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Abstract

Education plays a significant role in an individual’s life. It serves
as a stepping stone, preparing students for future professional de-
velopment. The need to study students’ experiences during their
academic journey has been recognized by various research disciplines.
The results have been used to improve the educational process, iden-
tify and assist students at risk, create individual study plans, and
uncover the social and personal factors that influence students’ final
grades. Extensive research has been conducted on applying machine
learning algorithms to predict students’ GPAs. One example is the
field of Educational Data Mining, which utilizes predictive modeling
to forecast students’ grades based on academic data.

This research paper focuses on a similar approach, aiming to
predict students’ academic performance in terms of GPA (grade point
average) by analyzing their mobile usage behavior and well-being.
The primary objective of this study is to address the question: How
accurately can mobile usage behavior and well-being predict students’
grades? The distinguishing feature of this work is the utilization
of the aforementioned predictors. By incorporating these factors
into the prediction model, deeper insights can be gained into latent
behaviors that affect academic achievements. The dataset used in
this study consists of mobile phone usage logs, well-being surveys,
and academic records. These data sources provide an overview of
behavioral patterns, specific application usage, and mental well-being
throughout the semester.

The main findings of this research demonstrate that mobile usage
and well-being have an influence on students’ academic performance.
However, further analysis and the inclusion of more informative
features will be necessary for future investigations. The following
machine learning models were compared: Linear Regression, Support
Vector Regression, Decision Tree, Random Forest, and Xgboost. The
analysis shows that Random Forest most accurately captures the
relationship between the target and the predictors, with a Mean
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Absolute Error (MAE) of 0.631. However, additional model training
and more robust optimization will be necessary to obtain results that
are closer to the ground truth.frontmatter.tex

1 introduction

The primary objective of this research is to investigate how accurately
students’ GPAs can be predicted from mobile usage behaviours and their
well-being, by extracting features from raw phone data. Secondly, to
identify the features that most influence the target variable. To achieve this,
several machine learning models were tested. The best-performing one is
selected based on Mean Absolute Error (MAE) score. This study aims to
provide insight into the potential of utilizing mobile usage behaviour as a
predictor of students’ grades.

1.1 Problem Statement

Education plays a vital role in the personal and professional development
of individuals. The exploration of students’ experiences and academic
performance has been recognized in the field of social sciences. Previous
research has investigated various factors that influence students’ academic
performance, including social life, academic activities, socio-economic
status, culture, parents’ background, and environmental factors.

In recent years, the field of Educational Data Mining (EDM) in computer
science has emerged, utilizing machine learning techniques to analyze and
predict outcomes in students’ academic performance, analysing educational
data. However, alternative approaches have also examined the impact of
variables such as well-being, mobile usage, and internet usage on students’
academic achievements (Mukta et al., 2022; Wang et al., 2015; Xu et al.,
2019). This broader range of variables reflects the increasing availability
of diverse data sources, offering new ways for addressing predictive tasks
related to human behaviours.

1.2 Social and Scientific Relevance

This study aims to contribute to the existing body of literature by exploring
the relationship between mobile phone usage, well-being, and academic
performance. Mobile phones have become pervasive in our daily lives,
serving as tools that can both aid and distract us from various activities.
Investigating their utilization by students and their influence can provide
educational institutions with a better understanding of students’ engage-
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ment and attention during lectures, as well as shed light on potential phone
addictions.

From a scientific and analytical perspective, inferring informative fea-
tures from raw mobile data presents new opportunities for analyzing such
types of data. Moreover, this research offers the chance to validate and com-
pare existing models in predicting phenomena based on human behavior
infered from mobile usage.

Another application of the present research is to highlights the potential
for creating a mobile app similar to the app SmartGPA used in Wang et al.
(2015) or Human-in-the-Loop Cyber-Physical Systems (HiLCPS) that offers
personalized learning methodologies, used in Sinche et al. (2020) study.
Such an application could record students’ behavior and well-being, utiliz-
ing the gathered data to estimate their potential grades. This innovative
approach can be utilized by students for enhancing their academic perfor-
mance and providing valuable insights into the factors that contribute to
their success.

1.3 Research Strategy

The main research question defined below bears its motivation from the
existing research gap in the literature and not enough data from scientific
research on mobile phone usage and well-being as a predictor of academic
performance.

How well students’ academic grades can be predicted from their daily
behaviors of phone usage, sleep and study habits, university visits,
and reported well-being using machine learning models, and how
different models capture the relationships in the data?

The following sub-research questions serve as a guideline for answering
the above-stated problem:

RQ1 Which machine learning model can most accurately capture the relationship
between the target variable and the predictors?

• For the purpose of this question the following machine learning
algorithms were employed and compared: Linear Regression, Sup-
port Vector Regression, Decision Tree, Random Forest and Extreme
Gradient Boost (Xgboost).

• The models were evaluated in the cross-validation stage and on the
test set with Mean Absolute Error.

RQ2 What predictors identified by Shapley values contribute to the best-performing
model’s predictions?
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RQ3 What are the patterns of error across all the models in predicting students’
grades?

2 related work

The literature review is divided into two sections: 1) A brief introduction
to educational data mining, and 2) An academic performance analysis with
non-educational parameters. The two sections account for the methods
used, datasets and results obtained.

2.1 A brief introduction to educational data mining

Educational data mining (EDM) is a relatively new field in the information
sciences. As the name suggests, the data created in the educational insti-
tution’s context is the main information source. Additional focus on the
socio-economic background can also be found in most of the studies(Abu
Saa et al., 2019). Predicting the students’ performance (in terms of grades)
is not a new topic to EDM. Various types of research have been carried out
in classifying or regressing the final grade. Batool et al. (2023) performs
comparative analysis to explore the various techniques for analyzing aca-
demic data. He points out that the most used models in the field of EDM
are Decision Tree, Naive Bayes, Neural Networks, Support Vector Machines,
K-Nearest Neighbours, and Random Forest. Another similar review on
predictive modelling for EDM conducted by Zhang et al. suggested that the
most used methods for regression analysis are Linear Regression, Support
Vector Regression, Deep Learning, and Markov Network. Additionally,
models such as decision trees and linear regression are more promising
due to the ease of interpretation.

