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Abstract

Alzheimer’s disease (AD) represents the most prevalent cause of
cognitive decline among the elderly, posing significant global health,
social, and economic challenges. Early and accurate diagnosis is
critical for mitigating the impact of AD. This study investigates the
effectiveness of Transformer model, initially developed for Natural
Language Processing, in image classification of MRI scans to detect
AD at various stages. Utilising the Open Access Series of Imaging
Studies (OASIS) dataset, comprising 80,000 MRI samples categorised
into four dementia stages, the study aims to enhance diagnostic
accuracy through advanced deep learning techniques. Traditional
diagnostic methods, including MRI and PET scans, although effec-
tive, suffer from subjectivity and resource constraints, limiting their
widespread applicability. The Vision Transformer (ViT) model, by
leveraging its attention mechanism, processes images as sequences of
patches, focusing on crucial regions to grasp contextual relationships
within the data. This approach contrasts with the conventional Con-
volutional Neural Network (CNN) models, which apply filters across
the entire image. Both models demonstrated exceptional success from
the test results, achieving between 95%-99% from testing metrics.
Key metrics, including precision, recall, and F1-score, underscore the
ViT model’s proficiency in distinguishing between dementia stages.
The study concludes that ViT models hold significant promise in
improving AD diagnosis, emphasising the need for further optimiza-
tion to reduce computational demands. The findings advocate for
integrating ViT models into clinical settings, potentially transforming
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early AD detection and enhancing patient outcomes through timely
intervention.

1 data source , ethics , code , and technology statement

The OASIS dataset has been acquired from the (Open Access Series of
Imaging Studies) through online access. The dataset was publicly available
in the kaggle website in the following link Aithal (2024). The obtained data
is anonymised. Work on this thesis did not involve collecting data from
human participants or animals. The original owner of the data and code
used in this thesis retains ownership of the data and code during and after
the completion of this thesis. However, the institution was informed about
the use of this data for this thesis and potential research publications. All
the tables (table 1, table 2, table 3) belong to the author. The thesis code
can be accessed through following links; ’Singh (2023), Angyalfold (2021),
Google (2023), Face (2023). The reused/adapted code fragments are clearly
indicated in the notebook. In terms of writing, the author used assistance
with the language of the paper. Thesaurus used for synonyms of the words
used. No other typesetting tools or services were used.

2 introduction

Alzheimer’s disease (AD) stands out as the prevailing etiology of cognitive
decline in elderly individuals, presenting a complex problem within the
field of neurodegenerative conditions. With the progressive ageing of
populations across the world, the incidence of Alzheimer’s disease exhibits
an upward trajectory, thereby presenting intimidating health, societal, and
economic obstacles on a global scale (X. Li et al., 2022). The escalating
prevalence of Alzheimer’s disease highlights the acute need for collab-
orative efforts in research, healthcare, and policymaking to address the
multifaceted implications of this debilitating condition. The global estimate
provided by the World Health Organization suggests that currently more
than 55 million individuals worldwide are affected by dementia, with a
significant portion of cases, ranging from 60% to 70%, being attributed to
AD, making it the most prevalent form of dementia (International, 2023).
The projected increase in this numerical value is anticipated to experience
a threefold growth by the year 2050, emphasising the critical importance of
promptly implementing efficient diagnostic and therapeutic approaches to
address the escalating demand for healthcare services.

The pathophysiological mechanisms underlying AD associate deterio-
ration in cognitive functions, particularly affecting memory retention and
executive functioning, which are crucial for decision making and problem
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solving processes in individuals diagnosed with AD (DeTure & Dickson,
2019). The decline in these cognitive abilities is a strong indicative feature
of AD, reflecting the progressive degeneration of brain structures and neu-
ral networks responsible for cognitive processing and information retrieval
in AD patients. The progression of this disease is emphasised by the accu-
mulation of tau protein tangles and amyloid-beta plaques within the brain,
resulting in neuronal injury and depletion, which serves as the foundation
for the deteriorative course of the disease (Uddin et al., 2020). Despite the
progress made in the field of research, Alzheimer’s disease continues to be
without a cure, with existing treatments only able to provide temporary
slowing of its progression.

