to
include all different types of fraud (Mrozek et al., 2020; Tingfei et
al., 2020). For instance, certain public datasets, like the German
dataset (Patil et al., 2018), and private banks’ datasets exhibit a lack of
diversity in fraudulent activities. The efficacy of fraud detectors relies
heavily on the input data (Mrozek et al., 2020). Hence, this limitation
presents a significant obstacle to developing robust and accurate
fraud detection algorithms that can effectively handle real-world
situations (Kim et al., 2019).

• High false-negative rate: Models on credit card fraud detection are
usually trained on the widely used European Cardholders dataset
(Dal Pozzolo et al., 2015) and assessed based on the dataset’s vali-
dation set. Typically, results in the studies are compared based on
the accuracy (Asha & KR, 2021; Carcillo et al., 2018; Razooqi et al.,
2016). Instead of relying solely on accuracy, it is better to use other
evaluation metrics such as precision, recall, F1 score, or the area
under the receiver operating characteristic curve (AUC- ROC) to
offer a more comprehensive assessment of the model on unseen data.
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The review conducted by Makki et al. highlights that relying on a
single performance metric can result in misinterpretation, especially
in imbalanced datasets. As a result, achieving better outcomes on
other metrics will still improve this task.

Fraud detection in the financial sector remains challenging even
with the implementation of neural networks (X. Zhu et al., 2021).
This difficulty stems from the difficulty of evaluating the changing
techniques employed by fraudsters over time. The recent fraud
detection algorithms have high accuracy, but the precision and recall
of these models are typically low (Dal Pozzolo et al., 2015; Mrozek
et al., 2020). In this scenario, fraud detection models often mismatch
fraudulent transactions with legitimate ones. Naturally, this raises
the question of the model’s ability to detect fraudulent observations.
Consequently, models that minimize the number of false negatives
during the detection process are critical to improve performance and
prevent financial losses for banks.

• Class imbalance problem: Anomaly detection tasks often encounter
a significant challenge because of the imbalanced nature of the
datasets. An unbalanced dataset in credit card fraud detection tasks
refers to a situation where the number of legitimate (non-fraudulent)
transactions far exceeds fraudulent transactions. The presence of
an imbalance in the dataset can lead to biased models, higher false-
negative rates, and difficulty accurately evaluating the performance
of fraud detectors. As a prominent obstacle in credit card fraud
detection, the class imbalance issue is extensively discussed in the
literature (Makki et al., 2019). This problem is characterized by a
highly imbalanced and skewed data distribution (Hilal et al., 2022;
Makki, 2019). This issue has led to significant financial losses as a
consequence of the inability of machine learning models to accurately
identify fraudulent activities. Various methods have been suggested
in the literature to address class imbalance (Fernández et al., 2018;
Haixiang et al., 2017), but they are still not adequately effective for
fraud detection (Johnson & Khoshgoftaar, 2019; Makki et al., 2019).
Consequently, addressing this problem is necessary to enhance the
performance of fraud detection systems.

The approach to addressing this issue depends on the degree of
imbalance in the dataset; therefore, there are no specific balancing
techniques suited for individual models (Makki et al., 2019). One
major drawback of balancing approaches is that they yield varying
outcomes with particular types of models and datasets (Zareapoor
et al., 2012).
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This thesis aims to contribute to credit card fraud detection by address-
ing the challenges mentioned above. Effective credit card fraud detection
systems must accurately identify fraudulent activities commonly occur-
ring in daily financial transactions. To achieve this, the thesis utilizes
two autoencoders combined with a Multilayer Perceptron (MLP) model
to improve credit card detection by reducing false negatives. This study
aims to demonstrate the effectiveness of various autoencoder architectures
in detecting fraud by capturing complex relationships within the data.
Furthermore, this thesis provides insights into the performance of different
autoencoder models when combined with a class-balancing technique such
as Borderline-SMOTE. By implementing these methods, financial institu-
tions can better protect against potential financial losses; thereby, they can
maintain customers’ trust in banks by ensuring the proper functioning of
the financial system and supporting overall economic activity. Institutions
that fail to implement effective fraud detection measures face the possibility
of rising costs and decreasing consumer spending, which can adversely
affect businesses and governments. An efficient fraud detection system can
mitigate these effects.

The research question in this thesis can be formulated as follows:

"To what extent can different types of autoencoders effectively distin-
guish fraudulent credit card transactions from legitimate ones?"

The following sub-questions must be addressed in order to provide an
answer to the main research question:

SQ1 "How does the transaction amount influence the autoencoders’ ability to
detect fraudulent transactions?"

This question investigates how the size of transactions throughout the day
affects the ability of autoencoders to distinguish between fraudulent and
legitimate transactions. By analyzing how transaction sizes throughout the
day affect the models’ performance, it aims to uncover any correlations
between transaction amounts and the effectiveness of fraud detection
models.

SQ2 "How does the time difference between transactions affect the performance
of autoencoders in detecting fraud?"

This question delves into the temporal aspect of autoencoder performance
in fraud detection. Specifically, it examines the models’ ability to identify
fraudulent activities in consecutive transactions and explores any relation-
ships between fraudulent behavior and time intervals.
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4 related work

4.1 Credit card fraud detection using autoencoders

Autoencoders, as feed-forward multilayer neural networks, have recently
gained considerable interest in many research fields for their capacity to
uncover hidden patterns within input data (Bengio et al., 2012; Wang
et al., 2015).These neural networks receive high-dimensional input data,
compress it into a lower-dimensional latent space, and then reconstruct
data in the output layer. By compressing the data into a representation
with fewer dimensions, the autoencoders can extract meaningful features
from complex patterns within the data, resulting in efficient storage and
faster computations for algorithms (Fournier & Aloise, 2019; Liu et al.,
2017).

Autoencoders have emerged as valuable tools for anomaly detection,
including credit card fraud detection (Chaquet-Ulldemolins et al., 2022;
Chow et al., 2020; Lin & Jiang, 2020; Rezapour, 2019; Zhou & Paffenroth,
2017). Unlike Principal Component Analysis (PCA), which may not capture
non-linear feature correlations effectively, autoencoders are more effective
in finding anomalies by capturing non-linear relationships (Z. Chen et
al., 2018; Hinton & Salakhutdinov, 2006; Niu et al., 2019; Sakurada &
Yairi, 2014). Studies by Schreyer et al. and Zheng et al. have shown that
autoencoders achieve lower rates of false negatives compared to traditional
rule-based systems.

Prior research in fraud detection has demonstrated that autoencoders
offer computational efficiency and performance enhancements, surpassing
traditional machine learning approaches (Paula et al., 2016; Renström
& Holmsten, 2018). Despite their advantages, autoencoders have not
been widely employed in credit card fraud detection compared to other
machine learning techniques (Roy et al., 2018; Xuan et al., 2018). Existing
research indicates that training autoencoders on larger, real-time datasets
can enhance fraud detection, although the lack of publicly accessible
datasets limits progress (Kazemi & Zarrabi, 2017; Pumsirirat & Liu, 2018;
Singla et al., 2020). Hence, it is imperative to explore the capabilities of
autoencoders to improve fraud detection in this specific domain.