In one study Yağcı used midterm grades, department data and faculty
data to predict the final grade. They employed Random Forest, Artificial
Neural Network, Logistic Regression, Support Vector Machines, Naive
Bayes, and K-Nearest Neighbours, where Random Forest and Artificial
Neural Network show the highest accuracy of 74%. In another study
Gadhavi and Patel applied Linear Regression on historic grades to predict
the final grade. Abu Saa et al. (2019) analyze students’ demographic back-
grounds and social life using Decision Trees and Naive Bayes. They found
that students’ academic performance can be influenced by other factors
that are not related to their educational activities. A similar approach
has been carried out with predicting the final grade(El Aissaoui et al.,
2020). The authors use Multiple Linear Regression on demographic data.
Gaftandzhieva et al. (2022) predicts final grades based on activities on an
e-learning platform and attendance in online lectures. They train several
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models: Random Forest, Extreme Gradient Boosting, K-Nearest Neigh-
bours and Support Vector Machines. In their analysis, Random Forest
performance is with the highest accuracy of 78%.

2.2 Academic performance analysis with non-educational parameters

A few alternative approaches investigate the relationship between well-
being and academic performance. Mukta et al. (2022) used MPNet to
estimate students’ psychological attributes and mental well-being from
their Facebook newsfeed. The inferred new variables are used for predict-
ing academic performance and an accuracy of 94% is reported. In their
research, the student performance is divided into two groups: “students
with good performance” and “students with poor performance”, hence,
students were classified into these two groups. The findings showed that
well-being is correlated to academic performance and also can be used as
a predictor of the second. Two studies support the findings of a correlation
between academic performance and experiencing different mind states(in
the form of beliefs, emotions and well-being)(Kotzé & Kleynhans, 2013;
Mubarok & Pierewan, n.d.). Kotzé and Kleynhans (2013) find a significant
correlation between burnout, emotional exhaustion and cynicism and aca-
demic performance after conducting Pearson product-moment correlation
analysis. Mubarok and Pierewan (n.d.) examined the importance of well-
being as a predictor, with the use of regression analysis. The study was
conducted on adolescents in high school. The main findings suggest that
students who have good well-being also have good academic achievements.
However, no further studies on training machine learning models with
well-being data have been performed for estimating academic grades.

Xu et al. (2019) trained different machine learning models to predict stu-
dents’ performance based on internet usage data (online time, offline time,
download volume, upload volume, terminal device)(Xu et al., 2019). They
estimated the academic performance of 72% accuracy with Support Vector
Machines. The findings revealed that students’ grades can be predicted by
patterns in internet usage. Yet, no further investigation has been carried
out on the content consumed and how the internet was utilized. Rajalaxmi
et al. (2019) tried to predict the grade of students in engineering disciplines.
The authors infer several predictors related to internet usage: usage of the
internet for educational purposes, usage of the internet for entertainment
purposes, utilization of the internet for communication purposes, active
duration in social media networks, and usage of the internet before the
final exams (Rajalaxmi et al., 2019). Multivariate Linear Regression was
applied to subsamples of the data where each subsample represented a
particular engineering discipline. Furthermore, they explore the result
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across different grade ranges: RMSE of 0.24 for grades between 7.1 and 8.0,
RMSE of 0.3 for grades in the range 8.1 - 9.0, and RMSE of 0.13 for grades
between 9.1 - 10.0.

The SmartGPA study from 2015 conducted by Wang et al. explored the
influence of a wide range of behaviours on students’ academic performance.
The data was collected through a mobile application that records passive
sensor data such as phone activity, location, accelerometer, sleep duration,
quality of sleep, and etc. (Wang et al., 2015). Likewise, students were
asked to report their well-being and daily mood. Additional features
were engineered from the raw data. One example is study behaviour.
The authors used these data to identify locations where students spent
a significant amount of time, such as libraries, dorms, and classrooms.
They also exploit the data to identify periods of time when students were
stationary for more than 20 minutes, which they defined as studying.
Similarly from the conversation recorder and accelerometer, social life
was measured. Furthermore, behavioural change was captured by using
behavioural slope and behavioural breakpoints. The behavioural slope was
applied to capture the magnitude of change (increase or decrease in sleep).
Behavioural breakpoints captured the specific time when change occurs
(Wang et al., 2015). Linear Regression with Lasso Regularization, Support
Vector Regression and Decision Trees were employed to the data. However,
Linear regression outperformed the other two models. Due to the limited
amount of data (N=30), the more complex models did not perform well
(Wang et al., 2015). A similar approach was used in another more recent
study. Sinche et al. (2020) analyzed student performance using Human-
in-the-Loop Cyber-Physical Systems (HiLCPS) that create personalized
study recommendations. They explored the correlation between academic
performance and inferred behaviour from mobile sensor data. Similarly
to the above-mentioned study, additional variables were inferred such as
the average time students spend at university, sociability measured from
the amount of incoming and outgoing calls, physical activity, etc. The
study suggests that academic performance can be influenced by these
factors. However, no machine learning predictions have been performed.
The applications of passive sensor data in combination with self-reported
data have been used in the field of mental health studies (Bai et al., 2021;
Jacobson & Chung, 2020; Pratap et al., 2019). Results show that daily
behaviours related to phone usage and mobility can be used for classifying
patients with depressive disorders. Nevertheless, features extracted from
GPS data in combination with app event data and dwell time can give
information about behaviours in particular places. Bai et al. (2021) found a
correlation between phone usage routine, mobility, and depression among
patients with major depressive disorder. They created daily windows with



3 methodology and experimental setup 7

a range of 6 hours to measure the type of phone application used and dwell
time. Several models were tested, but random forest shows the highest
accuracy.

The lack of recent research in educational studies on predicting students’
grades with extracted features from mobile sensor data and well-being
reports motivates the approach for this paper. Moreover, the SmartGPA
study from 2015 does not include mobile usage routine in their analysis,
nor type of mobile activity, which according to the social sciences literature
can be also correlated to academic performance (Giunchiglia et al., 2018;
Hawi & Samaha, 2016). Giunchiglia et al. (2018) shows a negative impact of
social media usage on academic performance. Moreover, phone inactivity
during lectures influences the overall performance of students (Giunchiglia
et al., 2018).

