
A C O N T E N T- B A S E D M O V I E
R E C O M M E N D E R S Y S T E M B A S E D

O N E X O G E N O U S AU G M E N T E D
C O M M E N T TA G D ATA

M A S T E R T H E S I S

E M R E E R I M

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university

student number

20664407

committee

dr. Paris Mavromoustakos Blom
dr. Emmanuel Keuleers

location

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

date

June 23th, 2023

word count

7959

acknowledgments

A C O N T E N T- B A S E D M O V I E
R E C O M M E N D E R S Y S T E M B A S E D

O N E X O G E N O U S AU G M E N T E D
C O M M E N T TA G D ATA

M A S T E R T H E S I S

emre erim

Abstract

Content-based movie recommendation systems mainly use the
information from the movie metadata to provide users with person-
alized movie recommendations based on their previous selections.
The content-based filtering method is one of the two most commonly
used recommendation methods. In this paper, we propose using
augmented user-extracted comment tags as movie metadata in a
content-based recommendation system. The semantics are extracted
and converted into a fixed-dimensional vector using Doc2Vec. XG-
boost is used as the main machine learning model to classify the
recommendation of movies to users. Experiments show that the rec-
ommendation results are not significantly improved in both accuracy
and f1 score. Overall, the study provides a valuable contribution to
the field of augmentation techniques for content-based recommenda-
tion systems.

1 data source/code/ethics/technology statement

The Movielens 25M data has been acquired from open sources. Work on
this thesis did not involve collecting data from human participants or ani-
mals. The thesis code can be accessed through the GitHub repository by fol-
lowing the link https://github.com/nickbttm/Movie-CBRS-Thesis-Project.

The adapted code fragments are clearly commented out in the note-
book. In terms of writing, the author used Quillbot (https://quillbot.com/
grammar-check) to improve spelling and grammar. No other typesetting
tools or services were used.

1

https://github.com/nickbttm/Movie-CBRS-Thesis-Project
https://quillbot.com/grammar-check
https://quillbot.com/grammar-check

2 introduction 2

2 introduction

2.1 Context

Recommender systems (RS) are machine-learning-based systems that assist
consumers in discovering new products and services (Ricci et al., 2010).
Today, recommender systems are being used in a variety of products
and services, including books (Crespo et al., 2011), tourism (Isinkaye
et al., 2015), movies (Bobadilla et al., 2010), (Chen et al., 2015), (Diao
et al., 2014), (Qu et al., 2013), and music (Yoshii et al., 2008). Lee and
Hosanagar (2014) show that the utilization of a recommender system
resulted in a 35% increase in sales with respect to the control group (no
recommender system). Also, they deduce that recommender systems
allow customers greater exploration via cross-selling items and increase
the volume of sales for all types of items, including niche ones. In today’s
world, recommender systems are used in large-scale businesses that are
based on information, such as Google (J. Liu et al., 2010), Twitter (Ahmed &
Jaidka, 2013), LinkedIn (Kenthapadi et al., 2017), and Netflix (Gomez-Uribe
& Hunt, 2015).

Content-Based Recommender Systems (CBRSs) are used to recommend
similar items based on the past likes of the user (Lops et al., 2011). CBRS,
as a movie recommender system, is used to predict movies for users based
on the features of previously liked movies (Reddy et al., 2019).

2.2 Problem Statement

CBRSs are used for movie recommendations, which use the features of
the movies based on the movie metadata and user-extracted information,
such as (Reddy et al., 2019), which use content-based filtering with genre
correlation. Also, (Li et al., 2016) have suggested a movie recommender
system that uses user-extracted features collected from microblogs and
social networks together with default data about movies.

In the relevant research, default characteristics of movies are used
as features for RS. However, in this study, the default characteristics of
movies are avoided. Instead, we attempt to achieve similar results by solely
using the augmentation of comment tag data. To add to what "augmented
comment tags in context" means, the augmentation process is defined as
finding relevant features about comment tags in selected knowledge bases
and adding those features to the items’ features. In this way, we explore
whether it is possible to extract meaningful or accurate recommendations
based only on user-related data. Comment tags will be augmented using
the knowledge bases WordNet (Miller, 1995) and Wikidata (Vrandečić &

2 introduction 3

Krötzsch, 2014). These approaches have been extensively addressed in the
methodology and experimental setup sections. Based on the approaches
determined for this study, the research question is:

To what extent can a content-based movie recommender system based
only on user-generated features produce accurate movie recommenda-
tions?

The sub-questions can be listed separately, as follows:

RQ1 To what extent do the added exogenous features to comment tag data improve
the accuracy with respect to a non-augmented baseline?

RQ2 Which knowledge base (wordnet or wikidata) performs better in terms of
giving better augmentation of comment tags to a model predicting known
ratings in the database?

RQ3 How is the performance of the candidate models on predicting known ratings
for each augmentation alternative?

2.3 Motivation

Previously, De Gemmis et al. (2008) have applied machine learning tech-
niques to the semantics of the features of the items to infer better results
for users. Kartheek and Sajeev (2021) tackle cold start and sparcity prob-
lems by building a semantic-based hybrid recommender system and using
knowledge bases to extract semantics. Similar to this research, we investi-
gate how to build a CBRS by not using item descriptions; instead, we try
to extract more information from user-generated features that belong to
items. To our knowledge, this approach has not been applied before in
this context. Therefore, the work presented in this thesis can be considered
novel.

The purpose of this research is to tackle the idea that if it is possible to
use only user feedback models, they can be generalized as they contain the
necessary information by augmenting user-generated tags if the created
models’ accuracy is comparable to the baseline. This might potentially
be applied to other types of recommender systems for music, books, or
educational content, where the item description cannot be retrieved as
much as for movies but potentially has a lot of user-generated features.
In today’s world, the available content is getting extremely large, and it
might be hard to find enough information about the content to build a
recommender system, such as a video on Youtube or a Reddit post that
might be useful for a user. These types of contents offer a lot of comments
because of the nature of these social networks, and this study tries to

2 introduction 4

extract this information to enhance the user experience by matching those
contents with other potential users.

2.4 Societal Relevance

CBRSs derive a list of recommended items for a user based on their
previous interactions. The aim of traditional CBRS algorithms is to match
the characteristics of the user profile with the features of the recommended
items based on the user’s interests (Pazzani & Billsus, 2007).

The content used as features in CBRS is divided into two categories:
the first is the default content about relevant items, such as the name of
a song, the cast of a movie, and the author of a book. The second one
is user-extracted features like ratings, comments, and comment tags. To
extract more information and improve the quality of recommendations,
De Gemmis et al. (2015) mention that Natural Language Processing and
Semantic technologies have become very popular. Also, Jannach et al. (2010)
support this by saying that using semantics is a particularly inventive line
for CBRS.

In this research, we will build a content-based recommender system
based on comment tags to recommend movies to users. We aim to an-
swer to what extent a CBRS that uses only user-extracted features can
produce the same results as a CBRS that uses both user-extracted and
default content. The purpose of this question is to determine, without any
fundamental knowledge about the movie, how much we can predict what
users will like. Such a system could be used to provide "movie-agnostic"
recommendations, meaning that the recommendations are invariant to the
movies’ genre, cast, and other default properties’. This kind of CBRS could
recommend similar movies, not based on the similarity between movie
metadata but instead on the similarity between the comments that movies
have. This could broaden the scope of the recommendations.