2.1 Diagnostic Challenges

Correctly diagnosing and especially early treatment in preventing AD to
progress is critical and should not be underestimated. Timely detection of
the disease enables the application of treatment procedures that have the
potential to effectively alter its progression and influence on individuals’
well-being (Cummings et al., 2022). Up to date, there are some effective
neuroimaging techniques to examine the brain either structurally or func-
tionally. These neuroimaging techniques differ from each other in different
ways such as invasiveness, temporal resolution, spatial resolution, and
accessibility. Every technique has its own specific requirements and mech-
anisms to be working as desired for different types of examination from
the brain. In the scope of diagnosing dementia stages, structural Magnetic
Resonance Imaging (sMRI) and Positron Emission Tomography (PET) are
widely used. In the 1980s PET was the dominant invasive hemodynamic
imaging method which has a unique contribution relative to functional
Magnetic Resonance Imaging (fMRI) in such by measuring metabolism and
detecting biomarkers and neurotransmitter concentrations via injection
of radioactive tracers into our bloodstream (Finnema et al., 2016). On
the other hand, structural MRI is a non-invasive diagnostic tool that uses
strong magnetic fields and radio waves to generate images of the brain’s
structure which help in diagnosing a variety of conditions. These generated
images help to investigate the brain’s structural compounds with relations
to some neurological conditions. MRI can identify and characterise brain
tumours based on their location and the possible damage they have given
on surrounding tissues (Venere, Zadeh, Puduvalli, & Haynes, 2020). For
effective results, these imaging methods require a high level of expertise
for interpretation and are often wrongly guiding the patients because of
subjectivity in assessment, resulting in inconsistent diagnostic outcomes.
Additionally, these techniques require a lot of resources that might not be
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available in all healthcare settings, especially in low-resource environments
such as mediocre countries, underlining the necessity for more accessible
and standardised diagnostic instruments (DeStigter et al., 2021).

2.2 AI in Healthcare

In recent years, artificial intelligence (AI) has started to revolutionise var-
ious fields especially in healthcare and medical practices. AI works as a
significant beneficiary in different aspects for the medical industry, deliver-
ing the potential of robust, impartial, and effective solutions in the realm of
diagnosing intricate diseases like Alzheimer’s Disease (Basu, Sinha, Ong,
& Basu, 2020). Deep learning methodologies, which have the nature of
training artificial neural networks on large datasets to carry out tasks like
image recognition and classification, have proven their ability to diagnose
accurately and efficiently (Aggarwal et al., 2021).

This research aims to address the critical gap in Alzheimer’s disease
diagnosis by using deep learning techniques, specially Vision Transformer
(ViT) which is initially built for Natural Language Processing (NLP) tasks,
for classification of MRI scans and early detection of AD. The ViT model,
which employs mechanisms from NLP in image classification, presents a
promising framework due to its capacity to concentrate on different regions
of an image as an input and grasp contextual relationships within the data.
As pointing out the critical medical concerns, these advancements in early
diagnosis could have a significant impact on treatment outcomes and
the quality of life for patients with Alzheimer’s disease (Diogo, Ferreira,
Prata, & Initiative, 2022). Through using artificial intelligence tools and
cognitive science, study seeks to detect AD early, highlighting the exciting
potential of AI in the medical field. It provides an important advancement
in the fight against this severe condition and aligns with the larger goal of
utilising technology to address difficult conditions.

2.3 Dataset

In the beginning of dataset searching, a dataset containing 6000 samples of
MRI scans were found on open source website Kaggle. However, due to
limited dataset sample size, we shifted our scope to OASIS dataset contain-
ing 80,000 samples which was also free to access via Kaggle. By utilising
OASIS dataset comprising 80,000 samples categorised into four dementia
stages (Moderate, Non-Demented, Mild, and Very Mild), the objective of
this research is to test a model’s capability of precisely identifying and
classifying AD stages through analysis of brain scans. This study entails
the potential to enhance the objectivity and accuracy of AD diagnostics
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while increasing the awareness of early detection in various healthcare
environments.

2.4 Patients and Society

Social and personal impact that AD creates expands over the patient himself
and the family of the patient. The progressive decline in cognitive functions
affects the patients’ daily life behaviours and the interactions with patients’
environment, sparking off a comprehensive care essential yet challenging
(Grabher, 2018). Families experience devastating emotional and financial
load, usually without adequate support neither from authorities nor from
patients. Patients tend to be more aggressive and unresponsive to face
reality and accept the disease. This mental state of the patients makes
the process even harder for both sides, resulting in late diagnosis of the
stage and unguided treatment (Wattmo & Wallin, 2017). On a societal
level, public awareness promotes the importance of early diagnosis which
can help individuals to recognize the early signs. Providing resources
and training camps for caregivers can make both parties life easier and
healthier

