
H A R M F U L A L G A L B L O O M E V E N T S
P R E D I C T I O N : C O M PA R I N G

M A C H I N E L E A R N I N G A N D D E E P
L E A R N I N G A L G O R I T H M S

A D ATA - D R I V E N A P P R O A C H I N T H E F I E L D O F
WAT E R Q UA L I T Y P R E D I C T I O N

R O N G L I A O

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university



student number

2088124

committee

Dr. Bruno Nicenboim
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Abstract

Harmful algal bloom events (HABs), one of the water quality
issues, are increasingly frequent, threatening both aquatic life and
human health. Machine learning is gaining prominence in predicting
and analyzing aquatic environmental data, offering new possibilities
for addressing the issue of HABs. Previous studies have utilized vari-
ous models to make HABs predictions, such as random forest (RF),
support vector machine (SVM), and recurrent neural network (RNN),
but the problem of sparsity in the dataset was seldom addressed.
Most researchers dealt with missing data using imputations in the
past. The distinguishing aspect of this paper’s approach is the investi-
gation of potential differences in machine learning and deep learning
algorithms, not only in terms of different imputation methods but
also by incorporating datasets with factual data. This study used
RF as the baseline model, with support vector regression (SVR) and
artificial neural network (ANN) as competing models. The models
were trained using one dataset without imputation and compared
with datasets that underwent three kinds of imputation techniques:
median imputation, KNN imputation, and multiple imputation. The
dataset contained water quality parameters measured in New York
Harbor over a century, with a shape of 89021 by 100. We found that it
was feasible to increase HABs prediction efficiency with factual data
and domain knowledge. The SVR model with median imputation
performed the best, with an R2 score of 0.859, a root mean squared
error (RMSE) score of 9.360, and a mean absolute error (MAE) score
of 5.737 after feature selection. Furthermore, machine learning and
deep learning algorithms using data with and without imputations
generated similar outputs, but the deep learning algorithm incurred
higher computational costs. Finally, 17 most important features were
identified for contributing to the occurrence of HABs in New York
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Harbor, including fluorometer, pH, and dissolved oxygen (DO). No-
tably, several novel predictors, such as fluorometers, nitrate/nitrite,
and ammonium, have emerged as promising variables for HABs
prediction in our study. However, the imputation methods utilized
in our research were not sufficient when the features were entirely
absent.

1 source/code/ethics/technology statement

The dataset was acquired from the publicly accessible New York City
Open Data portal. The work on this thesis did not involve collecting
data from human participants or animals. The original owner of the
data and code used in this thesis retains ownership before, during, and
after the completion of this study. All figures in this thesis belong to
the author. Some parts of the code have been adapted from a publicly
available source, which can be found at https://www.freecodecamp.org/
news/machine-learning-pipeline. The reused or adapted code fragments
are clearly indicated in the notebook. For convenient access to the afore-
mentioned notebooks, please visit https://github.com/bunnybunny1120/
master_thesis_2023. The author received language assistance in refining the
paper’s content using a generative language model (ChatGPT-3.5), which
included paraphrasing, spell checking, and grammar correction. No other
typesetting tools or services were employed.

2 introduction

The notion of water quality is complex and influenced by various factors.
There are primarily four factors that can be used to determine water qual-
ity. Firstly, physical parameters such as water turbidity, total suspended
solids (TSS), and electrical conductivity (EC) can impact water quality.
For example, cloudy water is considered unsuitable for drinking, and the
presence of certain metals in water determines its suitability for irrigation
or firefighting. Secondly, chemical factors such as pH, DO, and chemical
oxygen demand (COD) can affect the survival of aquatic organisms. High
levels of acidity or alkalinity in water may indicate chemical or industrial
pollution. Thirdly, anthropogenic factors resulting from human activities
such as irrigation, extraction, and household waste have a significant im-
pact on the water system. Lastly, biological factors such as the presence of
bacteria, algae, and viruses can also contribute to changes in water quality.
Algae, for instance, can not only cause odor and taste issues in water but
also create more significant problems by producing toxins (Akhtar et al.,
2021; Cariappa, 2004; Kisi et al., 2023; Ortenberg & Telsch, 2003; Patrick,

https://www.freecodecamp.org/news/machine-learning-pipeline
https://www.freecodecamp.org/news/machine-learning-pipeline
https://github.com/bunnybunny1120/master_thesis_2023
https://github.com/bunnybunny1120/master_thesis_2023
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1973; Summers, 2020). Although HABs are natural occurrences that have
been documented throughout history, non-toxic blooms can also cause
anoxic conditions and harm aquatic life and the most concerning issue for
humans is the consumption of seafood contaminated by algal species that
produce neurotoxins. This can result in gastrointestinal and neurological
illnesses (Hallegraeff, 2010; Nick et al., 2019).

When predicting HABs, the specific parameter Chlorophyll-a (Chl-a) is
used as the target. Chlorophylls are a class of pigments found in photosyn-
thetic organisms such as plants and algae. They enable these organisms
to convert sunlight into chemical energy through a process called pho-
tosynthesis. Among the three types of chlorophyll (a, b, and c) found
in phytoplankton, chlorophyll-a is typically used as a measure of phyto-
plankton biomass and production, which contributes to the development
of HABs (Blankenship, 2014; Glibert et al., 2018; Jeffrey & Vesk, 1997).
Consequently, the occurrence of HABs can serve as an indicator of water
pollution, as they are triggered by conditions associated with the presence
of Chlorophyll-a.

3 research goal & problem statement

The goal of this research is to determine whether factual data can yield
comparable outcomes to imputed data when predicting HABs and if
machine learning and deep learning algorithms perform differently in
this context. If substantiated, the utilization of data without imputation
has the potential to enhance the efficiency of HABs prediction by saving
time and mitigating potential biases arising from the imputation process.
Moreover, given the increasing occurrence of HABs, which poses a critical
global concern, the development of such efficient methodologies becomes
imperative for addressing this pressing issue within a specified time frame
(Anderson et al., 2021; Masó & Garcés, 2006).

Thanks to the rapid increase in data volume in recent years, machine
learning has gained significant importance in the analysis, classification,
and prediction of time-series data related to the aquatic environment (M.
Zhu et al., 2022). However, the issue of high sparsity in water quality
datasets has received relatively little attention (Ma et al., 2020). This issue
will be addressed in Section 4. Based on current understanding, there is a
lack of previous studies that have investigated the potential discrepancies
between datasets without imputations and imputed datasets when using
machine learning methods for water quality predictions. Consequently,
the understanding of how machine learning and deep learning models
perform differently in such settings is yet to be explored.
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3.1 Societal & Scientific Relevance

The societal relevance of this study lies in its ability to facilitate early
detection of pollution events, enabling governments to prioritize resources
in water quality management and prevent potential ecological disasters.
Moreover, the utilization of machine learning-based water quality analysis
aids in safeguarding industries such as fisheries, aquaculture, and tourism,
which face various challenges, including the outbreak of diseases linked
to poor water quality (Burford, 1997; Burkholder, 1998; Cruz et al., 2021;
L.-H. Lee & Lee, 2015; Ojea et al., 2023). From a scientific perspective,
applying machine learning techniques can reveal previously undetectable
patterns, leading to a deeper understanding of complex aquatic ecosystems.
Furthermore, future researchers aiming to enhance their models for water
environment studies can use the features identified in this research as a
reference, and the method employed in this paper has the potential to
expedite the setup of their experiments.

3.2 Research Questions

Based on the context established from the previous sections, the main
research question of this thesis can be formulated as follows:

How to predict harmful algal bloom events in New York Harbor by using
machine learning and deep learning algorithms with and without data
imputations?

The following supporting questions could be formulated in order to
respond to the primary study question:

• SQ1 To what extent do machine learning and deep learning models
perform differently with factual data and data undergone imputation
with multiple techniques?

• SQ2 Which are the most important water quality indicators that
contribute to harmful algal bloom events in New York Harbor?

3.3 Findings

The study compared different models with various imputation techniques
for predicting HABs using data from a specific water system. The results of
the study indicated the following: 1) The utilization of domain knowledge
enhanced the efficiency of HABs prediction. 2) SVR with median imputa-
tion achieved the highest R2 score of 0.859, the RMSE score of 9.360, and the



4 related work 5

MAE score of 5.737 after feature selection. 3) The performance of models
using factual data did not significantly deviate from those using imputation
techniques. 4) Machine learning and deep learning algorithms yielded
comparable results, albeit with the deep learning approach exhibiting a
longer computational runtime. 5) Seventeen important parameters, in-
cluding fluorometers, pH, and temperature, were identified for predicting
HABs in New York harbor. Notably, certain features such as fluorometers,
nitrate/nitrite, and ammonium appeared to be underutilized in previous
HABs prediction studies. However, 6) when the features were entirely
absent, they tended to have no predictive power with imputation methods
used in this research.

