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Abstract 

This study investigated the cross-imaging-modality correlations of entropy, as well as fractal 

features in simultaneous electroencephalography-functional magnetic resonance imaging (EEG-

fMRI) data and their effectiveness in distinguishing and classifying sleep stages. Using open-

access simultaneous EEG-fMRI data at rest and sleep from healthy individuals (age: 22.1 ± 3.2 

years; male/female: 17/16), correlational analyses were conducted on these features from 

complete and sleep stage-specific EEG and fMRI time series. Furthermore, sleep stage-specific 

features were used in ANOVAs and machine learning models to assess their ability to distinguish 

and classify sleep stages. The correlational analyses identified limited and region-specific 

relationships for the same entropy and fractal features between EEG channels and fMRI brain 

regions, including the frontoparietal EEG channels and frontoparietal attentional and default 

mode networks. ANOVAs revealed significant differences in entropy and fractal features across 

sleep stages, when averaged over all EEG channels or fMRI brain regions. Entropy features were 

higher in wakefulness relative to other sleep stages, while most fractal features showed the 

opposite trend. The machine learning models trained on EEG-based features achieved 76.1% 

accuracy, while models trained on fMRI-based or combined features from both imaging methods 

reached 75.4% accuracy. Thus, combining features from EEG and fMRI did not improve 

performance. Despite constraints, including imbalanced and noisy data, this study presented new 

approaches and insights into entropy and fractal features of simultaneous EEG-fMRI data during 

sleep, which might have implications for understanding sleep disorders. Future research should 

examine these features in larger, more balanced datasets, including patient data from sleep 

disorders. 

Keywords: sleep, entropy, fractality, simultaneous EEG-fMRI, machine learning 
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Sleep Analysis Using Entropy and Fractal Features from Simultaneous 

Electroencephalography-Functional Magnetic Resonance Imaging Data  

Sleep is a vital physiological process defined as a homeostatically regulated, temporary 

state, characterized by relative immobility, significantly diminished sensory responsiveness, 

lowered or lack of conscious awareness, as well as rapid reversibility, distinguishing it from 

states such as coma or anesthesia (Siegel, 2005; Tagliazucchi, Behrens, et al., 2013; Tononi et 

al., 2016). Although sleep seems to be vital in mammalian species, including humans, the nature 

and function of sleep remains enigmatic and largely unmapped (Rechtschaffen, 1998; Siegel, 

2008). Besides, this issue becomes even more relevant when we also consider that humans 

normally devote roughly a third of their lifespan to sleeping, yet there are at least 83 different 

sleep disorders, some of which are estimated to affect a third of the Netherlands’ population and 

approximately one billion people worldwide (Benjafield et al., 2019; Kerkhof, 2017; Sateia, 

2014). Therefore, understanding sleep and its features has been crucial since the emergence of 

empirical sleep research in the 19th and 20th centuries, marked by the discovery of rapid eye 

movement (REM) and non-rapid eye movement (N-REM) sleep stages, as well as the advent of 

brain imaging technologies, such as the electroencephalogram (Aserinsky & Kleitman, 1953; 

Berger, 1929; Dement & Kleitman, 1957). 

Electroencephalography (EEG) is a non-invasive brain imaging technique that uses 

electrodes placed on the scalp to track voltage fluctuations generated by the flow of ionic 

currents within neurons, thus enabling researchers to study the brain’s electrical activity (Buzsáki 

et al., 2012). By providing a window into the complex electrical dynamics of the brain, EEG has 

contributed significantly to several groundbreaking discoveries in sleep research, including the 

identification of the aforementioned, distinct sleep stages (Aserinsky & Kleitman, 1953; Dement 
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& Kleitman, 1957; Loomis et al., 1937). This is important because understanding the distinct 

features of these sleep stages in neurophysiological recordings, such as EEG, may be informative 

not only about the functions of the processes underlying sleep but also about the presence of 

sleep disorders. Therefore, in order to reliably classify and interpret these sleep stages based on 

their characteristics in EEG data, the formulation of standardized criteria was necessary, such as 

the frameworks developed by Rechtschaffen and Kales (1968) and the American Academy of 

Sleep Medicine (AASM) (Iber et al., 2007, Moser et al., 2009). The more contemporary 

guidelines of AASM define sleep as comprising of cycles of five sleep stages, each with their 

own characteristic EEG features, as can be seen in Figure 1 (Iber et al., 2007, Moser et al., 2009). 

The sleep cycle starts with wakefulness, which is characterized by mostly beta or alpha waves 

(Cantero et al., 2002; Cirelli & Tononi, 2015; Stiller & Postolache, 2005). Then, N-REM sleep 

follows, with light N-REM sleep (N1) marked by theta waves, as well as deeper N-REM sleep 

(N2), containing distinctive waveforms, such as sleep spindles and K complexes (Gonzalez et al., 

2018; Loomis et al., 1935, 1937). After that, the deepest N-REM sleep is reached (N3), which 

can be inferred based on low-frequency delta waves in the EEG signal (Stiller & Postolache, 

2005). Finally, REM is the stage most commonly associated with vivid dreaming, as well as with 

beta and theta waves (Stiller & Postolache, 2005; Vijayan et al., 2017). Thus, following the 

criteria of the AASM, sleep researchers should be able to reliably classify sleep stages. However, 

despite the establishment of these classification standards, the manual assessment of sleep stages 

based on EEG is a strenuous and time-consuming process, which is also prone to subjectivity 

(Gaiduk et al., 2023; Rosenberg & Van Hout, 2013). As a result, in recent decades there has been 

a push towards developing faster, more objective, and automated methods for sleep stage 

analysis and classification based on EEG signal characteristics to mitigate these issues (Agarwal  
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Figure 1  

Sleep Stages and Their Characteristic EEG Features 

 

Note. Visualization of 10-second segments from the dataset of Gu et al. (2023) used in this study 

after preprocessing to demonstrate EEG characteristics of the five sleep stages, according to the 

AASM guidelines. As intervals of REM sleep stage were not available in the selected dataset, a 

REM segment has been taken from the open-access Sleep-EDF Database (Goldberger et al., 

2000; Kemp et al., 2000). Sleep spindles and K-complexes in N-REM 2 are also highlighted. 



ENTROPY AND FRACTAL FEATURES OF EEG-FMRI IN SLEEP 6 

& Gotman, 2001). Several review articles, including those by Fiorillo et al. (2019), Gaiduk et al. 

(2023), Phan and Mikkelsen (2022), as well as Lambert and Peter‐Derex (2023), evaluated 

previous studies on EEG feature-based machine learning and deep learning algorithms used for 

sleep staging, highlighting that such approaches demonstrate considerable promise, some even 

achieving more than 90% accuracy and a Cohen’s kappa of 0.8 or above, which is comparable 

with the performance and inter-rater reliability of human scorers (Danker‐Hopfe et al., 2009). 

Nevertheless, a persistent challenge that remains is the low spatial resolution of EEG. While 

EEG excels in temporal resolution, with near-instantaneous view of the brain’s electrical activity, 

its spatial resolution is severely limited, making it difficult for researchers to precisely locate the 

source of neural activity, specifically considering deeper brain structures (Betta et al., 2021; 

Murphy et al., 2009). This, in turn, leads to the potential loss of useful spatial information that 

could otherwise increase performance in the classification process and reveal key aspects of 

sleep and its stages (Lambert & Peter‐Derex, 2023). To overcome this limitation, new brain 

imaging techniques were necessary to explore neural activity with better spatial accuracy. 

One such advancement was functional magnetic resonance imaging (fMRI), which is a 

non-invasive technique designed to observe hemodynamic changes associated with brain 

activity, either during specific tasks or at rest (Bandettini et al., 1992; Kwong et al., 1992; Ogawa 

et al., 1990). Unlike EEG, fMRI shows the Blood Oxygen Level Dependent (BOLD) signal, 

which indicates changes in deoxyhemoglobin concentration via magnetic signals from hydrogen 

nuclei in water molecules, assumed to be induced by shifts in neural metabolism (Glover, 2011). 

As a result, researchers are now able to explore the neural underpinnings of sleep stages with 

high spatial fidelity and even develop automatic sleep staging methods using data obtained with 

fMRI (Logothetis, 2008; Tagliazucchi et al., 2012; Tagliazucchi & Laufs, 2014). However, a 
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considerable limitation of fMRI is its relatively poor temporal resolution (Boynton et al., 1996; 

Chen et al., 2023; Glover, 2011; A. Taylor et al., 2018). 

Consequently, while EEG directly captures neural electrical activity, offering high 

temporal resolution, fMRI assesses neural activity indirectly through hemodynamic responses 

and provides high spatial resolution. Not so surprisingly, the complementary strengths of EEG 

and fMRI have become increasingly apparent over the past thirty years, leading to a more 

nuanced understanding of brain function by merging EEG’s high temporal resolution and fMRI’s 

high spatial resolution, culminating in what is called simultaneous EEG-fMRI (Sturzbecher & 

De Araújo, 2012; Warach et al., 1996). While both EEG and fMRI have long been used on their 

own to explore the features of sleep and its stages, the idea of combining them for this purpose is 

a relatively new development (Duyn, 2012, Song et al., 2022; Warbrick, 2022). For instance, one 

automated sleep staging approach has recently been developed by training a deep learning model 

on EEG data from simultaneous EEG-fMRI (Zou et al., 2022). This approach produced a sleep 

stage classification accuracy of more than 70% for an independent dataset, which approximates 

the performance of at least some of the earlier machine-learning models that were trained on 

unimodal EEG features (Boostani et al., 2017). However, it still falls short of the accuracy of 

more than 80%, typical for most deep learning models based on data from a single modality (Li 

et al., 2022; Sri et al., 2022). This lower performance could be due to noise and artifacts induced 

by the simultaneous acquisition of EEG and fMRI recordings, as well as the possibility that 

different features may be informative about sleep stages in simultaneously acquired EEG-fMRI 

compared to unimodal EEG or fMRI data. Thus, one critical question that still needs exploration 

is identifying the most informative features for efficient machine learning-based sleep stage 

classification that are also applicable across EEG and fMRI. A number of recent papers suggest 
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that non-linear measures, such as the entropy and fractal dimension of EEG and BOLD time-

series are informative about the complexity in these signals during different sleep stages 

considering a non-linear and dynamic brain, compared to traditional features, which rely on 

assumptions of linearity and stationarity (Acharya et al., 2015; Ma et al., 2018; Zhou et al., 

2016). 

Entropy is one such non-linear measure from thermodynamics, originally used to 

represent the disorder or randomness in a system (Clausius, 1867; Namdari & Li, 2019). Within 

physiological time-series analysis, however, entropy has been adopted to calculate the 

irregularity, or complexity of signals (Pincus & Goldberger, 1994; Shannon, 1948). This is done 

by analyzing the signal in either the time or frequency domain to see how similar or different 

segments of the signal are (Gutiérrez‐Tobal et al., 2015). Moreover, various types of entropy, 

such as Shannon entropy, Approximate Entropy (ApEn), Sample Entropy (SampEn) have been 

applied to study EEG and BOLD time series (Burioka et al., 2005; Da Costa et al., 2002; De 

Araújo et al., 2003; Ge et al., 2007; Lo et al., 2022; Miskovic et al., 2018; Pincus, 1991; 

Richman & Moorman, 2000; Shannon, 1948; Wang et al., 2014). In the context of sleep stage 

classification both ApEn and SampEn seem to be of particular interest. More specifically, in 

EEG signals, higher ApEn and SampEn, representing increased irregularity, are commonly 

associated with wakeful states, whereas lower ApEn and SampEn, indicating more regularity, are 

usually a characteristic of the deeper N-REM sleep stages (Burioka et al., 2005; Ge et al., 2007). 

Similarly to entropy, fractal dimension (FD) is yet another non-linear measure, that originates 

from the field of mathematical chaos theory, used to quantify the complexity or roughness of a 

geometric shape or temporal pattern (Mandelbrot & Van Ness, 1968; Mandelbrot & Wheeler, 

1983). Entropy and FD have complementary perspectives on complexity: entropy quantifies 
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regularity or predictability, while FD captures the complexity of patterns by examining how the 

details in certain patterns “change with the scale at which they are measured” (Lau et al., 2022; 

Porcaro et al., 2024). In physiological time-series analysis, FD has been used to evaluate the 

complexity and self-similarity within biological signals, providing insights into the underlying 

dynamics of physiological processes (Esteller et al., 2001). To accomplish this, one can examine 

the signal's structure in the time domain to assess the degree of pattern repetition over various 

scales. Different forms of FD, such as the Highuchi Fractal Dimension (HFD) and the Katz 

Fractal Dimension (KFD), have been applied to analyze physiological time series, each method 

providing unique perspectives on the signal's fractal nature (Higuchi, 1988; Katz, 1988). Similar 

to the application of entropy measures, fractal dimension analysis in EEG time series reveals 

higher FD values during wakefulness, and lower FD during the deeper stages of N-REM sleep 

(Chen, 2017; De Miras et al., 2019). In addition, the Hurst exponent (HE) and Detrended 

Fluctuation Analysis (DFA) are central in fractal analysis, relating closely to FD by evaluating 

the persistence or self-similarity over longer timescales, offering further depth in understanding 

the complexity of physiological states, including sleep dynamics from both EEG and BOLD 

time-series (Farag & El-Metwally, 2012; Gneiting & Schlather, 2004; Hurst, 1951; Mandelbrot 

& Wallis, 1969; Peng et al., 1994; Peng et al., 1995; Tagliazucchi, Von Wegner, et al., 2013). 

Research using EEG has shown that alpha (α) exponents, as measured by DFA, vary across 

different sleep stages, although the findings are inconsistent (Goshvarpour & Abbasi, 2013; Lee 

et al., 2001). Some studies report that α from DFA are higher in undifferentiated sleep states than 

in wakefulness, whereas others find the opposite trend (Goshvarpour & Abbasi, 2013; Lee et al., 

2001). Similarly, analyses using both EEG and fMRI data show varied trends for the HE 

(Acharya et al., 2005; Tagliazucchi, Von Wegner, et al., 2013; Weiss et al., 2009). Typically, the 
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HE decreases progressively from wakefulness to deep N-REM sleep (Acharya et al., 2005; 

Tagliazucchi, Von Wegner, et al., 2013). However, some findings in EEG data indicate increases 

in the HE from higher to lower N-REM stages, with a decrease during REM sleep (Weiss et al., 

2009). 