The adaptation of Transformer models to image classification, specif-
ically medical image classification is an innovative improvement in AI
technology. Convolutional Neural Networks (CNN) typically require fixed
input sizes, which can be limitation for medical imaging where images
can vary in dimensions. Unlike some architecture of CNN, ViTs do not
process the input data at once instead, they divide the image into patches
and process the patches simultaneously utilising self-attention mechanism,
which allows model to capture any part of the image regardless of the
spatial distance between different features (Matsoukas, Haslum, Söderberg,
& Smith, 2023). This method suggests higher effectiveness in handling
complex image data such as MRI scans where subtle changes might in-
dicate early stages of Alzheimer’s disease. Innovatively, for improved
generalization and performance, Vision Transformers can benefit from
pre-training on large datasets and fine-tuning on smaller medical datasets
using transfer learning. ViT’s ability to scale effectively with more data
and computational resources offer a potential for significant performance
improvements in image related tasks as more high-quality labelled images
become available. This scalability is crucial in medical settings where
accumulating vast amounts of data over time is inevitable.

Based on the successful performance of deep neural networks in image
classification tasks and the Vision Transformer models’ image processing
abilities, this paper aims to compare the performances of traditional convo-
lutional neural networks model and the Vision Transformer model using
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Magnetic Resonance Imaging samples from Open Access Series of Imaging
Studies. The research objectives are to find answers the following research
questions:

• Can the Vision Transformer model outperform the traditional convo-
lutional neural network models?

• Is the Vision Transformer model worthwhile for integration into
medical image analysis?

3 related work

Deep learning’s application in medical diagnostics, especially the diagnosis
of Alzheimer’s disease (AD), represents a significant advancement in the
field’s understanding of neurodegenerative illnesses. Deep learning is an
exceptional tool for autonomously discovering features in large complex
datasets, especially considering that AD is characterised by subtle, early-
stage biomarkers that are often missed by traditional detection techniques
(Helaly, Badawy, & Haikal, 2022). The potential for better diagnostic accu-
racy has been highlighted by recent studies using deep learning for AD
stage categorization (Ftoutou, Majdoub, & Ladhari, 2023; Jagadeeswari,
Priya, Athira, Dhanalakshmi, & Shree, 2022; Mggdadi, Al-Aiad, Al-Ayyad,
& Darabseh, 2021). However, the results also highlight the need for addi-
tional optimization to improve performance on different datasets and types
of imaging. In their study, El-Assy, Amer, Ibrahim, and Mohamed (2024)
proposes a novel CNN architecture by concatenating two simple CNN
models from scratch, each simple model achieving close to the excellent
results by 95% from every performance metrics. Individually, the simple
CNNs achieve substantially high scores from the metrics; however, their
proposed model outperforms the simple ones in every performance metric
namely, accuracy, recall, and precision.

The adaptation of Vision Transformer models, uniquely built for NLP
tasks, have recently taken substantial attention in the medical imaging field
because of their ability to be trained for learning robust features without
the need for extensive pre-processing procedures required for traditional
Convolutional Neural Networks (Shamshad et al., 2023). As a result of
processing the images into multiple patches simultaneously, ViT models
are highly being used for especially Alzehimer’s disease detection. Wang,
Chen, Zhang, and Wang (2024) demonstrate that ViT achieves exceptional
performance in identifying profound neuroanatomical changes in MRIs,
also in other neuroimaging techniques such as CT scans, compared to
standard CNNs, assigning a suggestive shift towards more innovative
neural architectures in medical imaging.
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As one of the newly innovated neural architecture for enhancing the
computational framework, Swin Transformers have also been integrated,
which is a variant of ViTs, adapts the Transformer architecture to engage
more effectively on image data. Swin Transformers also have shown
significant progress in segmenting complex patterns from image data such
as MRI and PET scans which are essential types of imaging techniques for
specifically early AD diagnosis. Zhao et al. (2024) highlighted how Swin
Transformers outperform traditional methods in training metrics such as
accuracy and also computationally efficiency, offering a scalable solution
for analysing high-dimensional medical image data.

In order to reduce time and computational resources for training a
model a common strategy is being used in the deep learning field. Transfer
learning is an effective technique for taking advantage of related previous
tasks where a developed model for a task is reused as a starting point for
another task. Integration of transfer learning and deep learning models
like ViT models creates a way for improving AD diagnostics (Ghaffari,
Tavakoli, & Pirzad Jahromi, 2022). However, as Krishnapriya and Karuna
(2023) pointed out, while transfer learning can reduce the need for large
labelled datasets, it also reproduces a challenge in model generalisation
across diverse clinical environments. Making contemporary research in this
area a necessity for exploiting the full potential of transfer learning, in their
research Filipiuk and Singh (2022) are investigating adaptive algorithms
that alter pre-trained models to better fit specific medical applications.

