Optimizing Quantitative Trading: An
Experimental Study of DQN Trading
Strategies and Utility Functions

Mohammad Bagheri
STUDENT NUMBER: 2044174

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE IN QUANTITATIVE FINANCE & ACTUARIAL SCIENCES
SCHOOL OF ECONOMICS AND MANAGEMENT
TILBURG UNIVERSITY

Thesis committee:

dr. Nikolaus Schweizer
prof dr. Bertrand Melenberg

Tilburg University
Tilburg, The Netherlands
August 2024

Abstract

Machine learning has revolutionized financial trading by enhancing traditional methods
and introducing new strategies. This thesis explores the application of Deep Q-Networks
(DQNs), a reinforcement learning model, for quantitative trading. Developed by Google
DeepMind, DQNs have demonstrated human-expert level performance in Atari games by
combining Q-learning with deep convolutional neural networks, effectively learning complex
policies from high-dimensional inputs. This research focuses on developing a DQN-based
trading system to optimize trading performance across 20 highly liquid futures contracts in
four asset classes: commodities, equities, fixed income, and foreign exchange. The study
evaluates DQN agents using different utility functions (linear and logarithmic) and position
sizing rules (volatility targeting and a novel volatility targeting with momentum scaling).
Performance is assessed based on risk-adjusted returns, profitability, and drawdown manage-
ment. Key findings indicate that DQN agents significantly outperform traditional baseline
models, including passive buy-and-hold strategies aligned with the Efficient Market Hypoth-
esis and active technical trading strategies. DQN agents exhibit superior resilience during
market disruptions, such as the COVID-19 pandemic and the Russian-Saudi oil price war,
with logarithmic utility functions generally yielding better results. This thesis contributes to
quantitative finance by showcasing the potential of reinforcement learning based strategies
in enhancing trading performance. It provides insights into effective utility functions and
position sizing rules, and highlights the operational practicality of these models, considering
transaction costs. The results could serve as a stepping stone toward building more robust
trading systems using reinforcement learning, paving the way for future research in this
field.

Contents
1 Introduction

2 Background & Related Work

2.1 Efficient Market Hypothesis
2.2 Fundamental and Technical Analysis
2.3 Quantitative Trading and Supervised Learning
2.4 Reinforcement Learning
25 Deep Q-Networks
2.6 Reward Design & Utility Theory

2.6.1 Power Utility

2.6.2 Reward Design
2.7 Position Size

3 Methodology

3.1 Markov Process
3.2 StateSpace
3.3 Action Space
3.4 Position Sizing
3.4.1 \Volatility Targeting
342 MACD Signal
3.5 Integration of Actions and Position Sizing Rules
3.6 Reward Function
36.1 Linear Utility
3.6.2 Logarithmic Utility
3.6.3 Budget Constraint and Stop Loss Policy
3.7 Benchmark Models
371 Buy&Hold.
3.7.2 Momentum Strategy
373 MACD Signal
3.8 Deep Q-Network
3.8.1 Neural Network
3.8.2 Multi-Layer Perceptron
3.8.3 Learning Algorithm Overview
3.8.4 \Validation and Preventing Overfitting
4 Experimental Setup
4.1 Data Definition
4.2 Training, Testing, and Relevant Parameters
4.3 Portfolio Construction
4.4 Performance Metrics
441 Cumulative Return
442 SharpeRatio
443 SortinoRatio
4.4.4 Maximum Drawdown (MDD),
445 CalmarRatio
446 P&LRatio

447 Percentage of Positive Returns

5 Experimental Results
5.1 Training Stability and Overfitting Analysis
52 Performance.
5.2.1 Risk-Adjusted Returns
5.2.2 Profitability
5.2.3 Drawdown Management
5.2.4 Performance Across Asset Classes.
5.2.5 Total Portfolio
5.2.6 Hierarchy of Position Sizing Rules
5.3 Crisis Analysis of Crude Oil
5.4 Crisis Analysis of Total Portfolio.
5.5 Sensitivity Analysis of Transaction Costs

6 Conclusion

7 Discussion
7.1 Limitations
7.1.1 Constantly Changing Distribution of Financial Returns
7.1.2 Neural Network Architecture
7.1.3 State Representation
7.1.4 Data Range and Timeframes
7.1.5 Logarithmic Reward Design
7.1.6 Hyperparameter Tuning and Feature Selection
7.2 FutureResearch.
7.2.1 Alternative Reinforcement Learning Algorithms
7.2.2 Distribution-Based Approaches

A Appendix
A.1 Pseudo Code for DQN Algorithm
A.2 Daily Market Return Statistics
A3 Crude Oil Returns
A.4 Robustness Check: Logarithmic vs. Exponential Utility

1 Introduction

In recent decades, advances in machine learning have revolutionized many fields, including fi-
nancial trading [Bahoo et al., 2024; Singh et al., 2023]. Machine learning models are used to
analyze large datasets, identify patterns, and make predictions, which are highly valuable in finan-
cial trading. Traditionally, financial trading has utilized various theories and methods, including
short-term technical analysis, time-series forecasting, cross-sectional strategies, and fundamental
analysis, which assesses a company's financial health [Fama and French, 1992, 1996; Baz et al.,
2015; Nti et al., 2020]. These approaches are essential for both individual passive income gener-
ation and broader financial applications such as pension fund management, company investment
portfolios, and risk hedging. With the evolution of technology and data science, financial trading
has increasingly incorporated quantitative methods, leading to the rise of quantitative trading,
often referred to as algorithmic trading. Quantitative trading uses advanced decision-making
systems to perform trades with a higher frequency and more systematically than human traders.
Human trading can be biased and emotional [Lad and Tailor, 2016; Kusev et al., 2017], leading
to irrational decisions, whereas algorithmic trading is designed to be more objective and consis-
tent. Quantitative trading now accounts for a substantial portion of trading volume in various
markets, including stocks and commodities, and is a crucial tool for hedge funds and asset man-
agers seeking to outperform the market [Kunz and Martin, 2015]. Conversely, some believe in
market efficiency, arguing that consistent outperformance of the market is not feasible because
all available information is reflected in prices [Fama, 1965; Malkiel, 2003].

Machine learning, especially supervised learning, has pushed the boundaries of what was once
considered impossible. It has achieved notable success in fields such as image classification and
natural language processing [Krizhevsky et al., 2012; Vaswani et al., 2017; Devlin et al., 2019].
For financial trading, supervised learning is increasingly used to optimize traditional methods
and predict market movements [Lim et al., 2019]. These models can analyze large volumes of
financial data to identify patterns and trends that may not be noticeable to human traders.
However, translating these predictions into effective trading strategies that take into account
risks, preferences, and transaction costs remains challenging. This is mainly because supervised
learning-based trading follows a two-step approach: first, making predictions about the price
movements, and then inputting the predictions into a trading system that executes trades. The
prediction models often do not consider market liquidity and frictions, which can significantly
impact the effectiveness of the trading strategies.

Reinforcement learning (RL), another subset of machine learning, could potentially address some
of these challenges [Moody and Saffell, 1998; Shakya et al., 2023]. Unlike supervised learning,
RL involves training an agent through interactions with an environment, learning to maximize
rewards through trial and error, inspired by human learning. This approach can be particularly
useful in financial trading, where the agent can learn to make trade decisions that maximize long-
term rewards while considering various market conditions and risks. Deep Q-Networks (DQNs),
an RL model developed by researchers at Google DeepMind, notably by Mnih et al. [2013], gained
fame in 2014 for their ability to achieve human-expert level performance in Atari games. They
researched the application of deep learning to reinforcement learning, with the aim of creating
agents capable of learning intricate policies directly from high-dimensional (sensory) inputs such
as images. Their experiments demonstrated that DQN could learn to play various Atari games
at a human-expert level, achieving high scores and mastering diverse game mechanics without
any game-specific knowledge. This breakthrough showcased the potential of deep reinforcement
learning in solving complex tasks. Financial trading, in essence, can be seen as a game, where
the objective is to make decisions that lead to the highest possible rewards, much like an agent
in an Atari game optimizing its play to achieve the highest score.

Despite the potential of RL, its application in quantitative finance is still limited and under-
researched compared to supervised learning. Most existing RL models for financial trading as-
sume risk-neutral agents, as the reward system of the agents is primarily based on the profits
made [Zhang et al., 2019; Théate and Ernst, 2021]. However, this assumption can lead to
behavioral flaws. Humans are typically risk-averse and require a risk premium for taking on
additional risk. Risk-neutral agents, on the other hand, tend to take excessive risks and often
disregard potential losses. This disregard for potential losses arises because risk-neutral agents
evaluate outcomes purely based on expected returns, without accounting for the variability or
uncertainty of those returns. They are indifferent to the distribution of returns, focusing solely
on maximizing expected profit. This behavior is undesirable for investors, who prioritize stability
and downside protection. Therefore, it is crucial to penalize high volatility, particularly downside
risk, in the reward structure of RL models to better align with investor preferences. Furthermore,
the importance of money management, such as determining position sizes, is often overlooked,
although it significantly impacts trading performance and portfolio risk profiles [Moody and Saf-
fell, 1998; Scholz, 2012]. Incorporating these considerations into RL models can lead to more
robust and desirable trading strategies.

This thesis aims to explore and extend the application of RL in quantitative finance, focusing on
Deep Q-Networks (DQNs), for quantitative trading. The main objectives are:

1. Build a Reinforcement Learning Trading System: Develop a DQN-based trading sys-
tem for quantitative trading.

2. Investigate Reward Functions: Compare DQN agents using reward designs based on
both linear and logarithmic utility functions to account for risk preferences.

3. Extend Position Sizing Techniques: Combine volatility scaling with a trend-based po-
sition sizing rule to create a novel ensemble position sizing strategy.

4. Perform Market Comparisons: Evaluate the DQN agents across various markets (com-
modities, equities, fixed income, foreign exchange) against passive strategies and technical
trading benchmarks.

This research involves developing a DQN network for trading single assets and evaluating it us-
ing different utility functions and position sizing rules. The strategies are applied to 20 futures
contracts across four asset classes. Performance is assessed based on three components: risk-
adjusted returns, profitability, and drawdown management, and compared to traditional baseline
models.

The findings reveal that the constructed DQN agents significantly outperform traditional base-
line models, including the passive buy-and-hold strategies and active technical trading strategies,
across most asset classes except fixed income. DQN agents demonstrate better resilience during
market disruptions, such as the COVID-19 pandemic and the Russian-Saudi oil price war. Agents
using logarithmic utility functions generally outperform those using linear utility functions. Po-
sition sizing strategies significantly impact performance, and trading cost analysis highlights the
operational practicality and limitations of these models. This research contributes to quantitative
finance by demonstrating the potential of DQN-based strategies in optimizing trading perfor-
mance. It provides insights into the impact and effectiveness of different utility functions and
position sizing rules, offering practical implications for traders. The study also highlights the
resilience of DQN agents during market disruptions and their sensitivity to transaction costs.

This thesis is organized as follows: the background and related work section discusses theoretical
foundations and relevant studies, serving as the motivation for the methodology. The method-
ology section details the development of the DQN model, including aspects of the RL agent

such as its state-space, action-space, reward design, and the architecture of the reinforcement
learning model. The experimental setup section defines the data and systematic approach for
performing experiments and evaluating the performance of RL agents versus baseline models.
The results section presents empirical findings, including comparisons between utility functions
and position sizing rules, crisis analysis, and transaction cost sensitivity analysis. Finally, the con-
clusion summarizes key insights and is followed by a discussion of limitations and future research
directions.