4 related work

In the field of water quality prediction, a substantial body of literature
has investigated the application of machine learning techniques. This
section is divided into four parts. Firstly, machine learning in water
quality prediction is introduced. Secondly, innovative methods in HABs
are discussed. Thirdly, examples of utilizing small datasets in water quality
prediction are provided. The last part reveals the practice of using domain
knowledge and the data-driven nature of this field. Finally, the research
gap is identified.

4.1 Machine Learning used in Water Quality Prediction

Water quality prediction is the process of estimating the levels or concen-
trations of various parameters, such as DO, biochemical oxygen demand
(BOD), and total phosphorus (TP) in a water body.

In order to lower cost and find more efficient ways to make predictions,
some studies utilized regression models to predict the water quality index
(WQI). Asadollah et al. (2021) proposed extra tree regression (ETR) as
opposed to SVR and decision tree regression (DTR) using only factual
data, but the alternative methods such as imputation techniques were not
explored. Chen et al. (2020) evaluated the performance of ten machine
learning models such as logistic regression (LR), linear SVM, and RF using
big data (33,612 samples), and they found that it was beneficial to use
large datasets and that ensemble models outperformed traditional models.
Furthermore, in some studies focusing on regression tasks within the realm
of machine learning, RF emerged as the most efficacious model (Castrillo
& García, 2020; Koranga et al., 2022).

However, traditional machine learning methods might have limitations
in their ability to capture the non-linear or changing dynamics in various
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water bodies. A few comparative studies have shown that ANNs have
demonstrated better efficiency and accuracy compared to SVM, simple
multiple linear regression (MLR), SVR, and RF (Azrour et al., 2022; Djerioui
et al., 2019; Ooi et al., 2021; S. Zhu et al., 2019). Conversely, in certain
studies, the superiority of deep learning algorithms, specifically ANNs, did
not manifest when compared to SVM or RF (Haghiabi et al., 2018; Koranga
et al., 2022).

While single shallow models may fall short in capturing the significant
relationships and patterns that exist over extended periods, more sophis-
ticated models have been employed in the prediction of water quality
parameters. These include the integration of the wavelet function in ANN
and long short-term memory (LSTM) models, as well as the combination of
recurrent neural networks (RNN) with Dempster-Shafer theory (RNNs-DS),
and the fusion of grey theory with ANNs such as backpropagation neu-
ral network (BPNN), radial basis function neural network (RBFNN), and
generalized regression neural network (GRNN) (L. Li et al., 2019; Zamani
et al., 2023; Zhai et al., 2019). Although these studies have predominantly
focused on exploring advanced models to improve predictive capabilities,
it is important to note that they did not explicitly address the underlying
issue of a dataset characterized by a substantial proportion of missing
values.

4.2 Predicting HABs State of Art

More related to this study, various innovative techniques have been devel-
oped for the prediction of HABs. These include the merged-LSTM model
proposed by Cho and Park (2019), which integrated multiple data sources
and improved the performance of ANN and two-layer LSTM models. Derot
et al. (2020) introduced a coupling model that utilized a long-term database
spanning 34 years, employing K-means clustering for unsupervised learn-
ing and RF with a sliding window for supervised learning. Image-based
approaches have also been explored, such as the algal morphology deep
neural network (AMDNN) by Yuan et al. (2023), enabling real-time pro-
cessing and differentiation of algae species on-site. Additionally, Guo et al.
(2021) combined the underwater Imaging FlowCytobot (IFCB) with RF for
real-time classification of HABs, achieving performance comparable to the
convolutional neural network (CNN) with transfer learning. Despite the
utilization of state-of-the-art models in HABs prediction, the major draw-
back of such sophisticated methods might be their potential inefficiency
under limited time or resource constraints. Moreover, these studies did not
address a prevalent issue encountered in datasets with a high percentage
of missing values, especially in large datasets spanning several decades.
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4.3 Predicting HABs using Small Datasets

The primary objective of this study is to investigate the effectiveness of
utilizing factual data compared to data with imputations in predicting
HABs. However, it is important to acknowledge that removing missing
values from the dataset may result in a reduced amount of available data
for analysis. Nevertheless, existing research provides compelling evidence
supporting the feasibility of using machine learning methods for HABs
prediction, regardless of the dataset size. For example, Yu et al. (2021)
demonstrated the utility of AdaBoost, ANN, GBDT, and SVM on two
relatively small datasets—one with 365 samples and the other with 40

samples—from distinct locations in the United States and China. Similarly,
Shin et al. (2020) employed SVR, Bagging, RF, XGBoost, and LSTM with
a two-year dataset from the Nakdong River in South Korea. However,
it should be noted that Yajima and Derot (2017) used different datasets
from lakes and reservoirs in Japan and applied RF with a sliding window
strategy to predict HABs. They found that the limited data volume could
potentially constrain the predictive power of the model.

4.4 Domain Knowledge and Data Driven Nature

In the context of evaluating regression models, previous research has
widely employed evaluation metrics such as R2, RMSE, MAE. Notably,
among machine learning and deep learning models, RF, SVM, and ANN
have frequently been utilized in comparative studies (Azrour et al., 2022;
Deng et al., 2021; Djerioui et al., 2019; Haghiabi et al., 2018; Koranga
et al., 2022; S. Lee & Lee, 2018; L. Li et al., 2019; Ly et al., 2021; Ooi et al.,
2021; Zamani et al., 2023; Zheng et al., 2021). Based on their effectiveness
demonstrated in previous literature, their relevance to HABs prediction,
and their suitability for comparative analysis, we chose RF, SVR, and ANN
as competing models and R2, RMSE, and MAE to be the evaluation metrics.

Furthermore, the feature selection step played a crucial role in HABs
research due to the influence of hydrological and geographical variations.
For instance, Ly et al. (2021) employed time series models, regression
models, deep learning models, and adaptive neuro-fuzzy inference system
(ANFIS), using a dataset from the Han River in South Korea spanning a
period of 10 years. They concluded that meteorological factors such as
precipitation, current flow rate, and temperature significantly impact the
prevalence of HABs in the region due to the monsoon-like climate.

Additionally, insights drawn from prior investigations could provide a
foundation for establishing initial models. For example, Deng et al. (2021)
set up SVM and ANN models with a dataset spanning a 30-year time
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period in Hong Kong Tolo Harbour, based on several features derived
from previous research in the same water system. They identified that
BOD, TIN, DO, phosphate (PO4), and pH were the key factors inducing
the occurrence of HABs. Consistently, about six features were commonly
mentioned having relations with Chl-a in previous studies: nitrogen (Cho
& Park, 2019; Jeong et al., 2022; K.-M. Kim & Ahn, 2022; Z. Li et al., 2023;
Ly et al., 2021; Xia et al., 2020; Yajima & Derot, 2017), BOD (Deng et al.,
2021; S. Lee & Lee, 2018; Ly et al., 2021; Shin et al., 2020), pH (Cho &
Park, 2019; K.-M. Kim & Ahn, 2022; S. Lee & Lee, 2018; Ly et al., 2021;
Wang & Xu, 2020; Yajima & Derot, 2017), phosphorus (Cho & Park, 2019;
K.-M. Kim & Ahn, 2022; Z. Li et al., 2023; Ly et al., 2021; Yajima & Derot,
2017), temperature (Cho & Park, 2019; Jeong et al., 2022; K.-M. Kim & Ahn,
2022; S. Lee & Lee, 2018; Ly et al., 2021; Shin et al., 2020; Wang & Xu, 2020)
and DO (Cho & Park, 2019; Deng et al., 2021; K.-M. Kim & Ahn, 2022;
S. Lee & Lee, 2018; Shin et al., 2020; Wang & Xu, 2020). Importantly, a
pertinent case study conducted in the New York Harbor, which is identical
to our research setting’s water system, was dedicated to the prediction of
BOD5 (Ma et al., 2020). In this study, Chl-a was integrated as one of the
predictors, thereby suggesting a plausible association between Chl-a and
BOD5.

