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Abstract

This thesis addresses two primary questions: (1) Are stock-bond correlations time-varying

according to the models used? (2) Are structural breaks in these correlations driven by

specific macroeconomic factors?

We investigate the first question using two different models: the Rolling Window Correla-

tion (RWC) and the Dynamic Conditional Correlation (DCC) GARCH model. The findings

reveal that while both models show that the correlation is time-varying and show a similar

trend in correlations over time, the RWC with a 30-day window exhibits greater volatility

compared to the DCC(1,1) GARCH model. The stock-bond correlation being time-varying

aligns with prior research indicating that stock-bond correlations are indeed time-varying,

fluctuating between positive and negative values.

Applying a change point detection method to both correlations gives a notable similarity

in breakpoints identified by both models suggesting robust breakpoints. While some break-

points are consistent across both methods, the DCC(1,1) GARCH correlation identifies one

additional breakpoint, and some of the detected breakpoints occur at different times, either

earlier or later. Due to its reduced noise, the DCC(1,1) GARCH model was used for further

analysis to identify macroeconomic factors influencing the stock-bond correlation. The study

applies change point detection methods to macroeconomic variables such as the Consumer

Price Index (CPI) growth rate, the federal funds effective rate, the 10-year expected infla-

tion, and the years of service of the Federal Reserve chairs. Among these factors, the 10-year

expected inflation had the highest F1 score of 0.400. Since this is not a very high score, all

of these factors do not cause a structural break in the stock-bond correlation, according to

this thesis. Which answers the second research question.

The DCC(1,1) GARCH model, in particular, provides a robust tool for capturing the

actual dynamics of the stock-bond relationships, aiding in more accurate financial analysis,

risk management, and policy decision-making.



1 Introduction

In recent years, Western economies have experienced periods of relatively low inflation, result-

ing in a challenging financial environment characterized by low interest rates and economic

stress. A recent surge in inflation has further disrupted this situation. In response, central

banks worldwide have increased interest rates, a monetary policy adjustment with significant

implications for various financial instruments, including stocks and bonds. Therefore, study-

ing the drivers affecting the correlations between stocks and bonds is crucial, particularly in

the context of time-varying relationships and structural breaks influenced by macroeconomic

factors.

Understanding the dynamic correlations between stocks and bonds is essential for several

reasons. First, the stock-bond correlation has profound implications for portfolio diversifi-

cation and risk management. Second, understanding what factors change or influence these

correlations can provide insight into certain market dynamics such as, for example, the in-

fluence of the expected inflation of the stock-bond correlation.

This thesis aims to extend the literature in several ways through combining multiple

papers. First, it builds on the work of Andersson et al. (2008), who presented two meth-

ods for calculating time-varying correlations between bonds and stocks. Second, it utilizes

the framework developed by Truong et al. (2020) for identifying breakpoints in correlation

sequences. Third, it draws from studies by the European Central Bank (2022a), Li (2002),

Campbell and Ammer (1993), Czasonis et al. (2020), Pericoli (2018); Ilmanen (2003), which

have examined various factors influencing the stock-bond correlation over different periods.

Despite substantial research on stock-bond correlations, significant gaps remain. Pre-

vious studies have yet to comprehensively address how varying economic scenarios impact

the dynamic correlations between stocks and bonds. Most methods for determining these

macroeconomic factors are linear regressions with the macroeconomic factors as independent

variables. However, these methods look at all the data, and are not very interesting if, for

example, the federal funds effective rate is stable and the correlation is also stable. Our

research extends existing studies by employing advanced change point detection methods to

identify structural breaks in the correlation between stocks and bonds over the past 60 years.

We analyze these breaks to pinpoint the macroeconomic factors driving them. Therefore,

our primary contribution is a detailed examination of how economic conditions influence

the stock-bond relationship by identifying breaks in their correlation. Our secondary contri-

bution involves analyzing these breaks to uncover the macroeconomic factors driving these

structural shifts, providing valuable insights for policymakers and investors.



