
M A C H I N E L E A R N I N G A N D D E E P
L E A R N I N G F O R E T H E R E U M

F R AU D D E T E C T I O N

A C O M PA R AT I V E A N A LY S I S O F L G B M A N D M L P

X I A O H U I G A O

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university

student number

2110073

committee

dr. Boris Čule
Julija Vaitonytė

location

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

date

June 24th, 2024

word count

8,571

acknowledgments

contents

1 Data Source, Ethics, Code, and Technology statement 1

2 Introduction 2

2.1 Problem Statement 2

2.2 Societal and Scientific Relevance 3

2.3 Research Strategies 4

2.4 Main Findings 5

3 Related Work 6

3.1 Area of Research 6

3.2 Past Work on Ethereum Fraud Detection 7

3.2.1 Using Machine Learning Models 7

3.2.2 Using Deep Learning Models 8

3.3 Research Gap 9

3.4 Motivation and Contributions 9

4 Methodology and Evaluation 10

4.1 Summarized Workflow 10

4.2 Dataset Description 12

4.3 Exploratory Data Analysis 12

4.4 Data Cleaning and Preprocessing 17

4.4.1 Data cleaning: Removing Duplicates 17

4.4.2 Data cleaning: Deleting Features with Zero-variance 17

4.4.3 Data cleaning: Imputation of Missing Data 17

4.4.4 Data cleaning: Clipping Outliers 17

4.4.5 Data Preprocessing 18

Highly-correlated Features 18

Categorical Features 18

Data Splitting . 19

Scaling . 19

4.5 Algorithms 19

4.6 Experimental Setup 22

4.6.1 Comparing Sampling Techniques (RQ1) 23

Non-sampling . 23

SMOTE . 23

ADASYN . 23

Undersampling . 23

4.6.2 Model Comparison (RQ2) 24

4.6.3 Calculating Training Time and Reference Speed (RQ3) 25

4.7 Evaluation Methods 25

5 Results 26

5.1 Results Experiment: Sampling Techniques 26

5.1.1 Sampling Techniques for LGBM 26

CONTENTS 2

Performance Comparison 26

Confusion Matrices . 27

5.1.2 Sampling Technique for MLP 28

Performance Comparison 28

Confusion Matrices . 29

Loss and Accuracy Curves 29

5.1.3 Conclusion for Sampling Techniques 32

5.2 Results Experiment: Model Comparison 32

5.2.1 Optimization of the Models 32

Hyperparameter Values 32

Error Analysis and Training/Test Comparison 32

5.2.2 Final Model Comparison 34

5.3 Results Experiment: Training Time and Inference Speed
34

6 Discussion 35

6.1 Results Discussion and Comparison with Prior Work 35

6.1.1 What techniques are most effective for each model in
handling class imbalance? 35

6.1.2 Which model demonstrates better performance? 35

6.1.3 How do training time and inference speed compare
between MLP and LGBM? 36

6.2 Broader Societal Relevance 37

6.3 Limitations 38

6.4 Future Work 38

7 Conclusion 39

a Appendix 44

b Appendix 44

c Appendix 45

d Appendix 48

e Appendix 49

f Appendix 49

g Appendix 49

M A C H I N E L E A R N I N G A N D D E E P
L E A R N I N G F O R E T H E R E U M

F R AU D D E T E C T I O N
A C O M PA R AT I V E A N A LY S I S O F L G B M A N D M L P

xiaohui gao

Abstract

The increasing adoption of blockchain technology, while revolu-
tionary, has also facilitated fraudulent activities due to anonymity,
resulting in significant financial losses and heightened threats to the
security of the Ethereum network. This study proposes a comparative
analysis of Light Gradient Boosting Machine (LGBM) and Multi-
Layer Perceptron (MLP) models to identify the optimal approach
for addressing this issue. The initial experiment, aimed at tackling
data imbalance, reveals that non-sampled data yields superior perfor-
mance by maintaining neutrality and leveraging the models’ inherent
capabilities. Subsequent model optimization further highlights the
LGBM model’s superiority, boasting higher performance metrics: F1-
score (0.969), accuracy (0.986), AUC-ROC score (0.9987), and precision
(0.994). Moreover, LGBM demonstrates superior computational effi-
ciency, with a training time of 0.6662 seconds and an inference time of
0.0142 seconds, positioning LGBM as a more robust and efficient solu-
tion, particularly in real-time scenarios requiring rapid and accurate
predictions. Future research should explore novel data preprocessing
techniques and incorporate diverse datasets to further enhance its
effectiveness and applicability.

1 data source , ethics , code , and technology statement

The data was obtained from Vagif Aliyev via Kaggle, 2021. This research
did not involve collecting data from human participants or animals, the
original generator of the data used in this thesis retains the ownership
during and after the completion of this study. All figures and tables in
this thesis were created by the author. Figures 1, 8 and 31, however, are
respectively sourced from SlowMist, Dinesh Sivakumar and Aziz et al., we
acknowledge the original version of these visualizations and have provided
proper citation. Additionally, ChatGPT-4 was employed to assist with

1

2 introduction 2

debugging. We also utilized a thesaurus and incorporated paraphrasing
suggestions from ChatGPT-4 to improve clarity and flow. A list of used
Python libraries including version numbers can be found in Appendix A

2 introduction

2.1 Problem Statement

Ethereum, the second most popular blockchain after Bitcoin, distinguishes
itself through its unique functionalities. While Bitcoin has evolved pri-
marily into a digital asset for long-term investment, Ethereum operates
as a decentralized platform facilitating the execution and verification of
smart contracts, enabling a diverse array of applications beyond financial
transactions (Oliva et al. (2020); Aswin and Kuriakose (2020)). The exten-
sive adoption of Ethereum, evidenced by its total market capitalization
of $418,424,313,496 as reported by CoinGecko, and the proliferation of
applications in various sectors such as Decentralized Finance (DeFi), Game
Finance (GameFi), and Non-Fungible Tokens (NFTs), underline its signifi-
cance. However, this exponential growth has been accompanied by a surge
in fraudulent activities including money laundering, phishing scams, hack-
ing, and other illicit practices (Johnson, 2020), posing significant challenges
to the security and integrity of the Ethereum network.

SlowMist – the crypto security and audit company has released a
report in terms of Blockchain Security and Anti-Money Laundering as
Figure 1 suggested. The report has revealed that there were 280 DeFi secu-
rity incidents, representing 60.77% of the total incidents. These incidents
resulted in losses totaling $773 million. This marks a significant improve-
ment compared to 2022, which saw 183 incidents with losses amounting
to approximately $2.075 billion, reflecting a 62.73% reduction in losses
year-over-year.

Ethereum experienced the largest losses on record, totaling $487 million,
making it the top-ranked entity in terms of losses. More information about
other blockchains was detailed in Appendix B

2 introduction 3

Figure 1: Distribution and losses on different blockchains from SlowMist (2024)

This issue, primarily concerning security within the DeFi space, is a
subset of the broader challenge posed across the whole Ethereum network.
The potential for diverse forms of illicit behavior requires a comprehensive
analysis to develop effective solutions. While researchers like Farrugia
et al. (2020) have explored fundamental machine learning models such
as Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN),
and Decision Trees to enhance performance, Aziz et al. (2022) identified
the LGBM as the optimal model in this context. Concurrently, studies
like Chen et al. (2020) have investigated deep-learning neural networks, to
address the same challenge. This divergence in methodological approaches
highlights the need for further research to identify the most effective model
for the Ethereum ecosystem.

This thesis conducted a comparative analysis of two models, the ma-
chine learning-based LGBM and the deep learning-based MLP, to ascertain
their respective effectiveness in the binary classification task of fraud detec-
tion within the blockchain and crypto domain. The models were trained
and evaluated independently to approximate the best-performing one.

2.2 Societal and Scientific Relevance

While previous work has predominantly focused on either machine learn-
ing or deep learning models for fraud detection, this thesis aims to bridge
the gap by conducting a comparative analysis between the LGBM, identi-
fied as the optimal machine learning model by Aziz et al. (2022), and the

2 introduction 4

MLP, a well-established deep learning architecture for classification tasks.
This novel approach seeks to illuminate the relative strengths and weak-
nesses of these two distinct models in the specific context of blockchain
fraud detection.

From a societal perspective, the implications of this research are pro-
found. As blockchain technology continues to gain widespread adoption
across various industries, ensuring the security and integrity of blockchain
transactions becomes increasingly vital. According to ychart, the cumu-
lative unique addresses on the Ethereum blockchain have reached 271.73

million, reflecting a 16.34% increase from the previous year. This rapid
growth implies the urgent need for effective fraud detection mechanisms
that can help mitigate malign actions, prevent substantial financial losses,
protect user assets, and maintain trust in decentralized systems. By enhanc-
ing the security of Ethereum and other blockchain platforms, this project
supports the broader societal goal of fostering secure, transparent, and
reliable digital ecosystems (Jin & Xiao, 2022), which are essential for the
continued growth and adoption of blockchain technology in areas such as
finance, supply chain management, and beyond.

2.3 Research Strategies

Previous research has been compartmentalized, focusing primarily on
either machine learning domain (Ibrahim et al. (2021); Aziz et al. (2022);
Farrugia et al. (2020)) or deep learning space (Chen et al. (2020); Hu
et al. (2021)), often extolling the virtues of their respective approaches.
Since Aziz et al. (2022) highlighted the exceptional performance of LGBM
in Ethereum fraud detection and MLPs have gained a well-established
reputation for handling classification tasks, addressing the divergence in
previous research prompts a central question for this thesis:

RQ How does MLP compare to LGBM in detecting fraud on Ethereum?

To address this question, the following three sub-questions were for-
mulated:

Given the prevalence of SMOTE (Aziz et al., 2022) and undersampling
(Bartoletti et al., 2018) in prior research, without a thorough evaluation
of their impact and the absence of sampling in other studies (Pham and
Lee (2016); Monamo et al. (2016)), the following question is of particular
interest:

SQ1 What approaches, including non-sampling and sampling methods, are most
effective for each model in handling class imbalance?