2.5 Scientific Relevance

Most of the features that CBRSs are built on are text-based. Textual data
could be any information about an item. In most cases, the features
of an item are extracted terms from the item’s description (Musto et
al., 2022). Ziani et al. (2017) use comments, Farnadi et al. (2018) use
metadata of movies such as genres. Regarding movies, we use comment
tags as textual information. Bogers (2018) define tags as "an information
classification paradigm where the users themselves are given the power to
describe and categorize content for their own purposes." In other words,
comment tags are textual information that is subjective and, in the context

3 related works 5

of recommender systems, are considered user-extracted features. This is
also one of the motivations in this research to use only the comment tags
as features for a movie CBRS.

In CBRS, traditional methods based on term counting were not able to
capture the semantic relationship between words. Semantics is identified
as "meaning and meaningful use of data" (Woods, 1975). In other words,
data semantics are used to develop meaningful mappings that relate items
in the data. To develop meaningful mappings from item descriptions to
potential users, semantic-aware recommender systems emerged (Boratto
et al., 2017). We will use different semantic approaches to comment tags to
potentially improve the performance of the recommender system.

2.6 Research Strategy

In this research, we use the MovieLens 25M dataset by (Harper & Konstan,
2015), which includes information about the metadata of the movies, ratings
of the users, comment tags, and genome tags that are generated by a
machine learning model created by MovieLens to be used as a reliable
source for building the CBRS system (Vig et al., 2012). We built four
different models to summarize our results. There will be two baselines
to compare our approach to building a CBRS system. We compare our
baseline models with the models that we created for CBRSs by using
two different sources of knowledge bases for augmenting comment tags.
We examine the evaluation process of the relevant research and give our
findings based on accuracy, precision, recall, and f1 score.

3 related works

There are a number of studies that explore content-based movie recom-
mender systems. These studies provide information on how to develop,
optimize, and evaluate CBRS and their effects. These studies serve as the
basis for this research to create the CBRS.

Pazzani and Billsus (2007) identify a recommender system as an inter-
face that lets users build a representation of their personal preferences and
then uses this to recommend similar items.

There are mainly three techniques to develop a recommender system:
content-based, collaborative filtering, and hybrid approaches (Adomavicius
& Tuzhilin, 2005). Content-based recommender systems (CBRS) use the
features of the items based on the information and description based on
default product properties such as size, cost, and technical specifications to
recommend an item to a user based only on what the user has previously
consumed (Pazzani & Billsus, 2007). Colloborative filtering makes predic-

3 related works 6

tions based on the interests of a user compared to the consuming habits
and preferences of a large dataset of similar users (Goldberg et al., 1992).
Lastly, hybrid methods are the combination of colloborative filtering and
content-based approaches, using the strengths of both methods to build
large-scale, robust models (Burke, 2002).

Starting in the 1990s, several recommendation systems were introduced.
In 1997, Terveen et al. (1997) presented a recommendation system called
"PHOAKS" that is based on collaborative filtering, filters information from
e-messages, and gives web resource and FAQ recommendations for the
first time. Belkin and Croft (1992) discuss a survey about CBRSs and the
information about items used by the approaches of TF-IDF and Rocchio’s
method.

The basic process performed by a CBRS consists of matching up the
attributes of a user profile, in which preferences and interests are stored,
with the attributes of a content object (item), in order to recommend to the
user new interesting items (Lops et al., 2011).

3.1 Advantages & Disadvantages of CBRS

When compared to collobrative filtering, (Lops et al., 2011) line up the
advantages of CBRS in three main sections, which are user independence,
transparency, and recommending new items. User independence is an
advantage of a CBRS system since the model created relies on item de-
scriptions instead of relying on the preferences of different users (Pazzani
& Billsus, 2007). Only the selected user’s history is used by the model to
check for relevant items in that user’s profile. In this study, we build a
generalizable machine learning model using the user’s history as an input.
We use the same users in the training set as in the validation and test sets.

Musto et al. (2022) list the limitations of content-based techniques as
over-specialization, new users, and limited content analysis. Limited con-
tent analysis means a lack of suitable suggestions if there are no descriptive
features. Lops et al. (2011) puts forward that there is no CBRS system that
provides satisfactory recommendations if there is not enough information
available about the items that are to be recommended. We also take this
into consideration in our study and expect at least 100 ratings from a user.
That also means that we do not have any new users in our testing dataset.
We only use the users that we use in the training dataset. Later in the
methodology part, we give more information about the dataset and how
we use it.

Lops et al. (2011) separates the CBRS architecture into three sections:
content analyzer, profile learner, and filtering component. The content
analyzer’s part is to convey the information obtained from the items’

3 related works 7

information sources. In this study, we change the description of items on
different models and examine how this results in recommendations.

3.2 CBRS Architecture

Lops et al. (2011) separates the CBRS architecture into three sections:
content analyzer, profile learner, and filtering component. The content
analyzer’s part is to convey the information obtained from the items’
information sources. In this study, we change the description of items on
different models and examine how this results in recommendations.

The profile learner part is the second section of the architecture in (Lops
et al., 2011), which creates a user profile by using the history of the user’s
interaction with items based on what they like and do not like. It provides
information on how relevant the user profile is to the items that are to
be recommended. (Pazzani & Billsus, 2007) separates the creation of the
user profiles into two categories that are used by most of the recommender
systems. The first one is the model created by the representation of the
user’s preferences. This model uses the description of items to capture
the interest of the user and creates a user profile based on this description.
The second one is the information that is gathered by the user’s interaction
with the items, this helps to create a history of what the user is interested,
and helps to recommend similar items based on the history. To give an
example, likes on social media, ratings, and purchase history can be used
for this approach. Lops et al. (2011) imply that it is necessary to create
a user profile in order to give recommendations to that specific user for
CBRS. The user history we use in this research is the rankings they give to
the movies, which we assume as a ground truth to build our CBRS models.

The third part of the CBRS architecture based on Lops et al. (2011) is
the filtering component. It gives a classification result based on the user
profile and item description based on their relevance. The more relevant
results are the ones that are recommended to the specific user. According
to Pazzani and Billsus (2007), using a history of the user’s interaction is
a method for classification tasks. We use the history of the user’s choices
in a classification task by dividing them into binary categories: positive
reviews and negative reviews.

3.3 Semantic Information

Musto et al. (2022) describe semantics in CBRS with two approaches:
endogenous and exogenous. While endogenous systems determine the
meaning of a word by evaluating its use in large text corpora, exogenous
semantics uses structured encodings derived from external knowledge.

3 related works 8

The difference between the two approaches is that endogenous semantics
uses only the words that the data contains, so the information is derived
internally. On the other hand, exogenous systems have background knowl-
edge encoded through an external knowledge base, so the information
can be derived from outside knowledge. Both approaches have produced
successful results. Word2Vec (Mikolov, Sutskever, et al., 2013) and Doc2Vec
(Le & Mikolov, 2014) can be given as examples of endogenous semantics.
There are several knowledge bases to give as an example for exogenous
semantics, such as WordNet (Miller, 1995), BabelNet (Navigli & Ponzetto,
2012), and Wikidata (Vrandečić & Krötzsch, 2014).