Recent studies have combined autoencoders with classification models,
using autoencoders to extract essential data structures while filtering out
noise (Al-Shabi, 2019; Lin & Jiang, 2021; J. Zou et al., 2019). Furthermore,
some studies have shown that this combination often improves perfor-
mance, particularly with larger training datasets (Ouedraogo et al., 2021;
Pumsirirat & Liu, 2018; Zioviris et al., 2022).
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However, there remains a significant research gap regarding the exten-
sive use of autoencoders for credit card fraud detection. In the proposed
approaches, autoencoders are typically trained on non-fraud transactions
(Al-Shabi, 2019; Chalapathy et al., 2018; Chaquet-Ulldemolins et al., 2022;
Zamini & Montazer, 2018; Zhou & Paffenroth, 2017). Consequently, contem-
porary academic work has increasingly focused on techniques involving
the training of autoencoders utilizing data samples that do not contain
anomalies (Du et al., 2023). Therefore, their potential may be somehow
restricted (Zioviris et al., 2022).

Furthermore, there is limited research on the comparative analysis
of various types of autoencoders within this research domain. Previous
studies by Renström and Holmsten, A. Ali et al., Tingfei et al. and Kumar
have suggested that both traditional and variational autoencoders (VAEs)
can enhance the precision and accuracy of credit card fraud detection.
Some research indicates superior performance of VAEs in the European
Cardholders dataset (Ouedraogo et al., 2021; Raza & Qayyum, 2019; Sweers
et al., 2018), while others find standard autoencoders to be more effective
for fraud detection (Pumsirirat & Liu, 2018; Zioviris et al., 2022).

In light of these findings, this thesis aims to fill the gap by conducting
a comparative analysis of different autoencoder architectures combined
with an MLP model for credit card fraud detection.

4.2 Techniques for handling imbalanced data in credit card fraud detection

Detecting credit card fraud presents a formidable challenge characterized
by data imbalance, where the number of legitimate transactions signifi-
cantly exceeds the fraudulent instances (Shamsudin et al., 2020). Managing
this class imbalance problem is crucial for developing accurate and reliable
fraud detection systems (Singh et al., 2022). Unbalanced datasets nega-
tively impact model performance and reduce the effectiveness of various
classification methods (C. P. Chen & Zhang, 2014; Lucas & Jurgovsky, 2020;
Shamsudin et al., 2020). Therefore, strategies for addressing this issue play
a critical role for models in enhancing the fraud detection rate.

Numerous methodologies, including oversampling, undersampling,
and cost-sensitive learning, have been proposed to address data imbalances
in credit card fraud detection (López et al., 2013; Makki et al., 2019; Rout
et al., 2018; Vandewiele et al., 2021). Unlike algorithmic modifications,
sampling-based techniques have gained significant popularity due to their
simplicity and computational efficiency (Alamri & Ykhlef, 2024; Ebenuwa
et al., 2019). By adjusting the distribution of the training data through
oversampling or undersampling, these techniques aim to alleviate the
skewness towards the majority class, thus enabling classifiers to generalize
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better and make accurate predictions (Abd El-Naby et al., 2023; H. Ali et al.,
2019; Tyagi & Mittal, 2020). Moreover, sampling methods can be easily
integrated into existing machine learning pipelines without significant
limitations (Alam et al., 2022).

According to Sisodia et al., the first step to acquire accurate findings
from algorithms is to prepare training data at the preprocessing stage.
Hence, selecting appropriate sampling methods for imbalanced datasets
becomes imperative due to their substantial impact on the performance
of detection models (Mrozek et al., 2020). While oversampling methods
involve generating synthetic instances of minority fraudulent classes to
balance the class distribution, undersampling aims to reduce the majority
of legitimate class samples to achieve a balanced dataset.

Oversampling techniques, such as the Synthetic Minority Oversam-
pling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and
random oversampling, have been effectively employed with different clas-
sifiers across numerous datasets (Aguiar et al., 2023). Previous research
shows that oversampling techniques outperform undersampling methods,
which may lead to the loss of valuable information from the majority class
(Ahmad et al., 2023; Ebenuwa et al., 2019; Lunghi et al., 2023).

Among these techniques, SMOTE is particularly popular for generating
a balanced dataset in credit card fraud detection (Almhaithawi et al., 2020;
Ileberi et al., 2021; Prasetiyo et al., 2021). However, SMOTE has limitations,
such as the possibility of synthetic data overlapping with majority class
samples or generating irrelevant synthetic instances where the decision
boundary is ambiguous (Ebenuwa et al., 2019; Shamsudin et al., 2020;
Strelcenia & Prakoonwit, 2023a). As a result, Borderline-SMOTE was
developed, focusing on synthesizing examples near the decision boundary,
where classification is more challenging (Alamri & Ykhlef, 2022; De La
Bourdonnaye & Daniel, 2022). Since the class boundary between legitimate
and fraudulent transactions can be intricate and dynamic, Borderline-
SMOTE has emerged as a valuable oversampling technique in credit card
fraud detection by enhancing the discriminatory power of classifiers and
improving fraud detection accuracy (Le, 2022; Patra et al., 2023; Xie et al.,
2023).

In addition to sampling techniques, Generative Adversarial Networks
(GANs) have been explored for generating new data samples to tackle
class imbalance, with some studies demonstrating their superiority over
other oversampling methods (Fiore et al., 2019; Strelcenia & Prakoonwit,
2023b; Tingfei et al., 2020). However, GANs have limitations, including
a lack of diversity within synthesized instances and the need for larger
datasets, which may pose practical challenges(Hung & Gan, 2021). There-
fore, implementing and training GANs require additional adjustments and



5 method 11

computational resources (Aftabi et al., 2023; Gangwar & Ravi, 2019; Ghaleb
et al., 2023; Pandey et al., 2020).

This study utilizes Borderline-SMOTE as the balancing technique to
enhance the effectiveness of the fraud detection model. Borderline-SMOTE
offers a simple method of generating synthetic instances by facilitating
easy implementation with different models. Additionally, its proven effec-
tiveness in improving fraud detection performance and addressing class
imbalances without significant computational overhead makes it a practical
and reliable choice over GANs for balancing imbalanced datasets in credit
card fraud detection (Alamri & Ykhlef, 2022; Obimbo et al., 2021; Sun et al.,
2022; H. Zou, 2021).

5 method

This section outlines the methodology and experimental framework em-
ployed in this study. Firstly, a description of the European Cardholders
dataset is provided. The subsequent analysis and preprocessing of the data
are explained. The primary approach undertaken in this research involves
a comparative analysis of two types of autoencoder models for detecting
credit card fraud. The general structure of autoencoder models is explained
in order to clarify the functioning of these models. The algorithms used
in this thesis are (1) Standard Autoencoders, (2) Variational Autoencoders
(VAEs), and (3) Multilayer Perceptron (MLP) as classifier. Finally, eval-
uation metrics used in the performance assessment are specified. The
methodology’s workflow is depicted in Figure 1.

5.1 Dataset Description

Due to the lack of publicly available datasets, the proposed method was
evaluated using a dataset obtained from European Cardholders (Dal Poz-
zolo et al., 2015). This dataset contains a compilation of credit card transac-
tions conducted by individuals during two days in September 2013. The
dataset consists of 284,807 transactions, with 492 instances flagged as fraud-
ulent, accounting for 0.172% of the total transactions. This dataset is highly
imbalanced, with a significantly smaller proportion of fraudulent activities
in comparison to legitimate transactions. Consequently, this problem must
be handled carefully to build an effective fraud detector.