2 introduction 5

After determining the best sampling method, this study leverages the
previously employed LGBM (Aziz et al., 2022) and MLP as baseline
models for optimization, the fine-tuned LGBM and MLP models are
then compared against their respective baselines to assess the effect
of optimization on model performance, eventually leading to the
sub-question:

SQ2 Which model demonstrates better performance?

Finally, considering the importance of computational efficiency in
practical applications, as stressed by Ibrahim et al. (2021) in their time
comparison, another sub-question is posed:

SQ3 How do training time and inference speed compare between MLP and
LGBM?

2.4 Main Findings

The LGBM model demonstrated superior performance compared to the
MLP model, accomplishing higher F1-score (0.969 versus 0.935), accuracy
(0.986 versus 0.972), AUC-ROC score (0.9987 versus 0.9880), and precision
(0.994 versus 0.944), indicating greater robustness in identifying frauds.
Both models performed optimally on non-sampled data, suggesting the
synthetic sampling techniques did not offer any additional advantage.

Additionally, the LGBM model demonstrated significantly faster train-
ing (0.6662s versus 34.32s) and inference (0.0142s versus 34.32s) times
compared to the MLP model, proving its computational advantages for
real-time fraud detection applications.

3 related work 6

3 related work

The ever-present threat of fraud permeates the dominant Bitcoin network
and the broader crypto and blockchain landscape. This section delved into
existing research on fraud detection within this domain, focusing naturally
on Bitcoin due to its market position. However, our attention shifted to
a more specific exploration of research on Ethereum fraud detection. By
identifying current gaps and outlining our motivations, we aim to make
contributions and bolster Ethereum’s ability to defend against fraudulent
activities.

3.1 Area of Research

Crypto and blockchain fraud posed a persistent threat, prompting re-
searchers to continually innovate anomaly detection methods, particularly
for the dominant player, Bitcoin. Prior research by Pham and Lee (2016) ex-
plored unsupervised learning techniques (k-means, Mahalanobis distance,
Unsupervised SVM) on user and transaction graphs within the Bitcoin
network. Their dataset, limited to a 100,000 subset due to computational
constraints, contained over 6 million users, and 37 million transactions
with detailed 30 identified thieves. Interestingly, both Unsupervised SVM
and Mahalanobis distance methods identified similar suspicious users, suc-
cessfully detecting 2 thefts and 1 loss case. Sharing the same unmodified
dataset, Monamo et al. (2016) investigated trimmed k-means clustering in
comparison to standard k-means, which struggles with outliers. Trimmed
k-means offered improved performance by identifying 5 out of the 30

known fraudulent users, demonstrating an improvement over the previous
approach. Another study (Bartoletti et al., 2018) examined data mining
methods (RIPPER, Bayes Net, Random Forest) to detect Ponzi schemes in
Bitcoin transactions. They created a dataset with two categories: Ponzi
schemes (P) and regular transactions (nP), reflecting real-world imbalance
(32 Ponzi versus 6400 non-Ponzi). Classifiers initially struggled due to the
imbalance. Techniques like undersampling helped but increased false pos-
itives. Cost-sensitive learning, which prioritizes catching Ponzi schemes,
yielded the best results with Random Forest. Overall, Random Forest
with cost-sensitive learning showed promise for effectively detecting Ponzi
schemes in Bitcoin transactions.

3 related work 7

3.2 Past Work on Ethereum Fraud Detection

3.2.1 Using Machine Learning Models

At the same time, various studies pioneered the use of advanced models
and feature engineering for Ethereum fraud detection. Farrugia et al. (2020)
utilized an XGBoost model with hyperparameter tuning via 10-fold cross-
validation on a dataset sourced from the Ethereum Scam Database and a
local Geth client connected to the Ethereum network to distinguish scam
and abnormal accounts. This methodology achieved an average accuracy
score of 0.963 (± 0.006) and an AUC score of 0.994 (± 0.0007).

A further interesting finding is examined by Ibrahim et al. (2021), which
utilized a correlation coefficient to select 6 features and investigated the
Decision Tree, Random Forest, and K Nearest Neighbors (KNN). Notably,
each algorithm demonstrated a significant time reduction in processing:
the Decision Tree exhibited a decrease from 0.24s to 0.05s, the Random
Forest from 4.85s to 0.62s, and the KNN from 0.01s to 0s accompanied
by better performance with the F-measure increasing from 0.974 to 0.976,
particularly for the Random Forest algorithm.

Similarly, Aziz et al. (2022) compared the capacity of multiple models
for Ethereum fraud detection such as Adaptive Boosting (ADABOOST),
Support Vector Classifier (SVC), Extreme Gradient Boosting (XGBOOST),
KNN, LGBM, MLPClassifier, Random Forest, Logistic Regression. The
dataset used in their study consisted of 9,841 rows and 17 columns, derived
from the Classic (2024) blockchain and subjected to sampling using the
SMOTE. They analyzed the corresponding scores of each approach as
Figure 2 explained. LGBM achieved the highest accuracy on both the
training set and the test set described in Figure 2, scoring at 0.9865 and
0.986, respectively. Further optimization pushed the LGBM test accuracy
to 0.9903. However, the inability to replicate the results due to undisclosed
hyperparameter values limited the usefulness of the findings from them.
It’s important to note that the MLP Classifier employed by Aziz et al.
(2022) was a pre-defined model from the scikit-learn (Pedregosa et al.,
2007) library, evaluated without hyperparameter tuning. This approach
limited the model’s reproducibility and adaptability. In contrast, we built
an MLP neural network with three hidden layers using the Keras (Chollet
et al., 2015) library, allowing us greater flexibility and optimization through
a rigorous hyperparameter tuning process.

3 related work 8

Figure 2: Model results from Aziz et al. (2022)

3.2.2 Using Deep Learning Models

Furthermore, additional research has applied deep learning models to
detect fraud. Chen et al. (2020) proposed a solution to distinguish phishing
accounts on the Ethereum using Graph Convolutional Networks (GCN)
and autoencoders. Their dataset crawled from Ethereum, included trans-
action information with nearly 3 million nodes and over 1,000 labeled
phishing nodes. They compared three feature engineering approaches:
raw features, graph embeddings (DeepWalk/Node2Vec/LINE), and a
GCN-based model. Evaluated on datasets of varying sizes (30,000, 40,000,
and 50,000 nodes) and metrics (AUC, Recall, Precision), the GCN model
consistently outperformed the others, as shown in Table 1.

Table 1: GCN Performance

MODEL AUC Recall Precision F1
Graph size=30,000

GCN 0.5725 0.1453 0.7294 0.2357

Graph size=40,000
GCN 0.5725 0.1453 0.6648 0.2289

Graph size=50,000
GCN 0.5866 0.1735 0.6278 0.2636

Hu et al. (2021) categorized over 10,000 Ethereum smart contracts, iden-
tifying four distinct behavior patterns through manual analysis which laid
the groundwork for developing 14 features that could serve to differentiate
between contract types. Leveraging these features, they employed a Long

3 related work 9

Short-Term Memory (LSTM) network for the classification, achieving good
results across key metrics such as precision, recall, and the F1 score which
respectively are 0.88, 0.7, 0.77.

3.3 Research Gap

A critical review of discussed existing research revealed three key shortcom-
ings. First, there hasn’t been any significant work dedicated to conducting
a comparative analysis between machine learning and deep learning mod-
els, impeding our ability to pinpoint the optimal methodologies for this
task. Second, the selection of sampling techniques was often subjective
and inconsistent across studies without distinguishing their impact. Some
studies, like those by Aziz et al. (2022) and Bartoletti et al. (2018), em-
ployed SMOTE and undersampling, while others neglected them entirely.
Finally, model efficiency, measured by training time and computational
cost, was largely overlooked. Ibrahim et al. (2021) were the only ones to
mention training time, highlighting the need for a more comprehensive
evaluation of model efficiency, especially for real-world deployment with
large datasets.

3.4 Motivation and Contributions

Prior literature suggested LGBM achieved the highest accuracy (0.9903)
among machine learning models (Aziz et al., 2022) , while LSTM, repre-
senting a deep learning approach, achieved superior precision (0.88), recall
(0.70), and F1-score (0.77) (Hu et al., 2021). Our work aims to bridge this
gap by providing a detailed analysis of how models from two different
paradigms handle the evolving complexities of Ethereum fraud patterns.

Motivated by the lack of consensus on optimal sampling techniques
in prior research, this study aims to thoroughly evaluate a broader range
of methods, including SMOTE, ADASYN, undersampling, and a non-
sampled baseline. This evaluation is particularly pertinent for scenarios
with potentially mild class imbalance, as it seeks to discern whether com-
plex sampling techniques offer significant advantages in such cases. By
investigating these factors, we aim to provide valuable insights into appro-
priate sampling methodologies for future research, ultimately paving the
way for more robust and efficient models to protect the Ethereum network.

Building upon the work of Ibrahim et al. (2021), who observed sub-
stantial reductions in training time, particularly for KNN (reported as very
close to zero), we delved deeper into model efficiency by analyzing training
time and inference speed. This in-depth analysis provides valuable insights
into the computational resources required by the models. While training

4 methodology and evaluation 10

time reflects the learning phase, prediction time highlights the efficiency
of making real-time predictions on new data. Both factors are crucial for
real-world deployment regarding fraud detection on Ethereum.

4 methodology and evaluation

4.1 Summarized Workflow

Figures 3 and 4 detailed the research methodology and modeling pipeline.
The process included EDA, data cleaning and preprocessing, and data
splitting. Best sampling techniques were selected using the validation
set. Hyperparameter tuning was performed on the combined training
and validation sets with 5-fold cross-validation. The final tuned-model
comparison was explored on the test set, with training time and inference
speed measured and averaged over iterations.