2 Background & Related Work

In this section, we discuss the background and related work pertinent to the objectives and
scope of this thesis. We begin by introducing the Efficient Market Hypothesis (EMH) and the
various types of analyses employed in financial trading. Following this, we explain the concept
of quantitative trading and the principles of supervised learning. This leads into a discussion
on reinforcement learning, highlighting its relevance and motivation for our focus within the
context of quantitative trading. Subsequently, we review the literature related to this thesis and
provide the rationale behind the methodology we will use. Additionally, we discuss utility theory
and position sizing, as these are core aspects that underpin our development of reinforcement
learning models. Based on our review of the literature, we aim to develop a reinforcement
learning model and conduct experiments that, to the best of our knowledge, offer new insights
not currently found in existing literature.

2.1 Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH), formulated by Fama [1965], claims that financial mar-
kets are 'efficient’, entailing that asset prices incorporate and reflect all the relevant information
available at any given time. Consequently, it is nearly impossible to consistently profit from
mispriced assets through either fundamental or technical analysis without taking on additional
risk, as all pertinent information is already blended into the prices. EMH applies to nearly all
financial assets, including stocks, commodities, fixed income, and foreign exchange. EMH has
three forms: weak, semi-strong, and strong. The weak form entails that all past trading infor-
mation is reflected in the prices. The semi-strong form hypothesizes that all publicly available
information is reflected in the prices. The strong form claims that all information, both public
and private, is incorporated into prices, meaning that no type of information can give investors
an edge in outperforming the market.

EMH is a central theory in financial economics and has received substantial support as well as
its share of criticism. Malkiel [2003] argues that a long-term passive buy-and-hold strategy is
optimal for average investors. According to Malkiel, attempting to time the market or pick indi-
vidual stocks tends to be ineffective in the long run, aligning with the notion of EMH. Empirical
evidence suggests that stock prices follow a random walk, indicating that changes in prices are
unpredictable and consistent with the weak form of EMH. Studies by Kendall and Hill [1953]
and subsequent research by Fama [1970] demonstrated empirically that stock prices move ran-
domly, reinforcing the idea that historical price data cannot predict future prices. Additionally,
in developed markets like Europe and the U.S., the semi-strong form of EMH is well-supported
[Solnik, 1973]. Event studies have shown that newly publicly available information, such as firm
earnings statements, is rapidly incorporated into stock prices, preventing investors from achieving
abnormal (excess) returns through fundamental analysis [Patell and Wolfson, 1984]. Moreover,
another convincing support for EMH is the fact that active fund managers generally perform
poorly compared to passive index funds over the long term [Carhart, 1997; Malkiel, 1995]. This
aligns with the EMH, suggesting that markets are efficient enough that even active fund man-

agers with access to more private data cannot effectively achieve abnormal gains.

However, EMH has faced significant criticism, particularly from the field of behavioral finance,
which challenges the assumption of EMH that market participants are rational, which is also a
crucial assumption of modern portfolio theory [Markowitz, 1952]. Critics argue that EMH fails
to account for irrational behavior and cognitive biases that can influence investor decisions and
market prices. Economists have provided evidence of anomalies and market inefficiencies, such as
the January effect (a seasonal increase in equity prices at the beginning of the year), momentum
(the tendency of well-performing assets to carry on performing well and poorly performing assets
to continue underperforming), and financial crises like the dotcom bubble and the 2008 financial
crisis. These phenomena stem from irrational investor behavior driven by emotions and cognitive
biases, which contradict the notion of EMH [Shiller, 2003; Kahneman and Tversky, 1979]. Even
Malkiel, an advocate of EMH, acknowledges market inefficiencies and anomalies but argues
that they are difficult to exploit systematically [Malkiel, 2003]. Furthermore, Fama himself has
published multiple articles addressing behavioral finance critiques, presenting a balanced view on
the debate between EMH and behavioral finance [Fama, 1998]. In his work with Kenneth French,
they empirically found that stocks with small market capitalizations and high book-to-market
ratios consistently outperformed the market, suggesting these factors were not fully accounted
for by the market [Fama and French, 1992]. Another famous argument against EMH is the
presence of noise trader risk [Long et al., 1990]. Noise traders, who make decisions based on
irrelevant information, can cause prices to diverge from their fundamental values and lead to
market inefficiencies.

2.2 Fundamental and Technical Analysis

To further explore the foundations of financial trading, it is essential to understand two types of
analysis: fundamental and technical analysis, which form the basis of many trading strategies.

Fundamental analysis is a methodology for evaluating the intrinsic value of a financial asset,
such as a stock, by examining relevant macroeconomic factors, industry of a company, financial,
and non-financial factors of a company [Abarbanell and Bushee, 1997]. Economic factors include
macroeconomic conditions such as GDP growth rate, interest rates, inflation levels, and unem-
ployment rates, which help assess the overall health of the economy. Industry factors involve
assessing the dynamics within the industry of the given company, including the regulatory en-
vironment, market trends, and competition. Financial factors involve evaluating the company’s
financial stability by analyzing its balance sheet, cash flow statement, growth potential, and divi-
dend payments, which provide insights into its profitability, liquidity, and solvency. Non-financial
factors focus on the company’s reputation and Environmental, Social, and Governance (ESG)
status, which refers to how its products and services contribute to sustainable development. The
primary goal of fundamental analysis is to determine the fundamental value of an asset, which
can then be compared to its market value to decide whether the asset is correctly priced. If the
stock is undervalued, one might go long, and if it is overvalued, one might short the stock to
make a profit. Fundamental analysis is mostly used for long-term investment strategies, provid-
ing a deep understanding of the underlying value of an asset, but it is considered less useful for
short-term trading due to market inefficiencies in the short term. Lev and Thiagarajan [1993]
reveal that fundamental data of a company adds approximately 70% to the predictive power of
earnings with respect tot excess returns.

Alternatively, technical analysis uses historical price and volume data to forecast future mar-
ket movements. Technical analysts believe that past trading activity and price changes have
predictive power over future price movements, challenging the notion of the Efficient Market
Hypothesis, which states that markets are informationally efficient and that prices are unpre-

dictable. Technical analysis strategies rely on technical indicators such as moving averages to
smooth noisy price data and identify trends, or relative strength indices to determine when an
asset is overbought or oversold. They also analyze volume levels to measure the strength of a
certain movement and find support and resistance levels to mitigate risks by identifying price
ranges within which an asset is likely to stay in the short term. In general, the primary objective is
to identify trends and patterns that occur regularly to make profitable trades. Technical analysis
is mostly used by short-term traders and market participants who seek to capitalize on market
inefficiencies in the short term.

A study by Schulmeister [2005] examined the profitability of more than 1000 technical trading
strategies and found that all of them would have been lucrative in the dollar market between
1973 and 1999, and 91.7% remained profitable in the out-of-sample period from 2000 until
2004. Interestingly, they found that the profitability of the trading models was due to their
ability to exploit lasting trends and the aggregate trading behavior of the technical models
exercised significant demand pressure, with most models taking the same long or short positions,
which in turn made the trends last longer. Moreover, Baz et al. [2015] conducted an empirical
study in which they looked at both fundamental value and momentum-based technical trading
strategies using the moving average convergence divergence (MACD) indicator, finding that the
strategies were generally profitable and worked best when combined. Kwon and Kish [2002]
found that technical trading rules based on moving averages and trading volume were able to
produce greater profits than the Buy & Hold strategy from 1962 until 1996 on the New York
Stock Exchange. Lastly, Park and Irwin [2007] conducted a survey of various studies to explore
the effectiveness of technical trading strategies and found that 56 out of 95 studies reported
positive findings regarding technical trading strategies in various markets such as the stock
market, foreign exchange, and commodity markets.

2.3 Quantitative Trading and Supervised Learning

Building on the principles of market analysis, quantitative trading leverages statistical models
and algorithms to make trading decisions, integrating insights from either fundamental or tech-
nical analysis or both. Fundamental analysis evaluates a security’s intrinsic value, while technical
analysis examines past market data to identify patterns and trends. Quantitative trading sys-
tematically exploits market inefficiencies by utilizing large datasets and algorithmic strategies,
enhancing the accuracy and speed of trading decisions. Traditionally, time-series strategies for
trading relied on statistical methods such as the Autoregressive Moving Average (ARMA) model
and the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, which were
used for quantitative trading. However, due to the non-linear, non-stationary, and noisy nature
of financial market time-series data, these statistical methods suffer from their linearity assump-
tions [Huang et al., 2018].

Nowadays, most quantitative trading models are based on modern supervised learning algorithms,
which do not have the same linearity limitations as traditional statistical methods. The goal of
supervised learning is to train models on historical data to make predictions about a financial
asset [Wang and Yan, 2021]. For example, a supervised learning model might predict the future
price of a stock based on historical prices and other variables such as macroeconomic conditions,
technical indicators, and company fundamentals. Once trained by minimizing the forecasting
error with respect to the training data, the model makes predictions on new unseen data. These
predictions are then fed into a trading regimen, where they are translated into trading decisions
such as longing, shorting, or holding the asset. Common supervised learning models include lin-
ear regression, support vector machines (SVM), tree-based models, and neural networks (NN).
An example of an advanced supervised learning application in trading is provided by Lim et al.
[2019], who introduced an innovative approach to traditional momentum time series strategies

where they developed a model that leverages deep neural networks for generating trading signals.
This model simultaneously learns trends and determines position sizing in a data-driven manner,
focusing on optimizing risk-adjusted returns. The results showed that their model significantly
outperformed both traditional technical trading benchmarks and passive buy-and-hold strategies
in terms of risk-adjusted returns across various asset classes.

Supervised learning, while powerful, has its limitations in quantitative trading. One limitation
is the two-step approach: the model first outputs a prediction about future price movements,
which then needs to be translated into trade decisions. However, minimizing forecast error does
not necessarily align with the main objective of the investor, which is maximizing risk-adjusted
returns [Moody and Saffell, 1998]. Additionally, predictions from the model serve as inputs to
the trading system, but factors such as liquidity and transaction costs are not directly considered
by the learning model and should be tackled in the trading system itself.