That being said, the aforementioned entropy and fractal features have been extensively 

studied in the context of EEG-based sleep stage classification. Boostani et al. (2017) evaluated 

automated EEG-based methods for classifying sleep stages, identifying the entropy of wavelet 

coefficients and the random forest classifier as the most effective feature and classifier, 

respectively. This approach achieved an accuracy rate of 87% for classifying sleep stages in 

healthy subjects and 69% in REM behavioral disorder patients. Likewise, according to 

Rodríguez-Sotelo et al. (2014), EEG-based entropy and fractal features are useful predictors of 

sleep stages, with ApEn and FD having the best performance. In another study, Chouvarda et al. 

(2011) also examined, among others, the FD, ApEn, and SampEn of EEG, observing statistically 

significant differences in these metrics across sleep stages. Finally, Acharya et al. (2015) 

compared 29 non-linear features, including ApEn, SampEn, Hurst exponent, and DFA, for EEG-

based sleep analysis, finding all of these features to be effective in distinguishing between sleep 

stages. Similar studies are yet to be conducted to gain more insight into how predictive the 

entropy and fractal dimensions of BOLD time series are regarding sleep stages, especially when 

using machine learning algorithms. Nonetheless, it is becoming more and more clear that in the 

context of sleep analysis, EEG-based approaches could benefit immensely from the application 

of non-linear features, such as ApEn, SampEn, Highuchi’s FD, Hurst exponent, and DFA. 

Having outlined the historical context leading to the advent of simultaneous EEG-fMRI 

and the promising results of nonlinear features in previous studies on sleep stages, several areas 
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that require further exploration should be acknowledged. To date, only a limited number of 

studies have investigated the correlations of fractal features, such as the Hurst exponent, and, 

notably, none seem to have examined entropy features, between the signals of various brain 

regions in fMRI, or between time series of EEG channels and fMRI regions of interest (ROIs) 

recorded simultaneously during sleep (Tagliazucchi, Von Wegner, et al., 2013). More precisely, 

the only relevant study by Tagliazucchi, Von Wegner, et al. (2013) investigated the correlation 

between Hurst exponents calculated for BOLD time series and variance in delta-power across all 

EEG channels, finding a negative correlation in the frontoparietal regions, including the 

frontoparietal attentional (FAN) and default mode networks (DMN). These findings underline 

the need to explore the link between non-linear features of the BOLD time series in brain regions 

associated with the FAN and DMN and the same features of signals in frontoparietal EEG 

channels before evaluating their informativeness in sleep stage classification. Moreover, as of 

now, there seem to be no machine learning models available that have been trained on entropy 

and fractal features from purely fMRI, or simultaneous EEG-fMRI data, for sleep stage 

classification and prediction. This research paper will delve into these uncharted territories. 

First, this study aims to shed light on how the entropy, as well as fractal features, derived 

from BOLD time series of brain regions associated with the FAN and DMN relate to the same 

features calculated for time series in frontoparietal EEG channels in simultaneous EEG-fMRI 

data during rest and sleep. Since no exact precedent has been found that could serve as a basis 

for hypotheses regarding this research question, this aspect of the study is rather exploratory in 

its nature. Nonetheless, inspired by the results of Tagliazucchi, Von Wegner, et al. (2013), the 

minimal prediction of the current study regarding the first research question was that the Hurst 

Exponent from time series of fMRI ROIs associated with the FAN and DMN would show a 
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statistically significant, negative relationship with the Hurst Exponent of time series from the 

frontal and parietal EEG channels. In addition, considering what the rest of the non-linear 

measures used in this study quantify, significant correlations between the same EEG channels 

and fMRI ROIs are expected for SampEn, ApEn, HE, and DFA features, although the direction 

of the correlations may differ. These relationships will be investigated through correlational 

analyses of the aforementioned entropy and fractal features from EEG and BOLD time series 

from complete simultaneous EEG-fMRI recordings. 

Second, another aim of the current research is to explore the cross-modality correlations 

between each entropy and fractal feature of frontoparietal EEG channels and the same features in 

BOLD time series from ROIs associated with the FAN and DMN during wakeful- and sleep 

stage-specific segments of data. In alignment with the previous research question and 

hypotheses, the same general patterns are expected between features across frontal and parietal 

EEG channels and fMRI ROIs linked to the FAN and DMN during wakeful and N-REM sleep 

stages. Furthermore, similarly to the predictions related to the previous research question, these 

hypotheses will be tested using correlational analyses for entropy and fractal features from EEG 

and BOLD time series, but this time within sleep stage-specific segments of simultaneous EEG-

fMRI recordings. 

Third, this study assesses how effective ApEn, SampEn, Highuchi’s FD, HE, and DFA 

features from simultaneous EEG and BOLD signals are in distinguishing and accurately 

classifying sleep stages. In the context of this final research question, there will be an initial 

analysis of variance (ANOVA) for the sleep stage-specific entropy and fractal features averaged 

across all EEG channel and fMRI ROIs to investigate if these features differ across sleep stages. 

Based on the previously highlighted literature, it is hypothesized that ApEn, SampEn, HFD, as 
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well as HE and DFA values will decrease statistically significantly from wakefulness to deeper 

N-REM sleep stages. Finally, this study will evaluate the performance of machine learning 

models trained with both EEG and BOLD-based ApEn, SampEn, Highuchi’s FD, HE, and DFA 

features from simultaneous EEG and BOLD signals in predicting sleep stages and wakefulness, 

comparing their performance to models trained only on EEG or BOLD features. The hypothesis 

in this case is that models trained on features from both EEG and BOLD modalities will achieve 

higher accuracy in predicting sleep stages, thereby outperforming those based purely on EEG or 

fMRI data. 

To summarize, the objective of this study is to uncover the correlations of several entropy 

and fractal features between frontoparietal EEG channels and fMRI ROIs related to the FAN and 

DMN in simultaneous EEG-fMRI data, their effectiveness in distinguishing wakeful and sleep 

stages, as well as the predictive power of machine learning models trained on these features for 

accurate sleep stage classification. 

Methods 

Dataset 

The current study used an open-access dataset released by Gu and colleagues (2023) in 

Brain Imaging Data Structure (BIDS) format, accompanying a previous publication by the 

authors (Gorgolewski et al., 2016; Gu et al., 2022). This dataset contained raw structural and 

functional MRI, as well as raw EEG data from 33 healthy participants, all of which were 

obtained with informed consent at Pennsylvania State University (Gu et al., 2023). The 

participants were 17 males and 16 females with an average age of 22.1 years, and a standard 

deviation of 3.2 years (Gu et al., 2023). For each participant, the dataset featured a T1-weighted 

anatomical scan, two 10-minute sessions of resting-state data, and several 15-minute sleep 



ENTROPY AND FRACTAL FEATURES OF EEG-FMRI IN SLEEP 14 

recordings. The structural MRI data were collected by a 3 Tesla Prisma Siemens Fit scanner with 

a Siemens 20-channel receive-array coil and a magnetization-prepared rapid acquisition gradient 

echo (MPRAGE) sequence (TR/TE =  2300/2.28 ms, TI = 900 ms, flip angle = 8°, FOV = 

256mm, matrix size 256 × 256 × 192, voxel size = 1×1×1 mm3, acceleration factor = 2) (Gu et 

al., 2023). The functional MRI scans were based on an echo-planar imaging (EPI) sequence 

(TR/TE = 2100/25ms, flip angle = 90°, 35 slices, FOV = 240 mm, voxel size = 3×3×4 mm3) (Gu 

et al., 2023). As for the EEG, recordings were carried out using a 32-channel MR-compatible 

equipment, with electrode placements according to the 10-20 international system. Eye 

movements and heart activity were monitored through electrooculography (EOG) and 

electrocardiography (ECG), respectively. The sampling rate of the EEG was 5000 Hz and band-

pass filtering was applied from 0 to 250 Hz. Besides, the EEG also included R128 markers that 

represented the fMRI volume triggers to align the simultaneously recorded BOLD and EEG 

signals. Furthermore, a registered polysomnography expert manually labeled the sleep stages in 

the EEG data, evaluating each 30-second epoch for wake (‘w’) or sleep stages ‘1’, ‘2’, and ‘3’, 

which correspond to N-REM 1, N-REM 2, and N-REM 3, in accordance with the sleep scoring 

guidelines of AASM. The scoring also included annotations for epochs where uncertainty was 

present, marked as “uncertain”, and epochs where excessive artifacts prevented a reasonable 

score, labeled as “unscorable” (Gu et al., 2023). The authors noted that this sleep staging process 

involved certain preprocessing steps, including the removal of MRI-induced artifacts, re-

referencing of the EEG data to the contralateral mastoid, and band-pass filtering from 0.3 to 35 

Hz. 

EEG Data Preprocessing 
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Guided by the paper associated with the dataset, as well as an initial visual assessment, 

MRI gradient artifacts and ballistocardiographic (BCG) pulses had to be removed from all raw 

EEG recordings (Gu et al., 2023). Gu and colleagues (2023) used an algorithm named AMRI for 

artifact removal (Liu et al., 2012). In addition to this, several other tools have been designed for 

mitigating MRI-related artifacts in EEG data, including the fMRIb plugin for EEGLAB, as well 

as more comprehensive pipelines, such as APPEAR (Delorme & Makeig, 2004; Iannetti et al., 

2005; Mayeli et al., 2021; Niazy et al., 2005). In order to select an MRI artifact cleaning 

approach for this study, the outcomes produced by AMRI, fMRIb, and APPEAR were all 

visually inspected in the same segments of EEG data from randomly selected sessions and 

participants, as depicted in Figure A1 in Appendix A. Based on the dataset used in this study, 

AMRI was chosen for developing a custom MATLAB pipeline to clean the EEG data, as it 

processed sessions 3-7 minutes faster and produced visually cleaner signals with fewer residual 

rhythmic artifacts from the MRI gradients compared to fMRIb and APPEAR. This process 

involved eliminating MRI gradient artifacts, identifying QRS complexes from the ECG, 

integrating potentially missing R128 markers into the EEG, and removing cardiac pulse artifacts 

(Liu et al., 2012). In addition, the dataset was downsampled to 250 Hz and low-pass filtered at 

125 Hz.  

Even though AMRI reduced the presence of MRI gradient and BCG artifacts in the EEG 

data, additional preprocessing was necessary. Correspondingly, a custom Python pipeline was 

developed using the MNE package (Gramfort, 2013). The first step was importing the AMRI-

cleaned data, together with relevant information regarding R128 markers and annotations on the 

different stages of sleep for each 30-second EEG segment, as provided by Gu et al. (2023). Then, 

the EOG and ECG channels were specified, after which the standard 10-20 electrode placement 
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and average re-referencing was applied to the data. This was followed by 0.3 to 35 Herz (Hz) 

band-pass filtering, in line with the specifications of Gu and colleagues (2023) used for sleep 

staging. Moreover, independent component analysis (ICA) was conducted to distinguish and 

remove components related to the remaining EOG and ECG artifacts (Gramfort, 2013). To 

further ensure that bad portions of the EEG signals are cleaned, artifact subspace reconstruction 

(ASR) from the asrpy package was used (Kothe & Jung, 2016). Finally, based on the R128 

markers and annotations of the 30-second-long segments, the cleaned data was cropped to obtain 

the segments corresponding to the simultaneous EEG-fMRI recordings. The resulting segments 

were then saved in fractal image format (FIF) for later analysis. Due to the fact that EEGLAB 

identified data truncation in three out of 255 sessions during the AMRI cleaning process, and an 

additional four sessions encountered errors during the preprocessing in MNE, these sessions 

were marked and subsequently removed from the analysis (Delorme & Makeig, 2004; Gramfort, 

2013). The general steps of this preprocessing workflow are outlined in Figure 2. 

FMRI Data Pre- and Postprocessing 

Although some of the conventional approaches to fMRI data pre- and postprocessing 

have typically relied on manual techniques with software like SPM, AFNI, FSL, and AIR, these 

methods can be tedious and impractical in large datasets, while also introducing variability and 

subjectivity in method and parameter selection (Cox, 1996; Fischl et al., 2002; Friston et al., 

1994; Smith et al., 2004). To address these challenges and enhance the reliability and 

replicability of research findings, this study applied standardized, robust pipelines which 

integrate a number of established tools and criteria for processing large resting-state fMRI (rs-

fMRI) datasets. This strategy involved a first preprocessing stage with fMRIPrep and then 

postprocessing with the eXtensible Connectivity Pipeline-DCAN (XCP-D) (Esteban et al., 2018;  
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Figure 2 

Overview of Preprocessing Steps for EEG in This Study. 
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Mehta et al., 2023). The anatomical and functional MRI data underwent preprocessing using 

fMRIPrep version 23.1.4 with default settings, ensuring artifact-free data that was suitable for 

subsequent analyses (Esteban et al., 2018). As part of the preprocessing, the T1-weighted 

anatomical data of each participant went through several steps, such as intensity normalization, 

skull stripping, tissue segmentation, and also spatial normalization. As for the functional MRI, 

these were corrected for head motion and slice-timing, aligned with anatomical data, and 

underwent smoothing, noise reduction and spatial normalization to a standard space. To the 

request of the creators of fMRIPrep, an automatically generated, detailed report of the 

preprocessing procedures in this dataset can be found in Appendix B. 

Following the preprocessing of fMRI data with fMRIPrep, the data were further refined 

using the eXtensible Connectivity Pipeline-DCAN (XCP-D) (Mehta et al., 2023). The 

postprocessing involved transforming native-space T1-weighted images to MNI space, and 

identifying non-steady-state volumes. Besides, nuisance regressors, including six filtered motion 

parameters, mean global signals (global, white matter, cerebrospinal fluid), quadratic expansion 

of motion parameters and tissue signals, as well as their temporal derivatives were selected and 

regressed from the BOLD data, with additional steps including despiking for motion outliers, 

band-pass filtering, and smoothing (Mehta et al., 2023). Framewise displacement was disabled to 

avoid censoring segments of the data containing motion artifacts. Even though, in general, this is 

considered bad practice, the decision was made to preserve the temporal order and integrity of 

the time series, which was important for accurately interpreting the relationship between BOLD 

and EEG features across sleep stages. As a final step, the BOLD time-series data were extracted 

using various brain atlases. While XCP-D offered cortical, subcortical, and combined atlases, 

such as the 4S156 atlas, the time series extracted from the latter contained a large number of non-
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numeric values with up to 27,742 instances in some sessions, and affecting at least 22 out of 156 

ROIs for some participants (Schaefer et al., 2018). Consequently, the BOLD time series in this 

study were derived from the 48 ROIs defined by the cortical Harvard Oxford Atlas in FSL 

(Jenkinson et al., 2012). In a manner similar to fMRIprep, the specific methods and parameters 

of the XCP-D post-processing pipeline are detailed in an automatic report, which is included in 

Appendix C at the authors' request. 