4 methodology and evaluation 11

Figure 3: Sampling techniques comparison and final model comparison

4 methodology and evaluation 12

Figure 4: Training time and inference speed

4.2 Dataset Description

The dataset utilized in this thesis consists of transaction records from
the Ethereum blockchain, comprising 9,841 entries and 50 features. It
covers various transaction attributes detailed in Appendix C, including
time dynamics, value transfers, and contract interactions, all of which
are potential indicators of fraudulent activity. The data was collected by
Vagif Aliyev through the Etherscan API, EtherscamDB API, and is publicly
accessible on Kaggle.

Each data entry represents a unique Ethereum address and is charac-
terized by a set of features that capture various aspects of its transactional
behavior. These features are predominantly numerical with three textual
attributes.

4.3 Exploratory Data Analysis

This section was performed to investigate the dataset in detail.

Upon loading the data from a CSV file into a DataFrame, we identified
non-unique indices, suggesting potential duplicate entries. Further investi-
gation revealed entries with identical features. The number of duplicates
ranged from one to three occurrences per entry. As noted by Nauman
and Herschel (2022) and Dozmorov et al. (2015), duplicates can introduce
noise and negatively impact model performance. Therefore, addressing
these duplicates is crucial for data cleaning, which will be covered in the
following subsection.

4 methodology and evaluation 13

Figure 5: Missing values

Figure 5 presents a heatmap visualizing missing data across all features
in the dataset. Each row represents an individual Ethereum account. No-
tably, a significant portion of observations have missing values, particularly
in features following "Total ERC 20 tnxs." This suggests a potential pattern
of missing data in these features. Additionally, the "ERC20 most sent token
type" column exhibits a particularly high prevalence of missing values.

Appendix D details missing data proportions per feature. Features like
"Total ERC20 transactions" and "FLAG" exhibit no missing values, while
"ERC20 most sent token type" has the highest percentage(27.4%). Oth-
ers show varying degrees, with many around 8.4%, suggesting potential
data recording or retrieval inconsistencies. Extensive missing data can re-
duce the effective sample size, weakening statistical power and potentially
leading to unreliable conclusions (Little & Rubin, 2019). Additionally, it
may introduce bias and skew results, particularly if missingness is corre-
lated with other variables (Xiong & Pelger, 2023). Therefore, a suitable
imputation method is essential and will be discussed later.

4 methodology and evaluation 14

Figure 6: Feature distribution

Figure 6 presents boxplots for the numerical features, visualizing the
median, interquartile range (IQR), and outliers. The median and IQR
highlight central tendency and variability, while outliers indicate potential
anomalies requiring further investigation. The figure reveals significant
variations in feature distributions. Features such as "ERC20 avg val sent"
"ERC20 min val sent" and "max val sent to contract" exhibit noticeably
smaller distributions, while "Avg min between sent tnx", "total Ether sent"

4 methodology and evaluation 15

and others show upper outliers, suggesting values exceeding typical ranges.
Notably, "total ether balance" displays a lower outlier. These outliers can
negatively impact model training, leading to overfitting as the model
overemphasizes extreme values (Zhao & Akoglu, 2023), which can dis-
tort the model’s perception of the data distribution, resulting in biased
predictions and reduced accuracy (Montgomery et al., 2023). In addition,
variability in feature distributions can hinder the learning process. Features
with smaller distributions might be under-represented, while those with
larger ranges might dominate the learning process (Montgomery et al.,
2023). This imbalance can affect model generalizability, limiting its ability
to adapt to unseen data. To address these issues, robust preprocessing tech-
niques such as outlier clipping are crucial for creating a balanced dataset
that accurately reflects underlying patterns.

The "FLAG" column serves as the binary outcome variable, with a
value of 1 indicating a flagged fraudulent account. The analysis identi-
fied a class imbalance: approximately 77.82% (7,644 entries) belong to the
non-fraudulent class (0), while 22.18% (2,179 entries) represent fraudulent
transactions. The dataset was constructed 3 years ago by Vagif Aliyev
mentioned in 4.2, the representativeness of the class imbalance in real-
world scenarios cannot be definitively ascertained. However, imbalanced
datasets can lead to biased models that favor the majority class, poten-
tially overlooking or misclassifying the minority class of fraudulent entries
(Wongvorachan et al., 2023). While the imbalance is not severe, it warrants
careful handling to ensure model accuracy and reliability. To mitigate
this issue, several sampling techniques, including SMOTE, ADASYN, and
undersampling, were assessed in the later section 4.6.1, allowing us to
determine the optimal approach regarding this specific context.

4 methodology and evaluation 16

Figure 7: Correlation matrix

Analysis of the correlation matrix (Figure 7) reveals strong relationships
between transaction metrics. Total ether sent to contracts correlates with
both average and maximum values sent per contract, indicating larger
transactions drive overall volume. Similarly, unique recipient addresses
correlate with token type variety, reflecting diverse transaction activities.
Minimum and maximum values sent to contracts also significantly impact
the total ether sent, suggesting a consistent pattern with a limited value
range. These highly correlated features can introduce multicollinearity,
where redundant information impedes isolating individual feature effects
on the outcome variable (Fried, 2020). They can also lead to inflated
standard errors and potentially hamper model interpretability (Kyriazos
& Poga, 2023). Additionally, overfitting can occur as models prioritize
capturing noise in training data rather than underlying patterns, reduc-

4 methodology and evaluation 17

ing generalizability. Feature selection techniques will be employed in
subsequent sections to address these concerns.

4.4 Data Cleaning and Preprocessing

4.4.1 Data cleaning: Removing Duplicates

Examination of the dataset revealed a limited number of observations
exhibiting identical values across all features. These duplicate entries,
constituting a negligible fraction of the data (initial: 9,841 observations,
final: 9,823 observations), were subsequently removed. As duplicates
offer no additional information and can potentially introduce redundancy
or bias into model training (Dozmorov et al., 2015), their elimination is
crucial for ensuring the integrity and reliability of the subsequent model
development process.

4.4.2 Data cleaning: Deleting Features with Zero-variance

This step involved identifying and removing zero-variance features. These
features, characterized by identical values across all observations, lack
discriminatory power in classification tasks (Wang et al., 2021). Essentially,
they contribute no new information relevant to the target variable and
can be safely removed without compromising the integrity of the data.
Boeschoten et al. (2023) highlighted removing such features streamlines the
modeling process by reducing computational complexity and potentially
improves model interpretability by focusing on informative features.

4.4.3 Data cleaning: Imputation of Missing Data

Median imputation was chosen as the preferred approach for its robustness
against outliers, prevalent in financial data (Zhu et al., 2018). Unlike the
mean, the median remains unaffected by extreme transaction values, mak-
ing it a more suitable measure of central tendency for skewed distributions
(Brooks, 2019). This approach safeguards data integrity and preprocessing
consistency, crucial for reliable analysis. Moreover, the median’s efficiency
and simplicity are well-suited for large datasets (Leys et al., 2019), aiding
in maintaining both speed and accuracy within the fraud detection pro-
cess. Median imputation minimizes bias risk, enhancing the validity of
subsequent fraud identification analyses.

4.4.4 Data cleaning: Clipping Outliers

To mitigate the influence of outliers in numerical features, quantile clipping
was applied. This technique restricts values to a specific interquartile range

4 methodology and evaluation 18

(IQR), typically between the 5th and 95th percentiles. This range is chosen
because, while robust to some outliers, MLP and LGBM models can still
be sensitive to extremely skewed data. By constraining extreme values,
quantile clipping promotes data consistency and reduces the potential for
misleading analysis. Consequently, this approach improves the ability to
identify underlying patterns and potential fraudulent activities within the
data.

4.4.5 Data Preprocessing

highly-correlated features Feature selection addressed multi-
collinearity concerns through a model-specific approach. LGBM, due to its
tree-based architecture, tolerated moderate correlation. However, excessive
correlation (>90%) could slow split efficiency and bias feature prioritization,
affecting performance and interpretability. Conversely, MLPs retained cor-
related features. The complex architecture of neural networks allows each
feature to influence multiple neurons in various ways, and the adaptive
nature of MLPs facilitates the selection of informative features during train-
ing (Abdolrasol et al., 2021). Explicit removal based solely on correlation
was unnecessary.

categorical features The categorical column "Address" was ex-
cluded from the dataset as it directly identified users and lacked predictive
power for fraudulent behavior. The remaining categorical features, "ERC20

most sent token type" and "ERC20_most_rec_token_type", were removed
due to their vast number of unique categories as shown in Table 2. Encod-
ing these features using classic methods like one-hot encoding would lead
to dimensionality issues and computational burdens, impacting model effi-
ciency. Besides, given that the homogeneity of the ERC-20 token standard
causes the specific token type less informative than transaction value and
volume, which are typically denominated in stable currencies like USDT
and ETH (native token of the Ethereum network), their limited practical
utility in fraud detection further supported the removal. Also, the dynamic
nature of the ERC-20 token landscape necessitates frequent model updates,
incurring increased complexity and maintenance costs.

Categorical Features Unique Values
ERC20 most sent token type 304

ERC20_most_rec_token_type 466

Table 2: ERC20 token types and their unique values

4 methodology and evaluation 19

data splitting The dataset was partitioned into training (70%), vali-
dation (15%), and testing (15%) sets using stratified random sampling to
maintain class distributions. The validation set was primarily used for
selecting optimal sampling techniques. Subsequently, the training and
validation sets were combined for hyperparameter tuning of LGBM and
MLP models using 5-fold cross-validation. The final model performance
was assessed on the held-out test set. This approach, implemented with
sci-kit-learn’s ‘train_test_split‘ function and a fixed random seed, ensures
reproducibility and mitigates potential biases.

scaling Feature scaling using StandardScaler, which normalizes fea-
tures to zero mean and unit variance (Equation 1)), was applied to ensure
equitable feature contributions and prevent any single feature from domi-
nating the learning process (Géron, 2022). This is particularly beneficial
for gradient-based models like MLPs, where scaling improves backpropa-
gation efficiency and convergence speed (Géron, 2022). While tree-based
models like LGBM are generally less sensitive to feature scaling, stan-
dardization remains a recommended preprocessing step in most machine
learning pipelines to facilitate a fair comparison and prevent biases towards
features with larger magnitudes. (Scikit-Learn Developers).