3.3.1 Endogenous Approach

In 2013, the Word2vec model was introduced by Mikolov, Chen, et al.
(2013). Word2Vec is used for calculating word vectors. G. Liu and Wu
(2019) describe a word vector as a feature of a word that represents the
word. To create the word vectors, unsupervised corpora are used. The
main purpose of creating a word vector model is to construct a set of
features for each word.

Doc2Vec, an extension of Word2Vec first introduced by Le and Mikolov
(2014), is used to produce vectors for sentences, paragraphs, and entire
texts. Doc2Vec is an unsupervised algorithm that produces fixed-length
vectors for each item that describe the relationship between the items.
In this study, it is important to have a distributed representation of the
movies in a fixed dimension of vector space to create a machine learning
model. As Doc2Vec is a neural network-driven approach, it captures the
semantic relationships in large text documents. The Doc2Vec model works
well to mine the features better than traditional language models, such
as Nandi et al. (2018) find that Doc2Vec outperforms the topic modeling
techniques LDA and LSA in terms of accuracy. G. Liu and Wu (2019)
use Doc2Vec with the collaborative filtering method and used Doc2Vec
in order to extract semantics and grammar. On the other hand, Singla
et al. (2020) use Doc2Vec with tf-idf as a hybrid method. As content-based
filtering was also a part of the research, they aimed to provide personalized
recommendations.

We also use the Doc2Vec algorithm to vectorize the corpora we created
for movies. The choice comes from the need to calculate similarities
between the movies based on their corpuses instead of getting individual
word features. Doc2Vec makes comparing larger pieces of text more
convenient than Word2Vec.

3 related works 9

3.3.2 Exogenous Approach

In order to make accurate recommendations in the system for content-based
filtering, there should be sufficient content. In their research, Alharthi and
Inkpen (2015) mention that K-nearest neighbors in content-based filtering
perform better than collaborative filtering when Wordnet is used.

Wordnet is used as a large lexical database. In 1998, Wordnet was first
introduced as a combination of traditional lexicographic information and
modern computing (Miller, 1998). According to Fellbaum (1998), Wordnet
consists of synsets. Synsets are described as a group of words, each of
which represents a separate idea. Synsets are linked to each other based on
semantic and lexical similarities. In this study, we use synsets to augment
comment tags.

In the case of Wikidata, with the loads of data collected by Wikipedia
since 2001, it has been decided to manage this data on a global scale. As
an open source built by a global community, Wikidata is used with differ-
ent knowledge bases, such as DBpedia, for content-based recommender
systems (Rosati et al., 2016). These knowledge bases contain different
relationships between the words.

The main reason to have different knowledge bases for the exogenous
approach is that the semantic relationship between words can be defined
in different ways. (K. Liu et al., 2017) points out that Wordnet is a linguistic
knowledge base that focuses on the relationship between the words on a
lexical level, whereas Wikidata is a general-purpose knowledge base that
covers many aspects of human knowledge. In Semeraro, Lops, et al. (2009),
a different approach to exploiting Wikipedia in the content analysis step
is used. In order to accomplish a more accurate content analysis, they
used a knowledge infusion process in content-based recommender systems.
With the help of encyclopedic knowledge, Wikipedia is modeled using
Semantic Vectors, based on the WordSpace model (Sahlgren, 2006), a vector
space whose points are used to represent semantic concepts. It is aimed at
producing new features in the recommendation process by exploiting the
relationships between words and then using the activation algorithm. In
this research, we compare these two exogenous approaches in an attempt
to answer RQ1.

In this research, we acknowledge the limitation of having enough
content available for Doc2Vec to create a CBRS, and we try to provide more
information about the item descriptions by augmenting comment tags by
using Wordnet and Wikidata knowledge bases.

3 related works 10

3.4 CBRS Models and Evaluation Methods

Content-based recommender systems are systems to create recommen-
dations for different domains out of text (Semeraro, Basile, et al., 2009).
There are several different algorithms used for CBRS. Machine learning
techniques, generally used in the task of inducing content-based profiles,
are especially preferred for text categorization (Sebastiani, 2002).

One of them is a decision tree. They have labels for internal nodes that
receive weight in accordance with the terms, and their leaves have labels
for categories. They learned by recursively partitioning the text documents
into subgroups until they only had single classes. Decision trees are used in
the Syskill & Webert (Pazzani et al., 1996) recommender system. Another
algorithm used for the same purpose is nearest neighbor. The "nearest
neighbor" or "k-nearest neighbors" labels the class for an unclassified item,
and with the similarity function, the class label is derived. Daily Learner
(Billsus & Pazzani, 2000) and Quickstep (Middleton et al., 2004) use the
nearest neighbor algorithm to create a model of the users’ interests by
associating the semantic annotations of papers within the ontology. We
also used a decision tree algorithm called XGBoost as the main classifier
of our models, and as side models, we use KNN and Random Forest
algorithms to evaluate the performance of XGBoost.

Portugal et al. (2018) mentions that there are a large number of studies
using root mean squared error (RMSE) and mean absolute error (MSE)
due to their simplicity and effectiveness. Additionally, many machine
learning algorithms used in the development of recommender systems
performed well in the survey that they conducted in terms of precision,
recall, and f score. We use accuracy, precision, recall, and f score as our
main evaluation methods since we chose to model a binary classification
task for our algorithms.

Precision, recall, and accuracy measures make up the majority of the
evaluation for content-based text classifiers. Precision is defined as the
number of relevant selected items divided by the number of selected
items. Recall is defined as the number of relevant items selected divided
by the total number of relevant items available. For the evaluation of
recommender systems, they have been used in (Billsus, Pazzani, et al.,
1998) and (Basu et al., 1998). F1, which is also used as an evaluation
method in recommender systems (Sarwar et al., 2000), is a combination of
precision and recall.

Burke et al. (2011), used prediction accuracy and precision of the
recommendation lists. Even though both of these measures were found
to be insufficient over time, we do not provide a list of recommended
items in our experimental study. Instead, we use the user history as a

4 methodology 11

Figure 1: Figure showing which database is used to create corpus of the movies
and modeling.

test set and take the labeled movies by users as ground truth. Therefore,
accuracy and precision are suited for our experimental setup. Portugal
et al. (2018) mention that there are a large number of studies using root
mean squared error (RMSE) and mean absolute error (MSE) due to their
simplicity and effectiveness. Also, in the survey that is done by them, many
machine learning algorithms to build recommender systems performed
well in precision, recall, and F-measure.

4 methodology

In this study, we aim to compare different content-based recommender
system models by using comment tags from users. We aim to augment
comment tags by using Wordnet and Wikidata to improve the accuracy of
the system.

In total, we will compare four approaches, which were created by using
genome tags, comment tags, comment tags augmented by Wordnet, and
comment tags augmented by Wikidata. Figure 1 shows four different
models trained using different datasets, which consist of the two baselines,
wikidata, and wordnet models. The methodology outlined is a guide for
the data collection, preprocessing, model construction, and evaluation
processes.

4 methodology 12

The model baseline_genome will use genome tag relevance scores to
collect relevant information about each movie. These genome tags were
provided by MovieLens (Vig et al., 2012). The genome tag set was created
by a machine learning algorithm using content from user-contributed tags,
reviews, and ratings. The genome tag set contains all meta-data informa-
tion about movies. This gives us the chance to build CBRS with all of the
metadata available about the movies. On the other hand, our experimental
models only use comment tags as an information source. As a second
baseline, the model baseline_comment will train the recommender system
using only comment tags. In the model_wordnet and the model_wikidata,
the content of the movies will be directly linked with comment tag data.
Comment tags will be augmented using WordNet and Wikidata knowledge
bases, respectively.