Feature Extraction 

Approximate Entropy (ApEn) 

ApEn, as highlighted beforehand, is a complexity measure introduced by Pincus (1991), 

capturing the irregularity or unpredictability of a time series. In simple words, ApEn quantifies 

complexity by measuring how certain sequences in a signal remain similar or dissimilar over 

consecutive observations. The general steps of estimating ApEn in time series were explained in 

Appendix D. 

To calculate ApEn in physiological time series, the Python package NeuroKit2 was used 

(Makowski et al., 2021). Regarding the parameter selection, the calculation of ApEn depends on 

the time series length (N), as well as the specific combination of parameters m and r, or, in other 

words, segment length and tolerance (Pincus, 1991). Since no universal and well-established 

method exists for optimizing these parameters, different values had to be considered for the 

separate stages of analysis and brain imaging modalities based on previous literature. 

Consequently, as the BOLD time-series used in this dataset ranged between 286 and 429 data 

points, m=2 and r=0.2 * SD were chosen for calculating ApEn for both for the entire time series, 

as well as the short, sleep stage-specific segments, which will be discussed later in this method 

section (Pincus, 1995; Pincus & Huang, 1992; Yentes et al., 2012). As for the EEG data, some of 
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the most relevant studies have found that m=2 and r=0.2 * SD yielded consistent ApEn values 

that could be used to distinguish between sleep stages (Burioka et al., 2005). Thus, in this 

research, m=2 and r=0.2 * SD were also adopted for analyzing EEG data from both specific 

sleep stages and the complete signal. 

Sample Entropy (SampEn) 

As mentioned previously, SampEn is an adaptation of ApEn, that is highly relevant in 

physiological time-series analysis (Richman & Moorman, 2000). This is because SampEn, in 

contrast to ApEn, avoids the issues of inconsistent results across different data series lengths by 

not including identical, matching segments in its calculation, thereby ensuring more reliable and 

consistent quantification of irregularity or complexity (Delgado-Bonal & Marshak, 2019; 

Richman & Moorman, 2000; Xie et al., 2008). The main steps involved in calculating SampEn 

were described in Appendix E. 

Similar to the calculation of ApEn, NeuroKit2 was used to compute SampEn (Makowski 

et al., 2021). Regarding the parameter selection for SampEn, a study by Yang et al. (2018) 

provided a strategy for selecting these parameters and presented combinations of m and r 

depending on the length of various BOLD time series, that seemed to produce reliable output and 

that were consistent with the previously discussed findings. Based on this strategy, m=2 and 

r=0.35 * SD were chosen for SampEn calculation in complete BOLD time-series with 286 and 

429 data points in the dataset used in this study, as they fell into the acceptable range highlighted 

by Yang et al. (2018). Similarly, following the guidelines of Yang et al. (2018), for obtaining 

SampEn in BOLD signals of sleep stage-specific segments, m=1 with r=0.35 * SD were selected. 

For the EEG data, while some studies used m=2 in combination with r=0.1 and r=0.25, the 

majority of papers in sleep analysis supported values of r=0.2 * SD and m=2 (Bruce et al., 2009; 
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Ge et al., 2007; Jiang et al., 2015; Li et al., 2015). Correspondingly, this study applied a 

combination of m=2 and r=0.2 for SampEn calculation in both sleep stage-specific and full EEG 

time series. 

Higuchi’s Fractal Dimension (HFD) 

As pointed out in the introduction, HFD is another non-linear measure that has been used 

for measuring complexity in time series, including in neurophysiological signals during sleep 

stages (Higuchi, 1988; Kesić & Spasić, 2016). To demonstrate the process of calculating HFD, a 

detailed description can be found for this purpose in Appendix F. HFD values can theoretically 

take values in the range of 1 and 2, depending on the time series length and kmax value, which is 

the single, most important parameter for HFD. 

One implementation of HFD calculation in Python programming language is available in 

the NeuroKit2 package (Makowski et al., 2021). Moreover, besides providing a way to obtain 

HFD values based on the paper of Higuchi (1988), NeuroKit2 also incorporates a function that 

can optimize the kmax parameter for each individual time series (Makowski et al., 2021; Vega & 

Noel, 2015). This is especially important because there was no consensus in the literature on 

what is an adequate time series length and associated kmax parameter for HFD estimation. 

Therefore, this study applied a customized, multi-step approach for determining adequate kmax 

values for the specific dataset used in this research. First, the parameter optimization tool of 

NeuroKit2 was applied across all complete or sleep stage-specific segments from both EEG 

channels and fMRI ROIs, resulting in numerous kmax values for every channel or ROI, as well as 

series length and modality (Makowski et al., 2021). This optimization tool assessed a range of 

kmax values and selected the best fitting one for a specific time series based on the point at which 

HFD values started to reach a plateau (Makowski et al., 2021; Vega & Noel, 2015). For both 
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complete and sleep stage-specific EEG series, as well as for full BOLD series, the maximum kmax 

value was set at 64. This limit was chosen to prevent excessive computational demands and was 

consistent with some of the highest kmax values found in the relevant literature (Varley et al., 

2020). Following this, the mean kmax values were computed for each EEG channel and fMRI 

ROI, as well as series length and modality. The third and final step involved taking these means 

for each EEG channel and fMRI ROI, as well as series length and modality, and rounding them 

up to the nearest integer, ensuring a better probability of the HFD values stabilizing at that kmax. 

Using this method, optimal kmax values were selected for each EEG channel and fMRI ROI for 

both complete time series and sleep stage-specific segments, as presented Table F1 and Table F2 

of Appendix F, respectively. 

Hurst Exponent (HE) and Detrended Fluctuation Analysis (DFA) 

Another non-linear measure that relates closely to fractal dimension and quantifies the 

long-term complexity, persistence, or self-similarity of signals is the Hurst Exponent (HE) 

(Hurst, 1951). When it comes to time series that is self-similar, fractal dimension (D) relates 

directly to HE, as can be seen in Equation 1: 

 D = 2 - HE , (1) 

where D can have a value between 1 and 2, whereas the HE value ranges from 0 to 1 

(Nazarychev et al., 2019). Moreover, the HE of time series can be estimated through different 

approaches, including rescaled-range analysis (R/S) and DFA (Hurst, 1951; Peng et al., 1994). 

This study used the R/S implementation of NeuroKit2 with default settings to estimate the HE 

directly within a range of 0 to 1, in which case values precisely at 0.5 suggest non-correlated 

behavior, while values above and below 0.5 are signs of persistence and anti-persistence, 

respectively (Makowski et al., 2021). 
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Furthermore, this study applied monofractal DFA analysis using default settings in 

NeuroKit2 to obtain the alpha exponent (α), which is a robust measure of the overall scaling 

behavior and persistence of the features in the EEG and BOLD data and important for 

understanding long-term correlations across imaging modalities (Hardstone et al., 2012; 

Makowski et al., 2021; Peng et al., 1994). The α in monofractal DFA ranges from 0 to 2, where 

values less than 0.5 indicate anti-persistence, values exactly at 0.5 suggest non-correlated 

behavior, and values above 0.5 up to 1 indicate persistence (Hardstone et al., 2012). Values 

between 1 and 2 generally imply non-stationarity (Hardstone et al., 2012). The exact procedures 

of calculating HE with R/S and the alpha exponent with monofractal DFA can be found in 

Appendix G. 

Correlational Analysis 

Between-Imaging Modality Correlational Analysis of Entropy and Fractal Features in 

Complete EEG and BOLD Time Series 

To address the first research question, a correlational analysis was conducted using 

entropy and fractal features extracted from the full EEG and BOLD time-series. Before the 

analysis, the distribution and variance of features from every EEG channel and fMRI ROI across 

all 248 sessions were plotted to visually assess both transient interactions across sessions, as well 

as cross-individual patterns. The resulting plots indicated similar mean estimates and variance 

across separate scanning sessions. Thus, features from each EEG channel and fMRI ROI were 

averaged across all sessions for each of the 33 participants, resulting in 30 EEG channel and 48 

fMRI ROI feature values per participant. Importantly, correlational analysis with Pearson’s r is 

based on several key assumptions including normal distribution of the data, absence of outliers, 

data derived from a random or representative sample, both variables being measured at an 
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interval or ratio level, as well as an expected linear relationship between the variables (Schober 

et al., 2018). The last three assumptions were inherently met. However, the normality of data 

distributions and absence of outliers were rigorously checked using histograms, Q-Q plots, 

Shapiro-Wilk tests for normality, and boxplots for outlier detection (Shapiro & Wilk, 1965). The 

Shapiro-Wilk test was chosen due to its effectiveness for datasets containing fewer than 50 

samples, given the presence of 30 EEG and 48 fMRI ROI values per feature and participant in 

the dataset (Mishra et al., 2019). Outliers were quantified as data points more than one and a half 

times the interquartile range (IQR) below and above the first and third quartiles for each feature 

(Tukey, 1977). Based on visual assessment of the histograms and Q-Q plots, combined with the 

quantitative analysis from the Shapiro-Wilk test, violations of the normality of distributions were 

detected in 36 out of 150 EEG channel and 69 out of 240 fMRI ROI features. Likewise, several 

outliers had to be removed to maintain the integrity of the correlational analysis. Due to these 

deviations, Spearman’s rank correlation coefficients were computed instead of Pearson’s r to 

evaluate the relationship between frontoparietal EEG channels and fMRI ROIs associated with 

the FAN and DMN for each entropy and fractal feature (Schober et al., 2018). The EEG 

electrodes of interest were the channels from the frontal (Fp1, Fp2, F3, F4, F7, F8, FC1, FC2, 

FC5, FC6, Fz) and parietal (P3, P4, P7, P8, Pz) clusters. These clusters were partially based on 

the findings of Rojas et al. (2018), who demonstrated that frontal and parietal EEG channels are 

indicative of the functional connectivity in both the frontoparietal attention network (FAN) and 

the default mode network (DMN). Furthermore, fMRI ROIs in the FAN were set using the 

references provided by Markett et al. (2013), namely intracalcarine cortex (ICc) for a close 

approximation of intraparietal sulcus; superior parietal lobule (SPL), supramarginal gyrus, 

anterior division (SMGa), and supramarginal gyrus, posterior division (SMGp) for the inferior 
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parietal lobule; middle frontal gyrus (MFG) for dorsolateral prefrontal cortex; the juxtapositional 

lobule cortex (JLC), formerly known as supplementary motor cortex, for the supplementary 

motor area; and insular cortex (IC) for the anterior insula. As for the DMN, it included regions 

like the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), the left and right 

temporal parietal junctions (TPJ), and the precuneus, which correspond to frontal medial cortex 

(FMC), cingulate gyrus, posterior division (CGp), angular gyrus (AG), and precuneus cortex 

(PC) respectively, in this study (Utevsky et al., 2014; Wang et al., 2017). Significance tests on 

the resulting coefficients were performed using an alpha threshold of 0.05. To mitigate alpha-

error inflation, the Benjamini-Hochberg procedure was implemented (Benjamini & Hochberg, 

1995). Additionally, non-significant coefficients were masked, and hierarchical clustering 

analysis was applied to the correlational matrices to improve the visualization of statistically 

significant correlations. 

Between-Imaging Modality Correlational Analysis of Entropy and Fractal Features in Sleep 

Stage-Specific EEG and BOLD Time Series 

For the second research question, a similar correlational analysis was conducted for sleep 

stage-specific segments. As indicated earlier, the dataset included annotations for sleep stages in 

30-second-long epochs, providing a substantial amount of data for wakeful, N-REM 1, and N-

REM 2 sleep stages with 3344, 2148, and 1325 epochs, respectively. However, due to the limited 

number of 42 N-REM 3 segments and the absence of REM sleep stages, these stages were 

omitted from the study. Given the lower sampling rate of the BOLD time series, it served as the 

reference for determining the minimum segment size for entropy and fractal feature calculations. 

Previous research suggested that physiological time series containing at least 200 data points, 

approximately corresponding to 14 epochs in the BOLD time series in this dataset, is sufficient 
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for reliably calculating the features used in this study (Delignières et al., 2006; Gomolka et al., 

2018; Mayer et al., 2014; Pincus, 1995; Yentes et al., 2012). Accordingly, continuous BOLD 

segments of at least 14 epochs from the same sleep stage were extracted. Additionally, as 

segment lengths varied from 200 to 429 data points, a sliding window approach was applied to 

achieve time series with consistent lengths of 200 data points for feature calculation. For 

segments exceeding 200 data points, a 200 data point-long window was slid across the segment 

with a step-size of 100, creating a 50% overlap with the previous window, to extract sleep stage-

specific feature values from each window. This technique produced feature values from 218 

windows, with distributions of 167 from wakeful stages, 21 from N-REM 1, and 30 from N-

REM 2. This method was similarly adapted for EEG data, which had a higher sampling rate of 

250 Hz. The EEG window durations were precisely matched to those used for BOLD, making 

sure that the segment sizes and sliding window operations were aligned with the BOLD 

windows. This alignment facilitated precise and consistent feature value calculations across 

different sleep stages for both EEG and BOLD data. For the resulting sleep stage-specific 

features, the same steps for verifying normality of distributions and the absence of outliers, 

alongside correlational analyses, were implemented. Visual assessments of histograms, Q-Q 

plots, and the Shapiro-Wilk tests revealed major deviations from normality in the distributions of 

48 EEG channel features from the N-REM 2 stage, 38 from the N-REM 1 stage, and 97 from the 

wakeful stage. Moreover, the normality assumption was also violated in 16 ROI features from 

the N-REM 2 sleep stage, 21 ROI features from N-REM 1, and 58 ROI features from wakeful 

stages. Similarly, several outliers, defined as values exceeding one and a half times the 

interquartile range (IQR) either below or above the first and third quartiles for each feature, were 

also identified and needed to be excluded. Considering these violations of the assumptions, 
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Spearman coefficients were calculated to evaluate the relationships between EEG channels and 

fMRI ROIs for each entropy and fractal feature. This was followed up with significance testing 

using an alpha threshold of 0.05, as well as the Benjamini-Hochberg procedure to correct for 

alpha-error inflation. Ultimately, non-significant coefficient values were masked, and 

hierarchical clustering analysis was performed on the correlational matrices to further reveal the 

patterns of relationships in the data. 