However, the establishment of a standardized set of predictors that can
effectively predict various water bodies poses a challenge, as each water
system exhibits unique characteristics. Additionally, discrepancies in the
collection of water quality parameters by relevant entities such as the local
government or regulatory bodies, may also contribute to this challenge. For
instance, certain features identified in previous studies for Chl-a prediction
such as COD (Cho & Park, 2019; S. Lee & Lee, 2018; Shin et al., 2020;
Yajima & Derot, 2017), Cyanobacteria (S. Lee and Lee, 2018) and solar
radiation (Cho and Park, 2019) are absent in our dataset. Consequently,
the available quantity and types of data play a crucial role in determining
the effectiveness of HABs predictions.

4.5 Research Gap

The current work builds upon and improves previous lines of inquiry by
addressing a crucial issue that has been overlooked in most studies: the
high percentage of missing values in the dataset. While prior investigations
have frequently employed deletion or imputation methods, such as uni-
variate imputation, KNN imputation, and multiple imputation, to handle
missing values (Asadollah et al., 2021; Chou et al., 2018; Kang & Park,
2021; H.-R. Kim et al., 2022; S. Lee & Lee, 2018; Ly et al., 2021; Ooi et al.,
2021; Shamsuddin et al., 2022; Shin et al., 2020; Yajima & Derot, 2017; Yu
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et al., 2021), there is a lack of knowledge in the comparative investigation
regarding the utilization of factual data versus imputed data with machine
learning and deep learning algorithms in HABs prediction. The motivation
of addressing this knowledge gap is to contribute to the field of HABs
prediction in New York Harbor by improving the efficiency of predictions,
especially in scenarios where missing values are prevalent, and resources
and time are limited. To address this objective, we will conduct a compara-
tive analysis of several ML models using both imputed and non-imputed
datasets, select the best model to identify most important predictors and
discuss the implications of these findings in the subsequent section 8.

5 methodology

This chapter outlines the methodologies employed to yield the essential
outcomes for addressing the research questions at hand. To address the
first sub-question, SQ1, which investigates the performance disparities
between machine learning and deep learning models when using factual
data versus data that has undergone imputation with multiple techniques,
two distinct datasets are prepared. Furthermore, a range of models are
employed, and evaluation metrics are established to compare and evaluate
their performance. This process enables the identification of the most
effective model for subsequent feature selection to answer the second
sub-question, SQ2.

5.1 Datasets

In order to compare model performances with and without imputations,
we prepared two datasets after data cleaning. One small dataset with only
factual data (denoted as ’No Imputation’ method) comprising features
of domain knowledge, and another dataset for different imputations was
created through utilizing the same rows as the factual dataset containing
all the features. In this regard, the models with and without imputations
could be compared.

5.2 Models

Three models were adopted as illustrated in Chapter 4.4. The RF model
served as the benchmark model. SVR and ANN were the competing
models.
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5.2.1 Random Forest

RF regression was chosen as the baseline model due to its ensemble nature,
which involves building multiple decision trees and aggregating their
predictions through voting or averaging. The advantage of RF lies in its
interpretability, attributed to the measure of feature importance, as well as
its robustness to noise and outliers (Oshiro et al., 2012; Schonlau & Zou,
2020).

5.2.2 Support Vector Regression

SVR is an extension of SVM, and both aim to find a hyperplane that
separates data points with the maximum margin. SVR specializes in
predicting a continuous variable by minimizing the difference between
the predicted and actual values of the output variable while maintaining
a maximum allowable deviation (epsilon) from the optimal hyperplane
(Drucker et al., 1997).

5.2.3 Artificial Neural Network

ANNs are widely used for water quality prediction. They are a type of
feedforward network in supervised learning, particularly a multi-layer
perceptron (MLP). MLP consists of an input layer, one or multiple hidden
layer(s), and an output layer. Various activation functions could be em-
ployed, including rectified linear unit (ReLU), hyperbolic tangent (tanh),
sigmoid, and softmax to introduce non-linearity and improve the model’s
accuracy (Sarker, 2021). In our study, we utilized the MLP with a single
hidden layer.

5.3 Imputation Techniques

5.3.1 Categorical Data Imputation

Two common methods for imputing categorical data are replacing miss-
ing values with the most frequent category and creating a new category
specifically for missing values. Given a substantial proportion of missing
categorical data, we opted for the latter approach to mitigate the risk of
favoring an erroneous category and introducing bias.

5.3.2 Median Imputation

We chose the median over the mean as a measure of central tendency
because the median provides a more robust estimation in the presence of
outliers. Additionally, since the data in our study primarily consists of
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continuous variables, the mode, which is suitable for categorical variables,
is not preferred. The application of the median as a summary statistic is
supported by previous studies in the field (Han et al., 2012; Navarro, 2018).

5.3.3 KNN Imputation

KNN Imputation is a machine learning algorithm that finds the K data
points in the dataset most similar to the target and imputes missing values
by averaging the values of the K nearest neighbors for continuous data
(Batista and Monard, 2002).

5.3.4 Multiple Imputation (MICE)

MICE (Multivariate Imputation by Chained Equations), a multiple impu-
tation method, involves several steps to impute missing values. It begins
with a simple imputation for all columns, such as using the mean, and sets
the imputed mean as missing for a specific column. The missing value is
then imputed through regression, based on the other columns. This process
is repeated for all columns. Multiple cycles are conducted with updated
imputations until the difference in imputed values between iterations is
minimized (Azur et al., 2011).

5.4 Evaluation Metrics

As discussed in Chapter 4.4, three evaluation metrics were chosen for this
study: R2, RMSE and MAE, based on which the best model will be chosen
using validated results.

5.4.1 Coefficient Determination (R2)

The first evaluation metric is coefficient determination (R2). It ranges from
0 to 1, quantifying the degree to which variations in the output can be
explained by changes in the independent variables. The higher value
indicates better model performance (James et al., 2021, p. 70).

5.4.2 Root Mean Square Error (RMSE)

The second evaluation metric is the root mean square error (RMSE). It
has been frequently used in evaluating numerical models in the fields
of meteorology, air quality, and climate research. One of its advantages
lies in its ability to maintain the same units as the original data, thereby
facilitating meaningful interpretation. However, in some cases, RMSE may
be susceptible to outliers (Hodson, 2022).
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5.4.3 Mean Absolute Error (MAE)

To mitigate the sensitivity of outliers, the mean absolute error (MAE) can
be employed as a third evaluation metric. The MAE is particularly suitable
when errors follow a Laplacian distribution. Previous research (Hodson,
2022) suggests that when variables have a normal distribution, the resulting
errors are also likely to exhibit normality.

5.5 Feature Permutation

By addressing the second sub-question, SQ2, the focus shifts towards
identifying the key features that are vital for predicting HABs in New York
Harbor. The model that exhibits the highest performance, as determined in
SQ1, is utilized to conduct feature importance permutation, enabling the
establishment of a ranking system for the predictors. This facilitates the
selection of the most significant features associated with HABs prediction.

6 experimental setup

This section provides a comprehensive workflow for the project, depicted
in Figure 1. The workflow initiates with a description of the raw dataset,
followed by exploratory data analysis (EDA), data cleaning and prepro-
cessing. Subsequently, the detailed process of experimental procedure is
outlined. Lastly, the robustness of the methodology is discussed, along
with the actual implementation process.
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Figure 1: Flowchart Steps from Raw Data to Feature Selection
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6.1 Raw Dataset Description

The dataset used in this study originates from New York City (NYC) Open
Data. It is collected through the Harbor Survey Program, which has been
monitoring water quality in New York Harbor since its inception in 1909.
This dataset is widely utilized by regulators, scientists, educators, and
citizens to assess the impact, developments, and improvements in water
quality. Most features in the dataset are numeric and represent in-situ
measurements of various water quality parameters. The dataset consists of
89,201 rows and 100 columns, covering the period from 1909 to 2022. The
rationale for selecting this dataset lies in its reliability, substantial size, and
relatively unexplored nature.

6.2 EDA and Data Cleaning

6.2.1 Descriptive Statistics and Data Preparation

The data collection in New York Harbor involved 5,087 distinct locations.
Certain features included measurements from both the top water surface
and the bottom ocean bed. For example, the oxygen reduction potential
(ORP) had similar sample sizes for the top (13,078 samples) and bottom
(12,792 samples) measurements, with comparable mean, standard devia-
tion, minimum, and maximum values. However, some features exhibited
substantial disparities in sample sizes between the top and bottom measure-
ments. For instance, Nitrate/Nitrite had 41,472 top samples but only 1,006

bottom samples. Notably, most features demonstrated similar distribution
patterns across both the top and bottom samples, as evidenced by the 25th,
50th, and 75th percentiles.