The purpose of this research is to build a reliable CBRS by utilizing
user-generated comment tags. We first build a CBRS only using the user-
generated comment tags in their original form, and after that, we try to
improve the semantic relationship between the items by using different
augmentation methods from the comment tags. We use different knowl-
edge bases to explore how different semantic relations between words
affect information retrieval between items. We purposefully excluded infor-
mation derived directly from movie metadata. The metadata in Movielens
dataset refers to the details about the movies, which are the characteristics
of the movie. It is excluded since we are investigating if it is possible to
create a robust recommender system using only generated tags for the
items. The purpose of this is to construct a CBRS without relying on such
information, and to improve its accuracy if we do not have this information.
The metadata we exclude for this research covers genres, release dates,
cast, and plot summaries, which are proven to be effective ways to retrieve
information about the movies. We incorporate the comment tags as a
primary source of information to explore the potential of user-generated
features. We leveraged the user-generated features by augmenting them
with more features using WordNet or Wikidata. We evaluate the impact of
different augmentation methods on overall accuracy.

4.1 Data Collection

We use the MovieLens 25M dataset for this study (Harper & Konstan, 2015).
The dataset has been collected by the GroupLens Research Project at the
University of Minnesota and is widely used for movie recommendation
research (Zhou et al., 2017), (Ali et al., 2018). The dataset contains 25 million
ratings, 1 million comment tags, genome tags, and metadata information
about 59047 movies, 45251 of which have been commented on by a user.

4 methodology 13

userId title tag genres
131341 Pulp Fiction 1994 amazing Comedy|Crime|Drama|Thriller
70092 Invisible Invaders 1959 BD-R Horror|Sci-Fi
155752 Interstellar 2014 space travel Sci-Fi|IMAX
68120 Chorus, The Choristes, Les 2004 France Drama
84533 Splice 2009 Sarah Polley Horror|Sci-Fi|Thriller
157590 Star Wars: Episode IV - A New Hope 1977 space adventure Action|Adventure|Sci-Fi
11602 Traffic Tra f ic 1971 Jacques Tati Comedy
126013 Due Date 2010 Michelle Monaghan Comedy
31047 Cleaner 2007 SINGLE PARENTS Crime|Thriller
124601 To Catch a Thief 1955 heist film Crime|Mystery|Romance|Thriller
39983 Addams Family, The 1991 supernatural Children|Comedy|Fantasy
6550 Private Life of Sherlock Holmes, The 1970 sherlock holmes Comedy|Drama|Mystery
6550 Haunted Palace, The 1963 mutations Horror
105728 Honeymoon 2014 woman director Horror
33844 Dunkirk 2017 evacuation Action|Drama|Thriller|War

Table 1: Random movie samples from user comment tags

The provided data makes the dataset a very rich source for building a
recommendation system. Our study will consider movies that have at least
one comment. Hence, we investigate the impact of comment tags on a
CBRS system.

The dataset comes in CSV format and contains two tag files. The
first one is the tags.csv dataset, which contains comment tags applied to
movies by users. "The meaning, value, and purpose of a particular tag
are determined by each user," according to the source (Harper & Konstan,
2015). We achieve the main approach of the research question by using the
tags.csv file, which includes all of the comment tags from the users. We
use these comment tags as input to a CBRS model. This is our first baseline
to compare with augmented models. Also, we augment these comment
tags by using Wordnet and Wikidata to increase their accuracy.

In the tags.csv dataset, 45251 users have contributed 1093360 tags. Each
user has at least one tag and a maximum of 183356. The average tag count
for each user is 75. In terms of interquartile ranges (IQR), a 0.25 quantile
equals 2 tag counts, and a 0.75 quantile equals 20 tag counts. There are
4613 users with one or two tags. There are 6325 users with tag counts
between 0.25 and 0.75 IQR and 3654 users with tag counts greater than
0.75 IQR. We show random comment tag samples from users in Table 1.

The second tag file, namely the genome_tags.csv dataset, contains 1128

tags. Every tag in each movie has a relevance score. The genome tag
data is a dense matrix of relevance scores for each tag in each movie.
The advantage of a dense matrix is that we can mine the same number
of tags for each movie. We mine movie tags using a relevance score
threshold. We assess the relevancy of each movie across all genome tags.
Table 2 displays an example of genome tags with relevance scores derived
from random movies. We create a second baseline model using genome

4 methodology 14

title relevance tag genres
Ace Ventura: When Nature Calls (1995) 0.92075 sequels Comedy
Personal Shopper (2016) 0.718 loneliness Drama|Thriller
Kill Bill: Vol. 2 (2004) 0.70025 gangsters Action|Drama|Thriller
Delivery Man (2013) 0.579 mentor Comedy
Futureworld (1976) 0.64725 technology Sci-Fi|Thriller
Jurassic Park (1993) 0.54275 clever Action|Adventure|Sci-Fi|Thriller
Born Free (1966) 0.917 animal movie Adventure|Children|Drama
The Hunger Games: Mockingjay - Part 1 (2014) 0.7085 science fiction Adventure|Sci-Fi|Thriller
Winter War (Talvisota) (1989) 0.989 war Drama|War
Last Tango in Paris (Ultimo tango a Parigi) (1972) 0.52475 life & death Drama|Romance
Lost Highway (1997) 0.975 strange Crime|Drama|Fantasy|Film-Noir|Mystery|Romance
Good Morning (Ohayô) (1959) 0.8405 imdb top 250 Comedy
Never Let Me Go (2010) 0.53475 slow paced Drama|Romance|Sci-Fi
Eight Legged Freaks (2002) 0.50825 low budget Action|Comedy|Horror|Sci-Fi
Twilight (2008) 0.5335 bad plot Drama|Fantasy|Romance|Thriller

Table 2: Examples of genome tags with relevance scores higher than 0.50

tags to investigate the accuracy of a CBRS system that uses all available
information.

The Movielens dataset also includes ratings.csv and movies.csv files. In
the ratings.csv files, we have ratings from the user for the movies. For this
study, we transformed the original movie ratings into binary encodings.
The ratings in the dataset are given from 0 to 5, incrementing by 0.5. We
utilized the median rating as a threshold to categorize ratings into two
classes: 1 (positive review) and 0 (negative review). A rating equal to or
greater than the median value is considered a positive review for users.
The main reason to create binary encodings is to use a simple methodology
for our CBRS. Also, in this study, we do not try to determine how much a
user likes a movie, instead, we only try to recommend or not recommend
items. We apply that by dividing the rating dataset into train and test sets
80% and 20%, respectively. We evaluate the performance by comparing the
label we get from the test set with the actual truth on a binary level. This
allows us to draw confusion matrices easily, interpret the results, and take
action on hyperparameter tuning.

The movies.csv contains the information of movie ID, title, and genres.
We do not use titles or genres in this study. We only use titles for visuali-
sation, not for model development. Also, there is a links.csv dataset that
contains the information about the movie ID and IMDB links to get more
information about the movie. This file is also not part of this study.