A vital drawback that affects deep learning models to be used in clinical
application is that there is a lack of interpretability with the analysis of
proposed models (M. Li, Jiang, Zhang, & Zhu, 2023). Interpretability is
the ability of researchers to understand and explain how a model makes
decisions and comprehend the factors and processes that lead to particular
results from a model. Complex models like deep learning models provide
high accuracy scores but their “black box” character makes interpretability
difficult for clinicians and patients to trust their predicted scan results with-
out understanding how they arrive at this specific conclusion. S. A. Kumar
and Sasikala (2023) and Arafa, Moustafa, Ali, Ali-Eldin, and Saraya (2024)
addressed these concerns by developing frameworks that improve trans-
parency of the decision making process of deep learning models. During
recent research, Liu et al. (2021) implements transfer learning method in
order to solve the insufficient data problem in the brain imaging domain
by introducing the Vision Transformer model. Even though expected and
acquired results agree that Transfer learning can alleviate the problem
of data, sample size still has an influence on the transfer performance
which might cause an increase of model complexity but also overfitting
to pre-trained features. These progressions are important for clinicians to
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be more confident with the analyses and patients to gain trust towards
innovative developments in the field of medical AI. The trust towards AI
applications makes adapting possible for deep learning models in clinical
settings, where understanding the reasoning behind the diagnostic sugges-
tions is crucial for patients’ mental state in order to fight back the disease
ideally.

In a literature review, Maurício, Domingues, and Bernardino (2023)
discuss and compare the Vision Transformer model and Convolutional
Neural Network for image classification. In the review, different variants
of CNN models were compared with the Vision Transformer model in
different medical image classification tasks. Stating the both neural net-
works advantages in different settings, the paper expresses the need for
interpretability in such models. Filipiuk and Singh (2022) investigates the
Vision transformer in comparison and conjunction of CNNs, exploring
whether ViT and CNN can be used together for more accurate results in
image classification. One of the most emphasised aspects of this study is
the integration of the unique network design of the ViT in safety critical
systems for computer vision, underlying the ViTs being more resilient
than CNNs. While CNN achieves 0.972 in the top 5 accuracy scores, ViT
achieved 0.974 in the top 5 accuracy scores. Although the ensemble of the
CNN and the ViT increases the accuracy up to 10% higher than individual
performance results, up to 0.981, from the ImageNet domain.

AI-driven diagnostics in the medical field carry out important adjust-
ments in the future developments, regarding limitations for handling large
volumes of data, human errors, and for enhancing personalised medicine.
Current developments in computational efficiency and data processing
are supposed to improve the practical implementation of complex models
like ViTs (Y. Kumar, Koul, Singla, & et al., 2023). Ongoing evolutions of
AI technologies, specially over the adaptation of Vision Transformers and
their varieties, are accommodating the prospect of Alzheimer’s disease
diagnostics (Marshall & Uchegbu, 2022). Addressing the current challenges
related to data dependency, interpretability, and clinical integration, further
research has the potential to unravel more reliable and accessible tools for
early and accurate detection of AD.

4 methods

This study will investigate the adaptation of the Transformer model, ini-
tially created for NLP tasks, for the early detection of Alzheimer’s dis-
ease (AD) using medical images such as MRI. Vision Transformer models
address the need for efficient processing of ever-expanding datasets by
offering versatile computations suitable for large and diverse datasets. This
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capability is especially useful in medical imaging, where datasets can be
limited due to privacy concerns or lack of data. ViT models offer promising
solutions through the use of transfer learning from pre-trained models on
bigger natural image datasets such as ImageNet, in spite of the challenges
encountered when working with smaller datasets in medical imaging. Ad-
dition to that, ViT models can adapt and fine-tune their parameters to
extract revealing features even from small medical image datasets, thereby
enhancing their usefulness for diagnostic tasks. Furthermore, ViT mod-
els provide interpretability through attention maps, allowing analysts to
identify fundamental regions in medical images contributing to diagnoses
(Komorowski, Baniecki, & Biecek, 2023). This clarity reinforces trust in
AI-assisted diagnostics and aids in error analysis for model improvement.
The model’s rate of processing and analysis of MRI data is significantly
increased by using the L4 GPU for training. This option not only in-
creases processing capacity but also goes above the limitations offered by
traditional CPUs, enabling a faster and more efficient diagnostic procedure.

