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Abstract

The recovery theorem by Ross (2015) introduced a way to estimate the real-world transition
probabilities using state prices. However, for the recovery theorem to work, four assumptions
need to hold, and empirical papers show that some of these four assumptions do not hold in real-
ity.
In this thesis, I will refine the recovery theorem by adding one additional assumption: ”(strong)
rational expectations”. Furthermore, I find that if all five assumptions hold, the estimated pric-
ing kernel becomes long-term risk neutral and that in a world where the risk-free (interest) rate
is constant, the market is only influenced by idiosyncratic risk.
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Introduction

In asset pricing, a well-known problem is that asset prices are determined by supply and demand
and consequently, (expected) asset returns consist out of the risk-free (interest) rate and a risk
premium. That is, if µ is some return of an asset and r the risk-free rate, then µ = r + (µ − r),
where µ − r is the so called ”risk premium”1. Since we can disentangle the risk-free rate and the
risk premium from the return of an asset, it should be possible to fully eliminate this risk pre-
mium if we consider a market with only risk neutral agents. This lead economists to introduce
the so called ”risk neutral probability measure” (Q), and by introducing this risk neutral proba-
bility measure, economist were able to construct the first fundamental theorem of asset pricing.
The first fundamental theorem of asset pricing states that if the market is free of arbitrage, there
exists a risk neutral probability measure (Q), that makes sure that the price of an asset is equal
to its discounted expected future value.
This fundamental theorem is on itself a nice result, but it became even more useful when Arrow
and Debreu (1954) introduced their model about the existence of a competitive economy equi-
librium. This paper introduces (Arrow-Debreu) state prices and these have since been applied in
financial economics. An (Arrow-Debreu) state price is the price of a security that pays off 1 unit
of currency if a particular state materialises and zero if one of the other states materialises.
A possible explanation why state prices are renowned in financial economics is that researchers
have wondered if there is more that these state prices can explain, other than the (risk neutral)
expectation of the discounted future value of an Arrow-Debreu security. The motivation for this
reasoning is that state prices are, for example, related to the pricing kernel and the pricing ker-
nel is important for pricing any asset. Hence, state prices might include more information about
this one state that the security is linked to, other than the payoff.
In previous research, researchers have tried to combine the first fundamental theorem of asset
pricing with observed asset prices in order to obtain these risk neutral probabilities from market
data2. The problem is that these Q-probabilities are the risk neutral probabilities and not the
real-world probabilities. This is for example the reason why in credit risk management it is dif-
ficult to estimate (real-world) default probabilities, since extracting probabilities from insurance
contracts yield the risk neutral probabilities and not the real-world probabilities. If an insurer
wants to price insurance contract, retrieving (or calibrating) these Q-probabilities are the sole
requirement to then price insurance contracts using the first fundamental theorem of asset pric-
ing. However, for management purposes, the real-world probabilities are needed. Hence, there is
extensive previous research in the relation between the real-world probabilities and the risk neu-
tral probabilities, in the hope of finding a method to go from these risk neutral probabilities to
the real-world probabilities. For example, Hansen and Jagannathan (1991), Dybvig and Rogers
(1997) and (Cox and Leland, 2000) try to use market data to extract agents utility function and
then use these utility function to tell something about the subjective beliefs of the agents.

In 2015, Stephen Ross introduced the recovery theorem. In this theorem, Ross claims that under
certain assumptions it is possible to estimate real-world probabilities, using Arrow-Debreu state
prices. Despite the fact that the recovery theorem is a theoretically (and mathematically) sound
theorem, there are however papers that empirically question its usefulness (for example van Ap-

1alternatively, one can consider Xt = E[kt+1Xt+1] ⇐⇒ 1 = E[kt+1Rt+1] ⇐⇒ Et[Rt+1] =
1

Et[kt+1]
+

covt(kt+1,Rt+1)

Et[kt+1]
where

covt(kt+1,Rt+1)

Et[kt+1]
is the risk premium (Fletcher, 2007; Grossman and Shiller, 1981)

2for example Jackwerth (2004) shows how option data can be used to extract these risk neutral probabilities
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pel and Maré (2018),Bakshi, Chabi-Yo, and Gao (2017) and Jackwerth and Menner (2020)),
since they found that, after testing the underlying assumptions, some of these assumptions do
not hold in reality. Furthermore, Borovicka, Hansen, and Scheinkman (2016) express their crit-
icism about the recovery theorem with respect to its implication regarding long-term risk. In
their paper, Borovicka et al. (2016) question whether some assumptions may overgeneralise or
oversimplify the reality. Hence, theoretically, the recovery theorem might sound as a great theo-
rem, however practical usefulness is still debatable. This brings me to the purpose of this thesis.

The primary objective of this thesis is to bridge the gap between the highly mathematical and
empirical papers. As well as explaining (and proving) concepts used by Ross (2015), where the
main focus lies on the intuition behind all the underlying assumptions.

I will start this thesis by deriving the recovery theorem. I will first introduce the framework and
the underlying assumptions that are needed such that the recovery theorem, formulated by Ross
(2015), can hold. Moreover, I will refine the theorem by adding one assumption: ”strong ratio-
nal expectations”, such that the theorem, theoretically, better suits the objective of retrieving
the real-world probability measure. Then, in the second chapter of this thesis, I will replicate the
example done by Ross (2015), to show how the recovery theorem works in a data generating pro-
cess. In the chapter that follows, I will explain what happens with the recovery theorem once I
leave out any of the underlying assumptions. By elaborating on these assumptions, it becomes
clear why this theoretically sound theorem does not work in reality, since the required assump-
tions are not present in reality. In the chapter that follows I will highlight two interesting impli-
cations that follow from the recovery theorem; it turns out that if all five assumptions hold, the
constructed pricing kernel is ”long-term risk neutral” and in special circumstances, the recov-
ery theorem finds that the market only is influenced by idiosyncratic risk. Finally, I will end this
thesis with a conclusion and I will give suggestions for possible future research.
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The Recovery Theorem

In this chapter, I will derive the recovery theorem that was formulated by Ross (2015). The the-
orem states:

Theorem 1 (Recovery Theorem). If there is Absence of Arbitrage, if the pricing matrix is irre-
ducible, and if it is generated by a transition independent kernel, then there exists a unique (pos-
itive) solution to the problem of finding the natural probability transition matrix, P , the discount
rate, β, and the pricing kernel, Kt.
In other words, for any given set of state prices there is a unique compatible natural measure and
a unique pricing kernel.

To start the derivation of the theorem, consider a probability space (Ω, (Ft)t∈{0,...,τ},P). During
this thesis, I will assume:

Assumption 1. the (real-world) probability measure P can be characterized by a (finite state-
space) Markov chain.

Furthermore, I assume that there are m states within the Markov chain and that at time t =
0, ..., τ the corresponding (Markov) state is denoted by jt = 1, ...,m. In other words, over time
I move from a starting (Markov) state j0 = 1, ...,m to an ending (Markov) state jτ = 1, ...,m.
This means that if I consider the entire time frame {0, ..., τ} I have in total τ +1 (Markov) states
visited.
Using the above notation, I have Ω = {1, ...,m}τ+1, meaning that state of the world ω ∈ Ω repre-
sents a sequence of (Markov) states of length τ + 1, where j0 denotes the starting (Markov) state
of the sequence and jτ denotes the ending (Markov) state of the state of the world (so, we have
ω = {j0, ..., jτ} ∈ Ω). The filtration (Ft)t∈{0,...,τ} corresponds to the accumulation of information
over time (so, F0 ⊂ F1 ⊂ ... ⊂ Fτ ) and the (real-world) probability measure is denoted by P,
such that the probability that state ω = {j0, ..., jτ} materializes is P[{ω}].
I will assume that the above mentioned probability space is a representation of the real-world,
in which (financial) assets are present. This means that I will assume that any (Markov) state jt
represents some return of an asset. Consequently, Once we arrive at some (Markov) state jt =
1, ...,m, I can compute the price of the asset using the fact that

St

St−1
= eRt ⇐⇒ St = St−1e

Rt , (1)

where Rt represents the return in (Markov) state jt = 1, ...,m. Furthermore, I will assume that
there is absence of arbitrage within the market:

Assumption 2. The market obeys absence of arbitrage.

Since Assumption 1 holds, I can denote the probability of moving from (Markov) state i to (Markov)
state j as p(i, j) and, consequently, let me denote the transition matrix under probability mea-
sure P as

P =

 p(1, 1) . . . p(1,m)
...

. . .
...

p(m, 1) . . . p(m,m)

 . (2)
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Furthermore, Assumption 2 implies that there exists a risk neutral probability measure Q that is
equivalent to the real-world probability measure P. Therefore, let me denote the transition prob-
abilities under Q as q(i, j) (i, j = 1, ...,m). Next, consider the definition of equivalent probability
measures:

Definition. Let P and Q be two probability measures on (Ω, (Ft)t∈{0,...,τ}). Q is said to be equiv-
alent to P (P ∼ Q) iff. P and Q share the same null space. That is, ∀A ∈ Ft, P[A] = 0 ⇐⇒
Q[A] = 0

The probabilities under P are given by p(i, j) and since P and Q are equivalent, it must hold
that p(i, j) = 0 ⇐⇒ q(i, j) = 0. Furthermore, since the structure of the Markov chain depends
on whether certain (Markov) states communicate with each other (p(i, j) > 0), it must hold that
if two (Markov) states under P communicate, these same (Markov) states must communicate un-
der Q, otherwise it would be possible that p(i, j) > 0 ⇐⇒ q(i, j) = 0 for some i, j = 1, ...,m and
this violates the equivalence between probability measures P and Q. Hence, under Assumption 1
and Assumption 2, the transition matrix under Q looks like:

Q =

 q(1, 1) . . . q(1,m)
...

. . .
...

q(m, 1) . . . q(m,m)

 . (3)

I will continue by introducing the concept of ”irreducibility” (see, for example (Resnick, 1992)).

Definition (Irredicibility). Consider a Markov chain with m (Markov) states. This Markov
chain is said to be irreducible, if I can reach any state j from any state i within a finite number
of movements.

Consider the following two examples:

Example 1. Consider the following Markov chain: 0.2 0.3 0.5
0.25 0.6 0.15
0.15 0.45 0.4

 (4)

The Markov chain can be visualised using the following picture (or ”graph”):

Figure 1: Visualisation of the Markov chain from (4)

In the Markov chain in (4) it is possible to reach any state j = 1, 2, 3 from any other state i =
1, 2, 3 (within one time step). This means that the Markov chain in (4) is irreducible.