4.2 Model Development

In this study, we use a structured process to build our CBRS and evalua-
tion processes. We use separate classes to divide the key steps, which
include data loading, preprocessing, which contains denormalization
and tokenization steps, augmentation processes for model_wordnet and
model_wikidata, vectorizing by using Doc2Vec, train-test split, user vector

4 methodology 15

Denormalizing

Tokenization

Vectorization

Creating User
Embeddings

Data Loading

Augmentation

Train-Test Splitting

Training the model

Evaluation

m
od

el
_c

om
m

en
t

m
od

el
_g

en
om

e
m

od
el

_w
or

dne
t

m
od

el
_w

ik
id

at
a

Figure 2: Figure showing the architecture of the experimental setup.

generation, model training, and evaluation. Figure 2 shows the model
architecture and which models use which steps.

After data loading, we start preprocessing by denorming the comment
tags and genome tags. By denorming, we mean that we created a corpus
for each movie from relevant data sources for the models. The second step
of the preprocessing is tokenization. Since we use English words for both
tags, we use English stop words to tokenize the corpus we have for each
model. Stop words mean the unimportant words that are used in English,
such as ‘the’, ‘an’, ‘a’. It is important to remove those words since they
might affect the similarity between the movies. We try to avoid bias just
because there are many similar stop words in irrelevant movie corpuses.
We convert every letter to lower case, and then we remove all of the stop
words from the corpus of each dataset created for models.

4.2.1 Augmentation Process

We use the augmentation process for model_wordnet and model_wikidata
in between the processes of denormalization and tokenization. It is the
exogenous approach that we use for the models wikidata and wordnet.
For the model_wordnet we use synonyms of comment tags. A group of
synonyms with a similar meaning is known as a synset. We iterate over

4 methodology 16

each synonym in a synset, and if it isn’t already in the list of synonyms, we
add the word. We only use synonyms because we use WordNet as a lexical
database for this study. One of the purposes of this study is to compare
the models that are augmented by lexical semantic relationships and non-
lexical semantic relationships. Therefore, in this study, Wordnet stands
for the lexical semantic knowledge base that we use for augmentation.
For the model_wikidata, for each tag, we get the first 250 characters of
the summary from the Wikipedia page if it exists. Then, we use the NLP
method in the SciPy library. This method gives us the entities by using the
summary that we get and tokenizing it to ensure we only have the entities.
Lastly, we use a limitation of augmented words for each comment tag in
both models.

While determining the limit, there is a trade-off between computational
cost and getting enough new information. Therefore, we use the limitation
technique as a hyperparameter and divide it into three categories: low
limit (1 word), moderate limit (3 words), and high limit (10 words). We
use the low limit to test whether a small amount of augmentation provides
any benefit. We assume the moderate limit could be an optimal point that
offers additional information without overcomplicating the model. In the
high limit, we test whether a large amount of augmentation significantly
improves performance. We analyzed the results only by augmenting
the Wordnet knowledge base since Wikidata is already computationally
expensive, and we implemented the same results on Wikidata to get an
equal amount of information. We augment three words for every comment
tag used in the corpus and add them together without removing the
original comment tags.

4.2.2 Vectorization & Creating User Embeddings

After tokenization, we use Doc2Vec to create vectorized movie embeddings
for the machine learning stage. It is important to vectorize to capture the
similarities between the movies based on the corpus they have, and we use
those similarities to predict future recommendations. This vectorization
allows us to capture semantic relationships between the movies, and dif-
ferent inputs to the models give us different relations. As mentioned in
the related works part, it is the endogenous approach that we use for all
the models. All models use Doc2Vec to vectorize the corpus of movies that
we gather for the models. This dataset provides us with the relationship
between all movies in our dataset. We use these vectors to create user
embeddings, which are necessary to build a recommendation engine.

The hyperparameters we use for Doc2VEc to optimize the performance
of the model are vector size, distributed memory (dm), number of epochs,
and learning rate. Vector size is one of the key hyperparameters that we

4 methodology 17

consider in this project. The reason for this is that to have distinct repre-
sentations for each movie, we need enough vector size to represent it. On
the other hand, increasing vector size causes more expensive computations
for both Doc2Vec and XGBoost models. Vector size tuning attempts are
mainly based on the accuracy of the XGBoost model and computational
costs. We chose to continue with 100 vectors for each movie.

The second important hyperparameter is the distributed memory pa-
rameter. This parameter has two options. The first one uses CBOW
(Continuous Bag Of Words), and the second one uses DBOW (Distributed
Bag Of Words). DBOW is not capturing the order of the words inside the
given corpora, while CBOW tries to capture the relationship in the order
of the words as well. In this study, the order is not important since we use
comment tags and genome tags instead of sentences. This ensures that
similar words among the movies can be represented more independently
without consideration of the order, allowing us to capture more similarities
between movies that need to be similar.

We optimize the number of epochs and learning rate based on the
evaluation metrics of XGBoost. Number of epochs is chosen 50 and the
learning rate (alpha) is chosen at 0.025 after several tuning attempts, and
the minimum learning rate is 0.00025.

To evaluate the performance of the Doc2Vec models before the accuracy
of the XGBoost model, we use visual mappings and similarity scores
between movies. We try to capture relationships between similar movies,
like animations. Also, we check whether movie series are similar to
each other. These are the two methods to evaluate the performance of
the unsupervised learning algorithm before the implementation of the
classification model.

For creating user embeddings, we first split the rating dataset, which
contains userId, movieId, and binary ratings, into train (70%), validation
(15%), and test (15%) datasets on users. By dividing the dataset by users,
we ensure that our train, validation, and test datasets have the same users.
Since we are creating a CBRS, we try to recommend movies to a user by
looking at their own history. These models contain all of the users to make
the algorithm more generalizable. To create the features from the train
dataset, we need the information for each movie and each user. For each
movie, we have 50 vectors that will be used as features of the train dataset.
For each user, we use all of the movies that are in the train set, and we
take the weighted average for each vector by using ratings from 0 to 5. At
the end, there are 50 features for each user that contain information about
their movie history and the respective ratings given. We combine the user
embeddings and movie embeddings together to get a train set with 100

5 results 18

features. We use the same user embeddings in validation and test sets,
which only contain user information from the train set.

4.2.3 Models

We train our datasets on an XGBoost model, which is a gradient boosting
algorithm. And to compare the results with the other models, we train and
evaluate the datasets, including k-nearest neighbors (KNN) and random
forest (RF).

The key hyperparameters that we use to adjust the performance are
learning rate, number of estimators, maximum depth. We use grid search
with 5 cross validation sets to find the best parameters.

We use logarithmic loss as an evaluation metric for the XGBooost
algorithm. Logarithmic loss is a popular evaluation metric and gives us
the probability of a predicted label between 0 and 1. We divided our
predictions from the 0.5 threshold into binary classes. We have given a
place in the discussion section to explain how the prediction probabilities
from logarithmic loss evaluation can be used based on the expectation of
precision and recall values.

We evaluate the hyperparameters of the XGBoost model by using ROC-
AUC scores.

5 results

In this section, we talk about the results of the four models. We first
compare the four models and interpret the main result. Then we examine
how we evaluate the performance of the vectorizing step while using
Doc2Vec. Also, we show how we use ROC AUC curves in hyperparameter
tuning and evaluating the performance of XGBoost.