To ensure data usability, several data preparation steps were imple-
mented. Initially, column names were modified to address length, spaces,
and special characters. The columns were then manually re-indexed based
on their physical, chemical, and biological attributes, as well as their data
types (numerical or categorical). The target value was shifted to the last
column for convenience. Redundant or invalid columns were identified
and removed, including those with constant values, limited or no data
entries, location information, and date information. Rows lacking a target
value and columns with fewer than 1000 rows were dropped from the
dataset, ensuring a minimum threshold of one thousand rows. Columns
containing both top and bottom sample data were combined by calculating
the average, following established practices in previous studies (Asadollah
et al., 2021; Deng et al., 2021). In cases where there was a significant im-
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balance between the top and bottom entries of a feature, only the majority
entry was retained to preserve more data.

6.2.2 Categorical Feature Treatment

Three columns in the dataset were categorized as categorical features:
weather, wind direction, and current direction. The weather feature had
two distinct states, namely "dry" and "wet." To ensure consistency, these
states were transformed into a standardized format represented by ’D’ and
’W’, respectively. Entries containing symbols or irrelevant characters were
considered as missing values.

The descriptive statistics revealed that the current direction feature had
119 unique counts, which was unexpected considering that there should
only be 16 cardinal directions, such as North-northeast (NNE), Northeast
(NE), and East-northeast (ENE), among others. To address the extraneous
information, values that did not correspond to any of the 16 cardinal
directions were treated as missing values. The same approach was applied
to the wind direction feature.

6.2.3 Outlier Analysis

No outliers were removed from the dataset using the standard deviation
method. The majority of features exhibited non-normal distributions, as
evident from the histograms and boxplots (Figure 6 and Figure 5 in the
Appendix), except for pH and O2. Given that the pH values appeared
within a reasonable range and represented valid measurements, they were
retained. Conversely, a few negative values for the percentage of O2

saturation were manually removed, as the percentage should be positive.
Further discussion regarding this issue will be presented in Chapter 8.

6.2.4 Feature Correlations

Heatmaps were utilized to identify highly correlated features. Variables
with a correlation exceeding 85% were removed to mitigate multicollinear-
ity and enhance model performance. The impact of feature removal can
be observed in Figure 7 and Figure 8 (Appendix). It is important to note
that the heatmaps exclusively presented numerical values, resulting in the
exclusion of three columns (weather, wind direction, and current direction).
The numbers within the heatmap indicate the strength and direction of
the relationships between variables. Empty spaces or blanks indicate the
absence of calculated correlations for specific variable pairs. A total of
eight highly correlated features were eliminated.

To explore the relationships among the three categorical features, a
contingency table was employed and visualized using a grouped bar
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chart shown in Figure 10 (Appendix). It was observed that the current
direction exhibited a consistent pattern across different weather conditions,
while south, southwest, and south-southwest wind directions were more
prevalent during dry weather conditions.

6.2.5 Missing Value Analysis

The original dataset displayed high sparsity, with more than half of the
features containing up to 80% missing values in the raw dataset prior
to cleaning (Figure 9 in the Appendix). After data cleaning, the dataset
was reduced to 40,919 rows and 33 columns (Figure 11 in the Appendix).
Among these columns, 8 had less than 20% missing values, while 10 had
more than 50% missing values.

A heatmap analysis (Figure 2 in the Appendix) was conducted to
examine the distribution of missing values across the dataset. It was
observed that no single row was entirely free of missing values. Certain
features exhibited clustered patterns of missing values, indicating shared
characteristics among corresponding rows. On the other hand, some
missing values were sporadically scattered throughout different rows,
suggesting random occurrences within the dataset.

To compare models using factual and imputed data, a dataset consisting
solely of factual data was prepared by filtering out rows with missing
values. After filtering, the dataset contained 1572 rows and 9 features.
Figure 3 illustrates that 13 columns had missing values exceeding 50%,
with 8 of them having 0 entries. The treatment of missing data will be
discussed in Chapter 6.3.
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Figure 2: Heatmap of Missing Values in the Entire Dataset after Cleaning: The
x-axis represents features, and the y-axis represents row indexes. The dark blue
shade indicates missing values. The figure shows that the missingness does not
overlap among the rows, indicating that each row has its unique set of missing
values. Additionally, some features exhibit clustered patterns of missing values,
suggesting shared characteristics among corresponding rows. In contrast, other
missing values appear sporadically across different rows, implying randomness
in their occurrence throughout the dataset.
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Figure 3: Missing values after cleaning. There are 1572 rows and 33 columns, including the target Chl-a. The number on top of each
bar represents the actual count of the feature. Features with less than 1572 entries are imputed. The number on the left vertical axis
indicates the percentage scale from 0 to 1. The numbers displayed on the top of the bars represent the count of non-null values for each
corresponding feature.
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6.3 Data Preprocessing

6.3.1 Imputations

We used the SimpleImputer from the scikit-learn library for median im-
putation of numeric data, as well as for imputing categorical data. For
categorical data, instead of using the mode method, we treated missing
values as a distinct category by replacing them with a constant value ’miss-
ing’. This approach allows the model to potentially capture patterns or
associations related to the absence of data, without introducing bias that
could arise from using the mode method.

For KNN imputation, we utilized the KNNImputer from the scikit-learn
library. After experimentation, it was determined that utilizing 9 neighbors
produced optimal outcomes, consistent with the observed cluster pattern
of missing values discussed in Chapter 6.2.5. We used uniform weights for
imputation, assuming no difference in the importance of neighbors given
the manually designed column order.

For multiple imputation, we employed the IterativeImputer from the
FancyImpute library. To ensure convergence, we increased the default iter-
ation value from 10 to 50 and set the random state to 12 for reproducibility.

6.3.2 Scaling and One-hot Encoding

The numerical values were standardized by transforming them to have a
mean of zero and a standard deviation of one. This step was important for
ensuring comparability, particularly for models like SVR and ANN, which
are sensitive to the scale of the data. Standardization was preferred over
normalization to avoid the potential impact of outliers and to maintain the
original relationships between data points.

For categorical variables, we opted for one-hot encoding instead of label
encoding, because it avoids introducing unintended ordinal relationships
between categories, as recommended by the scikit-learn documentation
(Scikit-learn contributors, 2022).

6.4 Pipeline

The preprocessing steps for both numeric and categorical data were com-
bined into a pipeline. This pipeline included a column transformer that
sequentially applied the necessary preprocessing techniques to different
feature subsets. Specifically, numeric features were first imputed and then
scaled, while categorical features were imputed and one-hot encoded. This
design ensured that each step was applied appropriately to the corre-
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sponding feature subset, maintaining consistency in our machine learning
workflow.

6.5 Experimental Procedure

The initial stage involved data cleaning and preparation of preprocessing
steps. It is worth noting that the actual preprocessing occurred after data
splitting, as explained in the pipeline structure.

After data cleaning, two datasets were created: one without imputa-
tions, consisting of the factual data, and another with imputation tech-
niques, consisting of all 32 features. The dataset containing only factual
data was first created based on domain knowledge. Six features commonly
identified in relation to the target variable (Chl-a) were selected, excluding
nitrogen due to the sparse nature of the dataset and the absence of coex-
istence with other features. BOD5 was chosen over BOD as a predictor
due to its relevance to the target variable in the specific water system of
New York Harbor as mentioned in Chapter 4.4. The resulting dataset, after
removing missing values based on row indexes of five selected features
(DO, phosphorus, BOD5, temperature, and pH), consisted of 1,572 rows
and 9 columns, excluding the target variable. Four additional features
were included based on their relevance to Chl-a prediction in previous
studies (TSS and conductivity) (Cho & Park, 2019; Z. Li et al., 2023), and
the uniqueness (ammonium, and nitrate/nitrite) of the New York Harbor
dataset. Subsequently, the dataset for imputations was created by using the
same row indexes as the dataset of factual data, containing all 32 features,
as illustrated in Table 3 (Appendix).

Each dataset was split into a 80% training and validation set and a
20% out-of-sample test set. The entire workflow was conducted within a
pipeline structure. Initially, RandomForestRegressor, SVR, and MLPRe-
gressor models from the scikit-learn library were used to build the basic
models.

