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Abstract

Accurate predictions of prepayment risk and credit risk over time are of crucial
interest for banks, since inaccurate predictions can result in large losses, which
one would like to account for in the interest rate set on a loan. If competing risks
are disregarded, the probability of prepayment is overestimated, which leads to
less competitive interest rates and a weak market position. Using four differ-
ent survival modelling approaches, from which three are mostly used in medical
research, this thesis examines the prediction accuracy of prepayment risk over
time while considering default as a competing risk. The four models included in
this thesis are: 1) Cox Cause-Specific Hazards model, 2) Fine-Gray Subdistribu-
tion Hazard model, 3) Random Survival Forest for Competing Risks, 4) Current
model used by VB Risk Advisory at bank X. The most important risk drivers of
both prepayment and default are identified using variable selection procedures.
The proportionality assumption for both Cox cause-specific hazards model and
the Fine-Gray model are evaluated using scaled Schoenfeld residuals and log-log
plots. The main goals of this thesis are: i) To improve the current prepayment
model used by VB Risk Advisory regarding prediction accuracy, ii) and to clarify
the mathematical background of these models used in medical statistics. The
results suggest that original interest rate is the most important risk driver of pre-
payment. Furthermore, the results suggest that the Random Survival Forest for
Competing Risk is the best model for predicting the probability of prepayment
over time in the same period, meaning that it performs the best in understanding
the true underlying relation between variables and prepayment risk. In addition,
as the models used in this thesis are neither able to include different prepayment
behaviours over time nor yearly effects, the model predictions are also backtested
to validate model prediction robustness. It is concluded that the underlying rela-
tions between covariates and prepayment behaviour changes over time and that
the investigated models are not able to capture these changes.
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1 Introduction

A mortgage is a type of loan between a lender (most often a bank) and a consumer that
consumers use to purchase a house. It is agreed to repay in predetermined small, equal,
fixed monthly payments over a term (Suknanan, 2023). It is probably the biggest and
most important loan an individual has in his life. In the United States there are 84.0
million mortgages at the end of the third quarter of 2023, with a total mortgage debt of
$12.14 trillion, which accounts for 70.2% of the consumer debt (Channel, 2023). A total
of 1,539,828 residential mortgages were issued in the third quarter of 2023 by banks or
other lenders (ATTOM, 2023). A mortgage borrower, also known as mortgagor, is not
obligated to comply the initially agreed upon repayment scheme. Such a repayment
schedule typically contains the fixed monthly payments, called coupon payments. De-
pending on the contract details, the mortgagor has the option to partly or fully repay
the mortgage earlier, called the prepayment option. Several factors induce prepayment
behaviour and prepayment size, such as loan-specific details, economic conditions and
personal conditions. Examples of these loan-specific details are loan-to-value ratio,
debt-to-income ratio and interest rate on the loan. Examples of economic incentives
are shifts in the interest rate and tax benefits. Illustrations of personal circumstances
are changes in net income and reception of a heritage.

If the prepayment option is exercised, the mortgage lender, also known as mortgagee,
does not collect the anticipated coupon payments and this affects future financial posi-
tions. Therefore, it is of high importance that financial institutions, and in particular
banks, accurately predict prepayment rates to be able to anticipate on potential pre-
payments. Banks implement hedging strategies to deal with prepayment risk and in
order to be able to do so, banks forecast prepayment behaviour. Fayman and He (2011)
showed prepayment risk significantly affects return on loans and return on equity for
commercial banks.

Prepayments and defaults affect each other as one cannot occur if the other has oc-
curred. As a consequence, predicting both prepayments and defaults separately may
result in overestimation of the risk. Banks need to hold capital for their Risk Weighted
Assets (RWA), which is money that a bank is obliged to hold to protect against finan-
cial stress and unforeseen losses. This is called the minimum capital requirements and
is regulated by the Basel agreements (Bank for International Settlements, 2007). If the
risk of prepayment is overestimated, the RWA value is too high compared to the true
risks. As a result, the minimum capital requirement is too high. Banks could have
invested part of this money.

The main contribution of this thesis is to provide insight in model accuracy for VB
Risk Advisory compared to other models. VB Risk Advisory is a quantitative consul-
tancy party, specialised in quantitative financial risk, data analytics and quantitative
modelling problems. New proposed models to VB Risk Advisory are requested not to
be too complex and computationally costly as clients will not accept models they can-
not comprehend. The data used in this thesis is the Single-Family Loan-Level Data set
provided by Freddie Mac (2024). It contains fully amortizing 10-, 15-, 20-, 30-, 40-year
fixed-rate Single-Family mortgages issued between January 1999 and December 2023.
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As this data set contains right-censored data, models were selected that can deal with
right-censoring. The models used to compare the VB Risk Advisory model, are the
Cox cause-specific hazards model, the Fine-Gray subdistribution hazard model and the
Random Survival Forest for competing risks. The first two models are semi-parametric
survival models, which allow for easy interpretation. The latter model is a machine
learning technique that can give insight into more complex and nonlinear relationships
between covariates and prepayment risk, but this comes at a cost of more difficult in-
terpretation.

For VB Risk Advisory it is of crucial interest that they advice their banking clients
to apply accurate models to satisfy their needs. Too high predicted risk leads to higher
interest rates set on loans, which in turn results in less demand for loans. On the
other hand, too low predicted risk leads to potential losses. Therefore, the aim of this
thesis is to compare these models regarding prediction accuracy of prepayment risk
while considering defaults as competing risk. Prediction accuracy is determined for
out-of-sample predictions in the same period as well as for forecasting out-of-sample
predictions, i.e. backtesting. Then, it is tested whether the machine learning technique
random survival forest outperforms proportional hazards prepayment models. There-
after, the most suitable approach is advised to VB Risk Advisory.

Furthermore, this paper examines which factors drive prepayment behaviour and if
the key assumption, proportionality of the hazards, in both the Cox cause-specific haz-
ards model and the Fine-Gray subdistribution hazard model, is satisfied. In this paper,
the focus will be on full prepayments. This thesis adds to the existing literature as it ap-
plies the random survival forest for competing risks to prepayment data on mortgages,
while it used to be mainly performed on simulated data or medical data. Moreover,
the proportionality assumption of the Cox prepayment-specific hazards model and the
Fine-Gray subdistribution hazard model is tested thoroughly in this paper and if not
satisfied, it is investigated what the effects are on estimated coefficients and prediction
accuracy. If deemed necessary, the proportionality assumption is accounted for by using
stratification on the non-proportional variables.

The remainder of this thesis is structured as follows. Section 2 provides general back-
ground on the mortgage market in the United States and elaborates on related research
conducted on prepayment risk. Section 3 provided the methodological background of
the Cox cause-specific hazards model, the Fine-Gray subdistribution hazard model, the
Random Survival Forest for competing risks, and the model currently used by VB Risk
Advisory at bank X. Section 4 describes the data used for the analysis in this thesis and
provided non-parametric cumulative incidence curves for the covariates to get insight
in the direction of the effect of a covariate on prepayment risk. Section 5 discusses the
estimation results and evaluates reliability of the key assumptions. Section 6 evaluates
the models based on out-of-sample prediction accuracy. First, another random sample
is used as test set to compare prediction accuracy on unseen data of the same period.
After, the model predictions are evaluated on unseen data in future time periods to
test for forecasting accuracy, which is also known as backtesting. Section 7 concludes,
gives advise to VB Risk Advisory and provides limitations of the thesis.
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2 General background

2.1 The mortgage market in the United States

A mortgage market enables people to borrow money to buy a house. In the United
States, the mortgage market consists of two parts, which are the primary and secondary
market. In the primary market, consumers borrow money from financial institutions
for their mortgage. There are several types of financial institutions. These are mort-
gage brokers, mortgage bankers, commercial banks, credit unions, and savings & loan
associations. In the secondary market, mortgage investors like Freddie Mac and Fannie
Mae buy mortgages to provide liquidity for financial institutions in the primary market
to grant additional loans. The financial institutions that grant mortgages to consumers
do not want to wait for the monthly payments to get their money back. Instead, they
sell the loans to institutional investors, which enables them to grant more loans. Then,
the institutional investors bundle mortgages into so-called mortgage-backed securities.
Third-party investors buy the mortgage-backed securities to generate returns on the
interest rate payments (Quicken Loans, 2023).

In the United States, the most common mortgage product is the 30-year fixed rate
fully amortizing mortgage. It is the only country in the world where this is the dom-
inant home mortgage product. One particular type of this mortgage product is the
annuity mortgage, which has a specific type of payment scheme. The monthly amount
paid by the borrower is constant over time, but the share of principal payment increases
over time while the share of interest payment decreases over time (Kish, 2022).

Prepayment penalties are introduced by financial institutions to have protection against
losses. While in The Netherlands prepayments are permitted up to 10% annually and
penalties are awarded if more is prepaid, in the United States legislation is different.
Prepayment regulation is state dependent as well as financial institution dependent.
Most lenders allow borrows to prepay 20% annually (Araj, 2024). One could also add
a prepayment premium to the interest rate on a mortgage to cover for potential losses
due to prepayment instead of charging a penalty. In this way every borrower pays a
little amount to cover the loss a financial institution makes if mortgages are prepaid.
This idea is exercised by VB Advisory as requested by a Dutch financial institution,
bank X. The downside however, is that this would increase the interest rate for every
mortgage, which could weaken their market position.

2.2 Previous research

In the literature there are two different types of prepayment rate models. The first
class of models, called optimal prepayment models, assume rational behavior of all par-
ticipants. Assuming that mortgagors prepay their mortgages at the optimal time is
unrealistic and therefore the second class of models is mostly used. These are models
which take into account covariates such as macroeconomic variables, loan characteris-
tics and mortgagor specific characteristics. These models can be further subdivided into
survival models, such as the well-known and most frequently used (Cox) proportional
hazards model (Jacobs et al., 2005; Clapp et al., 2002), and binary choice models such
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as the logistic regression model (Clapp et al., 2002; Li et al., 2019). Lee et al. (2022)
studied the determinants of individual borrowers’ prepayment on mortgage loans and
concluded that the accelerated failure time model (AFT), which models the effect of
covariates on the survival function, potentially outperforms the often used logit model
and Cox proportional hazard model, as it has more explanatory power. However, its
limitation is the requirement that the survival distribution should be known and spec-
ified. As in practice the survival distribution is not known, the AFT model is not used
in this thesis. Kau et al. (2009) extended the proportional hazard model by including
unobserved heterogeneity when estimating the risk factors for mortgage termination.
Although this so-called frailty model is mostly used in medical research (Balan and Put-
ter, 2020; Hougaard, 1995), it can also be applied to prepayment behavior modelling.
Through the utilization of the frailty model, the conditional independence of survival
times assumption in the Cox model is relaxed. However, as it is computationally costly,
hard to interpret and a specific distribution on the frailty term needs to be assumed,
the frailty model is not used in this thesis (Huang et al., 2023).

More recently, machine learning techniques, such as neural network and random forest,
are investigated and yield promising results (Fu, 2017; Ghatasheh, 2014; van der Star,
2022; Melnyk, 2022). However, their interpretation is challenging, especially for neural
networks, and as VB Risk Advisory asked for interpretable models, this thesis does
not investigate neural networks. As the random forest yields promising results and is
more interpretable than a neural network, this paper investigates the performance of
the random forest applied to survival data, called the random survival forest. Ishwaran
et al. (2008) introduced the random survival forest and later Ishwaran et al. (2014)
expanded it to be able to apply it to competing risks, which in this context means that
prepayments and defaults compete as to which will occur first (Li et al., 2023). Their
method is fully non-parametric and is used for estimation of the cumulative incidence
function, which is defined as the probability of experiencing an event of type j by time
t. Frydman and Matuszyk (2022) used the random survival forest for competing risks
to predict default risk of car loans using prepayment as competing risk, and concluded
that the random survival forest for competing risks outperformed the regular random
survival forest. In this paper, the focus is on estimating and predicting the cumulative
incidence function, which deals with competing risks and hence the random survival
forest for competing risks will be used due to its promising results.

Although machine learning techniques get more and more attention in the literature,
most research in prepayment rate modelling is conducted using the proportional haz-
ard model, which central concept is the usage of a hazard function. This function then
describes the instantaneous risk of the prepayment by an individual, given that the
mortgage is not prepaid before. The Cox proportional hazards model is popular due to
its easy interpretability, its ability to deal with censored data, and its flexibility. This
papers investigates the absolute risk of prepayment, which is the cumulative probability
of prepayment over time while considering defaults as competing risk. The estimation
of the cumulative probability of prepayment often requires the estimation of the hazard
rate of prepayment. Due to its flexibility, the Cox proportional hazards model can be
adapted and used in the presence of competing risks for the estimation of the hazard
rate. A so-called Cox cause-specific hazards model models a separate hazard function
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for each competing event (Austin et al., 2016). This allows one to interpret the effect
of covariates on the cause-specific hazard. Another adaptation of a proportional haz-
ards model to be able to include competing risks, is to model the cumulative incidence
function (CIF) directly. Here, the CIF is modelled using a subdistribution hazard func-
tion, introduced by Fine and Gray (1999). The subdistribution is of the same form as
the hazard function in the Cox proportional hazards model, with the adaptation that
it models a hazard function derived from a CIF (Columbia University Irving Medical
Center, 2023). These two methods are the most used methods for incorporating com-
peting risks and are therefore examined in this thesis. Güneş and Apaydin (2024) used
the Cox cause-specific hazards model to model both prepayment-specific hazard and
the default-specific hazard, and investigated the prediction accuracy of the hazards, but
did not look at cumulative incidence accuracy. Olajubu (2020) concluded that the Cox
cause-specific hazards model outperforms the Fine-Gray subdistribution model when
predicting cumulative incidences, but noted that predictions of the Fine-Gray model
were not reliable as the proportionality assumption was not satisfied.

The Cox cause-specific hazards model and the Fine-Gray model are often compared
in medical research. Nolan and Chen (2020) compared the Cox model with the Fine-
Gray model when assessing the risk of low-trauma re-fractures and found that the
Fine-Gray provides better estimation for the risk of the main outcome of risk in the
presence of competing risks. Kim et al. (2023) compared the prediction accuracy of
the cause-specific hazards model, the Fine-Gray model and the random survival forest
in a chronic kidney disease study. They concluded that in real data analysis all three
methods showed similar results in terms of both the significance of the risk factors
as well as the prediction accuracy. In case of a simulation study, where a non-linear
relation between the covariates and the dependent variable is the true relation, it is
observed that the random survival forest is the most robust model. On the other hand,
Li et al. (2023) found that the competing risks hazard model outperforms machine
learning techniques regarding predictive performance.

The Fine-Gray subdistribution hazard model can be further extended to include (ex-
ternal) time-varying covariates according to some sources (Austin et al., 2019). Austin
et al. (2019) looked at all 102 papers that originated from 2015 and the first five
months of 2019 that used the Fine-Gray model and investigated which papers included
time-varying covariates. They found that only 11 papers used the correct time-varying
covariates, from which six did not correctly interpret the results. As noted by Austin
et al. (2019), interpretation of results require additional carefulness, which will be done
in this thesis. While the Cox cause-specific hazards model allows to interpret the co-
efficient of a covariate as the effect on the cause-specific hazard, the Fine-Gray model
allows to interpret the direction of the effect of a covariate on the cumulative incidence
function. If external time-varying covariates are included in the Fine-Gray model, the
effect of covariates on the CIF can still be interpreted (Austin et al., 2019). However,
after correspondence with the authors, it is decided not to include this in thesis.

Often numerous characteristics are observed and available in data sets for prepayment
rates. Such characteristics can be categorized into for example economic, individual-
specific, geographical and loan-specific factors. To avoid models to overfit the data,
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relevant factors should be identified and then implemented in the model. The liter-
ature suggests different approaches for pertinent variable selection, such as LASSO,
the Akaike Information Criterion (Meis, 2015) or the nonconcave penalised likelihood
approach (Fan and Li, 2002).

Several loan-specific covariates that have been concluded to impact prepayment rates,
are examined in this thesis, with the notion that results should be interpreted care-
fully when dealing with competing events. Jacobs et al. (2005) used the Cox pro-
portional hazards model and found that the type of mortgage, the size of the loan,
and the age of the mortgage significantly affects the median duration of the mortgage.
Schwartz and Torous (1993) concluded that a high initial Loan-to-Value ratio (LTV)
significantly accelerates prepayment. Moreover, prepayments increase when refinancing
rates decrease. Kau et al. (2009) concluded that the unobserved Metropolitan Statis-
tical Area level affects the prepayment rate of mortgages. Groot and Lejour (2018)
found that the conditions for the allowance of proportional hazard model were violated
and therefore investigated heterogeneity in prepayment behavior amongst individuals.
They concluded that incentives to prepay can only explain partly the observed prepay-
ment behavior. In addition, they found that prepayment of wealthier households and
households with a high net-of-tax interest rate differential can be largely explained by
prepayment incentives. Another factor that are hypothesized to impact prepayment
rates is the loan size at origination. Wu and Deng (2010) found that mortgages with
larger loan amounts at origination are less likely to be prepaid. Quercia et al. (2007)
investigated the effect of predatory loan terms on prepayment rates. They also exam-
ined the effect of prepayment penalties on prepayment rates. Using a competing risk
model, they concluded that extended prepayment penalties increase the probability of
prepayment with 20 percent.

Prepayment is also partly driven by macroeconomic factors and therefore these fac-
tors are often included in research for estimation of the prepayment hazard. Although
macroeconomic factors cannot be incorporated in Cox cause-specific hazards model nor
will they be used in this thesis in the Fine-Gray model, it is interesting to keep this in
mind as we will perform prediction of prepayment risk on future time periods in this
thesis. Underlying macroeconomic factors will change over time and will likely affect
prediction accuracy of the models used in future time periods.

Chernov et al. (2018) included multiple macroeconomic factors. They used the lagged
growth rate in US personal consumption expenditures, the change in the Conference
Board’s Consumer Confidence Index, and the change in the unemployment rate. They
also included variables which proxy for mortgagors’ wealth, since these possibly affect
their prepayment behaviour. The proxies are the return on the Barclays US Aggregate
Bond Index, the lagged return on the CRSP value-weighted stock index, and the lagged
change in the National Association of Home builders Housing Market Index. Quercia
(2016) also found that mortgage default and prepayment are sensitive to changes in
unemployment rates. Lee et al. (2022) used interest rate spread and house prices as
macroeconomic factors and found a significant effect on prepayment rates, which dis-
appeared during the financial crisis and a low interest rate period due to economic
stabilization. Green and Shoven (1983) also concluded that market interest rates sig-
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nificantly affect prepayment probabilities. They found that the average duration of the
mortgage highly depends on interest rates. Bhardwaj and Sengupta (2009) found that
the macroeconomic variables Interest Volatility and PV Annualized Rate both have a
positive effect on the likelihood of prepayment. These findings are not in line with the
expectations. Moreover, they found that unemployment rate increases the probability
of prepayment as expected, since homeowners cash-out the benefit from the appreci-
ation in home prices. Li et al. (2019) investigated the impact of GDP growth rate,
federal funds, and bankruptcy fillings on prepayment and default rates. They found
that the GDP growth rate is negatively correlated with prepayment. It is therefore
concluded that a developing economy reduces the chance of prepayment. In contrast,
the Federal funds base rate is positively correlated with prepayment, since it increases
the cost of refinancing. Moreover, the bankruptcy rate is also positively correlated
with the prepayment rate. Yuan and Tao (2023) also considered macroeconomic fac-
tors including industrial production, unemployment rate, consumer expectations, and
an economic sentiment indicator. They also controlled for credit constraints by using
variables such as the Federal funds rate and the cost of borrowing index. They find
that mortgagors prepay when the aggregate cost of borrowing is low and the industrial
production is rising. Moreover, the aggregate cost of borrowing has a heterogeneous
effect on mortgagors with different Fair Isaac Corporation scores.

Section 8 summarizes the most important papers for this thesis.
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3 Methodology

In this section the models that are used throughout this thesis are described. The Cox
cause-specific hazards model, the Fine-Gray subdistribution hazard model, the random
survival forest for competing risks, and the current model used by VB Risk Advisory
are discussed. The first three models are survival models of which one is a machine
learning technique and therefore, to start, it is discussed what survival models and
machine learning techniques are in general and how they model prepayment.

3.1 Preliminaries

3.1.1 Survival function

In this thesis only full prepayments are investigated, so when referring to prepayments,
it means full prepayments. The survival function represents the probability that a
mortgage is not prepaid before the cut-off date, which is the end-date of the reporting
period. Let n be the number of mortgages and let k ∈ {1, . . . , n}. Let Tk be the
failure time for loan k and let Ck be the time until censoring for mortgage k. Let
Sk ∈ {0, . . . , H} denote the type of event for mortgage k (Zhang et al., 2011). There
are H different causes of failure and Sk = 0 suggests the failure time of mortgage k is
censored. In right-censored data, we observe the survival time as:

T ∗
k =

{
Tk if Sk ̸= 0

Ck if Sk = 0

Here, Tk is the unobserved latent survival time. In other words, T ∗
k = min(Tk, Ck). In

right-censored data, we observe S∗
k = Sk1(Tk ≤ Ck). So, if S∗

k = 0, then this indicates
that mortgage k is censored at time T ∗

k = Ck. It is assumed that the failure causes
1, . . . , H are observable. If we do not consider competing risks, then Sk ∈ {0, P}, where
P denotes prepayment and 0 denotes censoring. In the competing risks setting later
on, two different causes of failure are considered and hence Sk ∈ {0, P,D}, where P
denots prepayment, D denotes default and 0 denotes censoring. Define Fk(t) as the
cumulative distribution function of Tk. Then the survival function for loan k is:

Sk(t) = P(Tk > t) = 1− Fk(t), (1)

with Sk(0) = 1 and limt→∞ Sk(t) = 0 ∀k (Chen, 2018). Obviously, the survival function
is a monotonic non-increasing function as more prepayments have occurred as time
progresses.

3.1.2 Hazard function

Let fk(t) be the probability density function of Tk (Sestelo, 2017). The hazard function
is the instantaneous rate at which a prepayment occurs at time t given that the mortgage
is not prepaid before time t:

hk(t) = lim
∆t→0

P(t < Tk ≤ t+∆t|Tk > t)

∆t
=

fk(t)

Sk(t)
, (2)
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with ∆t > 0 (Chen, 2018). The cumulative hazard function is the integrated hazard
rate over time:

Hk(t) =

∫ t

0

hk(s) ds (3)

Using that the survival function Sk(t) = P(Tk > t) and assuming that the survival
function is continuous and the derivative exists at every t, gives the following relation
between the survival function and the hazard rate (see appendix A.1 for derivation):

hk(t) = − ∂

∂t
log(Sk(t)) =

−S ′
k(t)

Sk(t)
(4)

or:

Sk(t) = exp(−
∫ t

0

hk(s) ds) = exp(−Hk(t)) (5)

The hazard ratio is defined as the ratio between two hazards for loans k and l:

hk(t)

hl(t)
(6)

3.1.3 Cumulative Incidence Function

The probability of a prematurely finished mortgage k due to prepayment at time t is
defined as the incidence of prepayment. The cumulative incidence, or the absolute risk,
of mortgage k is the cumulative sum up to time t of the incidence of prepayment up to
time t. In the case of no competing risks, the cumulative incidence function is defined
as (Austin et al., 2016):

CIFk(t) = 1− Sk(t) (7)

3.2 Survival models

Survival models model the time until an event occurs, which is here the moment of full
prepayment. In practice, we are often more interested in the probability of prepayment
within x years instead of the expected time before a prepayment. Survival models con-
tain two key functions, which are the survival function and the hazard function. The
hazard function, which is the instantaneous rate at which a prepayment occurs at time
t given that the mortgage is not prepaid before time t, provides an intuitive expla-
nation for prepayments. Therefore, survival models are the most used models in the
literature (Harrell, 2001). One main advantage of survival models is that they account
for censored data. Loan-level data often does not contain information of the mortgage
over the full maturity time. Hence, when modelling prepayment rates, it is common
to encounter left- or right-censored data. More on censored data follows in the next
paragraph. The models discussed in this thesis differ in how they estimate the hazard
function as well as the survival function.