Analysis of Variance (ANOVA) for Entropy and Fractal Features Across Sleep Stages in 

Sleep Stage-Specific EEG and BOLD Time Series Segments 

As the first part of the third research question, this study explored whether entropy and 

fractal features from sleep stage-specific segments showed statistically significant differences 

across sleep stages. Taking into account that multiple entropy and fractal features (dependent 

variables) were collected for the various sleep stages (independent variable) within the same 

subjects, repeated measures ANOVA (rANOVA) was used on the features averaged across all 

EEG channel and fMRI ROI features. This was necessary to account for the correlation between 

these repeated measurements, reduce the error variance associated with individual differences, 

and increase the statistical power to detect differences between conditions compared to a one-

way ANOVA with independent groups. Importantly, rANOVA requires several assumptions. 

More specifically, the dependent variable should be on an interval or ratio scale; the independent 

variable must include two or more categorical groups; the data should be collected through 

random sampling and normally distributed within each group; variances among the groups need 

to be homogenous; and the assumption about sphericity should not be violated (Weaver et al., 

2017). The criteria for the types of data required, along with random sampling, were already met. 

Additionally, the normality of distributions was evaluated during the correlational analysis of 
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sleep stage-specific features. Despite deviations from normality in certain features, rANOVA is 

generally considered robust to normality violations in case the sphericity assumption is not 

violated (Blanca et al., 2023). Therefore, sphericity was tested using Mauchly’s test, which 

showed that the sphericity assumption was met in all features (Mauchly, 1940). Homogeneity of 

variances was verified using Levene’s test, showing violations of this assumption in the EEG-

based HE and DFA features (Levene, 1960). In these instances, the non-parametric Friedman test 

was used instead of the standard rANOVA, and the Kendall's W for a measure of effect size 

instead of the eta squared (η2) (Friedman, 1937; Kendall & Smith, 1939). The threshold for 

statistical significance was set at p < 0.05 for the F and chi-square (χ²) values of the rANOVAs 

and Friedman tests, respectively (Weaver et al., 2017). Given the multiple tests conducted, the 

Benjamin-Hochberg procedure was applied to correct for alpha error inflation. To determine how 

feature means varied across sleep stages, Tukey’s Honestly-Significant Difference (Tukey’s 

HSD) post-hoc test was used for rANOVA results (Tukey, 1949). Meanwhile the outputs of the 

Friedman tests were analyzed through the Nemenyi test, which was a standard post-hoc analysis 

for the Friedman test (Nemenyi, 1963). The Benjamin-Hochberg procedure was applied again 

due to the multiple comparisons. Significant pairs at the p < .05 chance level following the 

Tukey’s HSD and Nemenyi post-hoc analyses were plotted in boxplots.  

Machine Learning Classification of Sleep Stages Trained on Entropy and Fractal Features 

From Sleep Stage-Specific Segments of EEG, BOLD, and Combined EEG and BOLD. 

Ultimately, the second part of the third research question and the main focus of the 

current study was to evaluate the effectiveness of entropy and fractal features from EEG 

channels and fMRI ROIs, collected during simultaneous EEG-fMRI, in predicting sleep stages 

through supervised machine learning models. To be more specific, the performance of three 
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different model training approaches was examined: using features exclusively from EEG, 

exclusively from BOLD, and a combination of both. This approach allowed for assessing the 

performance of features from each imaging modality independently, as well as the potential 

benefit of integrating features from both modalities. To train models, the sleep stage-specific 

feature data from EEG and BOLD time series were loaded and randomly split into 80% training 

and 20% test sets, making sure that some subjects' sleep-stage specific features were entirely 

reserved for the test set. These steps were carried out using the scikit-learn (sklearn) package 

(Pedregosa et al., 2012). Importantly, EEG channel features were then clustered according to 

frontal (Fp1, Fp2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Fz), central (C3, C4, Cz, CP1, CP2, CP5, 

CP6), parietal (P3, P4, P7, P8, Pz), occipital (O1, O2, Oz), and temporal (T7, T8, TP9, TP10) 

regions by averaging the features in each cluster. This was done to reduce the total number of 

features so that these were more proportional to the sample size available for machine learning 

models. Following this, Group K-Fold cross-validation was implemented to further split the 

training data into five folds, while still maintaining the integrity of subject groups. For each fold, 

a SimpleImputer with mean strategy, as well as standard scaling were implemented (Pedregosa et 

al., 2012). Moreover, since more than 80% of the data constituted features from wakeful states, 

correction needed to be applied. To do so, synthetic minority over-sampling technique (SMOTE) 

was used from the imbalanced-learn (imblearn) package, which generates synthetic samples from 

the minority class to balance the dataset more effectively (Chawla et al., 2002; Lemaitre et al., 

2016). This process made sure that each fold had a balanced representation of sleep stages, 

facilitating robust model training. Finally, the selection of appropriate models and parameters 

was decisive for such a classification task, especially considering the non-linear nature of the 

features involved. Given these aspects, models that can handle such types of data were 
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prioritized. The model performances were evaluated using metrics such as accuracy, precision, 

recall, and F1-score, which is a “harmonic mean of precision and recall” (Hicks et al., 2022). The 

definitions and formulas of these metrics can be found in Appendix H. In addition, confusion 

matrices were plotted to conduct a more detailed model evaluation. In a confusion matrix, true 

positives (TP) are positive cases identified correctly and true negatives (TN) are correctly 

identified negative cases (Hicks et al., 2022). Besides, false positives (FP) are positive cases 

identified incorrectly, while false negatives (FN) are negative instances classified incorrectly 

(Hicks et al., 2022). Moreover, the models were further evaluated based on the receiver operating 

characteristic (ROC) curve that compares the true and false positive rates (Bradley, 1997). More 

specifically, the area under the ROC Curve (AUC) was used as a metric, which ranges from 0.5 

to 1 (Bradley, 1997). An AUC value of 0.5 shows random chance, whereas 1 demonstrates 

perfect ability of the model to distinguish between classes (Bradley, 1997). 

Random Forest 

Random forest (RF) is a form of ensemble methods that are extensions of the decision 

trees (Breiman, 2001). These models build on several decision trees, where each of the trees is 

trained on random samples of the feature data, thereby improving robustness and accuracy in 

comparison to a single decision tree (Breiman, 2001; Louppe, 2014). By having multiple trees, 

RF is less prone to overfitting and also reduces variability in predictions attributable to noise 

(Breiman, 2001). Some of the most important hyperparameters of RF models are the number of 

trees, the maximum number of features each tree should consider, the maximum depth of the 

trees, and the minimum number of samples per leaf (Scornet, 2017). To optimize these 

parameters, five-fold GridSearch CV was used on each of the five folds from Group K-Fold 

(Pedregosa et al., 2012). The parameter grid and the best model parameters can be found in 
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Table I1 in Appendix I. The best combination of these hyperparameters was then implemented 

into a RF model using sklearn to evaluate the performance on the test sets (Pedregosa et al., 

2012). 

Support Vector Machines 

Another class of strong supervised learning algorithms that are useful for complex 

regression and classification problems are support vector machines (SVMs) (Cortes & Vapnik, 

1995). SVMs are ideal for the non-linear features in this study because they can handle complex 

and high-dimensional data while lowering the danger of overfitting. Hyperparameter adjustment 

is necessary, though, for SVMs to operate optimally. Thus, some of the hyperparameters are the 

kernel coefficient (γ), which influences the model's decision boundary, and the regularization 

value (C), which balances low training error with model simplicity (Wainer & Fonseca, 2020). In 

this study, the best SVM parameters were selected using a five-fold GridSearchCV within each 

of the five groups from a Group K-Fold (Pedregosa et al., 2012). This process tested different 

combinations of the aforementioned hyperparameters to find the best ones, as displayed in Table 

I2 in Appendix I. This model was then evaluated on imputed and scaled test data. 

Results 

Correlational Analysis 

Between-Imaging Modality Correlational Analysis of Entropy and Fractal Features in 

Complete EEG and BOLD Time Series 

The correlations of features from the complete EEG and BOLD time series, together with 

hierarchical clustering analysis and clustered correlational matrices, were investigated between 

each EEG channel and fMRI ROI. As illustrated in the clustered correlational matrix and 

dendrogram in Figure 3, between-imaging modality analysis of SampEn features revealed three  
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Figure 3 

Dendrogram and Clustered Correlational Matrix After Hierarchical Clustering Analysis for 

SampEn Features of Complete EEG and BOLD Time Series 

 

Note. Non-significant correlations were masked. EEG channels were marked with green and 

fMRI ROIs in orange. The full ROI names were shared in the notes of Table F2 in Appendix F.  
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significant correlations, out of which one was positive and two negative. However, no significant 

correlations were found between SampEn features from EEG electrodes in frontal or parietal 

clusters and ROIs linked to the FAN or DMN. 

For ApEn, the clustered correlational matrix and dendrogram from hierarchical clustering 

analysis are presented in Figure 4. Here, 83 between-modality correlations met the significance 

threshold of corrected p < .05. In particular, considering frontoparietal EEG channels and fMRI 

ROIs linked to the FAN, significant negative correlations were observed involving the Middle 

Frontal Gyrus (MFG) and F8, r(31) = -.554, p = .005, FC6 r(31) = -.512, p = .011, as well as P7, 

r(31) = -.492, p = .016. Additionally, when it comes to frontoparietal electrodes and fMRI ROIs 

associated with the DMN, significant negative correlations were identified between the Angular 

Gyrus (AG) and F8, r(31) = -.479, p = .020, as well as FC6, r(31) = -.420, p = .046. 

The analysis of HE features from R/S revealed only one significant correlation between 

EEG and BOLD, as shown in Figure 5. Nevertheless, no significant correlations were found 

between HE features of fMRI ROIs linked to the FAN or DMN and EEG channels from the 

frontal or parietal regions. 

As for the alpha exponents from DFA, only one significant correlation was identified 

between EEG channels and fMRI ROIs, as depicted in Figure 6. However, the analysis did not 

reveal any significant correlations between alpha exponents from DFA in frontal or parietal EEG 

electrodes and ROIs associated with the FAN or DMN. 

Finally, the HFD analysis showed 26 significant correlations between EEG and BOLD, 

as detailed in Figure 7. Among these, significant negative correlations were identified between 

FC5 and Middle Frontal Gyrus, r(31) = -.499, p = .023, and between Fz and Middle Frontal 

Gyrus, r(31) = -.555, p = .009, which are linked to the FAN. No significant correlations were  
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Figure 4 

Dendrogram and Clustered Correlational Matrix After Hierarchical Clustering Analysis for 

ApEn Features of Complete EEG and BOLD Time Series 

 

Note. Non-significant correlations were masked. EEG channels were marked with green and 

fMRI ROIs in orange. The full ROI names were shared in the notes of Table F2 in Appendix F. 
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Figure 5 

Dendrogram and Clustered Correlational Matrix After Hierarchical Clustering Analysis for 

Hurst Exponent Features of Complete EEG and BOLD Time Series 

 

Note. Non-significant correlations were masked. EEG channels were marked with green and 

fMRI ROIs in orange. The full ROI names were shared in the notes of Table F2 in Appendix F. 
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Figure 6 

Dendrogram and Clustered Correlational Matrix After Hierarchical Clustering Analysis for 

DFA Features of Complete EEG and BOLD Time Series 

 

Note. Non-significant correlations were masked. EEG channels were marked with green and 

fMRI ROIs in orange. The full ROI names were shared in the notes of Table F2 in Appendix F.  



ENTROPY AND FRACTAL FEATURES OF EEG-FMRI IN SLEEP 37 

Figure 7 

Dendrogram and Clustered Correlational Matrix After Hierarchical Clustering Analysis for 

Higuchi Fractal Dimension Features of Complete EEG and BOLD Time Series 

 

Note. Non-significant correlations were masked. EEG channels were marked with green and 

fMRI ROIs in orange. The full ROI names were shared in the notes of Table F2 in Appendix F.  
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detected between Higuchi FD features from either the frontal or parietal clusters of EEG 

electrodes and ROIs associated with the DMN. 

Between-Imaging Modality Correlational Analysis of Entropy and Fractal Features in Sleep 

Stage-Specific EEG and BOLD Time Series Segments 

For the sleep stage-specific EEG and BOLD features the correlations were also assessed. 

Throughout the SampEn values from the wakeful stage 79 significant correlations were found 

between EEG channels and fMRI ROIs. Notably, within the frontoparietal attentional network 

(FAN), significant correlations included F7 with Middle Frontal Gyrus (MFG), r(165) = -.198, p 

= .040), and Supramarginal Gyrus, anterior division (SMGa), r(165) = -.201, p = .036, FC5 with 

the MFG, r(165) = -.200, p = .037, and SMGa, r(165) = -.196, p = .041, as well as P8 with 

SMGa, r(165) = -.209, p = .029. For the default mode network (DMN), the positive correlation 

of the Angular Gyrus (AG) with FC2 stood out, r(165) p = .011, along with the negative 

correlation between the Cingulate Gyrus and channels P4, r(165) = -.197, p = .040, and Pz r(165) 

= -.194, p = .044. During the N-REM 1 and N-REM 2 stage for SampEn, two and one significant 

cross-modality correlations were obtained, respectively. Nevertheless, none of these correlations 

were between the frontal or parietal clusters of EEG electrodes and fMRI ROIs associated with 

the FAN or DMN. 

The analysis of ApEn during the wakeful stage revealed 30 significant between-modality 

correlations. Considering the FAN, correlations included F7 with the MFG, r(165) = -.215, p = 

.034, FC2 with the Insular Cortex (IC), r(165) = -.247, p = .010, and P8 with SMGa, r(165) = -

.256, p = .007. In the N-REM 1 stage, only one significant correlation was identified for ApEn 

between EEG channels and fMRI ROIs, which was not between frontal or parietal EEG 
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electrodes and fMRI ROIs associated with the FAN or DMN. Likewise, regarding the ApEn 

features in the N-REM 2 stage, there was a single significant between-modality correlation, 

posterior division’s (CGp) = .236, which did not involve frontal or parietal EEG channels, nor 

fMRI ROIs associated with the FAN or DMN. 