The dataset comprises important numerical input attributes that have
been acquired through PCA transformation. This process has been de-
ployed to retain meaningful features while reducing dimensionality to
protect user identities and confidential information. Although these fea-
tures are derived from transaction records, their contextual details are
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Figure 1: Overview Methodology

anonymized to address privacy concerns. Moreover, the dataset incorpo-
rates attributes such as "time," "class," and "amount." The "amount" feature
denotes the transaction amount, whereas the "time" attribute indicates
the duration in seconds since the initial transaction. Lastly, the "class"
variable distinguishes between fraudulent transactions (denoted by 1) and
non-fraudulent transactions (denoted by 0).

5.2 Exploratory Data Analysis and Preprocessing

Exploratory Data Analysis (EDA) provides valuable insights into the charac-
teristics of a dataset and visualizes the relationships within the transaction
data. Therefore, several types of EDA have been implemented to better
understand the data features in the dataset. The insights gained from this
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analysis are critical for the subsequent modeling phase, where they guided
model tuning to improve fraud detection capabilities.

• Missing Value Analysis: The dataset has been verified for missing
values and is found to be complete.

• Distribution Analysis: Histograms and KDE (Kernel Density Esti-
mation) plots visualize the distributions of transaction amounts and
times for both fraudulent and non-fraudulent transactions. Figure 20

in Appendix B shows that non-fraudulent transactions occur more
frequently and maintain a consistent frequency over the observed
time period. Conversely, fraudulent transactions are relatively sparse
and exhibit less variability over time. Figures 21 and 22 in Appendix
B illustrate that fraudulent transactions involve a broader range of
transaction amounts and tend to be smaller than non-fraudulent
transactions.

Additionally, scatter plots of transaction time versus amount for each
class are presented in Appendix B. Non-fraudulent transactions do
not display a clear correlation between time and amount, whereas
fraudulent transactions are more dispersed across both variables,
suggesting potential time-dependent patterns in fraudulent activity,
which could be crucial for anomaly detection.

• Dimensionality reduction and visualization: Dimensionality reduc-
tion techniques, such as t-SNE, PCA, and Truncated SVD (tSVD),
are applied to explore the relationships among features and their
association with the target variable, which is the transaction class.
These techniques help visualize the relationships of variables in a
smaller sample, which closely resembles the compressed represen-
tation of input data by autoencoders. In this dataset, most features
were already transformed using PCA to retain meaningful features
while reducing dimensionality for privacy reasons. The additional
dimensionality reduction techniques employed in this step further
analyze the transformed features.

The t-SNE plot, referenced in Figure 24, suggests a complex, non-
linear relationship between the two classes. Furthermore, Figures
25 and 26 demonstrate that the PCA and tSVD plots do not effec-
tively separate the fraud cases from the non-fraudulent cases in this
dataset. This outcome underscores the challenge of identifying clear
boundaries between classes using linear dimensionality reduction
techniques alone, thereby justifying the utilization of autoencoders in
this study.
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• Correlation Analysis: The correlation matrix of features, shown
in Appendix B exhibits various degrees of correlation between the
anonymized features and the class label. Some features demonstrate
a positive or negative correlation with class, indicating their poten-
tial utility in distinguishing between fraudulent and non-fraudulent
transactions. In particular, the correlation between "Time" and "Class"
is approximately zero, indicating no direct linear relationship. Never-
theless, the absence of a direct relationship between variables does
not exclude the possibility of complex, time-dependent patterns in
fraudulent transactions that simple correlations fail to capture. To
understand these time-dependent patterns, it is essential to analyze
the distribution of other variables, such as "Amount," over time for
both fraudulent and non-fraudulent transactions, as detailed in the
Appendix.

• Class Imbalance Analysis: Figure 2 highlights the severe class im-
balance within the dataset by showing the percentage of fraudulent
and non-fraudulent transactions. This is crucial for understanding
the dataset’s skew towards non-fraudulent transactions and helps in
planning how to handle imbalanced data during model training.

Figure 2: Class Distribution

Each of these EDA techniques offers crucial insights into the data,
reveals underlying patterns, and assists in addressing questions regarding
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how different features may relate to the occurrence of fraud. These insights
are invaluable for building effective fraud detection mechanisms.

A comprehensive exploratory data analysis (EDA) was conducted on
the European Cardholders dataset, followed by a series of preprocessing
steps. These steps included data normalization and the application of
the oversampling technique after the data was divided into training and
testing sets.

The dataset was previously standardized, with most features having a
mean close to zero, except for the ’Time’ and ’Amount’ columns. During
the preprocessing phase, the ’Time’ and ’Amount’ variables were scaled to
a smaller range to enhance the efficiency of the training process.

The dataset was split into training and test sets with proportions of
80% and 20%, respectively. Given the infrequency of fraud cases, the
Borderline-SMOTE technique was employed on the training dataset to
ensure an adequate number of anomalous transactions during the training
process. To preserve the integrity of real-world conditions and prevent
data leakage, oversampling was confined to the training set only.

5.3 Algorithms

This subsection describes the algorithms utilized in this study, including
their architectures and associated hyperparameters. The models employed
were Autoencoders, Variational Autoencoders (VAEs), and Multilayer Per-
ceptrons (MLP). This comprehensive description aims to provide a precise
comprehension of the implementation of these algorithms in this study.

5.3.1 Autoencoders

In credit card fraud detection, autoencoders can serve several roles with
dimensionality reduction, feature learning, and anomaly detection. An
autoencoder, as a generative deep learning algorithm, is comprised of two
main components: an encoder and a decoder module. The encoder module
is responsible for compressing the input data into a lower dimensional
representation and conversely, the decoder module reconstructs this repre-
sentation to the original input data. The architecture of the autoencoders is
illustrated in the figure below.

Autoencoders are designed to reproduce the same amount of output
data from the input data. The core architecture of an autoencoder com-
prises essential components that facilitate the extraction and representation
of significant features within the dataset. This approach improves compu-
tational efficiency by reducing dimensions during training. It also helps
in mitigating data noise and enhances model performance by focusing
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Figure 3: Visualization of Autoencoders Architecture

on relevant features. The encoding and decoding processes facilitated by
autoencoders effectively capture complex patterns and anomalies within
transaction data that might not be immediately apparent in raw data. Con-
sequently, autoencoders are considered a highly promising tool for fraud
detection, as they identify intricate patterns that are not captured through
traditional methods (Z. Chen et al., 2018; Cheng et al., 2020). This process
is achieved by the model’s ability to approximate an identity function
through learning the compressed representation of the input data.

fW,b(x) ≈ x

Where fW,b(x) is the reconstructed output data, x is the input data, W are the
weights, and b are the biases.

In the context of credit card fraud detection, autoencoders are trained
typically on non-fraudulent transactions (Sharma et al., 2022). Autoen-
coders reconstruct the input and optimize the parameters by minimizing
the reconstruction error. Typically, mean squared error is used as a recon-
struction error for flagging anomaly.

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2

where n is the size of the data, x is the input data, and x̂ is the reconstructed
output data.
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In this generic strategy, the autoencoder learns to reconstruct the nor-
mal transactions very well, and when a fraudulent transaction, which
is different in nature from the ’normal’ transactions, is passed through
the autoencoder, it results in a higher reconstruction error. This elevated
error is directly used to determine a threshold to classify transactions as
fraudulent or legitimate, where a high error suggests fraudulent activity
and a low error indicates a legitimate transaction.