Censored data

Within survival analysis, a major concern is censored data. This is data in which
not the whole duration of all mortgages is observed. Survival analysis mostly has to
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deal with right-censored data, which means that the starting date of the mortgage is
observed, but the maturity date is not. For prepayment modelling, this indicates that
not all prepaid mortgages are classified as prepaid as the prepayment will occur after
the final observation in the data set. It also indicates that it is not known whether
a mortgage is prepaid or not after the last observation. It is assumed that censored
mortgages would have had the same prepayment probability if they were not censored,
conditional on the covariates. Hence, censoring is random conditional on the covariates.
As this is a key assumption, it should be tested. This can be done by evaluating the
proportional hazards assumption as described later. If the proportional hazards do not
vary over time, the assumption is valid (Kleinbaum and Klein, 2011).

3.2.1 Cox proportional hazards model

The classic Cox proportional hazards model is a semi-parametric model, which takes
into account the impact of covariates. It is semi-parametric because the baseline haz-
ard function is not assumed to have a particular shape or distribution, but the haz-
ard rate depends on covariates whose coefficients are estimated (Harrell, 2001). The
model is so popular due to its semi-parametric nature. Parametric models typically
deliver reliable results only if the specified parametric distribution is correct, whereas
the semi-parametric Cox proportional hazards model gives results comparable to those
parametric models with a correctly specified distribution. So, there is no need to as-
sume a parametric distribution, which improves reliability and robustness (Kleinbaum
and Klein, 2011). Furthermore, the model allows to evaluate the effect of several factors
on survival simultaneously.

Let Xki be the the value of time-fixed covariate i for mortgage k. Let h0(t) be the
baseline hazard rate, which is the hazard rate if X0i = 0 ∀i. It depends on time, but
does not depend on the covariate values. The model can be written as follows:

hk(t) = h0(t)exp(

p∑
i=1

βiXki) (8)

∀k and hence,

log(
hk(t)

h0(t)
) =

p∑
i=1

βiXki, (9)

where log is the natural logarithm. The log-hazard is a linear function of the covariates
and a population-level baseline hazard. The hazard function as in (8) can be rewritten
to obtain the survival function (see appendix A.2 for derivation):

Sk(t) = (S0(t))
exp(

∑p
i=1 βiXki), (10)

where S0(t) is the baseline survival function. This is defined as the survival function if
all covariates are equal to zero and is the same for each mortgage k.
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Using the relation between the cumulative incidence function and the survival func-
tion, when there are no competing risks as described in (7), this gives:

1− CIFk(t) = (1− CIF0(t))
exp(

∑p
i=1 βiXki), (11)

where CIF0(t) is the baseline cumulative incidence function. It is equal to 1− S0(t).

The hazard ratio in the Cox proportional hazards model for two mortgages k and l
is:

hk(t)

hl(t)
=

h0(t)exp(
∑p

i=1 βiXki)

h0(t)exp(
∑p

i=1 βiXli)
= exp(

p∑
i=1

βi(Xki −Xli)) (12)

The hazard rate can be interpreted as the factor with which the baseline hazard is
multiplied for that covariate. If the hazard is greater than 1, the baseline hazard is
increased proportionally by the hazard. On the other hand, if the hazard is smaller
than 1, the baseline hazard is decreased proportionally by the hazard.
As one can see, the hazard ratio is time-independent. This so called proportional haz-
ards assumption is the key assumption in the Cox proportional hazards model. This
also indicates that the hazard functions of the two mortgages cannot cross each other
(STHDA, 2020).

Estimation Cox proportional hazards model

Let m be the number of distinct prepayment times. Let the distinct prepayment times
be denoted by

t1 < t2 < · · · < tm (13)

And let tj ∈ (t1, . . . , tm) be the time that the j-th mortgage is prepaid, where 1 ≤ j ≤ m.
For now, assume that there are no tied events, which has as consequence that tj = Tk

for j = k. Following the notation, at time tm, there are n − m mortgages censored.
Define the so-called ’risk set’ at time tj for 1 ≤ j ≤ m, R(tj):

R(tj) = {k ∈ {j, . . . , n} : Tk ≥ tj} (14)

(Kleinbaum and Klein, 2011)
It is the set of indices of the mortgages that have not yet been prepaid or been censored
by time tj (Cox, 1975). Or stated differently, R(tj) are the indices of those under
observation when the j-th mortgage is prepaid (Schoenfeld, 1982). To estimate the
coefficients of the Cox proportional hazards model, Cox (1975) introduced the partial
likelihood function, which has to be maximised. Cox (1972) showed that conditional
on the risk set R(tj), the likelihood that mortgage j is the prepaid mortgage at time tj:

Lj(β) =
exp(

∑p
i=1 βiXji)∑

l∈R(tj)
exp(

∑p
i=1 βiXli)

(15)

The intuition behind expression (15) is that the likelihood of mortgage j to be prepaid
at time tj is determined by the hazard rate of mortgage j relative to the combined
hazard rates of all mortgages at risk at time tj (Segota, 2023). For the mathematical
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derivation, see Appendix A.3. As each prepayment contributes a factor of (15), the
partial likelihood then becomes (Cox, 1972):

L(β) =
∏
j

exp(
∑p

i=1 βiXji)∑
l∈R(tj)

exp(
∑p

i=1 βiXli)
(16)

So, mortgages that are not prepaid only contribute to the risk set, but do not appear
in the numerator. The log partial likelihood is:

log(L(β)) =
∑
j

p∑
i=1

βiXji −
∑
j

log(
∑

l∈R(tj)

exp(

p∑
i=1

βiXli)) (17)

Then, to estimate β, L(β) is maximised w.r.t. β using the realizations of Xki ∀k, i. Or
equivalently, log(L(β)) is maximised over β. Both result in the same β as the natural
logarithm is a monotonic transformation, which does not influence the location of the
maximum.

β̂ = argmax
β

log(L(β)) (18)

Interestingly, the baseline hazard function does not have to be known to estimate β.
Estimation of the baseline hazard function is hard, which makes this a desirable prop-
erty (Chen, 2018).

A disadvantage of the Cox proportional hazards model is that it cannot deal with
time-varying covariates as a time-constant hazard ratio is assumed. Macro-economic
factors such as the interest rate level and the unemployment rate are in the literature
found to affect prepayment rates (Green and Shoven, 1983; Quercia, 2016), and as they
are time-varying covariates, it is desirable to include time-varying covariates in the
model. This is achieved by adjusting the classical Cox model, which leads to the so
called Cox time-varying covariates model, which is discussed in Section 3.2.2.

Dealing with tied events - Efron’s method

When two or more mortgages are prepaid at the same recorded time, they are said
to be tied. In this case, (13) changes to:

t1 ≤ t2 ≤ · · · ≤ tm (19)

If time is considered to be a continuous variable, then the probability of two mortgages
to be prepaid at the same time is zero. However, as in this thesis, the available data is
often observed for discrete time points. The Cox proportional hazards model relies on
the assumption that time is continuous, and hence event times are distinct as they are
equal with probability zero. So, if we consider two mortgages to be prepaid at the same
recorded time in the data set, Cox says that in reality one of the two mortgages was in
the risk-set of the other as they did not actually happen at the same time. However, the
Cox model cannot determine which mortgage was prepaid first in reality (Xin, 2014).
Therefore, Efron (1977) came up with a method to deal with tied events in the Cox
model, called the Efron method. It changes the partial likelihood as defined in (16) by
changing the contributions of the tied events to the overall partial likelihood. Let Dj
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be the index set of all mortgages that are prepaid at time tj and let dj be the number
of loans in Dj. The partial likelihood contribution becomes now:

L(β) =
m∏
j=1

exp(
∑p

i=1 βiXji)∏dj
s=1(

∑
l∈R(tj)

exp(
∑p

i=1 βiXli)− s−1
dj

∑
l∈Dj

exp(
∑p

i=1 βiXli))
(20)

Although this may look complicated at first sight, it is a relatively easy correction on
the original partial likelihood where tied events were not considered. If we take for
example that the first two prepaid mortgages were prepaid at the same time, then we
now get that the contribution of these mortgages to the partial likelihood is as follows:

L1,2(β) =
exp(

∑p
i=1 βiX1i)∑n

l=1 exp(
∑p

i=1 βiXli)

∗ exp(
∑p

i=1 βiX2i)
1
2
exp(

∑p
i=1 βiX1i) +

1
2
exp(

∑p
i=1 βiX2i) +

∑n
l=3 exp(

∑p
i=1 βiXli)

(21)

while without tied events it would be (Efron, 1977):

L1,2(β) =
exp(

∑p
i=1 βiX1i)∑n

l=1 exp(
∑p

i=1 βiXli)
∗ exp(

∑p
i=1 βiX2i)∑n

l=2 exp(
∑p

i=1 βiXli)
(22)

As it is not that straightforward to see how expression (21) follows from (20) for two
tied events, it is derived step-by-step in Appendix A.4. The intuition behind the Efron
method is that the order in which tied prepayments happen is not known and hence the
denominator is reduced with the same fraction. In other words, Efron’s approximation
assigns fractional weights to tied events. Efron’s approximation performs well when
the number of tied events is low as well as when the number is high (Rocke, 2021;
Borucka, 2014b). Therefore, Efron’s method is used in this thesis rather than other
approximation methods such as Breslow’s method or the Exact method. Note that if
the Efron’s method is used while there are no tied events, it results in the same partial
likelihood as in (16) (Borucka, 2014b).

3.2.2 Cox time-varying covariates model

Predictors whose values vary over time can be included in the Cox time-varying covari-
ates model, or also called the extended Cox model. The model contains both time-fixed
(denoted by X) and time-varying (denoted by X̃) predictors and can be written as:

hk(t) = h0(t)exp(

p∑
i=1

βiXki +

q∑
j=1

δjX̃kj(t)) (23)

or equivalently,

log(
hk(t)

h0(t)
) =

p∑
i=1

βiXki +

q∑
j=1

δjX̃kj(t), (24)

where log is the natural logarithm. h0(t) is called the baseline hazard, which depends on
time, but does not depend on covariate values. There are p time-independent covariates
and q time-dependent covariates. The hazard ratio as defined in (6) is constant over
time for time-fixed covariates, whereas for time-varying predictors the hazard ratio may
vary over time. The model has the following assumptions:
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• Survival times between distinct mortgages in the sample are independent condi-
tional on the covariates, which also means that the behaviour of people holding
the mortgages are independent conditional on the covariates. So, if one person
would have multiple mortgages, his repayment behavior would be independent of
the number of mortgages he has.

• The hazard at time t depends on the value of Xki(t) at that same time. In other
words, the effect of a time-dependent variable Xki(t) on the survival probability
at time t depends on the value of this variable at the same time t, and not on the
value at an earlier or later time (Kleinbaum and Klein, 2011).

Testing proportional hazards assumption

For the Cox proportional hazards model one should test the underlying proportional
hazards assumption. As established before, the proportional hazards assumption does
not hold for time-dependent covariates. However, the proportional hazards assumption
should still hold for the time-independent variables in the Cox time-varying covariates
model as it should in the original Cox proportional hazards model. This assumption
can be tested using two different approaches. Both testing methods are used. The first
method is the graphical method, which uses the evaluation of the log(-log) survival
curve. Since 0 ≤ Sk(t) ≤ 1, it is that log(Sk(t)) ≤ 0. Therefore, both sides are mul-
tiplied with −1 to be able to apply the second logarithm. So, the second logarithm is
taken over −log(Sk(t)). Applying the log(-log) transformation on the survival curve as
stated in (5), we get (see appendix A.5 for derivation):

log(−log(Sk(t)) = log(−log(S0(t))) +

p∑
i=1

βiXki (25)

The log-log test looks at the difference between the log(-log) survival curves of mortgage
k and l, which is given by:

log(−log(Sk(t)) = log(−log(Sl(t)) +

p∑
i=1

βi(Xki −Xli) (26)

Note that in (26), the subindices k and l represent different loans and i represents the
different covariates.
If the proportional hazards assumption holds, then the log(-log) survival curves should
be parallel to each other. Namely, the difference between the two curves is the linear
term of the differences in predictor values, which does not vary over time by the pro-
portional hazards assumption (Sestelo, 2017).

A second approach to test the proportionality assumption is by using the scaled Schoen-
feld residuals as introduced by Schoenfeld (1982). It assesses the correlation between
scaled Schoenfeld residuals and time. The intuition is that if, for example, a hazard ra-
tio for credit score is greater than unity, than mortgage holders with a high credit score
will be overrepresented among the prepaid mortgages. If, the hazard ratio increases
with time, the overrepresentation of high credit scores among prepaid mortgages also
increases with time. If we then calculate the proportion of high credit scores among
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prepayments and the mortgages in the risk set in each short interval of time, we should
be able to detect the increasing hazard ratio (Fisher et al., 2004). This testing proce-
dure uses the concept of a risk set, which is already introduced in (14). This approach
requires the following steps, which have to be repeated for every covariate i ∈ (1, . . . , p)
and for all the time points tj ∈ (t1, . . . , tm) that a prepayment occurs:

1. Search for an occurrence of prepayment, which the first is named to be at time t1

2. Take the subsample that includes only the data from time t ≥ t1. Hence, these
are the elements in R(t1), which is the risk set as defined in (14).

3. Then, the Schoenfeld residual at time t1 for covariate i is defined as:

r̂1i = X1i −
∑

j∈R(t1)
Xjiexp(

∑p
i=1 β̂iXji)∑

j∈R(t1)
exp(

∑p
i=1 β̂iXji)

, (27)

which is the difference between the observed value of covariate i on the observed
prepaid mortgage 1 and the conditional expectation given R(t1). Stated differ-
ently, it is the difference between covariate i value of mortgage 1 at the time of
prepayment of the first mortgage and the corresponding risk-weighted average of
covariate values among all the mortgages present in the risk set at time t1.

4. Let V̂1 be the estimated covariance matrix of the covariates at time t1. The
dimension of V̂1 is p × p, where p is the number of covariates. On the diagonal are
the variance estimates of covariates i for i = 1, . . . , p. Then, V̂1,(i,i) is the variance
estimate of covariate i at event time t1. Scale r̂1i by multiplying it with the inverse
of a variance estimate of the covariate i for the loans still included in the risk set,
which is denoted by V̂1,(i,i). As the risk set becomes smaller over time, the variance
of the covariates at each time may change over time. However, Grambsch and
Therneau (1994) concluded that this covariance matrix varies slowly over time and
is quite stable until the last few event times. Therefore, they used the average
covariance matrix of the covariates, which is denoted by V = meanj{V̂j}. This

yields the scaled Schoenfeld residual r∗1i = V
−1

(i,i)r̂1i.

5. This process is repeated for each tj. Grambsch and Therneau (1994) showed that
the association from the scaled Schoenfeld residuals with the time-dependence of
the Cox proportional hazards regression coefficient. Let βi(tj) be the value of the
time-varying coefficient of covariate i on time tj. Grambsch and Therneau (1994)
defined it as:

βi(tj) = βi + θigi(tj), (28)

where gi(tj) is a predictable process. So, this intuitively means that a weighted
function of time is added to the time-fixed covariate to obtain the time-varying
covariate. They showed the following relation:

E(r∗ji) + β̂i ≈ βi(tj) (29)

Under the proportionality assumption, the coefficient does not change over time
and hence βi(tj) = β̂i, which implies E(r∗ji) = 0. So, if we plot r∗ji + β̂i against tj,

r∗ji + β̂i should follow a random walk with a constant mean over time in order for
the covariate to satisfy the proportional hazards assumption.
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With this procedure, a Schoenfeld residual is obtained for every covariate for all points
in time where a prepayment occurred. If the Cox proportional hazards assumption
holds for a covariate, then the effect of that covariate on the hazard is constant over
time. If the scaled Schoenfeld residual is consistently higher/lower over a time interval,
then this is evidence that the hazard at that time is higher/lower than implied by the
model. This would suggest that the proportional hazards assumption is not valid for
that covariate. This can be tested using the zph test developed by Grambsch and
Therneau (1994). Using the distribution of θ̂, the asymptotic χ2 test statistic with
p degrees of freedom can be derived and it is tested H0 : θ = 0 versus H1 : θ ̸= 0.
For further details, see Grambsch and Therneau (1994). As this approach requires the
specification of the form of gi(tj), next to the zph test, also the graphical displays of
the scaled Schoenfeld residuals are evaluated.

3.3 Competing risks

There are two main sources of risk when providing a loan. These are the risk of
prepayment and the risk of default. These risks are competing events as one cannot
occur if the other has occurred. So, both risks compete as to which will occur first (Li
et al., 2023). There are two main modelling approaches used in the literature. One
is the Cox cause-specific hazards model. In this model, the hazard of each competing
event is modelled separately using a Cox proportional hazard model. It treats the
competing event, in this case mortgage default, as censored. A second approach is the
subdistribution hazard function introduced by Fine and Gray (1999). From now on, m
denotes the number of distinct event times (prepayment or default) instead of distinct
prepayment times, as we now deal with competing risks. So, tj denotes now the time
the j-th mortgage experiences a prepayment or default.

3.3.1 Cox cause-specific hazards model

A cause-specific hazards model estimates the hazard function for prepayments and
defaults separately, while censoring the other event (Columbia University Irving Medical
Center, 2023). This indicates that it is assumed that prepayment and defaults are
independent of each other. The cause-specific hazard rate for prepayment is defined as:

hP
k (t) = lim

∆t→0

P(t < Tk ≤ t+∆t,S = P |Tk > t)

∆t
, (30)

where S is the reason of mortgage ending and P meaning prepayment. For the discrete
time setting, the cause-specific hazard is defined as (Lau et al., 2009):

hP
k (t) = P(Tk = t,Sk = P |Tk > t− 1) (31)

For default, the cause-specific hazard rate is:

hD
k (t) = lim

∆t→0

P(t < Tk ≤ t+∆t,Sk = D|Tk > t)

∆t
, (32)

where D is default.
Using the cause-specific hazards for both competing events and the assumption that
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prepayments and defaults are independent events, the survival function for both termi-
nation events together, defined as SCR

k (t), can be written as:

SCR
k (t) = exp(−

∫ t

0

hP
k (s) ds−

∫ t

0

hD
k (s) ds) (33)

The CIF in a cause-specific hazards model is defined as the probability of prepayment
by time t while still at risk of being defaulted (Haushona et al., 2020). If we model
the cause-specific hazards separately, as in a cause-specific hazards model, then the
cumulative incidence function is defined for each risk. For prepayment, it is calculated
as:

CIF P
k (t) =

∫ t

0

hP
k (s)S

CR
k (s) ds, (34)

and for defaults it is calculated as:

CIFD
k (t) =

∫ t

0

hD
k (s)S

CR
k (s) ds, (35)

Expression (34) is derived in Appendix A.6. So, the survival function contains the
cumulative hazard function of both risks. The intuition behind this, is that mortgages
should not be prepaid and not be defaulted until time t (Kohl et al., 2015). If the
cause-specific hazards rates are modelled using a Cox proportional hazards model as
described (8), the Cox cause-specific hazards model is considered. For further details,
see Ozenne et al. (2017).

Using the cause-specific cumulative incidence function, we cannot interpret the co-
efficient as the effect of the covariate on the CIF because of the relations as stated in
(34) and (35) (Lambert, 2017). Plugging expression (8) and (33) into (34) can give
an effect of a covariate on the cumulative incidence function, but calculations become
rather complex.

Since the variable of interest is prepayment, defaults are treated as censored in ad-
dition to the usual right-censored observations. This means it is assumed that defaults
are non-informative for prepayments. Or in other words, defaults and prepayments are
independent of each other. One disadvantage is that this assumption cannot be tested
directly. However, using sensitivity analysis, it can be validated whether the assump-
tion is reasonable (Kleinbaum and Klein, 2011).

Sensitivity analysis in the competing risk model

It can be assessed what the effect is of the independence of competing risks assumption
on the estimated coefficients using sensitivity analysis. Extreme ranges for estimated
coefficients in a model can be determined under the violation of the independence
assumption. Sensitivity analysis estimates the coefficients by considering worst-case
violations of the independence assumption. There are two worst-case situations:

1. All mortgages that are censored due to default are assumed to be prepaid at the
time of being censored.
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2. All mortgages that are censored due to default are assumed to be prepaid at the
largest observed time to event of prepayment

Then, the coefficients of the model in case of these two worst-case situations are com-
pared to the original estimation as described in (30). If results are not significantly
different, than we may conclude that at most a small bias can result from the assump-
tion of independence. If there is a significant difference from the original estimation, we
learn the extremes to which the results could be biased if the independence assumption
is not satisfied (Kleinbaum and Klein, 2011).

Variable selection in the Cox Cause-specific hazards model

Best subset selection could be used, which compares all combinations of variables to
search which combination results in the best model fit (James et al., 2021). However,
this is computational costly and therefore another method is used.

Variable selection in the Cox cause-specific hazards model is performed using a com-
bination of forward and backward selection based on the Akaike Information Criterion
(AIC). Using forward or backward selection does not guarantee to find the best possible
model out of the 2p possible models. For example, it could be that removing two vari-
ables X1 and X2 at once improves the model fit more than removing one other variable
X3. Though, a stepwise selection procedure as backward selection would remove X3

(James et al., 2021). Therefore, a combination of forward and backward selection is
used. This attempts to mimic more closely best subset selection, while keeping the
computational cost low. Let p be the number of parameters and L(β̂) be the partial
log likelihood. The criterion is as follows:

AIC(p) = −2log(L(β̂)) + 2p (36)

Another criterion that is often used is the Bayesian Information Criterion (BIC), which
is as follows:

BIC(p) = −2log(L(β̂)) + p ∗ log(n)), (37)

where n is the number of observations. While the BIC chooses the correct model as
n → ∞, the AIC is preferred if the goal is prediction, since it selects a less parsimonious
model (Hastie et al., 2009). Therefore, the AIC is used in this thesis to select variables
to be included in the model. Both prepayments and defaults have a hazard rate and
this variable selection procedure picks the variables that are most informative for the
corresponding hazard. So, for each of the two hazards, this procedure is used and hence
different variables could be selected. It consists of the following steps as described by
Szolnoki (2021):

1. Start with the full model. That is, all covariates are included. Obtain the AIC.

2. Estimate all the models with removing or adding one variable and obtain the AIC
for each model. (Note that for the full model, one cannot add a variable).

3. Compare the obtained AICs from 2. with the AIC from 1. and select the model
with the lowest AIC value.
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4. Stop if the AIC cannot be further reduced by removing or adding a covariate.
Use this model as the final model.

One disadvantage of this procedure is that the effect of a covariate on the cumulative
incidence function is not clear in the Cox cause-specific hazards model as mentioned
before and therefore it could be that selected variables are informative for the cause-
specific hazard, but not for the cumulative incidence (Olajubu, 2020).