Z =
(x− µ)

σ
(1)

4.5 Algorithms

In this research, we specifically investigated two algorithms, which are
LGBM and MLP.

LGBM has been widely used and highly regarded for classification tasks.
Built on the gradient boosting framework, it minimizes a loss function by
iteratively adding weak learners to form a strong learner, optimizing the
following objective function:

Objective =
N

∑
i=1

L(yi, ŷi) +
K

∑
k=1

Ω(fk) (2)

LGBM grows trees leaf-wise, expanding the leaf with the largest loss
reduction:

∆L =
1
2
(

G2
L

HL + λ
+

G2
R

HR + λ
+

(GL + GR)
2

HL + HR + λ
)− γ (3)

4 methodology and evaluation 20

In this case, it allows the model to capture complex patterns. LGBM uses
a histogram-based algorithm to speed up the training process by binning
feature values:

Hj = ∑
i∈Ii

gi, Bj = ∑
i∈Ii

hi (4)

This ensures fast training and prediction, crucial for real-time fraud detec-
tion.

For our specific scenario, LGBM provides significant advantages in speed,
scalability, memory usage, and accuracy compared to other tree classifiers.

We initialized LGBM model using the LGBMClassifier() function with de-
fault parameters including ‘learning_rate=0.1’, ‘max_depth=-1’, ‘n_estimators=100’,
and ‘num_leaves=31’. These parameters were chosen for their substantial
impact on model performance and served as the primary focus for subse-
quent optimization.

MLPs are fundamental artificial neural networks widely used for clas-
sification tasks. The architecture of an MLP comprises an input layer,
multiple hidden layers, and an output layer (Xiao et al., 2017). Each layer
has nodes fully connected through adjustable weights.

During forward propagation, features are passed through the network.
Each hidden layer node computes a weighted sum of its inputs and adds a
bias term:

zl
j =

n

∑
i=1

wl
ijx

l−1
i + bl

j (5)

The weighted sum zl
j is then passed through an activation function ϕ:

al
j = ϕ(zl

j) (6)

This introduces non-linearity, allowing the network to learn complex pat-
terns in the data. The output layer generates the final prediction, using
activation functions like softmax for multi-class classification or sigmoid
for binary classification.

During backpropagation, the error between the predicted output and
the true label is calculated using a loss function, typically the cross-entropy
loss for classification tasks:

L = −
N

∑
i=1

yi log(Oi) (7)

4 methodology and evaluation 21

For binary classification, the cross-entropy loss can be simplified as:

L = −y log(p)− (1− y) log(1− p) (8)

The gradients of the loss function concerning each weight are computed,
and the weights are updated using gradient descent (Haji & Abdulazeez,
2021).

wij ← wij − η
∂L

∂wij
(9)

where η is the learning rate. This iterative process continues until the loss
reaches a minimum or an acceptable threshold, indicating that the model
has learned the optimal weights and biases.

The MLP model architecture in this study was designed to accommo-
date the 38-feature dataset, including highly correlated features discussed
in 4.4.5. The initial hidden layer of 38 units facilitated one-to-one feature
mapping and learning of intricate patterns. Subsequent hidden layers (15

and 5 units) progressively reduced dimensionality to focus on important
features and mitigate overfitting. ReLU activation was used in all hidden
layers to introduce non-linearity and mitigate the vanishing gradient prob-
lem. The final single-unit output layer with sigmoid activation mapped the
output to a probability between 0 and 1, suitable for binary classification
tasks.

Figure 8 visually represents the architecture and operational mechanism
of the MLP model employed in this study.

4 methodology and evaluation 22

Figure 8: MLP architecture from Dinesh Sivakumar (2024)

The model was compiled with the Adam optimizer, binary cross-
entropy loss (appropriate for binary classification), and accuracy metric.
Table 3 details the model architecture and parameters.

Table 3: MLP Keras Model Summary

Layer (type) Output Shape Param #

dense_8 (Dense) (None, 38) 1,482

dense_9 (Dense) (None, 15) 585

dense_10 (Dense) (None, 5) 80

dense_11 (Dense) (None, 1) 6

Total params 2,153 (8.41 KB)
Trainable params 2,153 (8.41 KB)
Non-trainable params 0 (0.00 Byte)

4.6 Experimental Setup

This section outlines the research plan to compare various sampling tech-
niques: SMOTE, ADASYN, undersampling, and non-sampled baseline. All
performance was assessed on the validation set to define the optimal sam-
pling method. Hyperparameter tuning, operating 5-fold cross-validation,
was then applied to the combined training and validation datasets with the
selected sampling technique. Following optimization, a final performance

4 methodology and evaluation 23

comparison was conducted on the held-out test set with an assessment of
computational efficiency, quantified by reference speed and training time
for each optimized model.

4.6.1 Comparing Sampling Techniques (RQ1)

non-sampling Non-sampling represents the original, unaltered train-
ing dataset without balancing the class distribution. This approach serves
as a baseline to understand model performance on imbalanced data. Train-
ing LGBM and MLP on non-sampled data allows us to compare how well
the models handle class imbalance naturally, providing a reference for
other sampling methods.

smote SMOTE is a widely adopted method for addressing class imbal-
ance by generating synthetic samples of the minority class. In this study,
the SMOTE algorithm from the imbalanced-learn (Lemaître et al., 2017)
library was employed to resample the training dataset. Synthetic samples
were created by interpolating between existing minority class instances
(Mansourifar & Shi, 2020), thereby increasing the representation of the
minority class in a manner that preserves the underlying data structure.

adasyn ADASYN, an alternative synthetic sampling technique to gen-
erate synthetic data points specifically for minority class instances that are
more challenging to learn (Abdullahi et al., 2023). This method dynami-
cally adjusts the number of samples based on the estimated difficulty level,
thereby improving the classifier’s ability to differentiate between classes in
the presence of imbalance.

undersampling Undersampling decreases the number of majority
class to balance the distribution (Devi et al., 2020). This technique involves
randomly removing samples from the majority class, which can mitigate
classifier bias towards the dominant class. However, a potential drawback
is the loss of potentially valuable information inherent in the discarded
samples.

Table 4 supplies a detailed overview of how each sampling technique
modified the dataset, elucidating the resultant changes in class distribution
and sample size.

4 methodology and evaluation 24

Sampling Techiniques Non-fraud Fraud Total
Non-samping 5,351 1,525 6,876

SMOTE 5,351 5,351 10,702

ADASYN 5,351 5,515 10,866

Undersampling 1,525 1,525 3,050

Table 4: Sampled data

4.6.2 Model Comparison (RQ2)

After deciding the optimal sampling method for each model (non-sampling
for both LGBM and MLP here), hyperparameter tuning proceeded on the
combined training and validation data.

For the LGBM model, a grid search was conducted to optimize key
hyperparameters, including n_estimators, learning_rate, num_leaves, and
max_depth as outlined in Appendix E. This optimization aimed to balance
model complexity and learning dynamics. Using 5-fold cross-validation
for robust model selection, the optimal hyperparameter configuration was
identified. The model was then retrained on the combined training and
validation data and assessed on the test set.

The MLP model underwent hyperparameter tuning using the Keras-
Tuner to identify the optimal configuration. The training and validation
datasets were concatenated and standardized, later split into five folds
through K-fold cross-validation.

The tuning process focused on several key parameters, including the
number of units in each hidden layer, activation functions, and learning
rate defined by Appendix F. These chosen values were guided by common
practices and a desire to explore a broad spectrum of configurations for
each hyperparameter. The model architecture was defined as a sequential
model with three hidden layers, each using hyperparameters selected from
the predefined ranges and options. Conventionally, the first layer has a
higher number of units to extract complex patterns and relationships within
the input data, the succeeding hidden layers progressively decrease in size
to learn higher-level representations from previous layers by discarding
irrelevant or noisy details and are less prone to overfitting,

During each iteration, the RandomSearch tuner searched for the hyper-
parameter space, evaluating model accuracy on the validation set with the
objective of maximizing this metric. The search process was constrained to
a maximum of 10 trials per search and one execution per trial. The optimal
hyperparameters identified in this process were then utilized to construct
the final model, which was thereon trained on the combined dataset and
evaluated on the held-out test set. The training process consisted of 20

epochs to ensure sufficient model learning.

4 methodology and evaluation 25

4.6.3 Calculating Training Time and Reference Speed (RQ3)

To estimate the computational efficiency of both the LGBM and MLP
models, average training time and inference speed were measured. For
both models, training time was determined by repeatedly fitting the model
with the optimal hyperparameters obtained from grid search (LGBM) and
random search (MLP) over 100 iterations. Inference speed was calculated
by averaging the time taken to predict the test dataset over 100 repetitions.

This analysis of training time and inference speed delivers a valuable
understanding of the computational efficiency of each model, informing
the practical implications of deploying these models in real-world scenarios
where both speed and performance are critical considerations.

4.7 Evaluation Methods

This thesis aims to address a binary classification problem characterized
by moderate class imbalance (77.82% versus 22.18%). Model evaluation for
both the LGBM classifier and the MLP neural network primarily empha-
sized metrics relevant to the minority class, namely the F1 score, recall, and
ROC-AUC score. However, accuracy, precision, and the confusion matrix
were also considered to provide a thorough review of model performance.

The emphasis on class 1 (fraudulent transactions) F1 score, a metric
harmonizing precision, and recall, stems from the critical need in fraud
detection to balance the accurate identification of fraudulent activity with
minimizing false positives that disrupt legitimate users. A high F1 score
signifies a model’s effectiveness in achieving this balance, which is crucial
for the practical deployment and efficacy of fraud detection systems.

While both precision and recall are essential metrics in fraud detec-
tion, this study prioritized recall over precision. This is grounded in the
understanding that recall quantifies a model’s ability to specify the maxi-
mum number of fraudulent transactions, thereby minimizing the risk of
undetected fraud. Although high precision is desirable to minimize false
positives and their associated consequences for legitimate users, ensuring
high recall is paramount for effectively detecting and preventing fraudulent
activities, thus maintaining the integrity and trust of the system.