3 methodology and experimental setup

To address the research problem of this study, the sub-sections below de-
scribe all the steps employed for data pre-processing, feature engineering,
choice of models, evaluation and features contribution. Figure 1 below
illustrates the data science research pipeline. New variables were engi-
neered from the raw app events dataset, well-being dataset, one-time daily
dataset. As previously mentioned, the SmartGPA study from 2015 ob-
served students’ various behaviours but did not incorporate mobile phone
behaviours or types of activities performed on mobile phones as predic-
tors. Moreover, Xu et al. (2019) examined internet consumption among
students, but did not go into detail on the type of activities performed.
Giunchiglia et al. (2018) 2018 and Hawi and Samaha (2016) have explored
the relationship between social media app usage and academic perfor-
mance, but no machine-learning predictions have been performed. Their
findings motivate the decision for engineering additional variables related
to monthly social media platform usage, instant messaging applications,
streaming services, and internet browsing. Figure 21 in the Appendix A
shows a bar plot of the most used application categories. The data shows
that primary positions have the above-mentioned app categories. These
results raised the hypothetical question: do the mainly used applications in
these categories significantly affect the final grade? Section 3.3 introduces
the constructed variables.
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Figure 1: Data Science Research Pipeline

3.1 Dataset Description

The dataset used in this study is based on a prior investigation conducted
among students at Tilburg University. The data collection period spans a
duration of six months, commencing on January 23, 2020, and concluding
on June 20, 2020. The data encompasses two primary categories of datasets:
survey and mobile sensor data. The following paragraphs provide a more
detailed description of the files.

3.1.1 The one-time survey

This table contains a comprehensive set of 136 questions, encompassing stu-
dents’ demographic attributes (age, sex, gender), technical details (phone
model, data version), as well as a diverse aspect of students’ psychological
attributes related to Body Dysmorphic Disorder, Burnout, Major Depressive
Disorder, Fatigue, Perceived Stress Scale, Procrastination, Connectedness,
Big Five Personality traits, Impulsivity, Morningness/Eveningness, and
Social Desirability. Each question within this table is assessed using a
5-point Likert scale, capturing the students’ subjective responses to the
given psychological constructs. The one-time survey was provided to the
students only once for the whole period of the data collection.
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3.1.2 Once-daily survey

The dataset comprises participants’ records, capturing their daily responses
to aspects of their sleep routine, including wake-up time, bedtime, sleep
quality, and the duration it takes to fall asleep or wake up. Furthermore,
the dataset includes a question regarding the daily time spent on studying
activities.

3.1.3 Five-times daily

The five-times daily table is designed to assess the well-being of students.
It consists of a set of questions covering topics such as stress, fatigue,
procrastination, and happiness. In total, there are 10 questions included in
this table. The subjective responses of the students were recorded using a
7-point Likert scale.

3.1.4 Grades folder

This folder contains individual files for each separate student. Each file
represents a table that contains information about the number of courses
taken by the respective student, along with the corresponding course
names and the grades received for each course.

3.1.5 App events folder

The app event folder consists of individual files for each student. These
files contain tables that include various attributes such as student ID, ses-
sion, start time, end time, timestamps for start and end times, notifications,
application details, battery usage, survey ID, longitude, and latitude. Addi-
tionally, columns with more descriptive application names and categories
were incorporated from a supplementary table that provides category
groups. The data is in a time series format, capturing observations over a
period of 6 months, throughout a mobile application ‘MobileDNA’. The
total number of records amounts to 5,073,192. The recorded duration of
the application log spans from 01-23-2020 to 06-20-2020.

The number of participants who completed all the surveys is N=236.
An additional folder contains app event data from 10 students who did
not answer any of the surveys. However, some of these students have an
informative amount of app logs recorded. Appendix A contains EDA plots
related to phone usage and well-being.
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3.2 Data Preprocessing

3.2.1 Data Cleaning and Data Imputation

Initially, the tables from the App events folder were consolidated into a
single file. This resulted in a total of 5,073,192 observations. However,
certain students were excluded from the analysis based on specific criteria.
Participants who had less than 200 sessions per month and who partic-
ipated for less than 3 months. The decision was made on the fact that
some features were aggregated on a monthly basis. Including participants
with months less than the threshold would result in creating more missing
values. After removing the participants, the total number of observations
was estimated to be 4,632,923. That decreased the number of participants
to N=193.

In addition, the location features in the dataset were found to contain
corrupted values, requiring further detection and removal. To address this
issue, the K-nearest neighbours (KNN) imputation was applied to impute
the missing values created after the deletion. This technique utilizes the
values of neighbouring data points to estimate and fill in the missing values
in the dataset. More on the missing data imputation with KNN can be
found in section 3.4.

The well-being dataset included data for months that exceeded the
scope of the study. Figure 15 in the Appendix A illustrates the distribution
of these months. It was hypothesized that this discrepancy was due to a
system error. To ensure that important information was not lost, the values
corresponding to the months outside the study scope were added to the
nearest month in order to preserve the overall continuity of the data. The
dataset contained missing values due to non-responses from some students
on all the daily surveys. The missing values were around 30% and deletion
was not a preferable technique. Again, KNN imputation was employed to
deal with the missing data.

The one-time daily dataset also included 27% of missing data that was
also imputed by utilizing KNN imputation.

3.2.2 Categorical Encoding

The one-time dataset contained a table of participants’ gender. Binary
encoding was used to transform the categories. ’Females’ were set to 0, and
’Men’ were set to 1. Figure 16 in the Appendix A illustrates the distribution
of gender among students.
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3.2.3 Target variable transformation

The lists of grades for each student were taken and the average grade point
(GPA) was calculated. Figure 2 presents the distribution of the average
grade among students.

Figure 2: Distribution of the average grades

3.3 Feature Engineering

As was mentioned at the beginning of the Methods section, the raw app
logs data required further feature engineering for inferring valuable infor-
mation and to make it suitable for the models chosen. The raw locations
were used to for mapping out the campus area. Additionally, five-times
daily dataset and a one-time daily dataset were used for creating new
variables. The next subsections describe the features engineered and the
techniques employed.