4.1 Dataset Description

In this section, the preprocessing pipeline created to fit a ViT model for
a dataset containing different stages of dementia is described. The pre-
processing steps are designed to handle class imbalance and improve the
model’s generalisation over a variety of data points, in addition to trans-
forming images into a format that is compatible with model intake. The
study utilises the publicly available MRI dataset from the Open Access
Series of Imaging Studies (OASIS), comprising images categorised into
four classes: ‘Mild Dementia’, ‘Moderate Dementia’, ‘Non Demented’, and
‘Very mild Dementia’. The dataset contains 86,437 samples of MRI scans
combined and exhibits significant class imbalance. ‘Non Demented’ has
the highest sample size with 67,222, followed by ‘Very mild Dementia’ with
13,725, ‘Mild Dementia’ with 5,002, and ‘Moderate Dementia’ with just 488

samples. Class imbalance makes it challenging to train a model that can
accurately and unbiasedly identify and classify all stages of dementia.

4.2 Image Handling

Accurate handling of images plays an essential role in the preprocessing
pipeline of the Vision Transformer model to ensure that the images meet
the requirements for model input. In order to open and convert image
files into a consistent RGB format, the Python Imaging Library (PIL) is
imported and used. This standardisation is critical for eliminating the
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variations in image formats throughout the dataset, ensuring that every
input is handled uniformly.

The images, when in RGB format, are passed through ViTImageProces-
sor, which has been specially trained for image classification tasks using
Vision Transformer architectures. By scaling the images to 224x224 pixels,
which is a prerequisite for the input dimension of the ‘google/vit-base-
patch 16-224-in21k’ model, this feature extractor standardises the image
sizes. Furthermore, by maintaining input values within a scale that the
model is accustomed with, it normalises pixel values based on the mean
and standard deviation of pixel values across the ImageNet dataset, thus
helping in stabilising the learning process of the model.

Processed images are also transformed into PyTorch tensors by the
feature extractor, making it easier to use them directly for model training.
Rearranging the image dimensions to match the model’s expected channel
sequence is a part of this tensor transformation, which is essential to the
functioning of the Vision Transformer. In addition, these actions will
ensure every image is set to be processed by the neural network in the
most efficient possible way, preserving consistency throughout the dataset
and improving the model’s capacity to identify patterns in the images.

4.3 Balancing the Dataset

Resampling method was used to alleviate the notable class imbalance and
to make sure that the model is trained with equal class sizes of all stages of
dementia. ‘Non Demented’ class was undersampled to match the second
highest class size of 13,725 samples and two other low sized classes were
oversampled in order to match the ‘Very mild Dementia’ class as the second
highest class. This method maximises the variety of training examples that
the Vision Transformer model gets to work with while also correcting the
imbalance. Following resampling, 13,725 samples were evenly distributed
among the four classes – ‘Mild Dementia’, ‘Moderate Dementia’, ‘Very
mild Dementia’, and ‘Non Demented’. This allows for a more impartial
learning process.

For a robust model training, it requires efficient dataset management. In
this scope, the balanced dataset was deliberately splitted to allow thorough
training and evaluation of the ViT model. Explicitly, the dataset was split
into 70% for training, 15% for validation, and 15% for testing. Along with
offering enough data for testing and validating the model’s performance
across unseen images, this specific division enables comprehensive learn-
ing. Further, experiments involved conditioning the model with different
proportions of the training set, using full size and subsets containing 80%
and 60% of the balanced data. This methodology empowers the evalua-
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tion of the model’s performance sensitivity with respect to size of dataset,
providing convincing insights into the robustness and scalability of the
learned features.

4.4 Data Loaders for Model Training

From the PyTorch library, DataLoader class was used to generate iterators
for the training, validation, and test datasets in order to handle and perform
training on the images promptly. The loaders were constructed with a
batch size of 32, enhancing memory usage and computational efficiency.
Concerning to prevent the model from learning any unintended biases that
may arise from the order of the data, the training dataset loader was set to
shuffle. On the contrary, the loaders used for validation and testing were
set up without shuffling to make sure consistent outcomes throughout the
model evaluation stages.

4.5 Model Architecture

Vision Transformer (ViT) (Angyalfold, 2021) is a transformer encoder model,
works like the BERT language model, which was pre-trained at 224x224

pixel resolution on a large set of supervised images with ImageNet-21k.
The transformer principle, which is firstly and commonly applied in Natu-
ral Language Processing, is extended to the field of image classification by
the ViT model more specifically medical image classification. The architec-
ture handles the images as if they were words, by tokenizing images into a
series of patches and processing them using the transformer’s self-attention
mechanism, which allows the model to capture global dependencies be-
tween various image segments.