We use accuracy, precision, recall, f_score as evaluation metrics in
this study. We use accuracy as a main performance metric to compare
the models against each other. For XGBoost hyperparameter tuning, we
also consider weighted f score calculation to evaluate the performance of
the model and make sure that we calculate the slight imbalance between
classes.

5.1 Main Results

As shown in the Table 3 the baseline_genome gives 73% accuracy using all
available information, and the baseline_comment gives 71% accuracy using
users’ comment tags. The model enhanced with augmented comment tags
by wikidata and wordnet give 72% and 69% accuracy, respectively, which

5 results 19

is 2% below the genome results on average. This slight decrease in the
accuracy score shows us that the corpuses used for data augmentation
are not improving the quality of the comment tags in terms of being a
feature representation for movies. We concluded that the new corpuses
are not significantly better for the classification of the comments. As the
baseline model gives higher accuracy, it can be stated that only using user-
extracted features as an input is not enough to improve the content-based
recommendation.

Accuracy Precision (Macro) Recall (Macro) F1 Score (Macro) F1 Score (Weighted)
baseline_comment 0.7136 0.7127 0.7101 0.7107 0.7127

baseline_genome 0.7341 0.7326 0.7300 0.7308 0.7333

model_wordnet 0.6954 0.6951 0.6946 0.6947 0.6952

model_wikidata 0.7229 0.7219 0.7202 0.7207 0.7224

Table 3: Test results of the models.

We compare the four XGBoost models to answer RQ1 in Table 3. In
our comparison, we see that, as an interesting finding, model_wordnet
falls below baseline_comment in our evaluation metrics. We see that
baseline_comment and augmented models do not reach the accuracy and
f1-score scores obtained with model_genome. Apart from these, we have
reached the conclusion that precision and recall metrics are almost at the
same score for the models.

We used accuracy, one of the performance metrics we found, for two-
tailed paired t-tests. Two-tailed paired t-tests were used to assess the
statistical significance of any changes in performance between two predic-
tors (Mitchell 1997). To do the t-test, we use the cross-validation results of
the models. With the resulting mean and standard deviation, we tested
whether the scores of the two models came from the same population.

When we look at the confusion matrices of the models in Figure 3, we
observe that the movies which are relevant (class 1) to a user are predicted
at a better rate than the movies that are relevant (class 0). Additionally,
it demonstrates that in each model, our rate of false positives is higher
than our rate of false negatives. This indicates that our Type 1 error is
larger than our Type 2 error, and furthermore, we find that models have a
tendency to propose movies even when they are irrelevant.

5.2 Doc2Vec evaluation of the models

When we look at the Figures 4, 5, 6 and 7, which are the UMAPs gen-
erated by using umap library in Python, how the embedding spaces are
parameterized is similar to the final results of the recommendation system
in Table 3. In this experimentation pipeline, the main difference between
these models comes from the fact that the input data semantically captures

5 results 20

Figure 3: Confusion matrix of all models.

the similarity of the movies. We evaluate the Doc2Vec hyperparameters
based on the genome tags, as we use these tags as ground truth. At this
point, we can clearly see that the popular movies shown in model_genome
are positioned closer than other UMAPs. The basis of the input data for
the other three models comes from the comment tags. When we compare
model_wikidata and model_wordnet, we observe that the model_wordnet
is more dispersed. This can be interpreted as meaning that the words
we augment with the wordnet model are reflected in the data as more
noise than information. This may be why model_wordnet further degrades
the performance of the baseline model while model_wikidata improves
accuracy.

When we use both the performances in the Table 3 and the UMAPs
to answer RQ2, we can say that model_wikidata performs better than
model_wordnet. However, UMAP images indicate that vectorized movies
need to be revalidated, this result may be biased.

5.3 Hyperparameter Tuning of XGBoost Models

We used ROC-AUC curves for hyperparameter tuning. The new curves
created by the models as a result of our tuning are shown in Figures 8, 9, 10

5 results 21

Figure 4: UMAP of model_genome Figure 5: UMAP of model_comment

Figure 6: UMAP of model_wordnet Figure 7: UMAP of model_wikidata

and 11 in orange. We see improvements on every model. Hyperparameters
were most effective on model_wordnet.

5.4 Comparison of the XGBoost model with Side Models

XGBoost KNN Random Forest
baseline_comment 0.7136 0.6243 0.6800

baseline_genome 0.7341 0.6305 0.6442

model_wordnet 0.6954 0.6246 0.6395

model_wikidata 0.7229 0.6284 0.6557

Table 4: Accuracy results of the main model and the side models

We use k-nearest neighbors and a random forest classifier to compare
with XGBoost to answer RQ3. In terms of accuracy, XGBoost is the best of
all of them. The Random Forest classifier did well in the baseline_comment,
which was an interesting finding for us. Cross validation was not carried

6 discussion 22

Figure 8: Hyperparameter optimization
on model_genome

Figure 9: Hyperparameter optimization
on model_comment

Figure 10: Hyperparameter optimization
on model_wordnet

Figure 11: Hyperparameter optimization
on model_wikidata

out on side models, so this finding could change when cross validation
is done. In the same way, we can see that the baseline_genome dataset
comes first in the XGBoost model, but in the Random Forest method,
the baseline_comment and model_wikidata datasets do better than base-
line_genome. When analyzing RQ3, the results show that decision tree
models are still better than KNN models.

6 discussion

As stated in the result section above, we compare the model_genome,
model_comment, model_wikidata and model_wordnet based on accuracy
and precision, recall and f1 score.

Exogenous features that the augmented corpuses add to the comment
tag data are not statistically significant when compared to non-augmented
data, as stated in the RQ1. In addition, considering the RQ2, neither of the
knowledge bases used improved the accuracy scores compared to baseline

7 limitations & further research 23

comment tags. Comparing both Wikidata and Wordnet, we can justify that
neither of the corpuses were enough to surpass the genome dataset that
is not augmented. A comparison of the two different corpuses showed
this much difference between them. Even though this is not a significant
improvement, it can be said that the wikidata corpus performs slightly
better than the wordnet corpus. We can conclude that the user-extracted
features do not have a high impact on movie recommendations. It should
be noted that content-based recommender systems are known for over-
specialization, which prevents the recommender system from interacting
with others that have similar user profiles.

In terms of accuracy, genome tags produced by a machine-learning
model are not significantly different from comment tags. Having said that,
using only user-extracted features does not make a significant difference
from all available meta information. This shows us that user-generated
comment tags for the movies are enough to provide as accurate recommen-
dations as using all meta information.

Nevertheless, even though the results show no significant improvement
across different setups, the accuracy results did not go below 50% in any
situation, so this provides proof of the generalizability of the proposed
model. We can also adjust the threshold of the generalizable model we
have according to the appropriate business cases. For example, if the cost of
making a recommendation to a user is high and we want to be sure what to
recommend, we need to choose a high-precision model. In such a case, we
can increase the binary classification threshold from 0.5 in the logarithmic
loss function we use. In our studies, when we increase the threshold and
bring the precision to 80%, accuracy becomes 65%, recall 64%. Likewise,
a high recall may be important in another business case scenario. For
example, nowadays, recommender systems are popular, competition is
very high, and we may want our model to show the movie that a customer
might like first. In this case, we can set the threshold to increase the recall,
taking into account the type 1 error. When we increased the recall to 92%
in the studies carried out, we saw that the accuracy was around 65% and
the precision around 71%.