3.3.2 Fine-Gray subdistribution hazard model

Fine and Gray (1999) models the cumulative incidence function with covariates directly
by treating the cumulative incidence function (CIF) as a subdistribution function. The
subdistribution function models the hazard function derived from a CIF. It is the in-
stantaneous rate of occurrence of prepayment at time t for mortgages that are event
free or defaulted before time t (Haushona et al., 2020). The model accounts for this
by adjusting the risk set. So, still the estimation procedure is used as in (16), but now
the risk set R(tj) also contains the mortgages that have defaulted before time tj. For
prepayment as event, we get:

λP
k (t) = lim

∆t→0

P(t < Tk ≤ t+∆t,Sk = P |Tk > t ∪ (Tk < t,Sk ̸= P ))

∆t
(38)

This function estimates the hazard rate for prepayment at time t using the risk set that
remains at time t after it accounts for all previous prepayments and defaults. For a
discrete time setting, the subdistribution hazard is defined as (Lau et al., 2009):

λP
k (t) = P(Tk = t,Sk = P |Tk ≥ t ∪ (Tk < t,Sk ̸= P )) (39)

The risk set is different for the Fine-Gray subdistribution hazard model than for the
Cox cause-specific hazards model. Namely, in the Fine-Gray model, a mortgage that
defaults, remains in the risk set for prepayment and the mortgages are given a censoring
time larger than all event times. On the other hand, the risk set for prepayments in the
Cox cause-specific hazards model decreases each time a default occurs (Hinchlie, 2012).
While the Cox cause-specific hazards model complicates the interpretation of covariates
on the cumulative incidence function, the subdistribution function used by Fine and
Gray allows for straightforward interpretation. However, this comes at the cost of the
rather counter-intuitive risk set. The model estimates the effect of covariates on this
subdistribution hazard function via:

λP
k (t) = λP

0 (t)exp(

p∑
i=1

βiXki), (40)

where λP
0 (t) denotes the baseline subdistribution hazard function for prepayments

(Austin et al., 2019). Note that the model has the same form as the Cox propor-
tional hazards model as defined in (8), but now modelling the subdistribution haz-
ard instead of the hazard. If only time-invariant covariates are included, there is a
one-to-one relation between the subdistribution hazard function and the cumulative
incidence function. Therefore, the subdistribution hazard model enables one to esti-
mate the direction of the effect of covariates on the CIF. Define the baseline CIF as
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CIF P
k0(t) = P(Tk ≤ t,S = P |Xki = 0 ∀i). The relation between the subdistribu-

tion hazard function and the CIF is derived in the same way as (10) using the same
mathematical steps as in Appendix A.2. It is given by:

1− CIF P
k (t|X) = (1− CIF P

k0(t))
exp(

∑p
i=1 βiXki) (41)

If the a covariate is associated with an increase in the subdistribution hazard of prepay-
ment, it is also associated with an increase in the cumulative incidence of prepayment.
Consequently, the direction of the effect of a covariate on the CIF can be interpreted
if only time-invariant covariates are used (Austin et al., 2019). The proof of this claim
can be found in Appendix A.7.

Time-varying covariates

First, one should note that there are two types of time-varying covariates, which are
the internal and the external time-varying covariates. Internal time-varying covariates
are covariates observed over time for each individual mortgage, which is for example
marital status. External time-varying covariates consist of two subgroups. One of
the subgroups, called the external ancillary time-varying covariates, is our main focus.
These covariates are defined as the result of a stochastic process external to the subject.
For example, the current 30-year yields from government bonds and the current unem-
ployment rate. The subdistribution hazard model of Fine and Gray can only incorporate
time-varying covariates that are externally defined. Since mortgages that defaulted re-
main in the risk set for prepayments, time-varying covariates have to be observed for the
mortgage after the default happened. In the data set, internal time-varying covariates
of mortgages that defaulted are not observed after default and as a result cannot be
considered in the risk set of prepayment (Austin et al., 2019). Since only external time-
varying covariates are considered, the relationship between the subdistribution hazard
and the cumulative incidence function still holds. Let Λk(t) =

∫ t

0
λP
k (s) be the cumu-

lative subdistribution hazard function. The relationship between the subdistribution
hazard and the CIF now becomes:

CIF P
k (t|X(s), s ≤ t) = 1− exp(−Λk(t|X(s), s ≤ t)) (42)

= 1− exp(−
∫ t

0

λP
0 (s)exp(

p∑
i=1

βiXki(s)) ds) (43)

Since one cannot bring exp(
∑p

i=1 βiXki(s)) outside of the integral, one cannot interpret
anymore that a covariate that has an effect on the subdistribution hazard of prepay-
ments, has an effect in the same direction on the CIF of prepayments.

REMARK: Austin et al. (2019) reviewed the interpretation of time-varying covari-
ates in the Fine-Gray model of papers published in 2015 and in the first five months of
2019. They concluded that of the 11 studies all but 2 wrongfully used at least one in-
ternal time-varying covariate and that all papers did not clearly explain how they used
time-varying covariates. Moreover, they found that 6 out of the 11 suggested that the
time-varying covariate was associated with the risk of an event. Also, the papers in the
literature contradict each other about whether or not (external) time-varying covari-
ates are allowed in the Fine-Gray model, and hence I question the use of time-varying
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covariates. Moreover, for prediction of the CIF with time-varying covariates, predicting
the evolution of the macroeconomic variables would be required. After reaching out to
the author of one of the reports (Therneau et al., 2024) that suggested that it is allowed
to use external time-varying covariates and he told me that he questioned his own paper
and needed to review it, I decided to not progress with external time-varying covariates.

Variable selection in the Fine-Gray model

In the Fine-Gray subdistribution hazard model, variables are selected using backward
selection. While one could use the AIC or BIC as criterion, in this paper, the BICcr
criterion is used as proposed by Kuk and Varadhan (2013). In this criterion, the penalty
uses the total number of prepayments instead of the total number of mortgages as in
AIC and BIC. Their approach is based on Volinsky and Raftery (2000), who used the
number of uncensored events instead of the number of observations in the BIC for
variable selection in the Cox proportional hazards model. Their intuition behind this
was that there are only as many terms in the partial likelihood function as there are
uncensored events, which can be seen in (16). So, only the mortgages that are prepaid
contribute to the partial likelihood of the Fine-Gray model. They concluded that using
the number of uncensored events in the BIC improved the criterion. Moreover, the
asymptotic properties are still valid. Kuk and Varadhan (2013) translated this idea to
the competing risk setting. Define n∗ as the total number of full prepayments. The
BICcr is then defined as follows:

BICcr = −2log(L(β̂)) + p ∗ log(n∗) (44)

The BICcr is a more stringent penalty than the AIC, which results in a more parsimo-
nious model than using AIC. On the other hand, the BICcr has a less stringent penalty
than BIC. So, the number of parameters selected by BICcr, will be between the number
of parameters selected by AIC and BIC (Kuk and Varadhan, 2013).

3.4 Machine Learning: Tree based methods

To understand tree based methods, this section briefly explains the relatively easy clas-
sification tree model that predicts the classification of mortgages. That is, it predicts
whether a mortgages is prepaid or not rather than predicting a cumulative incidence
function. The prediction of the cumulative incidence function is described in Section
3.4.1.

Tree based methods stratify the predictor space into a finite number of non-overlapping
regions. For observations that fall into the same region, the same prediction is made.
That is, the mean of prepayment rate for the training observations in that region. A
tree is grown starting at the top of the tree, which is called the root node. This root
node is split into two daughter nodes, the left-hand node and the right-hand node. The
splitting is based on recursive binary splitting. This process is repeated for each node
until the number of observations in the last node, called the terminal node, would drop
below a threshold (Frydman and Matuszyk, 2022). So, the data is subdivided into
regions based on a splitting criteria. Tree based methods make use of recursive binary
splitting rather than finding the optimal regions as this would be too computational
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costly. As a result, classification trees often fail to make good predictions. However,
combining multiple trees using a so-called random forest, significantly improves predic-
tions (James et al., 2021). Therefore, a random forest will be used in this thesis, which
will be discussed now.

Bootstrapping and Random Forest

If we would just split the data into one training set and one test set, the splitting
would directly affect the estimation and prediction. By increasing the number of train-
ing samples, the effect of the split reduces. As we generally have one data set, the
widely used method called bootstrapping can be used to obtain multiple training sets.
A bootstrap sample is a random sample of the original data set with replacement. The
size of the bootstrap sample is equal to the size of the original training data set. Or
in other words, one observation of the original data set can occur multiple times in the
bootstrap sample. Sampling with replacement leads to larger random samples which
reduces bias. Moreover, sampling with replacement also reduces the variance of the
Random Forest and prevents overfitting (Lyu, 2021). For a large sample, on average
63% of the original observations will occur one or more times in the bootstrap sample,
whereas the other 37% of the observations will not occur (Weathers, 2017). The proof
of this statement is stated in Appendix A.8. As these are random samples with replace-
ment of the original data set, the trees grown on the bootstrap samples are likely to
be very correlated. The random forest mitigates this by taking a random subsample of
the predictors at each split when building a tree. As a rule of thumb, this subsample
includes m = ⌊√p⌋ predictors for classification trees and m = ⌊p

3
⌋ for regression trees

as concluded by Breiman (2001). Taking a random split of the predictors doesn’t allow
the strong predictors to always be the first split and hence less strong predictors get a
chance. Each tree makes a prediction and as last step in the random forest, the average
of the predictions of all grown trees is taken to get the final prediction. The trees are
grown deep and are not pruned, which results in high variance. Averaging trees results
in lower variance of the prediction while keeping the bias of the prediction low (James
et al., 2021).

3.4.1 Random survival forest for competing risks

The random survival forest (RSF) is an extension to the random forest discussed in
the previous section. While the random forest is used to make predictions for classifi-
cation and regression, the random survival forest for competing risks can predict the
survival curve as well as the cumulative incidence function in the presence of competing
risks. The idea of the RSF is still to build a tree on each bootstrap sample and then
decorrelate the trees by randomly selecting ⌊√p⌋ predictors at each split. However,
there are several choices of splitting rules and they involve splitting based on hazard
functions or cumulative incidence functions instead of survival functions. The mostly
used split criterion for the RSF is the log-rank test statistic. At each node, the ⌊√p⌋
randomly selected predictors are considered and the best split is selected as the max-
imum of the log-rank statistic over all possible split points over all ⌊√p⌋ predictors
(Wright et al., 2017). Important remark is that although ⌊√p⌋ predictors are randomly
selected at each node, the eventual split is performed on one of these variables and
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not on multiple variables simultaneously. A second splitting rule used in the presence
of competing risks, is a modification of Gray’s test (Gray, 1988). Both splitting rules
are described and used in this thesis, but first, in the next section, it is explained how
the CIF is estimated in the RSF for competing risks and how tied events are dealt with.

Estimation of the ensemble CIF

Let B denote the number of bootstrap samples, which thus also equals the number
of trees. Let ck,b be the number of times mortgage k occurs in bootstrap sample b.
Observe the covariates of mortgage k, Xk, and follow the splitting criteria through
the tree to end up in a terminal node and to be able to define the CIF of mort-
gage k for the b-th tree. Define hb(Xk) as the indices of the mortgages that are in
the same terminal node as mortgage k in the bootstrap training sample b. Let the
node-specific number of prepayments at time tj in bootstrap sample b be denoted by
NP

b (tj|Xk) =
∑

k∈hb(Xk)
ck,b1{Tk=tj ,S=P} and let the number of mortgages at risk at time

tj in the terminal node be denoted by Yb(tj|Xk) =
∑

k∈hb(Xk)
ck,b1{Tk≥tj}. Let the sur-

vival function of all mortgages that are in the same terminal node as mortgage k be

Ŝb(tj|Xk) =
∏

u≤tj
(1 −

∑
s∈{P,D}

Ns
b (u|Xk)

Yb(u|Xk)
), which is the Kaplan-Meier estimator. Let

the CIF estimate at time tj of the terminal node containing mortgage k then be defined
as:

ĈIF
P

b (tj|Xk) =

j∑
u=1

Ŝb(tu−1|Xk)Yb(tu|Xk)
−1NP

b (tu|Xk), (45)

which is the Aalen-Johansen estimator of the cumulative incidence function. While Ish-
waran et al. (2014) used notation for continuous time, (45) is a discrete representation.

Thus, at the terminal node we look how many mortgages experience cause s ∈ S,
which is divided by the total number of mortgages at risk in that terminal node. This
is multiplied with the survival function. Intuitively this can be motivated by that mort-
gages should have survived until that point in time, or in other words, mortgages should
be event-free until that point in time.

The ensemble estimate of the CIF is then obtained by averaging over the trees and
hence, for each j = 1, . . . ,m, the ensemble estimate of the CIF at time tj is:

CIF
P
(tj|Xk) =

1

B

B∑
b=1

ĈIF
P

b (tj|Xk), (46)

where B is the number of trees. So, given the covariates of the mortgage k = 1, . . . , n,
the CIF estimate of mortgage k within each bootstrap sample is averaged to get the
ensemble estimate of the CIF for mortgage k. The cause-S termination is equal to:

M
S
(τ |x) =

∫ τ

0

CIF
S
(t|x) dt = 1

B

B∑
b=1

M̂S
b (τ |x) (47)

(Ishwaran et al., 2014)
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Log-rank splitting criteria

While the log-rank test statistic was originally used for two-sample testing with survival
data, it can be used as splitting criteria in a random survival forest with competing
risks. In this section, the notation of Ishwaran et al. (2021) is followed. First, consider
a node to be split. Let Xi be the value of covariate i. A splitting then looks like
L : Xi ≤ c and R : Xi > c if Xi is a continuous predictor, where L is the left-hand
branch and R denotes the right-hand branch. If Xi is a binary predictor, then a split-
ting looks like L : Xi = 1 and R : Xi = 0. Let the distinct event times be denoted
by t1 < t2 < · · · < tm as defined before. Let dL,i(tj) and dR,i(tj) equal the number of
prepayments at time tj in branches L and R respectively based on splitting on covariate
i. Let YL,i(tj) and YR,i(tj) be the number mortgages at risk at time tj in branches L
and R respectively based on splitting on covariate i. Then:

YL,i(tj) =
n∑

k=1

1{Tk≥tj ,Xki≤c} (48)

and

YR,i(tj) =
n∑

k=1

1{Tk≥tj ,Xki>c} (49)

Let Y (tj) = YL,i(tj)+YR,i(tj) and d(tj) = dL,i(tj)+dR,i(tj). The log-rank split-statistic
value for the split is then:

L(i, c) =

∑m
j=1(dL,i(tj)− YL,i(tj)

d(tj)

Y (tj)
)√∑m

j=1
YL,i(tj)

Y (tj)
(1− YL,i(tj)

Y (tj)
)(

Y (tj)−d(tj)

Y (tj)−1
)d(tj)

(50)

We then get the best split (i, c)∗ for the node by taking the maximum over i and c of
the absolute value of the log-rank split-statistic:

(i, c)∗ = argmax
i,c

|L(i, c)| (51)

Intuitively, this means that the obtained (i, c)∗ are the covariate i and the split that
maximize the difference between the cause-specific Nelson-Aalen estimates in the result-
ing branches of the node (James et al., 2021). This splitting procedure is particularly
useful if the main purpose is to detect variables that affect the cause-specific hazard of
prepayments (Ishwaran et al., 2014; Weathers, 2017).

Modified Gray’s splitting rule

The splitting rule as described in (50) may not be optimal if the purpose is to pre-
dict cumulative event probabilities as the splitting rule is based on maximizing the
difference in cause-specific hazards rather than maximizing the difference in cumula-
tive incidence. If the purpose is prediction of cumulative incidences, it may be better
to apply a splitting rule that select variables based on their direct effect on the CIF.
The modified Gray’s splitting rule does this. The test modifies the risk set used in the
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log-rank splitting criteria. Now, Yj is replaced by:

Y ∗
j =

n∑
k=1

1{Tk≥tj∪(Tk<tj∩S=D)} (52)

So, the risk set consists of mortgages that are not prepaid or defaulted before time tj
and mortgages that are defaulted before time tj, but which are not censored (Ishwaran
et al., 2014).

3.4.2 Out-of-bag estimate of prediction error

Out-of-bag (OOB) observations are the loans that are left out due to bootstrap sam-
pling with replacement. In bag observations are the loans that are included in the
bootstrap sample and are used for growing the tree. One can evaluate the grown forest
performance using prediction on the OOB loans. To be able to define the out-of-bag
estimate of the prediction error, we first have to define the event-specific cumulative
hazard function. Let t1,Xk

< t2,Xk
< · · · < tm(Xk),Xk

be the unique event times in the
terminal node that contains Xk. The number of event times m depends on the node,
which is denoted by m(Xk). The prepayment-specific cumulative hazard function in
the terminal node of Xk in tree b is defined as:

HP
b (tj|Xk) =

∑
tu,Xk

≤tj

NP
b (tu|Xk)

Yb(tu|Xk)
(53)

So, it is the cumulative sum of the hazards until time tj. Let Ok be trees where loan k
is OOB. Then, for k = 1, . . . , n, the OOB ensemble estimator of the cumulative hazard
of prepayment is:

H
P,OOB

k (tj) =
1

|Ok|
∑
b∈Ok

HP
b (tj|Xk) (54)

So this intuitively means that loan k is dropped down the trees that did not use mortgage
k when they were grown, and average the estimated cumulative hazard from these trees.
Then, for k = 1, . . . , n, the OOB ensemble prepayment cause termination is equal to:

M
P,OOB

k =
m∑
j=1

H
P,OOB

k (tj) (55)

Then, mortgage k is said to have a worse outcome than mortgage k′ if:

M
P,OOB

k > M
P,OOB

k′ (56)

Harrell’s C-index (Harrell, 2001) is used as the OOB estimate of the prediction error
and is calculated using the following steps as described in Ishwaran et al. (2021):

1. Take all pairs of loans over all the data

2. Omit pairs where shorter event time is censored and also if both loans have the
same time until censoring. The set of the remaining loans is defined as L
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3. If Tk ̸= Tk′ , count 1 for each l ∈ L in which the shorter time had the worse
predicted outcome

4. If Tk ̸= Tk′ , count 0.5 for each l ∈ L in which M
P,OOB

k = M
P,OOB

k′

5. If Tk = Tk′ , count 1 for each l ∈ L in which M
P,OOB

k = M
P,OOB

k′

6. If Tk = Tk′ , count 0.5 for each l ∈ L in which M
P,OOB

k ̸= M
P,OOB

k′

7. Let concordance index C be:

C =
Sum over all counts

|L|
(57)

8. The OOB prediction error is equal to 1− C

If the prediction error equals 0.5, then we do no better than random guessing. If the
prediction error equals 0, this indicates perfect prediction (Ishwaran et al., 2021).

3.4.3 Variable selection in Random Survival Forest for competing risks

Variable are selected based on their variable importance (VIMP) and minimal depth.
Both methods measure the importance of variables in the model. A combination of
both will be used in this thesis.

Variable importance (VIMP)

The VIMP measures the increase in prediction error when a variable is randomly
”noised-up”. Ishwaran and Lu (2018) introduced a procedure to estimate confidence in-
tervals for VIMP, which used the calculation of VIMP as described in Ishwaran (2007).
It is calculated using the following steps, which are repeated for each covariate Xi:

1. Drop each OOB loan down the in-bag tree. If the covariate Xi is splitted, assign
a daughter node randomly (so with equal probability one of the daughter nodes
is selected). Then, at every split afterwards, assign a daughter node with equal
probability until a terminal node is reached.

2. The prepayment specific CIF is calculated with the ”noised-up” variable as being
the value at the terminal node

3. The VIMP for covariate Xi is the difference between the prediction error for the
original prepayment specific CIF (the OOB observations are dropped down the
in bag tree without randomization) and the prediction error for the new ensemble
obtained using randomizing Xi assignments.

4. This process is repeated for each tree to obtain a distribution of VIMP across the
trees. The ensemble VIMP is the mean VIMP across the trees.
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The idea behind the VIMP is that the difference in prediction performance is directly
effected by the location in the tree of the ”noised-up” variable. If the variable con-
tains more information about prepayment risk, then it is higher op the tree and conse-
quently, the more perturbed the noised-up prediction becomes relative to the original
tree-specific prediction. Predictors with a high VIMP value have predictive ability,
whereas predictors with zero or negative VIMP have no predicative ability (Ishwaran,
2007).

Minimal depth

Minimal depth as described by Ishwaran et al. (2010) assesses the forest construc-
tion to rank variables. Variables with high impact on predictions are assumed to be
more frequently near to root node. Minimal depth numbers the node levels based on
their distance to the root node. Important to mention is that if a tree is split multiple
times into two branches based on the same variable, the minimal depth is calculated
for the split of that variable that is nearest to the root node of the tree. The depth of
the first split for each variable is averaged over all trees. So, variables with low minimal
depth are variables with high predictive ability.

Variable selection criterion

Ishwaran and Lu (2018) used a subsampling approach to derive standard errors and
confidence intervals for VIMP in the random survival forest. If for a variable the VIMP
equal to zero is in the 95% confidence interval, then this implies there is no evidence
that the variable contributes to the prediction accuracy of the random survival forest
and consequently, the variable is removed from the data. However, if the minimal depth
of the variable is low, then the variable will not be removed.

3.4.4 Hyperparameter tuning

When the random survival forest for competing risks is used, there are parameters that
need to be set when growing the trees. These parameters are called hyperparameters.
The hyperparameters that need to be chosen are the number of trees to build, the
minimum number of observations in a terminal node, the number of chosen variables
at each split, the number of splits at each node and the maximum depth to which a
tree is grown. If for example the maximum depth of a tree is too high, the model will
be overfitted leading to high variance. On the other hand, if a tree is not grown deep
enough, the model is not fitted well leading to high bias (GeeksforGeeks.org, 2022). As
the values of the hyperparameters need to be chosen before fitting the model, it is up
to the researcher to assess what these values should be.

To reduce the effect of the hyperparameter value choice of the researcher, hyperparame-
ter tuning is used. Different methods are available to select the set of hyperparameters.
One of these methods introduces an additional sample, called validation sample. Then,
a large grid for each hyperparameter is taken. Using an optimization function, the
combination of hyperparameters is chosen that has the lowest prediction error on the
validation sample. Then, this set of hyperparameters is used to fit the random sur-

27



vival forest for competing risks on the training set and evaluate the performance on the
test sample. One cannot choose the hyperparameters that results in the best predic-
tions on the test set as this would lead to fitting the model to the test set (Jordan, 2017).

In this thesis a modification of the previously mentioned strategy is used to obtain
the values of the hyperparameters. A modification is performed since the described
strategy is computationally costly and can be inefficient. Rather than introducing a
validation sample, the hyperparameters are chosen based on model performance on the
OOB loans. This is possible since the OOB loans are independent of the training set.
The procedure used in this thesis to obtain the hyperparameters is the following:

1. Set the number of splits at each node equal to 2 to avoid biasing splits towards
continuous variables (Loh and Shih, 1997; Ishwaran et al., 2010). Set the number
of variable chosen at each split be equal to ⌈√p⌉ as this is the universally accepted
rule of thumb (James et al., 2021). Note that we now round up the number to the
nearest integer greater than the square root of p instead of rounding down to the
nearest integer as described before. This is decided because of the low number of
variables available in the data set.

2. Specify a small grid for the minimum number of observations in a terminal node
and the number of trees grown. This small grid is based on the current literature
and lowers the computational effort.

3. Set the value of minimum number of observations equal to the default value of 15
and minimize the OOB prediction error, defined as 1 - C, where C is defined in
(57), over the grid of number of trees.