In line with current methodologies employing autoencoders for anomaly
detection, the primary objective of this thesis is to utilize autoencoders
for dimensionality reduction before classification. Traditionally, fraud de-
tection methods assume that fraudulent cases are rare and significantly
different from each other (Awosika et al., 2024; Baesens et al., 2021; Hilal
et al., 2022). However, recent studies have demonstrated that fraudulent
transactions can share similar characteristics, like normal transactions (Ben-
chaji et al., 2021; Davidson, 2022). Therefore, this thesis diverges from
conventional literature by training autoencoders on a dataset comprising
both fraudulent and non-fraudulent transactions. This approach contrasts
with the typical use of autoencoders for anomaly detection, where they are
often trained exclusively on ’normal’ data.

5.3.2 Variational Autoencoders (VAEs)

Variational autoencoders (VAEs) are a variant of autoencoders that fall
under the category of generative models. They integrate the architecture of
autoencoders with probabilistic approaches, specifically designed to learn
the distribution of input data and generate new data that resembles the
training data. A Variational Autoencoder (VAE) is composed of an encoder,
which transforms input data into a distribution in the latent space, and a
decoder, which subsequently reconstructs the data from this latent space.

The VAE framework includes latent variables z sampled from a Gaus-
sian distribution parametrized by the encoder as follows:

z ∼ q(z | x) = N (µ(x), σ(x)2)

where µ(x) and σ(x) are functions of the input data x that produce the mean and
standard deviation of the latent distribution, respectively.

VAEs employ a method where inputs are encoded as distributions
rather than single points in order to create a regularized latent space. VAEs
offer a significant benefit by incorporating probabilistic modeling into the
encoding and decoding process, enhancing the generative capabilities of
autoencoders (Kingma & Welling, 2013). Traditional autoencoders often
struggle to generate new data due to irregularity in the latent space,
potentially resulting in irrelevant data points during decoding.
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Additionally, VAE optimizes a combined loss function that includes
both the reconstruction loss and a regularization term. The reconstruction
loss, measured by mean squared error, ensures accurate data reconstruction.
The regularization term, Kullback-Leibler (KL) divergence, ensures that the
encoded distributions closely approximate a standard normal distribution.

The combined objective function is given by:

L = Eq(z|x) [log p(x | z)]− DKL (q(z | x) ∥ p(z))

where Eq(z|x) [log p(x | z)] represents the expected value of the distribution
q(z | x) and the logarithm of the conditional probability of x given z, denoted
as log p(x | z). The expression DKL (q(z | x) ∥ p(z)) is the Kullback-Leibler
divergence between the conditional distribution q(z | x) and the prior distribution
p(z).

Thus, the VAE Loss is a combination of Reconstruction Loss and KL
Divergence:

VAE Loss = Reconstruction Loss + KL Divergence

The primary goal of training the VAE model is to minimize both the
reconstruction error and the KL divergence of the latent variables. The VAE
model can obtain a continuous representation in the latent space using
variational inference, which allows for a certain degree of interpretability.
VAEs have become a popular method for modeling complex generative
distributions as an extension of standard autoencoders.

VAEs have a wide range of applications, such as generative models for
creating new data points, dimensionality reduction, and anomaly detection.
They generate probability distributions over reconstructed data, thereby
allowing the confidence interval for identifying anomalies. Several studies
have explored the use of VAEs for fraud detection.

In literature, VAEs are often used as an oversampling module to address
the class imbalance issue, generating new instances of minority class for
training the model. For instance, Ibrahim et al.; Tingfei et al. employed
VAEs to create synthetic data to balance datasets, significantly improving
the performance of fraud detection models. Furthermore, Ding et al.
demonstrated that VAEs could effectively capture the complex patterns of
fraudulent behavior, leading to more robust detection mechanisms.

Additionally, a VAE-based anomaly detection framework was intro-
duced for unsupervised fraud detection, where they trained on legitimate
transactions and the reconstruction error was used to identify fraudulent
transactions. This approach indicated that VAEs could autonomously
distinguish between normal and fraudulent transactions by learning the
underlying data distribution and recognizing patterns (Alazizi et al., 2020;
An & Cho, 2015; Anh et al., 2020; Ouedraogo et al., 2021; Shen, 2021).
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In this thesis, both traditional autoencoders and VAEs help in reducing
the dimensionality of the data and learning efficient representations that
might capture underlying patterns in the data. Each has its strengths,
with VAEs providing a probabilistic manner for describing the data, which
might capture nuances in how data varies.

5.3.3 Multilayer Perceptron

A Multi-Layer Perceptron (MLP) is a feedforward neural network that
consists of an input layer, multiple hidden layers, and an output layer. As
a supervised learning algorithm, MLP was trained using labelled data.
Throughout the training process, the network learns to map input data to
correct labels by iteratively adjusting the weights and biases to minimize
the error.

The functional form of the MLP can be expressed as follows:

y = φ

(
n

∑
i=1

ωixi + b

)
where x represents input values, w denotes the weights, b is the bias, and φ is the
non-linear activation function.

MLPs have been extensively employed in fraudulent transaction detec-
tion due to their ability to learn complex relationships within transaction
data. Empirical evidence suggests that MLPs outperform traditional ma-
chine models, achieving higher detection accuracy (Abd El Naby et al.,
2021; Mishra & Dash, 2014; Moumeni et al., 2022; Riffi et al., 2020; Shirodkar
et al., 2020).

Advancements in deep learning have further enhanced the performance
of MLPs in fraud detection by incorporating deeper architectures with
multiple hidden layers and advanced optimization techniques (Kasasbeh
et al., 2022; Pillai et al., 2018). Additionally, recent studies demonstrated
that MLPs can be integrated with other models to create a hybrid approach,
and this enhances the robustness of the fraud detection systems, resulting
in improved precision and recall without significantly increasing false
positives for legitimate transactions (Pumsirirat & Liu, 2018).

Given that the MLP represents the simplest form of artificial neural
networks (ANNs) and considering the objective of this study, which is
to compare the effectiveness of two types of autoencoders, the MLP was
chosen as the benchmark classifier.

5.3.4 Hyperparameter Tuning

Hyperparameter tuning is crucial in developing effective deep learning
models by selecting the optimal set of hyperparameters. This process
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enhances the computational efficiency, robustness, and accuracy of the
models by mitigating issues such as overfitting and underfitting. Proper
hyperparameter tuning directly impacts the performance of models in
fraud detection (Taha & Malebary, 2020). Each model was optimized to
achieve its best possible performance to achieve a fair comparison among
the three approaches. During the tuning process, considerations for faster
training times and reduced computational resources were significantly
emphasized.

In tuning the Multilayer Perceptron (MLP), various settings were ex-
plored. Based on the classifier results, the number of layers and the number
of neurons in each layer were incrementally increased to enhance model
complexity and performance. Different dropout rates were tested to deter-
mine the optimal level of regularization. Batch sizes were varied from 32

to 512 to assess their impact on training time. The hyperparameter settings
for the MLP are presented in Table 1 below.

Hyperparameter Values
learning_rate 0.1, 0.01, 0.001

batch_size 128, 256, 512

epochs 30, 50

activation relu, tanh, sigmoid
dropout_rate 0.1, 0.3, 0.5

optimizer Adam, SGD
dense_units_layers 64, 128, 256

Table 1: Hyperparameter Settings for MLP

To augment the complexity and efficacy of the autoencoder models
in capturing and reconstructing intricate data patterns, hyperparameter
tuning was systematically applied (Table 2 and 3). Additional layers were
incorporated to increase model complexity, while advanced techniques
such as dropout were used to regularize the models and reduce overfitting.
Furthermore, batch normalization was implemented to promote training
stability by ensuring consistent normalization across layers, and various
activation functions were tested to enable the models to capture more
complex data representations. The number of epochs was adjusted, and
early stopping was employed to ensure convergence. These strategic
modifications were crucial in optimizing the model’s performance on
unseen data.