Example 2. Consider the following Markov chain:
0.4 0.6 0 0
0.3 0.7 0 0
0 0.1 0.6 0.3
0 0 0.1 0.9

 . (5)
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In a graph, this Markov chain looks like:

Figure 2: Visualisation of the Markov chain from (5)

Here, one can observe that it is impossible to reach (Markov) state 4 if I start from either (Markov)
state 1 or (Markov) state 2. This means that the Markov chain in (5) is reducible (not irre-
ducible).

In the above examples, it is relatively easy to draw the Markov chains, However, If the number
of (Markov) states increases, it might not be easy to draw the Markov chain. Therefore, another
way to check if a Markov chain is irreducible is to compute the following:

Proposition 1 (theorem 6.2.23 of Horn and Johnson (2013)). Let P ∈ Rm×m
+ be a transition

matrix of some Markov chain with m (Markov) states and let Im be the m × m identity matrix.
Then, the Markov chain is irreducible iff. (Im + P )m−1 only has positive (> 0) entries.

For the full proof, see Horn and Johnson (2013), however, here, I want to give some intuition
about why this proposition is correct. Consider the following scenario:
If the Markov chain is a loop (so 1 → 2 → ... → m → 1) then this Markov chain is irreducible,
since it takes m movements to get back to my starting (Markov) state and thus Pm = Im (for
sure I have reached my starting state once I move m times). If I now compute Pm+k (k > 0) I
keep obtaining the identity matrix. So, just raising P to a large power and check if all elements
are positive does not work in this specific Markov chain. If I compute (Im + P )m−1, then (sine P
and Im are square matrices) by the binomial of Newton, I get:

(Im + P )m−1 =

m−1∑
k=0

(
m− 1

k

)
I(m−1)−k
m P k =

m−1∑
k=0

(
m− 1

k

)
P k (6)

notice, that
(
m−1
k

)
> 0 ∀k = 0, ...,m − 1. So, the only way (Im + P )m−1 > 0 can hold is if P k

has at some point positive entries for every combination of (i, j). Since then, the sum would give
positive entries3. However, if P is irreducible, we can reach any state from any other state, so
eventually, there should be some k = 0, ...,m − 1 such that P k results in positive entries at some
specific combination of (i, j). And thus (Im+P )m+1 > 0∀(i, j) iff P (and thus the Markov chain)
is irreducible.

This brings me to the third (important) assumption I need to make:

Assumption 3. The Markov chain is irreducible

3consider the matrices

A =

1 0 2
0 1 5
2 3 0

 and B =

0 2 3
5 0 0
0 1 4

 .

Both matrices have some zero elements (so both are non-negative), however, both matrices combined have for
every combination of (i, j) at least 1 nonzero value. consequently, if I sum both matrices, I get:

A+B =

1 2 5
5 1 5
2 4 4


and this matrix has nonzero elements (is positive)
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The recovery theorem (formulated by Ross (2015)) would like to investigate if it is possible to
go from Q to P. So, one might at first consider the Radon-Nikodym derivative dQ

dP . The Radon-
Nikodym derivative is used in asset pricing to transform from real-world probabilities to risk
neutral probabilities, so, at first glance, this Radon-Nikodym derivative seems the solution to
our problem. Notice, that since I use a finite sample space (|Ω| < ∞), I can write the Radon-
Nikodym derivative as the following:

dQ
dP

(ω) =
Q[{ω}]
P[{ω}]

(7)

So, let me compute both Q[{ω}] and P[{ω}].
Recall that the state of the world ω is a sequence of Markov states (ω = {j0, ..., jτ}). This means
that we have:

P[{ω}] = P[{j0, ..., jτ}] = p0(j0) · p(j0, j1) · ... · p(jτ−1, jτ ) = p0(j0)

τ∏
t=1

p(jt−1, jt) (8)

where p0(j) is the starting distribution (the probability of starting in state j). Under the same
reasoning, I find

Q[{ω}] = q0(j0)

τ∏
t=1

q(jt−1, jt) (9)

And so, the Radon-Nikodym derivative should equal:

dQ
dP

(ω) =
q0(j0)

p0(j0)

τ∏
t=1

q(jt−1, jt)

p(jt−1, jt)
(10)

The problem with this Radon-Nikodm derivative is that I only know q(i, j) (and q0(j)) and thus
I cannot use the Radon-Nikodym derivative to compute P (in general, I need to know both dQ
and dQ

dP in order to compute dP).
A second guess might be to look at the ”stochastic discount factor”, or ”pricing kernel”. The
first fundamental theorem of asset pricing (FFTAP) tells us that if absence of arbitrage holds,
the price/value of an asset at time t (Ct) is equal to the expected discounted future value (Ct+1):

Ct = e−rEQ
t [Ct+1] = EP

t

[
e−r dQ

dP
Ct+1

]
= EP

t [KtCt+1], (11)

where Kt := e−r dQ
dP is the so called ”pricing kernel” and r the risk-free rate. Note, that here,

the risk-free rate (r) is constant, however, later on I will allow the risk-free rate to depend on the
(starting) state (denoted as r(i)) once I consider a multiperiod model. If one introduces the pric-
ing kernel, then it is a small step towards Arrow-Debreu state prices, so let me first introduce
this concept before I move on (since we need these state price later on).

Let me assume that we have one time period, so t = {0, 1}. Consider a Markov chain with m
states. Let me assume that currently we are in state i = 1, ...,m and let me define the price of an

Arrow-Debreu security that pays off 1 (unit of currency) if state j = 1, ...,m materializes as c
(i)
j .

Then, assuming absence of arbitrage, the price of this security would be (using FFTAP):4

c
(i)
j = e−rEQ [

1{j1=j}|j0 = i
]
= e−r

m∑
k=1

q(i, k)1{k=j} = e−rq(i, j), ∀i, j = 1, ...,m (12)

Notice, that using these Arrow-Debreu securities, we created a way to value the likelihood of a
certain state materializing. Therefore, the price of an Arrow-Debreu securities is also called an

4note,

1{A} :=

{
1 in case of A

0 else
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(Arrow-Debreu) state price, as these securities give a way to price the likelihood of a state mate-
rializing ((Dybvig and Ross, 2003), (Adachi, 2021) and (Iwaki, Kijima, and Morimoto, 2001).

Furthermore, since security c
(i)
j pays off 1 if state j = 1, ...,m materializes, we can construct

some kind of insurance that always pays off 1, no matter which state materialises. If I construct
a portfolio that holds one of each m Arrow-Debreu securities, then I can construct a portfolio
that always pays off 1 unit of currency, no matter which state materializes. In other words, I can
create a zero coupon bond (that pays off 1 at time t = 1) if I hold one of each of the securities,

c
(i)
1 , ..., c

(i)
m .

However, since absence of arbitrage holds, it must be true that the price/value of this portfolio
of Arrow-Debreu securities is the same as the price of a zero coupon bond (law of one price). Let
me define the price of the portfolio of m securities as C(i), then we get:

C(i) :=

m∑
j=1

c
(i)
j =

m∑
j=1

{
e−rq(i, j)

}
= e−r

m∑
j=1

{q(i, j)} = e−r (13)

Indeed, we found that the price of this portfolio of Arrow-Debreu securities is equal to the price
of a zero coupon bond (e−r).
Notice, that if r = 0, then we have that C(i) = e−0 = 1 and in this scenario, we have that

c
(i)
j ≡ q(i, j). Meaning that if I have the (state price) matrix

C :=


c
(1)
1 . . . c

(1)
m

...
. . .

...

c
(m)
1 . . . c

(m)
m

 , (14)

this matrix becomes

C =

 q(1, 1) . . . q(1,m)
...

. . .
...

q(m, 1) . . . q(m,m)

 =: Q (15)

And this matrix is a stochastic matrix (with row sum equal to 1).

Next, let me introduce some new notation. Let me define c
(i)
j (t) as the state price of an Arrow-

Debreu security that pays 1 if I reach, from the current state i, state j after t periods. Further-

more, to simplify the notation, let me define c
(i)
j (1) ≡ c

(i)
j as the single period state price.

Let me assume that we have t = {0, ..., τ}, τ > 1 periods and, furthermore, let me assume that
in every (starting) state we have a different interest rate, r(i). One can consider, for example, the
scenario where in some (Markov) state returns turn out to be low, due to economic reasons and
thus the central bank might decide to decrease interest rates. Then, if we move from this ”bad”
(Markov) state to an (economically speaking) ”better” state, the central bank might respond by
increasing their interest rates. So, to make the model a bit more realistic, I introduce this kind
of dynamic interest rate.

Let me start with τ = 2 (so t = {0, 1, 2}), then, one can view this problem as follows: At time
t = 0, I am in state j0 = 1, ...,m. The next period (t = 1), I move from this state j0 = 1, ...,m
to some intermediate state j1. Finally, at time t = 2, I move from this intermediary state j1 to

the desired (ending) state j2 = 1, ...,m. How would the state price c
(i)
j (2) look like in this specific

scenario?
We can consider the following strategy: compute the value of this 1 unit of currency in the inter-
mediary state and then use the intermediary values to compute the expected discounted interme-
diary values within state j0

5. However, this intermediary value is nothing more than the state

5This strategy works similarly as how in asset pricing the price of an American options in a binomial tree is
determined (see, for example,Cox, Ross, and Rubinstein (1979))
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price that pays 1 in state j2 starting in state j1. So, I compute (using FFTAP)

c
(i)
j (2) = e−r(i)EQ

t

[
er

(jt+1)

1{jt+2=j}

]
= e−r(i)EQ

t

[
e−r(jt+1)

EQ
t+1

[
1{jt+2=j}

]]
= e−r(i)EQ

t

[
c
(jt+1)
j

]
= e−r(i)

m∑
k=1

q(i, k)c
(k)
j =

m∑
k=1

e−r(i)q(i, k)c
(k)
j

=

m∑
k=1

c
(i)
k c

(k)
j

(16)

If I now use that

C :=


c
(1)
1 . . . c

(1)
m

...
. . .