4. Fix the number of trees to the obtained number of trees as calculated in the
previous step and minimize the OOB prediction error over the grid of minimum
number of observations in the terminal node.

3.5 Current VB Advisory prepayment model

Currently, VB works with a model that neither takes into account covariates nor com-
peting risks. They multiply their anticipated interest rate income with the cumulative
incidence of prepayment to correct for interest rate income lost due to early repayments.
Prepayment is here defined as the percentage of total portfolio value that is prepaid in
a specific period. This also includes partial prepayments, but since partial prepayments
are very rare in practice and as it is relatively low amount in euros compared to the
full prepayments, this does not heavily influence the percentage. It is assumed that
time of prepayment Tk is exponentially distributed with parameter γ, where γ is the
last 12-month average percentage of prepayments. So, the parameter γ can be seen
as a 12-month moving average of prepayment percentage. Then, their model for the
cumulative incidence function (CIF) looks as follows:

CIF P
k (t) = P(Tk ≤ t,S = P ) = 1− exp(−γ ∗ t) (58)
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3.6 Prediction performance evaluation methods

To be able to evaluate which model performs better, different evaluation methods can
be used. As the goal of the thesis is to predict the cumulative incidence of prepay-
ment over time, two evaluation methods are introduced that evaluate the prediction
performance of the models. This enables to compare the different models regarding pre-
diction accuracy. The methods used in this thesis are the integrated time-dependent
Brier score and the time-dependent area under the ROC curve. For both methods, the
score() function in the riskRegression package of R was used.

3.6.1 Integrated time-dependent Brier score

A first evaluation method for the prediction performance is the integrated time-dependent
Brier score (IBS). It is the mean squared error between the predicted cumulative inci-
dence function and the indicator that the mortgage is prepaid, integrated over time.

Gerds and Schumacher (2006) introduced a consistent estimation of the Brier score
with right-censored data by using Inverse Probability of Censoring Weighting to weight
observations, which is applicable if competing risks are present. The idea is the give
observations that are not censored more weight than observations that are censored.
First, we start by defining the estimate of the censoring distribution to be the Kaplan-
Meier estimate. Let rj′ be the number of censored observations at time tj′ . Then the

estimate of the censoring distribution is Ĝ(t) =
∏

j′:tj′≤t(1 − rj′

|R(tj′ )|
). And as we will

later, in (60), plug in time tj into Ĝ(t), j′ is used in the definition of Ĝ(t) to make

a clear distinction between indices and input. This gives a better view how Ĝ(t) is
calculated if tj is used as input. Competing events are treated as censored. Inverse
Probability of Censoring Weighting (IPCW) for each mortgage k at time t is defined
as (Ishwaran et al., 2014):

Ŵk(t) =
1{Tk ≤ t,S ≠ 0}

Ĝ(Tk)
+
1{Tk > t}

Ĝ(t)
(59)

Then, for j = 1, . . . ,m, the Brier score at time tj for mortgage k is defined as:

BSP
k (tj) =

{
(ĈIFk

P
(tj)− 1)2 if Tk ≤ tj and event is prepayment

(ĈIFk

P
(tj))

2 if Tk > tj or event is of other type

Intuitively this means that loans that are prepaid by time tj have a prediction error
equal to their squared distance of cumulative incidence prediction and 1. On the other
hand, we would like the model to predict a cumulative incidence equal to zero at time
tj for loans that are not prepaid at or before time tj. So, if loans are not prepaid at or
before time tj, they have a prediction error equal to the squared distance between their
predicted cumulative incidence at time tj and zero.

For j = 1, . . . ,m, the Brier score at time tj is calculated by using the weighted av-
erage with weights being the IPCW (Ishwaran et al., 2014; Frydman and Matuszyk,
2022):

BSP (tj) =
1

n

n∑
k=1

Ŵk(tj)((1{Tk ≤ tj,S = P} − ĈIFk

P
(tj))

2 (60)
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IPCW increases the weights of the observations that have an observed prepayment. If
for example we estimate that 1/4 of the mortgages have censoring times greater than
12 months and mortgage k is prepaid at t = 12. Then, the IPC weight of mortgage
k is Ŵk(12) = 4. This can be interpreted as the mortgages representing 4 mortgages.
Three mortgages censored before t = 12 and itself (Vock et al., 2016).

By integrating over time, it accounts for changes in prediction accuracy over time.
For prepayment, it is defined as (Ishwaran et al., 2014):

IBSP (τ) =
1

τ

∫ τ

0

BSP (t) dt, (61)

where τ ≤ tm is a point in time until which point the integrated Brier score is evaluated.
Often this is set is equal to tm, the last observed event time (Ishwaran et al., 2014).
Expression (61) is essentially a time-averaged Brier score. A lower value of the IBS is
considered a better prediction.

3.6.2 Time-dependent area under the ROC curve (AUC)

A second evaluation method for prediction performance is the time-dependent AUC.
Before it is described how the time-dependent AUC is calculated, the True Positive
Rate, the False Positive Rate and the ROC curve have to be defined.

The True Positive Rate, or 1−Type II error, is defined as the percentage of prepaid
loans that were correctly predicted as prepaid. The False Positive Rate, or Type I error,
is the percentage of non-prepaid loans that were predicted as prepaid. The Receiver
Operating Characteristics (ROC) curve is constructed by comparing the True Positive
Rate with the False Positive Rate at different classification thresholds (James et al.,
2021). First, fix a point in time and define a threshold ξ. For each loan, if the predicted
cumulative incidence value lies above this threshold, it is predicted that the loan will be
prepaid by that point in time. Then calculate the inverse probability censoring weights,
which estimate the probability of being uncensored, using the Kaplan-Meier estimate
to account for the bias introduced by censoring. These weights are used to calculate
the True Positive Rate (TPR) (Kamarudin et al., 2017). Let δk = 1(Tk ≤ Ck) and let
T ∗
k as defined in Section 3.1.1. Hung and Chiang (2010) defined the estimates of the

weighted TPR and FPR. This can be adjusted to incorporate competing risks. Then
the estimates of the weighted TPR and FPR are defined as:

T̂PR(ξ, t) =

∑n
k=1 1(ĈIF k(t) > ξ, T ∗

k ≤ t,S = P ) δk
nĜ(T ∗

k )∑n
k=1 1(T

∗
k ≤ t,S = P ) δk

nĜ(T ∗
k )

(62)

F̂PR(ξ, t) =

∑n
k=1 1((ĈIF k(t) > ξ, T ∗

k > t) ∪ (ĈIF k(t) > ξ, T ∗
k ≤ t,S = D)∑n

k=1 1((T
∗
k > t) ∪ (T ∗

k ≤ t,S = D))
(63)

For intuition, the fraction δk
nĜ(T ∗

k )
in (62), corrects for censoring. It is the fraction of

non-censored loans at time Tk divided by the probability of being observed at time Tk.
It gives an estimate what the number of loans would be if there would be no censoring.
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The numerator in (63) counts the loans that are predicted to be prepaid by time t, but
which are not due either a time to event larger than t, or due to a default before or
at time t. The denominator counts the loans that are not prepaid by time t. These
are loans that experience an event after time t or have experienced a default before or
at time t. Note that the False Positive Rate does not have a term that corrects for
censoring, because we assume that censoring time and the CIF are independent of each
other, which gives the same 1

nĜ(t)
term for each loan in the numerator and denominator,

which then cancel each other out (Blanche et al., 2013).

Setting the threshold too low results in a high True Positive Rate, but also in a high
False Positive Rate. On the other hand, setting the threshold too high, results in a low
False Positive Rate, but also in a low True Positive Rate. So, by looking at a range of
threshold, this results in a graph of the True Positive Rate against the False Positive
Rate for different thresholds, which is the ROC curve. From this, the optimal threshold
can be determined. As this could result in overfitting, the area under the ROC curve
(AUC) is calculated to obtain a consistent evaluation criterion. The AUC is calcu-
lated using the score() function in the riskRegression package that uses the trapezoidal
method of calculating the area under the ROC curve. This method divides the area in
smaller subareas, which creates smaller trapezoids and calculates the sum of the areas
of these smaller trapezoids to approach the AUC (Yeh, 2002). The higher the AUC, the
better the prediction. These steps are repeated at each event time to get an AUC for
each event time. The time-dependent AUC is plotted over time to see the prediction
performance of the model over time (Saha and Haegerty, 2015).
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4 Data

The data used is the Single-Family Loan-Level Data set provided by Freddie Mac (2024),
which is supervised and regulated by the Federal Housing Finance Agency. It contains
fully amortizing 10-, 15-, 20-, 30-, and 40-year fixed-rate Single-Family mortgages. A
random sample of 50,000 loans is available for each origination year between 1999 and
2022. For the year 2023, there is a random sample of 37,500 loans available. These
random samples are updated every quarter to include the most recent monthly observed
factors. Hence, the random sample of year 1999 consists of monthly observations from
January 1999 until December 2023 from loans that were issued in 1999. Additionally,
supplementary data from the year of issuance is available for each loan. In total, there
are now 1,237,500 loans observed each with a unique Loan Sequence Number. All
mortgages are either prematurely terminated by prepayment or default, matured or
right-censored. There is no left-censored data.

• First, mortgages whose Metropolitan Statistical Area (MSA) are not observed,
are removed from the data set. This is because the original idea was to add
macroeconomic factors that are observed for each MSA to the data set. So, it
is assumed that missing data about the MSA is independent of prepayment and
default rates, as this would otherwise bias results. As it was later decided not to
proceed with the inclusion of macroeconomic factors, this step is a limitation of
the research as mentioned in Section 7. Then, 964,999 mortgages remain in the
data set.

• Next, mortgages for which it is not known whether it is the first property bought
by the mortgagor are removed. This leaves 964,424 mortgages.

• Moreover, mortgages for which the Number of Units is not known are removed.
This leaves 964,357 mortgages.

• If the Original Loan-to-Value Ratio is not known, the mortgages are removed
from the data set. This leaves 964,327 mortgages.

• If the Original Debt-to-Income Ratio is not known, the mortgages are removed
from the data set. This leaves 901,872 mortgages.

• Next, if a mortgage does not have a prepayment penalty it is removed from the
data. This is because this could potentially affect prepayment behaviour, which
would be desirable to include, but due to limited number of mortgages with a
prepayment penalty, it is excluded (only 623 mortgages in the whole data set).
Now, 901,249 mortgages remain.

• If the type of property is not known, then the mortgage is removed. This leaves
901,225 mortgages.

• If the credit score is not known, the mortgages are removed from the data set.
This leaves 899,918 mortgages.

• It was also decided to remove mortgages for which the occupancy status is not
known or the amortization type is ARM. However, there were no mortgages in
the data set that had this problem, so no mortgages were removed in this step.
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So, in the end, 1,237,500 mortgages were reduced to 899,918 mortgages.

To reduce computation time, a random samples of 20,000 mortgages is taken, which is
drawn without replacement. To check whether the sample drawn is indeed representa-
tive for all mortgages, a second sample is drawn and checked if the characteristics are
similar. This second sample is also used for out-of-sample predictions as later described
in Section 6.1. The original random sample of 20,000 mortgages is also split into two
samples to check for persistence of prepayment drivers and prediction accuracy using
backtesting as described in Section 6.2.

The prepayment rate is derived from the Zero Balance Code, the Zero Balance Ef-
fective Date and the Maturity Date, which are all provided in the data set. A Zero
Balance Code equal to 01 indicates the loan is prepaid or matured. If the Zero Balance
Effective Date, i.e. the date on which the event triggering the Zero Balance Code took
place, is not the same date as the maturity date, then this implies a prematurely pay-
ment. Combining these insights, it indicates a prepayment.

The definition of default provided by the European Central Bank Regulation (Euro-
pean Central Bank, 2024) is that a default on a loan can be considered to have occurred
when either or both of the following have taken place:

1. The bank considers that the obligor is unlikely to pay its credit obligations in full
to the bank, without recourse by the bank to actions such as realising security.
This is the ”unlikeness to pay” criterion.

2. The obligor is more than 90 consecutive days past due on any material credit
obligation to the bank. This is the ”days past due” criterion.

So, in this thesis, a loan is classified as defaulted if the delinquency status exceeds 90
days. Some of these loans are observed after these 90 days. These observations of the
defaulted loans are removed from the data set to be able to correctly count the time to
event using the table() function in R. Moreover, mortgages that are prematurely ended
due to short sale or Charge Off, REO (Real Estate Owned) disposition, or reperform-
ing loan securitizations are also classified as defaulted. These are events that typically
occur if the borrower is in financially distress. With a short sale, the obligor sells the
house before the lender seize it in foreclosure, because the borrower is unable to make
the interest payments (Chen, 2023). REO disposition refers to the situation where the
house is owned by the lender because it failed to sell in a foreclosure auction after the
borrower defaulted on their mortgage (Chen, 2024). Reperforming loans are loans that
defaulted, but came out of default as the borrower resumed payments (Kenton, 2022).
There are three loan in the data set and all three defaulted again. Therefore, the loans
are considered to have defaulted when they first went into default.

The data set also consists of 28 loans that are ”defect prior to other termination event”.
These causes are not specified in more detail. One of these loans was already classified
as defaulted by the definition of default taken. Since this thesis focuses on the modelling
of prepayment rates while incorporating competing events, the other 27 loans are also
classified as defaults.
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The loan with Loan Sequence Number F04Q20559684 is removed from the data due to
data quality issues. Data was missing for several months.

Available loan-specific covariates are presented in Table 1. Data on the continuous
covariates are presented in Table 2. In Appendix C, bar charts are provided for the
categorical variables in Figures 27-32. The measurement of number of borrowers has
changed from the second quarter of 2018 onwards. Before, it was only known if it was
one borrower or more borrowers. After, the exact number of borrowers was known. As
this leads to measurement differences, the data on the number of borrowers from Q2
2018 onwards is transformed to the same format as before.

The channel variable can take the values ”Retail”, ”Broker”, ”Correspondent, and
”Third Party Origination not specified” (which occurs 3613 times in the sample). This
last value indicates that it is not known whether a broker or a correspondent was in-
volved in the origination of the mortgage. It is only known that a third party was
involved. Therefore, it is merged with the values ”Broker” and ”Correspondent” into
a newly created value ”Third Party”. So, the variable channel is subdivided into two
dummy variables called channel: Retail and channel: Third Party.

As one can observe in the Appendix C Figures 28-30, several categories contain very
few observations. To avoid this, these categories are bundled. So, the number of units
will be a dummy variable that equals one if the mortgage consists of one unit and zero
if the mortgage consists of more than one unit. Occupancy status is changed into a
dummy variable that equals one if the house is used as primary residence and zero if
not. The property type dummy variable equals one if the property type secured by the
mortgage is a single-family home and zero otherwise.

As Table 22 in Appendix B shows, the number of loans per state are unbalanced. In
other words, there are states with few observations, which can cause problems with esti-
mation. Therefore, the states are assigned to four regions, as described by United States
Census Bureau (2022). The regions are determined based on geographical, historical
and economic characteristics. Although outside the United States there are often five
regions used, the US government uses four regions. These regions are called Northeast,
Midwest, South, and West. The number of observations for each region are tabulated
in the Appendix B Table 23. Table 24 in Appendix B shows the selected covariates for
estimation of the models and their reasons to be selected.

Table 1: Loan-specific variables (Freddie Mac, 2024)

Variable Name Description
Channel Indicates whether a broker, correspondent or a third party which

is not specified was involved in the issuing of the loan. If a mort-
gage does not fit in one of the three categories, it indicates retail.

Credit score Score to indicate likelihood that borrower will timely repay future
obligations.

First Payment
Date

The agreed date of the first scheduled payment
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First Time
Homebuyer Flag

Indicates whether the borrower will reside in the mortgaged prop-
erty as a primary residence and had no ownership interest in a
residential property during the three-year period preceding the
purchase date.

Interest-only In-
dicator

Indicator that denotes whether the loan only requires interest
payments for a specified period.

Loan Purpose Indicates whether the mortgage loan is a Cash-out Refinance
mortgage, No Cash-out Refinance mortgage, or a Purchase mort-
gage.

Loan Sequence
Number

Unique identifier assigned to each loan.

Maturity Date The month in which the final monthly payment on the mortgage
is scheduled.

Mortgage Insur-
ance Percentage

The percentage of loss coverage on the loan in case of default.

MSA Metropolitan Statistical Area
Number of bor-
rowers

The number of borrowers who are obligated to repay the mortgage

Number of units Denotes whether the mortgage is a one-, two-, three- or four-unit
property.

Occupancy Sta-
tus

Denotes whether the mortgage type is owner occupied, second
home, or investment property.

Original DTI Ra-
tio

Original Debt-to-Income Ratio is the sum of the borrower’s
monthly debt payments divided by the total monthly income used
to underwrite the loan as of the origination date.

Original Loan
Term

Duration of the loan in months.

Original LTV Original Loan-to-Value is the original mortgage loan amount on
the note date divided by the lesser of the mortgaged property’s
appraised value on the note date or its purchase price.

Original UPB Unpaid Principal Balance of the mortgage on the note date.
Property State State in which mortgaged property is situated.
Property Type Denotes whether the proporty type secured by the mortgage is a

condominium, leasehold, planned unit development, cooperative
share, manufactured home, or Single-Family home.

Current Actual
UPB

Reflects the mortgage ending balance.

Estimated LTV Current Loan-to-Value ratio estimated through Freddie Mac’s Au-
tomated Valuation Model.

Interest Rate The interest rate for each month of the mortgage
Loan Age The number of scheduled payments from the time the loan was

originated or modified up to and including the performance cutoff
date.

Monthly Report-
ing Period

As-of month for loan information contained in the loan record.

Payment Defer-
ral

A flag indicating a loan has been granted a payment deferral in
the current or prior period.
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Remaining
Months to Legal
Maturity

The remaining number of months to maturity.

Zero Balance
Code

A code indicating the reason the loan’s balance was reduced to
zero.

Zero Balance Ef-
fective Date

The date on which the loan’s balance was reduced to zero.

Zero Balance Re-
moval UPB

The amount of total UPB remaining on the loan immediately
prior to the application of the Zero Balance Code

Table 2: Summary statistics continuous variables

Variable name Mean Std. Dev Min. Max.
Credit Score 741.95 50.58 300.00 836.00

Mortgage Insurance Percentage 5.44 10.71 0.00 40.00
Original Debt-to-Income Ratio 34.47 10.66 1.00 65.00

Original UPB 225526.28 128855.08 17000.00 1114000.00
Original Loan-to-Value 72.07 17.15 6.00 100.00

Interest Rate 5.06 1.46 1.75 10.75
Original Loan Term 329.57 66.38 120.00 480.00

Figure 1 shows the number of issued loans per month from January 1999 until December
2023. After the financial crisis of 2007-2009, the number of issued loans reduced and
from that time onwards, the number of issued loans rose again. Figure 2 shows the
total number of outstanding loans in the random sample. Note that this figure is not
just the cumulative function of Figure 1 as prepayments and defaults cause the dips in
the graph. The prepayment and default rate over time are presented in Figures 3 and 4
respectively. The prepayment rate has spikes in the periods 2001-2003, 2011-2013, and
2020-2022. In the mid-2000s, the prepayment rate increases drastically. Several factors
could have contributed to this observation. One explanation could be that 30-year fixed
interest rates on mortgages were relatively low compared to the period before this time.
Prepayment rates are namely influenced by market rate fluctuations, which in research
is discovered to be one of the main factors. If market rates drop, this may trigger the
prepayment option (even though a penalty might neutralize the effect). Homeowners
have an incentive to refinance their mortgages to secure a lower interest rate on their
mortgage. However, as past research suggests, and also assumed in this paper, people
do not act rationally. A second explanation is the housing boom that occurred in
the mid-2000s. During this period, home prices rose and demand for housing was
high. Lee et al. (2022) concluded that an increase in house price significantly increases
prepayment rates, which can be seen during the housing boom in the early 2000s.
Homeowners are given an incentive to sell their home or to refinance it. During the
COVID-19 pandemic, the interest rate was kept low to support the economy, which
could lead to people refinancing their loans, which results in more prepayments. It is
observed that there are spikes in the default rate during the financial crisis starting in
2009 and also a relatively high spike at the start of the COVID-19 pandemic.
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Figure 1: Number of newly issued loans
over time

Figure 2: Total number of outstanding
loans over time

Figure 3: Prepayment rate over time Figure 4: Default rate over time

Table 3 shows the number of loans that are still active on 31 December 2023, prepaid
or defaulted, or that are matured. With 13,690

19,999
∗ 100% = 68.5% of the mortgages being

prepaid, prepayment is the termination cause that is most observed.

Table 3: Overview loan status in training set

State of mortgage Number of observations
Still active on 31 December 2023 5,270

Prepaid 13,690
Default 1,024

Matured 15

Total 19,999

4.1 Driver analysis

Figure 5 and Figure 6 show the relationship of the loan size and the loan term with the
cumulative incidence respectively. It uses the non-parametric Aalen-Johansen estimator
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of the cumulative incidence. The Aalen-Johansen estimator estimates the cumulative
incidence function in the presence of competing risks non-parametrically. Let dNP (tj)
be the number of mortgages prepaid at time tj given that they did not experience an
event before. This condition can be observed as the probability is calculated using
only loans that are still in the risk set at time tj. Let |R(tj)| be the total number of

mortgages at risk at time tj. Let pP (tj) =
dNP (tj)

|R(tj)| be the non-parametric estimate of

the probability of a prepayment at time tj. Then, for distinct event times j = 1, . . . ,m,
the Aalen-Johansen estimate of the cumulative incidence function is given by (Stegherr
et al., 2020):

CIFAJ(tj) =
∑
s≤tj

(
∏
τ<s

(1− pP (τ)) ∗ pP (s)) (64)

So, intuitively, it suggests that we estimate the probability that a loan is prepaid by
time tj by multiplying the probability that the loan is not prepaid until time tj with the
probability it is prepaid at time tj given that it did not experience an event before. If we
subdivide the data based on a variable value, then we can estimate the Aalen-Johansen
cumulative incidence non-parametrically for each variable outcome. Since continuous
variables have a lot of unique values, this would result in an unclear graph with multiple
lines. Therefore, for continuous variables, the data is separated based on quartiles of a
covariate.

In Figure 5, the cumulative incidence is plotted for the four quartiles of original unpaid
balance to show the effect of original unpaid balance on the cumulative probability of
prepayment. The figure shows that higher loan sizes are associated with a higher cu-
mulative incidence. So, higher loan amounts appear to be more likely to be prepaid.
For loan term, three categories are used instead of quartiles as the distribution of loan
terms is not very smooth, which then would result in non-informative curves. Namely,
16,305 out of the 19,999 loans have a term of 360 months, which suggests that quartiles
are not informative. Figure 6 suggests that shorter loan terms are less likely to be pre-
paid in the first 150 months. An explanation for this could be that it is less beneficial
to payoff short-term loans than long-term loans if market rates drop as one is already
closer to the maturity date. One interesting thing we see from Figure 6, is that there
is an increase in cumulative incidence just before the time hits 180 months for loans
with a loan term between 120 and 180 months. This has been investigated in the data,
since this increase is relatively large and looks random. The data shows that there are
22 loans that are prepaid after 179 months, which had a loan term of 180 months. This
may suggest that people want to save that little bit of extra interest they would pay if
they stick to the payment schedule. As the remaining amount to be paid one month
before maturity is relatively low, people often can afford to pay these two months at
once. We do not see this spike for the other two loan term categories, because the end
of the loan term is not reached in the data, as the data only covers 24 years. This
probably will cause original loan term to be non-proportional for prepayments.