2.4 Reinforcement Learning

Reinforcement learning (RL) addresses some of the limitations of supervised learning for quan-
titative trading by enabling trading algorithms to learn optimal strategies through either direct
interaction with the market environment (model-free RL) or through a model of the environment
(model-based RL). These algorithms continuously improve their performance over time through
trial and error [Fischer, 2018]. RL is a type of sequential learning in which the agent learns to
make decisions by taking actions in an environment and receiving numerical rewards, with the
objective of maximizing cumulative rewards. This method is particularly useful in trading be-
cause of its dynamic decision-making capabilities. The two-step approach of supervised learning
is combined into one system in RL, often relying on supervised learning to predict actions that
maximize numerical rewards [Sutton and Barto, 2018]. These rewards can be designed to align
with investor objectives; for example, the risk appetite of an investor can be taken into account
by using, for example, utility theory. Pioneering research by Moody and Saffell [1998] highlighted
the construction of trading systems using reinforcement learning to optimize financial objectives.
Their results showed that these proposed systems, one based on Q-learning and the other on
maximizing the Sharpe differential — outperformed the S&P 500 over a 25-year period. This
finding suggests a predictable structure in US stock prices, contrasting with the Efficient Market
Hypothesis (EMH). In addition, transaction costs can be directly implemented in the RL agent's
rewards, allowing it to learn a trade-off between incurring transaction costs and the strength of
a trading signal. This desirably would lead to net positive returns, as the agent should learn to
trade only — or change the direction of its current position — when the signal is strong enough.
This flexibility in altering the reward function and making sequential decisions while considering
more aspects than just price prediction makes RL highly useful for quantitative trading. There
exist three categories of RL frameworks, namely:

e Critic-Only Approach: This method focuses on learning a value function that guides the
agent by evaluating the expected outcomes of different actions given the state representa-
tion. During decision-making, the agent receives the current state of the environment, such
as the current price, volatility, and volume, and selects the action with the best expected
outcome according to the value function, hence the name 'critic’. This value function
is typically updated using the Bellman Equation, which provides a recursive decomposi-
tion of the expected rewards and includes a discount factor to balance the significance of
immediate versus future rewards.

e Actor-Only Approach: In this approach, the agent receives the state of the environment as
input and acts based on that without evaluating the expected rewards of different actions.
The agent learns a direct correspondence from states to actions. Actor-only approaches

typically involve a continuous action space and exhibit faster convergence during training
compared to the critic-only approach.

e Actor-Critic Approach: This relatively new method combines the strengths of the critic-
only and actor-only approaches. The actor determines the agent’s action given the state
representation, and the critic evaluates the selected action of the actor. Through trial and
error, the actor learns to choose actions that the critic finds best, while the critic improves
its evaluation accuracy.

According to the survey conducted by Fischer [2018] in which he explored 50 different publications
on these RL approaches for financial markets, all three approaches have their own advantages
and weaknesses and there is no clear winner. The main advantage of the critic-only approach
is the fact that the reward design of such models does not need to be differentiable, and for
that reason, an intricate reward function can be made to align the objective of the RL agent
with the preferences of an investor; for example, it is quite simple to include frictions such as
transaction costs or drawdown penalties to the reward function of the RL agent. Moreover, due
to the fact that critic-only relies on the Bellman Equation, the discounting of future rewards
can be easily managed. Alternatively, the main disadvantage of the critic-only is the fact that it
suffers from the Bellman curse of dimensionality [Bellman, 1957], and increasing the number of
discrete actions leads to a significant growth in computational complexity and memory require-
ments, making it challenging to efficiently store and update the value function for all state-action
pairs. Then, the actor-only approach has the advantage that unlike critic-only approach it has a
continuous action space, making it more robust when the number of actions is relatively large,
for example, it would be much more tractable to design an asset allocation framework that
assigns fractions of wealth to assets which would be more involved with a critic-only approach.
However, the main disadvantage of actor-only models is the fact that they require differentiable
reward functions, and for that reason, it is harder to manipulate the reward function to match
the preferences of an investor. Lastly, the actor-critic models combine the advantages of both
the critic-only and actor-only models. However, they have not been extensively investigated
empirically and, according to the existing literature, do not perform as well as the critic-only and
actor-only models [Li et al., 2007; Bekiros, 2010].

Hence, the best reinforcement learning model for financial use depends on the specific scope.
If the goal is asset allocation or portfolio management, the critic-only approach would be much
harder to implement, whereas the actor-only and actor-critic approaches are better suited for
such problems. However, in cases where the action space is not very large, such as in a trading
framework where the agent is used for single-asset trading with a limited number of actions, the
advantage of the critic-only approach in handling non-differentiable reward functions becomes
more desirable. For that reason, for the scope of this thesis, we will consider the critic-only
approach, more specifically, the Deep Q-Networks framework.

2.5 Deep Q-Networks

Deep Q-Networks (DQN) is a reinforcement learning algorithm that blends traditional Q-learning
with deep neural networks. DQN approximates the Q-value function, which estimates the ex-
pected future rewards for each action in a given state, using a neural network architecture. In
the original paper by the developers of DQN, they employed a Convolutional Neural Network
(CNN) architecture to process images [Mnih et al., 2013]. However, various types of neural
network architecture can be used as function approximators, as well as other supervised machine
learning models, depending on the task at hand. For example, in financial trading, architectures
such as Long Short-Term Memory (LSTM) or Multi-Layer Perceptron (MLP) would be more
fitting because they are more effective at handling sequential data and understanding patterns
over time, unlike CNNs which are designed to process spatial data [Théate and Ernst, 2021;

Abbasimehr and Paki, 2022; He et al., 2023]. Furthermore, DQN employs experience replay,
storing past experiences and sampling them randomly to break correlation and improve learning
stability. This approach allows DQN to handle high-dimensional state spaces and has achieved
superhuman performance in playing Atari games.

DQN has also been researched for trading purposes. Zhang et al. [2019] constructed three types
of Deep Reinforcement Learning (DRL) models for trading financial assets and tested them on
50 futures contracts across four asset classes based on daily data. They implemented a critic-
only DQN and two actor-critic approaches, namely, Proximal Policy Optimization (PPO) and
Advantage Actor Critic (A2C) models. They used a Long Short-Term Memory (LSTM) neural
network architecture because of its superior capability with time-series data. Furthermore, they
normalized the exposure of trading contracts to maintain constant risk exposure by performing
volatility scaling. As a reward function, they used the net trade profits after transaction costs.
The authors then constructed equally weighted portfolios for each asset class and evaluated the
performance of these portfolios in terms of profitability, risk-adjusted returns, and drawdown
management. They found that the DQN method gave the best results in terms of profitability,
risk-adjusted returns, and drawdown management. A2C came second, and PPO third, with all
three methods outperforming the Buy & Hold and technical trading benchmark strategies at
high transaction costs of up to 50 basis points with respect to each taken position.

Additionally, Théate and Ernst [2021] constructed a modified DQN algorithm for intraday algo-
rithmic trading purposes. They primarily considered stocks from various regions of the world,
including the US, European and Asian markets, across different industries. The auhors devel-
oped a DQN agent capable of trading individual assets. The function approximator used was
a deep neural network with an MLP architecture. The reward for the agents was based on net
trade returns after transaction costs, although he acknowledges that this is a simplification of
the Sharpe ratio, which is the ultimate objective for a trader. He suggests that it would be
interesting to research how to better align daily returns as rewards with the Sharpe ratio, as
the current approach maximizes cumulative daily returns rather than directly optimizing for the
Sharpe ratio. Furthermore, the authors compared the performance of the DQN agents across
different stocks with passive strategies like Buy & Hold and Short & Hold, as well as active trad-
ing strategies such as trend following and mean reversion using moving averages. He evaluated
the performance of these strategies using metrics such as Sharpe ratio, Sortino ratio, profit &
loss, annualized return, volatility and maximum drawdown, similar to Zhang et al. [2019]. The
results indicated that the DQN agent consistently outperformed the benchmark strategies on
average and demonstrated robustness across various trading costs.

Similarly, Carapuco et al. [2018] designed a reinforcement learning framework for trading in the
foreign exchange market, utilizing a critic-only DQN approach with a three-layer neural network
as a function approximator. The authors' primary aim was to construct a practical DQN agent
tailored for forex trading. There are few important differences with the previous two DQN based
papers. Firstly, the agent adjusts its position direction bi-hourly instead of engaging in intraday
trading. Secondly, unlike Zhang et al. [2019] and Théate and Ernst [2021], where the agent
was rewarded based on net returns or net profit, Carapuco et al. [2018] used a variation of
the Sortino ratio — a measure that penalizes downside risk — as the agent’s reward. This
approach is similar to Moody and Saffell [1998], which used the Sharpe differential, a variation
in the Sharpe ratio. This adjustment aligns the DQN agent's objective with the real-life goal of
maximizing risk-adjusted returns for investors. The authors observed a stable learning process
and noted that the agent successfully identified relationships in out-of-sample test data, despite
the non-stationary and noisy nature of financial data. These findings underscore the potential of
DQN in algorithmic trading.

2.6 Reward Design & Utility Theory

As mentioned earlier, one of the strengths of using an critic-only approach, such as Deep Q-
Networks, in quantitative trading is the ability to align the RL agents’ objectives with those of
investors. Investors typically aim to maximize risk-adjusted returns, often measured by ratios like
the Sharpe ratio, the Sortino ratio (which considers only the downside deviation of returns), and
the Calmar ratio (which considers returns in relation to the maximum drawdown over a period).
Therefore, it is crucial to design the reward function for the agent to either directly correspond
to these ratios or to produce quantities highly correlated with such ratios.

In economics, utility theory models how individuals or organizations make choices under uncer-
tainty, aiming to maximize their gratification or utility [Poon, 2018]. Utility theory measures the
benefit an individual gains from a specific choice, considering their risk preferences and aversion.
Thus, it balances risk and return, similar to what the Sharpe ratio measures, return per unit of
risk. This theoretical framework can guide the design of reward functions that our DQN agent
should maximize in its environment. We will present the family of power utility functions, pro-
pose two opposing types of utility functions, and construct reward functions based on these types.

2.6.1 Power Utility

The power utility function expresses the utility of an agent concerning their degree of risk aversion,
often denoted by the parameter vy, towards changes in their wealth [Poon, 2018]. Denoting wealth
by W, the power utility function is defined as:

wl-v 1
U(W):]i
-y

with v # 1 (1)
For v = 0, the agent is risk-neutral towards changes in their wealth level, resulting in a utility
function where utility increases linearly with wealth. A risk-neutral agent values gains and losses
equally, meaning that a one-dollar gain impacts the utility as much as a one-dollar loss. When
Y > 0, the agent exhibits risk aversion towards changes in their wealth, resulting in a concave
function. Here, the agent shows diminishing marginal utility — each additional unit of wealth
provides less satisfaction. Unlike the linear case (y = 0), a loss impacts the agent's utility more
significantly than a gain of the same magnitude. As y approaches 1, the power utility function
becomes undefined. However, by taking the limit and using L'Hépital’s rule, we obtain:

1—y _
lim U(W) = lim wor-l
v—1 v—1 1 —Y
~im (=)W' log(W) (2)
y—1 —1
= log(W).

Thus, the logarithmic utility is achieved when the risk-aversion parameter v = 1, which is a
special case of the power utility. In addition, one of the key properties of the power utility
function is constant relative risk aversion (CRRA). Using the Arrow-Pratt measure of relative
risk aversion Pratt [1964]:
u//(W)

RRA = —WW =v. (3)
This means that the agent has constant relative risk aversion, indicating that regardless of the
wealth level, the agent demonstrates the same degree of risk aversion. If v > 0, the agent is
risk-averse; if y < 0, the agent is risk-seeking, meaning the utility function is convex, and as
wealth increases, marginal utility increases, leading the agent to prefer riskier choices with higher
potential returns.

2.6.2 Reward Design

Hence, with respect to the previous section, we need to determine the reward for the DQN agent
after each action it takes within the environment. In the studies by Zhang et al. [2019] and
Théate and Ernst [2021], linear utility functions were applied, since net profits minus transaction
costs and net returns served as agent rewards, respectively. However, this approach might be
problematic because an agent with a linear utility function could exhibit degeneracy when opti-
mizing such an objective. It would be indifferent between a certain return and a uncertain return
with the same expected value, potentially leading the agent to consistently seek more exposure
as long as the expected value is positive, without considering the catastrophic impacts it could
have on the portfolio.

