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Abstract

This research explores three deep learning models and modali-
ties for automatic pose estimation and social action recognition of
long-tailed macaques (Macaca fascicularis) at the Biomedical Primate
Research Center (BPRC) in Rijswijk, The Netherlands. RGB data was
collected from a dual calibrated camera system located in a semi-
natural enclosure over one month, and a pose estimation algorithm
using YOLOv8 was trained to generate 2D and 3D skeleton data.
The findings revealed that a Spatial-Temporal Graph Convolutional
Network (ST-GCN) based on 2D skeleton data exhibited the high-
est performance with an accuracy of 75%. The study demonstrates
the feasibility of detecting naturally occurring, "between pairs" level
actions in semi-natural enclosures between two primates, without
necessitating specialized equipment or expensive cameras.

1 data source , ethics , code , and technology statement

The video data used in this research was provided by the Biomedical
Primate Research Center (BPRC) in Rijswijk. The videos were acquired
through two cameras located in a semi-natural enclosure at the BPRC. The
cameras were installed in February and constantly recording in February
and March without further interference. All images and figures are created
by the author, except for figure 8 which displays an illustration of the
triangulation process and was taken from Ekberg, Daemi, and Mattsson
(2017), which is clearly cited in the thesis. Several software packages have
been used for this research. Pose estimation was achieved by utilizing
the deep learning framework for object detection proposed by You Only
Look Once version 8 (YOLOv8) (Jocher, Chaurasia, & Qiu, 2023). Camera
calibration and triangulation relies on OpenCV (Bradski, 2000). For action
recognition, the OpenMMLab’s (M. Contributors, 2020) action recognition
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framework MMACTION2 (Contributors, 2020) was heavily modified and
adapted. The reused/adapted code fragments are clearly indicated. The
code is entirely written in Python 3.12 and available at https://github
.com/laurahgdrn/NHP-AR. In terms of writing, the author used assistance
with the language of the paper. A generative language model, OpenAI
(2024), was used to improve the author’s original content, for paraphrasing,
spell checking and grammar. No other typesetting tools or services were
used.

2 introduction

Macaques are essential to the study of human psychology, (cognitive) neu-
roscience, disease research, and drug development because of the biological
similarity and homology between macaques and humans (Gardner & Lu-
ciw, 2008; Hannibal, Bliss-Moreau, Vandeleest, McCowan, & Capitanio,
2017; Warren et al., 2020; Xue & Deng, 2023). Crucial components of these
studies are behavioral analyses, which are costly and time-consuming
when done manually. Besides this, behavioral measurements have histori-
cally been confined to single motor modalities, typically involving bodily
constraints, which provide limited comprehension of natural behavior
and induce strong ethical concerns about the animal’s welfare. Similarly,
other experiments that involved tracking or identifying animals required
markers attached to body parts - ranging from superficial tags or collars
to implanted chips - to track positions (Foster et al., 2014; Gilja, Chestek,
Nuyujukian, Foster, & Shenoy, 2010; Vargas-Irwin et al., 2010) which in-
duces ethical concerns as they can irritate and even harm the animals.
To address this challenge, there is a growing interest in the application
of automatic pose estimation and behavior classification, because of their
potential to boost these analyses while also allowing for a more comprehen-
sive understanding of natural behavior (Knaebe, Weiss, Zimmermann, &
Hayden, 2022). By automating the process of monitoring macaques in their
naturalistic settings, researchers can maintain high standards of animal
welfare while conducting meaningful observational research (Bala et al.,
2020; Hannibal et al., 2017; Voloh et al., 2023; Xue & Deng, 2023) without
constant human presence. This is crucial as it minimizes interference and
allows animals to behave uninhibitedly, providing a more authentic depic-
tion of their (inter)actions. Moreover, it can also enable the identification
of behavioral patterns indicative of underlying psychological states, such
as anxiety or depression (Hayden, Park, & Zimmermann, 2022) as well as
other injuries or illnesses as it has been shown that macaques mask signs
of injury or illness in the presence of humans (Gaither et al., 2014).

https://github.com/laurahgdrn/NHP-AR
https://github.com/laurahgdrn/NHP-AR
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Therefore, improved understanding of macaque behavior aids in the
ethical treatment and care of these animals in research settings. By reducing
the need for invasive methods and enhancing data accuracy, automated
systems contribute to the refinement of experimental practices, aligning
with ethical guidelines and public expectations for animal welfare (Knaebe
et al., 2022). Furthermore, insights gained from macaque studies can
inform broader societal discussions on animal cognition, behavior, and
welfare (Xue & Deng, 2023).

2.1 Social Behavior

The social environment is an important predictor of health and mortality
risk in social mammals (Simons, Michopoulos, Wilson, Barreiro, & Tung,
2022). The costs and benefits of group living are not distributed evenly
among group members and can significantly impact an individual’s overall
fitness (Schülke et al., 2022). Disparities arise based on factors such as rela-
tive spatial position within the group, dominance rank, and the frequency
and diversity of friendly physical contact with other members (Aguilar-
Melo, Calme, Pinacho-Guendulain, Smith-Aguilar, & Ramos-Fernández,
2020; Schülke et al., 2022). The advantages individuals gain from spatial
cohesion include heightened protection from predators (LaBarge, Allan,
Berman, Margulis, & Hill, 2020; Sirot & Touzalin, 2009), improved access to
social information about potential risks or resources (LaBarge et al., 2020)
as well as cooperative defense mechanisms, improved vigilance, collabora-
tive defense of resources, and more efficient foraging (Schülke et al., 2022).
Finally, the social environment can predict molecular, physiological and
life-history outcomes (Simons et al., 2022). In other words, social animals
with more and stronger social relationships live longer, healthier lives
(Simons et al., 2022; Testard, Tremblay, & Platt, 2021). There are several
social interactions animals can engage in to strengthen their bond and
social status, with the two predominant ones being grooming (Kaburu et
al., 2019; Simons et al., 2022) and playing (Shimada & Sueur, 2018; Solanki,
Lalremruati, Lalchhuanawma, et al., 2020a). Automatic action recognition
of grooming and playing behaviors in macaques can revolutionize the
understanding of their social structures and dynamics, and it also allows
researchers to collect and analyze vast amounts of data with greater effi-
ciency and accuracy than traditional methods (Knaebe et al., 2022; Pereira
et al., 2019). To be precise, this approach allows for continuous monitoring
and real-time analysis, providing a more comprehensive picture of social
interactions within macaque groups. Automatic action recognition can help
identify subtle patterns and changes in social behavior that may indicate
health issues, stress, or shifts in group hierarchy. For instance, a decrease
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in grooming frequency might signal social isolation or health problems,
while an increase in play behavior could imply a stable and cohesive so-
cial environment (Hayden et al., 2022). By detecting these changes early,
interventions can be implemented to improve animal welfare and manage
social dynamics accurately.

2.1.1 Grooming

As mentioned above, primates live in cohesive social groups, in which they
maintain stable relationships through affiliative behaviors such as groom-
ing (Jablonski, 2021). Grooming involves manipulating the body surface,
which includes all forms of care and attention. In social primates, grooming
is the primary currency of social affiliation (Simons et al., 2022; Solanki
et al., 2020a). For instance, several different primate species, including
macaques and larger apes, spent up to 20% of their day grooming (Solanki,
Lalremruati, Lalchhuanawma, et al., 2020b). In addition to establishing and
maintaining affiliative relationships, grooming is also believed to reduce
tension and aggression between individuals (Simons et al., 2022; Solanki et
al., 2020b), and promotes well-being by directly eliminating ectoparasites
such as lice, fleas, and ticks. Individuals lacking grooming interactions
exhibit heightened anxiety levels and reduced fertility compared to in-
dividuals with regular social interactions (Jablonski, 2021). From birth
to adulthood, grooming plays a pivotal role in building and sustaining
trust-based relationships, which are crucial for individual well-being and
reproductive success. Grooming facilitates the formation, maintenance
as well as reconciliation of social ties and therefore promotes emotional
stability among individuals and encourages group cohesion (Jablonski,
2021). Moreover, grooming behavior is highly influenced by the social
rank of an individual (Simons et al., 2022): higher-ranking individuals
generally engage in less grooming and are more often groomed by sub-
ordinates (Seyfarth, 1977). Additionally, Solanki et al. (2020a) stated that
grooming behavior varies across gender. They found that in long-tailed
macaques, female-female pairs tend to focus their grooming on the face
and frontal areas, whereas male-male pairs prefer grooming the back and
tail. Also, grooming occurs more frequently as the animals age, often
gradually replacing playing behavior.