The ROC-AUC score served as a critical metric considering the dis-
criminative power of the classification models across all thresholds. A
high ROC-AUC score indicates the model’s ability to distinguish between
fraud and legitimate users or transactions, a crucial factor for robust fraud
detection systems.

Moreover, analysis of the confusion matrix provided a nuanced un-
derstanding of model performance, especially concerning the minority

5 results 26

(fraudulent) class, a critical aspect given the imbalanced nature of the
dataset. This detailed evaluation is essential for identifying areas for
model refinement and improving its accuracy in real-world fraud detection
applications.

Accuracy, the ratio of correctly predicted instances to total predictions,
served as the primary metric for assessing overall model performance.
High accuracy is particularly desirable in fraud detection systems as it
minimizes the operational burden of false alarms, thereby improving the
system’s efficiency and effectiveness.

Lastly, we measured the training time and inference speed to consider
the efficiency of each model. These metrics are crucial, as they directly
impact a model’s practicality. Reduced training time facilitates more
frequent model updates to adapt to growing fraud practices, while rapid
inference speeds promote the timely detection and mitigation of fraudulent
dealings.

5 results

This section reports the results of the sampling technique impact and details
the selected technique based on performance metrics. It also delineated the
optimal hyperparameter configurations identified per model and provided
a relative analysis of their respective training times and inference speeds.

5.1 Results Experiment: Sampling Techniques

The impact of different sampling techniques on the results of both LGBM
and MLP was discussed in this section and the final selection of the best
ones was concluded at the end.

5.1.1 Sampling Techniques for LGBM

The effect of different sampling methods for the LGBM model included
comparing overall performance metrics and their corresponding confusion
matrices based on the validation set.

performance comparison For LGBM, the performance metrics for
different sampling methods on the validation set described in Table 5

summarized that the model trained on the original (non-sampled) training
dataset outperformed all the other sampled datasets, achieving the high-
est F1-score (0.974), ROC-AUC score (0.9988), accuracy (0.988), precision
(0.970) and slightly lower recall (0.976). Among the sampling techniques,
the model with an undersampled dataset had a high recall (0.991), but

5 results 27

significantly lower in precision (0.635) and F1-score (0.772), indicating
that while it captured more fraudulent transactions, it also misclassified
a higher number of legitimate transactions. Models with SMOTE and
ADASYN datasets, while improving recall to 1 and 0.997 respectively, saw
a substantial drop in precision (0.578 and 0.530) and F1-score (0.732 and
0.692), reflecting a trade-off between detecting fraud and avoiding false
positives.

LGBM Accuracy Precision Recall F1 ROC-AUC
Non-sampling 0.988 0.970 0.979 0.974 0.9988

SMOTE 0.838 0.578 1 0.732 0.9865

ADASYN 0.803 0.530 0.997 0.692 0.9870

Undersampling 0.872 0.635 0.991 0.774 0.9879

Table 5: LGBM performance comparison on the validation set with different
sampling methods

confusion matrices Analyzing the confusion matrices from Figure
9 - 12 revealed LGBM without sampling as the superior approach for this
task. It boasted the highest correctly predicted diagonal values, suggesting
an accurate classification of a greater proportion of data points across
both classes. While there are a few false negatives, which may suggest
occasional misclassification of minority class instances, the overall low
number of false positives and negatives suggested a balanced performance,
signifying its ability to minimize errors for both majority and minority
classes without resorting to sampling techniques.

Figure 9: LGBM validation confusion
matrix without sampling

Figure 10: LGBM validation confusion
matrix with SMOTE

5 results 28

Figure 11: LGBM validation confusion
matrix with ADASYN

Figure 12: LGBM validation confusion
matrix with Undersampling

5.1.2 Sampling Technique for MLP

A similar analysis of various sampling methods was executed regarding
MLP. This included comparing overall performance, assessing loss and
accuracy for each approach, and comparing their corresponding confusion
matrices.

performance comparison Similar to the LGBM model, the MLP
model trained on the non-sampled dataset exhibited the best metrics on
the validation set, as indicated in Table 6. It achieved the highest F1-score
(0.925), accuracy (0.965), ROC-AUC score (0.9949), and precision (0.890),
with a slightly lower recall (0.963). SMOTE improved recall to 0.988 and
held a higher F1-score (0.887), meaning better identification of the minority
fraudulent class; however, it also led to a decrease in precision, signaling an
increase in false positives. Regardless, utilizing any of sampling techniques
resulted in a drop in precision, indicating more false positives. ADASYN
and undersampling displayed improvements in recall (0.997 and 0.985,
respectively) but at the cost of lower precision (0.743 and 0.576) and F1-
scores (0.851 and 0.727).

MLP Accuracy Precision Recall F1 ROC-AUC
Non-sampling 0.965 0.890 0.963 0.925 0.9949

SMOTE 0.944 0.805 0.988 0.887 0.9936

ADASYN 0.923 0.743 0.997 0.851 0.9915

Undersampling 0.836 0.576 0.985 0.727 0.9876

Table 6: MLP performance comparison on the validation set with different sam-
pling methods

5 results 29

confusion matrices According to the results from Figures 13 - 16,
models trained on the dataset with SMOTE and ADASYN were particularly
adept at identifying the minority class, which came at the expense of
increased false positives. Undersampling, although effective in reducing
false negatives, suffered from a significant rise in false positives. Notably,
MLP without sampling displayed a balanced performance between false
positives and negatives without introducing artificial data manipulation,
making it the preferred strategy.

Figure 13: MLP validation confusion ma-
trix without sampling

Figure 14: MLP validation confusion ma-
trix with SMOTE

Figure 15: MLP validation confusion ma-
trix with ADASYN

Figure 16: MLP validation confusion ma-
trix with Undersampling

loss and accuracy curves For the MLP model trained on a non-
sampled training dataset, Figure 17 explained that the training loss steadily
decreased, reaching a low value as epochs progressed, which indicates that
the model was effectively learning from the data. The validation loss also
showed a decreasing trend, although with tiny fluctuations. In contrast,
Figure 18 indicated the training accuracy was high, suggesting that the

5 results 30

model performed well on the training data. Similarly, the validation
accuracy was high but slightly lower than the training accuracy during the
last 10 epochs, suggesting a bit overfitting.

Figure 17: MLP train and validation loss
Without sampling

Figure 18: MLP train and validation ac-
curacy without sampling

After resampling the dataset by involving SMOTE, Figures 19 - 20

demonstrated that the training loss decreased significantly, indicating that
the model learned effectively from the augmented data. However, the
validation loss fluctuated more, proposing that the model struggled to
generalize on unseen data. The training accuracy remained high, leading
to good performance on the training set. Nonetheless, the validation
accuracy was lower than the training accuracy, indicating overfitting and
poor generalization.

Figure 19: MLP train and validation loss
with SMOT

Figure 20: MLP train and validation ac-
curacy with SMOTE

According to Figures 21 - 22, the model trained after applying ADASYN
revealed a decrease in training loss, though the decline was less smooth
compared to the model trained with SMOTE. The validation loss exhib-

5 results 31

ited significant fluctuations, indicating instability in the learning process.
Despite achieving high training accuracy, the validation accuracy was sig-
nificantly lower, suggesting severe overfitting. This illustrated that while
the model performed well on the training data, it struggled to maintain
the same level of performance on the validation set.

Figure 21: MLP train and validation loss
with ADASYN

Figure 22: MLP train and validation ac-
curacy with ADASYN

After undersampling the majority class, Figures 23 - 24 suggested the
training loss decreased steadily, similar to the baseline model, indicating
effective learning from the reduced dataset. However, the validation loss
remained relatively high and fluctuated more, suggesting the difficulty of
generalizing to unseen data. The model achieved high training accuracy,
but the validation accuracy was much lower, indicating overfitting and
poor performance on the validation set. This confirmed that the model
performed well on the training data but was less effective in generalizing
on new data.

Figure 23: MLP train and validation loss
with Undersampling

Figure 24: MLP train and validation ac-
curacy with Undersampling

5 results 32

5.1.3 Conclusion for Sampling Techniques

Both LGBM and MLP models achieved optimal performance when trained
on the non-sampled dataset, indicating a superior balance between preci-
sion and recall compared to models trained with sampling methods. The
application of SMOTE and ADASYN resulted in the introduction of noise
through the generation of synthetic samples, potentially leading to overfit-
ting. Undersampling, while addressing class imbalance, led to the loss of
information from the majority class, and potentially failed to capture the
full complexity of the data (Fujiwara et al., 2020).

5.2 Results Experiment: Model Comparison

5.2.1 Optimization of the Models

Following the decision of the optimal sampling strategy for each model,
hyperparameter optimization was ushered to improve model performance.
A grid search approach was employed for the LGBM model, while a
random search was utilized for the MLP model. This optimization process
was facilitated by combining the original training and validation datasets,
securing a thorough evaluation during 5-fold cross-validation.

hyperparameter values Following the decision of the optimal sam-
pling strategy for each model, hyperparameter optimization was ushered
to improve model performance. A grid search approach was employed
for the LGBM model, while a random search was utilized for the MLP
model. This optimization process was facilitated by combining the original
training and validation datasets, securing a thorough evaluation during
5-fold cross-validation. The optimal hyperparameter configurations for
each model are presented in Appendix G, respectively.

error analysis and training/test comparison To evaluate
model implementation and diagnose potential overfitting or underfitting,
a comparative analysis of training and test performance was executed for
both the MLP and LGBM models. This evaluation utilized a combined
training dataset incorporating the original training and validation sets.

LGBM achieved perfect training accuracy (0 false positives/negatives)
according to Figure 25, suggesting potential overfitting. A slight perfor-
mance drop on the test set (2 false positives, 18 false negatives) reinforced
this concern as Figure 32 portrayed. This discrepancy indicated the model
may be capturing data noise or specific patterns that don’t generalize well.