In contrast, concave utility functions are more appropriate and align better with an investor's
preferences, as the risk taken in a trade should be tolerable for the investor, and as the wealth
grows, preservation of wealth becomes significantly more important which translates into dimin-
shing marginal utility. Therefore, it theoretically makes more sense to use a power utility function
that incorporates a risk aversion parameter y greater than 0. To test this, we will construct a
DQN agent with a linear utility function and another DQN agent with a logarithmic utility func-
tion. This approach will help us evaluate the impact of these reward designs on the performance
of DQN agents and whether they lead to the expected behavior as dictated by utility theory.

2.7 Position Size

Before we delve into the methodology, we introduce one important aspect of trading strategies:
the position sizing rule.

As Scholz [2012] claims, the use of technical trading rules, which only offer signals for long or
short positions, necessitates that the trader determines the exposure in each transaction. Even
though position sizing crucially affects the risk and return of a portfolio, recent academic litera-
ture has largely neglected this aspect. The author explains that there are a few types of position
sizing rules, also referred to as money management rules, that can complement a trading rule.
The first type involves always buying or selling one unit of the given security. He refers to such
positions as erratic position sizes because the position size only depends on the share price of
the asset. Alternatively, the other type of position sizing involves relative position sizing, which
can be implemented by always investing fixed absolute amounts or by always investing a static
proportion of the remaining capital. He also notes that it is surprising that current literature
does not take this into account, as experienced traders are generally aware of the trade-off in
money management. Specifically, undersized positions cannot maximize a timing strategy's po-
tential, and even robust timing strategies might lead to catastrophic losses if they involve too
much exposure. Scholz empirically demonstrates this by testing erratic, absolute, and relative
position sizing strategies with identical technical (timing) strategies using simple moving aver-
ages. He concludes that using relative money management significantly reduces the risks in a
financial portfolio, and only in some specific cases can erratic position sizing lead to robust per-
formance. Lastly, he concludes that smaller fractions of relative position sizes deliver the highest
risk-adjusted returns in most cases.

The phenomenon that Scholz describes is also true for the DQN studies that we have presented
regarding the use of reinforcement learning in trading. Note that the RL agent is essentially learn-
ing to optimize a timing strategy, given that the action space is reduced to only the direction of
trades to take, not how much to trade. This is because the DQN agent has a discrete action
space, and the Bellman Equation’s curse of dimensionality prevents an increase in the number
of actions such that they map to a range of position sizes. Yet, position sizing is not really

considered in these studies. Moody and Saffell [1998] discusses taking a constant magnitude of
exposure without explicitly defining it but acknowledges that relaxing the 'constant’ magnitude
would provide better risk control. Théate and Ernst [2021] attempts to maximize each position
size given their budget and liquidity constraints, where they need to withhold cash for already
open short positions; they take the maximum cash available and buy shares for a position if
buying, and when shorting, they maximize their available cash such that they can pay back the
broker they borrow shares from. Carapuco et al. [2018] maintains the position size at a constant
level, though they do not specify whether this is in an absolute or relative sense. Zhang et al.
[2019] uses the most sophisticated position sizing rule based on volatility targeting, where they
always scale a static fraction of the number of units of a contract with a scaler. The scaler is
based on a fixed volatility target, where the annualized volatility target is divided by the ex-ante
estimate of market volatility. This way, the exposure is reduced when market volatility is high
and increased when market volatility is low. There is significant empirical evidence that volatility
targeting leads to better risk-adjusted returns and reduces the impacts of left-tailed events such
as crises [Moreira and Muir, 2015; Dreyer and Hubrich, 2017; Lim et al., 2019; Mylnikov, 2021].

For this reason, we will also adopt volatility scaling as one of the position sizing strategies for our
DQN agents. Furthermore, we will extend this by considering an ensemble momentum-volatility
scaling strategy, which combines the position sizing strategy of Baz et al. [2015] based on the
strength of the trend signal and volatility scaling. By incorporating this ensemble approach,
when a trend signal is strong and volatility is not too high, the position size increases, potentially
leading to higher returns. In this way, the size of the position is a function of both the volatility
and the strength of the ongoing trends.

3 Methodology

We have now introduced the important concepts and their backgrounds, and presented a sum-
mary of the related works. This section outlines the structure of our dynamic trading models
based on Deep Q-Networks (DQN) developed by Mnih et al. [2013]. We discuss the model's
components, including the environment, the agent, and the reward functions we will experiment
with.

3.1 Markov Process

The reinforcement learning trading problem is framed as a Markov Decision Process (MDP)
where the RL agent engages with the environment in discrete time intervals. At each time step
t, the agent receives a representation of the environment, called the state S¢. Based on the state,
the agent decides on a certain action Ay, following which a numerical reward Ry is assigned
based on the action taken. The sequence of rewards R = {R;, Rz, R3, ...} forms a controlled
Markov process influenced by the agent's actions.

Agent
Ay

Sty Rita
Environment

Figure 1: The process of a reinforcement learning trading problem at each time step t.

This sequence can occur over a finite but sufficiently large number of steps T. The objective at
each step t is to maximize the expected discounted cumulative rewards, with v € (0,1) as the
discount factor for future rewards. Even though the sequence has a finite number of steps, when
T is sufficiently large, the influence of future rewards diminishes due to discounting, and the
problem can be approximated using the infinite time horizon assumption. This approximation
simplifies the theoretical analysis and is commonly used in reinforcement learning algorithms like
DQN, as it ensures the value function remains stationary i.e., independent of time.

The sum of discounted future rewards at time t is then defined as:

o0
Ge=) YR (4)
k=t-+1
For sufficiently large T, this can be approximated as:

-
Gy ~ Z YR TR, (5)
k=t+1

The value function V(S¢) represents the expected sum of discounted future rewards starting from
state St and following a particular policy 7

V(Se) = Ex Gy | St (6)

Using the definition of G¢, and assuming an infinite time horizon, the value function can be
expressed as:

[o¢]
VS =FEx| Y Y " RIS (7)
k=t+1

This can be split into the immediate reward and the sum of discounted future rewards from the
next time step:

V(St) = En [Rey1 +vGiq1 [Se. (8)
By using the recursive definition of the value function, we arrive at the Bellman Equation:
V(St) =Ex [Rep1 +vVI(Se41) | Sl (9)

To find the optimal value function V*(St), which represents the maximum sum of discounted
future rewards, we solve the Bellman Optimality Equation:

V*(Sy) = n}\ax]E Rev1 YV (St1) [St, Adl. (10)
t

Hence, this optimization problem involves finding the optimal policy, 7*, that maximizes the
expected sum of discounted forthcoming rewards for each state S;. The Bellman Optimal-
ity Equation characterizes this optimization, providing a recursive way to compute the optimal
value function and hence determine the best actions to take in each state to maximize long-term
rewards.

This section sets the foundation for understanding how we will use the MDP framework to
apply reinforcement learning techniques for building and training the DQN agents. Next, we will
present our state-space, action-space, and reward functions before delving into the specifics of
the DQN architecture and the training process.

3.2 State Space

The environment's representations, or state space, are crucial for the agent to make informed
trading decisions. As we focus on intraday trading, we select relevant independent variables for
this purpose — such as prices, returns, volatility, and technical indicators — appropriate for
short-term price predictions. To effectively capture the temporal dynamics of the time series
data, we also incorporate lags of these variables. Although we will elaborate on using neural
networks (MLP) in the following sections, it is important to note that any supervised learning
algorithm can be employed. Furthermore, this thesis does not explore potential new features but
relies on indicators commonly used for predictive analysis in research on financial markets [Htun
et al., 2023]. The dependent variable in our model is the value function V(Si). While the value
function V(S¢) depends on the state Sy, it ultimately represents the expected return based on
the agent’s actions under a specific policy. Thus, V(S¢) implicitly accounts for the actions Ay
that the agent takes from state Si. This establishes our starting point to present the chosen
independent variables and features.

We include normalized past prices (pt) and returns (T¢) over different horizons, trend rever-
sal indicators like Moving Average Convergence Divergence (MACD) over varied periods, and
the Relative Strength Index (RSI) to identify overbought or oversold price ranges. The list of
independent variables representing the state space for an agent trading asset 1 is presented below.

1. The daily close prices which are normalized in the following way

—

. i) @)

— —

: . N . . 2
where E(p{")) = + X1y p) and o(p{") = /713 Ty [pl) —E (p)] are the empir-
ical mean and standard deviation of the close prices in the training set, respectively. Note
that we specify the training set in Section 4.1.

. Simple past returns over multiple horizons namely: one month, two months, six months, and

one year i.e.,
(1)
RO L —1 forj € {20, 40, 60, 252) (12)

ol
t=j

Note that we could also have taken logarithmic returns. However, in the current literature on
DQN agents for short-term trading, simple returns are used. For the sake of consistency with
the literature [Moody and Saffell, 1998; Zhang et al., 2019; Théate and Ernst, 2021], and
given that the difference between simple returns and logarithmic returns for short intervals is
negligible, we use simple returns. Moreover, following Lim et al. [2019], we normalize these
returns by the daily volatility of a specific time period. Thus, the normalized returns are
defined as follows: W
T = Tf;)"t_ for j € {20, 40, 60, 252} (13)
o Vj

where cr,(ti) is the 3-month exponentially moving average standard deviation of the daily re-

turns. Notice that three months of financial trading days corresponds to a span of 63 days
which we can translate into a smoothing factor to calculate the exponentially moving average
(EMA) of the daily returns, denote 1\ as the span, then:

2 .
a(p) = | with > 1. (14)

The EMA is calculated recursively using the following equations:

(V) '
EMALY, =

1,t—y
(i) (i) (i)
EMALY o = () 1l e + (T =) -EMAL (15)
EMAY =) rey,e+(1—) - EMALY,
and the G,((i) is then calculated recursively using the following equations:
0%711)(") = 0
02 1 =) (g1 —EMAY 24 (1= a()) -0, (D (1)
ot =) (e, —EMATZ + (1= a(p)) - o7, 1V,

Finally, by taking 1/0Z(}), we attain the 3-month exponentially moving average standard
deviation of the daily returns for { = 63.

. The trend-following momentum indicator, MACD, is a technical indicator which relies on the
difference between two exponential moving averages (EMA) of short and long-term periods
to identify potential buy and sell signals. Furthermore, it can be used to recognize trend
reversals, for if the MACD line crosses above or below the zero line, it may indicate a shift

in the prevailing trend direction. We will use the volatility normalized MACD indicator as
proposed by Baz et al. [2015], which is given by:

i) dt,s:L
MACD,'}; = ST (17)
St \Py—252:t
with
i mi(S) —mi(L)
apge = | — . (18)

where the normalization factors std(p,([ijészt) and std(p@zﬂzt) are the 3-month and 1-year

rolling standard deviation of the prices pg), respectively. These rolling standard deviations of

the prices can be calculated using the following equations:

~(1) (i)
ptl = % Zi:t—n-»—] pkl 19)
std (p’(cl—)n:t) = \/%-1 Ztk:tfnJr] (pfj) — f)il))z.