2.1.2 Playing

The term ’play’ is not strictly defined, but it usually has the following
characteristics: the performance of the behavior is not functional, but it is
spontaneous, voluntary, intentional and pleasurable (Kellman & Radwan,
2022). Similar to grooming, playing strengthens social bonds and group
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stability. In many social animal species, playing is thought to fulfill various
social functions, including the acquisition of social knowledge and skills,
as well as the reinforcement of social bonds and cognitive developments
(Beltran Frances et al., 2020; Wright et al., 2018). To be more precise,
social play intertwines cooperation, communication, and reciprocal actions
among individuals. Additionally, play incorporates behavioral elements
from various social situations, including conflict, mating, and hunting,
blurring the distinction between play and non-play behaviors (Wright et
al., 2018). The type and display of play vary by species, but generally,
play activity increases during juvenile hood but declines at sexual maturity
(Mayhew, Funkhouser, & Wright, 2020). According to Mayhew et al. (2020),
play is also more often observed between young male juveniles, likely to test
their increasing physical strength in competition with other individuals.

3 related work

3.1 Pose Estimation

Pose estimation, a well-explored subfield within computer vision, is a
process that aims at locating different body parts to obtain a representation.
A majority of this research is focused on human pose estimation (HPE) with
applications in human-computer interaction, motion analysis including
action recognition and prediction, healthcare and augmented and virtual
reality (Munea et al., 2020; C. Wang, Zhang, & Ge, 2021; Zheng et al., 2023).

Pose estimation from 2-dimensional input like images or videos has
been explored extensively in the last decade, starting off with traditional
methods that required hand-crafted feature extraction techniques for dif-
ferent body parts (Zheng et al., 2023), utilizing methods like pictorial
structures and graphical models. These approaches, though effective in
constrained environments, faced challenges with variability in poses and
complex backgrounds (Toshev & Szegedy, 2014). With the increasing
availability of computational resources, deep learning approaches have
outperformed many of the traditional computer vision methods and are
currently considered the state-of-the-art designs for pose estimation (Zheng
et al., 2023). In general, pose estimation involves two main steps: 1) the
localization of body joints/key points, and 2) creating a valid pose configu-
ration from the detected key points (Munea et al., 2020). The localization
of the key points is mainly achieved through supervised learning methods,
where models are given a large set of images of, e.g., humans in different
situations and positions, along with their manually annotated key points.

Human pose estimation can be divided into single-person or multi-
person pose estimation, with the latter being much more challenging than
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the former. Multi-person pose estimation requires a deep understanding of
the logical arrangement of key points, enabling the distinction of key points
belonging to distinct individuals (Kocabas, Karagoz, & Akbas, 2018). While
human pose estimation has been largely explored (He, Zhang, Ren, & Sun,
2016; Kocabas et al., 2018; Toshev & Szegedy, 2014), only a small group
of researchers has investigated pose estimation for non-human primates
(NHP). The detection and pose estimation of NHPs can be more challenging
than of humans as frequent interactions cause occlusions and complicate
the association of detected key points to the correct individuals, as well as
having highly similar-looking animals that interact closely. The detection
and pose estimation of macaques pose additional challenges due to their
limbs having high degrees of freedom. One of the most famous open-source
frameworks for animal pose estimation is DeepLabCut (Mathis et al., 2018)
which applies transfer learning with deep neural networks and has been
shown to enable accurate pose estimations of mice (Mathis et al., 2018),
flies, cheetahs, horses, and fish (Nath et al., 2019). Most recently, Lauer et al.
(2022)) extended the DeepLabCut framework by introducing multi-animal
pose estimation. Bala et al. (2020) introduced OpenMonkeyStudio for 3D
pose estimation of primates. It is a marker-less motion capture system for
long-tailed macaques. The implementation incorporates pose estimation
using a deep neural network and utilizes 62 cameras, generating multi-
view image streams that significantly enhance annotated data through
3D multi-view geometry. However, the training data utilized to train the
model was collected from a tiny cage with almost no distracting objects.
The model’s applicability in a natural and macaque-friendly environment
is questionable.

3.2 Action Recognition

Action recognition is a challenging task in the field of computer vision.
In general, action recognition refers to automatically detecting human
behaviors and gestures. Action recognition can be roughly divided into
four groups: atomic level, between human and object, between pairs, and
within groups (Morshed, Sultana, Alam, & Lee, 2023), with the atomic level
being the easiest and within groups the most challenging act to decipher.
Similar to automatic pose estimation, action recognition has received a
growing attention in the last decade (Morshed et al., 2023). This trend
can be attributed to its diverse applications across various domains such
as human-computer interaction (HCI) (Gammulle et al., 2023), criminal
settings and surveillance systems (Peng, Shi, Varanka, & Zhao, 2021; Sujith,
2014), virtual and augmented reality (Ma et al., 2021), as well as health
care (Bibbò & Vellasco, 2023), and sign language (Thangali, Nash, Sclaroff,
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& Neidle, 2011; Varadaraju, 2013). In clinical settings, action recognition
systems can aid in stroke rehabilitation and assessing parkinson’s severity
(Bibbò & Vellasco, 2023; Morshed et al., 2023).

Action recognition can be performed on RGB (Red, Green, Blue) images
and videos, 2D/3D skeleton data, and other modalities (Sun et al., 2022).
It is different from other computer vision tasks, such as object detection
or pose estimation, because the additional temporal dimension provides
crucial information. Therefore, complex models which are able to simul-
taneously track the spatial and temporal domain had to be developed.
Recurrent Neural Networks (RNNs) are specifically designed to model
sequential and temporal data which is why they have a wide range of ap-
plications across various fields such as Natural Language Processing (NLP),
Time-Series Analysis and Forecasting, and Action Recognition (W. Li, Wen,
Chang, Nam Lim, & Lyu, 2017; Tyagi & Abraham, 2022). However, RNNs
fail at recognizing long-term dependencies, due to the vanishing and gra-
dients (Noh, 2021) which is why RNN-based architectures like Long Short
Term Memory (LSTM) models (Donahue et al., 2015; Sun et al., 2022; Yue-
Hei Ng et al., 2015) or Gated Recurrent Units (GRU) (Dwibedi, Sermanet,
& Tompson, 2018; Kim, Lee, & Lee, 2018) have been widely explored for
HAR and have achieved high performances.

Other common models for Human Action Recognition (HAR) from
RGB data are 2D Convolutional Neural Networks (2D-CNNs) (Simonyan
& Zisserman, 2014) which usually consist of a two-stream framework com-
prising a spatial network, that takes the single frames as input, and a
temporal network, that receives multi-frame-based optical flows. Conse-
quently, the spatial stream learns appearance features while the temporal
stream captures motion features. Another CNN-based approach is the so-
called SlowFast Network, which has been introduced by Feichtenhofer, Fan,
Malik, and He (2019)) and showed promising results. Instead of operating
on two separate streams in the spatial and temporal domain, a SlowFast
network processes one temporal stream, but sampled at different frame
rates. In more detail, a typical SlowFast network consists of a slow pathway,
which performs convolutional operations on frames with a large temporal
stride, and a fast pathway, which performs convolutional operations at
a high frame rate (Feichtenhofer et al., 2019). The SlowFast network is
computationally lightweight compared to similar methods (Feichtenhofer et
al., 2019) and it does not require optical flow, enabling end-to-end learning
from the raw data, while still achieving state-of-the-art performance for
action classification and detection in videos (C.-F. R. Chen et al., 2021;
Feichtenhofer et al., 2019).