5 results 33

Figure 25: LGBM train confusion matrix Figure 26: LGBM test confusion matrix

MLP model attained high accuracy with 6,429 true negatives and 1,807

true positives, along with 68 false positives and 45 false negatives on
the training set as Figure 27 presented. Figure 28 illustrated it retained
strong performance with 1,129 true negatives, 303 true positives, 18 false
positives, and 24 false negatives on the test set. Though the low counts of
misclassifications on both datasets indicated good generalization, a slight
increase in errors from training to test data suggested potential overfitting.

Figure 27: MLP train confusion matrix Figure 28: MLP test confusion matrix

Figures 29 and 30 depicted the MLP model’s training process across 20

epochs. While training loss steadily decreased and accuracy reached a high
and stable level, test loss and accuracy painted a different picture. Test
loss initially plateaued but then exhibited a slight upward trend and test
accuracy showed minor fluctuations with a downward trajectory. These
trends suggested the model might be overfitting to the training data.

5 results 34

Figure 29: MLP train and test loss Figure 30: MLP train and test accuracy

5.2.2 Final Model Comparison

Evaluation of the held-out test set informed the superior performance
of the LGBM model in the fraud detection task. The LGBM model con-
sistently outperformed the MLP model across all key metrics, achieving
higher accuracy, precision, F1-score, and ROC-AUC score, as detailed in
Table 7. This statistically significant difference suggests that the LGBM
model displays a superior ability to accurately identify fraudulent transac-
tions while minimizing false positives, a critical factor in real-world fraud
detection applications. The results provide compelling evidence for the
suitability of the LGBM model in addressing the challenges posed by fraud
detection within the context of this study.

Model Accuracy Precision Recall F1 ROC-AUC
LGBM 0.986 0.994 0.945 0.969 0.9987

MLP 0.972 0.944 0.927 0.935 0.9880

Table 7: Performance comparison for fine-tuned models

5.3 Results Experiment: Training Time and Inference Speed

To fairly assess how quickly each model can train and make predictions
in real-world scenarios, we averaged the time over 100 iterations, it’s been
proven that the LGBM model exhibited markedly superior efficiency, with
a training time of 0.6662 seconds and an inference speed of 0.0142 seconds.
In contrast, the MLP model required a considerably longer training time of
34.32 seconds and a substantially slower inference speed of 34.32 seconds.
These findings underscore the computational advantages of the LGBM
model for real-time fraud detection applications.

6 discussion 35

6 discussion

The primary goal of this study was to assess the effectiveness of LGBM
and MLP models in detecting fraudulent activities within the realm of
Ethereum (ETH) transactions. Several challenges were encountered, includ-
ing determining which sampling techniques to use or whether to employ
any sampling techniques at all to tackle class imbalance issues. Addition-
ally, both LGBM and MLP models can automatically select features to learn
from, which posed a difficulty in ensuring that the selected features were
sufficient for learning while avoiding redundancy.

6.1 Results Discussion and Comparison with Prior Work

6.1.1 What techniques are most effective for each model in handling class imbal-
ance?

The result of the first experiment indicated that the resampled datasets did
not surpass the non-sampled data, suggesting that the LGBM and MLP
models were already performing well enough without sampling. Several
factors may contribute to the superior performance of non-sampling. Both
LGBM and MLP models, in their native configurations, possess inherent
mechanisms for handling imbalanced data, such as specialized loss func-
tions and algorithms designed to mitigate the impact of class disparities.
Also, the original data distribution helps avoid potential biases introduced
by synthetic sampling techniques like SMOTE or ADASYN (Alex et al.,
2024), which may not accurately reflect the true underlying distribution
of the minority class. Thus, the model with non-sampled data provides a
more reliable and generalizable evaluation in real-world scenarios.

In contrast to prior studies that applied specific sampling techniques
without a comprehensive evaluation (SMOTE by Aziz et al. (2022); under-
sampling by Bartoletti et al. (2018)), this study systematically examined the
impact of various sampling methods. The rigorous assessment, particularly
on the validation set, provides nuanced insights into the effectiveness of
each technique in addressing the class imbalance, highlighting the criti-
cal need for a deliberate and informed approach to sampling technique
selection, a previously overlooked aspect.

6.1.2 Which model demonstrates better performance?

The second experiment revealed the LGBM model to be superior to the
MLP model in accurately classifying fraudulent accounts, as evidenced
by its higher overall performance metrics following optimization. This
eminent performance is likely due to several characteristics inherent to the

6 discussion 36

LGBM algorithm. Notably, its ability to effectively handle class imbalance,
its efficient feature selection mechanisms, and its reduced reliance on
extensive hyperparameter tuning contributes to its greater practicality in
fraud detection compared to the MLP model. This outcome aligns with the
research conducted by Aziz et al. (2022), which compared various machine
learning models and concluded that LGBM is incredibly practical.

Aziz et al. (2022) achieved the highest accuracy among all studies
mentioned in 3. Their performance metrics demonstrate superior results
compared to those of this study as illustrated in Table 8 and Figures 31 -
32. However, this exceptional performance was based on the blind choice
of the SMOTE sampling method without revealing its impact. Moreover,
the lack of transparency regarding their hyperparameter tuning process
limits the reference value of their findings. In contrast, this study transpar-
ently documented the hyperparameter tuning process, ensuring the model
optimization steps were clear and reproducible.

Figure 31: LGBM confusion matrix from
Aziz et al. (2022)

Figure 32: LGBM confusion matrix
from this study

Accuracy Precision Recall F1
Aziz et al. (2022) 0.9903 0.9797 0.9775 0.9786

This study 0.986 0.994 0.945 0.969

Table 8: LGBM comparison between Aziz et al. (2022) and this study

6.1.3 How do training time and inference speed compare between MLP and
LGBM?

The final experiment demonstrated that the LGBM model exhibited sig-
nificantly superior computational efficiency compared to the MLP model,
as evidenced by its significantly faster training time and inference speed.
This efficiency positions the LGBM model as a particularly advantageous

6 discussion 37

choice for applications where frequent model retraining or constrained
computational resources are a concern. This distinction may result from
fundamental differences in the algorithmic design and implementation.
The histogram-based approach and leaf-wise growth strategy of LGBM,
coupled with its ability for parallel processing and efficient memory man-
agement, enable faster training and inference in contrast to MLP’s reliance
on computationally intensive backpropagation. Furthermore, LGBM’s in-
herent regularization strategies contribute to faster convergence and less
susceptibility to overfitting. Conversely, MLPs, particularly with deeper
architectures, exhibit higher computational and memory demands due
to their greater complexity and iterative training process. These findings
underscore the importance of selecting appropriate models based on avail-
able computational resources and desired speed, especially in real-time
applications.

While Ibrahim et al. (2021) gained impressive reductions in processing
times for traditional machine learning algorithms, notably with KNN
reaching near-instantaneous (0 seconds) processing on a limited feature
set of 6, focusing solely on training time, our research stresses the broader
computational efficiency and practical applicability of the LGBM model
by considering both training and inference speed on a larger dataset (31

features). The LGBM model’s combination of fast training and inference
speeds, coupled with its strong predictive performance and ability to
handle a larger number of features, makes it a more compelling choice for
applications where both speed and accuracy are critical, especially those
with higher dimensional data. This is particularly relevant in scenarios
requiring frequent model updates or facing resource constraints, solidifying
LGBM’s position as an effective and efficient solution for complex real-
world problems such as fraud detection.

6.2 Broader Societal Relevance

By demonstrating the effectiveness of non-sampled data in certain scenar-
ios, the investigation promotes model transparency and reliability, thereby
enhancing trust in fraud detection systems. Furthermore, the findings em-
phasize the importance of an intentional and context-specific procedure for
sampling technique selection, which can be generalized to other domains
involving transaction pattern analysis, including various blockchains and
the broader crypto industry. This rigorous approach not only mitigates po-
tential biases but also contributes to the development of ethical AI systems
in the financial sector.

The model comparison analysis presented in this study carries impor-
tant societal implications. By identifying effective models and highlighting

6 discussion 38

potential pitfalls, this study paves the way for future research aimed at
developing more practical, scalable, and adaptable algorithms to mitigate
financial losses and protect users within blockchain and crypto ecosystems.
This contributes to establishing a foundation for responsible innovation
and informed policy-making in the application of AI technologies.

Finally, the assessment of training time and inference speed is critical
for real-time fraud detection systems given the high volume of daily
Ethereum transactions (approximately 1.022 million) and new unique
addresses (approximately 147,758), as reported by ychart and supported
by Foundation. This stresses the importance of selecting a model, such as
LGBM, capable of rapid fraud detection to effectively keep pace with the
dynamic and high-volume nature of the Ethereum network.

6.3 Limitations

A limitation of this study lies in the utilization of a pre-cleaned dataset
provided by a single source on Kaggle. Upon examination, 829 instances
were found to share the same 25 missing feature values, raising concerns
about the dataset’s representativeness of real-world scenarios. Such a
skewed or incomplete representation of the underlying data distribution
could potentially lead to misleading conclusions regarding the sampling
strategies, bias model performance, undermine the evaluation of model
efficiency, and limit the generalizability of the findings.

Another notable restriction is that the superior performance of the
LGBM model over the MLP model in this study, while evident, is difficult
to definitively explain due to the inherent opacity of MLPs. Their "black
box" nature inhibits interpretability, making it challenging to specify the
exact factors contributing to their suboptimal performance. This lack of
transparency obscures how individual features influence predictions and
the model’s overall decision-making process, potentially masking issues
such as overfitting or biases. This underscores the importance of consid-
ering both accuracy and explainability when developing fraud detection
systems, particularly in high-stakes domains where understanding the
rationale behind model decisions is crucial.