...

c
(m)
1 . . . c

(m)
m

 , (17)

(16) becomes:

c
(i)
j (2) =

[
c
(i)
1 . . . c

(i)
m

]
·


c
(1)
j
...

c
(m)
j

 =: Ci,∗C∗,j . (18)

Notice, that If I want to compute for every j = 1, ...,m the two-period state price, I compute[
c
(i)
1 (2) . . . c

(i)
m (2)

]
= Ci,∗C (19)

And so, if I want to compute the (row) sum, I find:

=
[
c
(i)
1 (2) . . . c

(i)
m (2)

]1...
1

 = Ci,∗Cι = Ci,∗


e−r(1)

...

e−r(m)

 = e−r(i)
m∑
j=1

q(i, j)e−r(j)

= e−r(i)EQ
[
e−r(j1)

|j0 = i
]
= e−r(i)EQ

[
e−r(j1)

EQ [1|j1] | j0 = i
]
= P (2)

. (20)

From (20) it becomes clear that the row sum
∑m

j=1 c
(i)
j (2) = P (2) is the two period discount rate

(price of a zero coupon bond that pays off 1 after two periods).

Let me now turn towards the scenario in which τ > 2. In this scenario, the value c
(i)
j (τ) indicates

the state price of an Arrow-Debreu security that pays 1 unit of currency in case I reach state
j = 1, ...,m from state i = 1, ...,m, after τ > 2 periods. We can consider this scenario as follows:
At time t = 0, I am in state i = 1, ...,m. In the next period (t = 1), I move from this starting
state to a new state, say j1 = 1, ...,m. Then, in the following period (t = 2) I move from state
j1 to a new state, say j2 = 1, ...,m and this continues until I reach the penultimate period (t =
τ − 1), because at time t = τ , I must move from this penultimate state (jτ−1) to the ending state
j = 1, ...,m.
Notice, that in the above mentioned scenario, the only states that are important are the starting
and ending state (i and j). I do not care which states I visit during t = {1, ..., τ − 1}, only that
at time t = 0, I am in state i and at time t = τ I am in state j. So, we get the following notation

for the state price c
(i)
j (τ):

Proposition 2. Let

C :=


c
(1)
1 . . . c

(1)
m

...
. . .

...

c
(m)
1 . . . c

(m)
m

 (21)
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with (see (12) )

c
(i)
j := e−r(i)q(i, j), ∀i, j = 1, ...,m (22)

be the state price matrix of the Markov chain, such that c
(i)
j represents the state price of an Arrow-

Debreu security that pays 1 unit of currency if, in the next period (t = 1), we reach state j =
1, ...,m, starting from (current) state i = 1, ...,m (so the single period state price). Then,

Cτ , (23)

represents the state price matrix of Arrow-Debreu securities that pay 1 unit of currency if after τ
periods, I reach state j (column j) from state i (row i).

Proof. any row of C looks like:

Ci,∗ =
[
c
(i)
1 . . . c

(i)
m

]
and any column of C looks like:

C∗,j =


c
(1)
j
...

c
(m)
j


This means, that if I multiply any row of C with any column of C (which I do in case of C2), I
get:

Ci,∗C∗,j :=
[
c
(i)
1 . . . c

(i)
m

]
·


c
(1)
j
...

c
(m)
j

 =

m∑
k=1

c
(i)
k c

(k)
j =: c

(i)
j (2) = ”state price at τ = 2” (24)

Now, consider C3 = C · C2. Any column of C2 looks like
c
(1)
j (2)
...

c
(m)
j (2)


So, we have that

[
c
(i)
1 . . . c

(i)
m

]
·


c
(1)
j (2)
...

c
(m)
j (2)

 =

m∑
k=1

c
(i)
k c

(k)
j (2) :=

m∑
k=1

e−r(i)q(i, k)c
(k)
j (2)

= e−r(i)EQ
t

[
c
(jt+1=k)
j (2)

]
= c

(i)
j (3)

since, i and j are arbitrary rows and columns, this must hold for every element of C3. Let me
now assume that for t = τ − 1 the proposition holds (proof by induction). Does it then hold for
t = τ? we can write Cτ = C · Cτ−1. Any column of Cτ−1 looks like:

Cτ−1
∗,j =


c
(1)
j (τ − 1)

...

c
(m)
j (τ − 1)

 .

This means, that for any row i and column j of Cτ , it must hold that:

Cτ
i,j = Ci,∗ · Cτ−1

∗,j =
[
c
(i)
1 . . . c

(i)
m

]
·


c
(1)
j (τ − 1)

...

c
(m)
j (τ − 1)

 =

m∑
k=1

c
(i)
k c

(k)
j (τ − 1)

:=

m∑
k=1

e−r(i)q(i, k)c
(k)
j (τ − 1) = e−r(i)EQ

t

[
c
(jt+1=k)
j (τ − 1)

]
= c

(i)
j (τ)

(25)
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Since i and j are chosen arbitrarily, it must hold that Cτ is equal to the state price of an Arrow-
Debreu security that pays off 1 unit of currency if I reach state j, starting from state i, after τ
periods. Hence, Proposition 2 holds for any τ ≥ 1

This brings me to the final notation of the state prices:

Definition (Multiperiod state prices). Let t = {0, ..., τ} be my time horizon (with τ ≥ 1) and
let me denote the probability of moving from (Markov) state i = 1, ...,m to (Markov) state j =
1, ...,m under the risk neutral probability measure as q(i, j). Then, the (state) price of an Arrow-
Debreu security that pays off 1 unit of currency if I reach state j = 1, ...,m from state i = 1, ...,m
after τ periods, is given by:

c
(i)
j (τ) =

{
e−r(i)q(i, j) if τ = 1

Ci,∗C
τ−2C∗,j if τ ≥ 2

(26)

where

C :=


c
(1)
1 (1) . . . c

(1)
m (1)

...
. . .

...

c
(m)
1 (1) . . . c

(m)
m (1)

 ,

Ci,∗ corresponds to the i-th row of matrix C, C∗,j corresponds to the j-th column of matrix C
and r(i) is the risk-free rate in (Markov) state i.

Recall, that state price matrix is given by

C =


c
(1)
1 . . . c

(1)
m

...
. . .

...

c
(m)
1 . . . c

(m)
m

 =


e−r(1)q(1, 1) . . . e−r(1)q(1,m)

...
. . .

...

e−r(m)

q(m, 1) . . . e−r(m)

q(m,m)

 . (27)

This means that if I want to compute the pricing kernel, I get:

e−r(i) q(i, j)

p(i, j)
=

e−r(i)q(i, j)

p(i, j)
=

Ci,j

p(i, j)
. (28)

So, the pricing kernel can be written in terms of the state price divided by the real-world proba-
bility.
Working directly with this pricing kernel, does not work (for the same reason why working with
the Radon-Nikodym derivative did not work). However, there is another formulation of the pric-
ing kernel that might be useful. This formulation uses utility of consumption to derive the pric-
ing kernel. Consider the following example:

Example 3. Consider a market in which M assets are traded. I now introduce an agent who
needs to choose an investment strategy, ξ := [ξ1, ..., ξM ]T , where ξk is the fraction of wealth in-
vested in asset k = 1, ...,M . Furthermore, let me assume that currently we live in (Markov)
state i and the next (Markov) state j is random with some transition probability p(i, j). The
agent can decide to either invest (parts of) its wealth in the assets X := [X1, ..., XM ]T with price
X(i) := [X1(i), ..., XM (i)]T or consume c(i). The agent knows that in the next (Markov) state
the assets have some return X(j), but at the decision time, he does not know this value, but only
the distribution of the future price. Consequently, this agent aims to solve

max
ξ

{u(c(i)) + Et[β · u(c(j))]}

s.t. c(i) = w(i)− ξTX(i) = w(i)−
∑
k

Xk(i)ξk

c(j) = w(j) + ξTX(j) = w(j) +
∑
k

Xk(j)ξk

(29)
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one can now compute the first order condition with respect to ξk to find

Xk(i)u
′(c(i)) = Et[βXk(j)u

′(c(j))] ⇐⇒ Xk(i) = Et

[
β
u′(c(j))

u′(c(i))
Xk(j)

]
Using the First Fundamental Theorem of Asset Pricing, one can easily see that a pricing kernel

should equal K
(k)
t = β u′(c(j))

u′(c(i)) . Interestingly, this formulation of the pricing kernel shows that the

pricing kernel only depends on the marginal rate of substitution between the consumption in the
current (Markov) state (c(i)) and the consumption in the future (Markov) state (c(j)).

This example introduces a new way of writing the pricing kernel, namely the notion of a ”transi-
tion independent kernel”.

Definition (Transition Independent Kernel). A (pricing) kernel is said to be transition indepen-
dent if there is a positive function of the (Markov) states, h : {1, ...,m} → R+, and a positive
constant β such that, for any transition from i to j, the kernel has the form

e−r(i) q(i, j)

p(i, j)
:=

Ci,j

p(i, j)
= β

h(j)

h(i)
(30)

Two remarks about the transition independent kernel:

i) Note, that when I am in the next state (j) I will not invest further, but I fully consume
my remaining wealth. This follows from the second budget constraint (c(j) = w(j) +∑

k Xk(j)ξk). This means that when I make the investment decision in state i my under-
lying objective is that in the next/final (Markov) state I fully consume everything that I
have. In other words, the agent does not have a bequest motive (he does not want to max-
imize his terminal wealth). In Appendix A one can find an example that shows that if an
agent has some kind of bequest motive, the kernel will no longer be transition independent.

ii) Furthermore, notice that consumption in each state is determined by the (Markov) state
itself (c(j) ↔ h(j) and h : {1, ...,m} → R+) and every (Markov) state contains all the
necessary information. However, every (Markov) state represents some return and conse-
quently, the agent’s consumption is (fully) determined by the return of the asset and not
the value (or wealth) of the agent.

Notice, however, that by writing the kernel based on an agent’s optimization, we need to make
the assumption that every agent agrees upon the distribution of possible state outcomes. We
will estimate the real-world probability measure P using the risk neutral measure Q, that is cal-
ibrated by prices and these prices are found by having a market equilibrium. In other words,
the prices that we use to calibrate the risk neutral measure Q are based on the subjective be-
liefs of agents. Consequently, If I do not impose any assumption regarding this subjective belief,
I am no longer estimating the real-world probability measure (P), but the subjective belief of the
agents (Pn). Therefore, I need to make the assumption:

Assumption 4. All agents within the market obey strong rational expectations. That is, assume
that there are N agents acting on the market and that Pn (n = 1, ..., N) is the subjective belief
of agent n = 1, ..., N and P the real-world probability measure, then it must hold that Pn[A] =
P[A] ∀n = 1, ..., N, ∀A ∈ Ft.

By making Assumption 4, I guarantee that once I obtain estimates for the probabilities that the
agent uses to find his optimum, I obtain at the same time estimates for the real-world probabil-
ity measure P. This brings me to the following assumption:

Assumption 5. The pricing kernel is transition independent. That is, I can write the pricing
kernel as in (30).