7 limitations & further research

Choosing median as a threshold for positive and negative reviews gives the
movies in that area an unclear opinion. Although the ratings that are very
close to the median are taken for a certain party, there may be differences
that will affect the accuracy because of the human perspective. The binary
classification problem can be tried without including the movies in the
section that are close to the ratings in the median.

8 conclusion 24

There is an imbalance in the number of comment tags in each movie.
Some movies have a significantly larger number of tags than others. This
imbalance may cause us not to recommend films with few comment tags.
Especially in the vectorization step, similarity scores may be biased due to
a lack of information about a movie that has few comment tags. Although
we tried to overcome this problem with augmentation methods, the dataset
remained imbalanced after augmentation.

If the comment tags used do not have a corresponding augmentation
in wordnet or wikidata, we leave that word as it is. This is a limitation
that needs to be examined, the effect of these words may have affected the
recommender system.

For the models with comment tag augmentation, using adaptive lim-
itations for Wordnet and Wikidata can be useful. This approach can be
adaptable and links the frequency or significance of the original tag in the
dataset to the number of augmented terms. By doing this, we can give
tags that are more frequently used or that the model considers to be more
significant greater weight.

In further research, the augmentation method can be changed to adap-
tive, and evaluation can be made with ordinal-encoded ratings instead of
binary ratings. In this case, the evaluation metrics to be used should be
changed to RMSE and MSE. Using ratings in this way can eliminate the
median bias of binary ratings, which are divided into positive reviews and
negative reviews based on the median. In this case, the imbalance of the
rating data will be important. There may be a need to reselect the ratings
that have fewer samples or use another method.

8 conclusion

In conclusion this thesis aimed to investigate whether user extracted fea-
tures are enough to provide as good recommendations as the features
created by using all meta information. The study utilized 4 datasets, in-
cluding movies, comment tags, ratings, genome tags and applied Doc2Vec,
XGBoost, RandomForest, KNN Classifiers to test the impact of augmented
data on model accuracy.

The results of the study indicate that the optimal accuracy of the corpus
created by the models using augmentation has not significantly improved.
While the model that uses augmentation by using Wordnet gives 69% of
accuracy, the model that uses augmentation by using Wikidata gives 71%.
Both are below the baseline created by using genome tags, which gave 73%
accuracy.

8 conclusion 25

Even though the accuracy of the models considered is not significantly
higher than the baselines, the diversity of training and test variations in
this study gives validation to the ability to generalize.

Overall, the results of the study suggest that using only comment tags
to recommend a movie can be applicable. However, it is crucial to note that
the study is limited to only using comment tags for content-based movie
recommendation, and the results may not give the same results in different
categories of recommendation systems. Further research could explore the
potential of comment tags and augmentation techniques when combined
with different features and recommendation techniques for more accurate
and personalized results.

The findings of the study provide valuable insights for semantic rela-
tionships between items using content-based recommendation systems. In
addition, the outcomes of this research can be used as a basis for further
studies in the field of recommendation systems and their application in
classifying movies.

references 26

references

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE transactions on knowledge and data engineering, 17(6),
734–749.

Ahmed, S., & Jaidka, K. (2013). Protests against# delhigangrape on twitter:
Analyzing india’s arab spring. eJournal of eDemocracy and Open
Government, 5(1), 28–58.

Alharthi, H., & Inkpen, D. (2015). Content-based recommender system
enriched with wordnet synsets. Computational Linguistics and Intelli-
gent Text Processing: 16th International Conference, CICLing 2015, Cairo,
Egypt, April 14-20, 2015, Proceedings, Part II 16, 295–308.

Ali, S. M., Nayak, G. K., Lenka, R. K., & Barik, R. K. (2018). Movie recom-
mendation system using genome tags and content-based filtering.
In Advances in data and information sciences (pp. 85–94). Springer.

Basu, C., Hirsh, H., Cohen, W., et al. (1998). Recommendation as classifica-
tion: Using social and content-based information in recommenda-
tion. Aaai/iaai, 714–720.

Belkin, N. J., & Croft, W. B. (1992). Information filtering and information
retrieval: Two sides of the same coin? Communications of the ACM,
35(12), 29–38.

Billsus, D., Pazzani, M. J., et al. (1998). Learning collaborative information
filters. Icml, 98, 46–54.

Billsus, D., & Pazzani, M. J. (2000). User modeling for adaptive news access.
User modeling and user-adapted interaction, 10, 147–180.

Bobadilla, J., Serradilla, F., & Bernal, J. (2010). A new collaborative filter-
ing metric that improves the behavior of recommender systems.
Knowledge-Based Systems, 23(6), 520–528.

Bogers, T. (2018). Tag-based recommendation. In Social information access
(pp. 441–479). Springer.

Boratto, L., Carta, S., Fenu, G., & Saia, R. (2017). Semantics-aware content-
based recommender systems: Design and architecture guidelines.
Neurocomputing, 254, 79–85.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, 12, 331–370.

Burke, R., Felfernig, A., & Göker, M. H. (2011). Recommender systems: An
overview. Ai Magazine, 32(3), 13–18.

Chen, M.-H., Teng, C.-H., & Chang, P.-C. (2015). Applying artificial im-
mune systems to collaborative filtering for movie recommendation.
Advanced Engineering Informatics, 29(4), 830–839.

references 27

Crespo, R. G., Martınez, O. S., Lovelle, J. M. C., Garcıa-Bustelo, B. C. P.,
Gayo, J. E. L., & De Pablos, P. O. (2011). Recommendation system
based on user interaction data applied to intelligent electronic
books. Computers in human behavior, 27(4), 1445–1449.

De Gemmis, M., Lops, P., Musto, C., Narducci, F., & Semeraro, G. (2015).
Semantics-aware content-based recommender systems. Recommender
systems handbook, 119–159.

De Gemmis, M., Lops, P., Semeraro, G., & Basile, P. (2008). Integrating tags
in a semantic content-based recommender. Proceedings of the 2008
ACM conference on Recommender systems, 163–170.

Diao, Q., Qiu, M., Wu, C.-Y., Smola, A. J., Jiang, J., & Wang, C. (2014).
Jointly modeling aspects, ratings and sentiments for movie recom-
mendation (jmars). Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 193–202.

Farnadi, G., Kouki, P., Thompson, S. K., Srinivasan, S., & Getoor, L.
(2018). A fairness-aware hybrid recommender system. arXiv preprint
arXiv:1809.09030.

Fellbaum, C. (1998). Wordnet: An electronic lexical database. MIT press.
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative

filtering to weave an information tapestry. Communications of the
ACM, 35(12), 61–70.

Gomez-Uribe, C. A., & Hunt, N. (2015). The netflix recommender system:
Algorithms, business value, and innovation. ACM Transactions on
Management Information Systems (TMIS), 6(4), 1–19.

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and
context. Acm transactions on interactive intelligent systems (tiis), 5(4),
1–19.

Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation
systems: Principles, methods and evaluation. Egyptian informatics
journal, 16(3), 261–273.

Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender
systems: An introduction. Cambridge University Press.

Kartheek, M., & Sajeev, G. (2021). Building semantic based recommender
system using knowledge graph embedding. 2021 sixth international
conference on image information processing (ICIIP), 6, 25–29.