38



Figure 5: Cumulative incidence of pre-
payment for the four quartiles of Original
Unpaid Principle Balance

Figure 6: Cumulative incidence of pre-
payment for loan terms of the three cat-
egories 120-180 months, 181-359 months,
and 360-480 months

The Aalen-Johansen estimators of the cumulative incidence for the other covariates
are presented in Appendix C. Mortgages with interest rates in the fourth quartile seem
to have a higher probability of being prepaid at any point in time than mortgages with
lower interest rates as can be seen in Figure 33. Moreover, mortgages with interest
rates in the lowest 25% quantile have a lower probability of being prepaid. Remark-
ably, mortgages with interest rates in the third quartile are less likely to be prepaid
than mortgages with interest rates in the second quartile. Intuitively, interest rates on
mortgages and prepayment are related through the current market rate. If market rates
drop, borrowers with mortgages with high interest rates are intuitively more likely to
refinance their loans, which would result in a prepayment.

Figure 34 shows the cumulative incidence curve for mortgages that were issued to
first-time homebuyers compared to mortgages that were issued to non-first-time home-
buyers. Intuitively, it is not clear in which direction first-time homebuyer affects the
likelihood of prepayment. Namely, people who take on a mortgage for the first time are
for example more likely to be young people. This could be an indicator for less financial
stability. For example, they are more likely to be fired from their jobs as they are less
likely to have a permanent contract, which would increase the likelihood of default, but
decrease the likelihood of prepayment. This relation should mainly be visible for short
loan age. On the other hand, young people are more likely to experience a change in
household composition or more likely to get divorced. Both could see prepayment rates
to be higher for first-time homebuyers than for non-first-time homebuyers. In Figure
34, it appears that up to 50 months, mortgages held by first-time homebuyers are less
likely to be prepaid. The same holds from 100 months onwards. Between 50 and 100
months, it is less evident what the relation is. Moreover, since the cumulative incidence
curves are relatively close to each other, the effect of a first time homebuyer is suggested
not to be large.

Figure 35 suggests mortgages on a one-unit property are more likely to be prepaid
than mortgages on a two-, three-, or four-unit property. A reason for this could be

39



that if the underlying property consists of more than one unit, it has a more complex
financial structure, which could lower the probability of prepayment. Figure 36 sug-
gests a time-varying or non-linear effect of credit score on prepayment. Namely, from
this graph, one cannot conclude in which direction credit scores and prepayments are
related. As a result, the proportionality assumption of the proportional hazard models
will likely not be satisfied. It looks like low credit scores are associated with lower
prepayments, but for the second, third and fourth quartile, the cumulative incidence
curves cross each other. Figure 37 indicates that the effect of the channel is not evident
or there might even not be an effect at all. For occupancy status there seems to be an
effect, as observed in Figure 38. If the collateral of the mortgage is used as primary
residence, the probability of prepayment appears to be higher than if the mortgage is
used for other purposes. In Figure 39, there appears to be an effect of original debt-to-
income ratio on the probability of prepayment from year 10 onwards. Loans with low
original DTI appear to have a higher probability of prepayment than loans with a high
original DTI. Intuitively, this makes sense. If the debt is low compared to income, this
suggests more financial flexibility for the borrower. Consequently, this enables one to
prepay their loan. Note however, that income will change over time, which changes the
debt-to-income ratio over time. If income increases, the debt-to-income ratio decreases
compared to the original DTI ratio, which would give even more financial flexibility.
On the other hand, if income decreased after the issuing date, this would lead to a
reduction in prepayment rate not only through less financial flexibility, but also due
to an increase in the number of defaults. Figure 40 does not show a stable answer to
the question in which direction the effect of mortgage insurance percentage is on the
probability of prepayment is. Moreover, it suggests that up until month 100 there is no
effect of mortgage insurance percentage on the probability of prepayment. For original
loan-to-value, there also appears not to be a clear effect on probability of prepayment,
observable in Figure 41. In Figure 42, it is observed that loans with underlying proper-
ties situated in the Western region seem to have a higher probability of being prepaid
than loans with underlying properties situated in other regions. As we cannot be sure at
this stage whether the effects observed are statistically significant, these figures should
be interpreted carefully.
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5 Model estimation

In this section, the estimates of the Cox cause-specific hazards model, the Fine-Gray
subdistribution hazard model and the random survival forest for competing risks are
presented and discussed. First, the estimation results of the Cox cause-specific hazards
model are discussed followed by the discussion of the Fine-Gray subdistribution hazard
model estimates. Lastly, the results of estimation of the random survival forest are
presented. The current VB Advisory model does not require estimation of parameters
and hence, only its prediction accuracy is compared to the other three models in Section
6.

5.1 Cox cause-specific hazards model

The proportionality assumption of the Cox prepayment-specific hazard and the Cox
default-specific hazard should be tested. If this assumption is not satisfied, it is tested
using sensitively analysis what the effect is on estimated coefficients and prediction
accuracy. If there is a significant difference in prediction accuracy, one could deal with
non-proportionality using two method, which are both examined. One is the inclu-
sion of time-varying effects. Interactions between the non-proportional variables and
time are included to incorporate the time-varying effect of the variables on the hazard.
Based on the pattern of the Schoenfeld residuals over time, one can also decide to use
interactions between the non-proportional variable and subsets of time. Moreover, one
can also incorporate interactions of non-proportional variables with functions applied
to the time to event, for example the natural logarithm (Bellera et al., 2010).

Stratification as solution to non-proportionality

A second approach is to stratify non-proportional variables. The idea is to split the
sample into subgroups based on the non-proportional variable and then estimate a dif-
ferent baseline hazard function for each subgroup (Borucka, 2014a). Each stratum has a
different partial likelihood function (see (16)), but by multiplying these different partial
likelihood functions, one single partial likelihood function is obtained. As a result, the
estimated coefficients of the variables will be the same for each stratum (Kleinbaum and
Klein, 2011). An important remark is that the number of observations per subgroup
should not be too low, because this leads to an unreliable estimate for the baseline
hazard in a subgroup and as a result will result in bad predictions. Stratifying a con-
tinuous variable can lead to a large number of subgroups if for each value a subgroup
is created, which leads to a low number of observations per subgroup. Therefore, it is
decided to stratify on the quartiles of the continuous variable in that case.

5.1.1 Variable selection

But before testing the proportional hazards assumption, variable selection is performed.
Figures 28 and 29 show little variation in the number of units and occupancy status re-
spectively in the data. As this suggests these two variables will not be able to contribute
to explaining the variation in the cumulative incidences for different mortgages, these
two variables were removed. Using the combination of forward and backward selection
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method based on the AIC as described in Section 3.3.1, the variables channel, first time
homebuyer flag, and original loan-to-value (LTV) are excluded for the estimation of the
prepayment-specific hazard rate. The step() function in R is used and the details of the
selection process are stated in Appendix B Table 25. The details on how to interpret
the table are given above Table 25 in Appendix B. For the Cox default-specific hazard
rate, the variables original loan term, mortgage insurance percentage, first time home-
buyer flag, and region are excluded. The details of the selection procedure are tabulated
in Appendix B Table 26. For both cause-specific hazards, the selection procedure did
not include a variable again after it was removed, and therefore using only backwards
selection using AIC would have resulted in the same selected variables.

5.1.2 Testing proportionality assumption

The next step is to test the proportional hazards assumption for both cause-specific
hazards, which is obtained using the cox.zph function in R. First, for each variable,
the sum of the scaled Schoenfeld residual and the estimated time-fixed coefficient is
plotted against time, as described in formula (29) in the Schoenfeld procedure. This
is exercised to get a first indication whether the proportionality assumption is satisfied
for each variable. Figures 7, 8 and 9 show the sum of the scaled Schoenfeld residuals
and the estimated time-fixed coefficient over time for each covariate. So, Beta(t) on
the y-axis refers to r∗ji+ β̂i as described in formula (29) of the Schoenfeld procedure. It
suggests that mortgage insurance percentage could potentially violate the proportion-
ality assumption as there seems to be a slight positive trend over time of the scaled
Schoenfeld residuals. Namely, the coefficient is constant under the proportionality as-
sumption and hence deviations over time are caused by changes in scaled Schoenfeld
residuals. Also, the region of the underlying property of the mortgage seems to have
non-constant effect over time on the cause-specific hazard of prepayment. Another
variable that seems to violate the proportionality assumption is original interest rate.

Figure 7: Scaled Schoenfeld residuals Credit Score, Original DTI and Number of Bor-
rowers respectively in Cox prepayment-specific hazards model
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Figure 8: Scaled Schoenfeld residuals MI percentage, Original Interest Rate and Origi-
nal Loan Term in Cox prepayment-specific hazards model

Figure 9: Scaled Schoenfeld residuals Region, Property Type and Original Unpaid
Principle Balance in Cox prepayment-specific hazards model

For the three variables that seem to violate the proportionality assumption, these hy-
potheses are also tested using the log-log survival curve as described in (26). As plotting
the log-log survival curve for continuous variables will lead to unclear pictures, the con-
tinuous variable original interest rate is subdivided into four categories, which are the
quartiles. Mortgage insurance percentage is subdivided into two categories: no insur-
ance (MI percentage = 0) and insurance (MI percentage greater than zero). The plots
are visible in Figures 10 and 11. One can see that the log-log survival curve of no
mortgage insurance crosses the log-log survival curve of mortgages with insurance and
therefore the proportionality assumption is not satisfied. For the original interest rate,
the log-log survival curves of the second and third quartile also cross each other, so it
looks like the proportionality assumption is not satisfied following (26). We see that
the log-log survival curve for the lowest quartile of original interest rate stops earlier
than for the other quartiles. This is because mortgages with lower loan terms typically
have lower interest rates because there is less uncertainty in interest rate fluctuations.
Note also that there is relatively large spike in the log-log survival curve for the second
quartile of original interest rate at the end, which is, as described earlier in Section 4,
because people tend to prepay their mortgage close to the maturity date. This spike
is exactly at 179 months. So apparently, those mortgages had an original interest rate
between 3.88% and 4.88%. For mortgages in different regions, the proportionality as-
sumptions does not seem to hold for later time points although the curves are relatively
close to each other.
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Figure 10: Log-log survival curves of MI factor and Interest Rate quartiles in Cox
prepayment-specific hazards model

Figure 11: Log-log survival curves of the
Regions in Cox prepayment-specific hazards
model

Third, the proportionality assumption is tested using the Chi-squared test statistic. If
the p-value is smaller than 5%, this suggests that the proportionality assumption is not
satisfied for that variable. The results are tabulated in Table 4. As one can observe, the
proportionality assumption is not satisfied for the variables credit score, original loan
term, original interest rate and region. First, we should deal with the variable that
most violates the proportionality assumption first, which is original interest rate, and
after, test again the proportionality assumption for each variable. Interactions between
covariates and (functions of) time were incorporated based on the plots 7, 8 and 9 of
the scaled Schoenfeld residuals. This resulted in non-proportionality of even more vari-
ables, no matter which combination of time and non-proportional variable interaction
was used. This ”guessing” of the right interactions between variables and time is not
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the right statistical strategy. In addition, applying a function of time has no theoretical
reason. For both these reasons, it was concluded stratification is better suited for this
data. Stratifying on the quartiles of original interest rate, resulted in Table 27, which
is shown in Appendix B to keep this section organised. Note that both credit score and
original loan term changed from non-proportional to proportional. Next, stratification
on the region variable is performed, and the proportionality test is shown in Table 28
in Appendix B.

Thus, at this stage, 16 subgroups are created. Only the mortgage insurance percentage
remains as non-proportional variable. Using too many stratification variables leads to
a small number of observations in the subgroups. Using mortgage insurance percent-
age as additional stratification variable led to a small number of observations in some
subgroups, even when the mortgage insurance percentage was changed into a dummy
variable indicating whether the insurance on the mortgage was 0%. In addition, Table
25 suggests that mortgage insurance percentage is the variable included that improves
model fit the least. While excluding this variable leads to omitted variable bias as it
has some explanatory power, it is decided to remove the variable from the model of
the Cox prepayment-specific hazard. The impact of this on the estimated coefficients
is tested in Section 5.1.3. Then, the remaining variables all satisfy the proportionality
assumption, as visible in Table 5. Note that both original loan term and credit score
seemed to violate the proportionality assumption based on the Chi-squared test statis-
tic in Table 4, but did not according to Table 5 after correcting for non-proportionality
of other covariates.

Table 4: Test of proportional hazard assumption for
prepayment-specific hazard

Variable chisq df p-value

Credit Score 5.4589 1 0.019
Original DTI 0.7686 1 0.381
Original UPB 2.5162 1 0.113

Original Loan Term 12.6119 1 3.8e-04
Property Type 2.1970 1 0.138

Number of Borrowers 0.0519 1 0.820
Region 51.5200 3 3.8e-11

Original IR 139.0247 1 2e-16
Mortgage Insurance Per. 3.7016 1 0.054

Global 206.9986 11 2e-16
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Table 5: Final test of proportional hazard as-
sumption for prepayment-specific hazard after
stratification

Variable chisq df p-value

Credit Score 0.2252 1 0.64
Original DTI 0.0762 1 0.78
Original UPB 1.1554 1 0.28

Original Loan Term 0.7805 1 0.38
Property Type 0.1721 1 0.68

Number of Borrowers 0.2907 1 0.59
Global 2.9658 6 0.81

For the Cox default-specific hazard, the proportionality assumption should also be
tested as it is used to estimate the cumulative incidence function of prepayment as
stated in (33) and (34). The output of the cox.zph function in the first two steps
is tabulated in Appendix B Tables 29 and 30. Subgroups are created based on the
quartiles of loan-to-value and the number of borrowers. This leads to 8 subgroups. In
total, there are currently 16 ∗ 8 = 128 subgroups, which is a relatively large number.
This has consequences for prediction, but this will be addressed in Section 6. The final
output, after stratification, of the proportionality assumption evaluation is presented
in Table 6.

Table 6: Test of proportional hazard assump-
tion for default-specific hazard using LTV and
Number of Borrowers as stratifying variables

Variable chisq df p-value

Credit Score 1.086 1 0.297
Original DTI 0.934 1 0.334
Original UPB 0.873 1 0.350

Original Interest Rate 3.340 1 0.068
Channel 0.306 1 0.580

Property Type 0.984 1 0.321
Global 9.781 6 0.134

The scaled Schoenfeld residuals for prepayment are plotted again in Appendix C Figures
43 and 44 for the variables that satisfy the proportionality assumption after controlling
for non-proportionality in original interest rate and region. The patterns are almost
the same as observed in the Figures 7, 8 and 9. The scaled Schoenfeld residuals for
variables when estimating the effect on the Cox default-specific hazard are plotted in
the Appendix C Figures 45 and 46. We see that the figures also suggest that the
proportionality assumption is satisfied for these variables.

5.1.3 Estimation results using stratification on non-proportional variables

Now, the final model can be estimated accounted for non-proportionality. The results
are tabulated in Table 7. All covariates but original loan term are statistically signifi-
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cant at a 1% significance level. Credit score and original unpaid principle balance have a
positive effect on the hazard rate for prepayment. The hazard rate can be interpreted as
the factor with which the baseline hazard is multiplied for that covariate. If the hazard
is greater than 1, the baseline hazard is increased proportionally by the hazard. On the
other hand, if the hazard is smaller than 1, the baseline hazard is decreased proportion-
ally by the hazard. For the categorical variables, the interpretation is straightforward.
If a mortgage is issued to a single borrower, this decreases the hazard with 6.7% ce-
teris paribus. One could also say that a single borrower is associated with a 0.0069
decrease in log hazard rate of prepayment ceteris paribus. If the property underlying
the loan is used as Single Family home, then the hazard of prepayment decreases with
7.8% ceteris paribus. A one-unit increase in original debt-to-income ratio reduces the
hazard of prepayment with 0.2% ceteris paribus. This is the expected sign, as higher
debt compared to income leads to less financial freedom compared to a low debt-to-
income ratio, which would intuitively reduce the probability of prepayment at any time.
Note that the covariates have an effect on the cumulative incidence of prepayment that
is different than the estimated coefficients and that we cannot compare these results
with the Aalen-Johansen curves (64) as the effect of variables on the Cox cause-specific
hazard does not need to be in the same direction as the effect of the variable on the
cumulative incidence (34). This was explained in Section 3.3.1 and is the result of the
independence assumption of prepayment and default.

Table 7: Estimation results Cox prepayment-specific hazard using stratifi-
cation

Strata: quartiles IR and Region

Variable name coef Hazard rate s.e. p-value
(exp(coef))

Credit Score 1.384e-03 1.001 1.815e-04 0.000***
Original DTI -2.263e-03 0.998 7.986e-04 0.005**
Original UPB 2.008e-06 1.000 8.026e-08 0.000***
Original Loan Term 3.203e-06 1.000 1.482e-04 0.983
Property Type = SF -8.082e-02 0.922 1.920e-02 0.000***
Num of Borrowers = 1 -6.932e-02 0.933 1.766e-02 0.000***

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

It is examined what the effect is on the estimated hazard ratios if the non-proportional
variable mortgage insurance percentage is included. The results are tabulated in Ap-
pendix B Table 31. It is observed that the hazard ratios do not differ much compared
to the estimated hazard ratios found in Table 7. The same variables are statistically
significant at a 5% significance level. Note that the mortgage insurance percentage vari-
able is not statistically significant at a 5% significance level and hence, it is decided to
exclude this variable for further analysis.

The estimation results of the Cox default-specific hazard estimation is presented in
Table 8. All covariates but property type are statistically significant at a 5% signifi-
cance level. The variables intuitively have the expected signs. Higher credit score are
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associated with a decrease in the hazard of default, which ultimately the credit score is
designed for. It gives a score to people based on how likely it is that that person de-
faults, with higher scores suggesting higher reliability. A higher original debt-to-income
ratio implies more debt compared to the income one receives, which makes a person
more likely to default as one has less financial stability. Original interest rate also pos-
itively affects the hazard of default. So, mortgages with a high original interest rate
have a higher default hazard than mortgages with a low original interest rate. Note
that original unpaid principle balance, although statistically significant, has a relatively
small effect on both prepayment hazard rate as on default hazard rate.

Table 8: Estimation results Cox default-specific hazard using stratifica-
tion

Strata: quartiles LTV and Num of Borrowers

Variable name coef Hazard rate s.e. p-value
(exp(coef))

Credit Score -1.154e-02 0.989 5.141e-04 0.000***
Original DTI 2.482e-02 1.025 3.045e-03 0.000***
Original UPB 2.854e-06 1.000 2.899e-07 0.000***
Original IR 2.469e-01 1.280 2.842e-02 0.000***
Channel = R -1.535e-01 0.858 6.451e-02 0.017*
Property Type = SF -1.247e-01 0.883 6.894e-02 0.071

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

5.1.4 Testing independence assumption prepayment and default

As described in Section 3.3.1, using sensitivity analysis by considering the worst-case
violations of the independence assumption, it can be assessed whether the indepen-
dence assumption of prepayment and default is reasonable. Tables 9 and 10 show the
estimation results of the two worst-case violations of the independence assumption of
the competing risks. For Table 9, the censored observations due to default were as-
sumed to all be prepaid at that time. So, the time to event remained the same, but
the event changed from default to prepaid. If we compare the results to the estimated
coefficient values in Table 7, we see that credit score, original DTI, original loan term
and number of borrowers are all statistically insignificant at a 5% significance level in
the worst-case violation, whereas they were statistically significant at a 5% significance
level before. For Table 10, the censored observations due to default were assumed to be
prepaid at the last observed time to prepayment in the data. The last observed time
to prepayment in the data is 292 months. The table shows that the same variables
are statistically significant at a 5% significance level. These results suggest that if the
independence assumptions is violated, the concluded effects of some variables could be
different. However, this approach cannot determine whether the independence assump-
tion of competing risks is satisfied or not. It only gives insight how the results would
change if we did not assume independence (Kleinbaum and Klein, 2011).
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Table 9: Estimation results for worst-case violation 1) of independence
assumption of competing risks

Strata: quartiles LTV and Num of Borrowers

Variable name coef Hazard rate s.e. p-value
(exp(coef))

Credit Score 2.460e-04 1.000 1.717e-04 0.152
Original DTI -6.598e-04 0.999 7.704e-04 0.392
Original UPB 2.080e-06 1.000 7.752e-08 0.000***
Original Loan Term 6.618e-05 1.000 1.443e-04 0.647
Property Type = SF -8.545e-02 0.918 1.853e-02 0.000***
Num of Borrowers = 1 -2.269e-02 0.978 1.699e-02 0.182

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 10: Estimation results for worst-case violation 2) of independence
assumption of competing risks

Strata: quartiles LTV and Num of Borrowers

Variable name coef Hazard rate s.e. p-value
(exp(coef))

Credit Score 2.665e-03 1.003 1.729e-04 0.000***
Original DTI -4.392e-03 0.996 7.790e-04 0.000***
Original UPB 1.327e-06 1.000 7.728e-08 0.000***
Original Loan Term -2.166e-04 1.000 1.441e-04 0.133
Property Type = SF -4.837e-02 0.953 1.854e-02 0.009*
Num of Borrowers = 1 -1.308e-02 0.877 1.699e-02 0.000***

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

5.1.5 Example in-sample prediction cumulative incidence

Figure 12 shows an example output of in-sample prediction of the cumulative incidence
of two selected loans. For this, the estimated coefficients of the variables of Tables
7 and 8 are used to calculate the in-sample prediction of the cumulative incidence of
prepayment as in expression (34). As there are multiple continuous variables, it is not
possible to keep other covariates the same and look at the effect of one covariate on the
curve of the two loans. Namely, there are no loans which have identical original loan-
to-value ratios, debt-to-income ratios, etc. and have one covariate value that differs.
This figure is intended just as illustration how the cumulative incidence functions are
estimated in the Cox cause-specific hazards model. One can see that loan 1 has a higher
probability of being prepaid up until any point in time compared to loan 2.
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Figure 12: In-sample predicted cumulative incidence curves for
two randomly selected loans in the Cox cause-specific hazards
model

5.1.6 Estimation results without dealing with non-proportionality

As concluded from Section 5.1.2, the variables original interest rate, region and mort-
gage insurance percentage violate the proportional hazards assumption of the Cox
prepayment-specific hazard. This section shows the differences in estimated coefficients
of the variables if it is assumed all variables satisfy the proportional hazards assump-
tion. The reason for this is that in the literature the focus shifts more to sensitivity
analysis if model assumptions are not satisfied to check the impact of this violation on
the estimated and predicted results.

Table 11 shows the results of the Cox prepayment-specific hazard if non-proportionality
is not dealt with and hence, no stratification is used. Comparing these results with the
results of Table 7, it is observed that the hazard rates of the coefficients change. In
particular, the hazard rate of property type = SF changed from 0.922 to 0.904, which
is the largest change observed. Also, the variable original loan term is now statistically
significant at a 5% significance level, while in Table 7 it had a p-value of nearly 1. In
Table 11, all coefficients are statistically significant at a 5% significance level apart from
region W.
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Table 11: Estimation results Cox prepayment-specific hazard if no stratifi-
cation is used

Variable name coef Hazard rate s.e. p-value
(exp(coef))

Credit Score 1.948-03 1.002 1.822e-04 0.000***
Original DTI -2.382e-03 0.998 7.921e-04 0.003**
Original UPB 2.311e-06 1.000 8.047e-08 0.000***
Original Loan Term -4.922e-04 1.000 1.467e-04 0.000***
Property Type = SF -1.008e-01 0.904 1.915e-02 0.000***
Num of Borrowers = 1 -6.511e-02 0.937 1.762e-02 0.000***
Region NE -2.742e-01 0.760 2.933e-02 0.000***
Region S -1.842e-01 0.832 2.373e-02 0.000***
Region W -4.561e-02 0.955 2.477e-02 0.066
Original IR 3.375e-01 1.401 7.903e-03 0.000***
MI percentage 2.110e-03 1.002 8.580e-04 0.01*

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 12 shows the results of the Cox default-specific hazard if no stratification is used.
Comparing these results with Table 8, one can conclude the estimated coefficients do
not change much. The same variables are statistically significant at a 5% significance
level. Interestingly, the variables original loan-to-value and number of borrowers = 1
are both statistically significant at a 5% significance level. The variable number of
borrowers = 1 has the largest effect on the Cox default-specific hazard. If a loan is
issued to one borrower, the hazard of default increases with 78.3% ceteris paribus.