With Assumption 5, I get:

Ci,j

p(i, j)
= β

h(j)

h(i)
⇐⇒ h(i)Ci,j = βh(j)p(i, j) (31)
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using matrix notation this becomes:
HC = βPH (32)

with

H =

h(1) 0
. . .

0 h(m)

 ,

P the transition matrix under P and C the state price matrix.

The problem with (32) is that I still need to know h(j)
h(i) in order to compute p(i, j). So, let me

use the fact that P is a stochastic (transition) matrix. That is, I know that

Pι := P ·

1...
1

 =

1...
1

 =: ι (33)

Since I have:

HC = βPH ⇐⇒ P =
1

β
HCH−1 (34)

I can write:

Pι =
1

β
HCH−1ι = ι (35)

⇐⇒ CH−1ι = βH−1ι (36)

⇐⇒ Cν = βν (37)

In (37), one can recognise that ν is the eigenvector of C, for eigenvalue β. The question that
needs to be answered is whether there exist such an eigenvalue β for which the corresponding
eigenvector only has positive entries. The reason why this is important is because ν depends on
h(j) and (according to the transition independent kernel) h(j) > 0 ∀j = 1, ...,m.
I can use the Perron-Frobenius theorem to find an eigenvalue with positive eigenvector entries.

Theorem 2 (Perron-Frobenius). If a matrix A ∈ Rn×n is non-negative and irreducible, there
is a (unique) non-negative eigenvector w such that Aw = ρ(A)w, where ρ(A) := max{ |λ| :
λ is eigenvalue of A} ∈ R is the spectral radius or ”Perron root” of A.

recall Assumption 1 and Assumption 3. Since

C =


e−r(1)q(1, 1) . . . e−r(1)q(1,m)

...
. . .

...

e−r(m)

q(m, 1) . . . e−r(m)

q(m,m)

 , (38)

and e−r(i) > 0, it must be that by definition C is non-negative, since for any probability it holds
that q(i, j) ∈ [0, 1]. Furthermore, by assuming that P is characterised by a Markov chain (As-
sumption 1), Q will depend on the same Markov chain and this Markov chain is irreducible (As-
sumption 3). Consequently, it is sufficient to conclude that C is an irreducible matrix, because Q
is irreducible and multiplying Q with a (positive) scalar does not affect this property. Hence, by
Assumption 1 and Assumption 3 I can conclude that C is a non-negative irreducible matrix and
thus I can apply the Perron-Frobenius theorem to matrix C. Finally, if I choose the eigenvalue
β = ρ(C) and the corresponding eigenvector ν = w, then by using the Perron-Frobenius theorem,
I know that (37) has a solution.

Once I have found ν =

 v1
...
vm

, I can compute P by using that

(H)−1 =


1

h(1) 0

. . .

0 1
h(m)

 (39)
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And thus,

(H)−1ι =


1

h(1) 0

. . .

0 1
h(m)


1...
1

 =


1

h(1)

...
1

h(m)

 (40)

Consequently, we know that

ν = (H)−1ι ⇐⇒ 1

h(i)
= νi ⇐⇒ h(i) =

1

νi
(41)

However, recall that we had (see (31)):

h(i)Ci,j = βp(i, j)h(j) ⇐⇒ p(i, j) = Ci,j
1

β

h(i)

h(j)

which can be rewritten as:

p(i, j) = Ci,j
1

β

h(i)

h(j)
(42)

⇐⇒ p(i, j) = Ci,j
1

β

1
νi

1
νj

(43)

⇐⇒ p(i, j) = Ci,j
1

β

νj
νi

(44)

Hence, To compute p̂(i, j), one can apply the following algorithm:

1) construct C

2) find eigenvalues of C and their corresponding eigenvectors (ν)

3) set β = ρ(C) = max{|λ| : λ is eigenvalue of C}

4) compute p̂(i, j) using p̂(i, j) = Ci,j
1
β

νj

νi

This specific method to obtain real-world probabilities was introduced by Ross (2015) and led to
the recovery theorem (Theorem 1)
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Example of the Recovery
Theorem

In this chapter, I will demonstrate the example that was done by Ross (2015). This example
uses a Data Generating Process (DGP) to generate the real-world probabilities. Then, it applies
the recovery theorem and checks, using the generated real-world probabilities, how accurate the
estimated probabilities estimate the (generated) real-world probabilities.

Example 4 (Ross (2015)). Assume that we are in a Black-Scholes market. In this market we
have (one) risky asset with dynamics:

dSt = St(µdt+ σdW P
t ) = St(rdt+ σdWQ

t ) (45)

where W P
t is a Brownian motion with no drift under P and WQ

t is a Brownian motion with no
drift under Q. Furthermore, µ is the return of the risky asset, σ is the volatility of the asset and
r is the risk-free rate. We limit the time frame to one period such that we have t ∈ [0, 1].
Next, I introduce some agent that has CRRA utility function with risk aversion γ = 3 and sub-
jective discount factor β = e−δ = e−0.02 ≈ 0.9802. Since the CRRA utility function has the
form

u(x) =


ln(x) if γ = 1

x1−γ − 1

1− γ
if γ ̸= 1

(46)

the transition independent kernel assumption implies that

Ci,j

p(i, j)
= β

u′(c(j))

u′(c(i))
⇐⇒ Ci,j = β

u′(c(j))

u′(c(i))
· p(i, j) (47)

The only thing that remains, in order to compute the state prices (Ci,j), is determining what the
agent’s consumption will be. Since we only have one period, Ross (2015) assumes that in the fi-
nal period (t = 1) the agent fully consumes the value of the asset and in the first period (t = 0)
he consumes some hypothetical t = 0 return of the asset that was realised by making a hypotheti-
cal investment at time t = −1 (Let me call this return SH)6. If I fill in everything that we know,
we get as state prices:

CSH ,S1 = e−0.02

(
S1

SH

)−γ

· p(SH , S1) (48)

and using the dynamics of St I know that (normalize S0 = 1)

St = S0e
(µ− 1

2σ
2)t+σ

√
tW P

t = e(µ−
1
2σ

2)t+σ
√
tW P

t (49)

⇐⇒ ln(St) = (µ− 1

2
σ2)t+ σ

√
tW P

t (50)

6The reason why I formulate the t = 0 consumption in this way is because we are considering an irreducible
Markov chain. If I reach (in the future) the same state as the current state, I still want to consume the same way
as I did at the start. Hence, to guarantee consistency I need to introduce this hypothetical t = 0 return.
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since W P
t ∼ N(0, 1) (due to the one period), I have that ln(St) ∼ N((µ− 1

2σ
2)t, σ2t). This means

that I have that (using the pdf of a log-normal distribution)

p(SH , S1) =
1

S1σ
√
2π

e
− 1

2

(
ln(S1)−(µ− 1

2
σ2)

σ

)2

=
1

S1
ϕ

(
ln(S1)− (µ− 1

2σ
2)

σ

)
(51)

Where ϕ(.) is the pdf of a standard normal distribution.
Using everything until now, gives:

CSH ,S1
= e−0.02

(
S1

SH

)−3

· 1

S1
ϕ

(
ln(S1)− (µ− 1

2σ
2)

σ

)
(52)

Even though I am able to compute the state prices using (52), I still need to do one more step.
In the (52), there is still a continuous density function (ϕ(.)), which I need to discretise. Recall
that I have a Markov chain and a Markov chain is in discrete time (not continuous). To discre-
tise my continuous density function, I need to introduce the concept of ”sigma distances (from
the mean)”:

Intermezzo (Sigma distances). Consider a normally distributed random variable X (so X ∼
N(µ, σ2)). A property of the normal distribution is that it is symmetric around the mean (µ)
and that 

P[µ− σ ≤ X ≤ µ+ σ] ≈ 68%

P[µ− 2σ ≤ X ≤ µ+ 2σ] ≈ 95%

P[µ− 3σ ≤ X ≤ µ+ 3σ] ≈ 99.7%

(53)

Consider a new random variable, say Y . Then I will call the values Z
(1)
1 and Z

(1)
2 a sigma dis-

tance of 1 away from the mean if it holds that P[Z(1)
1 ≤ Y ≤ Z

(1)
2 ] ≈ 68%. In the same way,

the values Z
(3)
1 and Z

(3)
2 are a sigma distance of 3 away from the mean if P[Z(3)

1 ≤ Y ≤ Z
(3)
2 ] ≈

99.7%. Hence,

Definition. Let X and Y be two random variables and assume that X ∼ N(µ, σ2). then,

Z
(k)
1 and Z

(k)
2 are a sigma distance of k away from the mean ⇐⇒ P[Z(k)

1 ≤ Y ≤ Z
(k)
2 ] =

P[µ− kσ ≤ X ≤ µ+ kσ].
If I define the CDF of a standard normal distribution as Φ(.), then I can rephrase this definition
as:
Z

(k)
1 and Z

(k)
2 are a sigma distance of k away from the mean ⇐⇒ P[Z(k)

1 ≤ Y ≤ Z
(k)
2 ] =

Φ(k)− Φ(−k).