Collecting RGB data is typically straightforward and provides detailed
visual information about the scene being captured, but recognizing actions
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from RGB data presents its own challenges due to background variations,
differing viewpoints, scale discrepancies, and lighting conditions. Addi-
tionally, RGB videos are often large, resulting in substantial computational
expenses when attempting to model the spatio-temporal context.

Because of this, some works have focused on minimizing data dimen-
sionality by extracting the most relevant information from videos, such
as skeleton sequences that represent the trajectories of body joints and
capturing essential movements (C. Wang & Yan, 2023). Not only does
skeleton data require less computational resources, it is also a more robust
and compact representation of movements as it mitigates issues related
to viewpoint variations, occlusions, background clutter, and lighting con-
ditions (C. Wang & Yan, 2023). Human skeleton data can be acquired
using motion sensors or by applying pose estimation algorithms (L. Wang
et al., 2018; Q. Wang, Zhang, & Asghar, 2022). Because skeleton data
resides in a non-Euclidean space, it poses challenges for traditional deep
learning methods to fully exploit their potential (Monti et al., 2017; Peng
et al., 2021). Fortunately, the emergence of Geometric Deep Learning has
introduced solutions such as the Graph Convolutional Network (GCN),
specifically designed to tackle action recognition tasks using skeleton data
and currently provide one of the most commonly used frameworks for
skeleton-based action recognition (Monti et al., 2017; Peng et al., 2021).
GCN-based methods are designed to perform convolutional operations on
graph data (L. Wang et al., 2018). In the context of skeleton-based HAR,
the most prominent work has been devoted towards Spatial-Temporal
Graph Convolutional Networks (ST-GCN) to capture motion and temporal
dependencies on serialized skeleton data (Cai, Jiang, Han, Jia, & Lu, 2021;
Huang et al., 2020; Peng et al., 2021; Yan, Xiong, & Lin, 2018). Conventional
ST-GCNs consist of a series of individual ST-GCN blocks that apply spatial
and temporal graph convolutions alternately over the skeleton graph (Yan
et al., 2018).

Although 2D skeleton data mitigates some of the challenges that arise
from using RGB data for action recognition, it is still sensitive to occlusions
and lack of depth perception. 3D skeleton data offers significant advantages
compared to 2D data. The depth information provides a more accurate
spatial understanding of the (human) body, which can enhance pose esti-
mation and action recognition accuracy (Peng et al., 2021). Additionally, 3D
skeletons are less affected by changes in viewpoint, maintaining consistency
across different camera angles. They also preserve spatial relationships
more effectively, improving the discrimination between various actions
and poses. Furthermore, 3D data better handles occlusions by estimating
obscured body parts, resulting in more complete skeleton representations
and higher action recognition performance (Peng et al., 2021). There are
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two common approaches to generate 3D skeleton data: (1) using cameras
with depth sensors, such as Microsoft’s Kinect series (Bilesan, Komizunai,
Tsujita, & Konno, 2021; Shahroudy, Liu, Ng, & Wang, 2016), or extracting
poses from multiple views and then performing triangulation (Iskakov,
Burkov, Lempitsky, & Malkov, 2019; Qiu, Wang, Wang, Wang, & Zeng,
2019; Tome, Toso, Agapito, & Russell, 2018). Similar to action recognition
from 2D skeleton data, ST-GCNs and other GCN-based models are the
most dominant methods for 3D skeleton based action recognition (Peng et
al., 2021).

As mentioned in section 2, Bala et al. (2020) introduced OpenMon-
keyStudio, a system designed for automated markerless 3D pose estima-
tion of macaques, which utilizes a multi-camera setup with 62 cameras
surrounding an 8m3 enclosure. They employed a deep learning-based
architecture tailored for macaque anatomy, integrating CNNs for key point
detection and a graph-based optimization for 3D pose reconstruction. Their
system achieved an average detection accuracy of approximately 95% for
key points when validated against manually annotated ground truth data.

C. Li et al. (2023) developed a 2D skeleton-based deep learning model
for pose estimation of cynomolgus monkeys. Bone recognition was achieved
utilizing a high-resolution network (HRNet) and a MaskTrack R-CNN to
track the monkeys’ positions. The positional information for each monkey
was then extracted and fed into a HRNet to generate a heatmap, achieving
a detection accuracy of 98.8%. For action recognition, C. Li et al. (2023)
proposed a two-stream model based on temporal shift and split attention
(TSSA) with a ResNet-50 backbone and self-attention mechanisms added
to each layer. Evaluating performance with top-1-accuracy, the model
achieved 98.99% in detecting semantic actions such as climbing, jumping,
and moving down.

Social action recognition between pairs or groups of primates has not
yet been explored. Close interactions, such as grooming and playing, result
in increased proximity between individuals, complicating the recognition
of their actions. Furthermore, the greater degrees of freedom in macaques’
extremities pose additional challenges, as well as the scarcity of action
recognition data sets Bala et al. (2020).

3.3 Current study

This study expands the existing literature in several ways. First, the
recorded video footage comes from two stabilized cameras in a semi-
natural environment where the primates live in groups of up to 15 indi-
viduals. The recorded area includes platforms at different heights, swings,
ropes, food, and other toys. The animals are allowed to enter or leave the
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recorded area at any time, therefore the amount of animals in a frame
ranges between 0 and 15. Although each of these factors poses a unique
challenge to computer vision algorithms, they also allow for the detection
of natural behavior while ensuring the animal’s well-being. Many studies
presented earlier trained their pose estimation models in highly restricted
and unnatural laboratory settings (Bala et al., 2020; C. Li et al., 2023; Mar-
tini, Bognár, Vogels, & Giese, 2024; Nakamura et al., 2016). Second, prior
studies have largely focused on detecting single (C. Li et al., 2023; Mathis
et al., 2018; Nakamura et al., 2016) or at maximum two animals (Bala et
al., 2020; Martini et al., 2024). This study aims to track and detect multiple
animals simultaneously by focusing on their social interactions. Again, this
approach ensures the animal’s well-being and the observation of natural
actions and will provide relevant insights into social behavior, revolutioniz-
ing our understanding of social structures and dynamics. It allows for the
identification of subtle patterns and changes in social behavior that may
be indicative of health issues, stress, or shifts in group hierarchy (Hayden
et al., 2022), further ensuring the well-being of macaques and other social
animals in captivity.

As mentioned in the previous section, data sets for NHP action recogni-
tion are non-existent (or not openly accessible). This study will introduce
the first action recognition data set for classifying grooming and playing be-
haviors of macaques, consisting of three modalities: RGB data, 2D skeleton
data and 3D skeleton data. RGB data will be collected from two cameras,
a pose estimation algorithm will be trained to generate 2D skeletons and
triangulation will be applied to create 3D skeleton data.

Finally, this research aims to answer the following research questions:

RQ1 To what extent can deep neural networks be employed to identify grooming
and playing behaviors among long-tailed macaques?

SubQ1 How does their performance vary across different datasets?

SubQ2 How does the duration (number of frames) of the input video affect the
models’ performances?

RQ2 How can deep learning and computer vision methods be leveraged to increase
observational research of macaques while ensuring animals’ well-being?