Hyperparameter tuning was performed using 5-fold cross-validation
randomized grid search with at least 10 iterations, optimizing the selected
models with the training and validation data. Preprocessing was automat-
ically carried out within the pipeline. The search range is illustrated in
Table 4, 5 and 6 (Appendix). We chose to use the randomized grid search
CV over the grid search CV because the former offers a more efficient,
unbiased, and flexible approach for exploring the hyperparameter space.

The tuned models were trained and evaluated using 5-fold cross-
validation, with performance assessed based on average scores of eval-
uation metrics such as R2, RMSE, and MAE, based on which the best
performing model was chosen.
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The 20% test set was used to report the final results and assess the
model’s generalization ability to unseen data with tuned models.

Feature permutation analysis was conducted with the best model using
the permutation feature importance function from the scikit-learn library,
ranking the importance of features. Hereby the whole dataset was used
(training validation and test).

Based on the feature importance ranking, manual feature selection was
performed to train the model with different combinations of features, and
5-fold cross-validation was used to evaluate the performance in terms of
R2, RMSE, and MAE using the training and validation set. The feature
combination with the best scores will be the final choice for predictors.

6.6 Evaluation Criteria

The model with the highest R2, lowest RMSE, and lowest MAE was selected
from all the imputation methods, including the ’No Imputation’ method.
To evaluate the error pattern, scatter plots and kernel density estimation
(KDE) plots were used to reveal patterns that may not be evident from the
numerical results.

6.7 Robustness

Our models were strengthened by incorporating several techniques: 1) Con-
sistent rows within each group ensured the validity of model comparisons
among the subgroups. 2) Preprocessing steps after data splitting ensured
that the statistics and transformations applied were based only on the train-
ing data and did not leak information from the test set, which helped to
provide a more realistic evaluation of the model’s performance on unseen
data. 2) We employed 5-fold cross-validation at different stages due to
its data efficiency, particularly considering our small dataset size. This
approach yielded robust and reliable estimates, ensuring the generalizabil-
ity of the outcomes. This technique was applied during hyperparameter
tuning, training and validation, as well as feature permutation and feature
selection. 3) A random state of 12 was implemented across data splitting,
regressors, cross-validation, and feature permutation and feature selection
to ensure reproducible results. 4) The out-of-sample approach ensured
that the holdout set remained unseen until the models were tuned. 5) All
operations were conducted within a pipeline. The pipeline framework
prevented data leakage. In contrast, manually performing each step of
the workflow may result in less organized code and require significant
additional work when modifying a single preprocessing step. Given the
numerous preprocessing steps involved in this project, a traditional ap-
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proach without a pipeline could be time-consuming and error-prone. 6) We
have chosen a randomized grid CV search over a grid search CV because
the former allowed us to search a wider range of values in a much shorter
time, and also reduced the risk of overfitting.

6.8 Actual Implementation

The actual implementation of the project utilized the following program-
ming languages, versions, packages, and proprietary applications: Python
(3.10.11), Scikit-learn (1.2.2), NumPy (1.22.4), Pandas (1.5.3), Matplotlib
(3.7.1), Missingno (0.5.2), Seaborn version(0.12.2), fancyimpute (0.7.0) and
Google Colaboratory (Colab).

7 results

This section presents the outcomes of optimal hyperparameters for each
model, as indicated in Table 7 (Appendix). Subsequently, the model’s per-
formance will be assessed using evaluation metrics, as displayed in Table 1.
Furthermore, the correspondence between predicted and actual values will
be depicted through scatter plots and KDE plots, as showcased in Figures
12, 13 and 14 (Appendix). Lastly, the primary predictors identified by the
chosen model will be disclosed.

7.1 Best Hyperparameters

The examination of Table 7 (Appendix) demonstrated that the ANN model
had the same hyperparameters across various imputation methods. Con-
versely, the SVR model displayed varying best hyperparameters solely for
the ’No Imputation’ method. Similarly, the RF model had the same optimal
hyperparameters for most imputation techniques, with the exception of
median imputation.
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Table 1: Result of Model Comparison with Different Imputation Methods. The method of using factual data is denoted as ’No Imputation’.
The numbers are 5-fold cross-validation and test scores with best hyperparameters, based on R2, RMSE and MAE. The standard errors
obtained from a 5-fold cross-validation approach are reported within brackets as (s.e). The best score of R2, RMSE and MAE of all the
models across each imputation method is marked in yellow.

R2 RMSE MAE

Method Models Validation (s.e) Test Validation (s.e) Test Validation (s.e) Test

No Imputation
Baseline RF 0.798 (0.011) 0.764 11.214 (0.444) 10.517 7.180 (0.180) 6.687

SVR 0.841 (0.008) 0.770 9.956 (0.402) 10.406 6.158 (0.124) 6.167

ANN 0.848 (0.008) 0.765 9.730 (0.379) 10.517 6.258 (0.156) 6.624

Median Imputation
Baseline RF 0.817 (0.017) 0.800 10.672 (0.723) 9.691 6.850 (0.343) 6.162

SVR 0.843 (0.018) 0.804 9.827 (0.614) 9.595 6.150 (0.267) 5.709

ANN 0.837 (0.018) 0.791 10.032 (0.715) 9.907 6.478 (0.291) 6.477

KNN Imputation
Baseline RF 0.798 (0.016) 0.781 11.206 (0.706) 10.154 7.145 (0.324) 6.473

SVR 0.839 (0.015) 0.806 9.973 (0.542) 9.560 6.264 (0.253) 5.728

ANN 0.838 (0.018) 0.774 10.000 (0.698) 10.313 6.541 (0.289) 6.549

Multiple Imputation
Baseline RF 0.820 (0.014) 0.803 10.571 (0.602) 9.637 6.717 (0.197) 5.996

SVR 0.823 (0.018) 0.795 10.448 (0.512) 9.814 6.331 (0.217) 5.543

ANN 0.843 (0.010) 0.773 9.876 (0.407) 10.343 6.348 (0.163) 6.620
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7.2 Baseline RF

Among the various imputation methods, the RF model with multiple im-
putation demonstrated superior performance in terms of achieving the
highest R2 (0.820), as well as the lowest RMSE (10.571) and MAE (6.717)
during cross-validation, as presented in Table 2. Conversely, the RF model
trained solely on factual data exhibited relatively poorer performance com-
pared to the imputed data. The model’s performance remained consistent
on both the validation and test sets, indicating reasonable generalization
ability. The standard error of the 5-fold cross-validation was highest for
median imputation and lowest for no imputation.

Figure 12 (Appendix) illustrates that a majority of data points fell within
the predicted value range of 0 to 30. The ’No Imputation’ method displayed
slightly more scattered data points than other methods. Some data points
were observed to deviate further from the prediction line around predicted
values of 38 and 70, suggesting the presence of outliers.

The KDE plots revealed that the central point of the kernel density
curve was slightly shifted towards the left side of 0, indicating a tendency
to underestimate the target variable or the potential presence of outliers.
Additionally, some bars exceeded the height of the kernel density curve
at the peak region, indicating a higher density in that particular area.
The imputed data, especially when using median imputation and KNN
imputation, displayed a small bump on the right side of the kernel density
curve, suggesting a distinct distribution in a separate cluster of data points.
The peak of the kernel density curve was highest with median imputation,
while it was lowest with factual data. This implies that the latter exhibited
a larger dispersion of residuals, indicating a less precise fit of the model.

7.3 SVR

For SVR models, the median imputation produced the best performance
in terms of R2 (0.843), RMSE (9.827) and MAE (6.150) on 5-fold cross-
validation among all the imputation methods. The test scores varied among
the methods but not far deviated from the validation scores. Further, SVR
produced lowest MAE regardless of imputation methods in both validation
and test phases.

Among the different imputation methods, median imputation demon-
strated the best performance for SVR models in terms of R2 (0.843), RMSE
(9.827), and MAE (6.150) during 5-fold cross-validation. The test scores did
not deviate far from the validation scores. Furthermore, SVR consistently
yielded the lowest MAE regardless of the imputation methods used in both
the validation and test phases.
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Figure 13 (Appendix) displayed more evenly scattered data points
around the identity line for SVR compared to the baseline RF, particularly
for predicted values exceeding 80. A few potential outliers were observed
in similar regions as RF.

The KDE plots indicated that the residual distribution of SVR was
also negatively skewed but less so than the baseline RF, with a longer
left tail. SVR exhibited a smoother kernel density curve, suggesting that
its residuals were closer to a normal distribution. Moreover, the ’No
Imputation’, KNN and multiple imputation methods resulted in a greater
number of bars exceeding the kernel density curve compared to the median
method. This aligns with the evaluation metrics, where median imputation
demonstrated optimal performance among all the methods for SVR.