3.3.1 Trend slopes for measuring behavioural change

Trend slopes were engineered by fitting a regression line through the
data points for the selected variables. Table 1 provides an overview of
the features for which trend slopes were computed. This approach was
utilized in the SmartGPA study for measuring the correlation between
behavioural change and final grade. The coefficient of the slopes shows a
direction and strength in behavioural change over time. A positive value
indicates an increase in change, on the other hand, a negative value reports
a decrease in behaviour (Wang et al., 2015).
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In general, three trend slopes were computed: 1) overall slope showing
the change of behaviour from the beginning to the end of the study; 2)
trend slope from the beginning of the study to the mid-semester (January –
March); 3) and slope from the second part of the semester to the end of the
study (April – June).

By utilizing these trend slopes, the study aimed to capture the influence
of fluctuations in phone usage, well-being, study habits, and sleep patterns
on the final grades achieved by the participants. The decision to split
the data into two periods, pre and post-mid-semester, was based on the
recognition that March and June encompass critical examination periods.

Table 1: Trend Slopes Features

Dataset Features (mid-semester slope, post-mid-semester slope, overall slope)

App events

Social Networking
Instant Messaging
Streaming Services
Internet Browsing
Email
Dialer
Overall phone usage

Well-being

Relaxed
Rushed
Stressed
Energy
Proactiveness
Concentration
Delay
Time waste
Procrastination
Happiness

Once-daily
Sleep hours
Study hours

3.4 Frequency of university visits and time spent on campus

The longitude and latitude variables from the App event dataset were
used to estimate the frequency of university attendance per month and the
total time in minutes spent there. The initial feature engineering involved
obtaining and filtering only the locations that fell within the campus
area. The process included the following steps: 1) Campus geographic
mapping: Google Maps was employed to delineate the geographical area
of the campus. 2) Polygon representation: The Shapely library’s Polygon
feature was utilized to represent the campus space in the computational
environment. 3) Location filtering: The dataset locations were iterated
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through the polygon representing the campus area, and a new boolean
column was created to indicate whether a location falls within the campus
scope

For the final analysis, two features were created. The number of
university visits per month for each student was determined by summing
the unique days per month where the boolean column indicated that
the location is on campus. The total time in university per month was
computed from the start time and end time stamps in the dataset.

3.4.1 Ratio of app usage

To evaluate students’ engagement with specific phone applications, each
day was partitioned into four distinct time windows: 6 am to 12 pm, 12

pm to 6 pm, 6 pm to midnight, and midnight to 6 am. This division was
employed to assess students’ interactions with the selected phone apps
investigated by Giunchiglia et al. (2018) in their paper, as well as two
additional apps, Dialer and Email, which were found to be extensively
used by the students.

The aim behind partitioning the day into daily windows is to capture
and measure students’ levels of engagement with the identified apps
during different periods of the day. The ratio of interactions with the
mobile apps was calculated to measure the levels of engagement. Table 2

presents the categories used for computing the ratio.

Table 2: Ratio Features

Dataset Features
App events Daily windows: 6 am to 12 pm, 12 pm to 6 pm,

6 pm to midnight, and midnight to 6 am
Social Networking
Instant Messaging
Streaming Services
Internet Browsing
Email
Dialer
Overall phone usage

3.5 Final dataset consolidation and KNN imputation

After combining all the tables, the subsequent statistical analysis revealed
that more than 30% of the data was missing. Given the substantial percent-
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age of missing information, the deletion of incomplete cases was considered
inappropriate because can create loss of valuable information. Univariate
methods, such as mean imputation, were considered as a potential alterna-
tive. However, imputing large proportions of missing data using methods
like fill forward and back forward median imputation could introduce bias
(Lodder et al., 2013).

To overcome that problem a more suitable algorithmic approach was
required (Lodder et al., 2013). Therefore, the K-nearest neighbours (KNN)
algorithm was employed to impute the missing data. KNN imputation
utilizes the values of neighbouring data points to estimate the missing
values based on their similarity in the feature space. By leveraging this
algorithmic approach, the missing data was effectively imputed, mitigating
the impact of missingness on subsequent analyses.

The final data set consisted of 243 variables and 193 observations The
data was split on train and test set. After the split the training set was with
144 observations, while the test set was with 49 observations.

3.6 Normalization

The next necessary step before building the models was to position the
data on the same scale. Normalization is a highly required step when
the values in the data vary across scales, and therefore are placed in an
extremely large space. Not normalizing or standardizing the data can lead
to poor model performance and difficulties in capturing the relationships
in the data. This process was performed using MixMaxScaler from the
Sklearn library.

3.7 Algorithms

Several supervised machine learning algorithms were employed on the
final dataset. The choice of models is motivated by their frequent use in
the literature, both for predicting continuous outcomes and in educational
studies for grade prediction. The following set of models was utilized:
Mean prediction as a baseline model. Linear Regression (LR), Support
Vector Regression (SVR), and Decision Tree (DT), these three models were
used in Wang et al. (2015) and Xu et al. (2019) studies. The application of
Random Forest (RF) and Extreme Gradient Boost (Xgboost) was motivated
by the imperative to see how well more complex models perform on the
type of data used for this study.
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3.7.1 Linear Regression

Linear Regression is a commonly used statistical model in the field of Data
Science, primarily for predicting continuous outcomes. The objective of
the model is to find a relationship between the target and one or more
independent variables, assuming a linear relationship. The aim of Linear
Regression is to determine the line of the best fit that can capture the pattern
in the data points. This process involves minimizing the difference between
the actual values and the predicted values. This model was employed in
Wang et al. (2015). In their work, additionally, Lasso Regularization was
applied to remove redundant variables. This method outperforms the
Decision Tree and Support Vector Regression. However, the volume of
data used in the study is N=30, which makes Linear Regression a suitable
choice, due to the low number of observations. The simplicity of the
method makes it suitable for smaller datasets. The choice of this model
is partly motivated by the above-mentioned study and the amount of the
present data.