4 methods

The data for this research was provided by the Biomedical Primate Research
Center (BPRC).
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4.1 Biomedical Primate Research Center (BPRC)

The Biomedical Primate Research Centre (BPRC) in Rijswijk, The Nether-
lands, is a scientific research institute that conducts biomedical research
on serious diseases and its macaque research has led to groundbreaking
discoveries in areas such as infectious diseases (e.g., HIV, hepatitis, or
corona), chronic illnesses (e.g., Alzheimer’s or Parkinson’s, multiple sclero-
sis or arthritis, or post-traumatic stress disorder (PTSD)), and immunology
(BPRC, 2024). In addition, a significant area of research conducted at the
BPRC is dedicated to ethology. Ethology refers to the study of animal
behavior (e.g., eating, mating, sleeping, and collaborating). Macaques at
the BPRC live in so-called pseudo-natural groups, which mimic the social
dynamics of groups living in the wild. Research of the ethology group at
the BPRC largely focuses on the origin and evolution of the social behavior
of primates and, consequently, humans (BPRC, 2024).

While the pseudo-natural habitats contribute to the welfare of the pri-
mates, they pose challenges for direct observation. For instance, in specific
experiments, particularly those focused on social interactions and group
dynamics of macaques, researchers from the ethology group rely on hours
of video material recorded using hand cameras. It has been estimated that
a detailed analysis of a video takes roughly three times its duration (Ardoin
& Sueur, 2023). Automatic pose detection can significantly enhance the
quality and quantity of observational research at BPRC without disrupting
the primates’ pseudo-natural environment.

4.2 Hardware and Software Specifications

Several software packages have been used for this research. Pose estimation
was achieved by utilizing the deep learning framework for object detection
proposed by You Only Look Once version 8 (YOLOv8) (Jocher et al.,
2023). Camera calibration and triangulation relies on OpenCV (Bradski,
2000). For action recognition, the OpenMMLab’s (M. Contributors, 2020)
action recognition framework MMACTION2 (Contributors, 2020) was
heavily modified and adapted. The deep learning models were trained
on a Windows machine with an NVIDIA GeForce RTX 4090, CUDA 11.8
(NVIDIA, Vingelmann, & Fitzek, 2020) and PyTorch 2.3.0 (Paszke et al.,
2017). The code is entirely written in Python 3.12 and available at https://
github.com/laurahgdrn/NHP-AR.

https://www.bprc.nl/nl/home
https://github.com/laurahgdrn/NHP-AR
https://github.com/laurahgdrn/NHP-AR
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4.3 Data Collection

The data provided for this project consists of video footage from two
cameras that cover a small part of one of the cages at the BPRC. The two
cameras have a 1/2.8" Progressive Scan CMOS image sensor with a 2.8 to
12 mm focal length and a 2560 × 1440 resolution. The observed area covers
approximately 96m3 (8m length x 4m width x 3m height). The cameras
were constantly recording in February and March.

Figure 1: A sketch of the cage, including the camera positions and their views.

4.4 Data Preparation and Preprocessing

Several days of video data were available for this study. To minimize man-
ual workload, an adaptive background subtraction algorithm was applied
to extract movement. Background subtraction is a widely employed tech-
nique in different computer vision applications (Garcia-Garcia, Bouwmans,
& Silva, 2020). It aims at classifying an image into foreground and back-
ground (Figure 2). In this case, background subtraction has been applied
to extract movement, which was achieved by measuring the difference in
pixels between a frame and its predecessor. If the pixel difference is below a
certain threshold (30 pixels) over a period of 5 consecutive frames, it means
that no relevant movement is displayed. Parts without movement were then
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removed from the input videos, and the segments were manually classified
into grooming and playing behavior. This resulted in 261 video segments,
from which 159 display grooming behavior and 102 playing behavior. With
an average number of 134 frames per clip (min. = 101, max. = 167), the
total number of frames is estimated to be around 28,710. The videos were
then split into training, test, and validations with the following ratios: 0.7,
0.15, and 0.15, respectively.

Figure 2: The result of the background subtraction algorithm.

4.4.1 RGB Data

For the RGB data condition, no additional processing steps were necessary.

4.4.2 2D Skeleton Data

For 2D skeleton action recognition, a pretrained YOLOv8 pose estimation
model (subsection 4.8) was employed to automatically predict the poses
for each macaque in each frame.

4.4.3 3D Skeleton Data

To construct 3D poses, the pretrained YOLO pose estimation model is
applied in such a way that it simultaneously iterates through the synchro-
nized frames from both camera view points and predicts the key points.
Each key point for each detected macaque is then triangulated using the
Direct Linear Transforms (DLT) function. Because the triangulation process
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Figure 3: The preprocessing steps for the three modalities, which were then used
to train distinct deep learning models.

(described in subsection 4.7) requires two viewpoints to triangulate the key
points of one animal, the data set for 3D skeleton data is half the size of
the 2D skeleton data set.

4.5 Data Augmentation

Data augmentation is a common technique during the training phase of
deep learning models, and generally describes the process of artificially
generating more data samples (Taylor & Nitschke, 2018). Data augmenta-
tion does not only improve the performance of deep learning models, but
also their robustness and generalizability. In the present research, data aug-
mentation was applied to the raw videos with respect to class imbalance
(Table 1). Data augmentation with respect to class imbalance simply refers
to augmenting more samples of the underrepresented class (in this case,
playing). Similar to Yun, Oh, Heo, Han, and Kim (2020), the videos have
been rotated (vertically and horizontally) and cropped. To ensure that no
relevant information is lost while cropping, the YOLO model was applied
to detect macaques in each frame and crop a fixed size (500x500pixels)
around the center of the union of their detected bounding boxes.
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Figure 4: An example of the raw video data for each action class.

Figure 5: An example of the serialized 2D skeleton data for each action class.

4.6 Camera Calibration

The goal of camera calibration techniques is to obtain the extrinsic and
intrinsic camera parameters. To compute the intrinsic and extrinsic param-
eters, it is necessary to find specific points of which the relative positions
are known. A common method to achieve this is utilizing a checkerboard
pattern (J. Chen et al., 2020; Placht et al., 2014). Initially, images of a
checkerboard are captured from various viewpoints and OpenCV is used
to automatically detect checkerboard patterns in these images (Bradski,
2000). Given the known dimensions of the checkerboard, the corresponding
3D points (x, y, x) can be mapped to the 2D image points (x, y), allowing
for the calculation of distortion coefficients. Distortion coefficients account
for focal length ( fx, fy) and optical centers (cx, cy) of one camera. They can
be used to create a camera matrix:
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Figure 6: An example of the serialized 3D skeleton data for each action class.

Before video augmentation After video augmentation

Class Video
Segments

Frames Video
Segments

Frames

Grooming 159 17,490 531 45,450

Playing 102 11,200 511 44,100

Total 261 28,690 1044 114,840

Table 1: The amount of the extracted video segments and frames for each class
before and after video augmentation with respect to class imbalance.

cameramatrix =

 fx 0 cx

0 fy cy

0 0 0


Extrinsic parameters corresponds to rotation and translation vectors which
translate the coordinates of a 3D point to a coordinate system. They are
described by rotation (R) and translation (t) vectors. The projection matrix
P of a single camera is computed by multiplying the camera matrix (K)
and the combined rotation and translation matrices:

P = K[R, t]

The projection matrix can then be used to project a 3D point (x, y, z)
onto a 2D image plane. It transforms the 3D point in the camera coordinate
system to homogeneous image coordinates by the scaling factor λ:
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(a) Camera view 1 (b) Camera view 2

Figure 7: An example of two synchronized frames used for calibration after
applying gamma correction, binary threshold, and erosion.