Table 12: Estimation results Cox default-specific hazard if no stratification
is used

Variable name coef Hazard rate s.e. p-value
(exp(coef))

Credit Score -1.150e-02 0.987 5.033e-04 0.000***
Original DTI 2.474e-02 1.025 3.047e-03 0.000***
Original UPB 2.871e-06 1.000 2.894e-07 0.000***
Original IR 2.430e-01 1.275 2.836e-02 0.000***
Channel = R -1.491e-01 0.862 6.441e-02 0.021*
Property Type = SF -1.007e-01 0.904 6.878e-02 0.143
Original LTV 1.847e-02 1.019 2.256e-03 0.000***
Num of Borrowers = 1 5.785e-01 1.783 6.487e-02 0.000***

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

As the main purpose of this thesis is to predict absolute prepayment risk, the prediction
of the Cox cause-specific hazards model using stratification is compared to the Cox
cause-specific hazards model but without stratification in Section 6.1.
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5.2 Fine-Gray subdistribution hazard model

First, variable selection is performed using backward selection based on the BICcr as
described in Section 3.3.2. The detailed steps are provided in Appendix B Table 32.
The variables mortgage insurance percentage, original loan-to-value ratio, channel and
first time homebuyer flag are removed. Then, the proportionality assumption is tested
for each variable. Figures 47, 48, 49 and 50 in Appendix C show the scaled Schoenfeld
residuals plotted over time for each covariate. For the variables number of borrowers
= 1, original unpaid principle balance, region South, region North-East, region West
and property type = SF the proportionality assumption seems to be satisfied. For the
variables original interest rate, credit score, original debt-to-income ratio and original
loan term, there seems to be a violation of the proportionality assumption in the first
100 months. This violation is relatively small. After month 100, the proportionality
assumption seems to be a reasonable assumption. Assuming that the proportionality
holds for each variable, gives the results as tabulated in Table 13. These results show
the estimated coefficients of the subdistribution hazards model as described in (40).
All coefficients are statistically significant at a 5% significance level except the region
West indicator. The coefficients of the variables can now be interpreted as the effect
they have on the subdistribution hazard. The sign of the coefficient can be interpreted
as the direction of the effect the variable has on the cumulative incidence. So, if the
property underlying the mortgage is located in the North-Eastern region, this reduces
the subdistribution hazard of prepayment with 20.5% ceteris paribus. Moreover, it
indicates that an underlying property located in the North-Eastern region is associated
with a lower cumulative incidence of prepayment ceteris paribus. The results in Table
13 show that original unpaid principle balance, credit score and original interest rate are
positively associated with the cumulative incidence of prepayment. The signs of original
interest rate and original unpaid principle balance are not as expected according to the
reasoning in Table 24 in Appendix B.

Table 13: Estimation results Fine-Gray subdistribution hazard model

Variable name coef Hazard rate s.e. p-value
(exp(coef))

Original DTI -4.18e-03 0.996 7.85e-04 0.000***
Original UPB 1.80e-06 1.000 8.37e-08 0.000***
Credit Score 3.21e-03 1.003 1.87e-04 0.000***
OLT -5.06e-04 0.999 1.37e-04 0.000***
Num of Borrowers = 1 -1.25e-01 0.883 1.78e-02 0.000***
Property Type = SF -8.04e-02 0.923 1.92e-02 0.000***
Region NE -2.29e-01 0.796 2.86e-02 0.000***
Region S -1.75e-01 0.839 2.35e-02 0.000***
Region W -2.28e-02 0.977 2.51e-02 0.360
Original IR 3.10e-01 1.363 8.05e-03 0.000***

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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5.3 Random survival forest for competing risks

In this section the random survival forest for competing risks is estimated using both
Gray’s splitting rule and the log-rank splitting rule. For both splitting rules, variable
selection and hyperparameter tuning are performed.

5.3.1 Gray’s splitting rule - Variable selection

First, variable selection in the random survival forest for competing risks is performed,
for which the minimal depth and the VIMP are used. The VIMP is event-specific and
hence the VIMP documented in this section is the VIMP for prepayments. The com-
bination of hyperparameters could impact the variables selection, which is undesirable
(Binder et al., 2020). Therefore, the variable selection procedure, as described in Section
3.4.3, is performed for two different sets of hyperparameters. First, the set of default
hyperparameters are 100 trees, 4 variables chosen at each split, 2 number of splits at
each node, and 15 number of observations in a terminal node, which are the default
hyperparameter values of the rfsrc() function in the RandomForestSRC package. The
results are shown in Table 14 and Figure 13. The confidence intervals of the VIMP for
each variable are derived using the subsample.rfrsc() function in the RandomForestSRC
package. The channel variable has VIMP equal to zero in its 95% confidence interval,
which implies there is no evidence channel improves prediction accuracy of the random
survival forest for competing risks as described in Section 3.4.3. As the Minimal Depth
of the channel variable is also relatively large compared to the other variables, it is
concluded to remove the channel variable. It is checked with another hyperparameter
combination if the variable selection results in the same variable removed. The com-
bination used is 200 trees, 4 variables chosen at each split, 2 splits at each node, and
a minimum of 25 observations in each terminal node. The variable channel is still re-
moved due to the same reasons, so it is concluded to remove the variable channel. The
original interest rate on a loan appears to be the most important driver of prepayment
risk as this variable has the lowest minimal depth and the highest VIMP.
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Table 14: Minimal depth and VIMP for each vari-
able in the random survival forest for competing
risks using Gray’s splitting rule

Variable name Minimal Depth VIMP
Original Interest Rate 1.26 0.172
Credit Score 2.00 0.030
Num of Borrowers = 1 2.01 0.008
Region 2.03 0.011
Original UPB 2.31 0.064
Original Loan Term 2.36 0.037
Occupancy Status 3.35 0.032
Num of Units = 1 3.39 0.039
Original DTI 3.43 0.018
MI Percentage 3.59 0.028
Original LTV 3.68 0.015
Property Type 4.04 0.005
First Time Homebuyer 4.24 0.010
Channel 4.33 0.001

Figure 13: Confidence intervals for VIMP of covariates using Gray’s splitting rule

5.3.2 Gray’s splitting rule - Hyperparameter tuning

The hyperparameter values are obtained using the procedure described in Section 3.4.4.
The number of splits at each node is set equal to 2 and the number of variables chosen
at each split to 4 (the square root of the total number of variables rounded up to the
nearest integer). First, the default setting of 15 observations at each terminal node is
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used and the obtained OOB error is plotted against the number of trees used. This
can be observed in Figure 14. The OOB error is calculated as 1− C with C being the
C-index as in formula (57), as described in Section 3.4.2. For this figure, the OOB error
was calculated for the number of trees equal to 5, 10, 25, 50, 100, 200 and 500. While
the OOB error is decreasing in the number of trees, the number of trees is chosen to
be set equal to 200 as growing a tree larger than 200 does not result in a significant
decrease in the OOB error. This also lowers computational effort compared to growing
for example 500 or even 1000 trees. Figure 15 shows the OOB error plotted against
the minimum number of observations in the terminal node. The grid taken on the
minimum number of observations in a terminal node is 10, 15, 20, 25, 35, 50, 65, 75,
85. It is concluded that 75 observations should be taken in the terminal node. So, to
conclude, the hyperparameter values are taken as follows:

• Number of trees: 200

• Number of variables chosen at each split: 4

• Number of splits at each node: 2

• Minimum number of observations in a terminal node: 75

Figure 14: Out-of-bag error plotted
against the number of grown trees for
Gray’s modified splitting rule

Figure 15: Out-of-bag error plotted
against the minimum number observa-
tions in the terminal node for Gray’s
modified splitting rule

5.3.3 Log-rank splitting rule - Variable selection

For the log-rank splitting rule, as described in (50) and (51), the same steps were
performed as for the modified Gray’s splitting rule. The set of default hyperparameters
are again 100 trees, 4 variables chosen at each split, 2 number of splits at each node,
and 15 number of observations in a terminal node. Table 15 shows the minimal depth
and VIMP for each variable using the log-rank splitting rule. The order of the variables
based on minimal depth is very similar compared to Table 14, where the Gray’s modified
splitting rule was used. Original interest rate, original loan term and original UPB
appear to be the most important drivers of prepayment according to their Minimal
Depth and VIMP. It is concluded from Figure 16 that the variable channel should be
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removed from the data as zero is in the 95% confidence interval of the VIMP. Moreover,
Table 15 shows that the Minimal Depth is also relatively large compared to the other
Minimal Depths. It is checked with another hyperparameter combination if the variable
selection results in the same variable removed. The combination used is 200 trees, 4
variables chosen at each split, 2 splits at each node, and a minimum of 25 observations
in each terminal node. The variable channel is still removed due to the same reasons,
so it is concluded to remove the variable channel. The original interest rate on a loan
appears to be the most important driver of prepayment risk as this variable has the
lowest minimal depth and the highest VIMP.

Table 15: Minimal depth and VIMP for each vari-
able in the random survival forest for competing
risks using the log-rank splitting rule

Variable name Minimal Depth VIMP
Original Interest Rate 1.28 0.180
Original UPB 1.77 0.075
Original Loan Term 2.05 0.037
Region 2.19 0.010
Num of Borrowers = 1 2.79 0.004
Occupancy Status 2.89 0.032
Num of Units = 1 3.16 0.044
Original LTV 3.36 0.019
Credit Score 3.53 0.022
MI Percentage 3.67 0.026
Property Type 3.67 0.005
Original DTI 3.78 0.016
Channel 3.85 0.001
First Time Homebuyer 4.39 0.009
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Figure 16: Confidence intervals for VIMP of covariates using the log-rank splitting rule

5.3.4 Log-rank splitting rule - Hyperparameter tuning

It was again concluded, by Figure 17, to use 200 trees in order to obtain a relatively low
OOB error while keeping computational cost sufficiently low. Now, the lowest OOB
error is obtained when the minimum node size is set equal to 65 as visible in Figure
18. Using 65 as the minimum number of observations in the terminal node, the OOB
error for the log-rank splitting rule equals 0.3492. On the other hand, using 75 as
the minimum number of observations in the terminal node, for the Gray’s modified
splitting rule, the OOB error equals 0.3543. This suggests that the log-rank splitting
rule outperforms the Gray’s splitting rule regarding prediction accuracy, which is not
expected as Gray’s splitting rule is more designed for prediction of the cumulative
incidence (Ishwaran et al., 2014).
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Figure 17: Out-of-bag error plotted
against the number of grown trees for
log-rank splitting rule

Figure 18: Out-of-bag error plotted
against the minimum number observa-
tions in the terminal node for log-rank
splitting rule

So to conclude the hyperparameter values are taken as follows:

• Number of trees: 200

• Number of variables chosen at each split: 4

• Number of splits at each node: 2

• Minimum number of observations in a terminal node: 65

While the Gray’s modified splitting rule is designed for prediction purposes, the OOB
error is lower if the log-rank splitting rule is used. Therefore, the log-rank splitting rule
is used for model comparison with the Cox cause-specific hazards model, the Fine-Gray
subdistribution hazard model and the current VB Advisory model.
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6 Model evaluation

This section shows the prediction accuracy measured by the time-dependent Brier score
and the time-dependent Area under the ROC curve as described in Sections 3.6.1 and
3.6.2 respectively. The time-dependent Brier score is calculated as stated in (60) and
the time-dependent AUC is calculated using (62) and (63). First, in Section 6.1, the
prediction accuracy is compared between the models on an unseen sample of the data
using the same time-period. Then, in Section 6.2, backtesting is performed.

6.1 Prediction accuracy models on unseen data of same time
period

The prediction accuracy of the models is evaluated on a test set. This test set contains
mortgages originated between January 1999 and December 2023, which are not in the
training set used to estimate the coefficients of the model as tabulated in Table 7 and
Table 8. The characteristics of the test set are tabulated in Table 16. The distribution of
the status of the mortgages is similar to the distribution in the training set as observable
in Table 3.

Table 16: Overview loan status in test set

State of mortgage Number of observations
Currently active 5,213

Prepaid 13,746
Default 1,017

Matured 24

Total 20,000

6.1.1 Comparison of stratification versus no stratification in Cox cause-
specific hazards model

First, the prediction accuracy in the Cox cause-specific hazards model is evaluated
when we control for non-proportionality of covariates versus when we do not control
for non-proportionality. Figures 19 and 20 show the comparison of prediction accuracy
using time-dependent Brier score and the time-dependent AUC respectively. The Cox
cause-specific hazards model, using stratification to deal with non-proportionality of
the cause-specific hazards, is compared with the Cox cause-specific hazards model if we
do not deal with non-proportionality of the hazards. In Figure 19, it is observed that
both Cox cause-specific hazards models outperform the Aalen-Johansen estimator for
cumulative incidence prediction of the first approximately 125 months. After approxi-
mately 125 months, the Cox cause-specific hazards model without using stratification
performs worse than the Aalen-Johansen model. Note also that the Cox cause-specific
hazards model without stratification slightly performs better for predictions in the first
approximately 60 months. Figure 20 shows again that the Cox cause-specific hazards
model that does not correct for non-proportionality performs better at first, but as
time progresses, the model performance drops below the Cox cause-specific hazards
model with stratification. So, it is concluded that the model should be chosen based
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on preference of short-term model prediction accuracy or long-term model prediction
accuracy. The integrated Brier score is tabulated in Table 17, which is calculated as
stated in (61) using τ = 150. It is observed that the Cox cause-specific hazards model
using stratification slightly performs better than the Cox cause-specific hazards model
without using stratification. For model comparison in the remainder of this thesis,
stratification is used if a relatively large violation of the proportionality assumption is
observed.

Figure 19: Brier score plotted over time for the Cox cause-specific
hazards model using stratification, Cox cause-specific hazards model
without stratification, and the Aalen-Johansen prediction model as
reference model
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Figure 20: AUC plotted over time for the Cox cause-specific hazards
model using stratification and the Cox cause-specific hazards model
without stratification

Table 17: Integrated Brier score for Aalen-Johansen estimator and Cox cause-specific
hazards model with and without stratification until 150 months

Model Integrated Brier score
Aalen-Johansen 0.1775
Cox cause-specific with stratification 0.1692
Cox cause-specific without stratification 0.1695

6.1.2 Comparison of Cox cause-specific hazards model, Fine-Gray subdis-
tribution hazards model and random survival forest for competing
risks

Figure 21 shows the Brier score over time for the models of Cox cause-specific haz-
ards, Fine-Gray and random survival forest for competing risks. Reference curve is the
non-parametric Aalen-Johansen prediction model, where no covariates are being used.
Interestingly, the Brier score curve is decreasing after approximately 45 months. An
explanation for this is that it could be that for earlier times, to cumulative incidence
is underestimated while already most of prepayments happened. Table 18 shows the
integrated Brier score for the models. It shows that the random survival forest for
competing risks has the lowest integrated Brier score and therefore is concluded to be
the best model to capture the relations between variables and the cumulative incidence
of prepayment.

Figure 22 shows the ROC curve for the models at month 150. The True Positive
Rate, as described in (62), is plotted against the false positive rate, as described in
(63). It shows that at month 150, the AUC is the highest for the random survival forest
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for competing risks and therefore at month 150 the random survival forest for compet-
ing risks performs the best across the models considered regarding AUC. This figure is
calculated for each time between 0 and 150, which results in Figure 23. Figure 23 shows
the time-dependent AUC over time for the models. Predictions are only made up to 150
months, because they become less reliable due to limited number of observations with
time to event greater than 150. From both prediction metrics, it is concluded that the
random survival forest for competing risks predicts the cumulative incidence of prepay-
ment of a mortgages the best amongst the evaluated models. The Brier score over time
shows that the random survival forest for competing risks especially performs better
for time to events between 35 and 75 approximately. On the other hand, according to
the time-dependent AUC, the random survival forest consistently outperforms the Cox
prepayment-specific hazards model and the Fine-Gray subdistribution hazard model,
except in the first few months. Note that for VB Risk Advisory the most important
evaluation metric is the Brier score as this evaluates absolute risk predictions, while the
AUC evaluates risk predictions of loans relative to each other. Thus, for future pricing
purposes, the Brier score is the most relevant. The Cox prepayment-specific hazards
model and the Fine-Gray subdistribution hazard model seem to perform relatively sim-
ilar to each other with respect to prediction accuracy. However, for months further
in the future, the prediction performance of the Fine-Gray model drops as visible in
both Figure 21 and Figure 23. The Brier score of the Fine-Gray model even exceeds
the Brier score of the Aalen-Johansen prediction model (as described in (64)) for times
greater than 120 approximately.

Figure 21: Brier score plotted over time for the Cox cause-specific
model, the Random Survival Forest, the Fine-Gray subdistribution
hazard model and the Aalen-Johansen prediction model as reference
model
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Table 18: Integrated Brier score for Aalen-Johansen estimator, Cox cause-specific haz-
ards model with stratification, Fine-Gray subdistribution hazard model and random
survival forest for competing risks until 150 months

Model Integrated Brier score
Aalen-Johansen 0.1775
Cox cause-specific with stratification 0.1692
Fine-Gray subdistribution hazard model 0.1712
Random survival forest for competing risks 0.1640

Figure 22: ROC curve for Cox cause-specific model (CauseSpecific-
Cox), the Random Survival Forest for competing risks (rfsrc) and the
Fine-Gray subdistribution hazard model (FGR) at t = 150
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Figure 23: Time-dependent AUC plotted over time for Cox cause-
specific model, the Random Survival Forest and the Fine-Gray sub-
distribution model

6.2 Backtesting

All models discussed previously only consider time to event and not seasonal patterns.
In this section, it is investigated how these models perform on unseen future data. This
is relevant for translating the prepayment risk into pricing. In practice, the predicted
cumulative incidence curve can be used for pricing purposes. Therefore, it is also nec-
essary to investigate prediction performance in the future. In the literature, the data
is often randomly split into training data and testing data, and prediction accuracy is
measured on the testing data. A similar idea was conducted in Section 6.1. This pro-
cedure is however less relevant if our goal is predicting the absolute risk of prepayment
in the future. For this, we need backtesting. The relation between variables and the
cumulative incidence could change over time. In this section, the models are estimated
again using the same steps as in Section 5, but now on a subset of the training sample.
The subset contains the loans that originated between January 1999 and December
2010. Then, prediction accuracy is measured on the subset of loans that originated
between January 2011 and December 2023. So, loans that are in the first subset do
not occur in the second subset. The tables and figures of the intermediate steps in the
estimation process, such as variable selection, proportionality checking, and hyperpa-
rameter tuning are not included in this thesis in order to maintain clarity.

The details of the data on 1999-2010 and 2011-2023 are tabulated in Table 19 and
Table 20 respectively. In the 1999-2010 data set 53.6% of the loans is fully prepaid. In
the 2011-2023 data set 52.7% of the mortgages is fully prepaid.
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Table 19: Overview loan status training set 1999-2010

State of mortgage Number of observations
Currently active 3,539

Prepaid 4,521
Default 376

Matured 0

Total 8,436

Table 20: Overview loan status test set 2011-2023

State of mortgage Number of observations
Currently active 5,074

Prepaid 6,094
Default 394

Matured 1

Total 11,563

In the Cox cause-specific hazards model, the variables property type, mortgage insurance
percentage, first time homebuyer flag and channel were removed for the prepayment-
specific hazard using the variable selection procedure as described in Section 3.3.1.
For the default-specific hazard, the variables mortgage insurance percentage, first time
homebuyer flag, property type and original loan term were removed. After assessing
the scaled Schoenfeld residuals, stratification was performed on the unpaid principle
balance variable for the prepayment-specific hazard and on the number of borrowers
for the default-specific hazard. Although the statistical test suggests that region also
is non-proportional for the prepayment-specific hazard, it is decided to not stratify on
this variable for several reasons. First, the coefficients of the other variables do not
change much. More specifically, the same variables are statistically significant at a 5%
significance level and the largest change in hazard ratio is 0.3 basis points, while for
the other 5 out of 6 variables, the difference in hazard ratio is in the order of 0.001
basis point. In addition, the scaled Schoenfeld residuals plot, as presented in Figure
24, shows that the proportionality assumption is reasonable, or at least not drastically
violated. And lastly, as there are now only 11,563 mortgages in the data set, using too
many stratified variable leads to a low number of observations within each stratum.

65



Figure 24: Scaled Schoenfeld residuals for
Region on prepayment-specific hazard

In the Fine-Gray subdistribution hazard model, the variables first time homebuyer
flag, channel, property type, mortgage insurance percentage, original loan term, original
debt-to-income ratio were removed from the data after performing variable selection as
described in Section 3.3.2. The proportionality assumption was evaluated using the plot
of the scaled Schoenfeld residuals for each variable. The proportionality assumption
seemed reasonable for each variable, so no stratification was performed.

In the random survival forest, variable selection based on minimal depth and VIMP
resulted in the removal of the variables first time homebuyer flag and property type.
The following hyperparameter values were used after hyperparameter tuning:

• Number of trees: 200

• Number of variables chosen at each split: 4

• Number of splits at each node: 2

• Minimum number of observations in a terminal node: 25

As there is less data available than in Section 6.1, it makes sense that the tree is grown
deeper, which explains that the minimum number of observations in a terminal node
is now lower. Note that for the variable selection and hyperparameter tuning in the
random survival forest, the OOB error was used, which is not the data of the 2011-2023
test set. If we would do this, we would fit the model on the test data, which likely
underestimates the prediction error.

Figures 25 and 26 show the Brier score and AUC over time of the models on 2011-2023
data. The non-parametric Aalen-Johansen estimator is used as reference model. The
non-parametric Aalen-Johansen estimator is estimated on 1999-2010 data and those
predicted risks are used for prediction on 2011-2023. If the models have any predictive
power, they should perform better than the Aalen-Johansen estimator. As one can see
in Figure 25, the considered models all perform worse than the Aalen-Johansen esti-
mator from month 50 onwards, which suggests none of the considered models predict
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absolute prepayment risk better than the non-parametric estimator. A potential expla-
nation for this is that the relation between covariates and prepayment (in particular
the CIF) change over time, or too few data is used to correctly estimate the underlying
relation between the covariates and prepayment and/or default. One could potentially
update the model parameters before issuing the loan to use the most recent model pa-
rameters. In this thesis, it is assumed all loans that are issued between 2011 and 2023
use to model parameters as estimated on the first of January 2011. In practice, the
strategy taken is often to use data available at loan origination to predict prepayment
risk. The focus of the models is on predicting short-term risk. After some time, newly
available data on the loans become available and are used to evaluate current risk po-
sitions. If this proves that current risk positions are unsatisfactory, recalibration of the
prepayment model is performed.