Given that this thesis compares the effectiveness of two autoencoders
in credit fraud detection, the same MLP architecture was tested using
the encoded features as inputs from both traditional autoencoders and
Variational Autoencoders (VAEs).
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Hyperparameter Values
autoencoder_learning_rate 0.1, 0.01, 0.001, 0.0001

autoencoder_epochs 50, 100

autoencoder_batch_size 32, 256, 512

encoder_units_layers 13, 6, 3

dropout_rate 0.1, 0.3, 0.5
activation relu, tanh, sigmoid

Table 2: Hyperparameter Settings for Autoencoder + MLP

Hyperparameter Values
vae_learning_rate 0.1, 0.01, 0.001, 0.0001

vae_epochs 50, 100

vae_batch_size 128, 256, 512

encoder_units_layers 512

latent_dim 2, 4

dropout_rate 0.1, 0.2
activation relu, leakyrelu

Table 3: Hyperparameter Settings for VAE + MLP

5.4 Experimental Set-up

This section details the experiments conducted to address the research ques-
tions related to the efficacy of various autoencoder types in distinguishing
fraudulent credit card transactions from legitimate ones.

Experiment 1: Multilayer Perceptron (MLP) Model with resampled
credit card transaction data

Before the first experiment, the Borderline-SMOTE technique was used
to address the issue of class imbalance by creating synthetic samples for the
minority class near the decision boundary. This preprocessing step ensured
that all subsequent models were trained on a balanced dataset. Subse-
quently, a Multilayer Perceptron (MLP) was implemented and evaluated
on the resampled data. The objective of this experiment was to establish
baseline performance and evaluate how implementing the autoencoders to
the pipeline affects the ability of MLP to detect fraudulent transactions.

Experiment 2: Standard Autoencoder and MLP Integration
The second experiment involved the integration of a standard autoen-

coder with the MLP classifier. In this experiment, autoencoders are used
for preparing data for subsequent supervised learning task. The autoen-
coder was trained on the resampled training data to reconstruct input data.
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Additionally, the trained autoencoder reconstructed the test data, and the
mean squared error (MSE) between the original and reconstructed data
was calculated. The reconstruction error was plotted for both normal and
fraudulent transactions, and a threshold was determined to distinguish be-
tween the two classes. An encoder model was created to generate encoded
features from the input data, which are then used to transform both the
training and test data. The MLP was trained on the encoded training data,
and subsequently, the MLP model was evaluated on the encoded test data
to determine its performance.

This experiment aimed to investigate whether the latent representations
learned by the autoencoder could enhance the MLP’s performance in
identifying fraudulent transactions. The effectiveness of this integrated
model was compared against the baseline MLP established in Experiment
1.

Experiment 3: Variational Autoencoder (VAE) and MLP Integration The
third experiment introduced Variational Autoencoders (VAEs) in conjunc-
tion with the MLP classifier. VAEs impose a probabilistic structure on the
latent space, potentially capturing more meaningful data representations
(Z. Chen et al., 2021). As in Experiment 2, the reconstruction error from
the VAE was utilized as an additional feature next to the MLP classifier.

This experiment intended to determine whether the probabilistic nature
of VAEs provided any enhancements in performance compared to the
standard autoencoder in detecting fraudulent transactions.

Additional Experiments for Sub-Questions To address the research
sub-questions, further experiments were conducted using the same models
with test data segmented based on transaction amounts and time intervals.

• Transaction Amount Analysis: The performance of autoencoder-
based models (Standard Autoencoder + MLP, VAE+MLP) was evalu-
ated across different transaction amounts to understand how trans-
action size influences the model’s efficacy in fraud detection. The
test dataset was segmented into low and high transaction amounts.
Each test segment was encoded using the trained encoder model.
The MLP which was trained on the encoded features from the full
training dataset, was then evaluated on each test segment.

• Time Difference Analysis: The models were also evaluated based on
the time difference between transactions to uncover any relationships
between transaction timing and the models’ performance in fraud
detection. The test set was segmented into short and long inter-
vals based on the time differences between consecutive transactions.
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Each test segment was encoded using the trained encoder model.
The MLP which was trained on the encoded features from the full
training dataset, was then evaluated on each segment. Finally, the
performance of the MLP classifier for each segment was analyzed to
determine how temporal differences impact the performance of the
autoencoders-MLP pipeline.

5.5 Evaluation Metrics

The primary objective of this thesis is to evaluate and compare the perfor-
mance of two types of autoencoders integrated with Multilayer Perceptron
(MLP) for credit card fraud detection, utilizing the European Cardholders
dataset. This study aims to determine which model exhibits superior
performance in terms of reconstruction error and other relevant evalua-
tion metrics. This research strives to enhance credit card fraud detection,
enabling the accurate identification of fraudulent transactions while mini-
mizing the occurrence of false negatives.The evaluation of the credit card
fraud detection models was conducted using a confusion matrix.

Integrating autoencoders and Variational Autoencoders (VAEs) into
a fraud detection pipeline allows the MLP to benefit from the more dis-
criminative and compact representations learned by autoencoders. This
integration aims to improve the model’s ability to classify fraudulent trans-
actions, thereby enhancing overall fraud detection capabilities.

The effectiveness of the autoencoder models was assessed based on
metrics such as reconstruction error and loss function. Reconstruction error
quantifies the difference between the input data and the reconstructed
output from the autoencoder, with lower reconstruction errors indicating
better performance. The loss function used during training, such as mean
squared error (MSE), optimizes the model by minimizing the difference
between the predicted and actual values. For the Multilayer Perceptron
(MLP) classifier, performance was evaluated using precision, recall, F1

score, and the Area Under the Receiver Operating Characteristic Curve
(AUC score).
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6 results

This section aims to present and explain the results of experiments men-
tioned in Section 5.4.

6.1 Results of Experiment 1: Multilayer Perceptron (MLP)

The baseline performance of the Multilayer Perceptron (MLP) model was
evaluated using the resampled credit card transaction data, which was
balanced through the Borderline-SMOTE technique. The training and vali-
dation loss over epochs is depicted in Figure 10 in Appendix A. The training
process demonstrated a consistent decline with stabilization occurring after
a few epochs, indicating effective learning and generalization.

Table 4 presents a comparative analysis of the three models for fraud
detection. The MLP model demonstrated strong baseline performance,
achieving high precision, recall, and AUC-ROC score, indicating its abil-
ity to differentiate between fraudulent and legitimate transactions. The
results of this experiment align closely with existing literature on the
European Cardholders dataset, which employs an MLP classifier. These
high-performance metrics are consistent with the findings reported in
similar studies, underscoring the model’s efficacy in this domain (Misra
et al., 2020).