The “vit-base-patch16-224-in21k” (Dosovitskiy et al., 2020), (Google,
2023) model splits each input image into patches of 16x16 pixels. After
the division, positional encodings are added to these patches so that we
can linearly introduce them in order to preserve locational information.
The resulting sequence of embeddings is fed into a series of transformer
layers, which analyse the image data by using self-attention. The model,
which was originally pre-trained on the ImageNet-21k dataset (14 million
images, 21,843 classes), is capable of classifying dementia stages from
medical imaging and has a comprehensive learning of a wide range of
image attributes.
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4.6 Training Process

Prior to training, all images were scaled to 224x224 pixels and normalised
by setting the mean and standard deviation for each RGB channel to (0.5,
0.5, 0,5). This normalisation was for the purpose of ensuring a constant
distribution of input data, which aims to stabilise the model’s training
process. The pre-trained model was fine-tuned during 5 epochs with a
batch size of 32.

4.7 Comparison Model

As a comparison model, we have used a simple Convolutional Neural
Network (CNN) (Singh, 2023) with the full size of the dataset, which was
obtained from the Open Access Series of Imaging Studies. The comparison
model was published in Kaggle web site under title of "OASIS Alzheimer’s
Detection" however, the model was trained with 400 samples from the
OASIS dataset. This dataset was resampled to the same target sample size
used for the Vision Transformer Model.

Compared to our proposed model, we used the same proportions for
training, validation, and test procedures: 70%, 15%, and 15%, respectively.
Nevertheless, the preprocessing requirements for the CNN model differ
from those of the ViT model. While images were configured to specific
input dimensions of 224x224 pixels for processing by the ViT model, the
CNN model that we used as an example was resized to 128x128 pixels for
the Convolutional Neural Network model. Before the training and compar-
ison, this input size resized to 224x224, as in Inception model (Szegedy et
al., 2014), in order to make the comparison fair. This architecture allows
CNN model to directly apply convolutional filters to the input image, lever-
aging spatial hierarchies. The model employs a sequential convolutional
architecture that consists of convolutional layers with activation and batch
normalisation, pooling layers to reduce the dimensionality and dropout
layers for preventing overfitting.

Conversely, ViT models possess Natural Language Processing (NLP)
based Transformer architecture that is adapted for image processing which
utilises a sequence of self-attention layers where each patch of the input
image is treated as a token. These tokens are processed in a similar way
to words in a sentence in NLP tasks. The ViT model, which takes as
inputs of 224x224 pixels, splits images into patches of 16x16, then processes
these patches through multiple layers of self-attention, enabling the model
to focus on the most informative parts of the image across all patches.
By means of both computational and memory efficiency, CNN model
generally offers better memory efficiency and faster performance for small
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or medium sized datasets due to fewer parameters (Zhao et al., 2024).
In contrast, the ViT model requires significantly higher computational
resources in terms of GPU memory and processing power because of using
a large number of parameters and especially the global nature of self-
attention mechanism. Although it requires quite a lot more computational
resources, the ViT model provides a better understanding when used with
larger datasets (Heo, Seo, & Kang, 2023).

Typically, the Vision Transformer excels in environments where ex-
tensive training data is available and computational resources are not a
limiting factor, showing strong ability to capture broader dependencies
across the image. Contrariwise, CNNs are favored for faster classification
in environments that offer limited data and resources.

Evaluation Metrics
To evaluate how well the ViT model classified the stages of dementia

comparing to CNN model, several metrics were used:

• Accuracy: this metric offers a clear way for evaluating the model’s
overall performance in all classes by using true positives and true
negatives

• Precision and Recall: Essential metrics for medical applications
where false negatives and positives might have significant effects.
Recall evaluates the model’s capacity to find all relevant occurrences,
whereas precision measures the accuracy of positive predictions.

• F-1 score: the harmonic mean of precision and recall, offering a
balance between the two when evaluating model performance.

When analyzing as a whole, these metrics provide a thorough evaluation
of the model’s diagnostic abilities, which is crucial for ensuring accuracy
and dependability when classifying medical images.