For HE in the wakeful stage, the number of significant between EEG and BOLD feature 

correlations was 44. Within the context of the FAN, significant correlations between HE features 

of EEG channels and fMRI ROIs included F8 with the Supramarginal Gyrus, posterior division 

(SMGp), r(165) = -.220, p = .027, FC6 with the SMGa, r(165) = -.229, p = .019, and IC with 

both P7, r(165) = .265, p = .004, and P8, r(165) = .211, p = .037. In addition, a significant 

correlation was observed between MFG and P7, r(165) = .250, p = .008. Despite these significant 

findings within the FAN, no significant correlations were found between HE features of the 

frontal or parietal clusters of EEG electrodes and ROIs associated with the default mode network 

(DMN). Furthermore, HE features in the N-REM 1 stage had six significant between EEG and 

fMRI correlations. Importantly, none of these significant correlations were between frontal or 

parietal clusters of EEG electrodes and ROIs linked to the FAN or DMN. Similarly, for the HE 

features extracted from N-REM 2 time series, significant correlations were found in six instances 

between EEG channels and fMRI ROIs. Nonetheless, similar to the findings in N-REM 1, there 

were no significant correlations between the frontal or parietal clusters of EEG electrodes and 

ROIs linked to the DMN or FAN. 

In wakeful stage-based alpha exponent features from DFA, 55 significant correlations 

were shown between EEG channel and fMRI ROI features. Among these correlations, FAN-

related findings were especially prominent in SMGp. In particular, this was observed in the case 

of channels F3, r(165) = -.202, p = .041, F4, r(165) = -.205, p = .036, F8, r(165) = -.225, p = 
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.018, FC5, r(165) = -.215, p = .026, and FC6, r(165) = -.239, p = .010, all showing significant 

negative correlations with SMGp. Besides, other significant correlations included FC1 with the 

Juxtapositional Lobule Cortex (JLC), which was formerly the Supplementary Motor Cortex, 

r(165) = .204, p = .038, JLC with P4, r(165) = .204, p = .037, and F8 with the Superior Parietal 

Lobule (SPL), r(165) = -.227, p = .016, which are also linked to the FAN. Two significant 

correlations that can be linked to the DMN were also demonstrated, with AG showing negative 

correlations with F8, r(165) = -.241, p = .009, and FC6 r(165) = -.216, p = .025. In N-REM 1 

stage, only one significant correlation was found between the two types of sources. It is 

important to note that this correlation was not found between the frontal or parietal clusters of 

EEG electrodes and ROIs associated with the FAN or DMN. However, from the seven 

significant correlations between DFA features from EEG and BOLD during N-REM 2, one 

relationship related to the FAN that stood out was between P8 and SMGa, displaying a strong 

positive correlation r(28) = .584, p = .023. 

Ultimately, in the correlational analysis of HFD features during the wakeful stage, 78 

significant correlations were identified between EEG channels and fMRI ROIs. A series of 

significant cross-modality correlations were observed within the FAN, particularly concerning 

the SMGa. These included negative correlations of the SMGa with channels, such as F7, r(165) = 

-.227, p = .016, FC1, r(165) = -.212, p = .027, FC5, r(165) = -.256, p = .005), P4, r(165) = -.230, 

p = .014, and P8, rs(165) = -.197, p = .043. However, in the N-REM 1 stages, although 11 

correlations between EEG channels and fMRI ROIs reached statistical significance, none 

demonstrated significant relationships between EEG channels from the frontal or parietal regions 

and ROIs commonly found in FAN or DMN. Lastly, the HFD features showed only two 

significant between EEG channel and fMRI ROI correlations in N-REM 2. Similar to the 
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findings for HFD features in the N-REM 1 stage, these significant correlations did not involve 

the frontal or parietal EEG clusters or brain regions associated with the FAN or DMN. 

Analysis of Variance (ANOVA) for Entropy and Fractal Features Across Sleep Stages in 

Sleep Stage-Specific EEG and BOLD Time Series Segments 

The repeated measures ANOVAs and Friedman tests carried out for sleep-stage specific 

entropy and fractal dimension features averaged over all EEG channels, as well as the same 

features averaged over all fMRI ROIs, found significant variance in the means of all features 

across sleep stages, as shown in Table 1 and 2 and Figure 8. More specifically, in EEG-based 

features, the rANOVAs indicated significant differences for SampEn and ApEn means across 

sleep stages, with F(2, 62) = 19.695, p < .001, η² = .178 for SampEn, and F(2, 62) = 17.199, p < 

.001, η² = .164 for ApEn. Likewise, the analyses found significant differences in the means of 

HFD values across sleep stages, with F(2, 62) = 17.659, p <.001, η² =.183. As for the HE and 

alpha exponents from DFA, where the homogeneity of variances assumptions were violated, the 

Friedman tests also showed significant differences across sleep stages, with Hurst results at χ²(2) 

= 22.750, p < .001, Kendall's W = .245, and DFA at χ²(2) = 17.438, p < .001, Kendall's W = 

.188. 

In the following step, the post-hoc Tukey HSD and Nemenyi tests provided further 

information about the specific pairwise comparisons. Considering SampEn, a significant 

difference was found between N-REM 1 and 2 (p < .001, 95% C.I. = [-0.07, -0.02]), with lower 

average in N-REM 2, as well as N-REM 2 and wakefulness (p = .035, 95% C.I. = [0.00, 0.05]), 

again with lower average in N-REM 2. However, no significant difference was observed 

between N-REM 1 and wakefulness (p = .130, 95% C.I. = [-0.04, 0.00]). Likewise, significant 

differences were found between the means of ApEn during N-REM 1 and 2 (p < .001, 95% C.I.  
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Table 1 

Repeated Measures ANOVA Results for Sleep Stage-Specific Entropy and Fractal Features 

Averaged Over all EEG Channels 

Feature DFn DFd F (or χ²) pa  η2 (or 

Kendall’s 

W) 

SampEn 2 62 19.695 <.001 .178 

ApEn 2 62 17.199 <.001 .164 

Hurst 2 62 22.750b <.001 .245c 

DFA 2 62 17.438b <.001 .188c 

Higuchi FD 2 62 17.659 <.001 .183 

Note. DFn = degrees of freedom for the nominator, DFd = degrees of freedom for the 

denominator, a = p-value corrected with Benjamin-Hochberg procedure, b = χ² (chi-square) from 

Friedman test, c = effect size with Kendall’s W. 

Table 2 

Repeated Measures ANOVA Results for Sleep Stage-Specific Entropy and Fractal Features 

Averaged Over all fMRI ROIs 

Feature DFn DFd F pa η2 

SampEn 2 62 11.599 <.001 .190 

ApEn 2 62 6.213 .004 .116 

Hurst 2 62 33.174 <.001 .381 

DFA 2 62 17.969 <.001 .251 

Higuchi FD 2 62 14.135 <.001 .214 

Note. DFn = degrees of freedom for the nominator, DFd = degrees of freedom for the 

denominator, a = p-value corrected with Benjamin-Hochberg procedure. 
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Figure 8 

Means Across Sleep Stages for Sleep Stage-Specific Entropy and Fractal Features Averaged 

Over all EEG Channels and fMRI ROIs with Post-Hoc Pairwise Comparison Results 

 

Note. The asterisks indicate pairs from the post-hoc Tukey and Nemenyi tests found to be 

statistically significant with 5% chance level.  



ENTROPY AND FRACTAL FEATURES OF EEG-FMRI IN SLEEP 44 

= [-0.06, -0.02]), with lower mean values in N-REM 2, and N-REM 2 and wakefulness (p = .049, 

95% C.I. = [0.00, 0.04]), also having lower mean values in N-REM 2, but not between N-REM 1 

and wakefulness (p = .156, 95% C.I. = [-0.04, 0.00]). Moreover, among the average HE values, 

the Nemenyi test found significant differences between N-REM 1 and 2 (p = .016); and N-REM 

2 and wakefulness (p = .001), with higher mean values in N-REM 2, but no differences between 

N-REM 1 and wakefulness (p = .112). Similarly, for DFA, significant differences were observed 

between N-REM 1 and 2 (p = .024), with higher mean values in N-REM 2; and N-REM 2 and 

wakefulness (p = .001), with higher mean values in N-REM 2, while there was no difference 

between N-REM 1 and wakefulness (p = .291). Lastly, for HFD means, significant differences 

were observed between N-REM 1 and 2 (p < .001, 95% C.I. = [-0.05, -0.02]), with lower mean 

values in N-REM 2, but not between N-REM 1 and wakefulness (p = .079, 95% C.I. = [-0.03, 

0.00]) or N-REM 2 and wakefulness (p = .050, 95% C.I. = [0.00, 0.04]). 

In a similar manner, the repeated measures ANOVAs conducted for sleep-stage specific 

BOLD-based entropy and fractal dimension features averaged over all fMRI ROIs revealed 

significant differences in the means of all features across sleep stages, as depicted in Table 2 and 

Figure 8. More precisely, the analyses showed significant differences in the means of both 

SampEn, F(2, 62) = 11.599, p < .001, η² = .190, as well as ApEn, F(2, 62) = 6.213, p = .004, η² = 

.116, across wakefulness and sleep stages. The Hurst Exponent (HE) and alpha exponents from 

the Detrended Fluctuation Analysis (DFA) also displayed significant differences across sleep 

stages, with HE results at F(2, 62) = 33.174, p < .001, η² = .381, and DFA at F(2, 62) = 17.969, p 

< .001, η² = .251. Furthermore, significant differences were found in the means of Higuchi's 

Fractal Dimension (HFD) values across sleep stages, with F(2, 62) = 14.135, p < .001, η² = .214. 
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Following this, the post-hoc Tukey HSD tests provided detailed insights into the specific 

pairwise comparisons. For instance, a significant difference was observed between the mean of 

SampEn during N-REM 1 and wakefulness (p < .001, 95% C.I. = [0.02, 0.06]), as well as 

between N-REM 2 and wakefulness (p = .001, 95% C.I. = [0.01, 0.05]), with higher mean value 

in wakefulness in both cases. However, no significant difference was found between N-REM 1 

and 2 (p = .851, 95% C.I. = [-0.02, 0.02]). For ApEn, significant differences were identified 

between N-REM 1 and wakefulness (p = .016, 95% C.I. = [0.00, 0.01]), and between N-REM 2 

and wakefulness (p = .006, 95% C.I. = [0.00, 0.01]), with higher means in wakefulness in both 

comparisons. There was no significant difference between N-REM 1 and 2 (p = .927, 95% C.I. = 

[-0.01, 0.01]). In the case of HE, significant differences were found between N-REM 1 and 

wakefulness (p < .001, 95% C.I. = [-0.03, -0.02]), with higher average HE in N-REM 1, and 

between N-REM 2 and wakefulness (p < .001, 95% C.I. = [-0.03, -0.01]), also with higher mean 

HE in N-REM 2. Similarly to the previous cases, no significant difference was present between 

N-REM 1 and 2 (p = .120, 95% C.I. = [-0.02, 0.00]). Besides, DFA showed significant 

differences between N-REM 1 and 2 (p = .047, 95% C.I. = [-0.04, 0.00]), with lower mean value 

in N-REM 1; between N-REM 1 and wakefulness (p < .001, 95% C.I. = [-0.07, -0.03]), with 

wakefulness having lower mean, as well as between N-REM 2 and wakefulness (p = .006, 95% 

C.I. = [-0.05, -0.01]), with wakefulness having a lower mean value once again. Finally, for HFD, 

significant differences were detected between N-REM 1 and 2 (p = .026, 95% C.I. = [0.00, 

0.01]), with higher average in N-REM 1; between N-REM 1 and wakefulness (p < .001, 95% 

C.I. = [0.01, 0.02]), with higher mean value in wakefulness; and between N-REM 2 and 

wakefulness (p = .049, 95% C.I. = [0.00, 0.01]), with higher mean value in wakefulness. 
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Machine Learning Classification of Sleep Stages Trained on Entropy and Fractal Features 

from Sleep Stage-Specific Segments of EEG, BOLD, and Combined EEG and BOLD 

Despite the limited number of sleep-stage specific feature values, the performance of 

models trained on entropy and fractal features from sleep stage-specific segments of EEG, 

BOLD, and combined EEG and BOLD signals was still evaluated as can be seen in Figure 9. For 

models trained on purely EEG-based features, both the RF and SVM models achieved accuracies 

of 76.1%. The RF model had a precision of 0.579, recall of 0.584, and F1-score of 0.577, and 

AUC values of 0.60 for N-REM 1, 0.83 for N-REM 2, and 0.75 for wakefulness. Meanwhile, the 

SVM model showed different results by primarily predicting the majority class, which were 

wakeful stages. Specifically, the SVM classifier had a precision of 0.254, recall of 0.333, and F1-

score of 0.288, and AUC values of 0.50 for N-REM 1, 0.50 for N-REM 2, and 0.50 for 

wakefulness. 

Considering the models trained on BOLD-based features, the performance was slightly 

lower. The RF model achieved an accuracy of 75.4%, precision of 0.251, recall of 0.333, and F1-

score of 0.287. The AUC values were 0.36 for N-REM 1, 0.54 for N-REM 2, and 0.65 for 

wakefulness. Likewise, the SVM model also achieved an accuracy of 75.4%, with precision of 

0.251, recall of 0.333, and F1-score of 0.287.  However, for the SVM model, the AUC values 

were 0.50 for N-REM 1, 0.50 for N-REM 2, and 0.50 for wakefulness. In these cases as well, the 

models mainly learned to predict the majority class, which were wakeful stages. 

Ultimately, for the models trained on sleep stage-specific entropy and fractal features 

from both EEG channels and fMRI ROIs, the combined features did not show improvement over 

the individual modalities. More precisely, the RF model trained on combined features achieved 

an accuracy of 75.4%, precision of 0.251, recall of 0.333, and F1-score of 0.287, with AUC 
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values of 0.44 for N-REM 1, 0.68 for N-REM 2, and 0.64 for wakefulness. Similarly, the SVM 

model trained on combined features also had an accuracy of 75.4%, precision of 0.251, recall of 

0.333, and F1-score of 0.287, with AUC values of 0.50 for N-REM 1, 0.50 for N-REM 2, and 

0.50 for wakefulness.  
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Figure 9 

Confusion Matrices and ROC Curves for the Machine Learning Models Trained on EEG-Based, 

BOLD-Based, and Combined Entropy and Fractal Features from Sleep Stage Specific Segments. 
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Discussion 

In light of the above, while the function of sleep and its stages remains unknown, the 

advent of simultaneous EEG-fMRI has enabled researchers to study brain processes underlying 

sleep with high spatio-temporal resolution. This is also highly relevant because millions of 

individuals are affected by sleep disorders and this advancement may provide new approaches to 

better understand and treat these conditions. Nevertheless, which characteristics of concurrently 

recorded EEG and BOLD time series are informative about sleep and its stages is largely 

unmapped. Specifically, how non-linear features, such as entropy and fractal features, relate 

across simultaneously collected EEG and BOLD time series during sleep, as well as the 

informativeness of these features for distinguishing sleep stages and classifying them with 

machine learning models, has not yet been tested in previous literature. Thus, this study 

investigated how individual entropy and fractal features relate between complete EEG signals 

from frontoparietal electrodes and same features of simultaneously recorded BOLD time series 

from fMRI ROIs associated with the FAN and DMN during sleep. Similarly, it was also 

examined how each of these features correlates between frontoparietal EEG channels and fMRI 

ROIs related to the DMN and FAN but in sleep stage-specific segments of simultaneous EEG-

fMRI data. Finally, this study also tested how effective these features are in distinguishing and 

classifying wakeful and sleep stages with ANOVAs and supervised machine learning models, 

respectively. 