3.7.2 Support Vector Regression

Support Vector Machines (SVM) is a popular algorithm for both classifica-
tion and regression. Support Vector Regression is the conversion of SVM
for predicting continuous outcomes. The goal of the model is to find a
function that approximates the relationship between the predictors and
the predicted variable while minimizing the prediction error (Williamson
et al., 2001). The process behind the model includes positioning the data
points on a high-dimensional feature space between decision boundaries
and inserting a hyperplane that has to minimize the prediction error. In
comparison to linear regression, SVR exhibits robustness to outliers, with
the help of the decision boundary that cuts off unusual values. This method
shows the best performance in Xu et al. (2019) study. Part of the motivation
behind using this model comes from the high-dimensional feature space,
which makes it possible for the model to handle datasets with a larger
amount of predictors. Moreover, SVR is suitable for a small number of
observations. Table 4 in the Appendix B shows the hyperparameters used
for optimization.

3.7.3 Decision Tree

The Decision Tree model is a recursive method that can be employed
for both classification and regression tasks. The algorithm operates by
constructing a series of rules, which are then used to partition the data
into smaller subsets, resulting in a tree-like structure. Decision trees
are suitable for capturing complex relationships in the data. A further



3 methodology and experimental setup 16

advantage of the method is the ease to work with mixed types of data
(continuous and categorical) without the need for additional pre-processing.
Decision Trees can handle data that has larger dimensions by selecting
the most informative features. Table 5 in Appendix B reports the set of
hyperparameters used for the model’s optimization.

3.7.4 Random Forest

Random forest is an ensemble model for both regression and classifica-
tion. This model combines the predictions of multiple Decision Trees and
based on their predictions provide outcomes. By randomly selecting a
subset of features at each tree in the forest, Random Forest focuses on
the most informative features, reducing the impact of noise and irrelevant
variables. Once all the decision trees are built, Random Forest combines
the predictions of each tree to produce a final estimation. This is done by
averaging the predictions of all the trees. The model has shown superiority
in a few of the studies Bai et al. (2021), Gaftandzhieva et al. (2022), and
Gadhavi and Patel (2017) studies. Table 6 in Appendix B presents the set
of hyperparameters used in the cross-validation stage.

3.7.5 XGBoost

Another ensemble model used in this study is XGBoost. Similarly to
Random Forest, the model uses multiple decision trees. Conversely, the
process behind utilizing the trees is different. The trees are built on top
of each other to minimize the error from the previous tree. The basic
principle is building a tree where in each node the similarity score is
calculated. In other words, the first tree in the sequence tries to predict the
output variable, while the subsequent trees in the sequence try to predict
the residual errors left by the previous trees. The predictions of each
decision tree in the sequence are then combined, using a weighted sum, to
produce the final prediction. In comparison to Random Forest, XGBoost is
considered as a more advanced algorithm that adds different weights to
the tree leaves based on their contribution to the model, while RF assigns
the same weights to all of the leaves. The set of hyperparameters used for
model optimization can be found in Table 7 in Appendix B.

3.8 Cross-validation and hyperparameter tuning

Nested cross-validation is a method used for model building, assessment
and selection. With two loops of cross-validation, the model is tuned in
the inner loop, while its performance is evaluated in the outer loop. Figure
3 illustrates the process applied on the training set. For the specifics of
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the present data, Leave One Out Cross-Validation (Loocv) was utilized for
the outer loop. And K-Fold Cross-Validation (KFoldcv) was used for Grid
Search and hyperparameter tuning. This approach is used to solve the
problem with bias and error by using the outer loop as unseen data that is
not being included for the model optimization in the inner loop (Wainer &
Cawley, 2021).

Figure 3: The process of nested cross-validation applied on the training set. The
inner loop serves fro hyperparameter tuning, while the outer loop is used for
model evaluation

3.9 Evaluation

Mean absolute error (MAE) was used to assess the models’ performance
on the cross-validation stage and on the hold-out set. MAE is a preferred
choice over mean squared error (MSE) and root mean squared error (RMSE)
when predicting students’ grades. The metric is not affected by extreme
values or outliers, making it a robust metric. It enables the estimation of
absolute deviations from the ground truth and facilitates the selection of
the model with the lowest average error.

R-squared was employed in the error analysis to evaluate how well the
models fit the new data and explain it’s variability. The scores from this
metric were utilized to explain the error plots in the Results section.

3.10 Predictors’ contribution

To determine the predictors that most affect the model Shapley values
were computed. Shapley is an explainable machine learning technique that
allows local and global analysis on the data and research problem. The
local explainability suggests how each feature affects the result of every
instance. On the contrary, the global importance is measured by averaging
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the absolute Shapley values of the feature contribution to the overall
prediction. SHAP foundations come from the ‘game theory’ paradigm,
and it is often described as a cooperative game where each feature is a
player and the individual contribution of every player to the game output
has been measured (Antwarg et al., 2019). Each feature contribution is
calculated by: 1) Performing the original model prediction; 2) Removing
the feature whose contribution we want to measure from the dataset and
do a prediction without that feature; 3) The two predictions are being
compared. The difference between the predictions describes the feature
contribution for a particular instance; 4) Shapley value is calculated by
averaging feature contributions over all possible feature subsets.

3.11 Programming language and software

The data processing was executed on Visual Studio Code using Python (Van
Rossum & Drake Jr, 1995). The choice of programming language was made
based on the variety of open-source libraries that are appropriate for data
analysis and machine learning models. Pandas (pandas development team,
2020) library was used for the tables construction, and feature engineering
in combination with Numpy (Harris et al., 2020) and other statistical
modules. Seaborn (Waskom, 2021) and Matplotlib (Hunter, 2007) were
used for the graph plotting. Scikit library (Pedregosa et al., 2011) was
utilized for employing most of the machine learning models and grid
search for hyperparameter tuning. Only Extreme Gradient Boosting model
was imported from Xgboost library (Chai & Draxler, 2014). SHAP library
(Lundberg et al., 2020) was used for Shapley values to understand features
contribution. The Shapely library(Gillies et al., 2007–) was utilized for
mapping out the campus area on a 2D space.