7.4 ANN

The ANN model performed similarly to SVR in terms of R2, RMSE, and
MAE when using factual data and multiple imputation method. The ANN
model with factual data achieved the highest R2 score of 0.848 and the
lowest RMSE score of 9.730 during validation, surpassing all other models
and methods. Its performance on the test set was slightly inferior to the
validation set, but the difference remained within a reasonable range (not
exceeding 0.083), indicating reasonable generalization ability.

Figure 14 (Appendix) displayed data points that appeared to be scat-
tered closely and evenly around the identity line compared to SVR with
multiple imputation. The regions where potential outliers were observed
appeared to be consistent with the RF and SVR models.

Similar to the baseline RF and SVR, the KDE plots of the ANN model
also exhibited bars exceeding the peak of the kernel density curve. More-
over, the left tail was less smooth when using median and KNN methods
compared to SVR, suggesting that the ANN model with these imputation
methods may not capture the extreme values or deviations from the central
tendency as effectively as the SVR model.

Overall, in terms of evaluation metrics both SVR and ANN models
demonstrated superior performance compared to the baseline RF model.
Based on standard errors, the ’No imputation’ method yielded the most
reliable estimates, while the median imputation was less effective in cap-
turing missing data patterns compared to KNN and multiple imputations.
Error analysis indicated the presence of outliers, and similar error patterns
were observed across all models and imputation methods. However, con-
sidering the evaluation metrics, SVR with median imputation emerged as
the best model. Consequently, SVR with median imputation was selected
for feature permutation and selection analyses.
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Table 2: Result of Feature Selection. Performance comparison of the chosen model
SVR with median imputation before and after feature selection. The numbers are
5-fold cross-validation and test scores based on evaluation metrics (R2, RMSE and
MAE). The standard error is denoted as (s.e).

R2 RMSE MAE

Validation (s.e) Test Validation (s.e) Test Validation (s.e) Test

Before 0.843 (0.018) 0.804 9.827 (0.614) 9.595 6.150(0.267) 5.709

After 0.859 (0.011) 0.817 9.360 (0.512) 9.288 5.737 (0.192) 5.255

7.5 Feature Importance Permutation and Selection

The feature ranking depicted in Figure 4 presented all 32 features in
descending order based on their importance. Upon individual feature
analysis, it was observed that features with 100% missingness, such as
weather, DOC, and ORP (described in Chapter 6.2.5), had no importance
in predictions. This suggests that our imputation technique was effective
in handling missing data up to a maximum of 30%, as evidenced by the
fluorometers feature.

Out of the evaluated features, the top 17 were identified as the most
important. Table 2 provided evidence of a modest enhancement in both
training and testing performance resulting from this feature selection
process. What’s more, some of these features, namely fluorometers, ni-
trate/nitrite, PARR, and par, appeared to be novel in the context of HABs
prediction, indicating their potential as valuable additions to the field.
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Figure 4: Result of Feature Importance Ranking from Feature Permutation of SVR with Median Imputation. The length of the bar indicates
the importance level of that feature over 10 iterations. The error bar is the standard deviation of the importance value. Subsequently, a
feature selection analysis was performed, leading to the identification of the top 17 features that are important for HABs prediction in
New York Harbor.
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8 discussion

This chapter entails revisiting the problem statement and research objective,
summarizing the obtained results, comparing them to relevant literature,
discussing their scientific and societal impact, examining the study’s limi-
tations, and presenting suggestions for future research directions.

8.1 Summary and Discussion of the Results

Given the increasing prevalence of HABs and their detrimental impact
on coastal regions worldwide, the timely and accurate detection of these
events has become of paramount importance. The advent of machine
learning techniques has offered promising avenues for addressing this
imperative need. However, few studies addressed the issue of datasets
with high sparsity in HABs prediction using machine learning techniques.
The goal of this study is to determine whether the utilization of factual data
can achieve comparable model performance in predicting HABs compared
to imputed data using machine learning and deep learning algorithms,
specifically, when encountering datasets containing a large amount missing
values.

The dataset, obtained from New York Open Data, contained 100

columns and over 89,000 rows of water quality parameters. To answer the
first sub-question SQ1, after data cleaning, two datasets containing the
same rows were prepared: one with factual data and another for impu-
tations. The performance of different models was compared, including
RF as the baseline, SVR, and ANN, evaluated using R2, RMSE, and MAE.
A pipeline architecture was implemented for robust model development,
involving data preprocessing, hyperparameter tuning, and validation. The
best-performing model was selected based on chosen evaluation metrics.
Subsequently, this model was used to perform feature importance per-
mutation and selection, by which the second sub-question SQ2 has been
answered. By combining the two sub-questions, the main research question
was automatically answered in the process.

The results showed that SVR with median imputation yielded the op-
timal outcomes based on the evaluation metrics, while RF, the baseline
model, exhibited the lowest performance. SVR demonstrated competitive-
ness in terms of MAE but did not outperform ANN in terms of RMSE
or R2 when factual data and multiple imputation were utilized, implying
limitations in handling outliers and capturing intricate patterns under such
methods. However, the performance disparities exhibited in the chosen
evaluation metric and error patterns between SVR and ANN were relatively
minor. Furthermore, it was noted that the identical model, regardless of the
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presence or absence of imputations, exhibited comparable R2, RMSE, and
MAE scores, along with uniform error patterns. Based on this observation,
we can speculate that employing actual data for HABs prediction, without
relying on imputation techniques, is indeed plausible.

8.2 Comparison to the Literature

Our experiment did not show the superiority of either machine learning
algorithms or deep learning algorithms in terms of model performance,
which contradicts earlier research (Azrour et al., 2022; Djerioui et al., 2019;
Haghiabi et al., 2018; Koranga et al., 2022; Ooi et al., 2021; S. Zhu et
al., 2019). Additionally, some literature mentioned that SVM could be
computationally expensive when the data point has high dimensionality
(Cruz et al., 2021; Deng et al., 2021). In our study, SVR was the fastest
model, and ANN took the most time, especially during randomized grid
search and cross-validations. We suspect that the reason could be that our
dataset is not big enough to cause excessive computation time for SVR.

We identified the most 17 influential features, such as DO, pH, and tem-
perature, for HABs prediction in New York Harbor. This finding reaffirmed
the value of domain knowledge in feature selection. By incorporating five
features extracted from previous studies (Cho & Park, 2019; Deng et al.,
2021; Jeong et al., 2022; K.-M. Kim & Ahn, 2022; S. Lee & Lee, 2018; Z. Li
et al., 2023; Ly et al., 2021; Ma et al., 2020; Shin et al., 2020; Wang & Xu,
2020; Xia et al., 2020; Yajima & Derot, 2017), which ranked among the top
six in feature importance permutation, we were able to expedite the initial
experimentation process.

Moreover, the identification of novel predictors for HABs, such as fluo-
rometers, ammonium, and nitrate/nitrite, in our study can be attributed
to the discretion of various entities responsible for water quality manage-
ment. These entities have the authority to select specific parameters for
measurement based on their relevance and priorities. Hence, the absence
of these particular parameters in studies conducted in other water systems
does not imply their nonexistence in those systems.

Notably, features such as weather and current speed, identified as
influential predictors in a monsoon-like climate (Ly et al., 2021), exhibited
no prediction power in our investigation of New York Harbor. We suspect
that the distinctly different climate is the reason. Unfortunately, we cannot
draw conclusive findings regarding their effectiveness in predicting HABs
in New York Harbor due to the complete absence of these two features
after the filtering process, coupled with the inadequacy of our imputation
methods.
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Furthermore, Yajima and Derot (2017) expressed skepticism regarding
the predictive power of models with small datasets. However, our results
demonstrated that the dataset size did not hinder its prediction ability,
as discussed in Chapter 7. Nevertheless, we remain cautious about the
generalizability of our results, considering the limited sample size of only
1572.

The strength of this research lies in the adoption of evaluation methods
and models derived from previous studies in the field, which were deemed
representative and practical (Azrour et al., 2022; Deng et al., 2021; Djerioui
et al., 2019; Haghiabi et al., 2018; Koranga et al., 2022; S. Lee & Lee, 2018;
L. Li et al., 2019; Ly et al., 2021; Ooi et al., 2021; Zamani et al., 2023; Zheng
et al., 2021). Additionally, as discussed in Chapter 6.7, the utilization of a
pipeline, k-fold cross-validations, and the use of a random state ensured
consistency and reproducibility of our results.