I will assume that there are 17 possible outcomes for the risky asset, that are based on sigma
distances from the expected return of the asset. Stated differently, I assume that the entire sup-
port of the risky asset can be approximated by sigma distances from the mean. I will use values
of k = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4} such that I get:

S =
{
Z

(k)
1 , Z

(k)
2 : P

[
Z

(k)
1 ≤ S1 ≤ Z

(k)
2

]
= Φ(k)− Φ(k), k = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}

}
(54)

If I use (just as Ross (2015)) µ = 8% and σ = 20%. Then I get the following sigma distances: 7

Table 1: sigma distances for different k

k 0 0.5 1 1.5 2 2.5 3 3.5 4

Z
(k)
1 1.062 0.961 0.869 0.787 0.712 0.644 0.583 0.527 0.477

Z
(k)
2 1.062 1.174 1.297 1.433 1.584 1.751 1.935 2.138 2.363

7Note, that the reason why I have slightly different sigma distances is because of the following: ”While sigma
can be chosen as the standard deviation of the derived martingale measure from P, we chose the current at-the-
money implied volatility from option prices on the S&P 500 index as of March 15, 2011” (Ross, 2015). In other
words, I use the ”standard deviation of the derived martingale measure”, whereas Ross uses the ”implied volatil-
ity from option prices”. This discrepancy, however, does not affect the clarifying objective of this example.
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To see how accurate this approximation is, I will plot the non-approximated and the approxi-
mated pdf’s of the log-normal distribution :

Figure 3: pdf’s of both the non-approximated and the approximated log-normal distribution

From Figure 3 it becomes clear that the sigma distance approximation estimates reasonably accu-
rate the continuous log-normal pdf.
Once, I know the sigma distances, I can compute the discretised real-world transition matrix (P )
and the state price matrix (C). Doing so, yields the following two 17× 17 tables:8

Table 2: real-world transition matrix P

S1

p(SH , S1) 0.477 0.527 0.583 0.644 0.712 0.787 0.869 0.961 1.062 1.174 1.297 1.433 1.584 1.751 1.935 2.138 2.363

SH

0.477 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
0.527 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
0.583 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
0.644 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
0.712 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
0.787 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
0.869 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
0.961 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.062 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.174 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.297 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.433 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.584 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.751 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.935 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
2.138 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0
2.363 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.156 0.097 0.047 0.018 0.005 0.001 0 0

8note, that I rounded all probabilities to 3 decimals, which causes certain elements of the matrix to be 0.
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Table 3: State price matrix C

S1

CSH ,S1
0.477 0.527 0.583 0.644 0.712 0.787 0.869 0.961 1.062 1.174 1.297 1.433 1.584 1.751 1.935 2.138 2.363

SH

0.477 0 0.001 0.002 0.006 0.012 0.019 0.024 0.023 0.017 0.010 0.005 0.002 0 0 0 0 0
0.527 0 0.001 0.003 0.008 0.016 0.025 0.032 0.031 0.023 0.014 0.006 0.002 0.001 0 0 0 0
0.583 0 0.001 0.004 0.010 0.022 0.034 0.043 0.042 0.032 0.019 0.009 0.003 0.001 0 0 0 0
0.644 0 0.002 0.005 0.014 0.029 0.046 0.058 0.056 0.043 0.025 0.012 0.004 0.001 0 0 0 0
0.712 0 0.002 0.007 0.019 0.039 0.062 0.078 0.076 0.058 0.034 0.016 0.006 0.002 0 0 0 0
0.787 0 0.003 0.010 0.025 0.053 0.084 0.106 0.103 0.078 0.046 0.021 0.008 0.002 0 0 0 0
0.869 0 0.004 0.013 0.034 0.071 0.113 0.142 0.138 0.105 0.062 0.029 0.010 0.003 0.001 0 0 0
0.961 0 0.006 0.018 0.046 0.096 0.153 0.192 0.187 0.142 0.084 0.039 0.014 0.004 0.001 0 0 0
1.062 0 0.008 0.024 0.062 0.130 0.207 0.259 0.253 0.192 0.113 0.052 0.019 0.005 0.001 0 0 0
1.174 0 0.011 0.032 0.083 0.176 0.280 0.350 0.341 0.260 0.153 0.071 0.025 0.007 0.001 0 0 0
1.297 0 0.015 0.043 0.112 0.237 0.377 0.473 0.460 0.350 0.206 0.095 0.034 0.010 0.002 0 0 0
1.433 0 0.020 0.058 0.151 0.320 0.509 0.637 0.621 0.472 0.278 0.128 0.046 0.013 0.003 0 0 0
1.584 0 0.027 0.079 0.204 0.432 0.687 0.861 0.838 0.637 0.376 0.173 0.062 0.018 0.004 0.001 0 0
1.751 0 0.036 0.106 0.276 0.583 0.928 1.163 1.132 0.861 0.507 0.234 0.084 0.024 0.005 0.001 0 0
1.935 0 0.049 0.143 0.372 0.787 1.253 1.569 1.528 1.162 0.685 0.316 0.113 0.032 0.007 0.001 0 0
2.138 0 0.065 0.193 0.502 1.062 1.690 2.117 2.062 1.568 0.924 0.426 0.153 0.043 0.009 0.001 0 0
2.363 0 0.088 0.261 0.678 1.433 2.282 2.858 2.783 2.116 1.247 0.575 0.207 0.059 0.012 0.002 0 0

At first glance, Table 2 might seem strange. However, recall that every (Markov) state repre-
sents some return. And in the Black-Scholes worlds, returns are (iid) log-normally distributed.
In other words, the likelihood of going from a high value to a low value is not large, however, the
likelihood of a certain return in a low state or a high state is just the same.
Now that I have obtained the state price matrix (C), I will apply the second step and the third
step of the algorithm: find the eigenvalues of C and compute the spectral radius of C (ρ(C)). It
turns out that I get ρ(C) = 0.980 ≈ e−0.02. Finally, I will compute the estimated real-world
transition matrix using (44):

p̂(i, j) = Ci,j
1

β

νj
νi

This gives the matrix:

Table 4: Estimated transition matrix P̂

S1

p̂(SH , S1) 0.477 0.527 0.583 0.644 0.712 0.787 0.869 0.961 1.062 1.174 1.297 1.433 1.584 1.751 1.935 2.138 2.363

SH

0.477 0 0.001 0.004 0.014 0.039 0.087 0.146 0.193 0.195 0.160 0.097 0.044 0.020 0 0 0 0
0.527 0 0.001 0.004 0.015 0.040 0.088 0.147 0.192 0.198 0.161 0.096 0.043 0.015 0 0 0 0
0.583 0 0.001 0.004 0.014 0.040 0.086 0.144 0.190 0.196 0.157 0.100 0.047 0.021 0 0 0 0
0.644 0 0.001 0.004 0.014 0.040 0.087 0.147 0.193 0.197 0.157 0.097 0.047 0.016 0 0 0 0
0.712 0 0.001 0.004 0.014 0.040 0.086 0.145 0.190 0.195 0.157 0.096 0.048 0.017 0.008 0 0 0
0.787 0 0.001 0.004 0.014 0.040 0.086 0.145 0.190 0.195 0.156 0.098 0.048 0.017 0.006 0 0 0
0.869 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.156 0.097 0.048 0.019 0.004 0 0 0
0.961 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.157 0.097 0.048 0.017 0.006 0 0 0
1.062 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.196 0.157 0.097 0.047 0.018 0.005 0 0 0
1.174 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.194 0.156 0.097 0.047 0.018 0.005 0.002 0 0
1.297 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.156 0.097 0.047 0.017 0.005 0.002 0 0
1.433 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.584 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.751 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.156 0.097 0.047 0.018 0.005 0.001 0 0
1.935 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.156 0.097 0.047 0.018 0.005 0.001 0 0
2.138 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.156 0.097 0.047 0.018 0.005 0.001 0 0
2.363 0 0.001 0.004 0.014 0.040 0.086 0.145 0.191 0.195 0.156 0.097 0.047 0.018 0.005 0.001 0 0

To check how accurately I estimated the real-world transition matrix, I computed the squared er-
ror between the estimated real-world transition matrix (P̂ ) and the (true) real-world probabilities
that follow from the dynamics of St (P ). It turns out that when I compute:

E :=

 (p(1, 1)− p̂(1, 1))2 . . . (p(1,m)− p̂(1,m))2

...
. . .

...
(p(m, 1)− p̂(m, 1))2 . . . (p(m,m)− p̂(m,m))2

 (55)
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I get (rounded to 4 decimals)

E =

0 . . . 0
...

. . .
...

0 . . . 0

 (56)

This shows that The recovery theorem accurately estimates the real-world probabilities (once all
necessary assumptions are satisfied).
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Critical Appraisal of Underlying
Assumptions

The recovery theorem introduced by Ross (2015), builds upon 5 assumptions, and in this section
I will explain the assumptions and show what happens with the recovery theorem once I leave
out any of them. The underlying assumptions are of course important (otherwise they would not
be made), but the goal of this chapter is to give intuition about the economic purpose/meaning
of these assumption. This might help explain why empirical studies that test the recovery theo-
rem on real-world data conclude that it does not accurately reflect reality.

P characterized by Markov chain

In this section I will elaborate on the first assumption that I made: the event space is a Markov
chain.
The definition of a Markov chain9 is the following:

Definition (Markov Process10). Let (Xt)t≥0 be a stochastic process with state space S. Then,
this stochastic process is said to be a Markov process if:

P [Xt+s = j |Xs = i, Xu = xu, 0 ≤ u < s] = P [Xt+s = j |Xs = i] (57)

for all s, t ≥ 0, and all i, j, xu ∈ S.

In other words (57) implies that the future, given the present, does not depend on the past. This
means that if there is no Markov chain, It must hold that the future may depend on the past.
The problem now is that by doing this, we increased the degrees of freedom with respect to how
the probabilities relate to one another.
By increasing the degrees of freedom, it is more difficult to find the initial state price matrix C
and thus it becomes more difficult to estimate the real-world probabilities, not only because we
do not know whether the matrix C is correct, but also because we do not know whether the de-
pendency within the estimated real-world probabilities hold in the future. Consider the follow-
ing; assume that currently we are at time t = 0. We estimate the real-world probabilities and
then try to explain what happens at time t = 4. I now observe a problem since these t = 4 prob-
abilities might depend on the realisations at time t = 2 and t = 3 (future depends on the past
if there is no Markov chain). However, at time t = 0 I cannot know what would happen at time
t = 2 and t = 3 (these events are not in the information set F0). Hence, the estimation that I
found cannot be used for the future and thus using the recovery theorem in this setting does not
work.
Furthermore, recall that the Radon-Nikodym derivative was defined as (see (7) ):

dQ
dP

(ω) =
Q[{ω}]
P[{ω}]

9note: a Markov chain is a discrete time Markov process
10see, for example Resnick (1992)
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If the state space is characterised by a Markov chain, then we are able to compute the real-world
probability in terms of a product (P[{ω}] = P[{j0, ..., jτ}] = p0(j0)

∏τ
t=1 p(jt−1, jt)). However, if

we do not have a Markov chain, this expression becomes:

P[{ω}] = P[{j0, ..., jτ}] = P[j0] · P[j1|j0] · P[j2|j0, j1] · ... · P[jτ |j0, ... , jτ−1] (58)

This, we cannot write as a product of transition probabilities since there might be dependence
between two future (Markov) states. If I assume that the event space is a Markov chain, then all
these conditional probabilities can be reduced to transition probabilities. Consequently, if I do
not assume that I have a Markov chain, I cannot reduce the pricing kernel to the ratio

e−r(i) dQ
dP

(ω) = e−r(i) p(i, j)

q(i, j)

and so, the recovery theorem does not work. Now that I have shown why the Markov chain as-
sumption is required, I can discuss how realistic this expression is.