Table 4: Comparative Analysis of Three Models for Fraud Detection

Model Precision Recall F1-Score ROC AUC Score

MLP 0.77 0.82 0.79 0.980

Autoencoder + MLP 0.64 0.14 0.23 0.940

VAE + MLP 0.82 0.66 0.73 0.957

This experiment showed that the MLP model, when combined with
Borderline SMOTE for class balancing, is highly effective for credit card
fraud detection, achieving high precision and recall while maintaining
excellent overall accuracy. As shown in Figure 4, the confusion matrix
shows a low number of misclassifications, with only 24 false positives
and 18 false negatives. Considering the focus of this thesis on minimizing
false negatives (FN), MLP would be the preferred choice to improve fraud
detection performance and prevent financial losses.

The precision-recall curve further validates the model’s robustness,
showing high precision even as recall increases. The ROC curve illustrates
the true positive rate against the false positive rate for the MLP model,
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Figure 4: Confusion Matrix of the Best Performing Model

indicating excellent discriminative ability between fraudulent and non-
fraudulent transactions (Figures 11, 12 in Appendix A).

The subsequent section examines whether implementing autoencoders
enhances the classifier’s performance in this task.

6.2 Results of Experiment 2: Standard Autoencoder + Multilayer Perceptron
(MLP)

A standard autoencoder was integrated with the MLP classifier in the sec-
ond experiment. The performance of this integrated model was compared
against the baseline MLP model.

The autoencoder was trained on resampled data using Borderline-
SMOTE. The encoded features obtained from the autoencoder were then
used as training data for the MLP classifier. Table 4 demonstrates that the
integration of the Standard Autoencoder with MLP resulted in a decrease
in both recall and F1-score. This indicates that the latent representations
generated by the autoencoder did not significantly improve the perfor-
mance of MLP in this particular situation. The autoencoder integrated
model’s performance was inferior to the VAE integrated model and the
standalone MLP model.
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The confusion matrix of the model depicted in Figure 13, as presented
in Appendix A, reveals that the model struggles with identifying fraud-
ulent transactions, as indicated by the low recall and F1 score. Figure 14

illustrates the precision-recall curve, which offers further evidence of a sig-
nificant decline in precision as recall increases. The model initially exhibits
high precision; however, as the recall rate increases, the precision drops,
suggesting that it faces difficulties in accurately detecting all instances of
fraud.

Table 5: Performance Evaluation of Autoencoder Models Considering Temporal
Transaction Differences

Model Precision Recall F1-Score AUC ROC Score

Autoencoder + MLP
Short Time Difference 0.0203 0.8387 0.0396 0.9512

Long Time Difference 0.0327 0.8281 0.0629 0.9482

VAE + MLP
Short Time Difference 0.0266 0.8925 0.0517 0.9499

Long Time Difference 0.0643 0.9062 0.1201 0.9390

Table 6: Performance Assessment of Autoencoder Models in Relation to Transac-
tion Amounts

Model Precision Recall F1-Score AUC ROC Score

Autoencoder + MLP
Low Amount Transactions 0.0174 0.8852 0.0341 0.9525

High Amount Transactions 0.0412 0.9459 0.0790 0.9682

VAE + MLP
Low Amount Transactions 0.0270 0.9180 0.0524 0.9531

High Amount Transactions 0.0281 0.8378 0.0544 0.9271

Tables 5 and 6 display the experimental results for sub-questions using
the segmented test data. According to Table 5, the performances of the
two models varied based on temporal transaction differences. While the
precision of the long-time difference is slightly better compared to the short-
time difference, it still remains low. The high recall in both time differences
suggests that the model is effective at identifying fraudulent transactions
among the total fraudulent transactions. This situation demonstrates a
trade-off where recall was prioritized over precision.

The results of the MLP classifier with integrated autoencoder for various
transaction amounts are displayed in Table 6. The model achieved better
performance scores on the high amount transactions in terms of better
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recall and improved precision. In general, this model shows slightly better
AUC-ROC sores for high-amount transactions and short-time differences.

The findings from this experiment suggest that MLP combined with
autoencoder is effective in certain aspects; however, there is still room for
improvement in the detection of fraudulent transactions. The following
section investigates whether the MLP classifier could be enhanced by the
Variational Autoencoder (VAE).

6.3 Results of Experiment 3: Variational Autoencoder (VAE) + Multilayer
Perceptron (MLP)

The MLP classifier was integrated with a Variational Autoencoder (VAE)
in the third experiment. The performance metrics for the VAE + MLP
model, as illustrated in Table 4, indicate a significant improvement over
the standard autoencoder model and competitive performance compared
to the standalone MLP model.

The VAE was trained on resampled data using the Borderline-SMOTE
technique. The reconstruction error was utilized to detect anomalies,
specifically fraudulent transactions. The reconstruction error refers to
the difference between the original input and its reconstruction by the
autoencoder. Figures 5 and 6 illustrate the reconstruction error for normal
and fraudulent transactions using variational autoencoders. The histogram
displayed in Figure 5 indicates that the majority of normal transactions
have low reconstruction errors, which are primarily concentrated around
zero. The small number of transactions with higher reconstruction errors
are likely outliers, but they still fall within a low range. Figure 6 displays
that the reconstruction errors associated with fraudulent transactions are
noticeably higher and have a wider distribution. This indicates that the VAE
encounters difficulties in accurately reconstructing fraudulent transactions,
thus resulting in higher errors.

Figure 5: Reconstruction Error with-
out Fraud: Variational Autoencoder

Figure 6: Reconstruction Error with
Fraud: Variational Autoencoder
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Furthermore, the reconstruction error plot in Figure 7 provides insights
into the VAE’s ability to reconstruct normal and fraudulent transactions,
with a horizontal line indicating the threshold for anomaly detection. The
threshold was set at 2.9, as shown by the red horizontal line in the plot. This
threshold was chosen based on the distribution of reconstruction errors to
distinguish between legitimate and fraudulent transactions effectively. The
selected threshold approach was intended to represent the validity of the
VAE in identifying fraudulent activities.

Figure 7: Reconstruction Error with Threshold: Variational Autoencoder

According to Table 4, the standalone MLP model exhibits a higher
recall and slightly better F1-score and ROC-AUC score. Nevertheless, the
VAE-integrated MLP model demonstrated higher precision. These findings
suggest that while the MLP model had a higher overall success rate in
identifying fraudulent transactions, the VAE integrated model had a higher
level of precision in its fraud predictions, which is crucial for reducing the
number of false positives.

Tables 5 and 6 reveal that both the amount of transactions and temporal
differences have an impact on the performance of the model. Table 5

shows that the MLP combined with the VAE generally outperforms the
model with the standard autoencoder across all metrics, especially for
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long-time differences, where it achieves the highest precision, recall, and
F1 score. Table 6 illustrates that the VAE + MLP model consistently
shows better recall and F1-Score for low-amount transactions, whereas
the Autoencoder + MLP model demonstrates better performance for high-
amount transactions in terms of AUC ROC Score.

The ROC curves for different amounts and time segments are shown
in Figures 8 and 9. The model’s consistent ability to maintain high AUC
values across various segments demonstrates its reliability in practical
fraud detection scenarios.

Figure 8: ROC Curve for Different Amount Segments
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Figure 9: ROC Curve for Different Time Segments

The findings from Experiment 3 highlight the effectiveness of using a
VAE over a standard autoencoder for preparing data for the MLP classifier
in the domain of credit card fraud detection. According to Table 4, the
enhanced precision of the model contributes to reducing false positives,
thereby making VAE a valuable tool for minimizing financial losses due to
fraud.
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7 discussion

The primary goal of this thesis was to evaluate the effectiveness of different
types of autoencoders in accurately identifying fraudulent transactions
within the European Cardholders dataset. This research undertakes a
comparative analysis of three models for credit card fraud detection: a
standalone Multilayer Perceptron (MLP), an MLP combined with a stan-
dard autoencoder, and an MLP integrated with Variational Autoencoder
(VAE).