Considering the first research question, between-modality correlations were limited. 

Specifically, for Sample Entropy (SampEn), three significant between-modality correlations 

were found, but none were between EEG electrodes in frontal or parietal clusters and ROIs 

linked to the frontoparietal attentional network (FAN) or default mode network (DMN). 
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Approximate Entropy (ApEn) showed 83 between-modality correlations, including significant 

negative correlations involving the Middle Frontal Gyrus (MFG) and F8, FC6, and P7, which are 

related to the FAN, and the Angular Gyrus (AG) and F8, FC6, that are DMN-related. The Hurst 

Exponent (HE) and the alpha exponents from Detrended Fluctuation Analysis (DFA) each had 

only one between-modality correlation, with no significant correlations between these features 

for fMRI ROIs linked to FAN or DMN and EEG channels from the frontal or parietal regions. 

Lastly, the analysis for Higuchi Fractal Dimension (HFD) revealed 26 between-modality 

correlations, with significant negative correlations related to the FAN between FC5 and MFG, 

and Fz and MFG, but no significant correlations were found for HFD features of fMRI ROIs 

linked to the DMN. Furthermore, taking into account the correlations of these features in sleep 

stage-specific segments, the findings indicated that, with the exception of ApEn, there were a 

higher number of significant correlations between all the other features from the frontal and 

parietal EEG channels and fMRI ROIs linked to the FAN and DMN during wakeful stages 

compared to the full time series. Among the N-REM sleep stages, the only case where there were 

a higher number of significant correlations between features of the frontal and parietal EEG 

channels and fMRI ROIs linked to the FAN and DMN relative to the features from the full time 

series was for DFA, which had one significant cross-modality correlation between SMGa and P8 

in the N-REM 2 stage. In the other sleep stages, either there were no significant correlations 

between features of the frontal and parietal EEG channels and fMRI ROIs linked to the FAN and 

DMN, or there were fewer correlations relative to the full time series. Regarding the question of 

whether sleep stage-specific entropy and fractal features from EEG and BOLD time series can 

distinguish between sleep stages, the rANOVAs and Friedman tests found significant differences 

in all features across sleep stages. More specifically, post-hoc analyses showed that the mean 
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values of several EEG-based features, such as SampEn and ApEn, were significantly lower in N-

REM 2 compared to both N-REM 1 and wakefulness, while HE and DFA values were higher in 

N-REM 2 compared to both N-REM 1 and wakefulness. Moreover, HFD also showed a lower 

mean in N-REM 2 compared to N-REM 1 but did not significantly differ between wakefulness 

and either N-REM 1 or N-REM 2. Although the average scores of EEG-based Hurst and DFA 

features were significantly different between N-REM 1 and N-REM 2, as well as N-REM 2 and 

wakefulness, an opposite trend was observed; the means of entropy features and HFD decreased 

from wakefulness to N-REM 1 and to N-REM 2 stages, while HE and DFA values increased. 

Similarly, in BOLD-based features, SampEn, ApEn, and HFD values had incrementally lower 

means from wakefulness to N-REM 2 sleep, while for HE and DFA, the means increased 

towards N-REM 2 sleep. Furthermore, significant differences were found in SampEn, ApEn, and 

Hurst between wakefulness and both N-REM 1 and N-REM 2, but without a significant 

difference between N-REM 1 and N-REM 2. Importantly, the average DFA and mean HFD 

values across all fMRI ROIs distinguished between all three sleep stages. 

These results suggest that the relationships between EEG and BOLD signals are limited, 

complex and region-specific. Furthermore, the expected statistically significant negative 

correlations between HE features in the frontal and parietal EEG channels and fMRI ROIs 

related to FAN and DMN, as inspired by the findings of Tagliazucchi, Von Wegner, et al. 

(2013), were not observed. Although the present study had a different methodology and focus in 

both signals compared to the one of Tagliazucchi, Von Wegner, et al. (2013), these results might 

indicate the lack of a negative relationship between Hurst exponents of the frontoparietal EEG 

clusters and fMRI ROIs linked to the FAN and DMN. More likely, however, the differences in 

the approaches between the two studies or the limitations of the current study, which will be 
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discussed in the following sections, may have influenced these findings. Nevertheless, these 

results provide partial support at least for the hypothesis about ApEn and HFD showing 

statistically significant relationships across frontal and parietal EEG channels, and fMRI ROIs 

related to FAN and DMN. Moreover, in the sleep stage-specific segments the findings imply that 

correlations between these entropy and fractal features from the frontal and parietal EEG clusters 

and fMRI ROIs associated with the FAN and DMN are particularly apparent during wakeful 

stages. In contrast, the relationships between these features are less pronounced in other sleep 

stages, which may suggest that their dynamics between EEG and BOLD signals could be 

dependent on sleep stage. This, in turn, underlines the importance of conducting sleep stage-

specific analyses to better understand the complex interactions between entropy and fractal 

features of EEG and BOLD signals. Considering the rANOVA and Friedman test results, it 

seems that entropy and fractal features from both EEG and BOLD data can distinguish between 

certain sleep stages and wakefulness. In fact, some fractal features, such as the alpha exponent 

from DFA and HFD features of BOLD time series, can differentiate between all three sleep 

stages examined. This aligns with previous findings by Acharya et al. (2015) and Chouvarda et 

al. (2011), which found that ApEn, SampEn, Hurst exponent, DFA, and HFD features from EEG 

data can distinguish sleep stages. In addition, these findings are extended by the current research 

even to BOLD-based features also delineating sleep stages, which is a new insight. Moreover, 

pairwise comparisons of entropy and HFD features further support previous research. It was 

hypothesized, based on prior studies, that all entropy and fractal features would have higher 

values during wakefulness and lower values in N-REM. This pattern was observed for entropy 

features and HFD, corroborating findings from Burioka et al. (2005), Chen (2017), De Miras et 

al. (2019), and Ge et al. (2007) in EEG data. Interestingly, the same trend was demonstrated in 
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simultaneous BOLD-based data, which is a new finding. Nevertheless, for HE and DFA values, 

an opposite trend was observed, with lower values in wakefulness and incrementally higher 

values in N-REM 1 and N-REM 2. Even though this contradicts the initial hypotheses, it was not 

entirely unexpected. As pointed out earlier, studies have shown inconsistent results regarding 

whether alpha exponents from DFA in EEG increase or decrease from wakefulness to deeper N-

REM stages (Goshvarpour & Abbasi, 2013; Lee et al., 2001). This study, however, demonstrates 

an increasing trend in alpha exponents from wakefulness to deeper N-REM stages, not only in 

EEG but also in simultaneous BOLD time series, supporting the increasing nature of alpha 

exponents. Similarly, while previous literature on both EEG and fMRI suggested that HE values 

are lower in N-REM stages than in wakefulness, the results of the current research align with 

those of Weiss et al. (2009), showing an increase in HE values from wakefulness to deeper N-

REM stages (Acharya et al., 2005; Tagliazucchi, Von Wegner, et al., 2013). This is corroborated 

by the concurrently obtained BOLD-based HE features. In summary, while some features 

showed trends opposite to those hypothesized based on the literature, this study supports the 

ability of entropy and fractal features in distinguishing sleep stages. Likewise, the inclusion of 

BOLD time series features alongside EEG features provides new insights and highlights the need 

for further investigation to resolve these inconsistencies. 

As for the machine learning models, the best model overall turned out to be the RF 

classifier trained on purely EEG-based entropy and fractal features, which had a similar accuracy 

to the SVM model using EEG features but better AUC scores. In contrast, the RF and SVM 

models trained on BOLD-based entropy and fractal features had lower performance than the 

same models trained on EEG-based features. Moreover, the same accuracy scores were found for 

models trained on BOLD-based features and features from both modalities. Consequently, 
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integrating features from both EEG and BOLD did not show clear improvements, and since the 

predominant prediction of all models was wakeful stages, this indicates a need for more balanced 

data across all sleep stages. In addition, while the accuracy of the models with features from both 

modalities are similar to those of previous deep learning algorithms trained on EEG from 

simultaneous EEG-fMRI data, the models from the current study perform less well than expected 

(Zou et al., 2022). This is clear when compared to the previously discussed deep learning and 

simpler machine learning models for sleep staging that were trained exclusively on features of 

unimodal EEG time series (Boostani et al., 2017; Fiorillo et al., 2019; Gaiduk et al., 2023; 

Lambert & Peter‐Derex, 2023; Li et al., 2022; Phan & Mikkelsen, 2022; Sri et al., 2022). Having 

that said, these findings suggest that while entropy and fractal features can help distinguish 

between sleep stages through ANOVAs, the machine learning models do not seem to perform as 

well as hypothesized, especially when combining entropy and fractal features from both EEG 

and BOLD data collected simultaneously. This might be due to several factors that could be 

considered among the limitations in this study. 

One of the most critical limitations of this study is the lack of data for the studied sleep 

stages, as well as the large imbalance with predominantly wakeful data in the dataset. These may 

be attributable not only to the natural distribution of sleep stages but also probably to the short 

sleep scanning sessions, as well as the time series length needed for entropy and fractal feature 

calculations, which result in inadequate data for proper machine learning applications. To be 

more precise, even the simplest supervised machine learning models usually require at least 1000 

samples per class for stable performance (Ramezan et al., 2021). However, this dataset had only 

218 samples, with distributions of 167 from wakeful stages, 21 from N-REM 1, and 30 from N-

REM 2. Moreover, the noisy data from the simultaneous EEG-fMRI recordings is another factor 
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to take into consideration as it made the analysis and interpretation of the results far more 

challenging (Bullock et al., 2021). More precisely, MRI-related artifacts heavily contaminated 

the EEG data, making it intrinsically biased and difficult to appropriately correct. Likewise, a 

related concern is the potential overcorrection of the EEG signal during pre- and postprocessing, 

especially when applying artifact subspace reconstruction (ASR). While this seems to be a 

realistic concern, artifacts were still sparsely detected in the data after using ASR. Similarly, 

there could also be potential overcorrection in the pre- and postprocessing of the fMRI data. 

Apart from these factors, the parameter selection for feature calculations for SampEn, ApEn, 

Hurst Exponent, alpha exponent for DFA, and Higuchi FD may have been rather arbitrary based 

on literature. The algorithm for kmax optimization in Higuchi FD also presents limiting factors, 

such as the maximum kmax having been set to 64 due to constraints in computational resources. 

The sliding window method for calculating sleep stage-specific features is yet another 

methodological limitation. As no relevant guidelines have been found in earlier studies, the step 

size for the sliding window was set to 100 based on additional tests in this study. These tests 

demonstrated that a smaller step size, such as one, does not result in windows with more 

informative features. Although this does provide some support for the decision about step sizes, 

it is important to acknowledge that the step-size selection process still contains elements of 

subjectivity that can also influence the final features and how they are interpreted. Finally, this 

research focused exclusively on non-linear features. However, entropy and fractal features alone, 

without additional features such as spectral properties, may be less informative and predictive in 

the context of sleep staging than expected in this study (Fell et al., 1996). These limitations point 

out the need for collecting larger datasets, as well as developing more robust and refined 
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analytical approaches to better understand the relationships between features of simultaneously 

collected EEG and BOLD signals across different sleep stages. 

In spite of these limitations, the current study has several strengths, too. Firstly, based on 

the reviewed literature, this study may represent the first-ever concurrent analysis of SampEn, 

ApEn, Hurst Exponent, alpha exponent from DFA, and Higuchi FD in simultaneous EEG-fMRI 

data, providing a novel and detailed approach to understanding how entropy and fractal features 

relate within these modalities and how informative they are regarding sleep stages. More 

specifically, this study offers an unprecedented, multi-faceted paradigm for entropy- and fractal 

feature-based sleep analysis, incorporating correlational analyses for both full and sleep stage-

specific segments, ANOVA, and machine learning methods. Yet another strength of the current 

study is that, with the exception of manually selecting the cutoff parameter of ASR in the 

preprocessing, as well as disabling the motion artifact segment censoring in the postprocessing, 

all pre- and postprocessing procedures were based on standardized and validated methods and 

parameters in an attempt to ensure replicability on other datasets. Assumptions were also 

rigorously tested at all steps of the analysis, further strengthening the study's findings. In fact, 

despite the computational constraints and the lack of precedents, even the kmax optimization for 

HFD was carefully considered, which demonstrates a new and thoughtful approach to parameter 

selection. Thus, all these aspects strengthen the robustness and novelty of the present study. 

These results have important implications across many domains. On the one hand, they 

contribute to our theoretical understanding of entropy and fractal features in neurophysiological 

signals like EEG and BOLD during sleep. In particular, despite the challenges posed by severely 

contaminated and insufficient data for appropriate machine learning classification, the study 

demonstrated statistically significant correlations across several entropy and fractal features from 
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both full-length and sleep stage-specific EEG and BOLD time series, showing multiple links 

between frontoparietal EEG channels and the FAN and DMN. Besides, the findings also suggest 

that wakeful sleep stages can be distinguished based on entropy and fractal features as 

demonstrated by the results of the rANOVAs, Friedman tests, and post-hoc analyses. Even 

though collecting simultaneous EEG-fMRI data with minimal artifacts is still inherently difficult, 

future research should replicate or extend this study by examining other non-linear or various 

time, frequency, or time-frequency domain features in larger and cleaner datasets (Bullock et al., 

2021). On the other hand, these findings may have practical applications in clinical, 

pharmaceutical, and medical settings as well. Particularly, using these non-linear features from 

simultaneous EEG-fMRI, researchers and practitioners may gain insights into the underlying 

mechanisms of sleep disorders afflicting millions of people in our society (Benjafield et al., 

2019; Kerkhof, 2017; Sateia, 2014). With that in mind, future research should look at the 

applicability of the paradigm presented in this study, as well as the predictive power of entropy 

and fractal features from simultaneous EEG-fMRI in patients with sleep disorders.  

To conclude, the purpose of the present study was to uncover the within- and cross-

modality correlations between several entropy and fractal features in simultaneous EEG-fMRI 

data, their effectiveness in distinguishing sleep stages, as well as the performance of machine 

learning models trained on these features for sleep stage classification. In spite of having mixed 

results and many limitations, including insufficient and noisy data, the methods and findings of 

this research provide a new approach to sleep analysis, as well as perhaps the diagnosis of sleep 

disorders. Future research could attempt to replicate these preliminary findings in larger and 

cleaner datasets. Alternatively, new studies could extend the scope of the current research by 

using other non-linear, time, frequency, or time-frequency domain features. Thus, this work, 
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among other related publications, may be one of the forerunners to many future studies that 

could focus on entropy and fractal features in simultaneous EEG-fMRI data in order to gain a 

better understanding of the nature and function of sleep and sleep stages. 

Data and code availability 

The Python and MATLAB codes will become available in the GitHub repository of this 

project at https://github.com/hunorbartalis/FractalEntropySleepEEGfMRI once permission is 

granted. To request access to the data and further references, please contact the author. 
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Appendix A 

Comparison of the raw EEG Signal and the Output of the Tested Algorithms and Pipelines 

for FMRI Gradient and BCG Artifact Removal 

Figure A1 

Comparison of the Raw EEG Signal and the Output of the Tested Algorithms and Pipelines for 

FMRI Gradient and BCG Artifact Removal. 

 

Note. The graph shows the raw EEG and EEG cleaned with various algorithms (AMRI, fMRIb, 

APPEAR) from all channels for the same 30-second long segments. 
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Appendix B 

Report of fMRIprep on Preprocessing Procedures 

Results included in this manuscript come from preprocessing performed using fMRIPrep 

23.1.4 (Esteban et al. (2023); Esteban et al. (2018); RRID:SCR_016216), which is based on 

Nipype 1.8.6 (K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018); 

RRID:SCR_002502). 

Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset. The 

T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs (version unknown) (Avants 

et al. 2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. The 

T1w-reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain 

tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was 

performed on the brain-extracted T1w using fast (FSL (version unknown), RRID:SCR_002823, 

Zhang, Brady, and Smith 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 

7.3.2, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask estimated 

previously was refined with a custom variation of the method to reconcile ANTs-derived and 

FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 

(RRID:SCR_002438, Klein et al. 2017). Volume-based spatial normalization to one standard 

space (MNI152NLin2009cAsym) was performed through nonlinear registration with 

antsRegistration (ANTs (version unknown)), using brain-extracted versions of both T1w 

reference and the T1w template. The following template was were selected for spatial 
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normalization and accessed with TemplateFlow (23.0.0, Ciric et al. 2022): ICBM 152 Nonlinear 

Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow 

ID: MNI152NLin2009cAsym]. 

Functional data preprocessing 

For each of the BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. Head-motion parameters with respect 

to the BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL , Jenkinson et 

al. 2002). BOLD runs were slice-time corrected to 1.01s (0.5 of slice acquisition range 0s-2.02s) 

using 3dTshift from AFNI (Cox and Hyde 1997, RRID:SCR_005927). The BOLD time-series 

(including slice-timing correction when applied) were resampled onto their original, native space 

by applying the transforms to correct for head-motion. These resampled BOLD time-series will 

be referred to as preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD 

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 

implements boundary-based registration (Greve and Fischl 2009). Co-registration was 

configured with six degrees of freedom. Several confounding time-series were calculated based 

on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global 

signals. FD was computed using two formulations following Power (absolute sum of relative 

motions, Power et al. (2014)) and Jenkinson (relative root mean square displacement between 

affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both 

using their implementations in Nipype (following the definitions by Power et al. 2014). The three 

global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a 
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set of physiological regressors were extracted to allow for component-based noise correction 

(CompCor, Behzadi et al. 2007). Principal components are estimated after high-pass filtering the 

preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two 

CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components 

are then calculated from the top 2% variable voxels within the brain mask. For aCompCor, three 

probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. The 

implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels 

on BOLD space, a mask of pixels that likely contain a volume fraction of GM is subtracted from 

the aCompCor masks. This mask is obtained by dilating a GM mask extracted from the 

FreeSurfer’s aseg segmentation, and it ensures components are not extracted from voxels 

containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space and 

binarized by thresholding at 0.99 (as in the original implementation). Components are also 

calculated separately within the WM and CSF masks. For each CompCor decomposition, the k 

components with the largest singular values are retained, such that the retained components’ time 

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 

combined, or temporal). The remaining components are dropped from consideration. The head-

motion estimates calculated in the correction step were also placed within the corresponding 

confounds file. The confound time series derived from head motion estimates and global signals 

were expanded with the inclusion of temporal derivatives and quadratic terms for each 

(Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardized 

DVARS were annotated as motion outliers. Additional nuisance timeseries are calculated by 

means of principal components analysis of the signal found within a thin band (crown) of voxels 

around the edge of the brain, as proposed by (Patriat, Reynolds, and Birn 2017). The BOLD 
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time-series were resampled into standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. All resamplings can be performed with a 

single interpolation step by composing all the pertinent transformations (i.e. head-motion 

transform matrices, susceptibility distortion correction when available, and co-registrations to 

anatomical and output spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing 

effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were performed 

using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.10.1 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express 

intention that users should copy and paste this text into their manuscripts unchanged. It is 

released under the CC0 license. 
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Appendix C 

Post-Processing of fmriprep Outputs 

The eXtensible Connectivity Pipeline- DCAN (XCP-D) (Ciric et al. 2018; Satterthwaite 

et al. 2013) was used to post-process the outputs of fMRIPrep version 23.1.4 (Esteban et al. 

2018, 2023, RRID:SCR_016216). XCP-D was built with Nipype version 1.8.6 (Gorgolewski et 

al. 2011, RRID:SCR_002502). Native-space T1w images were transformed to 

MNI152NLin2009cAsym space at 1 mm3 resolution. For each of the five BOLD runs found per 

subject (across all tasks and sessions), the following post-processing was performed. Non-

steady-state volumes were extracted from the preprocessed confounds and were discarded from 

both the BOLD data and nuisance regressors. In order to identify high-motion outlier volumes, 

the six translation and rotation head motion traces were low-pass filtered below 6.0 breaths-per-

minute using a(n) fourth-order Butterworth filter, based on Gratton et al. (2020). Next, 

framewise displacement was calculated using the formula from Power et al. (2014), with a head 

radius of 50.0 mm. Volumes with filtered framewise displacement greater than 0.3 mm were 

flagged as high-motion outliers for the sake of later censoring (Power et al. 2014). In total, 36 

nuisance regressors were selected from the preprocessing confounds, according to the ‘36P’ 

strategy. These nuisance regressors included six filtered motion parameters, mean global signal, 

mean white matter signal, mean cerebrospinal fluid signal with their temporal derivatives, and 

quadratic expansion of six motion parameters, tissue signals and their temporal derivatives (Ciric 

et al. 2017; Satterthwaite et al. 2013). The BOLD data were despiked with AFNI’s 3dDespike. 

Nuisance regressors were regressed from the BOLD data using linear regression, as implemented 

in Nilearn. Any volumes censored earlier in the workflow were then interpolated in the residual 

time series produced by the regression. The interpolated timeseries were then band-pass filtered 
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using a(n) second-order Butterworth filter, in order to retain signals between 0.01-0.08 Hz. The 

filtered, interpolated time series were then re-censored to remove high-motion outlier volumes. 

The denoised BOLD was smoothed using Nilearn with a Gaussian kernel (FWHM=6.0 mm). 

The amplitude of low-frequency fluctuation (ALFF) (Zou et al. 2008) was computed by 

transforming the mean-centered, standard deviation-normalized, denoised BOLD time series to 

the frequency domain using the Lomb-Scargle periodogram (Lomb 1976; Scargle 1982; 

Townsend 2010; Taylor et al. 2018). The power spectrum was computed within the 0.01-0.08 Hz 

frequency band and the mean square root of the power spectrum was calculated at each voxel to 

yield voxel-wise ALFF measures. The resulting ALFF values were then multiplied by the 

standard deviation of the denoised BOLD time series to retain the original scaling. The ALFF 

maps were smoothed with Nilearn using a Gaussian kernel (FWHM=6.0 mm). Regional 

homogeneity (ReHo) (Jiang and Zuo 2016) was computed with neighborhood voxels using 

AFNI’s 3dReHo (Taylor and Saad 2013). 

Processed functional timeseries were extracted from the residual BOLD signal with 

Nilearn’s NiftiLabelsMasker for the following atlases: the Schaefer Supplemented with 

Subcortical Structures (4S) atlas (Schaefer et al. 

2018,@pauli2018high,@king2019functional,@najdenovska2018vivo,@glasser2013minimal) at 

10 different resolutions (156, 256, 356, 456, 556, 656, 756, 856, 956, and 1056 parcels), the 

Glasser atlas (Glasser et al. 2016), the Gordon atlas (Gordon et al. 2016), the Tian subcortical 

atlas (Tian et al. 2020), and the HCP CIFTI subcortical atlas (Glasser et al. 2013). Corresponding 

pair-wise functional connectivity between all regions was computed for each atlas, which was 

operationalized as the Pearson’s correlation of each parcel’s unsmoothed timeseries. In cases of 
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partial coverage, uncovered voxels (values of all zeros or NaNs) were either ignored (when the 

parcel had >50.0% coverage) or were set to zero (when the parcel had <50.0% coverage). 

Many internal operations of XCP-D use AFNI (Cox 1996; Cox and Hyde 1997), ANTS 

(Avants et al. 2009), TemplateFlow version 24.2.0 (Ciric et al. 2022), matplotlib version 3.8.2 

(Hunter 2007), Nibabel version 5.2.0 (Brett et al. 2022), Nilearn version 0.10.3 (Abraham et al. 

2014), numpy version 1.26.2 (Harris et al. 2020), pybids version 0.16.4 (Yarkoni et al. 2019), 

and scipy version 1.11.4 (Virtanen et al. 2020). For more details, see the XCP-D website 

(https://xcp-d.readthedocs.io). 

Copyright Waiver 

The above methods description text was automatically generated by XCP-D with the 

express intention that users should copy and paste this text into their manuscripts unchanged. It is 

released under the CC0 license. 
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Appendix D 

Approximate Entropy (ApEn) Calculation 

ApEn can be measured in a time-series, that has N number of data points, by breaking it 

down into smaller segments that have fixed lengths, m, which are shorter than N. Then, one can 

compare the resulting segments and estimate the chance that sequences of data points which are 

similar over a certain number of observations (m) will continue to be similar when another data 

point is added, within a certain pre-specified limit r (Delgado-Bonal & Marshak, 2019; Pincus, 

1991). This is reflected in Equation 2: 

 ApEn(m,r,N) = Φm(r) - Φm+1(r) , (2) 

where m and m+1 are the lengths of these smaller segments that are being compared, and r 

corresponds to the previously mentioned limit or, in other words, tolerance (Delgado-Bonal & 

Marshak, 2019; González et al., 2019; Pincus, 1991). Furthermore, Φm(r) encapsulates these, 

representing the average of the logarithmic chances of finding similar segments of length m 

within the tolerance r, as shown in Equation 3: 

 

Φm(r)  = 
1

N - m + 1
∑ log

N-m+1

i=1

Ci
m

(r) , (3) 

where Ci
m
 (r) is the correlation integral estimation (Delgado-Bonal & Marshak, 2019; González et 

al., 2019; Pincus, 1991). 
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Appendix E 

Sample Entropy (SampEn) Calculation 

Formally, SampEn can be defined in the following way. Considering a time-series data 

with N datapoints, one can begin calculating SampEn in a similar manner to ApEn, except that 

this time self-comparisons are omitted from the correlation integral estimation, after which one 

takes the natural logarithmic values of Φm+1(r) and subtracts them from the natural logarithms of 

Φm(r) (González et al., 2019). As outlined by González and colleagues (2019), the resulting 

equations are Equation 4, Equation 5, and Equation 6: 

 
Ci

m(r) = 
instances of j with distance [x(i), x(j)] ≤ r and i ≠ j

N - m + 1
 , (4) 

 

Φm(r) = 
1

N - m
∑ log

N-m

i=1

Ci
m

(r) , (5) 

 SampEn(m,r,N) = logΦm(r)-logΦm+1(r) , (6) 

where m specifies the length of the compared sequences, r denotes the tolerance for accepting 

matching segments, and logΦm(r) and logΦm+1(r) correspond to the logarithmic chance of the 

segments matching for m and m+1 data points, respectively. As can be seen, i ≠ j indicates that 

identical pairs are not included in the process. 
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Appendix F 

Higuchi’s Fractal Dimension (HFD) Calculation 

The calculation of HFD for a time series that has length N involves multiple steps that 

have been set forth by Higuchi (1988). First, a number of k new time series are made, given the 

original time series with length N, as illustrated in Equation 7: 

 
Xk

m: x(m), x(m+k), x(m+2k), … , x(m+[
N-m

k
]⋅k), (7) 

where m denotes the starting time points, while k indicates the interval between points (Gómez et 

al., 2009; Higuchi, 1988). After that, the curve length of Xk
m
  is determined for each of these time 

series through the formula in Equation 8: 

 

Lm(k)=

{(∑ |x(m+ik)-x(m+(i-1)⋅k|
[
N-m

k
]

i=1
)

N-1

[
N-m

k
] ⋅k

}

k
,

 (8) 

in which case the 
N-1

[
N-m

k
]⋅k

 is the factor used for normalizing the length of the curve of the resulting 

time series based on the number of intervals and the series length (Gómez et al., 2009; Higuchi, 

1988). This process is then repeated for various values of k, averaging the segment lengths for 

each k to find the curve length associated with that interval, which can be seen in Equation 9: 

 

 L(k)=
1

k
× ∑ Lm(k)

k

m=1

 . (9) 

As a result, HFD corresponds to the slope of least squares best fitting line over all sets of average 

curve lengths (L(k)) and inverses of k (1/k), on a double logarithmic scale, where k varies up to 

kmax (Gómez et al., 2009; Higuchi, 1988).  
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Table F1 

Selected and Mean kmax Values for Each EEG Channel 

EEG channel 
Selected kmax for Complete 

Time Series (and Mean) 

Selected kmax for Sleep Stage- 

Specific Segment (and Mean) 

C3 16 (15.56) 19 (18.28) 

C4 17 (16.25) 19 (18.56) 

CP1 18 (17.39) 20 (19.36) 

CP2 20 (19.40) 21 (20.31) 

CP5 17 (16.40) 19 (18.60) 

CP6 15 (14.83) 18 (17.01) 

Cz 21 (20.28) 22 (21.33) 

F3 15 (14.59) 16 (15.59) 

F4 17 (16.31) 18 (17.69) 

F7 15 (14.10) 16 (15.47) 

F8 18 (17.27) 20 (19.07) 

FC1 19 (18.31) 20 (19.97) 

FC2 19 (18.61) 20 (19.73) 

FC5 15 (14.65) 17 (16.83) 

FC6 16 (15.98) 19 (18.02) 

Fp1 18 (17.02) 19 (18.27) 

Fp2 18 (17.14) 19 (18.95) 

Fz 19 (18.30) 20 (19.64) 

O1 23 (22.35) 24 (23.52) 

O2 21 (20.60) 22 (21.60) 

Oz 20 (19.85) 20 (19.40) 

P3 19 (18.75) 21 (20.61) 

P4 18 (17.78) 21 (20.40) 

P7 21 (20.54) 23 (22.13) 

P8 19 (18.96) 22 (21.02) 

Pz 20 (19.55) 21 (20.68) 

T7 17 (16.11) 18 (17.65) 

T8 17 (16.11) 18 (17.86) 

TP10 16 (16.00) 18 (17.17) 

TP9 20 (19.99) 21 (20.67) 

Note. The selected and mean values of the optimal kmax for each EEG channel are shown, 

calculated for complete time series and sleep stage-specific segments. 
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Table F2 

Selected and Mean kmax Values for Each fMRI ROI 

fMRI ROI 
Selected kmax for Complete 

Time Series (and Mean) 

Selected kmax for Sleep Stage- 

Specific Segment (and Mean) 

AG 13 (12.69) 25 (24.67) 

COC 13 (12.40) 25 (24.01) 

CGa 13 (12.55) 25 (24.10) 

CGp 14 (13.03) 25 (24.44) 

CuC 14 (13.02) 25 (24.83) 

FMC 13 (12.20) 25 (24.56) 

FOC 13 (12.20) 25 (24.12) 

FrOC 13 (12.36) 25 (24.73) 

FrP 13 (12.87) 25 (24.23) 

HG 13 (12.85) 24 (23.80) 

IFGpo 13 (12.46) 24 (23.80) 

IFGpt 13 (12.35) 25 (24.50) 

ITGa 13 (12.46) 25 (24.26) 

ITGp 13 (12.09) 25 (24.49) 

ITGt 13 (12.89) 25 (24.02) 

IC 13 (12.73) 26 (25.50) 

ICC 13 (12.64) 25 (24.18) 

JLC 13 (12.75) 25 (24.67) 

LOCi 14 (13.34) 25 (24.55) 

LOCs 13 (12.51) 24 (23.40) 

LG 13 (12.78) 25 (24.26) 

MFG 13 (12.42) 24 (23.96) 

MTGa 13 (12.69) 24 (23.68) 

MTGp 14 (13.37) 25 (24.05) 

MTGt 13 (12.54) 24 (23.83) 

OFG 13 (12.49) 25 (24.32) 

OP 13 (12.41) 24 (23.25) 

PCG 13 (12.03) 24 (23.73) 

PHGa 13 (12.25) 25 (24.33) 

PHGp 13 (12.48) 26 (25.25) 

POC 13 (12.43) 25 (24.07) 

PP 13 (12.51) 24 (23.86) 

PT 13 (12.79) 24 (23.30) 

PoCG 13 (12.99) 25 (24.54) 

PrCG 13 (12.70) 24 (23.12) 

PC 13 (12.89) 26 (25.17) 

SC 12 (11.96) 26 (25.64) 

SFG 13 (12.86) 26 (25.51) 

SPL 13 (12.28) 25 (24.84) 

STGa 13 (12.46) 25 (24.14) 

STGp 13 (12.77) 24 (23.29) 
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fMRI ROI 
Selected kmax for Complete 

Time Series (and Mean) 

Selected kmax for Sleep Stage- 

Specific Segment (and Mean) 

SC 13 (12.98) 24 (23.51) 

SMGa 13 (12.64) 24 (23.23) 

SMGp 13 (12.67) 24 (23.55) 

TFCa 13 (12.23) 26 (25.14) 

TFCp 13 (12.50) 24 (23.77) 

TOFC 13 (12.36) 24 (23.88) 

TP 13 (12.72) 25 (24.13) 

Note. Selected and mean values of the optimal kmax for each fMRI ROI are shown, calculated for 

complete time series and sleep stage-specific segments. The ROIs are the following: AG 

(Angular Gyrus), COC (Central Opercular Cortex), CGa (Cingulate Gyrus, anterior division), 

CGp (Cingulate Gyrus, posterior division), CuC (Cuneal Cortex), FMC (Frontal Medial Cortex), 

FOC (Frontal Opercular Cortex), FrOC (Frontal Orbital Cortex), FrP (Frontal Pole), HG 

(Heschl's Gyrus (includes H1 and H2)), IFGpo (Inferior Frontal Gyrus, pars opercularis), IFGpt 

(Inferior Frontal Gyrus, pars triangularis), ITGa (Inferior Temporal Gyrus, anterior division), 

ITGp (Inferior Temporal Gyrus, posterior division), ITGt (Inferior Temporal Gyrus, 

temporooccipital part), IC (Insular Cortex), ICC (Intracalcarine Cortex), JLC (Juxtapositional 

Lobule Cortex (formerly Supplementary Motor Cortex)), LOCi (Lateral Occipital Cortex, 

inferior division), LOCs (Lateral Occipital Cortex, superior division), LG (Lingual Gyrus), MFG 

(Middle Frontal Gyrus), MTGa (Middle Temporal Gyrus, anterior division), MTGp (Middle 

Temporal Gyrus, posterior division), MTGt (Middle Temporal Gyrus, temporooccipital part), 

OFG (Occipital Fusiform Gyrus), OP (Occipital Pole), PCG (Paracingulate Gyrus), PHGa 

(Parahippocampal Gyrus, anterior division), PHGp (Parahippocampal Gyrus, posterior division), 

POC (Parietal Opercular Cortex), PP (Planum Polare), PT (Planum Temporale), PoCG 

(Postcentral Gyrus), PrCG (Precentral Gyrus), PC (Precuneous Cortex), SC (Subcallosal Cortex), 

SFG (Superior Frontal Gyrus), SPL (Superior Parietal Lobule), STGa (Superior Temporal Gyrus, 

anterior division), STGp (Superior Temporal Gyrus, posterior division), SC (Supracalcarine 

Cortex), SMGa (Supramarginal Gyrus, anterior division), SMGp (Supramarginal Gyrus, 

posterior division), TFCa (Temporal Fusiform Cortex, anterior division), TFCp (Temporal 

Fusiform Cortex, posterior division), TOFC (Temporal Occipital Fusiform Cortex), TP 

(Temporal Pole) (Jenkinson et al., 2012). 
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Appendix G 

Hurst Exponent (HE) Calculation Through the R/S and DFA Approaches 

To obtain HE with the rescaled-range analysis, the process begins with splitting up a time 

series of length N into smaller segments that are not overlapping and have a certain length n, that 

is an integer, which evenly divides N (Ceballos & Largo, 2018). Then, each of the shorter 

segments undergoes a series of steps to calculate an average R/S value. To be more specific, the 

average of each segment is calculated first, as demonstrated in Equation 10: 

 
X = 

1 

n
∑ Xi

n

i=1

 . (10) 

In the next steps, shown in Equation 11 and Equation 12, the computed average is subtracted 

from each value within the segment to achieve a series adjusted to the mean that can then be used 

for generating a series of cumulative deviations from the mean for each data point t (Zt): 

 Yt = Xt - X , (11) 

 Zt = ∑ Yi
t
i = 1  , (12) 

where Yt represents the deviation of data point 𝑋𝑡 from the mean 𝑋, and 𝑍𝑡 is the sum of these 

deviations up to each point of t = 1,2, …, n (Bal et al., 2021; Ceballos & Largo, 2018). After 

calculating the cumulative deviation, the range (R) of the series can be determined by the 

difference between the maximum and minimum values of the cumulative deviation, which is 

demonstrated in Equation 13: 

 R(n) = maximum(Z1,Z2,..., Zn) - minimum(Z1,Z2,..., Zn) . (13) 

The rescaled range (R/S) is then obtained by dividing the range (R) by the standard deviation (S), 

calculated for the previously mentioned, shorter segments of the time series of increasing length 

to observe how it scales with the size of the segment, as seen by Equation 14 and Equation 15: 
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 S(n) = √(
1

n
) ∑ (Xi-m)

2

n

i=1

 , (14) 

 
R/S = 

R(n)

S(n)
 , (15) 

where segment lengths usually increase in a logarithmic scale. Subsequently, for each segment 

length the R/S ratio is averaged over all segments (Bal et al., 2021). 

Ultimately, through Equation 16, one can compute the HE by looking at the logarithmic 

ratio of the rescaled range (R/S) relative to the logarithm of the segment size (n): 

 log(R S⁄ )n = log(c) + HElog(n) , (16) 

where c is the constant in the least square regression (Ceballos & Largo, 2018). More 

specifically, in this case, the HE is the slope of the straight line that one gets when applying the 

following power law to the data, which is shown in Equation 17: 

 E[R/S]=cnHE , (17) 

where 𝐸[𝑅/𝑆] is the value expected when 𝑛 → ∞ (Bal et al., 2021; Ceballos & Largo, 2018). 

The other method mentioned in this study that relates to the HE is DFA (Peng et al., 

1994; Peng et al., 1995). In this method, first, a cumulative sum is calculated for the time series 

using its mean value to obtain what is called the signal profile, demonstrated in Equation 18: 

 
Xt = ∑ (Xi-X)  

t

i=1

, (18) 

where 𝑋𝑡 corresponds the signal profile and 𝑋 to the mean (Hardstone et al., 2012; Peng et al., 

1994). Second, one has to determine a collection of evenly distributed and logarithmically 

spaced segment sizes with a minimum of four samples, as suggested by Peng et al. (1994), up to 

the signal's total length, as can be seen in Equation 19: 
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 T = {t1, t2, ..., tk} , (19) 

Then, for each segment size within this range, the signal profile 𝑋𝑡 is divided into overlapping 

segments, each by 50%, creating a collection of time series of identical length (Hardstone et al., 

2012; Peng et al., 1994). From each segment, a linear trend is removed via a least-squares fit, 

resulting in a detrended time series, from which the standard deviation is calculated, as shown in 

Equation 20: 

 

 σ(wdetrend) = √
1

N-1
∑ (wdetrend(i) - μ

wdetrend
)
2

N

i=1

, (20) 

in which case σ(wdetrend) is the standard deviation of the detrended time series wdetrend (Hardstone 

et al., 2012; Peng et al., 1994). Furthermore, across all segments of equal size, the average of 

these standard deviations are calculated, leading to a fluctuation function, which can then be 

plotted on a double logarithmic plot against segment sizes T (Bryce & Sprague, 2012; Peng et 

al., 1994). Finally, DFA exponent, α, showing the time-series' scaling behavior, can be obtained 

from this plot as the slope of the trend line across the relevant time scales using linear regression 

(Hardstone et al., 2012; Peng et al., 1994). 

  



ENTROPY AND FRACTAL FEATURES OF EEG-FMRI IN SLEEP 105 

Appendix H 

Evaluation Metrics for Machine Learning Models 

In machine learning, a classifier's accuracy is defined as the number of samples correctly 

classified by the model in relation to the total number of samples given to it, as shown in 

Equation 21: 

 
accuracy = 

number of samples classified correctly

total number of samples
=

TP + TN

TP + TN + FP + FN
 , (21) 

where TP and TN represent the true positives and negatives, whereas FP and FN stand for false 

positives and negatives (Hicks et al., 2022). Likewise, recall, which is known as the “true 

positive rate”, measures the ratio of correctly made positive predictions against all positive 

instances, whereas precision is the ratio of correctly identified samples in a category and the 

number of samples classified in that category, detailed in Equation 22 and Equation 23: 

 
recall = 

number of true positives

number of samples classified as positives
= 

TP

TP + FN
 , (22) 

 
precision = 

number of samples classified correctly in one class

number of samples assigned to that class
= 

TC

TC + FC
 , (23) 

where C represents the class, that may be positive (P), known as positive predictive value (PPV), 

or negative (N), called negative predictive value (NPV) (Hicks et al., 2022). This study applied 

the more prevalent interpretation of precision, PPV. Finally, the F1-score is yet another 

important metric in machine learning calculated with Equation 24: 

 
F1 = 2 * 

precision * recall

precision + recall
= 

2 * TP

2 * TP + FP + FN
 , (24) 

 

where the F1 is a “harmonic mean of precision and recall” (Hicks et al., 2022).  
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Appendix I 

Parameter Grid and Best Model Parameters for Machine Learning 

Table I1 

Parameter Grid and Best Model Parameters for Random Forest 

Parameters 
Optimal Parameter 

for EEG Features 

Optimal Parameter 

for BOLD Features 

Optimal Parameter 

for Combined 

Features 

bootstrap:  

(True, False) 

False False False 

criterion:  

(gini, entropy) 

entropy gini gini 

max_features: 

(None, sqrt, log2) 

log2 log2 sqrt 

min_samples_split: 

(2, 5, 10) 

2 2 2 

min_samples_leaf:  

(1, 2, 5) 

1 1 1 

max_depth:  

(10, 25, 50) 

10 10 10 
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Table I2 

Parameter Grid and Best Model Parameters for Support Vector Machine 

Parameters 
Optimal Parameter 

EEG Features 

Optimal Parameter 

for BOLD Features 

Optimal Parameter 

for Combined 

Features 

C: 

(0.01, 0.1, 1) 

1 1 1 

gamma:  

(0.01, 0.1, 1) 

0.1 0.01 0.01 

kernel: 

(linear, rbf, poly) 

rbf rbf rbf 

 