5 results

After testing the test proportion of unseen data from the dataset, the ViT
model classified Moderate Dementia class without errors, achieving 100%
from precision, recall and F-1 score. Similarly, other classes performed
high scores from the F-1 metric ranging 96%-98% across the classes. In the
CNN models classification report, Mild Dementia and Moderate Dementia
classes performed well and scored 100% from the metrics, while the Very
mild Dementia class presents 99% from precision and Non Demented from
recall metric. As another testing metric for the Vision Transformer model,
the confusion matrix displayed in table 3, is an exemplary performance
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Classification Report Precision Recall F-1 Score Support
Mild Dementia 1.00 0.97 0.98 2108

Moderate Dementia 1.00 1.00 1.00 1998

Non Demented 0.98 0.94 0.96 2057

Very mild Dementia 0.92 1.00 0.96 2072

Accuracy 0.97 8235

Macro Avg 0.98 0.97 0.97 8235

Weighted Avg 0.98 0.97 0.97 8235

Table 1: ViT model Classification Report

Classification Report Precision Recall F-1 Score Support
Mild Dementia 1.00 1.00 1.00 2108

Moderate Dementia 1.00 1.00 1.00 1998

Non Demented 1.00 0.99 1.00 2057

Very mild Dementia 0.99 1.00 1.00 2072

Accuracy 1.00 8235

Macro Avg 1.00 1.00 1.00 8235

Weighted Avg 1.00 1.00 1.00 8235

Table 2: CNN model Classification Report

in differentiating between non-demented, very mild, mild, and moderate
dementia stages. However, there were observable misclassifications primar-
ily between the very mild and mild dementia categories, pinpointing an
area ripe for model refinement. When classifying dementia stages into non-
demented, very mild, mild, and moderate dementia phases, the confusion
matrix represents outstanding results but also noteworthy misclassifica-
tions, mostly in the very mild and mild dementia groups, indicating a
potential scope for model improvement.

Predicted
Actual Non Demented Mild Dementia Very mild Dementia Moderate Dementia
Non Demented 1928 5 124 0

Mild Dementia 5 2037 46 0

Very mild Dementia 5 1 2066 0

Moderate Dementia 5 0 2 1991

Table 3: The Vision Transformer model’s Confusion Matrix

The model’s accuracy recall across a range of sample sizes, 13,725,
10,980, and 8,235 is indicative of the model’s scalability and adaptability.
The Vision Transformer (ViT) model’s training procedure showed rapid
improvement over the initial epochs. Starting at an accuracy of 84.2% in
the first epoch, the model’s accuracy spiked to 98.44% by the third epoch.
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This early performance spike demonstrates the ViT model’s ability to
rapidly learn from the training data and effectively adjust its weights and
biases, which is crucial for tasks such as detecting the stages of dementia.
Similarly, the validation accuracy improved, starting at 95.11% and peaking
at 98.07% in the final epoch. The model obtained a peak training accuracy
of 99.53% and validation accuracy of 99.22% with the full size dataset.
This suggests that the ViT model consistently remains effective in terms
of performance with respect to the dataset size, which is essential for
real-world applications where researchers may face some limitations such
as data availability.

CNN model’s training process demonstrated astonishingly faster per-
formance than ViT model and similar training and validation accuracy
scores. While both models are showing high accuracy scores from the first
epoch, loss metric for ViT model is noticeably lower than CNN. In the
confusion matrix, CNN outperforms ViT by classifying the classes with
lower mistakes between classes. The most misclassified class was ‘very
mild dementia’ class as it shows similarity with ViT model.

6 discussion

The expectations from the Vision Transformer model, the adaptability
of a neural network architecture satisfies at large scope. As the Vision
Transformer model requires slightly different pre-processing techniques
than the traditional Convolutional Neural Network model, some of the
pre-processing steps used were similar. More than the differences in the
architecture and image processing procedures, the idea behind why the
proposed model is used for medical image classification stands strong
due to the underlying mechanism that Vision Transformer holds. Self-
attention mechanism not only presents innovation for image classification
and recognition but also proves the adaptability of different task based
architectures into the computer vision field (Guo et al., 2022). The consistent
performance of the Vision Transformer model across different sample sizes
of the OASIS dataset– from 13,725 to 8,235– demonstrates its robustness in
the aspects of scalability and adaptability.

Represented feature of the proposed model is a valuable remark in
medical imaging because of varying dataset availability in the field. One
of the model’s strengths is to maintain high accuracy from both training
and validation processes since initial epochs. By achieving nearing 99%
from these processes, the model proves its potential of effectiveness in
diverse clinical environments. Obtained loss metrics results from training
and validation making us sure that the model does not overfit or underfit
the training set and validation set. This captures the model’s ability of
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well-generalisation of unseen data, meaning the proposed model does
not memorise the patterns of the images but learns from them. This also
indicates that the model is neither too complex for the task nor too simple
which is an indicative feature of a well-suited architecture for medical
image classification. Vision Transformer model demonstrates remarkable
learning efficiency by starting its accuracy for correct classification of
data points from 84.2% to 98.44% within three epochs of training. This
significant increase in accuracy underlines ViT’s capability to adjust its
parameters efficiently which is essential for tasks requiring high precision
such as the detection and staging of dementia in Alzheimer’s disease
patients.