Furthermore, m;(S) and m;(L) are the exponentially moving averages of asset prices on the
short- and long-term time spans, respectively. To obtain the volatility normalized MACD
values for various time scales, we use S € {8,16,32} and L € {24,48,96} as in the original
paper of the authors. For the calculation of these moving averages, the spans are translated
to their corresponding smoothing factors using Equation 14. Then like before with the EMA’s
for the daily returns, the EMA's for the prices are calculated for the different time spans in a
recursive fashion:

EMAL, = Py _
EMAYY =) piy (1= a(w) - EMAL, -
EMALY = () pe+(1—alw)) - EMALY, = my(1)

. RSl is a momentum oscillator between 0 and 100 that measures the speed of changes in prices
which is indicative of when an asset is overbought (high RSI) or oversold (low RSI) [Wilder,
1978]. Moreover, in order to calculate the RSI for asset i in period t, we first need to separate
()+ (i)— .

the positive returns v ttrlr

1 and the negative returns r

. (1) . (1)
- _ { Tt it e <0,
t+1

(
t 0 if otherwise

) (i) . (1)
PO) T L and 7
0 if otherwise

Then, we calculate the rolling mean of the average gain (G) and average loss (L) over a
specified period T:

T T
c_1 (1)+ T (i)—
G= T Zrt—j,t—jﬂ and L= Zrt—j,t—j—o—]
j=1

—|

Finally, the RSI is then defined as:

RSI(H) = 100 —]1% — lLJ(iGt (21)
+ =
L

Note again that we will be using a rolling window of 3 months, i.e. T =63.

Ultimately, for each feature, the past five observations (lags) are used to form a single state for
asset i at time t i.e. denoting S,([I) as the vector containing the features:

—(1) =) —(1) =(1) —(1) —(1) (1) (1)
Pt s Pe—gr 7 P 2T 20t Tt—d0,tr " Tt,ZSZ'MACDt75,8:24’ MACDt75,16:48’

(1) (1) (M) (1) (M (1)
MACD\s 5, 05, -+, MACDL¢ 45, MACD!'), o5, RSILVS, RSIEY,, -, RSIE
(22)

3.3 Action Space

We consider an agent that trades a single asset with a discrete action space, effectively deciding
on the type of position to bet on: long, short, or hold. As discussed in Section 2.7, this is done
because the Deep Q-Network algorithm has a discrete action space and relies on the Bellman
Equation, which suffers from Bellman's curse of dimensionality. This constraint prevents us from
increasing the actions to correspond to a range of positions. Therefore, the agent only needs to
focus on the direction and timing of trades, and we will use sophisticated position sizing rules to
complement the agent’s actions. The discrete action space is defined as follows:

1: long,
At =< —1: short,
0: hold.

3.4 Position Sizing

The size of the positions corresponding to the agent's actions — specifically, how much the
agent should trade in a period t given action Ay — is determined using two different dynamic
position sizing rules. A robust position sizing rule enhances the agent’s risk management and
prevents catastrophic losses to the portfolio [Scholz, 2012].

3.4.1 \Volatility Targeting

The first position sizing rule will be based on volatility targeting, where we inversely size our
position with respect to the ex-ante estimate of the volatility of the given asset i. It has been
empirically shown that volatility targeting can reduce the impact of black swan events, improve
returns, and overall stabilize the risk profile of an investment portfolio [Dreyer and Hubrich, 2017;
Mylnikov, 2021]. We consider an annualized volatility target otqrget of 15% in accordance with

Lim et al. [2019], and define a position scalar [3,(:) for asset i at time t, which we will refer to as
the "volatility factor':

(1) Otarget
plt) - Jtarget (23)
bl vam
(1)

where o, ; is the ex-ante volatility estimate and corresponds to the 3-month exponentially
moving average standard deviation of the daily returns, calculated in the same fashion as before
using Equation 16. This volatility factor, B,(tl], is then multiplied by a fixed fraction of the

available wealth,)A(,(ci) = vatﬁ) for the asset i in period t, with py € (0,1), which generates

the position size, Xii):

(i) Otarget (i)
X\ - _target ¢ (24)
L

Plot of 8" vs 0", /252

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: The range of the volatility factor, [B,Ei) when using a volatility target of 15%.

In Figure 2, we illustrate the relationship between the volatility factor B,(Ll) and the annualized
ex-ante volatility estimate. When the annualized volatility estimate equals the volatility target,
the size of the position will be equal to)A(,(Ll). If the estimated volatility is lower than the volatility
target, the position size will grow exponentially and inversely. Conversely, if the volatility target
exceeds the volatility estimate, the position size will become smaller than the fixed fraction of
wealth X{*)| resulting in reduced exposure to the high-risk state of the market.

3.4.2 MACD Signal

The second position sizing approach combines volatility targeting with the volatility normalized
MACD trading rule proposed by Baz et al. [2015]. This trading rule, is a trend-following mo-
mentum method which quantifies the strength and direction of a trend at time t. Similarly to
our MACD features, the trend estimate is the weighted average of the MACD signals of different
horizons as defined in Equation 17:

3
MACD! = 3~ MACDY (25)
k=1

This trend signal is then translated into a position scalar, n,([i), which we will refer to as the

"trend factor'.

. ()2
MACDS) exp <7MAC4D‘)

0.89
In Figure 3, we show the relationship between the trend signal and the trend factor. We can
observe that the volatility-normalized MACD signal ranges between —/2 and v/2, while the trend
factor ranges between —1 and 1, with —1 indicating minimal volatility and a downtrend, and 1
indicating minimal volatility and an uptrend. The trend factor approaches zero when the trend
strength is low or when the volatility is at its peak.

(i) _

Tt (26)

Since our agent decides the direction — whether to take a short or long position — we will use the
absolute value of the trend factor, ensuring that it ranges from 0 to 1. Then, we can formulate

the ensemble position sizing rule using both the trend factor, n,(ci] as well as the volatility factor

By

(i)2
MACD,([” exp (MAC4Dt) _ (27)
N O'targetf((l)
o 0.89 O-(i) t
t—1

where, as before,)A(ii) = uMW,EU is a fixed fraction of the available wealth with uyp € (0, 1) for

the asset i in period t.

Plot of ") vs MACD{"

1.00
0.75

0.50

0.25

= 000
0.25
~0.50
~0.75

—1.00

—1 —2 0 2 1
MAcD

Figure 3: The range of the trend factor, n,[ci), when using MACD signal proposed by Baz et al. [2015].

The motivation for this ensemble position sizing rule is to refine our position sizing strategy
by incorporating both volatility targeting and market trends. This approach allows for the ad-
justment of position sizes based on the strength of market trends. When significant trends are
detected, we can increase our position sizes to capitalize on these opportunities. Conversely, dur-
ing periods of low volatility and weak trend signals, we reduce our positions more than volatility
targeting alone would suggest. This method aims to enhance returns by strategically adjusting
our exposure according to market conditions. For this reason, we examine the effectiveness of
this ensemble position sizing rule.

Finally, to conclude this section on position sizing, note that for both position sizing rules, for
instances where the wealth W,El) corresponding to asset i is lower than the determined position

size X,(Li), the position size will be equal to Wt(i) i.e. the actual position size is given by:

X = min (x{V,w{"). (28)

3.5 Integration of Actions and Position Sizing Rules

When the agent decides to take a long or short position, transaction costs will incur as a static

percentage of the trade position, while holding does not incur transaction costs. The position

sizing rule determines the optimal position size for each period. The trade position)_(,(tl) is

established at the end of each time period t and is maintained until t+ 1, at which point the
position is evaluated in terms of profits and closed unless the action Ay is holding. If the action
A¢41 is not 'to hold’, the position-sizing rule produces a new position size)_(,(;f:1 and transaction
costs are incurred with respect to this new position size. If Ay, is to hold the last position, the
position sizing rule will not be used, as the exposure has already been determined in the previous
,&g] will be equal to the last net position size adjusted for the
change in price, (1 +r,(£’1,2+]))_(,(c1). To facilitate this, we introduce an auxiliary parameter X(LlT),
which keeps track of the position size of the last period for asset i. This parameter allows for
straightforward calculation of the position size for holding positions. For example, if the agent

decides to hold, the net position in step t+ 1 is calculated as:

periods, and the position size X

v (1) (1) (i)
Xt1+1 = (1 +Tt?t+1)XLIT

and the parameter X(LiT) is updated as follows:
(1) _ w({)
Xet =Xt

This update occurs after every action, including buying, selling, and holding. Furthermore, in
the initial periods, if there have not yet been any instances of buying or selling actions, the
hold action serves as a neutral position since no exposure has been determined. In this case,
X;_IT) =0, indicating that there is no position to hold. In summary, the size of the position X, 1
is determined as follows with respect to the action Ay 1:

)—<(1) _)2,([1;2] 7}\5(,&:1 |f At+] € {71, 1},
1 g™ OxW if AL, =0
tt+1ALT t+1 =0.

As an illustration, consider two periods of trading:

e Period 1: The agent chooses to buy, and the position sizing rule allocates €100 to invest.
With a transaction cost rate A of 10 basis points (bp), the net position in period 1 will be
€100 - 0.10 = €99.90.

e Period 2: The realized profit/loss is calculated. Assume the price has increased to 101,
the return is 1%. If the agent holds, the net position will be €1.01 * €99.90 = €100.899,
and no new transaction costs will occur. However, if the agent chooses to sell or buy, the
position size will again be determined by the position sizing rules, and transaction costs
will incur.

Using this framework, the agent can effectively integrate its discrete action space with dynamic
position sizing rules to optimize trading strategies while managing transaction costs.

3.6 Reward Function

A benefit of using a model-free reinforcement learning algorithm like DQN is that its reward
functions do not need to be differentiable and for that reason it gives us the flexibility to construct
more complex reward functions and incorporate frictions such as transaction costs directly into
the reward function [Fischer, 2018]. Reward functions are crucial because they define the utility of
the agent by assigning values to each action’s outcome, guiding the agent to learn which actions
lead to the most beneficial results. We explore the impact of two different reward function
designs that correspond to distinct types of utility functions for the agent aiming to optimize its
(risk-adjusted) returns. This dual-approach allows for a comprehensive analysis of how different
reward structures influence decision-making strategies of the DQN agent.

3.6.1 Linear Utility

An straightforward approach is to give the realized net returns of a trade i.e. the net profits to
the agent as its reward, and examine whether it leads to desirable results in terms of risk adjusted
performance. This approach aligns with the preferences of a risk-neutral investor and corresponds
to a linear utility function where gains and losses weigh equally and the agent maximizes the
expected value of the cumulative returns. As our position sizes X) are dynamic and vary within

each period, we normalize the net profits by dividing them by Xt to attain the reward function
of the risk-neutral agent, which can be formulated as follows:

(1) (1)
(1) Pi+1 — Pt
Rep =Av— 5 ~Mae-1): (29)
Pt
Consequently, the Bellman Equation corresponding to the linear utility maximization problem
equals:
(1) (1)
Pis1 —P
t%—)\];\te{ 1 1}+yV (t+1) |st At
Pt

v (SS’) = max[E | A (30)

where v is the discount factor of the future rewards. Note that the reward function defined in
Equation 29 considers the transaction cost rate (A) of short or long actions performed at time t.