Kenthapadi, K., Le, B., & Venkataraman, G. (2017). Personalized job rec-
ommendation system at linkedin: Practical challenges and lessons
learned. Proceedings of the eleventh ACM conference on recommender
systems, 346–347.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and
documents. International conference on machine learning, 1188–1196.

references 28

Lee, D., & Hosanagar, K. (2014). Impact of recommender systems on sales
volume and diversity.

Li, H., Cui, J., Shen, B., & Ma, J. (2016). An intelligent movie recommenda-
tion system through group-level sentiment analysis in microblogs.
Neurocomputing, 210, 164–173.

Liu, G., & Wu, X. (2019). Using collaborative filtering algorithms combined
with doc2vec for movie recommendation. 2019 IEEE 3rd Information
Technology, Networking, Electronic and Automation Control Conference
(ITNEC), 1461–1464.

Liu, J., Dolan, P., & Pedersen, E. R. (2010). Personalized news recommen-
dation based on click behavior. Proceedings of the 15th international
conference on Intelligent user interfaces, 31–40.

Liu, K., Shi, X., & Natarajan, P. (2017). Sequential heterogeneous attribute
embedding for item recommendation. 2017 IEEE International Con-
ference on Data Mining Workshops (ICDMW), 773–780.

Lops, P., Gemmis, M. d., & Semeraro, G. (2011). Content-based recom-
mender systems: State of the art and trends. Recommender systems
handbook, 73–105.

Middleton, S. E., Shadbolt, N. R., & De Roure, D. C. (2004). Ontological user
profiling in recommender systems. ACM Transactions on Information
Systems (TOIS), 22(1), 54–88.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).
Distributed representations of words and phrases and their compo-
sitionality. Advances in neural information processing systems, 26.

Miller, G. A. (1995). Wordnet: A lexical database for english. Communications
of the ACM, 38(11), 39–41.

Miller, G. A. (1998). Wordnet: An electronic lexical database.
Musto, C., Gemmis, M. d., Lops, P., Narducci, F., & Semeraro, G. (2022).

Semantics and content-based recommendations. In Recommender
systems handbook (pp. 251–298). Springer.

Nandi, R. N., Zaman, M. A., Al Muntasir, T., Sumit, S. H., Sourov, T.,
& Rahman, M. J.-U. (2018). Bangla news recommendation using
doc2vec. 2018 International Conference on Bangla Speech and Language
Processing (ICBSLP), 1–5.

Navigli, R., & Ponzetto, S. P. (2012). Babelnet: The automatic construc-
tion, evaluation and application of a wide-coverage multilingual
semantic network. Artificial intelligence, 193, 217–250.

Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems.
The adaptive web: methods and strategies of web personalization, 325–341.

references 29

Pazzani, M. J., Muramatsu, J., Billsus, D., et al. (1996). Syskill & webert:
Identifying interesting web sites. AAAI/IAAI, Vol. 1, 54–61.

Portugal, I., Alencar, P., & Cowan, D. (2018). The use of machine learning
algorithms in recommender systems: A systematic review. Expert
Systems with Applications, 97, 205–227.

Qu, W., Song, K.-S., Zhang, Y.-F., Feng, S., Wang, D.-L., & Yu, G. (2013).
A novel approach based on multi-view content analysis and semi-
supervised enrichment for movie recommendation. Journal of Com-
puter Science and Technology, 28(5), 776–787.

Reddy, S., Nalluri, S., Kunisetti, S., Ashok, S., & Venkatesh, B. (2019).
Content-based movie recommendation system using genre corre-
lation. In Smart intelligent computing and applications (pp. 391–397).
Springer.

Ricci, F., Rokach, L., & Shapira, B. (2010). Introduction to recommender
systems handbook. In Recommender systems handbook (pp. 1–35).
Springer.

Rosati, J., Ristoski, P., Di Noia, T., Leone, R. d., & Paulheim, H. (2016). Rdf
graph embeddings for content-based recommender systems. CEUR
workshop proceedings, 1673, 23–30.

Sahlgren, M. (2006). The word-space model: Using distributional analysis to
represent syntagmatic and paradigmatic relations between words in high-
dimensional vector spaces (Doctoral dissertation). Institutionen för
lingvistik.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recom-
mendation algorithms for e-commerce. Proceedings of the 2nd ACM
Conference on Electronic Commerce, 158–167.

Sebastiani, F. (2002). Machine learning in automated text categorization.
ACM computing surveys (CSUR), 34(1), 1–47.

Semeraro, G., Basile, P., de Gemmis, M., & Lops, P. (2009). User profiles
for personalizing digital libraries. In Handbook of research on digital
libraries: Design, development, and impact (pp. 149–158). IGI Global.

Semeraro, G., Lops, P., Basile, P., & de Gemmis, M. (2009). Knowledge
infusion into content-based recommender systems. Proceedings of
the third ACM conference on Recommender systems, 301–304.

Singla, R., Gupta, S., Gupta, A., & Vishwakarma, D. K. (2020). Flex: A
content based movie recommender. 2020 International Conference for
Emerging Technology (INCET), 1–4.

Terveen, L., Hill, W., Amento, B., McDonald, D., & Creter, J. (1997). Phoaks:
A system for sharing recommendations. Communications of the ACM,
40(3), 59–62.

references 30

Vig, J., Sen, S., & Riedl, J. (2012). The tag genome: Encoding commu-
nity knowledge to support novel interaction. ACM Transactions on
Interactive Intelligent Systems (TiiS), 2(3), 1–44.

Vrandečić, D., & Krötzsch, M. (2014). Wikidata: A free collaborative knowl-
edgebase. Communications of the ACM, 57(10), 78–85.

Woods, W. A. (1975). What’s in a link: Foundations for semantic networks.
In Representation and understanding (pp. 35–82). Elsevier.

Yoshii, K., Goto, M., Komatani, K., Ogata, T., & Okuno, H. G. (2008). An
efficient hybrid music recommender system using an incrementally
trainable probabilistic generative model. IEEE Transactions on Audio,
Speech, and Language Processing, 16(2), 435–447.

Zhou, T., Chen, L., & Shen, J. (2017). Movie recommendation system
employing the user-based cf in cloud computing. 2017 IEEE Interna-
tional Conference on Computational Science and Engineering (CSE) and
IEEE International Conference on Embedded and Ubiquitous Computing
(EUC), 2, 46–50.

Ziani, A., Azizi, N., Schwab, D., Aldwairi, M., Chekkai, N., Zenakhra, D.,
& Cheriguene, S. (2017). Recommender system through sentiment
analysis. 2nd international conference on automatic control, telecommu-
nications and signals.

	Data Source/Code/Ethics/Technology Statement
	Introduction
	Context
	Problem Statement
	Motivation
	Societal Relevance
	Scientific Relevance
	Research Strategy

	Related Works
	Advantages & Disadvantages of CBRS
	CBRS Architecture
	Semantic Information
	Endogenous Approach
	Exogenous Approach

	CBRS Models and Evaluation Methods

	Methodology
	Data Collection
	Model Development
	Augmentation Process
	Vectorization & Creating User Embeddings
	Models

	Results
	Main Results
	Doc2Vec evaluation of the models
	Hyperparameter Tuning of XGBoost Models
	Comparison of the XGBoost model with Side Models

	Discussion
	Limitations & Further Research
	Conclusion