6.4 Future Work

Firstly, future research endeavors should prioritize the incorporation of
more comprehensive and diverse datasets, encompassing data from vari-
ous sources such as third-party crypto data aggregator platforms (Dune,
Nansen and Arkham) and Ethereum’s native data website (Etherscan),
where all transactions are recorded and addresses are marked as fraud-

7 conclusion 39

ulent if they have been associated with any fraudulent activity. This
approach, coupled with manual inspection for missing values, is essential
for developing more robust and resilient models.

Secondly, while the LGBM and MLP models with default hyperpa-
rameters exhibited the best performance on the validation set regarding
the selection of sample methods, these parameter values were thereafter
adjusted through hyperparameter tuning on the combined training and
validation data. However, a direct comparison of model performance be-
fore and after hyperparameter tuning was not conducted on this combined
dataset. Consequently, the potential performance gains achieved through
hyperparameter tuning, relative to the initial models trained on the training
set alone, remain unquantified. Future work should include a rigorous
assessment of the impact of hyperparameter tuning on model performance
to ascertain its efficacy in this context.

Thirdly, recognizing the capacity of LGBM and MLP models to process
extensive datasets with intricate features, the significance of advanced
feature engineering is underscored. Future work should prioritize the
expansion of novel features that can effectively capture nuanced patterns
and trends indicative of fraudulent activity. This may involve leveraging
automated feature selection techniques to identify relevant features, as
well as comprising domain-specific expertise to generate features that are
particularly salient for fraud detection.

Lastly, it’s essential to investigate advanced methods for mitigating
the potential overfitting of sampling techniques, especially in the context
of MLP model training. Promising approaches comprise the implemen-
tation of early stopping, regularization techniques, and cross-validation.
Besides, a more extensive exploration of alternative model architectures
and hyperparameter configurations could aid in identifying optimal solu-
tions that effectively balance bias and variance, thereby enhancing model
generalizability and overall performance.

7 conclusion

This study compared machine learning (LGBM) and deep learning (MLP)
models for fraud detection on the Ethereum blockchain. Results indicated
that the LGBM model outperformed the MLP model across key perfor-
mance metrics (F1-score: 0.969, accuracy: 0.986, precision: 0.994) with faster
training (0.6662 seconds) and inference (0.0142 seconds) times. While these
results were lower than those (F1-score: 0.9786, accuracy: 0.9903, precision:
0.9797) reported by Aziz et al. (2022), our study prioritized methodological
rigor regarding sampling technique selection and transparency in hyper-
parameter tuning. Additionally, the approach carried out in this research

references 40

favored a wider feature set over the reduced processing time (nearly 0

seconds) reported by Ibrahim et al. (2021) with limited features. Future
research should explore the generalizability of the LGBM model to other
blockchain platforms, examine alternative data preprocessing techniques
to potentially improve performance, and incorporate diverse datasets to
enhance the model’s robustness and applicability.

references

Abdolrasol, M. G., Hussain, S. S., Ustun, T. S., Sarker, M. R., Hannan,
M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021).
Artificial neural networks based optimization techniques: A review.
Electronics, 10(21), 2689.

Abdullahi, H., Bashir, S. A., & Aminu, E. F. (2023). An improved adaptive
synthetic sampling technique and machine learning model for
enhanced imbalance medical data classification.

Alex, S. A., Nayahi, J. J. V., & Kaddoura, S. (2024). Deep convolutional
neural networks with genetic algorithm-based synthetic minority
over-sampling technique for improved imbalanced data classifica-
tion. Applied Soft Computing, 156, 111491.

Arkham. (2024). Powerful tools for linking cryptocurrency activity to real
world individuals and institutions [Accessed: 118-06-2024].

Aswin, A., & Kuriakose, B. (2020). An analogical study of hyperledger fab-
ric and ethereum. Intelligent Communication Technologies and Virtual
Mobile Networks: ICICV 2019, 412–420.

Aziz, R. M., Baluch, M. F., Patel, S., & Ganie, A. H. (2022). Lgbm: A machine
learning approach for ethereum fraud detection. International Journal
of Information Technology, 14(7), 3321–3331.

Bartoletti, M., Pes, B., & Serusi, S. (2018). Data mining for detecting bitcoin
ponzi schemes. 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), 75–84. https://doi.org/10.1109/CVCBT.2018.00014

Boeschoten, S., Catal, C., Tekinerdogan, B., Lommen, A., & Blokland, M.
(2023). The automation of the development of classification mod-
els and improvement of model quality using feature engineering
techniques. Expert Systems with Applications, 213, 118912.

Brooks, C. (2019). Introductory econometrics for finance. Cambridge university
press.

Chen, L., Peng, J., Liu, Y., Li, J., Xie, F., & Zheng, Z. (2020). Phishing scams
detection in ethereum transaction network. ACM Transactions on
Internet Technology (TOIT), 21(1), 1–16.

Chollet, F., et al. (2015). Keras. https://github.com/fchollet/keras

https://doi.org/10.1109/CVCBT.2018.00014
https://github.com/fchollet/keras

references 41

Classic, E. (2024). A blockchain-based distributed computing platform
[Accessed: 27-05-2024].

CoinGecko. (2024). Cryptocurrency market cap platform [Accessed: 26-02-
2024].

Devi, D., Biswas, S. K., & Purkayastha, B. (2020). A review on solution to
class imbalance problem: Undersampling approaches. 2020 inter-
national conference on computational performance evaluation (ComPE),
626–631.

Dinesh Sivakumar. (2024). Introduction to neural networks and deep learn-
ing [Accessed: 11-06-2024].

Dozmorov, M. G., Adrianto, I., Giles, C. B., Glass, E., Glenn, S. B., Mont-
gomery, C., Sivils, K. L., Olson, L. E., Iwayama, T., Freeman, W. M.,
et al. (2015). Detrimental effects of duplicate reads and low com-
plexity regions on rna-and chip-seq data. BMC bioinformatics, 16,
1–11.

Dune. (2024). Crypto data platform [Accessed: 17-06-2024].
EtherscamDB. (2024). Etherscam data base.
Etherscan. (2024). Etherscan [https://etherscan.io/apis [Accessed: (26-02-

2024)]].
Farrugia, S., Ellul, J., & Azzopardi, G. (2020). Detection of illicit accounts

over the ethereum blockchain. Expert Systems with Applications, 150,
113318.

Foundation, E. (2023). Ethereum company [Accessed: 17-05-2024].
Fried, E. I. (2020). Lack of theory building and testing impedes progress

in the factor and network literature. Psychological Inquiry, 31(4),
271–288.

Fujiwara, K., Huang, Y., Hori, K., Nishioji, K., Kobayashi, M., Kamaguchi,
M., & Kano, M. (2020). Over-and under-sampling approach for
extremely imbalanced and small minority data problem in health
record analysis. Frontiers in public health, 8, 178.

Géron, A. (2022). Hands-on machine learning with scikit-learn, keras, and ten-
sorflow. " O’Reilly Media, Inc.".

Haji, S. H., & Abdulazeez, A. M. (2021). Comparison of optimization
techniques based on gradient descent algorithm: A review. PalArch’s
Journal of Archaeology of Egypt/Egyptology, 18(4), 2715–2743.

Hu, T., Liu, X., Chen, T., Zhang, X., Huang, X., Niu, W., Lu, J., Zhou,
K., & Liu, Y. (2021). Transaction-based classification and detection
approach for ethereum smart contract. Information Processing &
Management, 58(2), 102462.

Ibrahim, R. F., Elian, A. M., & Ababneh, M. (2021). Illicit account detection
in the ethereum blockchain using machine learning. 2021 interna-
tional conference on information technology (ICIT), 488–493.

https://etherscan.io/apis

references 42

Jin, H., & Xiao, J. (2022). Towards trustworthy blockchain systems in the era
of “internet of value”: Development, challenges, and future trends.
Science China Information Sciences, 65, 1–11.

Johnson, K. N. (2020). Regulating cryptocurrency secondary market trading
platforms. U. Chi. L. Rev. Online, 26.

Kaggle. (2021).
Kyriazos, T., & Poga, M. (2023). Dealing with multicollinearity in factor

analysis: The problem, detections, and solutions. Open Journal of
Statistics, 13(3), 404–424.

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in ma-
chine learning [Accessed: 26-05-2024]. https://imbalanced-learn.
org/

Leys, C., Delacre, M., Mora, Y. L., Lakens, D., & Ley, C. (2019). How to
classify, detect, and manage univariate and multivariate outliers,
with emphasis on pre-registration. International Review of Social
Psychology, 32(1).

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data
(Vol. 793). John Wiley & Sons.

Mansourifar, H., & Shi, W. (2020). Deep synthetic minority over-sampling
technique. arXiv preprint arXiv:2003.09788.

Monamo, P., Marivate, V., & Twala, B. (2016). Unsupervised learning for
robust bitcoin fraud detection. 2016 Information Security for South
Africa (ISSA), 129–134. https://doi.org/10.1109/ISSA.2016.7802939

Montgomery, T. M., Lehmann, K. D., Gregg, S., Keyser, K., McTigue, L. E.,
Beehner, J. C., & Holekamp, K. E. (2023). Determinants of hyena
participation in risky collective action. Proceedings of the Royal Society
B, 290(2011), 20231390.

Nansen. (2024). Onchain data platform trusted by the best [Accessed:
12-06-2024].

Nauman, F., & Herschel, M. (2022). An introduction to duplicate detection.
Springer Nature.

Oliva, G. A., Hassan, A. E., & Jiang, Z. M. (2020). An exploratory study
of smart contracts in the ethereum blockchain platform. Empirical
Software Engineering, 25, 1864–1904.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay,
E. (2007). Scikit-learn: Machine learning in python [Accessed: 27-
05-2024]. https://scikit-learn.org/

Pham, T., & Lee, S. (2016). Anomaly detection in bitcoin network using
unsupervised learning methods. arXiv preprint arXiv:1611.03941.

https://imbalanced-learn.org/
https://imbalanced-learn.org/
https://doi.org/10.1109/ISSA.2016.7802939
https://scikit-learn.org/

references 43

SlowMist. (2024). Cryptocurrency audit company [Accessed: 01-06-2024].
Wang, J., Liu, Y., & Levy, C. (2021). Fair classification with group-dependent

label noise. Proceedings of the 2021 ACM conference on fairness, ac-
countability, and transparency, 526–536.