8.3 Scientific and Societal Impact

This study contributes to the existing framework in several ways. Firstly, it
demonstrated that utilizing factual data could lead to comparable model
performance in predicting HABs compared to imputed data using machine
learning and deep learning algorithms. This challenged the reliance on
imputation techniques and suggested the feasibility of using actual data
for HABs prediction.

Secondly, the study identified new water quality parameters, such as
fluorometers, nitrate/nitrite, and ammonium, as crucial predictors for
HABs. These findings provide novel insights and enhance our understand-
ing of the complex dynamics involved in HABs occurrences, contributing
to the scientific literature in this field.

Furthermore, the implications of this research extended beyond academia.
Efficient prediction of HABs could enable stakeholders such as environ-
mental officers and policymakers to make informed and timely decisions
regarding monitoring, prevention, and mitigation strategies. These deci-
sions are vital for maintaining water quality, safeguarding ecosystems, and
protecting human health.

8.4 Limitations and Future Directions

This research is subject to several limitations. Firstly, potential outliers may
have been present in the data based on the error analysis, but without
extensive domain knowledge, it was challenging to ascertain whether
extreme data points were true outliers or associated with influential events.
Secondly, due to the data-driven nature of the study, certain features, such
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as COD, which have been recognized as crucial predictors in previous
studies, were unavailable (S. Lee & Lee, 2018; Shin et al., 2020; Yajima &
Derot, 2017). Furthermore, we used BOD5 in our study, the possibility
of utilizing BOD to predict HABs in New York harbor was not explored.
Additionally, the sample size after filtering was relatively small, comprising
fewer than 2000 samples. Thirdly, Section 6.2.4 elaborated on the method
employed for eliminating highly covariant features, but it was primarily
effective for variables exhibiting linear correlations. Fourthly, there is scope
for further improving model performance. As discussed in Section 7, the
tuned ANN model had identical hyperparameters across all imputation
methods, and the limited search range for hyperparameters could be one
of the reasons. Moreover, we did not conduct an analysis of missing data
mechanisms, such as missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR), so not all datasets are
suitable for our method. Lastly, the employed imputation techniques may
not be adequate for addressing datasets with more than 70% missingness.
Notably, median imputation had higher standard error compared to other
methods, indicating greater uncertainty and variability in predictions.
Interestingly, the hyperparameters of ANN remained identical across all
methods, suggesting its robust learning capabilities, but we could also
suspect that the search range was not wide enough.

To address the limitations encountered in this project, future studies
may consider the following strategies. Firstly, collaborating with domain
experts would assist in effectively handling outliers and gaining deeper
insights into their significance. Secondly, utilizing BOD instead of BOD5

as one of the predictors for HABs in New York harbor may unravel new
insights in this field. Thirdly, adopting alternative techniques, such as par-
tial dependence plots 1, to capture non-linear relations among the features
could help identify more highly correlated features. Moreover, gaining
a comprehensive understanding of the missing data mechanisms in the
dataset before deciding whether to adopt complete case analysis or incor-
porate imputation techniques (Heymans and Twisk, 2022). What’s more,
there might be potential to improve model performance by expanding
the range of randomized grid search. Lastly, when imputation becomes
necessary, advanced methods such as deep matrix factorization (DMF) can
be employed to address datasets with high levels of missing data and to
mitigate the uncertainty associated with the median imputation method
(Ma et al., 2020).

1 https://christophm.github.io/interpretable-ml-book/pdp.html

https://christophm.github.io/interpretable-ml-book/pdp.html
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9 conclusion

The main research question of the research is:
RQ How to predict harmful algal bloom events in New York Harbor by

using machine learning and deep learning algorithms with and without data
imputations?

This question can be effectively addressed by investigating two sub-
questions:

• SQ1 To what extent do machine learning and deep learning models
perform differently with factual data and data undergone imputation
with multiple techniques?

The performance evaluation of machine learning and deep learning
models on factual data demonstrated a modest disparity in terms of their
predictive capabilities. However, it is worth noting that the deep learning
model exhibited relatively lower computational efficiency in comparison
to the machine learning models employed in this study.

• SQ2 Which are the most important water quality indicators that
contribute to harmful algal bloom events in New York Harbor?

The present study has identified 17 primary water quality indicators that
influence HABs within New York Harbor. These indicators, ranked in
descending order of importance, include: fluorometers, pH, temperature,
DO, BOD5, TP, salinity, nitrate/nitrite levels, percentage of O2 saturation,
wind direction, ammonium, PARR, secchi depth, par, site depth, wind
speed, and conductivity.

In conclusion, predicting HABs in New York Harbor can be achieved
by utilizing 17 water quality features, including fluorometers, pH, and
temperature, as inputs for machine learning models such as RF, SVR, and
ANN. Constructing datasets with factual data based on domain knowl-
edge and employing imputation techniques like median imputation, KNN
imputation, and multiple imputation for up to 30% of missing values can
enhance the accuracy of predictions. Our findings confirmed the feasibil-
ity of integrating factual data, machine learning algorithms, and domain
knowledge to improve prediction efficiency. This approach has the po-
tential to facilitate proactive measures by the government in mitigating
the negative impacts of HABs through timely detection. Future research
endeavors can capitalize on the insights and methodologies derived from
our study to accelerate their investigations, particularly when faced with
constraints of limited time and resources.
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Figure 5: Boxplots. These plots show that numerous data points are positioned
beyond the interquartile range (IQR) boundaries. However, these data points are
not classified as outliers due to their atypical distribution patterns.
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Figure 6: Data Distribution Histogram. The data distribution reveals a departure from normality for all variables, with the exception of
pH and Oxygen.
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Figure 7: The Correlation Heatmap (before). It shows the linear association between variables before the removal of eight highly correlated
features, with a threshold of 85% (Three categorical features are not displayed in this map).
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Figure 8: The Correlation Heatmap (after). It shows the linear association between variables after the removal of eight highly correlated
features, with a threshold of 85% (Three categorical features are not displayed in this map).
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Figure 9: Raw Dataset Percentage of Missing Values. The plot depicts the percentage of missing values in the raw data, arranged in
descending order. The dataset consists of 89,201 rows and 100 columns. The x-axis represents the different columns, while the y-axis
represents the percentage of missing values for each feature on a scale from 0 to 1. The height of each bar corresponds to the missing
percentage of the respective feature. The plot reveals that more than half of the columns contain up to 80% of missing values.
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Figure 10: The correlation between categorical variables is depicted in the plots,
showcasing the current direction (above) and the wind direction (below) under wet
and dry weather conditions. The x-axis represents weather conditions, with ’W’
denoting wet conditions and ’D’ indicating dry conditions. The legend highlights
each wind direction examined in Chapter 6.2. The y-axis quantifies the frequency
of the analyzed categorical variables. It can be observed that the current direction
consistently displays a pattern across different weather conditions, while the
south, southwest, and south-southwest wind directions are more prevalent during
dry weather conditions
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Figure 11: Entire Dataset Missing Values After Cleaning. There are 40919 rows and 33 columns after filtering out missing values of Chl-a.
Many features contain a high percentage of absent data. The number on the left vertical axis indicates the percentage scale from 0 to 1.
The numbers displayed on the top of the bars represent the count of non-null values for each corresponding feature.
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Table 3: The dataset with only factual data consists of 9 features, with the top five
derived from domain knowledge, and the remaining four retained after filtering
out rows with missing values. The dataset for imputations utilized the rows from
the factual dataset, containing all 32 features.