λx
λy
λ

 = P


X
Y
Z
1


After calibration, the Root Mean Squared Error (RMSE) was 3.191

pixels. In general, a RMSE below 1 is desirable (Remondino & Fraser,
2006), but the slightly increased value of 3 pixels in this study is likely
to be attributable to the camera set up at the BPRC. Because the cameras
are located at high ceilings inside the cage and resolution is not optimal,
several image enhancements techniques had to be applied to ensure proper
detection of the checkerboard corners (Figure 7), which include gamma
correction, binary threshold, and erosion. Besides this, camera calibration
is generally applied for stereo vision, where two cameras are positioned
side by side. However, in this case, the cameras were positioned opposite
to each other, requiring additional adjustments through hard-coding to
ensure accurate calibration of their perpendicular orientations.

4.7 Triangulation

Triangulation is a fundamental concept in computer vision and 3D recon-
struction (J. Chen et al., 2020; Qiu et al., 2019; W. Wu, Xu, Liang, Mei, &
Peng, 2020) and originates from the field of projective geometry. With
the projection matrices (P) obtained for each camera, the triangulation
process involves finding the 3D coordinates of the feature point by inter-
secting the back-projection rays from each camera’s image plane (Brill,
1987). This intersection yields the estimated 3D coordinates of the point in
the world coordinate system, as shown in Figure 8. A common method
to achieve this is the Direct Linear Transformation (DLT) function, which
is a mathematical method to solve a linear system using Singular Value
Decomposition (SVD) (Brill, 1987).
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Figure 8: The triangulation process for a dual calibrated camera system. From
(Ekberg et al., 2017).

4.8 Pose Estimation of Macaques using YOLOv8

As mentioned in section 2, action recognition data sets of macaques do not
exist and need to be created from scratch. To create 2D and 3D skeleton
data from videos, a You Only Look Once (YOLO) model was trained to
perform pose estimation on macaques.

YOLO (You Only Look Once) is a cutting-edge real-time object detec-
tion system (Jocher et al., 2023) widely deployed across diverse research
domains including agriculture (Tian et al., 2019; D. Wu, Lv, Jiang, & Song,
2020), medicine (Al-Masni et al., 2018; Nie, Sommella, O’Nils, Liguori, &
Lundgren, 2019), autonomous vehicles, and security systems (Bhambani,
Jain, & Sultanpure, 2020; Kumar, Narasimha Swamy, Kumar, Purohit, &
Raju, 2021). The model processes input images through a pretrained con-
volutional neural network serving as the backbone, comprising 24 layers
followed by two fully connected layers. This network predicts bounding
box coordinates and their associated probabilities. Only the bounding box
with the highest Intersection over Union (IoU) score is retained. IoU mea-
sures the overlap between predicted and ground truth bounding boxes by
evaluating the ratio of their intersection to their union, ensuring accurate
object localization and detection.
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4.8.1 Pretraining

The model has been pretrained on the MacaquePose data set (Labuguen
et al., 2021) for 200 epochs. The MacaquePose data set consists of more
than 12,000 images of macaques in various positions and locations. Each
macaque is annotated with 17 key points.

4.8.2 Hyperparameter Optimization

To ensure optimal performance of the YOLO pose estimation model, hyper-
parameter optimization was performed (Figure 9). Hyperparameters refer
to those parameters that cannot be directly estimated from data learning
and must be set before training, in contrast to the model parameters that
can be initialized and updated throughout the learning process (e.g., the
weights of neurons in neural networks) (Yang & Shami, 2020). In addition
to better performance, hyperparameter optimization also increases the
reproducibility of deep learning models. For YOLO, Hyperparameters
include, among many others, the learning rate, the weight decay, and the
momentum (Jocher et al., 2023). An overview of the best hyperparameters
can be found in the appendix (section 11).

Figure 9: The fitness scores during hyperparameter optimization over 120 itera-
tions.



4 methods 20

Figure 10: The performance of the model (model 3, Table 2) on the BPRC valida-
tion set after training and fine-tuning. A demonstration video is available here:
https://youtu.be/n0voSPY1UOI.

4.8.3 Intermediate Evaluation of the Pose Estimation Model

After the hyperparameter tuning was completed, the model was evaluated
on different data sets. A key evaluation metric for object detection models
is mean Average Precision (mAP). It combines the precision (P) and recall
(R) scores for multiple predictions. Recall refers to the models’ capability
to make predictions for a class compared to the total labels that the class
has. Precision is the ratio of correct predictions to all predictions made by
the model. Combining these two metrics results in a curve, showing the
trade-off as we change the classification threshold: while mAP50 considers
the precision at a 50% intersection over union (IoU) threshold, mAP50-95

calculates the average precision over a range of IoU thresholds, from 50%
to 95%. A higher mAP suggests better performance. Table 2 shows that for
the first model, which was trained and evaluated on the MacaquePose data
set, 98% of the detected bounding boxes are correctly localized and 94% of
all instances of macaques present in the images are successfully identified,
reflecting a high accuracy in the spatial localization and identification of
macaques within the images. The mean average precision of 97% calculated
at an IoU threshold of 0.50, and 90% at an IoU threshold between 0.50

and 0.95 indicates a high accuracy at correctly detecting the bounding

https://youtu.be/n0voSPY1UOI
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Box Pose

Model P R mAP50 mAP50-
95

P R mAP50 mAP50-
95

1 0.98 0.94 0.97 0.90 0.95 0.89 0.90 0.72

2 0.77 0.77 0.75 0.58 0.35 0.33 0.14 0.02

3 0.94 0.88 0.92 0.73 0.72 0.64 0.61 0.59

Table 2: The performance of the pose estimation model after being trained on
the MacaquePose data set and validated on the MacaquePose data set (model 1),
trained on the MacaquePose data set and validated on the BPRC data (model 2),
and fine-tuned on the BPRC data and evaluated on the BPRC data (model 3).

boxes in the images. Looking at the pose metrics, we can see that the
pose precision is at 0.957 which indicates that 95% of the predicted poses
are accurately localized with a recall of 89%. While the mean average
precision at an IoU threshold of 0.50 is at 90.2%, it drops to roughly 70% at
an IoU threshold between 0.50 and 0.95. The models’ performance on the
MacaquePose data set is satisfactory, but performance decreased to 35%
when predicting key points in the videos from the BPRC (see model 2 in
Table 2). The drop in performance is likely due to the high heterogeneity
of the two data structures: While the MacaquePose data set consists of
high quality images where the macaques are large and centered, the videos
contain strong movement and often the monkeys seem relatively small
which makes them more difficult to detect. Because of this, the model was
fine-tuned on manually annotated frames which significantly improved its
performance on the BPRC data: Now, 95% of the detected bounding boxes
are correctly localized and 84% of all instances of macaques present in the
images are successfully identified. The mean average precision calculated
at an IoU threshold of 0.50 is 92%, and 75% at an IoU threshold between
0.50 and 0.95. This indicates a moderate accuracy at correctly detecting the
bounding boxes in the images. Looking at the pose metrics, we can see
that 72% of the predicted poses are accurately localized, with a recall of
65%. While the mean average precision at an IoU threshold of 0.50 is at
61%, it drops to roughly 59% at an IoU threshold between 0.50 and 0.95.

The final pose estimation model, model 3, was then applied to generate
a series of 2D skeletons for each clip. These 2D skeletons were triangulated
(subsection 4.7) to create 3D poses.
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4.9 Deep learning Models for Action Recognition

Several deep learning models were trained to perform action recognition
of macaques based on three modalities: video segments, 2D skeleton
data, and 3D skeleton data. For action recognition from video segments
and skeleton data, the MMACTION2 (Contributors, 2020) framework is
adapted. MMAction2 is an open source toolkit based on PyTorch that
is widely used in research for diverse experiments concerning human
action recognition (Y. Chen, 2024; Chiura & van der Haar, 2023; Voropaev,
Magomedov, & Alfimtsev, 2024). MMACTION2 is powered by OpenMM-
lab (M. Contributors, 2020), which is an open-source computer vision
algorithm system. The whole framework is strictly focused on human
action recognition, which is why several modifications and adaptations to
the source code were necessary to perform Non-Human Primate Action
Recognition (NHP-AR). All models, independent of the modality of the
data, aim to capture spatial-temporal context. The duration of an input
video affects action recognition by providing more temporal context, which
can improve accuracy, but also introduces potential noise and increases
computational load (Gowda, Rohrbach, & Sevilla-Lara, 2021). In this study,
the duration is especially relevant as macaques often switch their behavior
almost instantly, and grooming behavior can smoothly transition into play-
ing behavior or the other way around. To ensure a fair comparison across
models, common parameters unrelated to specific architectural differences
were standardized. For example, the optimization strategy for each model
was a stochastic gradient descent (SGD) with a fixed learning rate of 0.1,
momentum of 0.9, and weight decay of 0.0005. Each model was trained for
20 epochs.

4.9.1 SlowFast for Action Recognition from Raw Video Segments

The SlowFast architecture has been chosen for this NHP-AR task because
of several reasons. SlowFast networks are lightweight while still achiev-
ing state-of-the-art performance. It effectively captures varied temporal
dynamics by processing video frames at multiple temporal resolutions,
making it suitable for distinguishing between fast movements (e.g., play-
ing) and slower actions (e.g., grooming). The framework consists of a
slow pathway, operating at low frame rate, designed to capture spatial
semantics, and a fast pathway, operating at high frame rate, capturing
motion at fine temporal resolution (Feichtenhofer et al., 2019). The slow
pathway is characterized by deeper networks with larger receptive fields,
while the fast pathway utilizes shallower networks for faster processing of
temporal information. This study’s model utilizes a backbone consisting
of a Residual Neural Network with 50 layers, including residual blocks,
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which enable the model to learn hierarchical representations of input data.
The temporal stride was set to 16 for the slow pathway, and 2 for the fast
pathway. Lateral connections, connecting the slow and the fast pathway,
are inserted every four residual blocks.

4.9.2 2D Spatial-Temporal Graph Convolutional Network (2D-ST-GCN) for
Action Recognition from 2-dimensional skeleton data

ST-GCNs are designed to analyze the spatial configuration of the joints
as well as their temporal dynamics (Yan et al., 2018). The construction of
the spatial-temporal graph on the skeleton sequences occurs in two stages.
Firstly, joints within a single frame are linked with edges based on the
connectivity inherent in the primate body structure. Subsequently, each
joint is connected to its corresponding joint in the consecutive frame. The
ST-GCN model comprises 9 layers of spatial-temporal graph convolution
units with a temporal kernel size of 9. Within each ST-GCN unit, a
Residual Neural Network (RNN) mechanism is applied to enhance feature
representation. For temporal convolution layers, the strides of the 4th and
7th layers are set to 2, acting as pooling layers. The classification head of
the model is a Graph Convolutional Network (GCN) head.

4.9.3 3D Spatial-Temporal Graph Convolutional Network (3D-ST-GCN) for
Action Recognition from 3-dimensional skeleton data

The architecture of the 3D-ST-GCN is identical to the 2D-ST-GCN described
above. Merely the shape of each key point changes from (x, y) to (x, y, z).

5 evaluation

The most dominant evaluation metric for action recognition is top-1-
accuracy (Contributors, 2020; C. Li et al., 2023), which simply refers to the
ratio of the amount of correctly predicted instances to the total number of
instances. "Correct" in this sense means that the prediction with the highest
probability refers to the ground truth. While this is a reliable metric in
other studies that contain up to 400 different action classes, it might not be
sufficient for this specific research, where behavior is only classified in two
categories. Therefore, precision and recall (section 4.8.3) will be utilized to
evaluate the performance of the action recognition models1.
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Model Input Memory Accuracy Precision Recall

SlowFast RGB 8116 0.61 0.52 0.45

2D-ST-GCN 2D skel. 1186 0.75 0.79 0.81

3D-ST-GCN 3D skel. 1186 0.71 0.39 0.53

Table 3: Comparing the three action recognition models based on memory usage
per epoch, accuracy, precision, and recall.

6 results

The comparative analysis of three different deep learning models for action
recognition on social interactions between macaques reveals significant
variations in performance across various metrics. The SlowFast model,
which uses RGB input, demonstrates the highest memory usage per epoch
(8116 MB) but yields a moderate accuracy of 0.46, with a precision of 0.52

and recall of 0.45. Accuracy in this context refers to the proportion of cor-
rectly identified actions (grooming or playing) out of all predictions made
by the model. Precision indicates how many of the predicted grooming
or playing actions were accurate. Recall, on the other hand, measures the
proportion of true positive predictions among all actual positive instances,
reflecting the model’s ability to identify all instances of grooming and play-
ing actions present in the dataset. The 2D-ST-GCN model exhibits superior
performance with an accuracy of 0.75, precision of 0.79, and recall of 0.81,
while requiring substantially less memory (1186 MB). The 3D-ST-GCN
model, which uses 3D skeletal data, shows a notable drop in precision
(0.29) despite having the same memory usage as the 2D-ST-GCN, and its
accuracy (0.53) and recall (0.53) are also lower.

• SlowFast: https://youtu.be/YwU50N9mQTE

• 2D-ST-GCN: https://youtu.be/qcv0es_Itcs

• 3D-ST-GCN: https://youtu.be/xrrjLvEGywI

7 cross-dataset performance analysis

To demonstrate generalizability, the best performing action recognition
model, the 2D-ST-GCN, was tested on new videos from a different group.
The structure of the enclosure is similar to the training data, but the individ-
uals differ in appearance, size, and age. The 2D-ST-GCN has been selected

1 mAP is a metric specific to object detection tasks, which is why it will not be adapted.

https://youtu.be/YwU50N9mQTE
https://youtu.be/qcv0es_Itcs
https://youtu.be/xrrjLvEGywI
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Figure 11: The top-1-accuracy of the three models over training time in minutes.

not exclusively because of its high performance. As mentioned earlier,
skeleton data is more robust towards changes in lighting, appearance, and
viewpoints. Therefore, it can be assumed that the 2D-ST-GCN performs
better on new, unseen data. The 3D-ST-GCN will not be tested on the new
data simply because the others enclosures do not accommodate several
cameras, eliminating the possibility of 3D pose estimation.

Similar to the training data acquisition, adaptive background subtrac-
tion techniques were applied to extract movement, and the YOLO model
(subsection 4.8) was utilized to filter segments in which there are at least
two macaques present. Without additional manual work, this procedure
resulted in 50 video segments. The videos were then manually classified
(grooming, playing, or nothing) and compared to the models’ prediction
for each segment. The "nothing" class refers to "no significant activity" and
is assigned to segments where the prediction probability for both grooming
and playing behaviors is below 0.8.

As mentioned in subsection 3.2, many parameters can affect the per-
formance of action recognition. One major factor is the number of frames
sampled from the input video. In this study, the duration is especially
relevant as macaques often switch their behavior almost instantly, and
grooming behavior can smoothly transition into playing behavior or the
other way around. If frame sampling is too high, those subtle transitions
may go undetected. Conversely, if the frame number is too low, impor-
tant details may be missed, making it difficult to accurately distinguish
between different behaviors. Therefore, selecting an optimal amount of
frames is essential for capturing the nuanced and rapid behavior changes
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Figure 12: The loss of the three models over training time in minutes.

Sampled frames Accuracy Precision Recall

50 0.47 0.61 0.47

100 0.66 0.65 0.64

200 0.59 0.68 0.59

Table 4: The effect of the number of sampled frames on the performance of the
2D-ST-GCN.

of macaques. To explore the optimal frame rate, three sampling rates have
been tested: 50, 100, and 200 (Table 4).

8 discussion

This research focused on recognizing social interactions, grooming and
playing, between macaques using different deep learning architectures.
Grooming has a crucial function in establishing relationships and ensuring
emotional stability within groups, and also aids in physical well-being by
combating ectoparasites (Simons et al., 2022; Solanki et al., 2020b). Similarly,
playing in social animals serves to strengthen group cohesion and facilitate
social learning (Beltran Frances et al., 2020). Distinguishing those close
interactions of macaques from raw video data is not a trivial task. Both
behaviors require close spatial proximity, which introduces challenges for
computer vision models. The temporal domain is crucial to distinguish
the two actions from each other, as single frames (or skeletons) from both
actions can be identical.
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Figure 13: Confusion matrix of the ST-GCN model with a sampling rate of 50

on the new test set. The model correctly identified 13 instances of grooming but
misclassified 3 as playing and none as ’nothing’. For playing, it only classified 9

instances correctly. It also misclassified playing as grooming 15 times.

This research proposed a YOLOv8 pose estimation model to automati-
cally extract 2D poses of macaques from video data. After hyperparameter
optimization and fine-tuning, the best performing model achieved an ac-
curacy of about 70% at predicting key points, which is significanly lower
than the markerless system proposed by Bala et al. (2020) which achieved
an average detection accuracy of around 95% for key body parts when
compared to manually annotated ground truth data. This is likely due
to the different setups in both studies. In the study by Bala et al. (2020),
the researchers utilized a highly professional setup, involving 62 cameras
that encircle an open 8m3 enclosure specifically designed for optimal pose
estimation. This controlled environment minimizes occlusions and ensures
comprehensive coverage from multiple angles, facilitating more accurate
key point detection. In contrast, our study utilized only two cameras to
cover a larger area of 96m3. These cameras were placed in an existing
enclosure where the macaques naturally reside. This more naturalistic
and less controlled environment presents numerous challenges, such as
increased occlusions, varying lighting conditions, and limited camera an-
gles, which can significantly impact the accuracy of pose estimation. C. Li
et al. (2023) achieved a top-1-accuracy of 98% at detecting semantic actions
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Figure 14: Confusion matrix of the ST-GCN model with a sampling rate of 100

on the new test set. With an increased frame rate sampling, the model correctly
identified 12 instances of playing as playing but misclassified 8 as grooming
and none as ’nothing’. It accurately identified 14 occurrences of playing but
misclassified 5 as grooming.

such as climbing, walking, and sitting. The best model proposed in this
research achieved an accuracy of 75% at classifying social interactions.
This discrepancy is likely due to the fact that social interactions are more
challenging to detect due to additional uncertainty and occlusions.

In the following, the research questions presented in section 2 will be
revisited.

RQ1: To what extent can deep neural networks be employed to identify groom-
ing and playing behaviors among long-tailed macaques?

This study explored three different deep learning architectures and
modalities. The best performing model was a Spatial-Temporal Graph Con-
volutional Network, which was trained on 2D skeleton data and achieved
a satisfying accuracy of 75%. This suggests that the 2D-ST-GCN model
is both more efficient and effective for this task compared to the other
proposed models. It achieves a high precision (79%) and recall (81%),
which means it not only makes fewer false positive predictions compared
to the other models, but also successfully identifies a high proportion of
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Figure 15: Confusion matrix of the ST-GCN model with a sampling rate of 200

on the new test set. The model correctly identified 24 instances of grooming
as grooming, but misclassified 14 as playing and 1 as ’nothing’. It correctly
classified 1 instance of grooming but misclassified 1 as playing. It only classified
4 instances of playing behavior correctly, and misclassified 4 as grooming. The
strong performance for grooming and the weaker performance for playing indicate
a possible imbalance or overlap in the feature representation of these classes.

the actual grooming and playing actions. Similar to the model architec-
tures, each modality has its own advantage and disadvantage concerning
usability, scalability, and computational resources. RGB data is easy to
acquire and usually does not require complex preprocessing, making it
a reasonable choice for researchers in distinct fields without advanced
programming skills. However, video data requires large storage capacities
and significant computational power for processing and analysis. Addi-
tionally, video data analysis sensitive to lighting conditions, occlusions,
and camera angles. On the other hand, 2D skeletal data can reduce the
amount of information to process and focus on the movement patterns,
but the acquisition process is more complex, which makes it less accessible.
It also relies on pose estimation algorithms, which can introduce errors.
However, 2D skeletons are still affected by occlusions and different view
points or camera angles. 3D skeleton data reduces the impact of occlusions
and viewpoint changes, while also providing accurate spatial information
about the subject’s movements. However, the generation of 3D data re-
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quires even more sophisticated capture methods, such as multiple camera
setups or depth sensors, which can be costly and technically demanding
to implement. One major advantage of 2D and 3D skeleton data is the
reduced data dimensionality, which is also reflected by the amount of
training time that was necessary to train the deep learning models: The
RGB-based model took 25 minutes to reach an accuracy of 60%, while the
skeleton-based AR models both achieved an accuracy of more than 70%
within 5 minutes of training.

SubQ1: How does their performance vary across different datasets?

When the 2D ST-GCN model was applied to video data from a differ-
ent enclosure, its performance accuracy dropped to 66%, demonstrating
limited robustness and generalizability across new groups and viewpoints.
This performance decline is likely due to the heterogeneity between the two
groups. Although 2D skeleton data is generally robust against changes in
appearance (C. Wang & Yan, 2023), the macaques in the two groups differ
in age and gender, which may influence their grooming and playing style.
While the training group mainly consists of older males, the test group is
larger and more diverse in terms of age and gender. Solanki et al. (2020a)
has shown that male and female macaques have distinct grooming prefer-
ences, and Mayhew et al. (2020) stated that young individuals, especially
males, are usually more playful. These variations in social behaviors likely
contributed to the model’s performance drop, as it may have overfitted to
the grooming and playing style of adult males, thus failing to capture the
broader range of behaviors present in a more diverse group.

SubQ2: How does the duration (number of frames) of the input video affect
the models’ performances?

As mentioned in subsection 3.2, the duration of an input video plays a
crucial role in action recognition, as it provides additional temporal context
that can enhance the accuracy of identifying actions. However, longer
videos also introduce the risk of incorporating extraneous information,
or noise, which can complicate the recognition process and increase the
computational burden (Gowda et al., 2021). In the context of this study,
the video duration is particularly significant due to the behavioral patterns
of macaques. These animals frequently exhibit rapid shifts in behavior,
such as transitioning almost instantaneously from grooming to playing
and vice versa. As a result, accurately capturing and recognizing these
behaviors requires a balance between a video length that is sufficient to
understand the context and transitions, yet concise enough to minimize
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noise and maintain computational efficiency. To explore this effect, three
sample sizes have been explored on the performance on the 2D ST-GCN:
50 frames, 100 frames, and 200 frames per sample. It has been shown that
the model’s best performance is achieved at 100 frames per sample. At this
frame rate, the model effectively balanced the trade-off between temporal
context and noise, capturing enough detail to accurately identify transitions
between grooming and playing behaviors without being overwhelmed by
unnecessary information.

How can deep learning and computer vision methods be leveraged to increase
observational research of macaques while ensuring animals’ well-being?

Automatic pose estimation and action recognition have several advan-
tages compared to traditional methods. By minimizing constant human
presence and interference, this approach allows animals to act uninhib-
itedly, which provides a more authentic depiction of their actions and
interactions. Moreover, automatic action recognition facilitates the identifi-
cation of subtle patterns and changes in social behavior that may signify
underlying health issues, stress, or shifts in group dynamics. Detecting
such changes early allows for suitable interventions, enhancing animal wel-
fare. In similar experiments, single primates are held in highly unnatural
and laboratory settings Bala et al. (2020,?); C. Li et al. (2023,?); Martini et al.
(2024); Mathis et al. (2018); Nakamura et al. (2016,?). This study proves that
automated methods can be effectively applied in natural settings, thereby
improving the ecological validity of behavioral observations and ensuring
the well-being of the animals.