Wongvorachan, T., He, S., & Bulut, O. (2023). A comparison of undersam-
pling, oversampling, and smote methods for dealing with imbal-
anced classification in educational data mining. Information, 14(1),
54.

Xiao, D., Li, B., Mao, Y., et al. (2017). A multiple hidden layers extreme
learning machine method and its application. Mathematical Problems
in Engineering, 2017.

Xiong, R., & Pelger, M. (2023). Large dimensional latent factor modeling
with missing observations and applications to causal inference.
Journal of Econometrics, 233(1), 271–301.

ychart. (2024). Ethereum transactions and addresses per day [Accessed:
17-05-2024].

Zhao, L., & Akoglu, L. (2023). On using classification datasets to evaluate
graph outlier detection: Peculiar observations and new insights. Big
Data, 11(3), 151–180.

Zhu, J., Ge, Z., Song, Z., & Gao, F. (2018). Review and big data perspectives
on robust data mining approaches for industrial process modeling
with outliers and missing data. Annual Reviews in Control, 46, 107–
133.

appendix 44

a appendix

Library Version
pandas 2.0.3
numpy 1.24.3
seaborn 0.12.2
scikit-learn 1.4.1.post1
imbalanced-learn 0.12.0
lightgbm 4.3.0
matplotlib 3.7.2
tensorflow 2.15.0
keras 2.15.0
keras-tuner 1.4.7

Table A9: Libraries and their versions

b appendix

Here are more details about the loss and the number of security events
that happened on other blockchains:

• Arbitrum: Experienced 18 security events resulting in a total loss of
$32.91 million.

• Avalanche: Had 4 security events with losses amounting to $14.15

million.

• Base: Reported 9 security events with $34.38 million in losses.

• Binance Smart Chain (BSC): Suffered 101 security incidents leading
to $54.16 million in losses.

• Ethereum (ETH): Recorded the highest losses at $487.8 million from
118 security events, making it the most affected blockchain.

• Polygon: Faced 6 security incidents resulting in $123.13 million in
losses.

• Other Blockchains: Included in the category of "Others" with various
smaller incidents and losses totaling $2.39 million.

C appendix 45

c appendix

This section offers a detailed explanation of each feature (variable) in
dataset and its corresponding meaning or interpretation in the context of
Ethereum transactions.

• Index: The index number of a row

• Address: The address of the Ethereum account

• FLAG: Whether the transaction is fraud or not

• Avg min between sent tnx: Average time between sent transactions
for account in minutes

• Avg min between received tnx: Average time between received
transactions for account in minutes

• Time Diff between first and last (Mins): Time difference between
the first and last transaction

• Sent tnx: Total number of sent normal transactions

• Received tnx: Total number of received normal transactions

• Number of Created Contracts: Total number of created contract
transactions

• Unique Received From Addresses: Total unique addresses from
which account received transaction

• Unique Sent To Addresses: Total unique addresses from which
account sent transactions

• min value received: Minimum value in Ether ever received

• max value received: Maximum value in Ether ever received

• avg val received: Average value in Ether ever received

• min val sent: Minimum value of Ether ever sent

• max val sent: Maximum value of Ether ever sent

• avg val sent: Average value of Ether ever sent

• min value sent to contract: Minimum value of Ether sent to a contract

• max val sent to contract: Maximum value of Ether sent to a contract

C appendix 46

• avg value sent to contract: Average value of Ether sent to contracts

• total transactions (including tnx to create contract): Total number of
transactions

• total Ether sent: Total Ether sent for account address

• total ether received: Total Ether received for account address

• total ether sent contracts: Total Ether sent to contract addresses

• total ether balance: Total Ether balance following enacted transac-
tions

• Total ERC20 tnxs: Total number of ERC20 token transfer transactions

• ERC20 total Ether received: Total ERC20 token received transactions
in Ether

• ERC20 total ether sent: Total ERC20 token sent transactions in Ether

• ERC20 total Ether sent contract: Total ERC20 token transfer to other
contracts in Ether

• ERC20 uniq sent addr: Number of ERC20 token transactions sent to
unique account addresses

• ERC20 uniq rec addr: Number of ERC20 token transactions received
from unique addresses

• ERC20 uniq sent addr.1: Number of ERC20 token transactions sent
to unique addresses (alternative count)

• ERC20 uniq rec contract addr: Number of ERC20 token transactions
received from unique contract addresses

• ERC20 avg time between sent tnx: Average time between ERC20

token sent transactions in minutes

• ERC20 avg time between rec tnx: Average time between ERC20

token received transactions in minutes

• ERC20 avg time between rec 2 tnx: Average time between ERC20

token received transactions (alternative count)

• ERC20 avg time between contract tnx: Average time between ERC20

token transactions to contracts

• ERC20 min val rec: Minimum value in Ether received from ERC20

token transactions for account

C appendix 47

• ERC20 max val rec: Maximum value in Ether received from ERC20

token transactions for account

• ERC20 avg val rec: Average value in Ether received from ERC20

token transactions for account

• ERC20 min val sent: Minimum value in Ether sent from ERC20 token
transactions for account

• ERC20 max val sent: Maximum value in Ether sent from ERC20

token transactions for account

• ERC20 avg val sent: Average value in Ether sent from ERC20 token
transactions for account

• ERC20 min val sent contract: Minimum value in Ether sent to
contracts from ERC20 token transactions

• ERC20 max val sent contract: Maximum value in Ether sent to
contracts from ERC20 token transactions

• ERC20 avg val sent contract: Average value in Ether sent to contracts
from ERC20 token transactions

• ERC20 uniq sent token name: Number of unique ERC20 tokens
transferred

• ERC20 uniq rec token name: Number of unique ERC20 tokens
received

• ERC20 most sent token type: Most sent token for account via ERC20

transaction

• ERC20_most_rec_token_type: Most received token for account via
ERC20 transactions

D appendix 48

d appendix

Feature Missing Data (%)

ERC20 most sent token type 27.406

ERC20_most_rec_token_type 8.851

ERC20 min val rec 8.424

ERC20 total Ether sent contract 8.424

ERC20 uniq sent addr 8.424

ERC20 uniq rec addr 8.424

ERC20 uniq sent addr.1 8.424

ERC20 uniq rec contract addr 8.424

ERC20 avg time between sent tnx 8.424

ERC20 avg time between rec tnx 8.424

ERC20 avg time between rec 2 tnx 8.424

ERC20 avg time between contract tnx 8.424

ERC20 max val rec 8.424

ERC20 total Ether received 8.424

ERC20 avg val rec 8.424

ERC20 min val sent 8.424

ERC20 max val sent 8.424

ERC20 avg val sent 8.424

ERC20 min val sent contract 8.424

ERC20 max val sent contract 8.424

ERC20 avg val sent contract 8.424

ERC20 uniq sent token name 8.424

ERC20 uniq rec token name 8.424

ERC20 total ether sent 8.424

Total ERC20 tnxs 8.424

Address 0.000

max value received 0.000

FLAG 0.000

Others 0.000

Table D10: Proportion of missing data for each feature

E appendix 49

e appendix

Parameter Value 1 Value 2 Value3
n_estimators 100 1000 1500

learning_rate 0.1 0.05 1

num_leaves 31 101 151

max_depth -1 35 55

Table E11: LGBM hyperparameter values

f appendix

Parameters Range Step Size Default
1st_unit 32 - 512 32 38

act_func relu, tanh, sigmoid relu
2nd_unit 16 - 256 16 15

act_func relu, tanh, sigmoid relu
3rd_unit 8 - 128 8 5

act_func relu, tanh, sigmoid relu

Table F12: MLP hyperparameters for three hidden layers

g appendix

Parameter Value
learning_rate 0.1
max_depth -1

n_estimators 1500

num_leaves 31

Table G13: LGBM hyperparameter values

Parameter Value
1st_unit 416

act_func relu
2nd_unit 80

act_func sigmoid
3rd_unit 112

act_func sigmoid
learning_rate 0.000912

Table G14: MLP hyperparameter
values

	Data Source, Ethics, Code, and Technology statement
	Introduction
	Problem Statement
	Societal and Scientific Relevance
	Research Strategies
	Main Findings

	Related Work
	Area of Research
	Past Work on Ethereum Fraud Detection
	Using Machine Learning Models
	Using Deep Learning Models

	Research Gap
	Motivation and Contributions

	Methodology and Evaluation
	Summarized Workflow
	Dataset Description
	Exploratory Data Analysis
	Data Cleaning and Preprocessing
	Data cleaning: Removing Duplicates
	Data cleaning: Deleting Features with Zero-variance
	Data cleaning: Imputation of Missing Data
	Data cleaning: Clipping Outliers
	Data Preprocessing
	Highly-correlated Features
	Categorical Features
	Data Splitting
	Scaling

	Algorithms
	Experimental Setup
	Comparing Sampling Techniques (RQ1)
	Non-sampling
	SMOTE
	ADASYN
	Undersampling

	Model Comparison (RQ2)
	Calculating Training Time and Reference Speed (RQ3)

	Evaluation Methods

	Results
	Results Experiment: Sampling Techniques
	Sampling Techniques for LGBM
	Performance Comparison
	Confusion Matrices

	Sampling Technique for MLP
	Performance Comparison
	Confusion Matrices
	Loss and Accuracy Curves

	Conclusion for Sampling Techniques

	Results Experiment: Model Comparison
	Optimization of the Models
	Hyperparameter Values
	Error Analysis and Training/Test Comparison

	Final Model Comparison

	Results Experiment: Training Time and Inference Speed

	Discussion
	Results Discussion and Comparison with Prior Work
	What techniques are most effective for each model in handling class imbalance?
	Which model demonstrates better performance?
	How do training time and inference speed compare between MLP and LGBM?

	Broader Societal Relevance
	Limitations
	Future Work

	Conclusion
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix

