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“It’s Difficult to Make Predictions, Especially About the Future.”

- Lots of smart people
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Abstract

Intraday Seasonality in the FX Swap Market

This thesis investigates intraday seasonality in the FX Swap market, focusing
on EUR/USD three-month forward points. We model the conditional mean of
forward points returns, emphasizing the identification and analysis of intraday
seasonal patterns. A key contribution is the decomposition of returns into
sign and magnitude components, treated as separate stochastic processes.
Dependencies between these components are modeled using copula theory,
offering a rigorous framework for understanding return dynamics.

Our analysis reveals intraday seasonality in return volatility, particularly
during the mid-morning session. However, evidence for seasonality in re-
turn sign is inconclusive, with small coefficients and limited predictive accu-
racy. Despite these challenges, the decomposition model provides a promising
framework for enhancing predictive performance, particularly through the use
of copula methods to model dependencies between return components.
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Chapter 1

Introduction

With an average daily turnover of US$ 3.8 trillion, the Foreign Exchange
(FX) Swap stands as the most traded FX instrument globally (BIS, 2022).
An FX Swap involves exchanging one currency for another on one date and
reversing the exchange on a future date, serving crucial roles in managing
funding liquidity and hedging currency risks (ING, 2019). Despite its promi-
nence and the high frequency of trading across the 24-hour, five-day-per-week
FX market, information on FX Swaps remains relatively inaccessible due to
their Over-the-Counter (OTC) nature, making data collection expensive and
challenging (BIS, 2022).

Before defining an FX Swap (hereafter referred to as "swap"), let’s con-
sider a motivating example.

Imagine a Dutch investor who currently holds €1,000,000. The investor
faces two options: to invest the funds in a European bank for three months
at an interest rate of 4%, or to invest in a U.S. bank for the same period at a
5% interest rate. If the investor chooses the European option, the investment
will grow to €1,040,000 after three months, calculated as €1,000,000 × 1.04.

Alternatively, if the investor opts to invest in the U.S., they would first
need to convert the euros into dollars at the current spot exchange rate, St.
Assuming the spot rate is St = 1.08, the investor would convert €1,000,000
into $1,080,000. This amount is then invested at the U.S. interest rate of 5%,
resulting in a balance of $1,134,000 after three months.

However, this investment introduces a significant risk known as currency
risk or spot risk. Since the investor ultimately requires euros, they will need to
convert the dollars back into euros after the investment period. The exchange
rate might fluctuate during these three months, potentially diminishing the
investment’s value when converted back to euros. For example, if the euro
appreciates significantly against the dollar, the $1,134,000 could be worth
much less in euros.

To mitigate this currency risk, the investor could enter into a forward
rate agreement, which locks in an exchange rate at the time of the initial
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investment. This forward rate guarantees that the investor can convert dollars
back to euros at a predetermined rate, thereby eliminating the spot risk. The
forward rate is set to ensure that the investor is indifferent between investing
in the U.S. or Europe, assuming a frictionless market with no transaction
costs. This idea can be mathematically described by the following equality:

St · (1 + r$)
Ft,t+1

= 1 + r€, (1.1)

where Ft,t+1 is the forward rate agreed upon at time t that is applicable at
time t + 1, St is the spot rate at time t, and r$ and r€ are the dollar and euro
one-period interest rates, respectively. This equality can be rewritten to the
very well-known parity introduced first by Keynes (1923):

Definition 1.1 (Covered Interest Rate Parity (CIP)).

Ft,t+δ = St ·
(1 + rδ,$)
(1 + rδ,€) , (1.2)

The CIP describes the relationship between the future exchange rate of two
currencies, considering the spot rate and their respective interest rates.

Referring back to the example of the Dutch investor, it is now clear how the
CIP ensures no-arbitrage in the market. Due to its simplicity, interpretability,
and the profound macroeconomic theory underlying it, ensuring no-arbitrage
in free markets, CIP is a cornerstone in valuing forwards.

Understanding how CIP relates to swaps is straightforward. A swap is an
agreement between two parties to exchange a specified amount of one currency
for a specified amount of another currency at a near future date (near leg).
The transaction for the near leg is settled at the exchange rate that holds at
the outset t, which is the spot rate St. At a future date (far leg), there will be
a transaction to trade back the currencies, settled at the forward rate Ft,t+1
agreed upon at the outset. The concept of a swap is visualized in Figure 1.1
for better understanding.1

Figure 1.1: EUR/USD FX Swap Visualization

Given the substantial trading volumes and frequent transactions, one
might expect the FX swap market to exhibit a high degree of efficiency com-
pared to smaller, less liquid markets (Clarke et al., 2001). Efficient markets

1Instead of dividing by the forward rate, some may multiply by the ask price of the
forward rate.
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ensure that prices reflect all available information, thereby eliminating oppor-
tunities for risk-free profits—a principle validated in numerous studies (Oh
et al., 2007). However, when violations of market efficiency, known as anoma-
lies, occur, they become targets for exploitation by financial institutions and
researchers alike (Kallianiotis, 2018). One such anomaly is the presence of
predictable patterns throughout the trading day, which challenges the notion
of market efficiency. While a substantial body of research has explored the
anomaly of seasonality in the FX spot market, as discussed later, the liter-
ature on seasonality in the FX forward market remains sparse. This paper
seeks to contribute to this underexplored area.

The primary distinction between analyzing FX spot and FX forward rates
lies in their underlying theoretical frameworks, which are discussed in detail
in Chapter 2. Spot rates operate under a floating rate system determined
by supply and demand, whereas forward rate valuation is derived from a no-
arbitrage framework grounded in the Interest Rate Parity (IRP) theory first
introduced by Keynes (1923). The IRP, which establishes a relationship be-
tween interest rate differentials and forward premiums, serves as a benchmark
for assessing perfect capital mobility across markets (Levich, 2011). Tradi-
tionally, any deviation from IRP indicated stress within the global financial
system, as was notably the case during the 2008 financial crisis (Chatzianto-
niou et al., 2020). Despite the recovery from the crisis, persistent deviations
from IRP continue to prompt research into their causes and implications for
trading strategies (Chatziantoniou et al., 2020).

In examining FX swaps, this study focuses on understanding the dynamics
of the difference between the spot rate and the forward rate—referred to as
forward points—on an intraday basis. Building on the insights gained from
this analysis, the paper attempts to model returns by decomposing them into
two distinct components: return sign and return magnitude, as discussed
in detail in Chapter 4. This thesis makes a threefold contribution to the
literature:

1. Exploring seasonality in the FX swap market.

2. Modeling the conditional mean of EUR/USD three month forward points
returns.

3. Decomposing returns into a sign component and a magnitude compo-
nent, treating them as separate processes and accounting for their de-
pendencies using copula theory.

The aim of this study is to provide insights into the intraday behavior of for-
ward points, thereby contributing to a deeper understanding of FX market
dynamics and potentially offering new avenues for trading strategy develop-
ment.
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Chapter 2

Literature Review

Set-up

This chapter discusses past literature on intraday seasonality in the FX mar-
ket, covering various aspects relevant to this research. Initially, the chapter
provides foundational explanations of key topics, concepts, and terminology
before delving into the corresponding literature. It begins with a discussion
on seasonality in general and then narrows the focus to intraday seasonality,
summarizing relevant findings, methods, and potential caveats. Subsequently,
the chapter introduces the financial market, with a brief exploration of the
FX market. The discussion extends to concepts like no-arbitrage and market
efficiency, including stylized facts as defined by Challet et al. (2001). Finally,
the forward points and their underlying framework, which remains crucial to-
day, are introduced. The chapter concludes by linking these topics together,
formulating a clear research question, and setting the stage for the research
methods that will contribute to existing literature. A diagram is provided to
visualize the research topic.
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Figure 2.1: Literature Review Visualized

2.1 Seasonality
Davey and Flores (1993) define seasonality as a structured pattern of changes
within a period. In other words, a time series exhibits seasonality if it shows
recurring behavior after each period. Periods can range from as long as four
years to as short as one hour. Granger (1978) defines yearly seasonality as a
series having an observable component that repeats every 12 months. This has
significant implications for interpreting and treating time series data, which
should not be overlooked (Granger, 1978). The paper emphasizes that by
properly investigating and accounting for seasonality in forecasting, econo-
metric analyses and the understanding of data in general improve.

Historically, seasonality lacked a clear definition and methods for address-
ing it were inadequate. While early researchers like Winters (1960)1 and
Nerlove (1964) incorporated the concept of seasonality, it was not until 1978
that Clive Granger provided a mathematical definition and formalized time
series models that exhibit seasonality. Although this paper will not delve into
spectral analysis, its framework is solid and interpretable. Two widely-used
models from Granger (1978) are presented below.

Model 2.1.1 (Additive Model). Let Yt be a process without seasonality and
let St be a stochastic or deterministic seasonality process. Then,

Xt = Yt + St

Model 2.1.2 (Multiplicative Model). Let Yt be a process without seasonality
and let St be a stochastic or deterministic seasonality process. Then,

Xt = Yt · St,

1One of the founders of the Holt-Winters Exponential Smoothing framework
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where St > 0 to ensure non-negative processes.

Definition 2.1 (Deterministic Seasonality). Let n be the number of periods
in a seasonal cycle. If the seasonal component St is perfectly periodic, meaning
St = St−n, then

St =
n∑

j=1
ai · dj

where di,t equals 1 in the jth period and 0 otherwise. Alternatively, if we let
ωs be the seasonal frequency, then

St =
n∑

j=1
ai · sin(ωs + θj)

From Definition 2.1, it is evident that deterministic seasonality can be applied
in both models 2.1.1 and 2.1.2. The concept of deterministic seasonality, as
defined in Definition 2.1, can be extended and adapted while retaining the
core idea of a deterministic seasonal component. Each point in time belongs
to a specific timeframe with varying characteristics, represented by the coeffi-
cient ai for time period j. These models suggest that, in theory, the seasonal
component can be isolated. To achieve this, further decomposition of Yt is nec-
essary. Shiskin (1967) describe one of the earliest methods, which decomposes
a time series into a trend-cycle component, a seasonal component, a trading
day component, and an irregular component. This method is captured in the
X-11 model below.

Model 2.1.3 (X-11 Consensus (Multiplicative)). Let Ct represent the trend
component, St the seasonality process, TDt the trading day component, and
It the irregular component. Then,

Xt = Ct · St · TDt · It

The X-11 method also exists in an additive form. Its primary goal is to
estimate the seasonal component using moving averages (Shiskin, 1967). The
X-11 method revises seasonal factor estimates as new data becomes available,
using asymmetric weights at the series’ ends. However, this method can some-
times result in poor estimates and large revisions, which can undermine its
credibility. The X-11 method serves as a foundational approach for research-
ing economic time series. It should be noted that the method has evolved,
with variants like STL by Cleveland et al. (1990) and MSTL by Bandara et al.
(2021). This section aimed to explain seasonality within econometrics.

2.1.1 Intraday Seasonality

As discussed in the previous section, seasonality manifests at various frequen-
cies. With a broad overview of seasonality provided, the focus now shifts to
intraday seasonality. The literature on intraday seasonality within the FX
spot market is extensive.2 Before this literature emerged, research on intra-
day patterns in stock returns gained attention (Harris, 1986). Harris (1986)
discuss two possible reasons for intraday patterns in the stock market:

2Note that this claim does not extend to FX swap markets.
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• Institutional Practices and Payment Schedules: Institutional in-
vestors may receive inflows and outflows at specific times of the day. For
example, Dutch pension funds typically trade during business hours,
ruling out overnight trading and focusing on activity during business
hours.

• Systematic Timing of Information: Many economic-related news
announcements are scheduled at specific times and days, influencing
trading behavior and potentially creating intraday patterns.

The FX market is highly sensitive to news announcements and is signifi-
cantly influenced by these announcements and local trading sessions (Good-
hart et al., 1993). Similar to the stock market, local trading behavior and
news announcements create patterns throughout the day in the FX market.
Research on intraday seasonality in FX returns typically divides the analysis
into two components, both of which have become significant fields of study:

1. The level of the returns (Chang et al., 2008, Ranaldo, 2009, Zhang,
2018)

2. The (realized) volatility of the returns (Bollerslev, 1986; Baillie and
Bollerslev, 1991; Payne et al., 1996; Martens et al., 2002; Ito and
Hashimoto, 2006)

After extensive literature review, this paper concludes that the primary
method for assessing seasonality in return levels is the Ordinary Least Squares
(OLS) model. Researchers like Cornett et al. (1995), Chang et al. (2008),
Ranaldo (2009), and Zhang (2018) investigate intraday seasonality by re-
gressing returns (regressand) on dummies (regressors) and possibly additional
explanatory variables. The model could take the form of:

yt = β0 +
n∑

j=1
λj · dj,t + εt (2.1)

or with additional explanatory variables:

yt = β0 +
n∑

j=1
λj · dj,t +

k∑
i=1

βi · xi,t + εt (2.2)

In these equations, dj is a dummy that takes the value 1 if the observation
yt occurs in a particular timeframe of the day, and xi,t are explanatory vari-
ables with assumed explanatory power over the regressand. The term λj · dj

serves as a proxy for the seasonal component St defined in Definition 2.1.1.
The coefficients {λj}n

j=1 and {βi}k
i=1 are estimated, and their sign, magni-

tude, and significance are key to understanding the impact of each variable
on the regressand (Heij, 2004). This implies that the seasonal coefficients (λj),
which represent the seasonal component (St), are crucial in assessing season-
ality within data. The main advantage of this model is its simplicity and
interpretability. Existing research has empirically shown that these intraday
patterns exist and persist. Another method of proxying the seasonal compo-
nent is described by Andersen and Bollerslev (1997). Below is a summary of
their framework:

Rt,n = E[Rt,n] + σtst,nZt,n

N
1
2

(2.3)
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• where t represents the trading day,

• n represents the nth interval on a particular day,

• Rt,n represents the return on a particular trading day and interval,

• E[Rt,n] represents the unconditional mean of returns,

• σt represents daily conditional volatility,

• Zt,n represents an i.i.d. random variable with mean 0 and variance 1,

• N is the number of intervals per trading day,

• st,n proxies the periodic component for the nth intraday interval.

Andersen and Bollerslev (1997) first described a two-step method involving:

1. Using a Fast Fourier Transform to approximate the seasonal component
st,n, obtaining an estimator ŝt,n.

2. ’Filtering’ the returns Rt,n by dividing them by the estimated seasonal
component ŝt,n.

Forecasting volatility remains an active area of empirical research (Mcmil-
lan & Speight, 2012). Researchers have long recognized that the uncertainty of
speculative prices, measured by (co)variances, changes over time. One of the
first papers to explicitly model time-variation in second-order and higher mo-
ments was the Autoregressive Conditional Heteroskedastic (ARCH) model by
Engle (1982). Since its publication, the ARCH model has received significant
attention, leading to various extensions. One major extension is the Gen-
eralized Autoregressive Conditional Heteroskedastic (GARCH) model. The
goal of the GARCH(p, q) model is to model the conditional variance, which
depends on the past.3 GARCH models are increasingly applied today due to
their simple and effective method of describing changing volatility in financial
time series (Xu et al., 2011). GARCH models can also produce good forecasts
of volatility changes in financial time series (Bauwens et al., 2006). Addition-
ally, Hansen and Lunde (2005) compared 330 ARCH-type models when re-
searching exchange rate data and found no evidence that more sophisticated
models outperform the GARCH(1, 1). However, GARCH models should not
be applied to raw seasonal data (Yan, 2021). This is because GARCH models
impose functional restrictions on the autocorrelation function (Yan, 2021).
For a more detailed discussion, this paper refers to Bollerslev (1986), where
it is shown that (G)ARCH models imply a geometric decay in the autocor-
relation structure. While GARCH models can describe heteroskedasticity,
they compromise on capturing periodicity in conditional volatility. Instead,
the two-step approach shown in Equation 2.3 and outlined by Andersen and
Bollerslev (1997) can be used to remove periodicity. Besides this approach,
Baillie and Bollerslev (1991) propose a more practical and interpretable ap-
proach by using a seasonal GARCH model to account for seasonality patterns
in the conditional variance of exchange rate data. They do this by adding
dummies for specific hours of the day in the variance equation, similar to

3Later in this chapter, the GARCH model will be discussed in detail. This section focuses
on outlining relevant literature rather than formulating models.
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the idea described in Equation ?? for return levels. In conclusion, intraday
seasonality in conditional variance can be addressed by either accounting for
seasonality using dummies or explicitly modeling the seasonal component.

2.2 Financial Market
The financial market brings buyers and sellers together, ensuring liquidity
and price discovery. For some time, scholars have questioned the need for
markets. The discussion of market efficiency, which began generations ago,
is ongoing. Malkiel (1973) famously claimed that a blindfolded chimpanzee
throwing darts at the Wall Street Journal could select a portfolio that would
perform as well as experts. While some nuance exists in this statement, it
highlights the Efficient Market Hypothesis (EMH), which posits that prices
reflect all available information and that attempting to beat the market is
futile. Over time, as statistical and economic methods advanced, the idea of
efficient markets was challenged, and predictability became more plausible.
Fender (2020) provides a balanced view of markets today, explaining that the
EMH was widely accepted due to its strong economic principles and empir-
ical support. However, numerous anomalies have been reported, seemingly
incompatible with the EMH. As Richard Feynman once said:

"It doesn’t matter how beautiful your theory is, it doesn’t matter how smart
you are. If it doesn’t agree with experiment, it’s wrong."

While this is generally true in econometrics and mathematics, some nuance
is needed when applying it to markets. The general consensus today, as
described by Fender (2020) and Fama (1991), is that markets are efficient to
a certain extent but not completely, due to the existence of anomalies.

2.2.1 Foreign Exchange Market

The Foreign Exchange market (FX market) operates 24 hours a day, almost
seven days a week. Trades are settled within seconds, thanks to electronic
trading, regardless of traders’ locations. This was not always the case. One
of the earliest recorded traders was likely a member of the Medici family
(Donnelly, 2019). At that time, currencies were valued based on their intrin-
sic worth, meaning their value was tied to the metal they contained. The
modern system began to take shape in the early 19th century, with early
metallic standards like the bimetallic standard giving way to the gold stan-
dard in countries like the United States, Canada, and the United Kingdom.
While the gold standard promoted confidence in currencies, it was inflexible.
Governments controlled gold stocks, and US citizens, for example, were not
allowed to own raw gold. The shortcomings of the gold standard, highlighted
by the World Wars, led to the Bretton Woods system, where countries fixed
their currencies to the dollar to promote international trade and financial
stability. This system also ended in 1971 due to instability.

Today, most of the world uses a system of floating rates based on supply
and demand. With an average daily trading volume exceeding $6 trillion,
the FX market is the deepest and largest financial market (Krohn & Sushko,
2022). This is primarily due to over-the-counter (OTC) transactions. An-
other characteristic of the FX market is that derivatives are traded more
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frequently than spot products. Among these derivatives, the most commonly
traded is the FX Swap. The popularity of FX Swaps is due to their ability to
hedge currency risk and provide short-term liquidity (ING (2019); Krohn and
Sushko, 2022; BIS, 2022). Figure 2.24 shows (from left to right) the absolute
net daily averages from 2001 to 2019, the segmentation of the FX Market in
percentages in 2016, and the segmentation of the FX Market in percentages in
2019. This figure emphasizes the crucial role of FX Swaps in today’s financial
landscape.

Figure 2.2: FX Market Segments in 2019. Source: (BIS, 2019)

Forward Points

The CIP serves as a benchmark for assessing perfect capital mobility between
markets (Levich, 2011). In practice, the CIP might not always hold, and
deviations observed in the market are referred to as basis. Traditionally, any
departure from the CIP indicated stress within the global financial system,
notably during the 2008 financial crisis (Chatziantoniou et al., 2020). De-
spite the recovery from the crisis, persistent deviations from CIP continue,
prompting research into their causes and implications for trading strategies
(Chatziantoniou et al., 2020). Another aspect of the CIP that has puzzled
researchers, both before and after the financial crisis, is the difference between
the forward rate and the spot rate, known as the forward premium or forward
points.

Definition 2.2 (Forward Points).

Ft,t+δ − St = St ·
(1 + rδ,$)
(1 + rδ,€) − St = St ·

(
(1 + rδ,$)
(1 + rδ,€) − 1

)

The δ-forward points represent the difference between the spot rate and the
δ-forward rate, where δ stands for an arbitrary time period.

The forward points have not been extensively researched as a standalone
subject. A common field of research where forward points have appeared is
the forward premium anomaly. This anomaly arises because economic models
typically imply that domestic currency depreciates when domestic interest

4This graph is publicly available and published by BIS (2019)
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rates are higher than foreign interest rates (Bansal & Dahlquist, 2000). When
this is not the case, as empirical findings suggest, the literature refers to it as
a puzzle—the ’forward premium puzzle’ introduced by Fama (1984). Baillie
and Bollerslev (2000) argue that the anomaly is ’not as bad as you think’
by presenting a model suggesting that it may be merely a statistical artifact.
Instead of solving the puzzle, these findings have only fueled its complexity.
Another area of interest is the relationship between the spot rate and the
forward rate, particularly the hypothesis that the forward rate is an unbiased
predictor of the future spot rate. Engel (1996) thoroughly discusses this
in his survey, considering past literature and essentially concluding that the
hypothesis can be rejected.

Surprisingly, as far as the author is aware, no prior research has focused on
the behavior of forward points over time, either on a daily or long-term basis.
Despite their potential importance, the behavior of forward points has not
been explored. A study by Joseph and Hewins (1992) comes close, examining
interday seasonality in the FX market and evaluating whether day-of-the-
week returns for spot rates and forward rates differ. While this has already
been done for spot rates by Levi (1978), McFarland et al. (1982), and others,
Joseph and Hewins (1992) were the first to explore seasonality in the FX
forward market. Their study identified seasonality in the forward market,
but this finding may be flawed due to the definition of returns used. For spot
rates, returns are straightforward and can be taken as log

(
{
P t+1Pt

)
(Zhang,

2018). For forward rates, this is less straightforward due to how they are
defined, as shown in Definition 2.2. Since forward rates comprise two interest
rate components and a spot component, studies relying solely on raw forward
rates may produce misleading results. Therefore, the observed seasonality in
the forward market may be entirely driven by seasonality in the spot market.
An improvement to the methodology used in Joseph and Hewins (1992) would
involve isolating the influence of the interest rate components by removing the
spot component from the forward rate.

Stylized Facts in the FX Market

Stylized facts are empirical findings that are so consistent that they are be-
lieved to hold approximately. In econometrics, stylized facts summarize em-
pirical observations about the distribution. This section briefly discusses styl-
ized facts in the intraday FX market. While stylized facts are readily available
in the financial market, they are less common in the FX market. The stylized
facts listed here have been documented by Guillaume et al. (1997) and are
mainly focused on spot products.

A well-known fact about financial returns, in general, is that they exhibit
fat tails and usually reject normality. These traits point to a leptokurtic
distribution, which holds in the FX market as well. Some researchers claim
the distribution resembles a stable Paretian, while others believe it is closer
to the Student-t distribution (Guillaume et al., 1997). The distributions are
usually symmetric, with finite variance and an existing third moment that
supports the claim of no skewness.

Guillaume et al. (1997), and many others he cites, claim that seasonal
patterns in the FX market are apparent. They correspond to the hour of
the day, the day of the week, or the presence of traders in the three major
geographical trading zones. Although he does not explicitly mention these
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trading zones, it is assumed that he refers to the Asian, European, and North
American trading sessions. Seasonality is found to exist in FX literature for,
among other things, the variance and the directional change. In line with
the conclusion in Section 2.1.1, Guillaume et al. (1997) also observes that the
first and most straightforward way to treat seasonality is by using seasonal
dummies. He also mentions the framework introduced in Equation 2.3, where
seasonality is modeled explicitly, as the second profound method.

The goal of this literature review was to gain an understanding of the ex-
isting methods for treating seasonality, to understand the FX market and the
framework of FX swaps, and to present past literature relevant to this topic.
To conclude this chapter, this paper attempts to answer whether seasonality
exists in FX forward points and whether this can be exploited. To maximize
the efficiency of our methods, we draw on past research, leveraging the styl-
ized facts that significant information about seasonality can be extracted from
realized volatility and that directional changes hold valuable insights. Before
presenting the proposed methodology in Chapter 4, an in-depth analysis and
discussion of the data will be provided in Chapter 3.
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Chapter 3

Data

Set-up

This chapter presents relevant information and findings on the data. It begins
with an introduction to the data, followed by visualizations and statistical
reporting. Adjustments to the raw data are explained and justified. Stylized
facts present in the data are also mentioned. Additionally, the chapter reveals
insights through statistical analysis and supports statements with statistical
tests.
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3.1 Data Preparation and Adjustments
This paper examines the three-month EUR/USD forward points, representing
the difference between the spot rate at time t and the three-month forward
rate at time t. PGGM provided the data via their dat provider New Change
FX (NCFX). NCFX is an FCA-authorised benchmark administrator provid-
ing high-quality, real-time FX reference rates. The data is provided at a
1-minute frequency. Starting from January 1st 2021 to March 21th 2024. Af-
ter adjustments, 112.560 data points remain, which translates to 670 trading
days.

3.1.1 Exclusion of Overnight Data

The FX market operates 24 hours a day, 5 days a week, but due to liquidity is-
sues, non-business hours are often uninformative or misleading, with increased
trade risk and wider bid-ask spreads. According to Bjønnes and Rime (2005)
and Bjønnes et al. (2005), market-making banks primarily provide intraday
liquidity and typically offload inventories before the end of the trading day
due to associated risks. This behavior is a reaction to the lack of demand
overnight, which leads to reduced liquidity and activity during these hours.
Market makers remain at their desks if there is sufficient demand, but the low
demand overnight results in decreased liquidity. Therefore, overnight data is
excluded from the dataset to avoid distortions caused by these liquidity con-
straints. Observations between 8PM GMT and 5:59AM GMT are excluded
from the analysis.

3.1.2 Adjustment for Daylight Saving Time

Additionally, to account for the effects of Daylight Saving Time (DST), all
timestamps were converted to UTC, and trading hours were adjusted to re-
flect local time changes. DST transitions can disrupt regular trading patterns
due to changes in traders’ schedules and behavior. By accounting for DST,
we can standardize the timestamps and maintain consistent trading hours
throughout the year, avoiding distortions.

3.1.3 Tick Frequency

The data provided is at 1-minute level. Following Andersen and Bollerslev
(1997, 1998) and Ranaldo (2009), the forward points data is resampled to
5-minute level by selecting the close price of every 5-minute interval. This
resampling reduces noise in the data while preserving essential information.

3.1.4 Holidays

Trading patterns on holidays differ from regular trading days, often exhibiting
lower liquidity and higher volatility. According to Ranaldo (2009), market
participation is skewed on holidays, leading to less efficient price discovery
and wider bid-ask spreads. Additionally, holidays are characterized by sig-
nificantly reduced market activity, similar to weekends, resulting in a lack of
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reliable return observations and subdued quoting activity (Andersen & Boller-
slev, 1998). By excluding these days1, we avoid distortions caused by atypical
trading behavior (Andersen & Bollerslev, 1998; Ranaldo, 2009).

3.1.5 Spot Component

As outlined in Definition 2.2, the forward points include a spot component.
To isolate the forward points, divide them by the spot rate, which fluctuates
throughout the day. This adjustment ensures that spot rate variations do not
obscure our analysis of the forward points.

3.1.6 Outliers

After removing overnight observations, no clear outliers have been detected.

Figure 3.1: EUR/USD 3-Month Forward Points: Level

From January 2021 to mid-2022, forward points were stable, fluctuating
between 10 and 20 basis points (Bps), indicating calm market conditions and
predictable monetary policy.

In May 2022, forward points surged, peaking at around 80 Bps by Septem-
ber 2022. This spike likely reflects unexpected monetary policy changes by
the Federal Reserve (FED) and the European Central Bank (ECB). The USD
3-month swap Overnight Index Swap (OIS) and EUR 3-month OIS2, which
proxy dollar and euro interest rates respectively, are shown in Figure A.5. The
increasing trend in forward points in early 2022 coincides with the interest
rate hikes.

From January 2023, forward points declined, stabilizing around 40 Bps
by July 2023, suggesting a return to market stability, as interest rate hikes
diminished. Volatility also declined, returning to pre-hike levels by January
2024.

1Appendix ?? shows the holidays that were excluded
2The EUR and USD 3-month OIS are overnight interest swap rates for the dollar and

euro respectively
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Figure 3.2: EUR/USD 3-Month Forward Points: Rolling Volatility (5-day
window)

3.1.7 Stationarity

From Figure 3.1 and Figure 3.2, it is clear that the forward points do not show
a constant mean and variance. These varying statistical properties over time
indicate a non-stationary process. A stochastic process is considered (weakly)
stationary if its first and second moments remain constant over time3. In
order to obtain robust estimates and ensure constant statistical properties,
stationarity of a time series is a desired property (Heij, 2004). To test for sta-
tionarity within a time series, we apply the Augmented Dickey–Fuller (ADF)
test that check for a stochastic trend. The null-hypothesis claims that there
is a unit root present in the time series. Upon rejection of the null-hypothesis,
a frequently used transformation applied to the time series is that of first dif-
ferencing (Heij, 2004). The test is documented in Appendix B. Let yt be the
forward points time series, then the series of the first differences are defined
in equation 3.1

∆yt = yt − yt−1, for t ∈ {1, . . . n} (3.1)

For both series, stationarity is tested using the ADF test. The results are given
in Table 3.1. We find that after taking first differences, the series becomes
stationary. From now on, the difference series defined in equation 3.1, will be
referred to as returns series. The returns series will be analyzed. Practitioners
also take logarithmic returns to obtain stationary series, we however take
first differences for two reasons. The series are expressed in Bps (hence: very
small) and applying a logarithmic transformation inflates the series. Thereby,
observing that the process is fairly linear, differencing is a reasonable measure
to take here.

3Appendix ?? stationarity
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Table 3.1: ADF Test Results

Series ADF Statistic p-value α

Forward Points -1.186 0.679 5%
∆ Forward Points -51.331 0.000 5%

3.2 Returns
Figures 3.3 and 3.4 display the 5-minute returns and absolute returns, respec-
tively. Table 3.2 provides the descriptive statistics for both series.

Figure 3.3: EUR/USD Forward Points: 5-min Returns

Figure 3.4: EUR/USD Forward Points: 5-min Absolute Returns



22 Chapter 3. Data

The returns plot indicates a stationary series with periods of increased
volatility, which is a known stylized fact in financial markets. Volatility can
be proxied by the absolute value of returns.4 Figures 3.3 and 3.4 show the
autocorrelation function (ACF) and partial autocorrelation function (PACF)
for returns and absolute returns, respectively.

The descriptive statistics of returns reveal several stylized facts. A high
kurtosis is observed, indicating leptokurtocity. The return distribution is also
symmetric and centered around zero.

Table 3.2: Descriptive Statistics for Returns and Absolute Returns (in Bps)

Statistic Returns (Bps) Absolute Returns (Bps)
Count 112,560 112,560
Mean 0.0003 0.0214
Std Dev 0.0918 0.0893
Min -6.0965 0.0000
25% -0.0060 0.0002
50% 0.0000 0.0060
75% 0.0060 0.0190
Max 6.0377 6.0965
Kurtosis∗ 1244 1363
Skewness∗ 0.8070 29.2380

∗ Skewness and Kurtosis are not converted to Bps.

The ACF for absolute returns shows significant autocorrelation at initial
lags, especially at lag one, indicating volatility clustering. Periodic spikes
around every 168 lags suggest possible daily seasonality. The PACF plot
supports this with diminishing influence over time.

The ACF for returns exhibits minor spikes, notably at lag one, suggesting
low overall autocorrelation and indicating the series is largely white noise.
The PACF plot shows minimal initial spikes and weaker autocorrelation. As
expected, absolute returns demonstrate more significant autocorrelation and
partial autocorrelation compared to returns, emphasizing volatility cluster-
ing and potential daily seasonality. We leave additional information on the
distributional properties for the appendix (A).

Figure 3.5: EUR/USD Forward Points: ACF and PACF Returns
4See the literature review for a broader discussion on this.
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Figure 3.6: EUR/USD Forward Points: ACF and PACF Absolute Returns

3.2.1 Intraday Returns

Figure 3.7 shows the mean return per hour and volatility for that hour. The
intraday plots reveal distinct patterns in returns. Positive mean returns are
observed in the morning, peaking around 11 AM, while negative mean returns
dominate the early afternoon, especially at 2 PM, indicating a possible daily
seasonality. The highest levels of absolute returns, indicating peak volatility,
occur at 11 AM and 2 PM, coinciding with major trading periods in the
European and US markets.

Figure 3.7: Intraday Mean Return per Hour
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Following Iwatsubo et al. (2018) and Ranaldo (2009) and based on figure
3.7, we can divide the day into sessions. Table 3.3 shows how a trading day
is divided.

Table 3.3: Time Bins

Bin Time (London) Session Description
H1 6:00 AM - 7:59 AM Pre London Market
H2 8:00 AM - 9:59 AM London Open
H3 10:00 AM - 11:59 AM Mid-Morning
H4 12:00 PM - 1:59 PM Lunch
H5 2:00 PM - 3:59 PM NY Open
H6 4:00 PM - 5:59 PM London Close
H7 6:00 PM - 7:55 PM Post Market

Intraday patterns remain quite consistent across years with mean re-
turn around zero, suggesting a stable and balanced data-generating process.
Volatility fluctuates across years. Market volatility is highest during lunch
and the New York open, and the market is very tight during the mid-morning
session as shown in A.3.

To statistically test for equality in mean returns, we perform Welch’s t-
test5 as outlined in A.1.3. Welch’s t-test is chosen because the trading sessions
exhibit unequal variances, as shown by Levene’s test, which is described in
A.1.2. This choice ensures a more accurate assessment of mean differences
between sessions. We find that variances are different across all trading ses-
sions and the mean for the mid-morning (post market) session is significantly
higher (lower).

Trading Session Effect

To analyze the impact of different time bins on returns, we conducted an OLS
regression with dummy variables for each time bin. The regression equation
is as follows:

rt = β0 +β1 ·H2t +β2 ·H3t +β3 ·H4t +β4 ·H5t +β5 ·H6t +β6 ·H7t +εt, (3.2)

where Hit = 1 if rt is observed in trading bin Hit and Hit = 0 otherwise.
The results of the regression are summarized in Table 3.4.

Table 3.4: OLS Results Return on Trading Session Dummies

Variable Coefficient Standard Error p-value
const 5.985e-08 7.02e-08 0.394
H2 -3.954e-08 7.96e-08 0.620
H3 2.506e-07 1.17e-07 0.032
H4 -1.159e-08 9.94e-08 0.907
H5 -1.228e-07 1.08e-07 0.255
H6 -1.228e-07 1.07e-07 0.249
H7 -1.79e-07 9.22e-08 0.052

5Also known as the unequal variances t-test
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The regression results indicate that the coefficient for the H3 (mid-morning)
time bin is positive and statistically significant at the 5% level. Compared
to the baseline (H1) returns are higher in the mid-morning session, but this
difference is very small.

Other time bins do not show statistically significant coefficients at the 5%
level. This is contrary to the finding for H7 in the Welch’s t-test. Therefore, we
conclude that only the mid-morning session produces significant positive re-
turns. Heteroskedastic consistent error estimators proposed by White (1980)
are used in this models and other OLS models in this paper.

Monday Morning Effect

Previous literature suggests that FX spot returns might be different during
Monday mornings due to various market dynamics (Aloud et al., 2013; Singh,
2019). To investigate the Monday morning effect for FX swap returns, we
conducted an OLS regression. The results of model 3.3 are summarized in
table A.3. The regression equation is as follows:

rt = β0 + β1 · MMt + εt, (3.3)

where MMt = 1 if rt is observed on a Monday morning and MMt = 0
otherwise.
No significant effect is found for different returns during Monday mornings.

London and NY Opens

A known stylized fact, as shown by Aloud et al. (2013), suggests that returns
in the FX spot market behaves different around the London open and NY
open times. To examine these in the FX swap market, we performed an
OLS regression where we regress returns on dummies for the London and NY
opening sessions. The results of model 3.4 are summarized in table A.4. The
regression equation is as follows:

rt = β0 + β1 · LOt + β2 · NYOpent + εt, (3.4)

where LOt = 1 and NY = 1 if rt is observed during the London open and
the New York open respectively.
No significant effect is found for different returns during the London and NY
opening sessions.

3.2.2 Absolute Returns

There is only a limited amount of information to be extracted from returns.
The autocorrelation structure contains no information about possible intraday
seasonality. Welch’s t-test and regression model 3.2 reveal some signficant ac-
tivity during the mid-morning session. The absolute value of returns however
show intraday seasonality in the autocorrelation structure, as shown in figure
3.8. We observe a weak U-shape that has been well documented for different
spot exchange rates (Andersen & Bollerslev, 1997, 1998; Ito & Hashimoto,
2006).
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Figure 3.8: EUR/USD 3-Month Forward Points: Intraday ACF

We test the effects of different trading sessions on absolute returns throughout
the day using the regression equation given in equation 3.5. The results,
presented in Table 3.5, show that most trading sessions have a statistically
significant impact on absolute returns, though the effects are small. The only
exception is the London close session (H6).

|rt| = β0 +β1 ·H2t +β2 ·H3t +β3 ·H4t +β4 ·H5t +β5 ·H6t +β6 ·H7t +εt (3.5)

Table 3.5: OLS Results Absolute Return on Trading Session Dummies

Variable Coefficient Standard Error p-value (α = 5%)
const 1.979e-06 6.85e-08 0.000
H2 -4.328e-07 7.71e-08 0.000
H3 5.099e-07 1.14e-07 0.000
H4 3.267e-07 9.65e-08 0.001
H5 4.132e-07 1.05e-07 0.000
H6 -1.048e-07 1.04e-07 0.316
H7 4.381e-07 8.88e-08 0.000
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Chapter 4

Methodology

Set-up

This chapter introduces a framework designed to forecast returns by leverag-
ing findings from Chapter 3. Our analysis of intraday raw returns revealed
no significant seasonal patterns. However, we found notable differences in re-
turns variances across trading sessions and identified seasonality in absolute
returns through the autocorrelation structure depicted in Figure 3.6. The
OLS model results in Equation 3.5 confirmed that absolute returns vary sig-
nificantly throughout the day.

Given that financial returns are known to exhibit non-linearity, non-stationarity
and conditional heteroskedasticity1, our information set may not capture these
non-linear dynamics adequately. By combining our empirical findings with
methods from past research, we aim to incorporate hidden non-linearities
and optimally utilize the statistical information and dependencies found in
absolute returns. The remainder of this chapter focuses on the following ap-
proaches to construct forecasting models:

• Modeling the returns series using classical time series approaches to
obtain a linear benchmark model.

• Decomposing returns into sign and magnitude components and model-
ing these separately, assuming independence between sign and magni-
tude.

• Incorporating possible dependencies in the decomposition model by us-
ing copulas.

1Bollerslev (1986), Geweke (1986), and Korkie et al. (2002) discuss this in detail
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4.1 SARIMA-GARCH
As benchmark model, an SARIMA-GARCH model is estimated. The ARMA
model is a model for conditional mean whereas GARCH is a conditional vari-
ance model. The AR(I)MA model was first introduced by (Box et al., 1970)
and involves an iterative fitting procedure, collectively referred to as the Box-
Jenkins approach.

The Box-Jenkins approach involves identifying, estimating, and diagnos-
ing models to best represent a time series. This is done by iteratively applying
differencing, autoregressive, and moving average components.

SARIMA Model

An autoregressive (AR) model incorporates past returns behavior to model fu-
ture returns, while the moving average (MA) model regresses current returns
on previous errors. Upon combining the AR and MA models, the ARMA
model is obtained. The ARMA(p, q) model for returns is specified as follows:

rt = µ +
p∑

i=1
ϕi · rt−i +

q∑
j=1

θj · εt−i + εt, (4.1)

where rt is the observed return at time t, µ is the constant term, ϕi and θi

are the ith AR and MA coefficients respectively. Last, εt is the error term
at time t, where the assumption is made that εt ∼ WN(0, σ2). This can be
rewritten as follows:

Φp(L)rt = Θq(L)εt, (4.2)

where L is the lag-operator Φt and Θt are the AR and MA polynomials
respectively given below.

Φp(L) = 1 − ϕ1L − · · · − ϕpLp,

Θq(L) = 1 + θ1L + · · · + θqLq,

An ARMA(p, q) model becomes an ARIMA(p, d, q)2 model upon applying
the lag operator d times to the time series (Box et al., 1970). Differencing
is essential in case one works with non-stationary time series. In our case,
saying the returns can be represented by an ARMA(p, q) model is equivalent
to saying the forward points are represented by an ARIMA(p, 1, q) model.

Seasonal differencing eliminates seasonality in our returns. Our seasonal
period is m=168 intervals of five minutes. Similar to the regular AR and MA
polynomials used in equation 4.2, the seasonal AR and MA polynomials are
defined below.

Φ̃p(Ls) = 1 − ϕ̃1Ls − · · · − ϕ̃pLsp,

Θ̃q(Ls) = 1 + θ̃1Ls + · · · + θ̃qLsq,

, where θ̃q(L) and ϕ̃p(L) denote the seasonal AR and MA coefficients respec-
tively.

Combining equations 4.2 with the seasonal polynomials results in the
SARIMA(p, 0, q)(P, Ds, Q), which combines the ARIMA model with seasonal

2ARIMA stands for Autoregressive Integrated Moving Average
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components. As we construct a model for returns that are stationary already,
the lag operator is zero (d = 0) such that we can reduce the ARIMA part to
an ARMA model. The SARMA(p, q)(P, Ds, Q) is specified as follows:

Φp(L)Φ̃p(Lm)rt = Θq(L)Θ̃q(Lm)εt, (4.3)

Now that we have a rough structure of the model, we continue below with
the Box-Jenkins approach to find a suitable benchmark model.

4.1.1 Model Identification

To identify the order of a SARMA model, the ACF and PACF are used to
identify AR and MA terms respectively. The ACF and PACF for returns are
given in As described in Box et al. (1970) we look for a cutoff in the decay
of the ACF plot. We find two lags to be both significant at the 5% level and
exhibit a decaying pattern. Hence, the model includes two AR terms.

For the AR terms, we look for significant lags in the PACF. Although the
fifth lag is just significant at the 5% level, it is very close to being insignificant.
Therefore we define the cutoff to be the fourth lag. Hence, the model includes
four MA terms.

For the seasonal AR and MA polynomials, only the primary seasonal AR
and MA terms will be included. The identified SARMA model is given below.

Φ2(L)Φ̃1(L168)rt = Θ5(L)Θ̃1(L168)εt, (4.4)

which we refer to as the mean equation. The mean equation written out fully
is given as:

rt = ϕ1rt−1 + ϕ2rt−2 + ϕ̃1rt−168 − ϕ1ϕ̃1rt−169 − ϕ2ϕ̃1rt−170

+ εt + θ1εt−1 + θ2εt−2 + θ3εt−3 + θ4εt−4

+ θ̃1εt−168 + θ1θ̃1εt−169 + θ2θ̃1εt−170 + θ3θ̃1εt−171 + θ4θ̃1εt−172.

(4.5)

4.1.2 GARCH

As shown in chapter 3, returns are heteroskedastic. Therefore the general
SARMA model, assuming constant variance, most likely fails at producing
residuals that resemble white noise. We construct a model for conditional
variance as well. Conditional variance is defined as σ2

t = Vt−1(εt) = Et−1(ε2
t )

and the GARCH(p, q) model is defined below.

σ2
t = ω +

p∑
i=1

αj · σ2
t−i +

q∑
j=1

βj · ε2
t−j (4.6)

Note that εt is inferred from the the SARMA model in equation 4.4 and
specified as follows:

εt = σtzt, zt ∼ tν(0, 1) (4.7)

This paper will implement the GARCH(1, 1)-model of Bollerslev (1986)
for conditional variance. Errors are assumed to follow Student’s t distribution
as it is more appropriate for leptokurtic processes. This is the most widely
used specification of GARCH models due to its great performance. Hansen
and Lunde (2005) compared volatility models to find out if anything could
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beat a GARCH(1, 1). They found that in the analysis of exchange rate data,
no model could outperform the GARCH(1, 1)-model.

Below, we specify the complete SARIMA(2,0,4)(1,0,1)-GARCH(1,1) model.

Φ2(L)Φ̃1(L168)rt = Θ5(L)Θ̃1(L168)εt,

σ2
t = ω + σ2

t−1 + ε2
t−1

εt = σtzt, zt ∼ tν(0, 1) (4.8)

4.1.3 Parameter Estimation

The parameter set of the mean equation (4.4) φ = {µ, ϕ1, ϕ2, θ1, . . . , θ4, ϕ̃1, θ̃1}.
are estimated using MLE. We impose Student’s t-distribution on the inno-
vations; εt ∼ tν(0, σ2

t ). The seasonal components are simply additional AR
and MA terms such that the estimation procedure remains the same. To ver-
ify whether the GARCH(1, 1) is validated, we test for ARCH effects (Engle,
1982). This test is included in Appendix B. It essentially tests the squared
residuals of the model to exhibit autocorrelation which indicates volatility
clustering (Francq & Zakoian, 2019). If the presence of ARCH effects is not
rejected, we employ a GARCH(1,1) model for the conditional variance. We
can estimate its parameters using MLE.

4.1.4 Model Diagnostics

Residuals Inspection

After estimating, the first step is to examine the residuals of the model. Ide-
ally, the residuals should resemble white noise, which means they should have
a mean of zero, constant variance, and no autocorrelation. The following
diagnostic checks are performed:

• ACF of Residuals: We plot the ACF of the residuals to check for
any remaining autocorrelation. If the model is correctly specified, the
residuals should show no significant autocorrelation at any lag. We look
for a pattern in the ACF plot; a well-specified model will have residuals
whose autocorrelations lie within the confidence bounds, indicating that
no significant autocorrelation remains.

• PACF of Residuals: The PACF of the residuals is also examined
to ensure that any significant autocorrelation in the original series has
been adequately captured by the model. As with the ACF, the PACF
should not show any significant spikes if the model is well-fitted.

• Ljung-Box Test: To statistically assess the absence of autocorrelation,
we perform the Ljung-Box test (Ljung & Box, 1978) on the residuals.
The null hypothesis of this test is that the residuals are independently
distributed. A high p-value from this test would indicate that we cannot
reject the null hypothesis, suggesting that the model’s residuals are
indeed uncorrelated.

Heteroskedasticity Test

Since the SARIMA-GARCH model explicitly models the conditional vari-
ance, the ARCH-LM (Lagrange Multiplier) test is used to check for remaining
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ARCH effects in the residuals. The null hypothesis is that there are no ARCH
effects, meaning that the conditional variance model has successfully removed
volatility clustering from the residuals. A non-significant test result indicates
that the GARCH(1,1) model has sufficiently captured the conditional variance
structure.

Parameter Significance

Each parameter in the SARIMA-GARCH model is tested for statistical sig-
nificance by calculating its corresponding p-value. The p-values are derived
from the t-tests, which are based on the estimated parameters and their stan-
dard errors. A parameter is considered statistically significant if its p-value
is less α = 0.05.

4.2 Decomposition Model
To start off, following Christoffersen and Diebold (2006), the returns are
rewritten as the product of two separate components: a continuous com-
ponent and a discrete component. This decomposition is represented as:

yt − yt−1 ≡ rt = sign(rt) × |rt| (4.9)

where yt is the observation for the forward point at time t, sign(rt) rep-
resents the direction of the return (positive or negative) and |rt| represents
the magnitude of the return (absolute value) at time t. Note that these two
components are not necessarily independent. The main advantage of decom-
posing returns as shown in Equation 4.9 is that it allows us to inspect the
components separately and later jointly to incorporate possible dependencies.

4.2.1 Empirical Motivation and Findings

Intraday Patterns in Returns

In our empirical analysis of intraday returns, we observed significant intraday
seasonality in the absolute value of returns, even though the raw returns
themselves exhibited minimal predictable patterns. This is consistent with
the literature (Guillaume et al., 1997). The ACF plots of absolute returns,
as well as the OLS regression analysis incorporating time-of-day dummies,
revealed these patterns.

Predictability of Returns Components

Research has shown that both the sign and magnitude of returns can be
predictable. For instance, Breen et al. (1989), Hong and Chung (2003), and
Nyberg (2011) demonstrated that the directional change (sign) of returns is,
to some extent, predictable. Additionally, volatility, which is closely related
to the magnitude of returns, is also highly predictable as shown by Cao and
Tsay (1992), Figlewski (1997), and Alford and Boatsman (1995).

Moreover, Ghysels et al. (2006) and Forsberg and Ghysels (2007) found
that absolute returns are strong predictors of future volatility, supporting the
idea that modeling the absolute value component enhance forecasts. Ding
et al. (1993) also highlighted that absolute returns might be more effective
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than squared returns at capturing specific volatility components. Summa-
rized, modelling absolute returns is promising as previous literature suggests
it is predictable, and the data analysis and tests in this research reveals that
absolute returns contain information.

4.2.2 Theoretical Justification for Decomposition

Christoffersen and Diebold (2006) introduced the decomposition of returns
into sign and absolute value components, explaining that both components
exhibit persistent dynamics, making them forecastable, whereas the returns
themselves are not easily forecastable. This decomposition allows for a more
granular analysis of market behavior and improves forecasting models by
leveraging the distinct information provided by each component.

Korkie et al. (2002) already supported this idea in the past by showing that
sign prediction directly affects heteroskedasticity in asset returns, increases
prediction precision and can reduce this heteroskedasticity. Their findings
suggest that a nonlinear return generating model, which separately models
return signs and magnitudes, can effectively capture the dual contributions
of these components.

4.2.3 Mathematical Framework

The returns rt are decomposed as:

rt = sign(rt) × |rt| (4.10)

Modelling strategy is split up into a model for sign(rt)and a model for |rt|.
The first model assumes independence and hence

Sign Component

The sign component of the returns is mathematically defined as:

Definition 4.1 (Sign component).

sign(rt) =


−1 , if rt < 0

1 , if rt ≥ 0

, the sign of returns is hence binary valued. Let Ft = σ{(rs, xs), s ≤ t}
represent the sigma field containing information up to time t.3 It then follows
that,

I{rt>0}|Ft−1 ∼ B(pt), (4.11)

with density of sign(rt)|Ft−1 given as:

f{Irt>0}|Ft−1(xt|Ft−1) = pxt
t (1 − pt)1−xt (4.12)

A binary response model is suitable here. The most common approaches
are the linear probability model (LPM), logit, and probit models (Horowitz
& Savin, 2001; Vasisht, 2007). LPM often predicts conditional probabilities

3We use rt instead of sign(rt) since that includes information on both the sign and
magnitude
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outside the [0, 1] interval due to its linear nature. In contrast, the logit and
probit models constrain predicted probabilities between 0 and 1 by using a
nonlinear relationship between the dependent and explanatory variables. This
results in an S-shaped cumulative distribution function (CDF) that better fits
the data. We briefly discuss the implications below.

Nonlinear Probability Model

Equation 4.11 implies that Pt−1[sign(rt) = 1] = pt and Pt−1[sign(rt) = 0] =
1 − pt. We focus on the probability pt given the information at t − 1. As
discussed by Horowitz and Savin (2001) and Vasisht (2007), pt is related to a
linear function πt of explanatory variables xt through a transformation to keep
probabilities between 0 and 1. Common transformations are the CDFs of the
normal distribution (Φ(·)) for the probit model and the logistic distribution
(Λ(·)) for the logit model. This nonlinear approach ensures probabilities re-
main within bounds. The conditional expectation and probabilities are linked
as:

Et−1
[
sign(rt)

]
= 0 · Pt−1

[
sign(rt) = 0

]
+ 1 · Pt−1

[
sign(rt) = 1

]
= Pt−1

[
sign(rt) = 1

]
= Λ(πt) = pt

(4.13)

A probability close to 0 predicts a negative return, while a probability
close to 1 predicts a positive return. We refer to pt as the probability of
success. The probability of success and the linear transformation function are
defined as follows:

pt = Λ(πt) = eπt

1 + eπt
, (4.14)

where
πt = ω + δ2πt−1 + δ1I{rt−1>0} +

p∑
j=1

βjxt−1,j (4.15)

We refer to the parameter set as ΘL = {ω, δ1, δ2, β1 . . . βp} Contrary to the
standard logit model, we include lagged sign as well in to otbain a dynamic
logit model (Korkie et al., 2002). This should account for correlation between
It−1 and It (Nyberg, 2010, 2011). Table ?? shows the results for the LPM,
which serves as an indication of what explanatory variables are relevant to
include.
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Table 4.1: Linear Probability Model Results

Variable Coefficient Standard Error p-value (α = 5%)
Intercept 0.42269 0.0036627 0.000
H2 -0.0029237 0.0049506 0.555
H3 0.030365 0.0049495 8.549e-10
H4 0.037383 0.0049591 4.793e-14
H5 0.051929 0.0049794 1.873e-25
H6 0.040222 0.0049595 5.103e-16
H7 0.059864 0.0049896 3.806e-33
I{rt−1<0} -0.19502 0.0033946 0.000
ir∗

3 0.012988 0.00040661 5.332e-223
∗ir3 is the ratio of the EUR 3M OIS and USD 3M OIS rates respectively.

The dummy for the second trading session of the day is excluded due
to its coefficient being insignificant. The dynamic logit model for the sign
component is given as:

pt = Λ(πt) = eπt

1 + eπt
(4.16)

πt = ω + δ1I{rt−1>0} + δ2πt−1 + β1 · ir3t − 1 +
7∑

j=3
βj−1Hjt

and the
From equation 4.12, we can specify the likelihood function to then estimate

the parameters. The (conditional) log-likelihood function is given as:

lt(θ)
T∑

t=1
xt log(Λ(πt)) +

T∑
t=1

(1 − xt) log(1 − Λ(πt)), (4.17)

where πt is specified in equation 4.15. Kauppi and Saikkonen (2008) have
shown that although the function is complicated and nonlinear, solving it by
numerical methods is very straightforward.

Absolute Value Component

When the conditional distribution of returns is assumed to follow a Student’s
t-distribution, omitting the sign of the returns and observing only the ab-
solute values results in what is known as a folded Student’s t-distribution4

(Psarakis & Panaretoes, 1990). Because we earlier assumed the conditional
distribution of returns to have a third moment equal to zero, the density of the
folded t-distribution is given below. Below, Figure 4.1 is added that should
clarify the folding process. We visually compare the quantiles from the data
against those from a very heavy-tailed Folded Student’s t-distribution and
a Standard Normal distribution, as shown in Appendix A.7. The QQ-plot
indicates that the half-Student’s t-distribution is a reasonable fit for most of
the data. However, there are slight deviations in the tails, suggesting that it
may not fully capture extreme values.

4Also known in literature as half Student’s t-distribution.
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f(x) =


2Γ( ν+1

2 )
√

νπ Γ( ν
2 )
(
1 + x2

ν

)− ν+1
2 , x ≥ 0

0, x < 0
(4.18)

Figure 4.1: Folding Process of the Student’s t-Distribution (ν = 1.9)

In Chapter 3, we concluded that stationary absolute returns exhibit sig-
nificant correlations at non-zero lags, indicating that the time series has an
autocorrelation structure that could be captured by ARMA components (Box
et al., 1970). Additionally, Table 3.5 demonstrated that the time of day signif-
icantly impacts absolute returns. Therefore, we consider an ARMAX model
for the mean equation to address these two findings.

The ARMAX(p, q) model for returns is specified as follows:

|rt| = µ +
p∑

i=1
ϕi · rt−i +

q∑
j=1

θj · εt−j +
m∑

l=1

p∑
k=1

βk,l · xt−k,l + εt, (4.19)

where |rt| is the observed absolute return and {µ, ϕi, θj , εt, } are the same
parameters as in equation 4.1 with the extension to let an exogenous5 variable
xt, affect |rt|. The method of estimation remains unchanged, except that we
include an extra term in the mean equation.

We expect, based on findings in chapter 3, that absolute returns shows
some form of heteroskedasticity. After estimating the parameters for the
ARMAX model using ML, we check the residuals for heteroskedasticty using
the ARCH test. If ARCH effects cannot be rejected, we model conditional
volatility by GARCH(1,1).

5Hence X in ARMAX.
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Following Box et al. (1970) again to identify the correct ARMA order, we
see a clear cutoff at the 1st in the (P)ACF plot in Figure 3.6. Hence, one AR
term and one MA term are included. Another approach could be to estimate
various ARMAX models and opt the one that gives the lowest AIC (Akaike,
1973). However, the parameter estimates and estimated standard errors from
the marginal distribution will not be valid for the decomposition model. This
means that the best model for absolute returns, is not per definition the best
specified model in the decomposition model. The final ARMAX(1,1) model
for absolute returns is given below:

rt| = µ+ϕ1·rt−1+θ1·εt−1+β1·H1t+β2·H2t+β3·H3t+β4·H4t+β5·H5t+β6·H7t+εt

(4.20)
εt ∼ folded-t(0, σ2),

Then, since equation ?? is linear in εt, the conditional density of |rt| is
given as:

f|rt||Ft−1(x) =


2 Γ( ν+1

2 )
√

νπ σ Γ( ν
2 )
(
1 + (x−µt)2

νσ2

)− ν+1
2

, if x ≥ 0,

0, if x < 0,
(4.21)

The conditional mean was modelled successfully as we were able to re-
move autocorrelation in the residuals. The test for ARCH effects shows
that a volatility model is preferable. Upon estimating the ARMAX(1,1)-
GARCH(1,1) model, we still cannot reject that ARCH effects are not present,
which means the latter model is only able to partially describe the data. These
findings have been documented in A.8. Below is an output of the estimation
results for the model and the final model specification.

|rt| = µ+ϕ1·rt−1+θ1·εt−1+β1·H1t+β2·H2t+β3·H3t+β4·H4t+β5·H5t+β6·H7t+εt

σ2
t = ω + α · σ2

t−1 + β · ε2
t−1 (4.22)

εt ∼ folded-t(0, σ2)

Table 4.2: ARMA Model Results

Variable Coefficient ×10−4 t-Statistic p-value (α = 5%)
µ 17.191 931.56 0.000
ϕ1 0.88104 763.36 0.000
θ1 -0.77745 -200.61 0.000
β1 -1.1719 -152.56 0.000
β2 -3.1066 -242.85 0.000
β3 2.2615 366.75 0.000
β4 5.7792 509.73 0.000
β5 3.4851 225.86 0.000
β6 9.8241 648.11 0.000
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Table 4.3: GARCH Model Results

Variable Coefficient t-Statistic p-value (α = 5%)
ω 0.21862 20.491 2.596e-93
p 0.37134 315.11 0.000
q 0.62866 21.66 4.862e-104
ν 2.096 428.55 0.000

Copula

To capture the interaction term between sign(rt) and |rt|, we combine them
with a copula. A copula is a function that links multivariate distribution
functions to their respective one-dimensional marginal distribution functions
(Nelsen, 2006). Sklar’s theorem, first discussed briefly in French Sklar (1959)
and later on in more detail by Schweizer and Sklar (2011), is the foundation in
modelling copulas. The theorem for a two-dimensional copula is given below.

Theorem 4.2.1 (Sklar’s Theorem). Let X1 and X2 be two random variables
with marginal CDFs F1(·) and F2(·). Let F (·) be their joint distribution.
Sklar’s theorem then claims that the joint distribution of two marginal distri-
butions F1 and F2 can be specified through a copula that takes as inputs the
two marginal CDFs:

F (x1, x2) = C(F1(x1), F2(x2)), (4.23)

where C(F1(x1), F2(x2)) : [0, 1] × [0, 1] 7→ [0, 1] is the copula. We refer to C(·)
as the copula of F (·). Given the bivariate copula in 4.23, the corresponding
density function is given by:

f(x1, x2) = ∂2

∂x1∂x2
C(F1(x1), F2(x2))f1(x1)f2(x2), (4.24)

which follows from the chain rule.

From equation 4.24 it is clear that Sklar’s theorem was designed for contin-
uous random variables. Anatolyev and Gospodinov (2010) extended Sklar’s
theorem to be applicable to mixed bivariate distribution, as in this case. Key
aspects of their proof include using finite differences instead of partial deriva-
tives for the discrete random variable (in this case, the sign). Additionally,
they were able to explicitly write out the possible finite differences because
the sign variable only takes on two possible values.

Theorem 4.2.2. Let X1 and X2 be a continuous and Bernoulli distributed
random variable with marginal CDFs F1(·) and F2(·). Let F (·) be their joint
distribution. Anatolyev and Gospodinov (2010) then claim that the joint den-
sity f(·) is given as:

f(x1, x2) = f1(x1)ϱt(F1(x1))x2
(
1 − ϱt(F1(x1))

)1−x2
, (4.25)

where ϱt(z) = 1 − ∂C(z,1−pt)
∂u1

.

As the joint density f(x1, x2) is available, the likelihood function can now be
specified (Bain & Engelhardt, 1992):
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T∏
j=1

f1(x1)ϱt(F1(x1))x2
(
1 − ϱt(F1(x1))

)1−x2
,

ans the log-Likelihood function as well:

log

 T∏
j=1

f(x1, x2)

 =
T∑

t=1
log (f1(x1,t|Ft−1)) +

T∑
t=1

(1 − ϱ (F1(x1,t|Ft−1)))1−x2,t

+
T∑

t=1
log (ϱ (F1(x1,t|Ft−1)))x2,t

=
T∑

t=1
log (f1(x1,t|Ft−1))

+
T∑

t=1

(
1 − I{rt>0}

)
log (1 − ϱ(F1(x1,t|Ft−1)))

+
T∑

t=1
I{rt>0} log (ϱ(F1(x1,t|Ft−1)))

(4.26)
Note that the returns decomposition can be written as |rt| · sign(rt) = |rt| ·
(2I{rt>0} − 1) and future returns can be predicted by:

Et(rt+1) = 2Et(|rt+1|I{rt+1>0}) − Et(|rt+1|) = r̂t+1, (4.27)

In the case of conditional independence of he two components, this simplifies
to

Et(rt+1) = 2Et(|rt+1|)Et(I{rt+1>0}) − Et(|rt+1|) = 2( ˆpt+1 − 1) ˆ|rt+1| (4.28)

When incorporating dependence, Et(|rt+1|) can just be computed directly
from f1(|rt+1||Ft) and the conditional expectation of the cross-product ξt+1 =
2Et(|rt+1|I{rt+1>0}) can be computed as follows: First, by the law of iterated
expectations:

2Et

(
|rt+1|I{rt+1>0}

)
= 2Et

(
Et

[
|rt+1|I{rt+1>0} || rt+1 |

])
= 2Et

(
|rt+1|Et

[
I{rt+1>0} || rt+1 |

])
Hence, we need the density of I{rt+1>0} given rt+1, given as:

fI{rt+1>0}||rt+1|(x2,t+1 | |rt+1|) = frt+1(rt+1, x2,t+1)
f|rt+1|(| rt+1 |) = (4.29)

ϱt(F1(x1))x2,t+1
(
1 − ϱt(F1(x1))

)1−x2,t+1
,

and the conditional expectation of I{rt+1>0} given | rt+1 | is

Et

[
I{rt+1>0} || rt+1 |

]
= 0 · fI{rt+1>0}||rt+1|(0 | |rt|) + 1 · fI{rt+1>0}||rt+1|(1 | |rt|)
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= ϱt+1(F1(|rt+1|Ft). (4.30)

Using equations 4.29 and 4.30, the expectation of the cross-product is given
as

ξt+1 = 2Et(|rt+1|I{rt+1>0})

=
∫ ∞

0
uf|rt+1||Ft)(| rt+1 |) · (ϱt+1(F|rt+1|(|rt+1||Ft))du (4.31)

As 4.31 cannot be solved for analytically (Anatolyev & Gospodinov, 2010),
we make an attempt at approximating it numerically. In contrast to the latter
paper, we do not perform a change of variable and approximate the improper
integral directly. As the sign model and the absolute returns model are both
specified, completing the decomposition model means specifying the copula.
Using a copula of the Archimedean family implies a simple form with closed-
form solution for the dependence structure (Nelsen, 1997). This is highly
desirable when one is working with complex marginals. Besides simplicity, it
also takes into account upper and lower tail dependence which is necessary
considering the data used in this research (Joe, 1993). The definition of an
Archimedean copula is given below.

Definition 4.2 (Archimedean Copula Form). Archimedean copulas are spec-
ified through their respective generator function, ϕ(·):

C(F1(x1), F2(x2)) = ϕ−1(ϕ(F1(x1) + ϕ(F2(x2)),

where the generator function ϕ(·) must satisfy the following three conditions
(Boateng et al., 2022):

1. ϕ is a continuous, strictly decreasing, and convex function, mapping
from the domain [0, 1] to [0, ∞).

2. ϕ(0) is equal to infinity, i.e., ϕ(0) = ∞.

3. ϕ(1) is equal to zero, i.e., ϕ(1) = 0.

The Archimedean family of copulas is widely regarded for its flexibility,
with the Clayton, Frank, Gumbel and Farlie-Gumbel-Morgenstern copulas
being among the most popular options. Given that sign and absolute return
show modest correlation, the FGM copula (Émile & Gumbel, 1960) is partic-
ularly well-suited, as it effectively captures dependence while maintaining a
relatively simple analytical form. The definition of the FGM copula can be
found below.

Definition 4.3 (FGM Copula). The Farlie-Gumbel-Morgenstern (FGM) cop-
ula is given by:

C(F1(x1), F2(x2)) = F1(x1)F2(x2) [1 + θ(1 − F1(x1))(1 − F2(x2))] ,

where θ ∈ [−1, 1] is the dependence parameter.

We can now derive ϱt(·) as defined in Equation 4.25. For reference, this
derivation is detailed in Equation D.1. The full decomposition model, which
consists of the conditional distribution of the sign, the conditional distribu-
tion of the absolute value of returns, and a copula term, is specified below
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through its log-likelihood function, as presented in Equation 4.26. During the
estimation procedure, we minimize the negative log-likelihood.

l(θ|Ft) =
T∑

t=1
log (f1(x1,t|Ft))

+
T∑

t=1

(
1 − I{rt>0}

)
log (1 − ϱ(F1(x1,t|Ft)))

+
T∑

t=1
I{rt>0} log (ϱ(F1(x1,t|Ft)))

(4.32)

where:

• f1(x1,t|Ft−1) = f|rt|(|rt| | Ft−1) = 2·Γ( ν+1
2 )

√
νπ·Γ( ν

2 )·σt·
(

1+ (|rt|−µt)2

νσ2
t

) ν+1
2

• F1(x1,t|Ft−1) = F|rt|(|rt| | Ft−1) = 2 · Tν

(
x−µt

σt

)
− 1

• µt = µ+ϕ1rt−1+θ1εt−1+β1H1t+β2H2t+β3H3t+β4H4t+β5H5t+β6H7t

• ϱt(z) = (1 − pt) [1 + θpt(1 − 2z)], where θ = 0 implies independence.

• pt = Λ(πt)
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Chapter 5

Results

Set-up

This chapter presents the results from the SARIMA(2,0,4)(1,0,1)-GARCH(1,1)
model and the decomposition model, both estimated using MATLAB. MAT-
LAB’s advanced algorithms effectively minimize the negative log-likelihood
and approximate improper integrals, ensuring robust model estimation. The
chapter begins with an analysis of the benchmark SARIMA-GARCH model,
detailing the estimated parameters and the fitted conditional mean. The
model diagnostics are conducted according to the Box-Jenkins methodology.

Following this, the decomposition model is examined, focusing on the esti-
mated coefficients and the conditional mean fit through in-sample predic-
tions. We also evaluate the out-of-sample performance using one-step-ahead
forecasts. To compare the models, we assess their accuracy by calculating
the root mean squared error (RMSE). Additionally, a confusion matrix is
presented to evaluate the sign accuracy of the decomposition model. Finally,
the chapter reviews seasonality by analyzing the seasonal coefficients and their
significance in the benchmark conditional mean model and the decomposition
model.

5.1 SARIMA-GARCH
The initial SARIMA(2,0,4)(1,0,1)-GARCH(1,1) is not very informative. It
confirms the heavy tails by the degrees of freedom close to 2, but all other
estimated coefficients are insignificant. This model might be inadequate to
capture the returns dynamics. To confirm this, we tested the residuals using
the Ljung-Box test which rejects the null hypothesis of no autocorrelation in
the model’s residuals. Below is the ACF plot added from which it also becomes
evident that residuals still exhibit autocorrelation. Therefore we decide to
remove the seasonal parameters and reduce the model to ARIMAX(2,0,4)-
GARCH(1,1). The reason that β is not removed is because there is evidence
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that on average, returns during the mid-morning session (H3) are statistically
different from other sessions during the day. Thereby, we aim to obtain the
most parsimonious model and the seasonal parameters do not to contribute
to that goal in this model. The constant term is also removed as it estimated
to be very close to zero and insignificant. Below the estimation results for the
SARIMAX(2,0,4)(1,0,1)-GARCH(1,1) are added.

Parameter Value Standard Error T-Statistic P-Value
ARIMAX(2,0,4) Conditional Mean Model
Constant -1.4736e-06 3.2223e-05 -0.045731 0.96352
AR1 -0.80348 0.0010368 -774.95 0
AR2 -0.50709 0.0012874 -393.9 0
SAR168 -0.0017823 0.010357 -0.17209 0.86337
MA1 0.75965 0.0010802 703.23 0
MA2 0.46839 0.001372 341.39 0
MA3 -0.026115 0.0024954 -10.465 1.2482e-25
MA4 -0.0015464 0.0017931 -0.86245 0.38844
SMA168 0.0017462 0.010364 0.16848 0.8662
Beta(1) 1.5171e-05 8.6442e-05 0.17551 0.86068
GARCH(1,1) Conditional Variance Model (t Distribution)
ω 2e-07 3.3189e-08 6.0261 1.6801e-09
α 0.70333 0.0011681 602.1 0
β 0.29667 0.0038674 76.711 0
ν 2.5117 0.0083938 299.23 0
AIC -655375

Table 5.1: Estimation Results for SARIMAX(2,0,4)(1,0,1)-GARCH(1,1)
Model with t Distribution

We proceed in the same manner by fitting the reduced ARIMAX(2,0,4)-
GARCH(1,1) model to the data. The estimation results are given below:
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Parameter Value Standard Error T-Statistic P-Value

ARIMAX(2,0,4) Conditional Mean Model
ϕ1 0.53505 0.031684 16.887 0.0000
ϕ2 0.29168 0.03525 8.2745 0.0000
θ1 -0.57883 0.031697 -18.261 0.0000
θ2 -0.2719 0.033888 -8.0235 0.0000
θ3 0.014627 0.0025944 5.638 0.0000
θ4 0.0037454 0.0018167 2.0616 0.0000
β 2.0786e-06 8.1706e-06 0.25439 0.79919
GARCH(1,1) Conditional Variance Model (t Distribution)
ω 2e-07 3.3203e-08 6.0235 0.000
α 0.70364 0.0011668 603.07 0.000
β 0.29636 0.0038668 76.642 0.000
ν 2.5108 0.0083872 299.37 0
AIC −656397

Table 5.2: Estimation Results for ARIMAX(2,0,4)-GARCH(1,1) Model with
t Distribution

Firstly, the AR and MA coefficients are all highly significant. The coeffi-
cient for the exogenous dummy variable for the mid-morning session, is not
significant. We see that the ARIMAX(2,0,4)-GARCH(1,1) provides a better
fit. Thereby, according to the AIC, the ARIMAX(2,0,4)-GARCH(1,1) is the
preferred model. Hence, following the Box-Jenkins approach, we continue
with this model.

Model Diagnostics

We have checked for parameter significance. Now we review the model by
checking (i) the ACF plot, (ii) the PACF plot, (iii) performing the Ljung-Box
test and (iv) performiing the ARCH-LM test.

• ACF Plot: The ACF plot shows very little autocorrelation, but still
significant.

• PACF Plot: The PACF confirms what the ACF found. Although
correlations have declined significantly, they are still significant.

• Ljung-Box Test: The Ljung-Box test confirms autocorrelation in the
model’s residuals at the 5% significance level.

• ARCH-LM Test: The ARCH-LM test fails to reject that there is no
heteroskedasticity present in the residuals at the 5% significance level.

The ARIMAX-GARCH(1,1) model successfully captures and reduces a sig-
nificant portion of the autocorrelation in the data. However, residual analysis
reveals persistent autocorrelation, which suggests that the model may not be
fully specified. Statistical tests confirm that the null hypothesis of no auto-
correlation in the residuals is rejected, indicating potential misspecification of
the model.
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Moreover, the conditional volatility model incorporated within the GARCH(1,1)
framework fails to adequately capture the heteroskedasticity present in the
data. This is evidenced by the results of the ARCH-LM test, which indicate
that significant volatility clustering remains unexplained.

While the model does not identify significant intraday seasonality effects,
this result should be interpreted cautiously. The lack of detected seasonality
may point to potential misspecification of the model rather than a definitive
absence of seasonality. It is possible that the model, at least in its current
form, does not fully capture the complexities of the underlying time series,
particularly with respect to intraday patterns and conditional volatility.

Out-of-sample performance

As the benchmark model is not well specified, meaning it fails capturing the
returns’ dynamics, we want to ensure that the changing market characteristics
are not a reason for this. We split the data up in four equal parts. Then,
we estimate the simplified models separately on 80% of the quartered data,
respectively. This results in four distinct models, allowing us to assess whether
the models perform better over shorter time horizons. The remaining 20% of
the data from each year is reserved for testing out-of-sample one-step-ahead
forecasts.

None of the models represent the data properly, indicating misspecification
once more. The (P)ACF plots and estimation resutls have been added to the
Appendix C. Also here, we reject the Ljung-Box test and the ARCH-LM test.
The third model indicates that returns are significantly more positive during
the mid-morning session. We do not see improvement from the previous
model. Meaning, that the changing dynamics, if any, are not the issue for
this model. The out-of-sample one-step ahead forecasts are shown below.
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RMSE: 0.044548

Figure 5.1: Out-of-sample Benchmark Model 1: rt and Et−1(rt)

RMSE: 0.13355

Figure 5.2: Out-of-sample Benchmark Model 2: rt and Et−1(rt)
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RMSE:0.082406

Figure 5.3: Out-of-sample Benchmark Model 3: rt and Et−1(rt)

RMSE: 0.040332

Figure 5.4: Out-of-sample Benchmark Model 4: rt and Et−1(rt)
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5.2 Decomposition Model
In the decomposition model, the sign component is represented by equation
4.16 and and the absolute value component is captured by equation 4.22.
Predictions are derived using equations 4.27 and 4.28. The results, however,
reveal no statistical significance for the estimated coefficients, which is coun-
terintuitive when considering the findings from Chapter 3. This outcome
may suggest that the model is overly complex. To investigate this further, we
later simplify the parametric representation of the absolute value component
by removing the dummy variables. Although seasonality is then modeled
explicitly in the sign component, the joint density function described in equa-
tion 4.25 continues to account for seasonality through the copula term. The
in-sample fit, in-sample probabilities, and a table with the estimation results
are presented below.

Figure 5.5: In-sample Fits: rt, Et−1(rt), pt

Predicted Negative Predicted Positive Total
Actual Negative 5.582% 44.541% 50.123%
Actual Positive 5.5268% 44.351% 49.878%

Total 11.1088% 88.892% 100%

Table 5.3: Confusion Matrix in Percentages (with Dependence Structure).
Total accuracy: 0.49933

Predicted Negative Predicted Positive Total
Actual Negative 29.361% 20.762% 50.123%
Actual Positive 29.275% 20.603% 49.878%

Total 58.636% 41.365% 100%

Table 5.4: Confusion Matrix in Percentages (without Dependence Structure).
Total accuracy: 0.49963
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Independence

The model that assumes independence provides a poor in-sample fit. The pre-
dicted returns are significantly smaller in magnitude compared to the actual
returns and show a persistent underestimation, particularly during periods
of high volatility. The model’s predictions exhibit a cyclical pattern, likely
due to overfitting caused by the inclusion of seasonal dummies. This over-
fitting results in the model capturing regular, seasonal noise rather than the
true underlying market dynamics, leading to inaccurate and overly smoothed
predictions. As a result, the model fails to capture the large positive and
negative returns. The RMSE for this model is 0.13393.

Incorporating Dependence

Incorporating dependence into the model yields a slightly better fit, with
an RMSE of 0.12946. While this model captures some aspects of volatility
clustering—such as during the interest rate hike period discussed in Chapter
??—it still suffers from a significant underestimation of return magnitudes.
The cyclical pattern in the predicted returns suggests that the model may
be overfitting to seasonal patterns, driven by the seasonal dummies. This
overfitting causes the model to focus on predictable, repetitive cycles rather
than accurately responding to actual market fluctuations, particularly during
periods of market stress. Although the model is somewhat better at identify-
ing periods of increased volatility, it struggles to predict the true magnitude
of returns.

To simplify the model representation and avoid overfitting, we remove the
seasonal dummy variables in the absolute returns component except for H3,
which was the dummy for the mid-morning session. The reason we leave H3 in
the conditional mean equation is because it was the only trading session that
exhibited significantly different return, variance and absolute return. The
model for absolute returns is then reduced to:

|rt| = µ + ϕ1 · rt−1 + θ1 · εt−1 + β1 + β3 · H3t + εt (5.1)

Figure 5.6: In-sample Fits: rt, Et−1(rt), pt
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Predicted Negative Predicted Positive Total
Actual Negative 25.178% 24.945% 50.123%
Actual Positive 24.84% 25.038% 49.878%

Total 50.018% 49.983% 100%

Table 5.5: Confusion Matrix in Percentages (with Dependence Structure).
Total accuracy: 50.216%

Predicted Negative Predicted Positive Total
Actual Negative 40.993% 9.1299% 50.123
Actual Positive 40.554% 9.3231% 49.877

Total 81.547% 18.453% 100%

Table 5.6: Confusion Matrix in Percentages (without Dependence Structure).
Total accuracy: 50.316%

Independence

The model that assumes independence provides a poor in-sample fit. It tends
to overestimate negative sign predictions, particularly during volatile peri-
ods, indicating a bias toward predicting negative returns. This model has an
RMSE of 0.11875.

Incorporating Dependence

Incorporating dependence into the model results in a modest improvement,
with a reduced RMSE of 0.10446. This version of the model captures some
aspects of volatility clustering, such as during the interest rate hike period
discussed in Chapter ??. However, the model still primarily focuses on the
central mean, leading to a significant underestimation of return magnitudes.
While it generally follows the direction of returns, it struggles to predict
extreme returns or significant directional changes accurately. The RMSE for
the in-sample one-step-ahead predictions produced by this model is slightly
higher at 0.12946, suggesting that, despite some improvements, the model
still faces challenges in fully capturing market dynamics.

Although intraday returns and intraday absolute returns have remained
relatively stable over the years, neither model adequately captures the dy-
namics necessary to model the conditional mean effectively. Exploiting de-
pendence does slightly improve the model’s performance, but not enough to
overcome its limitations. To rule out the possibility that changing market
dynamics are causing these shortcomings, we split the data up in four equal
parts. Then, we estimate the simplified models separately on 80% of the
quartered data, respectively. This results in four distinct models, allowing us
to assess whether the models perform better over shorter time horizons. The
remaining 20% of the data from each year is reserved for testing out-of-sample
one-step-ahead forecasts. As we the model that incorporates dependencies has
a slight edge over the model assuming conditional independence, the one-step
ahead forecasts are based on the former.
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Estimated Models

We estimated four models:

• Model 1: 2021-01-04 - 2021-10-22

• Model 2: 2021-10-22 - 2022-08-15

• Model 3: 2022-08-16 - 2023-05-25

• Model 4: 2023-05-25 - 2024-03-21

We train the models on 80% of the data, and test it on the remaining 20% to
see out-of-sample prediction. Below we provide the estimation results for all
four models:

Model 1:

In the first time period, all coefficients for the absolute value component
became significant. The logit model indicates no intraday seasonality during
this period. However, the ARIMAX model reveals a significant decrease in
return magnitude during the mid-morning session. It is important to note
that, despite statistical significance, the estimated coefficient is very small,
indicating that the effect, while present, is minimal.

Model 2:

The second time period suggests a slight shift in market dynamics. During
this period, the mid-morning session is not significantly different in magnitude
from the rest of the day. However, the logit model shows that all trading
sessions have a significantly higher probability of positive returns compared
to the pre-London open and London open sessions, indicating a potential shift
in market sentiment during these periods.

Model 3:

In the third model, the results suggest that return magnitude is significantly
lower during the mid-morning session. While all ARMAX coefficients are sig-
nificant, the GARCH model’s parameters are largely insignificant. This may
be due to the overall high volatility throughout this period, where volatility
remains elevated rather than increasing. Consequently, the model does not
need to capture an upward trend in volatility. Additionally, the insignificance
of β1 suggests that interest rates have minimal explanatory power over return
signs during this period, which aligns with the relatively stable interest rates
observed. The logit model also indicates that the mid-afternoon and London-
close sessions have significantly higher probabilities of positive returns.

Model 4:

The final model for the last segment of the data suggests that mid-morning
sessions exhibit significantly lower return magnitude compared to other ses-
sions throughout the day. The logit coefficients β3 and β5 indicate a higher
probability of observing positive returns during lunchtime and the London-
close session, suggesting a shift in market dynamics during these times.
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Overall, the data likely exhibit changing dynamics that the decomposition
model struggles to capture consistently across all periods. However, when
applied to shorter timeframes, the decomposition model reveals several inter-
esting findings. These results suggest that return signs and magnitudes may
be separately predictable, even though the returns themselves exhibit limited
predictability over longer horizons. The copula term βϱ, which is used to cap-
ture interdependencies, is highly significant across all models. This supports
the decision to include the dependence structure in the model.

Model 1
Parameter Value Standard Error T-Statistic P-Value
ARIMAX(1,0,1)
µ 0.000000 0.0000102 11.1953 0.0000
ϕ1 0.7847282 0.0203699 38.5239 0.0000
θ1 -0.7741531 0.0211684 -36.5712 0.0000
β3 -0.0000296 0.0000109 -2.7218 0.0065
GARCH(1,1)
ωgarch 0.0000010 0.0000001 9.5326 0.0000
α1 0.0003873 0.0000173 22.3242 0.0000
βgarch 0.6364053 0.0210072 30.2946 0.0000
Logit
ωlogit -0.1769799 0.0280 -6.3259 0.0000
δ1 0.1649163 0.0213 7.7331 0.0000
δ2 0.8652023 0.0200 43.1795 0.0000
β1 -0.0036917 0.0032 -1.1423 0.2533
β2 0.0098350 0.0241 0.4084 0.6830
β3 0.0007519 0.0153 0.0492 0.9608
β4 -0.0026227 0.0171 -0.1532 0.8782
β5 0.0202300 0.0134 1.5051 0.1323
β6 0.0139708 0.0211 0.6611 0.5085
βρ 0.9999973 0.0250 39.9462 0.0000
νt 2.0000012 0.0326 61.4108 0.0000

Table 5.7: Model 1
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Model 2
Parameter Value Standard Error T-Statistic P-Value
ARIMAX(1,0,1)
µ 0.0000000 0.00002708 0.7777 0.4368
ϕ1 0.8091541 0.0062851 128.7425 0.0000
θ1 -0.6327137 0.0079712 -79.3754 0.0000
β3 -0.00002829 0.00003941 -0.7178 0.4729
GARCH(1,1)
ωgarch 0.00000100 0.00000121 0.8299 0.4066
α1 0.1347648 0.0071485 18.8521 0.0000
βgarch 0.5008652 0.0187407 26.7260 0.0000
Logit
ωlogit -0.1226790 0.0069498 -17.6523 0.0000
δ1 0.1944689 0.0106114 18.3264 0.0000
δ2 0.8964339 0.0076559 117.0909 0.0000
β1 0.0027111 0.0008204 3.3045 0.0010
β2 0.0435253 0.0065471 6.6480 0.0000
β3 0.0213757 0.0060848 3.5130 0.0004
β4 0.0300095 0.0060662 4.9470 0.0001
β5 0.0253480 0.0059046 4.2930 0.0000
β6 0.0302626 0.0071240 4.2480 0.0000
βρ 0.6066349 0.0133965 45.2831 0.0000
νt 2.0000010 0.0619950 32.2608 0.0000

Table 5.8: Model 2



5.2. Decomposition Model 53

Model 3
Parameter Value Standard Error T-Statistic P-Value
ARIMAX(1,0,1)
µ 0.0000000 0.0009185 2.5465 0.0109
ϕ1 0.7409081 0.3104105 2.3869 0.0170
θ1 -0.5902935 0.2720663 -2.1697 0.0300
β3 -0.0008271 0.0004003 -2.0660 0.0388
GARCH(1,1)
ωgarch 0.00006412 0.0001070 0.5991 0.5491
α1 0.0883221 0.2141695 0.4124 0.6801
βgarch 0.3614523 0.3750 0.9639 0.3351
Logit
ωlogit -0.7330280 1.9945 -0.3675 0.7132
δ1 -0.0643030 0.0910791 -0.7060 0.4802
δ2 -0.4548490 0.9486944 -0.4794 0.6316
β1 0.4470149 3.8287 0.1168 0.9071
β2 0.1656757 0.1674022 0.9897 0.3223
β3 0.3366087 1.3314 0.2528 0.8004
β4 0.5170429 0.3947712 1.3097 0.1903
β5 0.5605975 0.2410495 2.3257 0.0200
β6 0.6029269 0.2828521 2.1316 0.0330
βρ 0.2758103 0.1285824 2.1450 0.0320
νt 2.0000012 5.9117 0.3383 0.7351

Table 5.9: Model 3



54 Chapter 5. Results

Model 4
Parameter Value Standard Error T-Statistic P-Value
ARIMAX(1,0,1)
µ 0.0000000 0.0007604 3.2304 0.0012
ϕ1 0.6293925 0.1037539 6.0662 0.0000
θ1 -0.5659701 0.1055828 -5.3604 0.0000
β3 -0.0004260 0.0001749 -2.4359 0.0149
GARCH(1,1)
ωgarch 0.00000310 0.00000303 1.0220 0.3068
α1 0.0007105 0.00007366 9.6454 0.0000
βgarch 0.9124666 0.0561699 16.2448 0.0000
Logit
ωlogit -4.6838070 0.0551703 -84.8973 0.0000
δ1 -0.0909219 0.0560380 -1.6225 0.1047
δ2 -0.4906196 0.0312001 -15.7250 0.0000
β1 6.0108094 0.1421027 42.2990 0.0000
β2 0.2303069 0.1715186 1.3428 0.1794
β3 0.1965691 0.0615395 3.1942 0.0014
β4 0.3690088 0.2202590 1.6753 0.0939
β5 0.2490853 0.0638956 3.8983 0.0001
β6 0.4734219 0.2496743 1.8962 0.0580
βρ 0.1584643 0.0374902 4.2268 0.0000
νt 2.0000023 0.0499164 40.0670 0.0000

Table 5.10: Model 4

Out-of-sample performance

We tested the models on their out-of-sample performance using the remaining
20% of the data. While the decomposition models exhibit a reasonable ability
to capture volatility, they consistently struggle with accurately predicting
the direction of returns. Notably, the models tend to overestimate positive
returns, which suggests a bias in the directional component.

One possible explanation for this bias is that the models, while designed to
estimate conditional means, might be overly influenced by the unconditional
mean, which is positive. This could lead to an overemphasis on predicting
positive returns. Mostly because of this, out-of-sample, the decomposition
model performs worse than the benchmark model.
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RMSE: 0.0912, Accuracy: 18.95%

Figure 5.7: Out-of-sample Model 1: rt and Et−1(rt)

RMSE: 0.2746, Accuracy: 40.90%

Figure 5.8: Out-of-sample Model 2: rt and Et−1(rt)
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RMSE: 0.1415, Accuracy: 44.39%

Figure 5.9: Out-of-sample Model 3: rt and Et−1(rt)

RMSE: 0.0627, Accuracy: 44.96%

Figure 5.10: Out-of-sample Model 4: rt and Et−1(rt)
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Chapter 6

Conclusion

Given the findings in Chapter 3, we initially hypothesized that seasonality
might be present in the 3-month EUR/USD forward points’ returns. Our
tests confirmed this hypothesis, revealing distinct variances across different
trading periods, and suggested that returns during the mid-morning session
were significantly higher than in other sessions. To model the conditional
mean of returns, we employed a decomposition approach. As a benchmark,
we also constructed a model following the Box-Jenkins methodology. How-
ever, the benchmark model was not entirely well-specified; it failed to capture
the seasonality in returns, suggesting instead that returns did not exhibit
any significant seasonal patterns. The linear ARIMA representation used for
the conditional mean struggled to properly reflect the dynamics of the returns.

Chapter 3 also highlighted that both absolute returns and the sign of
returns exhibit intraday patterns. These observations, coupled with previous
literature1, suggest that while returns themselves are challenging to predict
due to their directionality, their components—magnitude and sign—might be
more predictable. Initially, our decomposition of returns did not reveal any
persistent seasonality in the EUR/USD FX 3m-swap market. However, upon
considering the potential for changing return dynamics over time, the four
models estimated on different parts of the dataset indicated the presence of
varying seasonal patterns. Notably, all models except for the second suggested
lower volatility during the mid-morning session, aligning with the findings
discussed in Chapter 3 and Appendix ??. These results imply that seasonal
patterns in the data may shift over time, as further discussed in Chapter 5.

Despite these insights, we must acknowledge potential flaws in our find-
ings. While the ARIMA-GARCH model, employing the folded Student’s t-
distribution, performed reasonably well in capturing the volatility dynamics of
returns in out-of-sample predictions, the binary choice model used to predict
the direction of returns performed poorly. Although the estimated coefficients

1See Chapter 4 for empirical motivation.



58 Chapter 6. Conclusion

were statistically significant, the model’s accuracy was low due to a bias to-
wards predicting positive returns. This underlines the inherent difficulty in
forecasting return direction—a longstanding challenge in financial modeling.

The decomposition model presents several attractive features, notably its abil-
ity to separate a particularly challenging component to predict (returns) into
two potentially more predictable components (magnitude and sign). By us-
ing copula methodology to model the dependence structure between sign and
magnitude, we found that this approach was preferable to assuming indepen-
dence. Despite the challenges in accurately predicting return direction, the
decomposition model offers a promising framework for improving predictive
performance. It allows us to refine the models for the sign and magnitude
components separately and then incorporate their interdependencies using
copula theory. This approach, though not without its difficulties, offers a
more nuanced and potentially more effective means of modeling financial re-
turns compared to traditional linear time series models.

In conclusion, while our results suggest that some degree of seasonality
exists in the volatility of returns, the evidence for intraday seasonality in the
sign of returns remains inconclusive. We do not firmly reject the hypothe-
sis of intraday seasonality in return sign, but we are cautious in claiming its
presence, particularly given the poor out-of-sample performance and the very
small magnitudes of the coefficients attached to seasonal dummies. These
small coefficients imply that any potential profits from exploiting these inef-
ficiencies would likely be minimal.
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Discussion

In this thesis, we explored intraday seasonality in the FX Swap market, specif-
ically focusing on EUR/USD three-month forward points. While the use of
dummy variables provided a straightforward method for modeling seasonal
patterns, an alternative approach could involve proxying the seasonal compo-
nent using the method described by Andersen and Bollerslev (1997). Their
approach involves decomposing the returns into a predictable component and
a stochastic component, where the predictable component captures intraday
seasonality through Fourier series or similar periodic functions. This method
could potentially offer a more refined capture of intraday seasonality com-
pared to the simpler dummy variable approach.

Another consideration is the complexity of optimizing the highly non-
linear likelihood function used in our models. Bayesian inference offers a
flexible approach to addressing this challenge, particularly through the use of
Markov Chain Monte Carlo (MCMC) methods. As demonstrated by Liu and
Luger (2015), MCMC can be effectively employed to estimate the decompo-
sition model, even when dealing with non-differentiable likelihood functions
arising from absolute value and indicator functions. The adaptive MCMC
algorithm they utilized enhances the mixing of the Markov chain, allowing
for more robust parameter estimation in complex, non-linear models.

Furthermore, the copula-based approach to modeling dependencies be-
tween return components proved useful in this analysis. However, exploring
different types of copulas or even dynamic copula models might provide addi-
tional insights into the evolving dependencies between the sign and magnitude
of returns. This could be particularly valuable in capturing the time-varying
nature of relationships in financial markets.

Finally, the granularity of the data used in this analysis, while providing
detailed insights, might also introduce noise that obscures broader seasonal
patterns. Future research could consider using less granular data, such as
hourly or daily observations, to determine whether intraday seasonality can
still be detected. This approach might strike a balance between capturing
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significant patterns and reducing the noise associated with high-frequency
data.
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Appendix A

Distribution

A.1 Returns

A.1.1 Plots

Figure A.1: EUR/USD Forward Points: Histogram (top) and Boxplot (bot-
tom) Returns
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Figure A.2: EUR/USD Forward Points: Scatterplot up to one hour
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Figure A.3: EUR/USD Forward Points: Boxplot per Trading Session per Year

A.1.2 Levene’s Test for Equality of Variances

Levene’s test is used to assess the equality of variances for a variable calculated
for two or more groups. In this context, we compare the variances of returns
during specific intraday trading sessions (H1 to H7) against the variances
during all other sessions.

H0 : σ2
1 = σ2

2 = . . . = σ2
7

H1 : σ2
p ̸= σ2

q for at least one pair {p, q}

Test Statistic

Levene’s test statistic is calculated as follows:

W = (N − k)
(k − 1)

∑k
i=1 Ni(Zi· − Z··)2∑k

i=1
∑Ni

j=1(Zij − Zi·)2

where:

• Zij = |Xij − X̄i|

• Zi· is the mean of the Zij

• Z·· is the overall mean of the Zij

Results

The results of the Levene’s test for the intraday trading sessions are summa-
rized in the table below:
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Table A.1: Levene’s Test Results for Intraday Trading Sessions

Session Levene Statistic Levene p-value (α = 5%)
H1 6.3536 0.0117
H2 83.9325 0.0000
H3 28.0967 0.0000
H4 6.1986 0.0128
H5 14.5771 0.0001
H6 17.0438 0.0000
H7 17.6373 0.0000

A significant p-value (< 0.05) indicates a statistically significant difference
in variances of returns for the respective trading session.

A.1.3 Welch’s t-test

Based on Levene’s test we conclude unequal variances. To ensure robustness
we perform Welch’s t-test to determine if the means of two independent sam-
ples are significantly different from each other.

H0 : µ1 = µ2

H1 : µ1 ̸= µ2

Test statistic

The t-test statistic for unequal variances is calculated as follows:

t = X̄1 − X̄2√
s2

1
n1

+ s2
2

n2

, where s2
1, s2

2 are sample analogues for the variances.

Results

The results of Welch’s t-test for the intraday trading sessions are summarized
in the table below:

Table A.2: T-Test Results for Intraday Trading Sessions

Session T-test Type t-statistic p-value (α = 5%)
H1 Welch’s t-test 0.4922 0.6226
H2 Welch’s t-test -0.1760 0.8603
H3 Welch’s t-test 3.3888 0.0007
H4 Welch’s t-test 0.3145 0.7531
H5 Welch’s t-test -1.2167 0.2237
H6 Welch’s t-test -1.2393 0.2152
H7 Welch’s t-test -2.5581 0.0105
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A significant p-value (< 0.05) indicates a statistically significant difference
in mean returns for the respective trading session.

A.1.4 Monday Morning Effect: OLS Results

Table A.3: OLS Regression Results for Monday Morning Effect

Variable Coefficient Standard Error p-value
Constant 1.743e-08 2.84e-08 0.539
MM 1.813e-07 1.04e-07 0.080

A.1.5 London & NY Open Effect: OLS Results

Table A.4: OLS Regression Results for London and NY Opens

Variable Coefficient Standard Error p-value
Constant 4.261e-08 3.69e-08 0.248
LondonOpen 4.867e-08 5.76e-08 0.398
NYOpen -1.183e-07 7.77e-08 0.128
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A.2 Absolute Returns

Figure A.4: EUR/USD Forward Points: Histogram (top) and Boxplot (bot-
tom) Absolute Returns

A.3 Explantory Variables

A.3.1 3-Month Swap Rates
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Figure A.5: 3-Month EUR interest rate (top) and 3-Month dollar interest rate
(bottom)

Figure A.6: EUR/USD Forward Points: ACF and PACF Returns (10 lags)
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Figure A.7: Comparison of Sample Quantiles vs. Folded Student-t Quantiles
(top) and Standard Normal Quantiles (bottom)
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Figure A.8: Standardized Residuals ARMAX(1,1)-GARCH
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Diagnostic Tests

Augmented Dickey Fueller Test

The ADF test is used to determine whether a time series is stationary, specif-
ically testing for the presence of a unit root. The null hypothesis states that
the time series has a unit root (not stationary). The alternative hypothesis
states that the time series is stationary. The test is performed as follows:

1. Specify the Test Equation: The ADF test is based on estimating
the following regression model:

∆yt = α + βt + γyt−1 +
p∑

i=1
δi∆yt−i + ϵt

where ∆yt is the first difference of the series, α is the constant (drift), βt
is the time trend, yt−1 is the lagged level of the series, and ∑p

i=1 δi∆yt−i

represents the lagged differences to account for serial correlation.

2. Estimate the Parameters: Fit the above regression model to the
data and estimate the parameter γ.

3. Test Statistic: The test statistic is the t-statistic for the coefficient γ:

τ = γ̂

SE(γ̂)

where γ̂ is the estimated coefficient and SE(γ̂) is its standard error.

4. Evaluate the Test Statistic: Calculate the p-value associated with
the test statistic τ . The null hypothesis of a unit root is rejected if the
p-value is less α = 0.05

Conclusion: If the null hypothesis is rejected, it indicates that the time
series is stationary. If the null hypothesis is not rejected, it suggests that the
series has a unit root and is non-stationary, potentially requiring differencing
to achieve stationarity.
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Test for ARCH Effects

The ARCH test is used to detect autocorrelation in the squared residuals of
a time series model. The test is performed as follows:

1. Fit the Model: Estimate the appropriate time series model and obtain
the residuals ϵ̂t.

2. Compute the Squared Residuals: Calculate the squared residuals
ϵ̂2
t .

3. Perform the ARCH-LM Test: Regress the squared residuals on a
constant and q lagged values of ϵ̂2

t :

ϵ̂2
t = α0 + α1ϵ̂2

t−1 + α2ϵ̂2
t−2 + · · · + αq ϵ̂2

t−q + ut

4. Test Statistic: The Lagrange Multiplier (LM) test statistic is calcu-
lated as:

LM = n × R2

where n is the number of observations and R2 is the coefficient of de-
termination from the regression in 3..

5. Evaluate the Test Statistic: The LM statistic follows a chi-square
distribution with q degrees of freedom. The null hypothesis (H0) of no
ARCH effects is rejected if the p-value is below α = 0.05.

Conclusion: If the null hypothesis is rejected, it indicates the presence
of ARCH effects, suggesting that the variance of the residuals is not constant
and may be modeled more effectively with a GARCH model.
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Benchmark Model

Model 1

Parameter Value Standard Error T-Statistic P-Value
ARIMAX Conditional Mean Model
ϕ1 -0.32855 0.001138 -288.7 0
ϕ2 0.0026469 0.0011458 2.3101 0.020884
ϕ1 0.28901 0.0011536 250.53 0
ϕ2 -0.020058 0.0011733 -17.095 1.624e-65
ϕ3 -0.0035867 0.0020605 -1.7407 0.081736
ϕ4 0.00029402 0.0018981 0.1549 0.8769
β1 9.1637e-06 5.4697e-05 0.16754 0.86695
GARCH(1,1) Conditional Variance Model (t Distribution)
ω 2e-07 3.4044e-08 5.8748 4.2343e-09
α 0.6821 0.0012969 525.96 0
β 0.3179 0.0051937 61.21 0
ν 2.4097 0.008374 287.76 0
AIC -524152

Table C.1: Estimation Results for ARIMAX-GARCH(1,1) Model with t Dis-
tribution
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Figure C.1: Out-of-sample Benchmark Model 1: rt and Et−1(rt)

Figure C.2: Out-of-sample Benchmark Model 1: rt and Et−1(rt)
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Model 2

Parameter Value Standard Error T-Statistic P-Value
ARIMAX Conditional Mean Model
ϕ1 0.76889 0.23518 3.2694 0.0010779
ϕ2 -0.71666 0.17409 -4.1165 3.8463e-05
θ1 -0.8093 0.23525 -3.4401 0.00058145
θ2 0.74641 0.1781 4.1909 2.778e-05
θ3 -0.024664 0.010229 -2.4112 0.0159
θ4 -0.0017592 0.0045488 -0.38673 0.69895
β1 5.2487e-06 9.6327e-05 0.054488 0.95655
ν 2.4247 0.016353 148.28 0
GARCH(1,1) Conditional Variance Model (t Distribution)
ω 2e-07 7.0282e-08 2.8457 0.0044316
α 0.64873 0.0025935 250.13 0
β 0.35127 0.010884 32.275 1.5654e-228
ν 2.4247 0.016353 148.28 0
AIC -123169

Table C.2: Estimation Results for ARIMAX-GARCH(1,1) Model with t Dis-
tribution

Figure C.3: Out-of-sample Benchmark Model 2: ACF
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Figure C.4: Out-of-sample Benchmark Model 2: ACF

Model 3

Parameter Value Standard Error T-Statistic P-Value
ARIMAX Conditional Mean Model
ϕ1 0.60161 0.12656 4.7534 2.0006e-06
ϕ2 -0.79703 0.11674 -6.8274 8.6491e-12
θ1 -0.65748 0.12669 -5.1899 2.1044e-07
θ1 0.82267 0.11982 6.8658 6.6138e-12
θ3 -0.039525 0.0086016 -4.5951 4.326e-06
θ4 -0.0042925 0.0043488 -0.98706 0.32362
β 0.00091348 0.00045065 2.027 0.042661
ν 2.2939 0.023624 97.097 0
GARCH(1,1) Conditional Variance Model (t Distribution)
ω 0.0012719 8.393e-05 15.155 7.038e-52
α 0.3034 0.0085468 35.499 5.1052e-276
β 0.6966 0.050218 13.871 9.4431e-44
ν 2.2939 0.023624 97.097 0
AIC -89649.3

Table C.3: Estimation Results for ARIMAX-GARCH(1,1) Model with t Dis-
tribution
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RMSE: 0.044548

Figure C.5: Out-of-sample Benchmark Model 3: rt and Et−1(rt)

RMSE: 0.13355

Figure C.6: Out-of-sample Benchmark Model 3: rt and Et−1(rt)
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Model 4

Parameter Value Standard Error T-Statistic P-Value
ARIMAX Conditional Mean Model
ϕ1 0.1518 1.0329 0.14696 0.88316
ϕ2 0.0017897 0.47204 0.0037914 0.99697
θ1 -0.21061 1.0329 -0.20391 0.83843
θ2 0.0065901 0.52729 0.012498 0.99003
θ3 0.0072141 0.027663 0.26079 0.79426
θ3 0.0038703 0.0087997 0.43982 0.66007
β -5.3596e-05 0.00017444 -0.30725 0.75865
GARCH(1,1) Conditional Variance Model (t Distribution)
ω 0.00046441 4.0728e-05 11.403 4.0442e-30
α 0.21033 0.010554 19.928 2.3195e-88
β 0.78967 0.076288 10.351 4.1309e-25
ν 2.2594 0.027222 83.001 0
AIC -132717

Table C.4: Estimation Results for ARIMAX-GARCH(1,1) Model with t Dis-
tribution

RMSE: 0.044548

Figure C.7: Out-of-sample Benchmark Model 4: rt and Et−1(rt)
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RMSE: 0.13355

Figure C.8: Out-of-sample Benchmark Model 4: rt and Et−1(rt)
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Copula

ϱt(z) = 1 − ∂C(z, 1 − pt)
∂F1(x1)

∂C(z, 1 − pt)
∂F1(x1) = ∂C(z, 1 − pt)

∂F1(x1) (D.1)

The Farlie-Gumbel-Morgenstern (FGM) copula is defined as:

C(u, v) = uv [1 + θ(1 − u)(1 − v)]

We want to find the partial derivative ∂C(u,v)
∂u .

∂C(u, v)
∂u

= ∂

∂u
[uv (1 + θ(1 − u)(1 − v))]

Expanding this:

∂C(u, v)
∂u

= v [1 + θ(1 − u)(1 − v)] + uv · ∂

∂u
[1 + θ(1 − u)(1 − v)]

∂C(u, v)
∂u

= v [1 + θ(1 − u)(1 − v)] + uv · [−θ(1 − v)]

Simplifying the expression:

∂C(u, v)
∂u

= v [1 + θ(1 − u)(1 − v)] − uvθ(1 − v)

∂C(u, v)
∂u

= v [1 + θ(1 − v) − θu(1 − v)]

∂C(u, v)
∂u

= v [1 + θ(1 − v)(1 − u)]

Now, we evaluate the partial derivative at (z, 1 − pt):
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∂C(z, 1 − pt)
∂z

= (1 − pt) [1 + θ(1 − pt)(1 − z)]

Expanding and simplifying:

∂C(z, 1 − pt)
∂z

= (1 − pt) + θ(1 − pt)2 − θ(1 − pt)2z

Finally:

∂C(z, 1 − pt)
∂z

= (1 − pt) [1 + θpt(1 − 2z)]

Then, ϱt is given as:

1 − (1 − pt) [1 + θpt(1 − 2z)]
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