Several challenges were encountered in this study, including the sig-
nificant class imbalance between fraudulent and legitimate transactions.
Additionally, the limited availability of diverse datasets for training and
testing further constrained the generalizability of findings. Despite these
challenges, the study provides valuable insights into the capabilities and
limitations of using autoencoders for credit card fraud detection.

7.1 Key Findings

The results of this study indicated that the standalone MLP achieved high-
performance metrics compared to the models using the autoencoders. The
first experiment demonstrated that the MLP is highly effective in distin-
guishing between fraudulent and legitimate transactions. These results
align closely with existing literature and they highlight the MLP’s ability to
identify fraudulent transactions while minimizing the false negative rates.

The training dataset exhibited an extreme class imbalance between
fraudulent and non-fraudulent transactions. To tackle this issue, Borderline-
SMOTE was employed to increase the number of fraudulent transactions
in the training dataset. The use of the Borderline-SMOTE technique sig-
nificantly contributed to enhancing the model’s sensitivity to minority
class. However, this technique could potentially affect the performance
of the model due to certain drawbacks. Generating synthetic examples
can occasionally undermine the quality of data and potentially lead to the
introduction of noise or duplicates. Therefore, the class imbalance may still
persist to some extent. This can have an impact on the precision and recall
measures, causing them to be lower compared to the AUC-ROC score and
accuracy.

Moreover, these results were significantly influenced by hyperparameter
tuning and the complexity of the model. Although the current architecture
demonstrated impressive performance, exploring more complex architec-
tures could potentially achieve even better scores.

The second experiment aimed to determine if training the MLP classifier
on encoded features, which are compressed representations of the training
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data, could effectively capture the most informative parts required for this
classification task. The objective was to assess whether using the encoded
output from a standard autoencoder for classification could potentially
increase model performance by reducing dimensionality. Additionally, this
reduction was also intended to help minimize noise from the Borderline-
SMOTE technique and improve model performance in fraud detection.

Unfortunately, the integration of a standard autoencoder with the MLP
classifier did not significantly enhance performance during the second
experiment. The recall and F1 score exhibited a decrease when compared
to the baseline model in the first experiment. This suggests that latent
representations of the autoencoder were not particularly beneficial in this
specific context. Indeed, the integration resulted in a decrease in the
model’s ability to accurately detect fraudulent transactions. Consequently,
the features learned by the standard autoencoder were not sufficiently
distinctive to enhance the detection capabilities of the MLP. The utilization
of the same MLP model architecture might not have resulted in optimal
integration with the standard autoencoder. Thus, it may be necessary to
adjust the architecture of MLP in order to leverage the encoded features
better.

This study proceeded under the assumption that both fraudulent and
non-fraudulent transactions possess certain shared characteristics within
themselves. As a result, the autoencoder was trained on both fraudulent
and non-fraudulent transactions rather than exclusively on normal trans-
actions. This approach may have confused the algorithm in its ability to
recognize the distinctions between transactions, resulting in a decline in
performance.

In addition, the Borderline-SMOTE may also introduce bias to the
performance of the autoencoder. The generated synthetic examples may
not accurately reflect the actual fraudulent transactions, which can affect
the autoencoder’s ability to learn meaningful features. The variables in
this study were not analyzed based on their significance in this dataset;
hence, utilizing an autoencoder to reconstruct the data did not provide a
significant benefit.

In the third experiment, the VAE-integrated MLP model exhibited a
notable improvement over the standard autoencoder model due to the
VAE’s probabilistic approach. As a result, the MLP was trained on more
complex patterns in the data, leading to more accurate identification of
fraudulent transactions. Consequently, it achieved better precision and
recall and showed a competitive performance compared to the standalone
MLP.

Compared to the second experiment, the incorporation of VAE reduced
false negatives, which is crucial for preventing financial losses in fraud
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detection systems. However, the model’s performance in predicting non-
fraudulent transactions slightly decreased (Figures 13, 15, Appendix A).

The findings from the third experiment prove that the enhanced feature
extraction capabilities of VAEs likely contributed to better discrimination
between fraudulent and non-fraudulent transactions. Several reasons
could be behind this improvement, such as better integration with MLP,
improved feature extraction, and effective dimensionality reduction. The
collaboration between VAE and MLP could have strengthened the learning
process and improved classification performance.

Additionally, it is important to consider the potential impact of Borderline-
SMOTE on the VAE. Poor data quality or duplicate synthetic samples can
lead to improper learning and performance. Nevertheless, the VAE’s
probabilistic framework likely mitigated these problems more effectively
than standard autoencoders by modeling accurately the underlying data
distribution.

7.2 Limitations

This thesis had several limitations that should be acknowledged. Firstly, the
substantial class imbalance between fraudulent and legitimate transactions
presented a major challenge. Despite the utilization of the Borderline-
SMOTE technique, creating synthetic instances close to the borderline of
the classes can potentially introduce noise or repetitions, which could
undermine the data quality and lead to low model performance.

Secondly, the absence of varied datasets for both training and testing
further restricted the applicability of the results. The reliance on the
European Cardholders dataset may limit the relevance of the findings to
other datasets with different distributions and fraud patterns. Additional
datasets with diverse attributes could offer more comprehensive insights
into the model’s effectiveness in different scenarios.

Thirdly, the study did not conduct a thorough analysis of the impor-
tance of individual features due to the nature of the dataset. The dataset
used in this study included numerical input attributes transformed by Prin-
cipal Component Analysis (PCA). While anonymization protected sensitive
user data, contextual details were lost. Therefore, the inability to analyze
features based on their importance may have impacted the effectiveness
of autoencoders in learning meaningful representations from the most
discriminative characteristics for fraud detection. Implementing feature
importance analysis could enhance the understanding of which features
are most indicative of fraudulent activity, thereby potentially improving
the autoencoders’ performance.
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Lastly, the hyperparameter tuning and complexity of the models were
influenced by the time constraints and computational resources. By explor-
ing more complex architectures and advanced optimization techniques, it
is possible to achieve better results.

By acknowledging these limitations, future studies can focus on ad-
dressing these difficulties to further improve the effectiveness of credit card
fraud detection systems using autoencoders.

7.3 Relevance

As highlighted in this thesis, limited studies have focused on the appli-
cation of autoencoders for credit card fraud detection. By comparing
different autoencoders integrated with MLP models, the research demon-
strates the potential of VAE-integrated models to capture meaningful data
representations, which can improve the accuracy of fraud detection.

The growing need for effective fraud detection systems in the financial
sector emphasizes the significance of this study. Efficient fraud detec-
tion not only reduces financial losses but also promotes trust in financial
institutions and credit card usage. Additionally, the ability to train mod-
els effectively while ensuring data privacy and security is crucial in this
field. These findings are consistent with prior research that highlights the
challenges and benefits of using anonymized data for machine learning
applications.

Furthermore, this study explores advanced deep learning techniques
and their integration, providing valuable insights into model selection and
optimization. By highlighting the benefits and limitations of these ap-
proaches, this study offers a crucial resource for developing more effective
fraud detection systems.