Figure 26 shows that the AUC of the Aalen-Johansen estimator is 0.5, which is true
by construction, because for each loan the same risk is predicted as no covariates are
used. Interestingly, the VB model performs worse than the Aalen-Johansen estimator,
which indicates that it performs bad in predicting relative risks of loans. The VB per-
forms worse than randomly guessing which loan has more prepayment risk compared
to another loan. This is likely the result of changing prepayments over time. In the
VB Risk Advisory model, newly issued loans are predicted to have a high probability
of prepayment if there were a relatively large number of prepayments in the last 12
months. Due to changes over time of prepayment, this could lead to bad predictions
of absolute and relative prepayment risk. The Cox prepayment-specific hazards model
and the Fine-Gray subdistribution hazard show similar results and both outperform
the random survival forest for competing risks if we look at the AUC.

Figure 25: Brier score over time of predictions on future un-
seen data (2011-2023)
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Figure 26: AUC over time of predictions on future unseen
data (2011-2023)
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7 Conclusion

This thesis examined prediction accuracy of the Cox cause-specific hazards model, the
Fine-Gray subdistribution hazard model, the random survival forest for competing risks,
and the current model used by VB Risk Advisory at bank X on full prepayment risk
using default as competing risk. The goal of this thesis was to improve the current VB
Risk Advisory model by using interpretable and computationally friendly (survival)
models. Unfortunately, there is no evidence that the investigated models in this thesis
significantly outperform the current model used by VB. Data was collected from the
Single-Family Loan-Level data set provided by Freddie Mac on the period January 1999
until December 2023.

Variable selection was performed on all survival models. For the Cox cause-specific
hazards model, the relevant variables were selected based on the Akaike Information
Criterion using forward and backward selection. For the Fine-Gray subdistribution
hazard model, the variables were selected based on the Bayesian Information Criterion
for competing risks (BICcr) using backward selection. Lastly, in the random survival
forest for competing risks, the features were selected using a selection procedure based
on the Variable Importance and the Minimal Depth. Using a grid search algorithm,
the hyperparameters were selected in the random survival forest for competing risks.

Using log-log survival curves and scaled Schoenfeld residuals, it appeared that the
proportionality assumption of the Cox cause-specific hazards model and the Fine-Gray
subdistribution hazard model was violated for several variables. Using sensitivity anal-
ysis, the effect of the violation of the proportional hazards assumption on the estimated
coefficients and prediction accuracy was examined. If this violation was interpreted as
significant, then stratification was used on non-proportional variables to obtain reliable
estimation and prediction results.

Another goal of this thesis was to identify the risk drivers of prepayment. If the
proportional hazards assumption is assumed to be true, then the Cox cause-specific
hazards model suggests that original interest rate has the largest positive effect on the
prepayment-specific hazard. The Fine-Gray subdistribution hazard model concluded
that original interest rate has the largest effect on the subdistribution hazard for pre-
payment and positively affects the cumulative incidence of prepayment. The random
survival forest for competing risks showed that original interest rate is the most impor-
tant driver of prepayment risk.

To evaluate prediction accuracy of the models, the Brier score over time and the time-
dependent Area under the ROC curve were used, both with Inverse Probability of
Censoring Weighting. Using a test sample on data from 1999-2023, the results suggest
that the random survival forest for competing risks is the best model regarding pre-
diction accuracy over time. It can better capture the underlying relation between the
covariates and the risk of prepayment than the other models.

Where most research only evaluates the models on data from the same period, this
thesis also examined the prediction accuracy of the models on future unseen time peri-
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ods as this is most relevant for pricing purposes. It appeared that none of the models
consistently outperforms the non-parametric Aalen-Johansen prediction regarding time-
dependent Brier score. Regarding time-dependent AUC, the current model of VB is
the only model that performs worse than the Aalen-Johansen prediction.

This thesis has a number of limitations, from which some of them could be improved in
future research. Firstly, for the prediction accuracy using backtesting, the time frame is
limited both for estimation as well as prediction. This results in less available informa-
tion for estimation, which affects prediction accuracy. Also, the split of the data could
potentially affect estimated coefficients and predictions as prepayments and defaults
are not constant over time.

In addition, the current models do not incorporate macroeconomic variables that
could influence prepayment behaviour over time, such as remaining number of months
until maturity. Although this is not possible for the Cox cause-specific hazards model
and the Fine-Gray subdistribution hazard model, the random survival forest for com-
peting risks can be extended to include time-varying covariates.

Moreover, future research could also look at prediction accuracy if the model param-
eters are updated each month to better incorporate variations of prepayment behaviour
and relations between variables and prepayment over time. In this thesis, the same co-
efficients were used for mortgages that were issued for example in 2011 and 2023 to
predict cumulative incidences.

Another limitation is that variable selection used in this thesis for the Cox cause-
specific hazards model assesses the effect of the variable on the cause-specific hazard
rather than on the cumulative incidence function. It could be that variables that do not
affect the cause-specific hazard do have a significant effect on the cumulative incidence.

Furthermore, the mortgage market in the United States has different characteristics
than the mortgage market in The Netherlands and hence VB Risk Advisory should
test the models using data from the Dutch mortgage market before they implement the
models in practice.

And lastly, loans for which the Metropolitan Statistical Area is not available were
removed from the data, because at first the idea was to use this variable to select
macroeconomic variables. After it was concluded it was not possible to include this in
the thesis, the data set could not be updated to incorporate also the loans that had
missing values of the MSA. The reason for this was that my laptop repeatedly crashed
due to the large size of the data and the R file.
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8 Closely linked papers

Paper Data set Method Result

Meis
(2015)

Freddie Mac, Single-
Family Loan-Level
data set. 01-01-1999
until 31-09-2013.
Fixed rate fully amor-
tizing mortgages with
30 years maturity.
Random sample of
10.000 taken

Comparison between
Multinomial logit
model, competing
risk model (Kaplan-
Meier), Markov
models

Multinomial logit
most effective

Szolnoki
(2021)

Fannie Mae, Single-
Family Fixed Rate
Mortgage data set.
01-2000 until 12-2019.
Fixed-term fully
amortizing that are
fully documented.
Random sample of
425,722 mortgages.
Unemployment,
House Price Index,
Personal Income,
CPI, Number of new
residential sales, Yield
curve were added
as macro-economic
variables

Extended Cox model
including time-
varying covariates,
discrete time logistic
model, relative risk
forest, conditional
inference forest. Vari-
able selection based
on AIC

The two machine
learning techniques
outperform the tra-
ditional approaches
with respect to
predictive perfor-
mance. Consumer
Price Index, Inter-
est rate incentive,
Loan Delinquency
and Loan Amount
are the most im-
portant drivers for
prepayments. A
parallel downward
shift in interest
rates and a positive
macroeconomic
scenario increases
prepayment rates.

Frydman
and Ma-
tuszyk
(2022)

Data on car lease con-
tract status from a
Polish financial insti-
tution

Random survival for-
est for competing risks
and Fine-Gray model
using prepayment as
competing risk

Random survival
forest for compet-
ing risks outper-
forms Fine-Gray
model
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Ishwaran
et al.
(2014)

Competing risks data
on HIV/AIDS pa-
tients and simulated
data

Random survival
forest with com-
peting risks, Cox
cause-specific hazards
model, Cox-likelihood
based boosting, and
Fine-Gray model

In low-dimensional
linear simulations,
RSF performs
the worst. In
low-dimensional
quadratic and in-
teraction models,
RSF outperforms
the other methods

Olajubu
(2020)

Freddie Mac single
family loan-level
credit performance
on fully amortizing
fixed-rate mortgages

Cox cause-specific
hazards and Fine-
Gray. Hazard rates
are estimated for
both defaults and
prepayments using
competing risks

Cox cause-specific
hazards model
outperforms Fine-
Gray model

Kau et al.
(2009)

30-year fixed rate
single-family residen-
tial mortgages from a
large financial service
institution. 734,721
loans from 1976 until
2004.

Cox proportional
hazard model with
unobserved het-
erogeneity (frailty
model). Choice of
covariates is intuitive.
LTV ratio, Original
loan size and points
paid at origination,
interest rate spread,
housing price dynam-
ics, unemployment
rate as indicator of
economic conditions,
FICO score

It is important
to account for
the within-group
correlation in
Metropolitan
Statistical Area
(MSA) among in-
dividual mortgages
and hence to use
frailty model.

72



References

Araj, V. (2024). Prepayment penalty: What it is and how to avoid
it. https://www.rocketmortgage.com/learn/prepayment-penalty#:~:

text=Most%20mortgage%20lenders%20allow%20borrowers,a%20loan%20at%

20a%20time.[accessed: 16-04-2024].

ATTOM (2023). Home-mortgage lending declines again across u.s. during third quarter
as mortgage rates climb. Mortgage Origination, Real Estate News.

Austin, C., Latouche, A., and Fine, J. P. (2019). A review of the use of time-varying
covariates in the fine-gray subdistribution hazard competing risk regression model.
Statistics in Medicine, 39(2):103–113.

Austin, P. C., Lee, D. S., and Fine, J. P. (2016). Introduction to the analysis of survival
data in the presence of competing risks. Circulation, 133(6):601–609.

Balan, T. A. and Putter, H. (2020). A tutorial on frailty models. Statistical Methods
in Medical Research, 29(11):3424–3454.

Bank for International Settlements (2007). Part 2: The first pillar - minimum capital
requirements. https://www.bis.org/publ/bcbs128b.pdf[accessed: 02-07-2024].

Bellera, C. A., MacGrogan, G., Debled, M., de Lara, C. T., Brouste, V., and Mathoulin-
Pélissier, S. (2010). Variables with time-varying effects and the cox model: Some
statistical concepts illustrated with a prognostic factor study in breast cancer. BMC
Medical REsearch Methodology, 10:1–12.

Bhardwaj, G. and Sengupta, R. (2009). Did prepayments sustain the subprime market?
CentER Discussion Paper, 38 S.

Binder, M., Moosbauer, J., Thomas, J., and Bischl, B. (2020). Multi-objective hyper-
parameter tuning and feature selection using filter ensembles. In Proceedings of the
2020 genetic and evoluationary computation conference, pages 471–479.

Blanche, P., Latouche, A., and Viallon, V. (2013). Time-dependent auc with right-
censored data: a survey. Risk assessment and evaluation of predictions, pages 239–
251.

Borucka, J. (2014a). Extensions of cox model for non-proportional hazards purpose.
Ekonometria, 3(45):85–101.

Borucka, J. (2014b). Methods for handling tied events in the cox proportional hazard
model. Studia Oeceonomica Posnaniensia, 2(2):91–105.

Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.

Channel, J. (2023). Mortgage statistics: 2024. Lendingtree.

Chen, J. (2023). What Is a Short Sale on a House? Process, Alternatives, and Mistakes
to Avoid. https://www.investopedia.com/terms/r/real-estate-short-sale.

asp[accessed: 01-05-2024].

73

https://www.rocketmortgage.com/learn/prepayment-penalty#:~:text=Most%20mortgage%20lenders%20allow%20borrowers,a%20loan%20at%20a%20time.
https://www.rocketmortgage.com/learn/prepayment-penalty#:~:text=Most%20mortgage%20lenders%20allow%20borrowers,a%20loan%20at%20a%20time.
https://www.rocketmortgage.com/learn/prepayment-penalty#:~:text=Most%20mortgage%20lenders%20allow%20borrowers,a%20loan%20at%20a%20time.
https://www.bis.org/publ/bcbs128b.pdf
https://www.investopedia.com/terms/r/real-estate-short-sale.asp
https://www.investopedia.com/terms/r/real-estate-short-sale.asp


Chen, J. (2024). Real Estate Owned (REO) Definition, Advantages, and Disadvantages.
https://www.investopedia.com/terms/r/realestateowned.asp[accessed: 01-05-
2024].

Chen, Y.-C. (2018). STAT 425: Introduction to Nonparametric Statistics. Lecture 5:
Survival Analysis. Washington University in St. Louis.

Chernov, M., Dunn, B. R., and Longstaff, F. A. (2018). Macroeconomic-driven prepay-
ment risk and the valuation of mortgage-backed securities. The Review of Financial
Studies, 31(3):1132–1183.

Clapp, J. M., Goldberg, G. M., Harding, J. P., and LaCour-Little, M. (2002).
Movers and shuckers: Interdependent prepayment decisions. Real Estate Economics,
29(3):411–450.

Columbia University Irving Medical Center (2023). Competing risk analy-
sis. https://www.publichealth.columbia.edu/research/population-health-

methods/competing-risk-analysis[accessed: 09-04-2024].

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical
Society, Series B (Methodological), 34(2):187–220.

Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2):269–276.

Efron, B. (1977). The efficiency of cox’s likelihood function for censored data. Journal
of the American Statistical Association, 72(359):557–565.

European Central Bank (2024). ECB guide to internal models - Definition of default.
pages 79–80.

Fan, J. and Li, R. (2002). Variable selection for cox’s proportional hazards model and
frailty model. The Annals of Statistics, 30(1):74–99.

Fayman, A. and He, L. T. (2011). Prepayment risk and bank performance. The Journal
of Risk Finance, 12(1):26–40.

Fine, J. P. and Gray, R. J. (1999). A proportional hazards model for the subdistribution
of a competing risk. Journal of the American Association, 94(446):496–509.

Fisher, L. D., van Belle, G., Heagerty, P. J., and Lumley, T. (2004). Biostatistics: A
Methodology for the Health Sciences. John Wiley Sons, second edition.

Freddie Mac (2024). Single Family Loan-Level Dataset. https://www.freddiemac.

com/research/datasets/sf-loanlevel-dataset[accessed: 23-04-2024].

Frydman, H. and Matuszyk, A. (2022). Random survival forest for competing credit
risks. Journal of the Operational Research Society, 73(1):15–25.

Fu, Y. (2017). Combination of random forests and neural networks in social lending.
Journal of Financial Risk Management, 6:418–426.

74

https://www.investopedia.com/terms/r/realestateowned.asp
https://www.publichealth.columbia.edu/research/population-health-methods/competing-risk-analysis
https://www.publichealth.columbia.edu/research/population-health-methods/competing-risk-analysis
https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset
https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset


GeeksforGeeks.org (2022). Random forest hyperparameter tuning in python.
https://www.geeksforgeeks.org/random-forest-hyperparameter-tuning-in-

python/[accessed: 16-05-2024].

Gerds, T. A. and Schumacher, M. (2006). Consistent estimation of the expected brier
score in general survival models with right-censored event times. Biometrical Journal,
48(6):1029–1040.

Ghatasheh, N. (2014). Business analytics using random forest trees for credit risk
prediction: A comparison study. International Journal of Advanced Science and
Technology, 72:19–30.

Grambsch, P. M. and Therneau, T. M. (1994). Proportional hazards tests and diagnos-
tics based on weighted residuals. Biometrika, 81(3):515–526.

Gray, R. J. (1988). A class of k-sample tests for comparing the cumulative incidence of
a competing risk. The Annals of Statistics, 16(3):1141–1154.

Green, J. and Shoven, J. B. (1983). The effects of interest rates on mortgage prepay-
ments. National Bureau of Economic Research.

Groot, S. P. and Lejour, A. M. (2018). Financial incentives for mortgage prepayment
behavior: Evidence from dutch micro data. Journal of Housing Economics, 41:237–
250.
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Kohl, M., Plischke, M., Leffondré, K., and Heinze, G. (2015). Pshreg: A sas macro
for proportional and nonproportional subdistribution hazards regression. Computer
Methods and Programs in Biomedicine, 118(2):218–233.

Kuk, D. and Varadhan, R. (2013). Model selection in competing risks regression. Statis-
tics in Medicine, 32(18):3077–3088.

Lambert, P. C. (2017). The estimation and modeling of cause-specific cumulative inci-
dence functions using time-dependent weights. The Stata Journal, 17(1):181–207.

Lau, B., Cole, S. R., and Gange, S. J. (2009). Competing risk regression models for
epidemiologic data. American Journal of Epidemiology, 170(2):244–256.

Lee, S. W., Ryu, S. B., Kim, T. Y., and Jeon, J. Q. (2022). A comparative study on
determinants of housing mortgage prepayment of individual borrowers. Journal of
Derivatives and Quantitative Studies, 30(4):278–295.

Li, Z., Li, A., Bellotti, A., and Yao, X. (2023). The profitability of online loans: A
competing risks analysis on default and prepayment. European Journal of Operational
Research, 306(2):968–985.

Li, Z., Li, K., Yao, X., and Wen, Q. (2019). Predicting prepayment and default risks of
unsecured consumer loans in online lending. Emerging Markets Finance and Trade,
55:118–132.

Loh, W.-Y. and Shih, Y.-S. (1997). Split selection methods for classification trees.
Statistica Sinica, 7(4):815–840.

Lyu, Q. (2021). Implementing Random Forest. https://towardsdatascience.com/

implementing-random-forest-26dd3e4f55c3[accessed: 14-05-2024].

Meis, J. (2015). Modelling prepayment risk in residential mortgages.

Melnyk, R. (2022). Modelling prepayment risk in residential mortgages.

Nolan, E. K. and Chen, H.-Y. (2020). A comparison of the cox model to the fine-gray
model for survival analyses of re-fracture rates. Archives of Osteoporosis, 15(86).

Olajubu, O. J. (2020). Competing risks of default and prepayment of mortgage market.

Ozenne, B., Sorensen, A. L., Scheike, T., Torp-Pedersen, C., and Gerds, T. A. (2017).
riskregression: Predicting the risk of an event using cox regression models. The R
Journal, 9:440–460.

Quercia, R. G. (2016). Differential impacts of structural and cyclical unemployment
on mortgage default and prepayment. The Journal of Real Estate Finance and Eco-
nomics, 53:346–367.

77

https://towardsdatascience.com/implementing-random-forest-26dd3e4f55c3
https://towardsdatascience.com/implementing-random-forest-26dd3e4f55c3


Quercia, R. G., Stegman, M. A., and Davis, W. R. (2007). The impact of predatory
loan terms on subprime foreclosures: The special case of prepayment penalties and
balloon payments. Housing Policy Debate, 18(2):311–346.

Quicken Loans (2023). A guide to the mortgage market. https://www.quickenloans.
com/learn/how-does-the-mortgage-market-work[accessed:16-04-2024].

Robert, D. (2021). The mathematical relationship between the survival function and
the hazard function. https://towardsdatascience.com/the-mathematical-

relationship-between-the-survival-function-and-hazard-function-

74559bb6cc34[accessed: 16-04-2024].

Rocke, D. M. (2021). Survival regression models. https://dmrocke.ucdavis.edu/

Class/EPI204-Spring-2021/Lecture11SurvivalRegression.pdf[accessed: 08-04-
2024].

Saha, P. and Haegerty, P. (2015). Time-dependent prediction accuracy in the presence
of competing risks. Biometrics, 66(4):999–1011.

Schoenfeld, D. (1982). Partial residuals fro the proportional hazards regression model.
Biometrika, 69(1):239–241.

Schwartz, E. S. and Torous, W. N. (1993). Mortgage prepayment and default decisions:
A poisson regression approach. Journal of the American Real Estate and Urban
Economics Association, (4):431–449.

Segota, I. (2023). Unbox the cox: Intuitive guide to cox regressions. Towards Data
Science.

Sestelo, M. (2017). A short course on Survival Analysis applied to the Financial Indus-
try. Bookdown.org.

Stegherr, R., Allignol, A., Meister, R., Schaefer, C., and Beyersmann, J. (2020). Esti-
mating cumulative incidence functions in competing risks data with dependent left-
truncation. Statistics in Medicine, 39(4):481–493.

STHDA (2020). Cox proportional-hazards model. http://www.sthda.com/english/

wiki/cox-proportional-hazards-model[accessed: 12-03-2024].

Suknanan, J. (2023). What is a mortgage and how does it work? CNBC.

Szolnoki, P. (2021). Modelling mortgage prepayments in the united states - a compar-
ison of different methods.

Therneau, T., Crowson, C., and Atkinson, E. (2024). Multi-state models and competing
risks. https://www.vps.fmvz.usp.br/CRAN/web/packages/survival/vignettes/
compete.pdf[accessed: 14-05-2024].

United States Census Bureau (2022). Census regions and divisions of the united
states. https://www2.census.gov/programs-surveys/economic-census/2022/

geographies/reference-maps/2022-ec-regions.pdf[accessed: 03-06-2024].

78

https://www.quickenloans.com/learn/how-does-the-mortgage-market-work[accessed: 16-04-2024]
https://www.quickenloans.com/learn/how-does-the-mortgage-market-work[accessed: 16-04-2024]
https://towardsdatascience.com/the-mathematical-relationship-between-the-survival-function-and-hazard-function-74559bb6cc34
https://towardsdatascience.com/the-mathematical-relationship-between-the-survival-function-and-hazard-function-74559bb6cc34
https://towardsdatascience.com/the-mathematical-relationship-between-the-survival-function-and-hazard-function-74559bb6cc34
https://dmrocke.ucdavis.edu/Class/EPI204-Spring-2021/Lecture11SurvivalRegression.pdf
https://dmrocke.ucdavis.edu/Class/EPI204-Spring-2021/Lecture11SurvivalRegression.pdf
http://www.sthda.com/english/wiki/cox-proportional-hazards-model
http://www.sthda.com/english/wiki/cox-proportional-hazards-model
https://www.vps.fmvz.usp.br/CRAN/web/packages/survival/vignettes/compete.pdf
https://www.vps.fmvz.usp.br/CRAN/web/packages/survival/vignettes/compete.pdf
https://www2.census.gov/programs-surveys/economic-census/2022/geographies/reference-maps/2022-ec-regions.pdf
https://www2.census.gov/programs-surveys/economic-census/2022/geographies/reference-maps/2022-ec-regions.pdf


University of Michigan (2015). Modeling of Survival Data. https://public.websites.
umich.edu/~yili/lect4notes.pdf[accessed: 26-03-2024].

van der Star, T. (2022). Forecasting mortgage prepayment.

Vock, D. M., Wolfson, J., Bandyopadhyay, S., Adomavicius, G., Johnson, P. E.,
Vazquez-Beneitez, G., and O’Connor, P. J. (2016). Adapting machine learning tech-
niques to censored time-to-event health record data: A general-purpose approach
using inverse probability of censoring weighting. Journal of Biomedical Informatics,
61:119–131.

Volinsky, C. T. and Raftery, A. E. (2000). Bayesian information criterion for censored
survival models. Biometrics, 56(1):256–262.

Weathers, B. (2017). Comparison of survival curves between cox proportional hazards,
random forests, and conditional inference forests in survival analysis. All Graduate
Plan B and other Reports, 927.

Wright, M. N., Dankowski, T., and Ziegler, A. (2017). Unbiased split variable selection
for random survival forests using maximally selected rank statistics. Statistics in
Medicine, 36(8):1272–1284.

Wu, H.-M. and Deng, C. (2010). A study of prepayment risks in china’s mortgage-
backed securitization. China Economic Journal, 3(3):313–326.

Xin, X. (2014). Ties Between Event Times and Covariate Change Times in Cox Models.
PhD thesis, The University of Guelph.

Yeh, S.-T. (2002). Using trapezoidal rule for the area under a curve calculation. Pro-
ceedings of the 27th Annulal SAS® User Group International (SUGI’02), pages 1–5.

Yuan, Y. and Tao, R. (2023). Prepayment and credit utilization in peer-to-peer lending.
Managerial Finance, 49(12):1849–1864.

Zhang, X., Zhang, M.-J., and Fine, J. (2011). A proportional hazards regression model
for the subdistribution with right-censored and left-truncated competing risks data.
Statistics in Medicine, 30(16):1933–1951.