9 limitations

Notably, all limitations concerning data collection are attributable to animal
welfare. The macaques present in the videos could move freely through the
inside and outside compartments of their pseudo-natural enclosure. Due to
this, data collection was scarce and declined as the year progressed because
of improving weather conditions. The data set is not only small compared
to other action recognition data set, the samples are also challenging in
the sense of different lighting conditions and large groups of primates
engaging in close activities.

The cameras’ position and quality introduced another limitation. The
cameras were positioned at perpendicular orientation at the ceiling of one
of the inner compartments. Their angles towards the ground differed, and
the area covered by both cameras was not optimal, which further hampered
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the process of data collection. Next to low resolution, the cameras did
not provide time stamps for efficient frame synchronization. Eventually,
frame synchronization was achieved by strict hard-coding, not accounting
for frequent individual breaks of recording, which again affected the
generation of 3D poses from both video streams.

The current model was designed and trained specifically to detect in-
teractions involving only two macaques. Consequently, interactions that
involve three or more animals are not detected by the model, leading to
the loss of valuable information about more complex social dynamics. For
instance, in a scenario where four macaques performing grouped grooming
behavior, the model would only detect two of the macaques participating
in the interaction. Although the model might still accurately identify the
action as grooming, it fails to capture the full extent of the social interaction.
This limitation prevents a comprehensive analysis of social behaviors that
involve multiple participants, such as multi-animal play or complex groom-
ing chains. Understanding these multi-animal interactions is crucial for a
more complete insight into the social structure and dynamics of macaque
groups. Therefore, enhancing the model to detect and analyze interac-
tions involving multiple animals simultaneously would be an important
step towards achieving a more thorough understanding of macaque social
behavior.

The 2D and 3D skeleton data utilized in this research relied on a pose
estimation algorithm. Although the pose model was pretrained and fine-
tuned, its key point predictions were not flawless, which introduced noise
to the data. This noise is intensified when triangulated (Bartol, Bojanić,
Petković, & Pribanić, 2022). Other studies have explored more advanced
triangulation techniques for 3D (human) pose estimation, such as learnable
triangulation through the usage of heat maps. Heat maps have a large
advantage against key points, because they are represented as a probability
instead of a single point. When overlapping the heat maps from several
viewpoints for each key point, machine learning models can learn to
efficiently estimate the 3D location of a point based on the heat maps. This
process is more robust towards noise and the resulting 3D poses are more
accurate (Bartol et al., 2022). In addition to this, the triangulation approach
proposed in this research requires two 2D points to compute one point
in 3D space. If a primate is only detected from one camera view, its 3D
pose cannot be retrieved, which further reduced the data set size of the
3D skeletons. This is likely to be the reason why the 3D-ST-GCN did not
perform better than the 2D-ST-GCN, in contrast to the establishment that
3-dimensional skeleton data is generally more accurate and robust than
2D skeleton data (Peng et al., 2021). The SlowFast model underperformed
compared to the other two models, while also requiring more memory and
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more time for training. The mediocre performance could be attributable
to the low amount of training epochs. To guarantee a fair comparison,
each model was trained for 20 epochs. However, in the original paper
that introduced the SlowFast architecture (Feichtenhofer et al., 2019), the
amount of training epochs was set to 256. The same amount was used
by Xiao, Lee, Grauman, Malik, and Feichtenhofer (2020). The initialized
amount of epochs for skeleton-based action recognition models is usually
much lower (J. Chen et al., 2020; Yan et al., 2018).

10 conclusion

This study conducted a comprehensive exploration of various deep learn-
ing techniques tailored for the intricate tasks of social action recognition
in primates. The video footage for this study was collected from two
calibrated cameras in a semi-natural enclosure at the Biomedical Primate
Research Center (BPRC). The macaques were able to move freely through
the inside and outside compartments, and leave or enter the recorded area
at any given time. By doing this, not only the observation of natural be-
havior is guaranteed but also high standards of well-being. Three distinct
modalities (RGB, 2D skeleton, and 3D skeleton data) and deep learning
architectures (SlowFast, 2D-ST-GCN, and 3D-ST-GCN) were explored to
detect two social behaviors: grooming and playing. For skeleton data
acquisition, a YOLOv8 pose estimation model was trained from scratch
and used to perform pose estimation on the video sequences. The 2D
skeleton data points were then triangulated to create 3D skeletons. The
highest performance was achieved by the 2D-ST-GCN, with an accuracy
of 75%. This study shows that it is possible to detect naturally occurring,
"between pairs" level actions in semi-natural cages between two primates,
without the need of special equipment or expensive cameras. In addition
to the presented action recognition models, even the preprocessing proce-
dures presented in this research enhance observational research. Instead of
having to scan through hours of videos, researchers at the BPRC or other
research institutes can make use of the background subtraction algorithm
together with the pretrained YOLO model to almost instantly filter out
sequences where macaques are present.

11 future work

Grooming and playing serve several social purposes between pairs, with
frequent occurrences indicating healthy and stable groups. The deep learn-
ing methods proposed in this study enable automatic monitoring of these
social interactions. The same approach can be extended to a broader range
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of behaviors. For example, automatically detecting behaviors that neg-
atively influence the social bonds, such as aggression, provide valuable
insights into social processes like reconciliation. Additionally, a combina-
tion of the proposed action recognition models together with identification
of individuals would enable the automatic generation of social networks.
As mentioned in the introduction, play incorporates behavioral elements
from various social situations, blurring the distinction between play and
non-play behaviors (Wright et al., 2018). Therefore, it would be interesting
to see whether a model could learn to distinguish these subtle differences
between play and non-play. Furthermore, the model proposed in this
research is currently capable of performing inference only on offline data.
Implementing real-time inference and action recognition can reduce com-
putational resources by immediately identifying and selecting relevant
sequences for storage.

Finally, the ST-GCN did not perform well across different groups and
viewpoints. Future research should focus on training the models on larger
and more diverse data sets to avoid overfitting.
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appendix a

12 best hyperparameters for pose estimation model

13 speed analysis

One might think that the mere speed at which the pixels or key points
change their location from one frame to another can give an indication
on the action label because grooming usually consists of small, calm
movements of the wrists, while playing is generally composed of large
changes over all key points (Figure 16). However, speed alone is not always
a reliable indicator, as shown in Figure 17. Therefore, accurate action
recognition requires the model to learn more complex patterns from the
data.
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(a) Grooming (b) Playing

Figure 16: An example of tracked key points over time where the speed of the key
points is an adequate indicator of the action class.

(a) Grooming (b) Playing

Figure 17: An example of tracked key points over time where the speed of the key
points is not an adequate indicator of the action class.
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Name Description Value
weight_decay Weight decay (L2 regularization) 0.00035

warmup_epochs Number of epochs for warmup phase 2.43996

warmup_momentum Initial momentum during warmup 0.39855

box Box regression loss weight 6.11354

cls Classification loss weight 0.66992

dfl Distribution focal loss weight 1.90914

hsv_h Hue augmentation factor 0.00832

hsv_s Saturation augmentation factor 0.56134

hsv_v Value augmentation factor 0.38388

degrees Rotation augmentation degrees 0.0
translate Translation augmentation factor 0.10243

scale Scaling augmentation factor 0.13946

shear Shear augmentation factor 0.0
perspective Perspective augmentation factor 0.0
flipud Vertical flip probability 0.0
fliplr Horizontal flip probability 0.41099

mosaic Mosaic augmentation factor 1.0
mixup Mixup augmentation factor 0.0
copy_paste Copy-paste augmentation factor 0.0

Table 5: Hyperparameter tuning results
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