It is not uncommon in financial economics to assume that stochastic processes are Markov pro-
cesses. If we examine market dynamics, one could reason that due to for example noise traders,
future returns might not depend on previous values. These noise traders base their decisions on
current news or current beliefs, so they might not really consider historic behavior of the mar-
ket. That said, It might be that noise traders base themselves on past (i.e 2 years) behavior, but
not that much in the past. This means that assuming that the future, given the present, does not
depend on the past might not be that far-fetched.

Once someone agrees upon this Markov process, then how does someone go towards a Markov
chain? Consider the following strategy: recall that each (Markov) state represents some return.
Of course, theoretically, the returns can range from negative infinity to positive infinity11. I
can then make a (finite) partition of this interval, such that I am left with Ξ < ∞ ”(Markov)
states” (for example R ∈ (−∞,∞) becomes R ∈ {Λ1, ...,ΛΞ} where Λ1 = {R : R < l1},
Λ2 = {R : l1 ≤ R < l2},...,ΛΞ = {R : R ≥ lΞ−1}). Then, I no longer have the probability
that the return is equal to some value, but I get the probability that a return lies in the parti-
tion. Consequently, the transition probabilities correspond to the probability that a return lies in
some partition rather than the probability that a return takes some value. This shows that the
Markov chain assumption is important, and furthermore reasonable realistic.

Absence of Arbitrage

In this second section, I will elaborate on the next assumption that I made: the market obeys
absence of arbitrage.

Absence of arbitrage is a well-known concept within financial economics. It means that it is not
possible to make a riskless profit. Consider the formal definition of absence of arbitrage:

Definition (Arbitrage Opportunity). Let ϕt be a self-financing trading strategy and let (Xt)t≥0

be a (Ft-adapted) stochastic process. The trading strategy ϕt is an arbitrage opportunity if for the
value Vt :=

∑
a∈A ϕa

tX
a
t = ϕT

t Xt where A is the set of all (tradeable) assets:

i) V0 ≤ 0 (no initial cashflow/investment)

ii) P[Vτ ≥ 0] = 1 (riskless investment)

iii) P[Vτ > 0] > 0 (there is a probability of making a profit)

Definition (Absence of Arbitrage). A market satisfies absence of arbitrage if no arbitrage op-
portunity exist.

To explain the relevance of Assumption 2, consider the scenario in which absence of arbitrage
does not hold. In this scenario, there must exist an arbitrage opportunity and hence the three

11where the likelihood of a really high or really low return is near zero
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conditions in the definition must hold. Since absence of arbitrage does not hold, The first fun-
damental theorem of asset pricing implies that there does not exist a risk neutral probability
measure Q.
Since, this probability measure does not exist, the whole recovery theorem cannot be applied.
After all, the objective was to recover the real-world probabilities from the risk neutral proba-
bilities (or observed prices), however if these risk neutral probabilities do not exist, the recovery
theorem cannot be applied.
Just as with the previous assumption, this assumption is not that far-fetched since assuming ab-
sence of arbitrage is quite common within financial economics. A quite often used argument is
that if there exist some arbitrage opportunity, these will be rapidly traded away by arbitrageurs.
Hence, assuming absence of arbitrage is also reasonable realistic. Therefore, it is not surprising
that the empirical papers do not contradict this assumption.

Irreducible Markov chain

In Assumption 3, I assumed that the Markov chain is irreducible. What happens if Assump-
tion 3 no longer applies?
Mathematically, I observe a problem if I do not have an irreducible matrix. If the matrix is re-
ducible, I cannot apply the Perron-Frobenius theorem to find a solution for (37). And so the
question arises whether I am still able to find a (feasible) solution to (37)

Cν = βν ⇐⇒ CH−1ι = βH−1ι,

once I omit Assumption 3?
Recall that any solution to the above equation must satisfy that νi > 0 since νi = 1

h(i) and due

to the transition independent kernel, h(i) > 0.
Consider the following example:

Example 5. Let me assume R =
[
r(1) . . . r(4)

]T
=

[
0.08 0.02 0 −0.02

]T
and recall the

reducible matrix from Example 2. In that example, We had the matrix

Q =


0.4 0.6 0 0
0.3 0.7 0 0
0 0.1 0.6 0.3
0 0 0.1 0.9

 .

In Example 2 I concluded that the above matrix is reducible by looking at the graph. However, I
can also validate this by computing

(I4 +Q)4−1 =


3.5540 4.4460 0 0
2.2230 5.7770 0 0
0.1410 0.8380 4.2490 2.7720
0.0030 0.0520 0.9240 7.0210

 . (59)

Now, I can conclude that there are elements equal to zero and so the matrix is reducible. Then, I
compute the state price matrix C, by computing Ci,j = RiQi,j

If I now compute the eigenvalues of the matrix C, I find that the largest eigenvalue (in absolute

value) is 1.0672 and if I compute all four eigenvectors, I find


0.890
−0.445
0.093
−0.011

,


0
0

−0.971
0.241

,

−0.691
−0.702
−0.098
0.143

,


0
0

0.576
0.817

. Clearly, these eigenvectors do not yield feasible estimates, since firstly, not all eigen-

vectors are positive and secondly, using νi = 0 implies that h(i) ≡ 1
νi

= 1
0 and this number is not

defined. So I cannot use (37) to estimate my real-world probabilities.
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In general, the recovery theorem uses the Perron-Frobenius theorem, and this theorem requires
a matrix to be irreducible (and non-negative) in order to be applied. Therefore, I need to make
this assumption.
Moreover, recall that a Markov chain is irreducible if it is possible to reach any (Markov) state
from any other (Markov) state within a finite number of movements. If the Markov chain is no
longer irreducible, it must hold that there exists a (Markov) state such that once I leave this
(Markov) state, I will no longer return to it (within a finite number of movements). Since a (Markov)
state corresponds to some return, this would translate to a certain return that cannot be reached
once I leave it.
The most intuitive example would be an extremely low return. Once a return is extremely low,
the company that sells the asset probably will default and thus we will no longer reach any other
return. This shows that we cannot find real-world default probabilities using the recovery theo-
rem, since introducing a (Markov) state that represents the company to default, causes the re-
covery theorem to no longer work, since this kind of Markov chain will be reducible.

Strong rational expectation

The fourth assumption I made was that all agents obey strong rational expectations. In this sec-
tion I will consider what happens if this assumption is not made. Notice, that this assumption
was not made in the original paper of Ross (2015).

Recall, the definition of strong rational expectations:

Definition. Assume that there are N agents acting on the market and that Pn (n = 1, ..., N) is
the subjective belief of agent n = 1, ..., N and P the real-world probability measure, then it must
hold that Pn[A] = P[A] ∀n = 1, ..., N, ∀A ∈ Ft.

Without strong rational expectations, we just have N agents all with their own subjective be-
liefs, Pn, with respect to what the current prices will do in the future. How will this influence
the recovery theorem?
The agents observe the current (asset) prices and by assuming absence of arbitrage, they thus
agree upon the risk neutral probability measure (Q). If there is no strong rational expectations,
then all these subjective beliefs could be different than the real-world probability measure P (so,
Pn[A] ̸= P[A]). This automatically, implies that there cannot be one (unique) pricing kernel,

since now there are multiple different pricing kernels in the form of
Ci,j

Pn(i,j)
.

Furthermore, to recover the real-world probabilities based on Arrow-Debreu state prices, I use
the equation:

ki,j :=
Ci,j

p(i, j)
⇐⇒ Ci,j = ki,jp(i, j) (60)

The only restriction that I have, is that
∑m

j=1 p(i, j) = 1. At the same time, I can construct
many other kernels that obey (60), for example:

k̃i,j :=
Ci,j

Pn(i, j)
⇐⇒ Ci,j = k̃i,jPn(i, j) (61)

where Pn(i, j) := ηi,jp(i, j) such that
∑m

j=1 ηi,jp(i, j) = 1. If I now continue with this logic, I can
still apply the transition independent kernel assumption to obtain an estimation of the form:

Pn(i, j) = Ci,j
1

β

vj
vi

⇐⇒ p(i, j) = Ci,j
1

β

vj
vi

1

ηi,j
. (62)

Hence, the recovery theorem does no longer predict the real-world probability measure (P), but
the subjective belief of the agent (Pn), once I discard the strong rational expectation assump-
tion.
Note that in the original paper of Ross (2015), this strong rational expectations assumption was
not imposed, and this led other researchers (specifically Borovicka et al. (2016)) to state the fol-
lowing:
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”Interestingly, this recovery does not impose rational expectations, and thus the resulting Markov
evolution could reflect investors’ subjective beliefs and not necessarily the actual time-series evo-
lution” (Borovicka et al., 2016). Hence, the assumption of strong rational expectation is impor-
tant to include, even though, in the original paper of Ross (2015), this was not the case.

Transition independent kernel

The final assumption that I made was that the pricing kernel is transition independent. The
transition independent kernel assumption, states that the pricing kernel must satisfy:

Ci,j

p(i, j)
= β

h(j)

h(i)

This, I could rewrite to (see (32))

HC = βPH ⇐⇒ P =
1

β
HCH−1

and using the fact the P is a stochastic matrix I eventually arrived at (see (37))

Cν = βν

By making an assumption about the structure of a pricing kernel, you impose restrictions on the
structure of the market. So, this assumption requires special attention. Consequently, most em-
pirical papers test whether this assumption holds in reality. It turns out that in reality, pricing
kernels do not obey this kind of structure (Bakshi et al., 2017; Jackwerth and Menner, 2020),
and in this section I will explain why empirical papers find their results. I will start by showing
that there is no difference in calculating the long-term real-world probabilities based on long-
term state prices or short-term state prices if the kernel is transition independent.

Consider the following theorem:

Theorem 3. Let λ be an eigenvalue of the square matrix A ∈ Rn×n and let w be the correspond-
ing eigenvector, such that Aw = λw. Then, λk is an eigenvalue of Ak and w is the corresponding
eigenvector, such that Akw = λkw, ∀k ∈ N \ {0}.

Proof. Note that, if k = 1, we have A1w = Aw = λw = λ1w. So, the statement holds if k = 1.
Let me now assume that k = κ + 1 and that it holds that Aκw = λκw, for some κ > 1 (proof by
induction). Then, I have:

Aκ+1w = AAκw = Aλκw = λκAw = λκλw = λκ+1w (63)

So, the statement holds as well if κ > 1. Hence, by induction, the statement must hold for every
k ∈ N \ {0}.