In critical cases where early and precise diagnosis is vital, the proposed
model’s swift adaptation offers an important potential in timely medical
interventions. On the other hand, CNN models happen to be showing
similarly high accuracy for the dataset from the first epoch during the
training process with accuracy of 82% and increasing sharply to 98% in
the fourth epoch. Acquiring 0.85 from loss function of the first epoch
of training, substantial decrease on the third epoch for loss function is a
strong indicator of CNN model that it successfully achieves to learn the
data rapidly. High accuracy and low loss score from the first epoch of the
validation process also prove the model’s architecture to be well-suited
for the task. In the testing process, performance analysis metrics show
equally successful results for classifying the unseen data by the model
into four desired classes for the Vision Transformer model. As evaluated
metrics, precision rate for each class demonstrates significant high scores
from 92% to 100% across the classes, especially an excellent performance
for the classes Moderate Dementia and Mild Dementia. While the lowest
precision rate is from Very mild Dementia, recall rate obtained from Very
mild Dementia class and Moderate Dementia are excellent with 100%.
Also, Mild Dementia and Non Demented classes follow high recall rates of
Very mild and Moderate Dementia classes with respectively, 97% and 94%.
These high scores from precision and recall yields overall high scores from
F-1 score as it provides a harmonic mean of precision and recall, ranging
from 96% to 100% across the classes. CNN model also demonstrates
impressive results from precision, recall, and F-1, proving the model to be
highly effective for such tasks with specified data size.

The confusion matrix represents exceptional accurate classification
results when it’s observed for each class individually. Although the model’s
successful performance, there are some misclassified data points that need
to be pointed out. These misclassifications are mostly observable in the
Non Demented class with 124 data points that were predicted as Very
mild Dementia, following this class, some of Mild Dementia data points
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were misclassified as Non Demented or Very mild Dementia. Similar
misclassifications were obtained from CNN, as mostly misclassifying Non
Demented class to Very mild Dementia class with 16 data samples. These
observed misclassifications from Mild Dementia and Non Dementia stages
point out an important challenge for the ViT model, highlighting the need
for further improvements in the ViT model’s feature extraction competence.

Enhancing the model’s sensitivity for subtle neuroanatomical differ-
ences is crucial for early detection of early-stage dementia could offer
more improved diagnostic accuracy and patient outcomes. While both
ViT and CNN models present high accuracy, the ViT model predomi-
nates in handling complex image data with its lower loss metrics which
indicates more efficient error minimization. Nevertheless, CNN’s com-
putational efficiency and faster performance suggest it is an applicable
option in resource-constrained settings. This difference highlights the
trade-off between computational efficiency and diagnostic precision that
must be considered in clinical implementations. In the medical aspect,
brain scanning methods require high computational resources as well as
financial resources where it is not possible to easily find and access for
most of the patients that suffer from Alzheimer’s disease. ViT’s substantial
computational requirements compared to traditional CNNs presents a
practical challenge in resource-limited settings. Feasibility of employing
such computational demanding models may not be easily implemented
without required resources.

7 conclusion

The study affirms the potential of Vision Transformers in improving the
diagnostic processes for Alzheimer’s disease through exceptional image
analysis ability. Even though requiring higher computational resources,
ViT models propose a significant advancement in detecting subtle changes
in neuroanatomy associated with various dementia stages. Integration of
Transformer models into diagnostics of clinical neuroimaging methods
potentially improve the accuracy of Alzheimer’s staging detection, thereby
alleviating earlier and more precise interventions. This intervention can
substantially alter the disease’s management, underscoring patients care
and therapeutic results.

Regarding these conclusions, research objectives that have been pro-
posed can be answered in such a way that the ViT model has the potential
of outperforming the CNN model while being used on a larger dataset and
having high computational resource settings. For small dataset settings,
CNN models still offer memory and computational efficient solutions. Sub-
tle changes in neuroanatomical level can be decisive for diagnosis of some
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of the neurodegenerative diseases due to the ViT model’s underlying mech-
anisms, this aspect definitely should be taken into consideration for the
ViT model to be used in medical image analysis. Further research should
focus on optimization of ViT models to reduce computational demands
and increase the accuracy of differentiating similar stages of dementia. In
other neurodegenerative disease research, application of ViT models could
also expand the impact of innovative Transformer models in neurological
analyses.
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