3.6.2 Logarithmic Utility

However, maximizing pure profits could lead to a risk profile which is not desired due to the fact
that most investors exhibit some level of risk aversion and for that reason they strive to maximize
their risk-adjusted returns which aligns with the principle of mean-variance theory [Markowitz,
1952]. Therefore, we will focus on an agent with logarithmic utility, where the agent has constant
relative risk aversion (CRRA), which means the agent is equally averse to proportional changes in
wealth regardless of the initial wealth level [Bodnar et al., 2020]. Moreover, due to the concavity
of the logarithmic function, the agent has diminishing marginal utility, which implies that as the
wealth level of the agent grows, the utility gained from an additional unit of wealth decreases.
This also means that, unlike the case of linear utility, losses will affect the utility of an agent
more than gains of the same magnitude and small incremental gains are preferred to (sudden)
large increases in wealth. Hence, instead of rewarding the agent net returns made on a trade,
we will reward the logarithm of the net returns to the agent, which translates into:

! Pii1 P
Rtig] |Og < (A % Al A{E{L]})) . (31)
t

Note that we transformed the net profits by dividing them by)_(f) and adding 1 such that the
agent's reward is still defined for negative trade returns - effectively, we are using logarithmic
returns.

Remark: There is one case where the logarithmic return would not be defined: when the net
return

% Mae(-1.1)
P+t
is less than or equal to -1. Assuming A is between 0 and 1000 basis points (bps), where 1000 bps
corresponds to a transaction cost rate of 10% of a trade position, the price of asset i would need
to increase (or decrease) by more than 90% (for 1000 bps) or 100% (for O bps) in a single day
with the agent shorting (longing) for this issue to arise. Since we focus on highly liquid futures

contracts with underlying assets that have high market capitalizations, where the transaction
cost rate typically ranges from 0 to 50 bps, the probability of an asset changing by 90% or 100%
in a single day is extremely small and should not cause problems. However, for less liquid markets
like penny stocks or cryptocurrencies, or with larger intervals between steps, such as yearly steps,
the probability of such drastic price changes is much higher, and hence it is crucial to note the
frequency of the trading steps.

In these cases, the logarithmic reward design needs adjustment. One naive approach is to set a
fallback value for the logarithmic reward to handle instances where it becomes undefined. For
example, setting this fallback value of the reward to -1 reflects the negative impact of such
occurrences, while setting it to zero avoids a negative penalty but still imposes an opportunity
cost by not providing a positive reward. Setting the fallback value of the reward to zero takes
into account the small chance of these events occurring and prevents them from disproportion-
ately impacting the agent’s long-term rewards. This approach effectively sets a threshold for
penalization, ensuring that extreme negative returns do not disproportionately affect the agent's
learning process. While this approach does introduce a discrepancy where, for example, a loss
of -99% (for A of 0 bps) is penalized more than a loss of -100% or -200%, the reasoning is that
the probability of such extreme losses, in our setting, is very low. Thus, the agent should not be
overly penalized for these rare occurrences.

Alternatively, one could consider using exponential utility, which is always defined for all real
numbers and avoids issues with non-positive values. Note that the risk aversion in exponential
utility is absolute rather than relative. This means that the agent’s level of risk aversion remains
constant regardless of returns, leading to different trading behaviors compared to logarithmic
utility, where risk aversion is constant but applied proportionally to returns.

We will implement the naive approach with the fallback value set to zero to ensure that even if
such situations arise with their small probability, it will not affect the agent’s behavior too much
and ensures that the logarithmic reward is still defined.

p(') .p(i) p(Dl p(i)
. log (] + (Attﬁft)\ﬂAtE{f1]})) if At tﬂ(it XuAp’E{*] 1}) —1
Rlog. (1) _ Py Pt

t+1 - (1) (1)

0 IfA %)\IlAtE{—1]} —1
t
(32)
Thus, the Bellman Equation corresponding to the logarithmic utility maximization problem of
the risk-averse agent then becomes as in Equation 33.

v (si)) = max E RS+ yv (si)) 1517 A (33)

3.6.3 Budget Constraint and Stop Loss Policy

We introduce a stop rule within the episodes in which the agent interacts with the environment,
acting as a budget constraint or stop-loss mechanism. If the wealth allocated to asset i falls
below w% of the initial wealth allocated W((,l) with w € (0,1), all trading activities cease, the
agent receives no further rewards, and the episode is concluded. By halting trading if the wealth
level drops below w% of the initial wealth, the agent is incentivized to not only maximize its
utility but also to preserve capital such that it does not exceed its allocated budget and manage
volatility, potentially mitigating risk. The underlying idea is that Teqriystopping Will be smaller
than T in Equation 5. When early stopping is triggered, the agent achieves a smaller V* because
potential future rewards are lost. Note that it is important to use a stop loss threshold w that

effectively exposes poor policies without being overly restrictive, ensuring that the agent can still
converge and complete a full trading cycle after being trained.

Consequently, a criterion for the convergence of the agent's policy is to ensure that this budget
constraint is applied during training while still aiming to maximize terminal wealth. To assess
whether the stopping rule is enforced, we measure how many trading days the agent participates
in, denoted by treward. For instance, if the training dataset consists of T days, each episode
should ideally last T days, resulting in treward equaling T. If treward is less than T, it indicates
that the agent's policy is not fully aligned with the stopping rule. Therefore, when treward
consistently reaches T during training, this means that one of the convergence criteria has been
met. This approach ensures that the agent learns to operate within constraints while still seeking
to maximize its utility.

Additionally, this stopping rule also enhances the training process efficiency by terminating
episodes early when the rule is triggered due to the policy being infeasible, thus conserving
computational resources.

3.7 Benchmark Models

In order to assess the performance of the built DQN models with different trading rules and
distinct reward functions, we consider multiple baseline models.

3.7.1 Buy & Hold

The first baseline model is the buy-and-hold strategy, commonly used as a benchmark for trading
algorithms aiming to profit from short-term price fluctuations [Kampouridis and Otero, 2017;
Tran et al., 2023; Kumar et al., 2023]. This strategy aligns with the Efficient Market Hypothesis,
as noted by Malkiel [2003], who argues that the buy-and-hold strategy is optimal for average
investors. In this strategy, assets are bought at the beginning of the investment horizon and held
until the end, potentially resulting in profit due to price differences. Additionally, we assume that
there are no transaction costs at the time of buying or selling for this strategy.

3.7.2 Momentum Strategy

The second baseline model is based on the classical time series momentum strategy, which
involves analyzing past price movements to predict future trends. This strategy assumes that
assets that have performed well in the past will continue to do so and those that have performed
poorly will continue to perform poorly. Moskowitz et al. [2012] empirically demonstrated that
this time series momentum strategy provided additional returns over a passive long position for
most instruments they tested. In our implementation, we look at the 1-year return and generate
trading signals based on these returns. If the yearly return is positive, the strategy takes a long
position; if negative, it takes a short position. The yearly return for the asset i at time t is
calculated as:

(1) Py _pmz 2

i t t—25

Te_252,t = B (34)
Pi—252

Therefore, the direction of a trade will be as follows:

Ay =sign(r¢_252¢) (35)

To manage risk, we apply volatility scaling to our position sizes, ensuring that portfolio volatility
remains within a target range. Thus, a trade position at time t for asset 1 will be:

s o
X(‘L) _ (i)target (36)

0, 1V252
where O',(£1)1 is the 3-month exponentially moving average standard deviation of the daily returns.

3.7.3 MACD Signal

The last baseline model is based on technical analysis, specifically the volatility-normalized MACD
strategy discussed in Section 3.4.2 and proposed by Baz et al. [2015]. This trend-following
momentum indicator relies on the difference between two exponential moving averages to identify
the signal direction and is normalized by an estimate of the volatility of returns to determine the
signal strength. To enhance the model, we use the equal-weighted average of multiple long- and
short-term moving averages to create the final signal, as proposed by Baz et al. [2015]:

3
A = sign (MACD{"") = sign (Z MACng:Lk> (37)
k=1
with Sy € {8,16,32} and Ly € {24,48, 96}. The position size is then determined by the formula:
. ()2
~[MACDY exp (w))
X,([l) _ target (38)

0.89 oV V252

As explained in Section 3.4.2, the first term is the trend factor and the second term is the
volatility targeting term, also called the volatility factor.

Note that for the latter two strategies, we do not scale the size of the positions with a fixed
fraction of the wealth level at time t, unlike the position sizes of the DQN agent. Instead, we
assume the fixed fraction of the wealth to be equal to one. This will not affect our analysis
of cumulative rewards, relative returns, or performance metrics like the Sharpe ratio, as these
metrics compare relative rather than absolute differences. Furthermore, similarly to the volatility
target of the position sizing rule of the DQN agents, we use an annualized volatility target of
15%.

3.8 Deep Q-Network

Deep Q-Network (DQN) merges traditional Q-learning with deep neural networks to manage
continuous, high-dimensional state spaces [Mnih et al., 2013]. DQN employs a deep neural
network to estimate the optimal action-value function which predicts the expected returns or
utility after taking an action (A¢) in a given state (Si¢), based on a time-independent trading
strategy (7). The agent selects actions aimed at maximizing the estimated Q-values using
an epsilon-greedy approach, highlighting the model-free characteristic of DQN, where learning
occurs through direct interaction with the environment.

3.8.1 Neural Network

The neural network serves as the approximator of the state-action value, often called the Q-
function, in this framework. The network receives as input the state of the environment and
outputs normalized expected rewards for each possible action, often called the Q-values. The

neural network is trained using a loss function that determines the difference between the esti-
mated Q-values using the current Q-function and the target Q-values. Denoting the parameters
of the neural network including its layers and biases as 0, the target Q-value is computed using
the Bellman Equation:

Qle (St,At) :T+Vm3XAt+1Q9 (St+1vAt+1) (39)

where 1 is the immediate reward for taking action Ay in state S¢, 7y is the discount factor of future
rewards, and maxa,,, Qe (St+1,A¢11) is the maximum expected future reward of the next state
S¢41 considering all available actions A¢, 1. The loss function for our model is defined as the
mean squared error between the estimated Q-value and the target Q-value:

L(0) = E [(Qo(S,A) — Qa(S,A)°] (40)

Through the loss function, the Q-function is updated by tuning 6 to minimize the loss function
using an optimizer. This process continues until the Q-values stabilize or a predetermined number
of episodes are completed.

3.8.2 Multi-Layer Perceptron

In the existing literature, such as Lim et al. [2019] and Lindemann et al. [2021], it is demon-
strated that LSTM and Recurrent Neural Networks (RNNs) exhibit superior performance when
handling time-series data due to their ability to maintain memory over long sequences. This
memory capability allows them to capture complex temporal dependencies, making them more
flexible for sequential data tasks. However, there is also evidence [He et al., 2023; Oukhouya
and El Himdi, 2023] suggesting that Multi-Layer Perceptrons (MLPs) can effectively capture
useful signal features if the appropriate features are selected and a reasonable number of lags
are included. This allows MLPs to effectively represent and capture the temporal dynamics of
time-series data. Moreover, MLPs are significantly easier to train in terms of computational
power, which can outweigh the benefits of the memory capabilities of LSTMs and RNNs. The
idea is that if we can develop a Deep Q-Network (DQN) using an MLP that performs desirably
in terms of risk management and profitability, we know that it can be improved using LSTMs or
RNNs architectures, which are more flexible due to their ability to handle long-term dependencies
in time series data.