Recall, that C is the (one-period) state price matrix and that Ci,j ≡ c
(i)
j represents the state

price of an Arrow-Debreu security that pays off 1 in case I reach (Markov) state j, starting from
(Markov) state i, the next period.

Furthermore, Cτ is the (τ -period) state price matrix and Cτ
i,j ≡ c

(i)
j (τ) represents the state

price of an Arrow-Debreu security that pays of 1 in case I reach (Markov) state j, starting from
(Markov) state i, after τ periods.
In the recovery theorem, I compute P̂ based on the eigenvalues and eigenvectors of C, but with
the same reasoning, I can estimate the probabilities P̂ τ , by computing the eigenvalues and eigen-
vectors of Cτ and using Theorem 3, I know that if ν is the eigenvector of C that corresponds to
eigenvalue β, then it must hold that ν is also the eigenvector of Cτ that corresponds to eigen-
value βτ . Consequently, I find that

P̂ τ =
1

βτ
HCτH−1 (64)
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Notice, however, that I can also compute P̂ τ from knowing P̂ and then just compute P̂ τ = P̂ ·
... · P̂ . Doing this yields,

P̂ · ... · P̂ =
1

β
HCH−1 · ... · 1

β
HCH−1 =

(
1

β

)τ

HCτH−1. (65)

Interestingly, I get the same result as in (64). This implies that, for long-term probabilities, it
does not matter If I compute my estimates for the real-world probabilities based on one period
state prices or based on long-term state prices.

Another interesting result from assuming that the kernel is transition independent is the fact
that not only long-term and short-term state prices yield the same estimated real-world proba-
bilities, but also that these estimated real-world probabilities turn out to be long-term constant.
That is, in the long-run the real-world transition probabilities no longer depend on the (Markov)
state that you leave, but only depend on the (Markov) state that you go to.
To see this, let me introduce an alternative formulation of the Perron-Frobenius theorem (see
Meyer (2000) (8.3.10) ):

Theorem 4 (Alternative Perron-Frobenius Theorem). let wT and v be the left and right eigen-
values (respectively) of some square matrix A, that corresponds to eigenvalue ρ(A) := max{|λ| :
λ is eigenvalue of A}, such that wT v = 1. Then,

lim
k→∞

(
1

ρ(A)

)k

Ak = vwT (66)

Recall that C is the (one-period) state price matrix and that Cτ represents the τ -period state
price matrix. If I now apply this alternative Perron-Frobenius theorem to matrix C, I get:

lim
τ→∞

(
1

ρ(C)

)τ

Cτ = νl, (67)

where l is the left eigenvector and ν the right eigenvector, both corresponding to eigenvalue ρ(C).
Recall, however, that this ρ(C) represents the β in the transition independent kernel and νi rep-
resents 1

h(i) .

Furthermore, recall that P̂ = 1
βHCH−1 and P̂ τ =

(
1
β

)τ

HCτH−1. Consequently,

lim
τ→∞

P̂ τ = lim
τ→∞

(
1

β

)τ

HCτH−1 = HνlH−1

=

 ν1h(1)
...

νmh(m)

[
l1

h(1) . . . lm
h(m)

]

=


ν1h(1)

l1
h(1) . . . ν1h(1)

lm
h(m)

...
. . .

...

νmh(m) l1
h(1) . . . νmh(m) lm

h(m)

 .

(68)

Since h(i) = 1
νi
, I have that

lim
τ→∞

P̂ τ =


ν1h(1)

l1
h(1) . . . ν1h(1)

lm
h(m)

...
. . .

...

νmh(m) l1
h(1) . . . νmh(m) lm

h(m)

 =

l1ν1 . . . lmνm
...

. . .
...

l1ν1 . . . lmνm

 . (69)

Hence, limτ→∞ P̂ τ (i, j) = ljνj , where ν ∈ Rm×1 and l ∈ R1×m are such that lC = lρ(C) and
Cν = ρ(C)ν. In other words, if τ → ∞, the transition probabilities only depend on the (Markov)
state I go to and not the current state. Recall that the (Markov) states represent returns and
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that the result in (69) resembles some stationary/limiting distribution of a Markov chain. Conse-
quently, the transition independent kernel is called ”trend stationary” by Borovicka et al. (2016).
Furthermore, notice that in Theorem 4, one of the requirements is that wT v = 1. If I translate
this to the matrix C, we have that lν =

∑m
i=1 liνi = 1 and this means that limτ→∞ P̂ τ has

row sum equal to 1 (or limτ→∞ P̂ τ ι = ι). Notice, that this result is also found in Example 4.
In that chapter I estimated the real-world probabilities and we also found that P̂ only changes
in the columns, not the rows even though the matrix C did change in both the column and row
direction.

These two reasons are the most probable explanations why empirical papers, such as, for exam-
ple, Jackwerth and Menner (2020) and Bakshi et al. (2017) find that the transition independent
kernel assumption does not work in reality. They find that this specific structure of a pricing
kernel does not find accurate transition probabilities, and consequently, that assuming this kind
of structure most likely explains why the recovery theorem does not work in reality.
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Implications of the Recovery
Theorem

In this chapter I will highlight some implications that follow if all underlying assumptions of the
recovery theorem hold. The results in this chapter are not a direct consequence of one specific
assumption, however, the combination all the assumptions causes the following results to appear.

Constant risk-free rate

In this section, I would like to emphasise one particular scenario, in which the risk-free rate in
each state is constant. That is, in this section I consider what happens in case r(1) = ... = r(m) =
r. In this scenario, the state price matrix, C, is given by

C =


e−r(1)q(1, 1) . . . e−r(1)q(1,m)

...
. . .

...

e−r(m)

q(m, 1) . . . e−r(m)

q(m,m)

 =

 e−rq(1, 1) . . . e−rq(1,m)
...

. . .
...

e−rq(m, 1) . . . e−rq(m,m)

 = e−r ·Q. (70)

Recall that the recovery theorem builds upon trying to find a solution to (37):

Cν = βν ⇐⇒ e−rQν = βν

Notice, however, that Q is a stochastic matrix and thus Qι = ι must hold. However, the Perron-
Frobenius theorem tells us that any nonnegative irreducible matrix A has a (unique) positive

eigenvector that corresponds to eigenvalue ρ(A). So, this implies that ι :=

1...
1

 is this unique

positive eigenvector of Q.
Consider the following property of eigenvalues:

Property 1. Let A ∈ Rm×m be a square matrix and let w be the eigenvector that corresponds to
eigenvalue λ, such that Aw = λw. Then, for every scalar α ∈ R \ {0} it must hold that Ã := αA
has as eigenvector w and corresponding eigenvalue λ̃ = αλ, such that Ãw = αAw = αλw = λ̃w

And so, using this property, if 1 is an eigenvalue of Q, then it must hold that e−r must be the
eigenvalue of e−rQ = C. This means, that ν = ι and β = e−r and this implies that the estimated
probabilities become:

p̂(i, j) = Ci,j
1

β

νj
νi

= e−rq(i, j)
1

e−r

1

1
= q(i, j) (71)

Hence, if I have constant risk-free rate in each (Markov) state, the recovery theorem finds that
p̂(i, j) = q(i, j). Therefore, the real-world probabilities (in this scenario) are solely determined
by the risk neutral measure, implying that the market only consists out of idiosyncratic risk; no
external event can influence the real-world probabilities and there cannot be a risk premium.
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long-term risk neutral probability measure

In this second section, I will explain another implication of the recovery theorem. It turns out
that the recovery theorem yields an interesting result with respect to long-term risk. In the pre-
vious chapter, I already showed two interesting long-term results, however in this section I will
make a general conclusion regarding the special behavior of the recovery theorem with respect to
long-term risk in accordance with what Borovicka et al. (2016) conclude in their paper.

To explain this special behaviour of the transition independent kernel, recall that the transition
independent kernel assumption yields as a kernel:

ki,j :=
Ci,j

p(i, j)
= β

h(j)

h(i)
= ρ(C)

νi
νj

where ν is the eigenvector corresponding to eigenvalue ρ(C) := max{|λ| : λ is eigenvalue of C}.
Notice, however, that I can change this formulation of the kernel as follows:

Ci,j = ki,jp(i, j) ·
p̃(i, j)

p̃(i, j)
= ki,j p̃(i, j)θ(i, j) = ρ(C)

νi
νj

p̃(i, j)θ(i, j) (72)

where θ(i, j) := p(i,j)
p̃(i,j) . And so, I arrive at a new kernel, that obeys all other restrictions (other

than a transition independent kernel) that follows:

Ci,j = k̃i,j p̃(i, j) =

(
ρ(C)

νi
νj

θ(i, j)

)
p̃(i, j) (73)

Since the transition independent kernel has the structure:

ki,j =
Ci,j

p(i, j)
= β

h(j)

h(i)
,

this new kernel must obey:

k̃i,j =
Ci,j

p̃(i, j)
= β

h(j)

h(i)
θ(i, j), (74)

where θ(i, j) := p(i,j)
p̃(i,j) . This way of writing the pricing kernel was introduced by Hansen and

Scheinkman (2009). If I now compare the transition independent kernel of Ross (2015) with this
new kernel by Hansen and Scheinkman (2009), it is easily seen that the main difference lies in
this new factor θ(i, j). In fact, the transition independent kernel is a special case of the kernel
by Hansen and Scheinkman (2009), where Ross (2015) sets θ(i, j) ≡ 1 ∀i, j = 1, ...,m. So, for
a better understanding of the implication of a transition independent kernel, I will elaborate on
what this θ(i, j) means and what the result of setting this θ(i, j) ≡ 1 entails.
In (74), I mentioned the general pricing kernel:

k̃i,j =
Ci,j

p̃(i, j)
= β

h(j)

h(i)

p(i, j)

p̃(i, j)

Here, there is a new probability p̃(i, j) that is different than the real-world probabilities p(i, j).
In fact, I now have a kernel that is influenced by two probability measures P and P̃ and the frac-

tion θ(i, j) = p(i,j)
˜p(i,j)

is a change of measure from P to P̃ . Clearly, the transition independent ker-

nel, ki,j :=
Ci,j

p(i,j) = β νi

νj
, is a pricing kernel under probability measure P and so it must hold

that:
π0 = EP

[
k
(τ)
i,j Πτ |j0 = i

]
, (75)

where π0 is the price of some asset and Πτ the (random) payoff of this security at time t = τ .
However, what do we get if I do not use the real-world probability measure P (that we find using
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the recovery theorem), but the new probability measure P̃? In this case, I have a new ”price” π̃0

that corresponds to the (random) payoff Πτ
12:

π̃0 = EP̃
[
k
(τ)
i,j Πτ |j0 = i

]
= EP̃

[
βτ νi

νj
Πτ |j0 = i

]
= βτνiE

P̃

[
Πτ

νj
|j0 = i

]
(76)

Next, I will compute the τ -period yield of this asset:

eỸττ =
EP̃ [Πτ ]

π̃0
⇐⇒ Ỹτ =

1

τ

(
ln

(
EP̃ [Πτ ]

)
− ln(βτ )− ln

(
EP̃

[
νi
Πτ

νj
|j0 = i

]))
⇐⇒ Ỹτ = −ln(β) +

1

τ

(
ln

(
EP̃ [Πτ ]

)
− ln

(
EP̃

[
νi
Πτ

νj
|j0 = i

])) (77)

Now, Observe that as τ → ∞,
lim
τ→∞

Ỹτ = −ln(β) (78)

If I do the same for the yield under the real-world probability, I get:

eYττ =
EP [Πτ ]

π0
⇐⇒ Yτ =

1

τ

(
ln(EP [Πτ ])− ln(π0)

)
(79)

Now, I find that
lim
τ→∞

Yτ = 0 (80)

This shows that if I use the probability measure that is estimated using the recovery theorem, I
construct a probability measure that in the long-term results in yields that are equal to zero. In
other words, the probability measure P from the recovery theorem implies that there is no long-
term yield. On the other hand, If I use another probability measure P̃ , that does not follow from
the recovery theorem, then I do observe long-term yields.
Within finance it is well-known that there is a long-term yield, due to the risk premium that
people demand (Jawadi and Prat, 2017). So the fact that the recovery theorem refutes this phe-
nomena, shows that in practice the theorem might not work. This is the reason why Borovicka
et al. (2016) refer to the estimated real-world probability measure as ”long-term risk neutral”.

12notice, that ki,j is a pricing kernel under P, since it holds that ki,j =
Ci,j

p(i,j)
. Under this new probability

measure P̃ , this ki,j is no longer a pricing kernel. Under P̃ I do have a pricing kernel, but this pricing kernel is

k̃i,j =
Ci,j

p̃(i,j)
.
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Conclusion

In this thesis I revisited the recovery theorem. I found that there are five assumptions that are
required such that the recovery theorem works. Of these five assumptions there are two that
could be true in reality (Markov chain and no arbitrage), however there are also two assump-
tions that are ”bold” in the sense that it is quite unlikely that these hold in reality (transition
independent kernel and (strong) rational expectations). Furthermore, I introduced some explana-
tions why empirical papers conclude that the recovery theorem does not work in reality.

That said, even though the recovery theorem does not work in practice, it does not (automati-
cally) mean that it is useless, since there are plenty of commonly used models that do not fully
replicate reality either. For example, the Black-Scholes model oversimplifies reality, by assuming
that there is a constant risk-free rate, and that the risky asset has constant expected return and
constant volatility. Or the Vasicek model is not capable of replicating the current term structure
of interest rate, however it is still used sometimes to estimate future term structures of interest
rates. So, while the recovery theorem cannot be applied in reality, there might still be certain
aspects that can help researchers understand what is required to make a model that, in the fu-
ture, could be useful. After all, as George Box quoted: ”All models are wrong, but some might be
useful” (Box, 1976).

To conclude my thesis, I would like to suggest possible future research based on this thesis:

1. In the final chapter, I introduced the ”general” transition independent kernel

k̃i,j =
Ci,j

p̃(i, j)
= β

h(j)

h(i)
θ(i, j).

There has been ample of empirical research that concludes that the transition independent
kernel (with θ(i, j) ≡ 1) does not work in reality. However, no research has yet been done
to check if this ”general” kernel is more realistic, let alone if the recovery theorem works
using this kernel. Hence, investigating if this ”general” transition independent kernel works
might be interesting future research.

2. Empirically test if the irreducible Markov chain assumption holds. Theoretically, it seems
improbable that this assumption is reasonable, since an example of a Markov chain that
is reducible could be a Markov chain in which there is a (Markov) state that implies the
default of a company and we know that any company has a probability of default, which
implies that assuming an irreducible Markov chain might not be reasonable. However, as
long as there is no empirical proof, the assumption that the Markov chain is irreducible is
still debatable. It might even be the case that for some markets this assumption is reason-
able and for other markets, it should not be assumed.

3. How would the recovery theorem be formulated in continuous time? Recall the first as-
sumption. This assumption assumes that the event space is characterised by a Markov
chain. A Markov chain is a discrete time finite state space stochastic process. This meant
that in order to use the recovery theorem, I first needed to discretize my event space. How-
ever, we also know that a Markov chain is a discrete time Markov process and so, we might
be able to construct a continuous time recovery theorem.
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Appendix A

Example of a kernel that is not
transition independent

The following example shows a kernel that is not transition independent. This example is based
on Merton’s portfolio problem (Merton, 1969), which is a renowned problem in asset-liability
management. Since, I work with a finite state-space Markov chain, I will change this Merton
problem to a discrete time version:

Example 6. Let me assume that there is a riskless asset in the form of a bond (Bt) and a risky
asset in the form of a stock (St). My time frame is a partition of the interval [0, τ ] of the form
t = {t0, ..., tn, ..., tN}, such that tn = n∆t and tN := N∆t = τ . Furthermore, the agent has
at every time point some income denoted by yt and the consumption at time t is denoted by ct.
The number of units invested (at time t) in some asset is Ma

t with a = {B,S}. Lastly, the agent
has an utility function regarding consumption u(c(.)) and an utility function regarding terminal
wealth ū(.) (or bequest motive).
At time t = tn the agent gets his income (ytn) and he uses this income (fully) to consume or to
invest. This means that we have a budget constraint:

(ytn − ctn)∆t =
(
Btn

(
MB

tn−∆t
−MB

tn

)
+ Stn

(
MS

tn−∆t
−MS

tn

))
(A.1)

Since, my wealth is equal the the value of my assets, I get

Wtn = BtnM
B
tn−∆t

+ StnM
S
tn−∆t

(A.2)

And thus the wealth dynamics become:

Wtn+∆t −Wtn = Btn+∆tM
B
tn + Stn+∆tM

S
tn −

(
BtnM

B
tn−∆t

+ StnM
S
tn−∆t

)
=

(
Btn

(
MB

tn−∆t
−MB

tn

)
+ Stn

(
MS

tn−∆t
−MS

tn

))
+MB

tn(Btn+∆t −Btn) +MS
tn(Stn+∆t − Stn)

= (ytn − ctn)∆t+MB
tn(Btn+∆t

−Btn) +MS
tn(Stn+∆t

− Stn)

(A.3)

The agent aims to solve an indirect utility function of the form:

Jti = sup
(ctn ,Mtn )N−1

n=i

Eti

[
N−1∑
n=i

(
e−δ(tn−ti)u(ctn)

)
+ e−δ(τ−ti)ū(Wτ )

]

s.t. ctn = ytn +
1

∆t

(
BtnM

B
tn−∆t

−BtnM
B
tn + StnM

S
tn−∆t

− StnM
S
tn

)
Wtn+∆t

= Wtn + (ytn − ctn)∆t+MB
tn(Btn+∆t

−Btn) +MS
tn(Stn+∆t

− Stn)

(A.4)
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If I now take the derivative with respect to MS
tn , and solve the first order condition, I get:

∂

∂MS
tn

Jti = Eti

[
−e−δ(tn−ti)u′(ctn)

Stn

∆t
+ e−δ(tn+∆t−ti)u′(ctn+∆t

)
Stn+∆t

∆t
+ e−δ(τ−ti)ū′(Wτ )(Stn+∆t

− Stn)

]
= 0

⇐⇒ Stn

(
e−δ(tn−ti)u′(ctn)

1

∆t
+ e−δ(τ−ti)ū′(Wτ )

)
= Etn

[(
e−δ(tn+∆t−ti)u′(ctn+∆t

)
1

∆t
+ e−δ(τ−ti)ū′(Wτ )

)
Stn+∆t

]
⇐⇒ Stn = Etn

[
e−δ(tn+∆t−ti)u′(ctn+∆t)

1
∆t + e−δ(τ−ti)ū′(Wτ )

e−δ(tn−ti)u′(ctn)
1
∆t + e−δ(τ−ti)ū′(Wτ )

Stn+∆t

]
⇐⇒ Stn = Etn

[
KtnStn+∆t

]
(A.5)

Using FFTAP, we know that (in this setting), the pricing kernel must equal

Ktn =
e−δ(tn+∆t−ti)u′(ctn+∆t)

1
∆t + e−δ(τ−ti)ū′(Wτ )

e−δ(tn−ti)u′(ctn)
1
∆t + e−δ(τ−ti)ū′(Wτ )

=
e−δtn+∆t

[
u′(ctn+∆t)

1
∆t + e−δ(τ−tn+∆t)ū′(Wτ )

]
e−δtn

[
u′(ctn)

1
∆t + e−δ(τ−tn)ū′(Wτ )

]
= e−δ(tn+∆t−tn)

u′(ctn+∆t
) 1
∆t + e−δ(τ−tn+∆t)ū′(Wτ )

u′(ctn)
1
∆t + e−δ(τ−tn)ū′(Wτ )

= β̃
g(jn+∆t, jτ )

g(jn, jτ )

(A.6)

And this is not a transition independent kernel, since the kernel cannot be written as Ktn =

β h(j)
h(i) , because in both the numerator and denominator, there is a (positive) function g(jm, jτ )

that depends on two (Markov) states, not one. This function depends on the terminal wealth,
which we only know in the final (Markov) state, and some other Markov state that we can move
to.
In fact, if we are interested in the terminal wealth at any (nonconsecutive) future (Markov) state,
we can solve the same optimization as in (A.4), where we change τ to the time that we are in-
terested in and the summation we change such that is goes until the time point just before our
desired ending point. Then, the resulting FOC is approximately the same and so the pricing ker-

nel will be of the form Ktn = β̄ g̃(jn+∆t,jτ̃ )
g̃(jn,jτ̃ )

, where τ̃ = {jn+2∆t, ..., jτ} is the ending point of our

interest. And using this generalization, one can easily see that the kernel is only transition inde-
pendent if we are interested in maximizing consumption, and disregard the value of my terminal
wealth.

Hence, as soon as I introduce some kind of concern regarding terminal wealth, the corresponding
pricing kernel will no longer be transition independent.
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