4 results

The results section covers subsections related to the models performance,
comparison to the baseline model, and feature contribution to the model
found to have the highest mean absolute error. Table 3 presents the results
from the models’ evaluation on the test set and the baseline predictions.
The baseline simply calculated the mean grade. Random Forest is found
to be the best-performing model in the case of this study, followed by
Support Vector Regression with a small difference in the evaluation metrics
coefficients. The next model ranked by it’s performance is Decision Tree.
These three models succeeded in outperforming the baseline model. The
other two models, Linear Regression and XGBoost scored a higher value
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for MAE and a negative value for R-squared. Additional Table 8 with
models’ optimal hyperparameters can be found in the Appelndix B.

Table 3: Model Performance

Models MAE R-squared
Random Forest 0.631 0.226
SVR 0.639 0.221

Decision Tree 0.651 0.164

XGBoost 0.75 -0.134

Linear Regression 1.143 -1.386

Baseline 0.724 -0.00225

4.1 Models’ performance evaluation and error analysis

The following subsections covers the results from models’ evaluation in
terms of MAE and R-squared. Additionally, plots illustrating the results
from the error analysis for each model are present.

4.1.1 Random Forest performance

Table 3 presents models’ results, wherein Random Forest exhibits superior
performance with MAE of 0.631. The model was trained and tuned in a
nested cross-validation.

Furthermore, a comprehensive evaluation of the model’s performance is
illustrated in Figure 4. The plot demonstrates that a majority of data points
exhibit a scattered distribution, not following the red line. Nevertheless,
within the grade range of 6 to 8, it can be observed that certain points
are more densely clustered in proximity to the line, indicating enhanced
predictive capability of the model in this particular range. Conversely, for
grades below 6 and above 7.5, the predictions significantly deviate from
the expected linear pattern. Additionally, R-square value for the Random
Forest model is 0.23, indicating that around 77% of the variability in the
dependent variable remains unexplained by the model.
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Figure 4: Scatter plot illustration of the predicted and expected values for Random
Forest

Figure 5 illustrates a more detailed examination of the distribution of
the ground truth and the predicted values. The central tendency for both
the true values and predicted values is within the range of 7 to 7.5. The
predicted values partly capture the central tendency of the distribution
of the target. Nonetheless, it can be seen that the model overestimates
grades encompassing 6.5 and 7. This observation aligns with the findings
obtained from the scatter plot, further corroborating that the model fails to
predict less represented values.

Figure 5: Histogram plot comparing the ground truth GPA and the predicted GPA
from Random Forest
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4.1.2 Performance of Support Vector Regression

Support vector regression scored MAE of 0.639 on the test set. This position
the model on the second-best predictive performance after Random Forest.
The scatter plot in Figure 6 shows that not all the predictions are closely
distributed to the red line. The distribution of the dots is similar to the
one of Random Forest predictions. Again, the points between grades 6.5
and 8 are more densely and closely distributed to the red line, exposing
an acceptable performance in predicting the grades in this group. The
R-squared coefficient is 0.22. That shows the model has similar variability
to the Random Forest.

Figure 6: Scatter plot illustration of the predicted and expected values for Support
Vector Regression

Figure 7 illustrates the distribution plot, which reveals that the predicted
values exhibit a comparable central tendency to the true values. However,
a consistent trend emerges where the model tends to overestimate values
in the vicinity of 6.5. Additionally, fails to capture and predict values
below 6 and above 7.5. This discrepancy suggests that the model performs
not-so-good in capturing and predicting instances falling within these
particular ranges.
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Figure 7: Histogram plot comparing the ground truth GPA and the predicted GPA
from Support Vector Regression

4.1.3 Decision Tree performance

Decision Tree reports 0.65 mean absolute error on the test set. The plot in
Figure 8 provides evidence that the model has some capability to capture
certain trends in the data. However, it falls short in capturing the complete
complexity of the underlying patterns. Furthermore, the presence of two
horizontal lines in the predicted values indicates that the Decision Tree
model tends to overestimate certain predictions. The R-squared value
stands at 0.16. In this case, the low R-squared value suggests that the
model fails to account for a significant portion of the variability observed
in the true values.
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Figure 8: Scatter plot illustration of the predicted and expected values for Decision
Tree

From figure 9 it can be seen that the model tends to predict the grades
from the majority group. However, overestimation around 6.5 is present in
this plot, as well. The separate bars are evident that Decision Tree does not
threat some of the predictions as continuous variables.

Figure 9: Histogram plot comparing the ground truth GPA and the predicted GPA
from Decision Tree

4.1.4 XGBoost performance

XGBoost exhibited not-so-good performance after applying it on the test
set. Furthermore, the model’s R-squared score of -0.13 indicates a poor fit
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to the data. The negative R-squared score suggests that the model fails to
capture the underlying patterns and relationships in the data. Figure 10

provides a visual representation of the distribution of points around the
diagonal line. Similar to the Decision Tree model, there is a wider spread
of data points observed. This indicates a higher degree of variability and
inconsistency in the model’s predictions, and limitations and shortcomings
in the model’s predictive capabilities.

Figure 10: Scatter plot illustration of the predicted and expected values for
XGBoost

Interestingly, the histogram (Fig. 11 ) comparing the ground truth with
the predicted values, shows that the model is able to capture and predict
data from groups with lower observations. This implies that the model’s
predictions align with the general shape and patterns of the true values.
However, it is important to note that capturing the distribution of the
data does not necessarily imply accurate predictions or a good fit to the
underlying relationships.
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Figure 11: Histogram plot comparing the ground truth GPA and the predicted
GPA from XGboost

4.1.5 Linear Regression performance

Linear Regression does not have any hyperparameters for optimization,
therefore the model was only trained with Leave One Out cross-validation.
This model ranks last according to it’s performance, with MAE of 1.14 and
R-squared score of -1.38. Figure 12 shows that the points are widely scat-
tered along the diagonal line, again indicating higher degree of variability
and inconsistency in the predictions.

Figure 12: Scatter plot illustration of the predicted and expected values for Linear
Regression
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The model tends to capture the distribution of the data and some of the
central tendency. However, most of the grades are overestimated. Moreover,
the model assigns grades that are not present in the test set (Figure 13).
These results are not surprising due to the fact that Linear Regression is
a simple model that assumes a linear relationship between the predictors
and the target. Therefore, it lacks the ability to capture more complex
relationships.