79

https://public.websites.umich.edu/~yili/lect4notes.pdf
https://public.websites.umich.edu/~yili/lect4notes.pdf


A Proofs

A.1 Proof relation survival function and hazard function

We want to prove that the hazard function is related to the survival function in the
following way:

hk(t) = − ∂

∂t
log(Sk(t))

Proof. As starting point, take hk(t) =
fk(t)
Sk(t)

as in (2) and Sk(t) = 1 − Fk(t) as in (1).
Moreover, note the following:

fk(t) =
d

dt
Fk(t)

If we now substitute A.1 into (2), and then substitute Fk(t) = 1− Sk(t), we get:

hk(t) =
fk(t)

Sk(t)

=
∂
∂t
Fk(t)

Sk(t)

=
∂

∂t
(1− Sk(t)) ∗

1

Sk(t)

= − ∂

∂t
log(Sk(t)),

where the last equation follows from the chain rule applied to a log function (Robert,
2021).

A.2 Proof survival function Cox proportional hazards model

We want to prove that the survival function in the Cox proportional hazards model is
equal to:

Sk(t) = S0(t)
exp(

∑p
i=1 βiXki)

Proof. As starting point, take the hazard function in the Cox proportional hazards
model, which is:

hk(t) = h0(t)exp(

p∑
i=1

βiXki)

integrating both sides: ∫ t

0

hk(s) ds =

∫ t

0

h0(s)exp(

p∑
i=1

βiXki) ds

= exp(

p∑
i=1

βiXki)

∫ t

0

h0(s) ds

Using that the cumulative hazards function Hk(t)) is the integrated hazard rate over
time Hk(t) =

∫ t

0
hk(s) ds, gives

Hk(t) = exp(

p∑
i=1

βiXki)H0(t)
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Using that Sk(t) = exp(−Hk(t)) or equivalently Hk(t) = −log(Sk(t)), results in:

−log(Sk(t)) = exp(

p∑
i=1

βiXki)(−log(S0(t)))

and since exp(
∑p

i=1 βiXki) is a scalar, we get:

log(Sk(t)) = log(S0(t)
exp(

∑p
i=1 βiXki))

Applying the exponential function on both sides, yields:

Sk(t) = S0(t)
exp(

∑p
i=1 βiXki)

(Hosmer and Lemeshow, 1999)

A.3 Proof of conditional probability in Cox model

To prove:

Lj(β) =
exp(

∑p
i=1 βiXji)∑

l∈R(tj)
exp(

∑p
i=1 βiXli)

Proof. Let R(tj) be the risk set at time tj. As the conditional probability of mortgage
j is the contribution of mortgage j to the partial likelihood, the conditional probability
is first denoted by Lj(β).

Lj(β) = P(mortgage j is prepaid at tj |1 prepayment fromR(tj))

=
P(mortgage j is prepaid at tj |at risk at tj)∑
l∈R(tj)

P(mortgage l is prepaid |at risk at tj)

=
h0(t)exp(

∑p
i=1 βiXji)∑

l∈R(tj)
h0(t)exp(

∑p
i=1 βiXli)

=
exp(

∑p
i=1 βiXji)∑

l∈R(tj)
exp(

∑p
i=1 βiXli)

(University of Michigan, 2015)

A.4 Proof example Efron’s approximation

To prove: if mortgages 1 and 2 are both prepaid at time t1, then it follows that their
contribution to the partial likelihood is as described in (21).

Proof. Let mortgage j = 1 and j = 2 both be prepaid at time t1. Then, D1 = {1, 2}
and d1 = 2. Define L1,2(β) as the partial likelihood contribution of the mortgages 1
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and 2. Note that at t1 all n mortgages are at risk and hence R(t1) = {1, . . . , n} Then,

L1,2(β) =
2∏

j=1

exp(
∑p

i=1 βiXji)∏2
s=1(

∑
l∈R(t1)

exp(
∑p

i=1 βiXli)− s−1
2

∑
l∈1,2 exp(

∑p
i=1 βiXli))

=
2∏

j=1

exp(
∑p

i=1 βiXji)∑n
l=1 exp(

∑p
i=1 βiXli) ∗ (

∑n
l=1 exp(

∑p
i=1 βiXli)− 1

2

∑2
l=1 exp(

∑p
i=1 βiXli)))

=
exp(

∑p
i=1 βiX1i)∑n

l=1 exp(
∑p

i=1 βiXli)
∗ exp(

∑p
i=1 βiX2i)∑n

l=1 exp(
∑p

i=1 βiXli)− 1
2

∑2
l=1 exp(

∑p
i=1 βiXli))

=
exp(

∑p
i=1 βiX1i)∑n

l=1 exp(
∑p

i=1 βiXli)

∗ exp(
∑p

i=1 βiX2i)
1
2
exp(

∑p
i=1 βiX1i) +

1
2
exp(

∑p
i=1 βiX2i) +

∑n
l=3 exp(

∑p
i=1 βiXli)

A.5 Proof of log-log survival curve

We want to proof that the log-log survival curve in the Cox proportional hazards model
is:

log(−log(Sk(t))) = log(−log(S0(t))) +

p∑
i=1

βiXki

Proof. Let p be the number of covariates, let k be the index for the mortgage and let
Xki be the value of the i′th covariate for mortgage k. Let the survival be as stated in
A.2:

Sk(t) = S0(t)
e
∑p

i=1
βiXki

Taking the natural logarithm on both sides gives:

log(Sk(t)) = log(S0(t)) ∗ exp(
p∑

i=1

βiXki)

Since 0 ≤ Sk(t) ≤ 1, log(Sk(t)) ≤ 0, both sides are multiplied with −1 to be able to
take second natural logarithm:

−log(Sk(t)) = −log(S0(t)) ∗ exp(
p∑

i=1

βiXki)

Now, taking again the natural logarithm on both sides, gives:

log(−log(Sk(t))) = log(−log(S0(t)) ∗ exp(
p∑

i=1

βiXki))

= log(−log(S0(t))) + log(exp(

p∑
i=1

βiXki))

= log(−log(S0(t))) +

p∑
i=1

βiXki

(Kleinbaum and Klein, 2011)
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A.6 Proof of cause-specific cumulative incidence

To prove:

CIF P
k (t) =

∫ t

0

hP
k (s)S

CR
k (s) ds

Proof. Let k ∈ {1, . . . , n}, hP
k (t) be the prepayment hazard function of mortgage k,

SCR
k (t) be the survival function of both competing events together. Start with expres-

sion (30). Rewriting gives:

hP
k (t) = lim

∆t→0

P(t < Tk ≤ t+∆t,S = P |Tk > t)

∆t

=
1

P(Tk > t)
lim
∆t→0

P(t < Tk ≤ t+∆t,S = P )

∆t

=
1

P(Tk > t)
fP
k (t) if fP

k (t) exists

Rewriting gives:
fP
k (t) = hP

k (t)P(Tk > t) = hP
k (t)S

CR
k (t)

Using that CIF P
k (t) =

∫ t

0
fP
k (s) ds, gives that:

CIF P
k = F P

k (t) =

∫ t

0

hP
k (s)S

CR
k (s) ds

(Frydman and Matuszyk, 2022)

A.7 Proof that the effect of a covariate on the subdistribution
hazard function is in the same direction as the effect of
the covariate on the cumulative incidence

To prove, for each k = 1, . . . , n:

1− CIF P
k (t|X) = (1− CIF P

k0(t))
exp(

∑p
i=1 βiXki) (65)

suggests that a positive βi indicates an increase in CIF P
k (t|X).

Proof. Rewriting (65) gives:

CIF P
k (t|X) = 1− (1− CIF P

k0(t))
exp(

∑p
i=1 βiXki)

Take the derivative if CIFk(t|X) w.r.t. βi. This gives:

∂CIF P
k (t|X)

∂βi

= −(1− CIF P
k0(t))

exp(
∑p

i=1 βiXki) ∗ log(1− CIF P
k0(t)) ∗ exp(

p∑
i=1

βiXki)Xki,

where log is the natural logarithm. Let us consider the terms on the right hand side of
the equation seperately.

• As 0 < CIF P
k0(t) < 1, log(1− CIF P

k0(t)) < 0.
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• exp(
∑p

i=1 βiXki) > 0.

• −(1− CIF P
k0(t))

exp(
∑p

i=1 βiXki) < 0.

So, the right-hand side of the equation is positive if Xki is positive. Since we prove that
the effect of βi on CIF P

k (t|X) is in the same direction as the effect of βi on Xki, we
can now conclude that if βi is positively associated with Xki, then βi is also positively
associated with CIF P

k (t|X). In addition, if βi is negatively associated with Xki, then

βi is also negatively associated with CIF P
k (t|X). And hence,

∂CIFP
k (t|X)

∂βi
> 0

A.8 Proof of left-out observations percentage Random Forest

To prove: approximately 37% of the loans are left-out by using bootstrap sampling
with replacement in the Random Forest.

Proof. Let n be the number of loans in the data set. As we take a random sample with
replacement, the probability that a loan is selected is 1

n
. The probability that a loan is

not selected is then 1 − 1
n
. Note that n observations are taken. Then, the probability

that a loan is not selected out of the n drawn loans:

lim
n→∞

(1− 1

n
)n =

1

e
≈ 37%

(Huang and Deng, 2021)
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B Tables

Table 22: Number of observations per state

Variable name Number of loans
Property State AK 31
Property State AL 192
Property State AR 108
Property State AZ 624
Property State CA 2665
Property State CO 558
Property State CT 194
Property State DC 48
Property State DE 63
Property State FL 1366
Property State GA 644
Property State HI 50
Property State IA 151
Property State ID 137
Property State IL 972
Property State IN 425
Property State KS 181
Property State KY 262
Property State LA 176
Property State MA 565
Property State MD 452
Property State ME 67
Property State MI 641
Property State MN 491
Property State MO 409
Property State MS 61
Property State MT 29
Property State NC 616
Property State ND 31
Property State NE 94
Property State NH 81
Property State NJ 578
Property State NM 97
Property State NV 228
Property State NY 730
Property State OH 669
Property State OK 155
Property State OR 348
Property State PA 698
Property State PR 4
Property State RI 68
Property State SC 318
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Property State SD 28
Property State TN 295
Property State TX 1421
Property State UT 281
Property State VA 619
Property State VT 26
Property State WA 609
Property State WI 377
Property State WV 49
Property State WY 17

Table 23: Number of observations per U.S. region

Region of mortgage Number of observations
Midwest 4469
Northeast 3007
South 6849
West 5674

Variable Name Reason of selection
Channel Third parties receive a commission for each loan they facilitate.

They have thus an incentive to prepayment of their clients as they
can facilitate more often, so it is assumed that loans originated
by third parties positively affect the prepayment rate

Credit Score A higher credit score is associated with a lower probability of de-
fault. Therefore, a higher credit score is associated with a higher
probability of prepayment

First Time Home-
buyer Flag

People who buy their first home are likely to be young and have
less financial stability

Interest Rate A higher interest rate is associated with higher risk and higher
payments, which suggests a negative correlation with the rate of
prepayment and a positive correlation with default

Mortgage Insurance
Percentage

Theoretically, mortgage insurance is negatively related to default
rates. The lower the percentage of the mortgage that is covered
by insurance, the higher the probability of default (Meis, 2015).

Number of Borrowers If there are more than 1 people obligated to repay the mortgage,
then it intuitively suggests that this will positively affect the prob-
ability of prepayment as there likely would be more financial sta-
bility

Number of Units If the underlying property consists of more than 1 unit, it has a
more complex financial structure, which is assumed to lower the
probability of prepayment

Occupancy Status If the underlying house is the primary residence, then occupancy
status is positively associated with prepayment rate in the litera-
ture (Olajubu, 2020)
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Original DTI Ratio A higher DTI Ratio results in higher risk to meet the scheduled
payments and therefore it is theoretically positively associated
with the rate of default and negatively related with the rate of
prepayment

Original Loan Term The term of the mortgage is assumed to impact prepayment be-
haviour, while the direction is not immediately clear

Original LTV In previous research, Original Loan-to-Value ratio is found to pos-
itively affect prepayment rates (Schwartz and Torous, 1993), but
in other research it is found to negatively affect prepayment rates
van der Star (2022)

Original UPB In previous research, Original Unpaid Principle Balance is often
found to negatively affect prepayment rates (Wu and Deng, 2010)

Property Region Prepayment rates are observed to differ amongst states and re-
gions in the United States (Kau et al., 2009)

Property Type Previous literature suggests that Single-Family homes are less
likely to be prepaid than other property types (Meis, 2015)

Table 24: Selected covariates from data

In Table 25 the steps of the forward and backward selection procedure using AIC are
tabulated. One should interpret the table as follows:

1. In step 1 ”Mod. 0” indicates the full model if no variables are removed. The
column shows the AIC of the model if the variable in the ”Var.” column is removed
from the model. A lower AIC suggests a better model fit and hence, if removing
a variable leads to lower AIC then the ”Mod. 0”, this variable is removed. So,
from Table 25, it is concluded first time homebuyer flag is removed.

2. As the first time homebuyer flag variable was removed in Step 1, the reference
model has one variable less than originally. This reference model is called ”Mod.
1” and it is the full model without the first time homebuyer flag variable. Now,
one of the options is the add the FTHF as denoted by +FTHF. Step 2 suggests
that removing original loan-to-value ratio results in a better model fit than only
removing FTHF.

3. These steps are repeated until doing nothing, so not removing or adding another
variable, results in the lowest AIC. This can be seen in step 4. Now, ”Mod. 3”
has the lowest AIC. This indicates that the variables first time homebuyer flag,
original loan-to-value ratio and channel are removed in the variable selection
procedure.
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Table 25: Forward and backward selection prepayment hazard rate using
AIC

Step 1 Step 2 Step . . . Step 4
Var. AIC Var. AIC . . . Var. AIC

-FTHF 242969 -OLTV 242969 . . . Mod. 3 242968
-OLTV 242970 -Chan. 242969 . . . +Chan. 242969
-Chan. 242970 -MI 242970 . . . +OLTV 242969

Mod. 0 242970 Mod. 1 242970 . . . +FTHF 242970
-MI 242971 +FTHF 242971 . . . -MI 242972

-ODTI 242977 -ODTI 242977 . . . -ODTI 242975
-OLT 242979 -#Bor 242981 . . . -OLT 242978
-#Bor 242982 -OLT 242979 . . . -#Bor 242980
-Prop. 242996 -Prop. 242995 . . . -Prop. 242994

-CS 243086 -CS 243086 . . . -CS 243083
-Reg 243096 -Reg 243096 . . . -Reg 243095

-OUPB 243710 -OUPB 243710 . . . -OUPB 243726
-OIR 244742 -OIR 244749 . . . -OIR 244754

Abbreviations a) Chan.: Channel, b) CS: Credit Score, c) FTHF: First
Time Homebuyer Flag, d) MI: Mortgage Insurance percentage, e) ODTI:
Original Debt-to-Income ratio, f) OIR: Original Interest Rate, g) OLT:
Original Loan Term, h) OLTV: Original Loan-to-Value, i) OUPB: Orig-
inal Unpaid Principle Balance, j) Prop.: Property type, k) Reg: Region,
l) #Bor: Number of borrowers.
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Table 26: Forward and backward selection default hazard rate using
AIC

Step 1 Step 2 Step . . . Step 5
Var. AIC Var. AIC . . . Var. AIC

-Reg 17174 -OLT 17173 . . . Mod. 4 17170
-OLT 17177 -MI 17173 . . . -Prop. 17170
-MI 17177 -FTHF 17173 . . . +FTHF 17171

-FTHF 17177 Mod. 1 17174 . . . +MI 17172
-Prop. 17178 -Prop. 17175 . . . +OLT 17172

Mod. 0 17178 -Chan. 17178 . . . -Chan. 17174
-Chan. 17181 +Reg 17178 . . . +Reg 17174
-OLTV 17207 -OLTV 17207 . . . -ODTI 17235
-OIR 17237 -OIR 17232 . . . -OLTV 17241

-ODTI 17244 -ODTI 17239 . . . -OIR 17241
-#Bor 17257 -#Bor 17254 . . . -#Bor 17250
-OUPB 17259 -OUPB 17256 . . . -OUPB 17257

-CS 17585 -CS 17585 . . . -CS 17582

Abbreviations a) Chan.: Channel, b) CS: Credit Score, c) FTHF:
First Time Homebuyer Flag, d) MI: Mortgage Insurance percentage,
e) ODTI: Original Debt-to-Income ratio, f) OIR: Original Interest
Rate, g) OLT: Original Loan Term, h) OLTV: Original Loan-to-Value,
i) OUPB: Original Unpaid Principle Balance, j) Prop.: Property type,
k) Reg: Region, l) #Bor: Number of borrowers.

Table 27: Test of proportional hazard assumption
for prepayment-specific hazard after stratification of
Original Interest Rate in Cox cause-specific hazards
model

Variable chisq df p-value

Credit Score 0.8364 1 0.3604
Original DTI 0.0406 1 0.8404
Original UPB 2.9132 1 0.0879

Original Loan Term 0.4638 1 0.4959
Property Type 1.0766 1 0.2995

Number of Borrowers 0.8211 1 0.3648
Region 58.3018 3 1.4e-12

Mortgage Insurance Per. 8.5674 1 0.0034
Global 65.5937 10 3.1e-10
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Table 28: Test of proportional hazard assump-
tion for prepayment-specific hazard after strati-
fication of Original Interest Rate and Region in
Cox cause-specific hazards model

Variable chisq df p-value

Credit Score 0.243 1 0.622
Original DTI 0.102 1 0.749
Original UPB 1.027 1 0.311

Original Loan Term 0.865 1 0.352
Property Type 0.189 1 0.664

Number of Borrowers 0.298 1 0.585
Mortgage Insurance Per. 5.905 1 0.015

Global 8.100 7 0.324

Table 29: Test of proportional hazard assump-
tion for default-specific hazard in Cox cause-
specific hazards model

Variable chisq df p-value

Credit Score 1.082 1 0.298
Original DTI 0.150 1 0.699
Original UPB 0.497 1 0.481

Original Interest Rate 2.395 1 0.122
Channel 1.086 1 0.297

Property Type 2.594 1 0.107
Original Loan-to-Value 9.850 1 0.002
Number of Borrowers 8.738 1 0.003

Global 28.625 8 0.000

Table 30: Test of proportional hazard assump-
tion for default-specific hazard after stratifying
OLTV in Cox cause-specific hazards model

Variable chisq df p-value

Credit Score 1.143 1 0.285
Original DTI 0.634 1 0.426
Original UPB 0.349 1 0.555

Original Interest Rate 3.111 1 0.078
Channel 0.598 1 0.440

Property Type 1.548 1 0.214
Number of Borrowers 7.680 1 0.006

Global 18.316 7 0.011
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Table 31: Estimation results Cox prepayment-specific hazard model with
Mortgage Insurance Percentage included

Strata: quartiles IR and Region

Variable name coef Hazard rate s.e. p-value
(exp(coef))

Credit Score 1.411e-03 1.001 1.823e-04 0.000***
Original DTI -2.324e-03 0.998 8.000e-04 0.004**
Original UPB 2.004e-06 1.000 8.032e-08 0.000***
Original Loan Term -3.401e-04 1.000 1.499e-04 0.821
Property Type = SF -7.934e-02 0.924 1.922e-02 0.000***
Num of Borrowers = 1 -7.044e-02 0.932 1.768e-02 0.000***
MI Percentage 1.431e-03 1.001 8.658e-04 0.098

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 32: Backward selection prepayment subdistribution hazard rate using
BICcr for Fine-Gray subdistribution hazard model

Step 1 Step 2 Step . . . Step 5
Var. BICcr Var. BICcr . . . Var. BICcr

-MI 246199.7 -OLTV 246190.2 . . . Mod. 4 246175.2
-OLTV 246199.7 -FTHF 246190.6 . . . -OLT 246177.7
-FTHF 246200.1 -Chan. 246193.7 . . . -Prop. 246183.2
-Chan. 246203.2 Mod. 1 246199.7 . . . -ODTI 246193.3

Mod. 0 246209.1 -OLT 246200.1 . . . -#Bor 246216.4
-OLT 246209.6 -Prop. 246208.2 . . . -Region 246259.8
-Prop. 246217.6 -ODTI 246216.3 . . . -CS 246488.8
-ODTI 246225.8 -#Bor 246238.7 . . . -OUPB 246638.6
-#Bor 246248.2 -Region 246282.9 . . . -OIR 247729.8

-Region 246292.3 -CS 246506.7 . . .
-CS 246516.1 -OUPB 246659.4 . . .

-OUPB 246668.6 OIR 247746.2 . . .
-OIR 247754.1 . . .

Abbreviations a) MI: Mortgage Insurance percentage, b) OLTV: Original Loan-
to-Value, c) FTHF: First Time Homebuyer Flag, d) Chan.: Channel, e) OLT:
Original Loan Term, f) Prop.: Property type, g) ODTI: Original Debt-to-
Income ratio, h) #Bor: Number of Borrowers, i) CS: Credit Score, j) OUPB:
Original Unpaid Principle Balance, k) OIR: Original Interest Rate.
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C Figures

Figure 27: Number of loans with first-
time homebuyers

Figure 28: Number of units for mort-
gages

Figure 29: Distribution of occupancy
status

Figure 30: Distribution of property
types

Figure 31: Distribution of channel
types

Figure 32: Distribution number of bor-
rowers
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Figure 33: Cumulative incidence of pre-
payment for the four quartiles of interest
rate

Figure 34: Cumulative incidence of pre-
payment for first-time homebuyer flag

Figure 35: Cumulative incidence of pre-
payment for the number of units

Figure 36: Cumulative incidence of pre-
payment for the four quartiles of credit
score

93



Figure 37: Cumulative incidence of pre-
payment for the different channels

Figure 38: Cumulative incidence of pre-
payment for the different Occupancy
Status

Figure 39: Cumulative incidence of pre-
payment for the four quartiles of Origi-
nal Debt-to-Income Ratio

Figure 40: Cumulative incidence of pre-
payment for the four quartiles of Mort-
gage Insurance Percentage
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Figure 41: Cumulative incidence of pre-
payment for the four quartiles of Origi-
nal Loan-to-Value Ratio

Figure 42: Cumulative incidence of pre-
payment for the four regions in the US

Figure 43: Schoenfeld residuals of Credit Score, Original Debt-to-Income Ratio and
Number of Borrowers after controlling for non-proportional effect on Cox prepayment-
specific hazard

Figure 44: Scaled Schoenfeld residuals of Original Loan Term, Property Type and
Original Unpaid Principle Balance after controlling for non-proportional effect on Cox
prepayment-specific hazard
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Figure 45: Scaled Schoenfeld residuals of Credit Score, Original Debt-to-Income Ratio
and Channel after controlling for non-proportional effect on Cox default-specific hazard

Figure 46: Scaled Schoenfeld residuals of Original Interest Rate, Property Type and
Original Unpaid Principle Balance after controlling for non-proportional effects on Cox
default-specific hazard

Figure 47: Scaled Schoenfeld residuals of Original Interest Rate, Credit Score and
Number of borrowers in Fine-Gray subdistribution hazard model

Figure 48: Scaled Schoenfeld residuals of Original Debt-to-Income Ratio, Original Loan
Term and Original Unpaid Principle Balance in Fine-Gray subdistribution hazard model
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Figure 49: Scaled Schoenfeld residuals of Regions South, North-East and West in Fine-
Gray subdistribution hazard model

Figure 50: Scaled Schoenfeld residuals of Property Type = Single-Family in Fine-Gray
subdistribution hazard model
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