In this paper, the neural network implemented is a multi-layer perceptron (MLP), where the net-
work consists of an input layer, which takes in features derived from the state of the environment
that accommodate the total number of lags and features per lag of the learning environment
[Rumelhart et al., 1986]. It has two hidden layers, each consisting of 28 units, which are meant
for capturing the nonlinear relationships in the data. The network output layer produces three
values, corresponding to the estimate of the action value function for each of the three possible
actions of the agent. Moreover, the optimizer that minimizes the loss function is the Adam opti-
mizer based on stochastic gradients [Kingma and Ba, 2014]. To avoid overfitting, we use dropout
[Srivastava et al., 2014] and L2 regularization [Cortes et al., 2012] methods. Dropout involves
randomly dropping a fraction of neurons during training to prevent them from co-adapting too
much, while L2 regularization adds a penalty to the loss function based on the squared magnitude
of the model parameters, encouraging smaller and more generalized weights.

3.8.3 Learning Algorithm Overview

e Action Selection: At each time step, the agent selects an action from the action space
using an epsilon-greedy policy. During the learning phase the agent exploits the accu-
mulated knowledge with probability 1 — e and explores with probability e by selecting a

random action. € starts with a value 1 and diminishes gradually with a certain decay rate
in each episode, allowing for more exploitation, until it reaches a specified minimum value

€min-

e Experience Storage: The agent stores experiences as tuples (St, A, Ry 1, S¢r1, done)
in a replay memory, with done either indicating the set off of a stopping rule or the end
of an episode. An episode in this context refers to a complete sequence of actions from
the initial state to a terminal state, encompassing a full cycle of trading activities within
the model. For example, if the training data spans from January 1, 2011, to January 1,
2012, each episode would contain 252 time steps, corresponding to the number of financial
trading days within the training data.

e Learning from Memory: The agent periodically randomly samples batches of experiences
from the memory to update the Q-function. This random sampling enhances learning
stability and prevents catastrophic forgetting i.e. bias towards recent trends and sequences.
Thus, improving the generalization ability of the agent.

3.8.4 \Validation and Preventing Overfitting

The effectiveness of the trained policy is evaluated by setting the exploration rate () to zero,
ensuring that the agent strictly adheres to the policy based on the learned Q-values. This evalu-
ation is performed on a new, previously unseen dataset. The agent's performance is assessed by
its risk-adjusted returns, reflecting the learning progression and the effectiveness of the policy.
We validate the model at the end of each training episode. The training process is stopped
when the training score continues to increase, but the validation score decreases for more than
10 consecutive episodes. This early stopping method helps to avoid overfitting. Additionally,
during training, we limit the reduction of € to a minimum of 0.10 to further prevent overfitting to
the training data. Random sampling of the agent’s experiences, as mentioned earlier, also helps
mitigate overfitting. We present the pseudocode for the Deep Q-Network (DQN) algorithm in
Appendix A.1.

The policy is trained on the training set, while hyperparameter tuning and early stopping are
performed with respect to the performance on the validation set. We also use a separate testing
set, which serves as the out-of-sample dataset. This testing set is not used for tuning parameters
or early stopping but is reserved solely for evaluating the final performance of the model. To tune
the hyperparameters of the DQN model, we use a combination of trial and error and an informal
random search of different parameters. This approach helps us find the optimal hyperparameters
that lead to the best performance on the validation set.

4 Experimental Setup

In this section, we will introduce the data used to train and test the Deep Q-Network models with
distinct reward functions and position sizing rules, specify the parameters and hyperparameters
of the models, and outline the approach for analyzing the results of the different models in
comparison to the benchmark models.

4.1 Data Definition

We examine the daily closing prices for 20 different futures contracts across four asset classes:
Commodities, Equity, Fixed Income, and Foreign Exchange. This data, obtained from the
Bloomberg Terminal, spans from January 1, 2006, to April 22, 2024. Below is an overview
of how we have divided the data into training, validation, and testing sets.

e Training Set: January 1, 2006 — April 1, 2018
e Validation Set: April 2, 2018 — January 22, 2019
e Testing Set: January 23, 2019 — April 22, 2024

Naturally, the training set is the largest of the three datasets, as the DQN agent requires an
extensive dataset to interact with the environment and learn an optimal policy. The validation
and testing sets are primarily used for evaluating the trained models, which necessitates fewer
interactions. The validation set is used to tune the hyperparameters of the models and perform
early stopping when convergence has been reached (Section 3.8.4). The testing set, which serves
as the out-of-sample data and is used for testing the DQN agents, was chosen because it includes
multiple market disruptions such as the Covid-19 crisis, the Russian-Saudi oil price war in March
2020, and the Russian invasion of Ukraine in 2022. This selection allows for a more in-depth
analysis of the performance of the reinforcement learning agents during these crisis moments.

Bloomberg Ticker Description Category
CC1 Comdty COCOA Futures Commodity
KW1 Comdty Wheat Futures Commodity
GI1 Index ICE Commodity Futures Index ~ Commodity
SI1 Comdty Silver Futures Commodity
GC1 Comdty Gold, 100 oz Futures Commodity
CL1 Comdty Crude Oil Futures Commodity
C 1 Comdty Corn Future Commodity
MXEF Index MSCI Emerging Markets Index Equity
MXUS Index MSCI USA Index Equity
MXEU Index MSCI Europe Index Equity

NDX Index NASDAQ 100 Stock Index Equity

SPX Index S&P 500 INDEX Equity

ES1 Index SP500 Mini Index Equity

RX1 Comdty Euro-Bund (5Y) Futures Fixed Income
OE1 Comdty Euro-Bobl (10Y) Futures Fixed Income
TY1 Comdty US Treasury Note 10Y Futures Fixed Income

EUR BGN Curncy
JPY BGN Curncy
CAD BGN Curncy
AUD BGN Curncy

Euro

Japanase Yen
Canadian Dollar
Australian Dollar

Foreign Exchange
Foreign Exchange
Foreign Exchange
Foreign Exchange

Table 1: List of all considered future contracts and their corresponding asset class categories.

4.2 Training, Testing, and Relevant Parameters

Following our defined methodology, we trained an agent for each asset using each of the strategies
and then tested the performance of these portfolios on an out-of-sample test set. Each asset was
assigned an initial wealth of $1000, with a stop loss threshold set at 40%. Furthermore, we used
the following fixed fractions of wealth for each position sizing rule: uy = 0.5 and upg = 1, in
order to bring the average positions of the different rules to approximately the same magnitude
for comparison purposes. An overview of the parameters introduced is presented in Table 2.
Similarly, the DQN algorithm involves a number of hyper-parameters, as mentioned in Section
3.8. We performed an informal random search for these parameters with respect to the validation
set to find the most optimal values. Due to our computational capacity constraints, it was not
feasible to perform a more extensive hyper-parameter optimization, such as a grid search, often
used for supervised learning models. An overview of the hyper-parameters used is given in Table
3.

Parameter 1y upm Wo A w
Value 0.5 1 1000 10bp 0.40

Table 2: Overview of the parameters: py and ppq are the fractions of wealth used when applying volatility
targeting and the ensemble MACD-Volatility targeting position sizing rules, respectively. W/ is the initial wealth
allocated to a DQN agent for each asset. A is the static transaction cost rate when the agent performs a long or
short action relative to the position size,)_((Ll). Lastly, w is the stop-loss threshold relative to the initial wealth;
if the wealth level of a DQN agent for a given asset falls below wW,, an episode is stopped (Section 3.6.3).

Hyperparameter LR Optimizer Batch Size h% Memory Size €min €decay

Value 0.0001 Adam 512 0.95 5,000 0.10 0.995

Table 3: Hyperparameters used in the DQN model. «| g represents the learning rate of the neural network, which
controls the adjustment of model weights during training. The optimizer refers to the stochastic optimization
algorithm applied to minimize the loss function. Batch Size denotes the number of samples used in each iteration
of random memory replay, stabilizing training, and preventing overfitting. The discount factor, v, determines
the importance of future rewards and is chosen such that the agent is relatively long-term oriented. Note that
a lower v would place more importance on immediate rewards. Memory Size is the size of the replay memory
to store the agent's experiences. €nin is the minimum value of the epsilon-greedy approach, where the agent
decides on actions based on accumulated knowledge/experience with probability €, exploiting current knowledge,
and alternatively randomly chooses an action with probability 1T — €, allowing exploration. We do not allow € to
go to zero to avoid overfitting on the training data. Lastly, €gecay is the rate at which e decreases with each
episode of training.

4.3 Portfolio Construction

Furthermore, we create simple equally weighted portfolios consisting of all the assets in each
asset class and also an aggregate portfolio consisting of all the assets. For a portfolio of N
assets, the daily return of that portfolio is then given by:

N
py 1 i
RY =5 Y R (41)

The same procedure will be also performed for benchmark models of Section 3.7. Note that these
R,(Ll) are the actual simple returns net of transaction costs, as defined in Equation 29. Therefore,
irrespective of the underlying reward design, including the DQN agent based on logarithmic
utility, the returns used in Equation 41 are derived from Equation 29 and then averaged.

4.4 Performance Metrics

We compute various types of metrics for the constructed portfolios to measure the performance
of these portfolio’s corresponding to different agents or benchmark models, similar to how the
current literature does this [Théate and Ernst, 2021; Zhang et al., 2019; Lim et al., 2019].

4.4.1 Cumulative Return

The total cumulative daily returns measures the overall gain or loss of an investment over a
period by compounding the daily returns. The formula is as follows:

N
Total Cumulative Daily Return = [H (1 +R,(LP)>} 1 (42)
t=1

where R,([P) is the daily return of the given portfolio for day t and T is the total number of return

periods.

4.4.2 Sharpe Ratio

The Sharpe ratio quantifies the risk-adjusted returns of an investment portfolio by dividing the
excess return of the portfolio by its volatility. A general guideline is that a portfolio with a Sharpe
ratio greater than 1 is considered satisfactory, while a Sharpe ratio above 2 is regarded as very
good. The annualized Sharpe ratio for a portfolio is given by:

VB2 ($ iR -R0)

Sharpe Ratio =
Op

where:
° %ZI:1 (Rip) —R¢) is the mean excess daily return of the portfolio.
e 0} is the standard deviation of the portfolio returns.
e T is the total number of return periods.

The standard deviation of the portfolio returns is calculated as:

_
SRR

t=1

—| =

op =
where R is the average portfolio return over T trading days.

4.4.3 Sortino Ratio

The Sortino ratio quantifies the risk-adjusted return of a portfolio like the Sharpe ratio but only
offsets the downside volatility instead of both upside and downside volatility like the Sharpe ratio.
The annualized Sortino ratio is given by:

VB2x (1 2R —Rp)

Od

Sortino Ratio =
where:
° %ZI:] (Rip) — R¢) is the mean excess daily return of the portfolio.

e 04 is the downside deviation of the portfolio returns.

e T is the total number of return periods.

The downside deviation is calculated as:

-
1
Od =\|T ; min(R,(cP] —R¢,0)2

4.4.4 Maximum Drawdown (MDD)

The MDD represents the maximum percentage drop in the value of the portfolio from a peak to
the trough before a new peak is reached. It is an indicator of the downside risk throughout the
history of the portfolio up until time T. The MDD of the portfolio is given by the following:

MDD:min(CtC_Pt) fort=1,2,..., T

t

where:
e C. is the peak value before the drawdown.
e P, is the trough value during the drawdown period.
e T is the total number of return periods.
Similarly, the annual MDD is an indicator of the downside yearly risk and is given by:

Ct’y - Ptyy

Annual MDD:min() fort=12,....Ty

ty
where:

e Cy,y is the peak value before the drawdown within year y.
e Py .y is the trough value during the drawdown period within year y.

e Ty is the total number of trading days within year y.