Dataset with factual data Dataset for imputations

1, Winkler DO (mg/L) 1, Winkler DO (mg/L)
2, TP (mg/L) 2, TP (mg/L)
3, BOD5 (mg/L) 3, BOD5 (mg/L)
4, Temperature (°C) 4, Temperature (°C)
5, pH 5, pH
6, Conductivity 6, Conductivity
7, Ammonium (mg/L) 7, Ammonium (mg/L)
8, TSS (mg/L) 8, TSS (mg/L)
9, Nitrate/Nitrite (mg/L) 9, Nitrate/Nitrite (mg/L)

10, Secchi Depth (ft)
11, Site Depth (ft)
12, Par (uE/S m2)
13, fluorometers (mg/m3)
14, Salinity (psu)
15, Silica (mg/L)
16, DOC (mg/L)
17, ORP (m/V)
18, O2 Saturation
19, Current Speed (knot)
20, Current Direction
21, Wind Direction
22, Wind Speed (mph)
23, Weather
24, Light Trans
25, Sea State
26, FeCo (Cells/100 mL)
27, Enterococci (Cells/100 mL)
28, Turbidity
29, CTD pH
30, PARR (uE/S)
31, BOD Oakwood (mg/L)
32, Coliform (Cells/100 mL)

Nomenclature: TP, Total Phosphorus; Winkler DO, Winkler Method Top Dissolved Oxygen; TSS,
Total Suspended Solid; BOD5, Five-Day Biochemical Oxygen Demand; CTD pH, CTD (conductivity,
temperature, depth profiler) pH; DOC, Dissolved Organic Carbon; ORP, Oxidation Reduction Potential;
O2 Saturation, Percentage O2 Saturation; Light Trans, Light Trans (% transparency); FeCo, Fecal Coliform
Bacteria; PARR, Photosynthetically Active Radiation Reference.
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Table 4: RF Parameter Grid for Random Search. The configuration shows the range specified for each parameter in the random search. The
parameters include: 1) the number of trees, which affects the model’s complexity and the trade-off between underfitting and overfitting; 2)
the maximum depth of each tree, which determines the level of interactions and complexity the model can capture; 3) the minimum
number of samples required to split an internal node, which helps prevent overfitting by ensuring a minimum amount of data in each
split; 4) the minimum number of samples required to be at a leaf node, which helps prevent overfitting and ensures generalization; 5) the
number of features to consider when looking for the best split at each node to control the randomness and feature selection during the
tree construction; and 6) the criterion that evaluates the impurity or loss during the tree splitting process.

Parameter Configuration
randomforestregressor__n_estimators randint(50, 301)
randomforestregressor__max_depth randint(20, 51)
randomforestregressor__min_samples_split randint(2, 21)
randomforestregressor__min_samples_leaf randint(1, 21)
randomforestregressor__max_features [’sqrt’, ’log2’, 1]
randomforestregressor__criterion [’squared_error’, ’absolute_error’, ’friedman_mse’, ’poisson’]
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Table 5: SVR Parameter Grid for Random Search. The configuration shows the
range specified for each parameter in the random search. The parameters include:
1) C, which represents the regularization parameter that affects the complexity
of the model; 2) the kernel function, which specifies the type of kernel function
used in the SVR model; 3) the degree of the polynomial kernel function, which
influences the complexity and capturing of non-linear interactions; 4) epsilon,
which represents the width of the margin and the amount of allowed margin
violations in the SVR model; 5) gamma, which specifies the kernel coefficient
for kernels in the SVR model; 6) shrinking, which determines whether to use
the shrinking heuristic in the SVR model, speeding up training at the cost of a
potentially wider margin; and 7) tol, which sets the tolerance for stopping criteria
in the SVR model’s training optimization.

Parameter Configuration
svr__C uniform(0.1, 100)
svr__kernel [’linear’, ’poly’, ’rbf’]
svr__degree randint(0, 6)
svr__epsilon uniform(0.001, 10)
svr__gamma [’scale’, ’auto’]
svr__shrinking [True, False]
svr__tol uniform(1e-5, 1e-3)
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Table 6: ANN Parameter Grid for Random Search. The configuration shows the range specified for each parameter in the random search,
such as the activation function, regularization parameter (alpha), batch size, beta values, early stopping, epsilon, hidden layer sizes,
learning rate, learning rate initialization, number of iterations without change before stopping, momentum, power parameter, shuffling of
samples, solver algorithm, tolerance, validation fraction, and warm start option.

Parameter Configuration
mlpregressor__hidden_layer_sizes randint(50, 201)
mlpregressor__activation [’identity’, ’logistic’, ’tanh’, ’relu’]
mlpregressor__solver [’sgd’, ’adam’]
mlpregressor__alpha uniform(0.0001, 1)
mlpregressor__n_iter_no_change randint(5, 20)
mlpregressor__early_stopping [True, False]
mlpregressor__learning_rate_init uniform(0.0001, 0.01)
mlpregressor__shuffle [True, False]
mlpregressor__tol uniform(1e-5, 1e-3)
mlpregressor__warm_start [True, False]
mlpregressor__learning_rate [’constant’, ’invscaling’, ’adaptive’]
mlpregressor__power_t uniform(0.1, 1.0)
mlpregressor__momentum uniform(0.1, 1)
mlpregressor__nesterovs_momentum [True, False]
mlpregressor__beta_1 uniform(0, 1.0)
mlpregressor__beta_2 uniform(0, 1.0)
mlpregressor__epsilon [1e-8, 1e-7, 1e-9]
mlpregressor__validation_fraction uniform(0.1, 1)
mlpregressor__batch_size [’auto’, 100, 200]
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Figure 12: Baseline RF Error Analysis. The first row of plots compares the predicted values to the actual values. It shows how well the
model’s predictions align with the true values. The red dashed line represents perfect alignment between predicted and actual values. The
second row of plots displays the distribution of residuals. The x-axis represents the residuals, which are the differences between the actual
target values and the corresponding predicted values. The y-axis represents the density of the residuals.
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Figure 13: SVR Error Analysis. The first row of plots compares the predicted values to the actual values. It shows how well the model’s
predictions align with the true values. The red dashed line represents perfect alignment between predicted and actual values. The second
row of plots displays the distribution of residuals. The x-axis represents the residuals, which are the differences between the actual target
values and the corresponding predicted values. The y-axis represents the density of the residuals.
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Figure 14: ANN Error Analysis. The first row of plots compares the predicted values to the actual values. It shows how well the model’s
predictions align with the true values. The red dashed line represents perfect alignment between predicted and actual values. The second
row of plots displays the distribution of residuals. The x-axis represents the residuals, which are the differences between the actual target
values and the corresponding predicted values. The y-axis represents the density of the residuals.
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Table 7: Result of Best Hyperparameters. The values in the table correspond to the best hyperparameter settings for each model and
imputation method combination. These hyperparameters were determined through a randomized grid search CV as illustrated in Chapter
6.

RF Best Parameters No Imputation Median Imputation KNN Imputation Multiple Imputation
randomforestregressor__criterion ’poisson’ ’poisson’ ’poisson’ ’poisson’
randomforestregressor__max_depth 47 41 47 47

randomforestregressor__max_features ’sqrt’ ’sqrt’ ’sqrt’ ’sqrt’
randomforestregressor__min_samples_leaf 3 1 3 3

randomforestregressor__min_samples_split 6 12 6 6

randomforestregressor__n_estimators 226 248 226 226

SVR Best Parameters No Imputation Median Imputation KNN Imputation Multiple Imputation
svr__C 90.171 80.227 80.227 80.227

svr__degree 5 5 5 5

svr__epsilon 0.826 1.164 1.164 1.164

svr__gamma ’auto’ ’scale’ ’scale’ ’scale’
svr__kernel ’rbf’ ’rbf’ ’rbf’ ’rbf’
svr__shrinking True False False False
svr__tol 0 0.001 0.001 0.001

ANN Best Parameters No Imputation Median Imputation KNN Imputation Multiple Imputation
mlpregressor__activation ’logistic’ ’logistic’ ’logistic’ ’logistic’
mlpregressor__alpha 0.380 0.380 0.380 0.380

mlpregressor__batch_size 100 100 100 100

Continued on next page



a
p

p
e

n
d

i
x

5
4

Table 7 – continued from previous page
ANN Best Parameters No Imputation Median Imputation KNN Imputation Multiple Imputation
mlpregressor__beta_1 0.319 0.319 0.319 0.319

mlpregressor__beta_2 0.291 0.291 0.291 0.291

mlpregressor__early_stopping False False False False
mlpregressor__epsilon 1e-08 1e-08 1e-08 1e-08

mlpregressor__hidden_layer_sizes 197 197 197 197

mlpregressor__learning_rate ’adaptive’ ’adaptive’ ’adaptive’ ’adaptive’
mlpregressor__learning_rate_init 0.009 0.009 0.009 0.009

mlpregressor__n_iter_no_change 5 5 5 5

mlpregressor__nesterovs_momentum False False False False
mlpregressor__power_t 0.796 0.796 0.796 0.796

mlpregressor__shuffle False False False False
mlpregressor__solver ’sgd’ ’sgd’ ’sgd’ ’sgd’
mlpregressor__tol 5.758e-05 5.758e-05 5.758e-05 5.758e-05

mlpregressor__validation_fraction 0.419 0.419 0.419 0.419

mlpregressor__warm_start True True True True
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