7.4 Future Work

There are multiple options for conducting further research. Firstly, it
would be advantageous to investigate the incorporation of additional deep
learning architectures with autoencoders, such as Convolutional Neural
Networks (CNNs) or Recurrent Neural Networks (RNNs), to capture
deeper patterns in the data. These models have the potential to improve
the robustness of fraud detection systems.

Furthermore, it is possible to identify the most significant features by
incorporating methods such as SHAP (SHapley Additive exPlanations) or
LIME (Local Interpretable Model-Agnostic Explanations). These techniques
can enhance the model performance by highlighting which features are
most influential in detecting fraud.
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Additionally, It is essential to validate the generalizability of the mod-
els by testing them on diverse, real-world datasets from various financial
institutions. Collaborations with industry partners to access such data
could offer valuable insights into the practical feasibility of the models.
Introducing more features, such as geolocation data, device information,
and user behavior patterns, could improve the learning process of the mod-
els. Geolocation data can highlight unusual transaction locations, device
information can detect unfamiliar devices, and user behavior patterns can
identify anomalies in spending habits.

Finally, it is crucial to consider the quality of synthetic data generated
by Borderline-SMOTE. One possible option to improve model performance
is to investigate the use of advanced techniques, such as Generative Ad-
versarial Networks (GANs), to create more realistic synthetic examples.
This could improve the training process and performance of the models by
ensuring higher-quality synthetic samples.
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8 conclusion

This section concludes with the answers to the research questions presented
in the thesis.

RQ: "To what extent can different types of autoencoders effectively distinguish
fraudulent credit card transactions from legitimate ones?"

To answer this primary research question, this thesis investigated the
comparative performances of a simple Multilayer Perceptron (MLP), an
MLP combined with a standard autoencoder, and an MLP integrated with
a Variational Autoencoder (VAE) for credit card fraud detection.

The standalone MLP model outperformed the other models by achiev-
ing high precision, recall, and AUC-ROC scores. The Borderline-SMOTE
technique was essential in handling the class imbalance and improving
the model sensitivity to the minority class. This suggests that training the
MLP with balanced features enables it to retain all relevant information
for classification. In contrast, the standard autoencoder faced difficulties in
preserving critical features for effective fraud detection. This could be at-
tributed to the autoencoder’s latent representation not accurately reflecting
the original data. However, the VAE-integrated MLP model showed signifi-
cant improvement over the standard autoencoder by capturing complex
data patterns effectively due to its probabilistic approach.

In conclusion, while standard autoencoders are less effective for fraud
detection, VAEs offer a better approach by enhancing data representation,
especially when combined with Borderline-SMOTE. Nonetheless, a well-
tuned MLP trained with data balanced by Borderline SMOTE remains
highly effective for this task. Future work could investigate the potential
of hybrid models that leverage the strengths of both VAEs and MLPs, as
well as advanced balancing techniques to further improve fraud detection
performance.

Sub-RQ1: "How does the transaction amount influence the autoencoders’ ability to
detect fraudulent transactions?"

To comprehensively examine the influence of transaction amounts on
the performance of autoencoders, the test data was segmented into low
and high transaction amounts. After training the autoencoders and the
MLP classifier on the entire training dataset, the MLP was evaluated on
each segment. These steps were undertaken to identify any correlations
between transaction amounts and model performance.

Both models exhibited high recall and AUC-ROC scores for both low
and high-amount transactions. The VAE combined with the MLP model
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demonstrated slightly better precision for low transactions while main-
taining comparable recall and AUC ROC scores. Conversely, the standard
autoencoder integrated model performed better in high-amount transac-
tions in terms of AUC ROC, although its precision remained low. This
variation implies that different types of autoencoders may be more suitable
for varying transaction amounts.

However, transaction amount alone does not provide a sufficient basis
for distinguishing between fraudulent and non-fraudulent transactions.
Although the models demonstrated high recall, they suffered from low pre-
cision, indicating that many non-fraudulent transactions are misclassified
as fraudulent. This underscores the necessity for incorporating additional
features to improve the overall performance of fraud detection models.

Sub-RQ2: "How does the time difference between transactions affect the performance
of autoencoders in detecting fraud?"

To investigate this question, the test data was divided into short and long in-
tervals based on the time differences between consecutive transactions. The
models were evaluated on these segments to determine any correlations
between transaction timing and model performance.

The analysis showed that both models achieved high recall across
short and long intervals, so they can effectively detect most fraudulent
activities regardless of the time difference. The implementation of the
Borderline-SMOTE technique played a crucial role in achieving high recall
rates. However, both models suffered from low precision, implying a high
rate of false positives where many legitimate transactions were incorrectly
classified as fraudulent (Figures 16, 17, 18, 19 Appendix A). The VAE
integrated model exhibited slightly better precision in long-time differences
compared to the standard autoencoder model. As a result, VAE may be
more effective in capturing patterns in transactions that occur over longer
periods.

To conclude, while the VAE-integrated MLP model generally outper-
formed the standard autoencoder in terms of overall metrics, temporal
differences alone are insufficient for accurately distinguishing between
fraudulent and non-fraudulent transactions. The findings underscore the
necessity of incorporating additional features for effective fraud detection
systems.
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appendix a

Figure 10: Model Loss: Multilayer Perceptron (MLP) with Borderline SMOTE

Figure 11: ROC Curve: Multilayer Perceptron (MLP) with Borderline SMOTE
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Figure 12: Precision-Recall Curve: Multilayer Perceptron (MLP) with Borderline
SMOTE

Figure 13: Confusion Matrix of Multilayer Perceptron with Integrated Autoencoder
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Figure 14: Precision-Recall Curve: Multilayer Perceptron (MLP) with Integrated
Autoencoder

Figure 15: Confusion Matrix of Multilayer Perceptron with Integrated VAE
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Figure 16: Confusion Matrix of MLP with Autoencoder on Short Time Difference
Transactions

Figure 17: Confusion Matrix of MLP with Autoencoder on Long Time Difference
Transactions
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Figure 18: Confusion Matrix of MLP with VAE on Short Time Difference Transac-
tions

Figure 19: Confusion Matrix of MLP with VAE on Long Time Difference Transac-
tions
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appendix b

Figure 20: Distribution of Transaction Time

Figure 21: Distribution of Transaction Amounts
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Figure 22: Amount per transactions by class

Figure 23: Transaction time versus amount by class
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Figure 24: Data visualization with TSNE

Figure 25: Data visualization with PCA

Figure 26: Data visualization with TSVD

Figure 27: Correlation Matrix
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appendix c

Table 7: Software used

Package Version Reference

ChatGPT 3.5.0 OpenAI (2024)
Grammarly April 2024 Grammarly (2024)
Google Colab April 2024 Google Colaboratory (2024)
Python 3.12.2 Python
Jupyter 7.1.2 (Kluyver et al., 2016)
Pandas 2.2.1 Pandas
NumPy 1.26.4 (Harris et al., 2020)
Matplotlip 3.8.4 Matplotlib
Tensorflow 2.16.1 Tensorflow
Seaborn 0.13.2 (Waskom, 2021)
Scikit-learn 1.4.1 (Pedregosa et al., 2011)
Imbalanced-learn 0.12.2 (Lemaître et al., 2017)
Keras 2.10.0 (Chollet et al., 2015)
Pip 24.0.0 Pip

https://chat.openai.com/
https://app.grammarly.com/
https://colab.research.google.com/?utm_source=scs-index
https://www.python.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://www.tensorflow.org/
https://pypi.org/project/pip/
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