4.4.5 Calmar Ratio

The Calmar ratio quantifies the risk-adjusted return of an investment with respect to its maximum
drawdown over a given interval. The annualized Calmar ratio is given by:

252 x (% IR Rf))

Calmar Ratio = MDD

where:
° %ZI:] (Rip) — R¢) is the mean excess daily return of the portfolio.
e MDD is the maximum drawdown as defined above.

e T is the total number of return periods.

4.4.6 P&L Ratio

The P&L Ratio measures the performance of a portfolio by dividing the average profit by the
average loss over a given period. It provides an indication of the profitability of the portfolio’s
trading strategy by comparing the average gains on profitable trades to the average losses on
losing trades. The P&L ratio is given by:

P&L Ratio — Average Proflt_
|Average Loss|

The Average Profit and Average Loss of the portfolio are calculated as follows:

S RPLIRP) S 0)
S IRP) S 0)

Average Profit =

s RPLIRP) <o)

Average Loss =
S IR <o)

where:

) Rip) is the portfolio return on day t.
°]I(REP) > 0) is an indicator function that is 1 if R,([P) is positive and 0 otherwise.

o]I(R,(LP) < 0) is an indicator function that is 1 if R,(LP) is negative and 0 otherwise.

e T is the total number of return periods.

4.4.7 Percentage of Positive Returns

Similar to the P&L Ratio, the percentage of positive returns is indicative of the performance of
a portfolio over a given period. The percentage of positive returns is given by:

Y IR > 0)

T x 100%

Percentage of Positive Returns =

where:
°]I(R,([P) > 0) is an indicator function that is 1 if R,(LP) is positive and 0 otherwise.
e T is the total number of return periods.

Additionally, we also analyze the annualized expected returns, and annualized standard deviation
of the portfolio’s to gain insight into the profitability of the investment portfolios. Note, we will
assume Ry is zero in this paper.

5 Experimental Results

In this section, we examine the performance of the previously described reinforcement learning
model and apply sensitivity analysis to answer several key questions. First, we investigate the
training stability of DQN agents and determine whether overfitting is adequately prevented.
Next, we explore the appropriate type of position sizing for a DQN approach to ensure robust
risk management, considering that DQN outputs only discrete actions (long, hold, or short)
rather than actual sizes. We present two cases: one where position sizes are determined by
volatility targeting, and another using the volatility-normalized momentum indicator MACD in
combination with volatility targeting. Furthermore, we assess the model’s effectiveness across
different risk profiles by evaluating two distinct types of traders: a risk-neutral trader and a risk-
averse trader. Each type of trader is applied to various futures contracts within four separate asset
classes, with a separate model trained for each asset. We also create simple equally weighted
portfolios for each asset class and one comprehensive portfolio comprising all the considered
futures. A passive buy-and-hold strategy, a momentum-based strategy, and a technical trading
strategy using MACD serve as baseline models for comparison purposes. Following this, we
present the results and discuss the findings in terms of the efficacy of the risk profiles, the
position size strategies, and the overall performance of the reinforcement learning model for
each asset class. Additionally, we analyze the stability of the optimal DQN strategies during
several market disruptions. Lastly, we apply sensitivity analysis on trading costs to assess how
the models perform under increased transaction costs.

5.1 Training Stability and Overfitting Analysis

Before delving into the analysis of the performance of the various DQN agents and comparing
them with the benchmark models, we evaluate the training stability of our DQN agents to ensure
that the models are learning effectively and do not overfit the training data. To illustrate this,
we present the terminal wealth level and the Sharpe ratio per episode for both the training and
testing phases for one representative asset and one of the DQN strategies. Figure 4 depicts the
rolling average of performance measures over 20 iterations of the DQN agent, which is trained
using a logarithmic reward design and volatility targeting as the position sizing rule, with respect
to the number of training episodes for the MSCI Emerging Markets Index futures. This is com-
parable to a typical run of the DQN algorithm for the various asset types and reward functions.
The blue line represents the training phase, and the orange line represents the testing phase.
The shaded areas around the lines represent the 95% confidence interval of these performance
metrics, indicating the variability in performance. Recall that each asset is allocated an initial
wealth of $1000.

Firstly, the figure demonstrates that terminal wealth increases gradually during both the train-
ing and testing phases, indicating that the DQN agents are learning effectively over time. The
close proximity and similar trends of the training and testing lines, especially with respect to
the Sharpe ratio, suggest that the overfitting tendency of the reinforcement learning agent is
managed properly. If overfitting were present, there would typically be a noticeable gap between
training and testing performance, which serves as the expected performance when the model
is tested on unseen data. In the case of overfitting, we would expect to see training perfor-
mance being much better in terms of Sharpe ratio, or a scenario where training performance
with respect to terminal wealth consistently increases while testing performance decreases. This
is not the case here. Additionally, note that the performance of the test set being temporarily
superior to that of the training set is not an error in both charts. This phenomenon illustrates a
major obstacle in quantitative trading: the constantly changing distribution of financial returns
[Mertzanis, 2014]. The testing and training sets do not share the same distributions, and in this
case, it seems the testing period is an easier to trade environment and more profitable for the

given asset. Additionally, the relatively stable and narrow confidence interval, especially for the
testing set, indicates consistent generalization ability across different episodes.

Lastly, recall that we introduced a budget constraint that served as a stop-loss policy, whereby
the agent was not allowed to fall below a certain threshold, w, of its initial wealth as otherwise
all trading activity would cease (Section 3.6.3). One of the convergence criteria was that the
agent had to learn to comply with this stop-loss threshold and prevent the termination of its
trading activity due to insolvency. We measured this by introducing a variable, treward, which
should reach the terminal period T of the training set (in our case T = 3405). As shown in Figure
5, treward consistently reaches the terminal period in the final phase of training, indicating that
the budget constraint criteria is met.

Overall, the training stability suggests that the DQN agents are robust and do not exhibit signs
of overfitting.

—— Training — Training
10000 | . 20 Testing
Testing =
15 4
5000
£ 1.0
|]
ERCUE
= w
g
E 4000 4 0.0
& i
/\/m 051
2000 A W
(_/_/—\,_/_// ~1.0
01 T T T T T T T -15 T T T T T T T
0 0 100 150 200 250 300 0 50 100 150 200 250 300
Episade Episode
(a) Terminal Wealth Wt (b) Sharpe ratio

Figure 4: Terminal wealth level and Sharpe ratio per episode during training and testing phases for the MSCI
Emerging Markets Index future contract. The shaded areas represent the 95% confidence interval of the perfor-
mance metrics per episode.

3500 4

3000

2500

2000

treward

1500

1000

500

T T T T T T T
0 50 100 150 200 250 300
Episode

Figure 5: The rolling average of treward with respect to episodes during the training phase for the MSCI
Emerging Markets Index futures contract.

5.2 Performance

In order to assess the performance of the different DQN agents and position sizing rules across
various asset classes, compared to the benchmark models introduced in the methodology, we
present key metrics that explore three performance components: risk-adjusted returns, prof-
itability, and drawdown management, as shown in Table 4. Additionally, the cumulative trade
returns of the different strategies are depicted in Figure 6.

Sharpe Sortino P&L MDD AADD A lised Return A lised Std Dev Calmar Ratio Positive Percentage

Commodity Logarithmic

Volatility Target 3.10 3.84 121 -070 -0.47 0.48 0.13 0.68 51.86

Ensemble 290 3.49 119 -063 -0.46 0.45 0.13 0.71 52.15

Linear

Volatility Target 3.01 3.60 1.23 -0.57 -0.40 0.45 0.13 0.79 54.63

Ensemble 2.65 3.14 121 -059 -0.48 0.39 0.13 0.66 53.17

Benchmarks

Buy & Hold Benchmark ~ 0.18 0.19 092 -157 -0.62 0.13 0.31 0.08 52.12

Sign Benchmark 0.31 0.59 105 -094 -0.79 -0.02 0.29 -0.03 48.90

MACD Benchmark 0.83 1.65 105 -085 -0.71 0.14 0.30 0.16 51.10
Equity Logarithmic

Volatility Target 2.30 331 131 -0.27 -0.20 0.36 0.14 1.34 53.10

Ensemble 2.09 3.04 130 -033 -0.22 0.31 0.13 0.93 53.10

Linear

Volatility Target 1.89 2.54 129 -031 -0.22 0.26 013 0.86 51.20

Ensemble 191 279 131 -031 -0.21 0.28 0.14 0.89 52.59

Benchmarks

Buy & Hold Benchmark 0.65 0.88 097 -042 -029 0.11 0.18 0.25 54.03

Sign Benchmark -0.54 -0.65 090 -073 -0.57 -0.10 0.16 -0.14 50.29

MACD Benchmark 0.25 0.34 103 -030 -0.24 0.02 0.17 0.08 50.66
Fixed Income Logarithmic

Volatility Target 0.58 0.75 111 -0.15 -0.11 0.01 0.02 0.09 47.48

Ensemble 0.19 0.23 1.23 -014 -012 0.00 0.02 0.03 46.17

Linear

Volatility Target 0.61 0.80 1.23 -0.11 -0.08 0.01 0.02 0.12 47.70

Ensemble 0.55 0.64 114 -017 -0.12 0.01 0.02 0.07 46.68

Benchmarks

Buy & Hold Benchmark ~ -0.52 -0.73 097 -029 -0.17 -0.03 0.05 -0.10 47.29

Sign Benchmark 2.86 4.35 111 -024 -0.12 0.16 0.05 0.69 57.98

MACD Benchmark 1.65 229 112 -022 -0.14 0.08 0.05 0.38 54.61
Foreign Exchange Logarithmic

Volatility Target 1.78 222 120 -015 -0.12 0.09 0.05 0.62 51.64

Ensemble 1.76 2.35 120 -019 -0.12 0.10 0.06 0.55 49.16

Linear

Volatility Target 1.46 1.95 118 -0.21 -0.16 0.09 0.06 0.42 49.02

Ensemble 1.87 235 1.22 -0.14 -0.12 0.10 0.05 0.70 49.67

Benchmarks

Buy & Hold Benchmark ~ 0.47 0.33 098 -022 -0.18 0.01 0.03 0.04 50.95

Sign Benchmark 0.89 110 101 -039 -028 0.05 0.06 013 55.42

MACD Benchmark 0.96 119 102 -030 -021 0.05 0.06 0.18 53.00
Total Logarithmic

Volatility Target 3.86 3.94 122 -070 -0.47 0.28 0.06 0.39 56.75

Ensemble 3.64 3.65 124 -0.63 -0.46 0.26 0.06 0.40 55.07

Linear

Volatility Target 361 3.47 1.26 -0.57 -0.40 0.24 0.06 0.43 56.09

Ensemble 3.42 3.36 124 -059 -048 0.23 0.06 0.38 55.58

Benchmarks

Buy & Hold Benchmark ~ 0.36 0.37 100 -157 -0.62 0.07 0.13 0.04 55.56

Sign Benchmark 0.44 0.59 097 -094 -0.79 0.01 0.12 0.01 51.10

MACD Benchmark 1.03 1.49 1.04 -085 -0.71 0.08 0.12 0.10 52.64

Table 4: The performance metrics of DQN Agents with logarithmic and linear utility functions, along with the
position sizing rule types (Volatility Targeting, Ensemble) across four asset classes: commodities, equ