Figure 13: Histogram plot comparing the ground truth GPA and the predicted
GPA from Linear Regression

4.1.6 Comparison to the baseline

The models’ performances vary in comparison to the baseline. Random
Forest, Decision Tree, and SVR demonstrate superior performance by
achieving lower MAE values, indicating their ability to make more accu-
rate predictions. These models exhibit improved predictive capabilities,
surpassing the baseline’s performance. Notably, Random Forest, Decision
Tree, and SVR showcase their effectiveness in handling high-dimensional
data, even with 243 observations.

On the other hand, Linear Regression and XGBoost exhibit higher MAE
values and negative R-squared values, implying their inferior performance
compared to a simple strategy of predicting the mean value. The simplicity
of Linear Regression may contribute to its underperformance, as it assumes
a linear relationship between predictors and the target variable, which may
not adequately capture the complexity of the data. XGBoost, on the other
hand, may benefit from further fine-tuning to improve its performance.
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4.2 Predictors contribution in the best-performing model

Figure 14 illustrates the results of the SHAP analysis, which reveals the
contribution of features to the predictions made by the Random Forest
model. The x-axis represents the average magnitude of the features’ in-
fluence on the predictions. The top three most influential features in the
model’s predictions: "Total time spent on campus in January," "Concen-
tration trend slope June," and "Ratio Phone Usage in February in daily
window from 12 to 18." These features have demonstrated a substantial
impact on the model’s predictions. Notably, the majority of the influential
features are derived from the app-event dataset and the well-being dataset,
encompassing continuous values. This suggests that these engineered
features, being continuous in nature, potentially can capture meaning-
ful patterns within the data. Conversely, when considering the one-time
dataset containing Likert scale variables and questions related to students’
personality, only one feature (“Overcoming difficulties"), was found to have
influence in the model’s predictions. Overall, the findings suggest that the
engineered features derived from the app-event dataset and the well-being
dataset, characterized by continuous values, play a role in the Random
Forest model’s predictions. In contrast, features such as social media usage,
instant messaging, streaming services, and internet browsing, which were
associated with students’ performance in Giunchiglia et al. (2018) study,
do not emerge as significant contributors to the final model’s predictions.

Figure 14: SHAPley values illustrating features contribution to the Random Forest
predictions
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5 discussion

The research goal of this study was to predict students’ GPAs from their
mobile usage behaviour and well-being during the semester. The addi-
tional sub-research questions were a guideline for finding a solution to
this problem. The first research question aimed to determine the machine
learning algorithm that can best capture the complexity of the data and
provide the most accurate predictions. Subsequently, the objective of the
second research question was to find those variables that mostly contribute
to the predictions of the best-performing model. The third research ques-
tion aimed to evaluate the models and their predicting capabilities, using
error analysis.

5.1 Results Discussion

"The analysis of the data suggests that predicting all of the students’
grades using the available data is challenging due to limited accuracy.
Although some predictions show close proximity to the actual grades, their
occurrence is relatively low compared to the total population.

In addressing the first research question regarding the best-performing
model for predicting final grades based on the given dataset, Random
Forest showed the lowest MAE score of 0.631. This model effectively
handled high-dimensional, time-variant data consisting of variables with
continuous values that captured various behaviors (such as trend slope,
ratio, total time, and total visits).

The findings of this study partially align with existing literature on
the subject. Notably, studies conducted by Gadhavi and Patel (2017) and
Bai et al. (2021) have also highlighted the predictive capabilities of the
Random Forest model. Bai et al. (2021) research showcased the model’s
robustness when applied to datasets with a larger number of features,
encompassing information about patients’ behavior inferred from mobile
applications. Similarly, Gaftandzhieva et al. (2022) study emphasized
the ability of Random Forest to effectively handle time-period datasets
spanning a duration of eight weeks.

However, a comprehensive comparison between the studies cannot
be conclusively made due to differences in the number of features in the
present dataset and variations in the predictors utilized."

In the context of feature contribution to predicting students’ GPA using
Random Forest, several features were found to have an impact, with
contributions ranging from 0.01 to 0.07. While the overall contribution
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score may appear low, it is important to highlight the significance of
specific features in the model. Factors such as university visits, phone
usage patterns during daytime (12-18) and evening (18-24), sleep patterns,
and certain well-being indicators (e.g., stress, concentration, and relaxation)
were observed to contribute to the model’s predictions. These findings
align with a previous study conducted by Wang et al. (2015), known as
the SmartGPA study, which focused on predicting academic performance.
In that study, duration-based features and those related to behavioral
changes were identified as significant predictors, selected through the
Lasso method. Despite methodological differences between the two studies,
there is potential for comparison and alignment. Both studies highlight
the importance of trend slopes in predicting the final grade, along with the
influence of activity during nighttime and evening hours. These similarities
suggest that certain aspects of students’ behavior and engagement can
have an impact on academic performance, providing an opportunity for
cross-study insights.

Comparing the models, Random Forest and SVR demonstrate similar
performance, with both models achieving relatively lower MAE values
compared to Decision Tree and XGBoost. However, Decision Tree and
XGBoost exhibit higher errors, suggesting less accurate predictions. These
models struggle to capture the underlying patterns and relationships in
the data, as reflected in their relatively higher MAE values and negative
R-squared score for XGBoost. The scatter plots and distribution plots
reveal that all models tend to overestimate grades around 6.5, indicating
a common trend. This could be attributed to the limited representation
of instances in the training data within this grade range. Overall, while
Random Forest and SVR show better performance, there is still room
for improvement in accurately predicting students’ GPA, particularly for
extreme grade values and capturing the full complexity of the underlying
relationships.

5.2 Limitations

One major limitation of this study is the small sample size of the dataset. A
larger number of learning observations and a larger test set would increase
the likelihood of the models capturing the relationship between the target
and the data. This is particularly important when using complex models
like XGBoost.

Another limitation is the high dimensionality of the data. Simple mod-
els like Linear Regression may struggle to capture the intricate relationships
within the data. Incorporating dimensionality reduction techniques could
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improve the predictions. For example, Wang et al. (2015) and Bai et al.
(2021) applied different feature selection methods in their studies, which
resulted in higher accuracy. Additionally, exploring different subsets of
features and identifying the optimal combination with each model could
potentially lead to lower MAE scores.

A possible limitation of the study is the relatively low feature contribu-
tions observed in the Shapley values analysis, ranging from 0.04 to 0.07.
This suggests that the individual features in the dataset have limited influ-
ence on predicting students’ grades. Consequently, the overall predictive
power of the models may be constrained, and there could be additional
unexplored factors or variables that are more significant in determining
academic performance, such as inclusion of academic data.

5.3 Contributions and Societal Impact

This study aimed to contribute to the existing literature by using supervised
machine learning techniques to predict academic grades based on students’
well-being and behavioral patterns of phone usage. The results indicated
that models like Random Forest and SVR demonstrated a higher accuracy
in capturing the data that reflects human behavior.

Furthermore, this study highlighted the potential of developing mobile
applications that record mobile activity and provide suggestions based on
students’ past performance. These apps could analyze engagement levels
and leisure time spent on the phone to identify if students are at risk of
declining grades.

6 conclusion

In conclusion the main research question was answered with the following
sub-research questions:

RQ1: Which machine learning model can most accurately capture the
relationship between the target variable and the predictors?

The results from Table 3 indicate that Random Forest surpasses the
performance of the other models, demonstrating its ability to capture
the relationship between students’ GPA, their well-being, and inferred
phone behaviors. The slight outperformance of Support Vector Regression
suggests that this model also holds potential for capturing similar data
relationships.
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RQ2: What predictors identified by Shapley values contribute to the
best-performing model’s predictions?

Figure 14 provides an insight on features contribution to the final pre-
dictions. The analysis identifies the top three influential features, including
"Total time spent on campus in January," "Concentration trend slope in
June," and "Ratio Phone Usage in February from 12 to 18 daily window."
These features, predominantly derived from the app-event and well-being
datasets, exhibit a substantial impact on the model’s predictions, empha-
sizing the significance of continuous engineered features in capturing
meaningful patterns within the data.

RQ3: What are the patterns of error across all the models in predicting
students’ grades?

The scatter plots and distribution plots highlight a common trend of
overestimating grades around 6.5, possibly due to limited representation
of instances in the training data within this grade range. Although Ran-
dom Forest and SVR show improved performance, there is still potential
for enhancing the accuracy of predicting students’ GPA, especially for
extreme grade values and capturing the full complexity of the underlying
relationships.

7 data source , ethics , code , and technology statement

The data has been has been provided to me by my supervisor, after signing
a statement that I will not disclose any information from the files. The
obtained data is anonymised. Work on this thesis did not involve collecting
data from human participants or animals. The original owner of the data
and code used in this thesis retains ownership of the data and code during
and after the completion of this thesis.

Part of the CODE has been adapted by the author from https://github.
com/,https://machinelearningmastery.com/,https://towardsdatascience.
com/. The reused/adapted code fragments are clearly indicated in the
notebook. In terms of writing, the author used assistance with the lan-
guage of the paper. A generative language model ChatGPT https://chat.
openai.com/ and Gramarly https://www.grammarly.com/ were used to
improve the author’s original content, for paraphrasing, spell-checking
and grammar. No other typesetting tools or services were used. All the
graphics and tables were created by the author. Figure 3 was inspired
from this illustration https://rb.gy/2tmzo. Data science research pipeline
structure was was partly inspired from this figure https://rb.gy/zzm3w.

https://github.com/, https://machinelearningmastery.com/, https://towardsdatascience.com/
https://github.com/, https://machinelearningmastery.com/, https://towardsdatascience.com/
https://github.com/, https://machinelearningmastery.com/, https://towardsdatascience.com/
https://chat.openai.com/
https://chat.openai.com/
https://www.grammarly.com/
https://rb.gy/2tmzo
https://rb.gy/zzm3w
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The codes used in this study can be found on the author’s GitHub page
https://github.com/MariaNedeva/DSS-Master-Thesis.
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appendix a

Figure 15: Distribution of the monthly records in the well-being dataset

Figure 16: A distribution of gender among students
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Figure 17: A distribution of age

Figure 18: Histogram of frequency of university visits per month
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Figure 19: Correlation of Ratio of phone usage, university visits, and average
grade. Top 7 most correlated features: ’Ratio of phone usage June from 12 am - 6

am’, ’Ratio of phone usage February 12 am - 6 am’, ’Total days campus visited
March’, ’Ratio of phone usage May 12 am - 6 am, Ratio of phone usage March 12

am - 6 am, ’Total days campus visited February’, ’Average Grades’



appendix 38

Figure 20: Correlation of applications trend slopes and the average grade

Figure 21: Histogram presenting app categories with spent most minutes on
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Figure 22: Correlation of well-being slopes with the final grade

appendix b

Table 4: Support Vector Regression Hyperparameters and Coefficients

Hyperparameters Coefficients
Kernel rbf, poly
C 1, 1.5, 10

Gamma 1e-7, 1e-4
Epsilon 0.1,0.2,0.5,0.3
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Table 5: Decision Tree Hyperparameters and Coefficients

Hyperparameters Coefficients
Splitter best, random
Maximum depth 3, 7, 11, 12

Maximum leaf samples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Minimum weight 0.1, 0.2
Maximum features auto, log2, sqrt, None
Maximum leaf nodes 10, 20, 40, 50, 90

Table 6: Random Forest Hyperparameters and Coefficients

Hyperparameters Coefficients
Splitter best, random
Number of estimators 100, 200, 300

Maximum depth None, 5, 10

Minimum Splits 2, 5, 10

Minimum leafs 1, 2, 4

Table 7: XGBoost Hyperparameters and Coefficients

Hyperparameters Coefficients
Splitter best, random
Learning rate 0.1, 0.3
Maximum depth 3, 5

Subsample 0.6, 0.8
Colsample Bytree 0.6, 0.8

Table 8: Optimal Hyperparameters for Each Model

Model Optimal Hyperparameters
SVR C=1, epsilon=0.5, gamma=1e-07, kernel=’poly’
Decision Tree Max depth: 7, Max features: ’sqrt’, Max leaf nodes: 20,

Max samples: 2, Min weight leaf: 0.1
Random Forest Max depth: 10, Max samples split: 10

XGBoost Learning rate: 0.3, Colsample: 0.6,
Max depth: 3, Estimators: 100
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