1.1 Literature Review 3

We use data from the last 60 years to address these research questions and apply the

methods outlined by Andersson et al. (2008) and Truong et al. (2020). Specifically, we

compare two models to evaluate their effectiveness in capturing time-varying correlations

and identifying structural breaks. We find the correlations between bonds and stocks to

be time-varying, with multiple changes between positive and negative correlations. When

finding the structural breaks in the data, they were not driven by the federal funds effective

rate, the Consumer Price Index (CPI) growth rate, the periods in which a chair was active

at the Federal Reserve, or the 10-year expected inflation rate. However, the latter had the

most significant influence on all four factors based on its F1 score of 0.400.

In what follows, we first review the existing literature on stock-bond correlations. Sub-

sequently, Section 2 provides a detailed overview of the data and the criteria for the chosen

models. Section 3 explains the models and methods used to calculate time-varying correla-

tions, to detect breaks in these correlation sequences and to calculate the F1 score as metric

for the influence of macroeconomic factors. Section 4 presents the results, followed by a

conclusion in Section 5 and a discussion in Section 6. Finally, we offer recommendations for

future research.

1.1 Literature Review

1.1.1 Introduction to Dynamic Correlation

The dynamic correlation between stock and bond returns is an essential aspect of finan-

cial market analysis, requiring advanced econometric models to capture these time-varying

relationships. This literature review addresses two main research questions: (1) Are the

correlations time-varying between stocks and bonds based on two different models? (2) Are

there any structural breaks in these correlations caused by macroeconomic factors?

The assumption of constant correlations between stocks and bonds has been extensively

challenged. Empirical evidence suggests significant time variation in response to changing

economic conditions, market volatility, and shifts in monetary policy (Gulko, 2002; Cappiello

et al., 2006; Ilmanen, 2003; Connolly et al., 2005; Ang and Bekaert, 2002). These findings

highlight the complexity of financial markets and the inadequacy of static models in capturing

the nuanced dynamics of asset correlations.

1.1.2 Models for Estimating Time-Varying Correlations

Several models have been developed to estimate time-varying correlations between stocks

and bonds, each with its own advantages and disadvantages. Two prominent models are

the Rolling Window Correlation (RWC) and the Dynamic Conditional Correlation (DCC)

GARCH model.

Rolling Window Correlation (RWC) Model

The RWC model is recognized for its standard application in financial time series analysis,

enabling the tracking of evolving correlations over time. It computes correlation coefficients



4 Introduction

within a moving window of returns, offering insights into the changing dynamics between

two different assets (Andersson et al., 2008). In this thesis, the correlation is assessed on

a monthly basis, employing a time-based rolling window. This approach ensures consis-

tency across calculations, which is crucial for financial datasets characterized by non-trading

periods (weekends and holidays). One advantage of the time-based rolling window is its ac-

commodation of datasets with an unequal number of observations between stocks and bonds;

providing flexibility is essential in financial markets where data synchronicity cannot always

be assumed. However, the RWC model has limitations in fully understanding cross-return

dynamics due to equal weighting of return observations, leading to slow adjustments to new

information since new data is weighted 1
T of the total information. This results in recent

information not getting more weight. Another limitation is the sensitivity to the choice of

window since the correlation becomes less volatile if the window size increases. (Andersson

et al., 2008; Forbes and Rigobon, 2002).

Dynamic Conditional Correlation (DCC) GARCH Model

GARCH models, such as the DCC(1,1) GARCH, are essential for modeling financial time

series characterized by volatility clustering. Standard correlation estimates assume that

the relationship between asset returns is static over time. However, in reality, correlations

can change depending on market conditions. The DCC(1,1) GARCH model, introduced

by Engle (2002), extends the Constant Conditional Correlation (CCC) model by allowing

correlations to vary over time while retaining the simplicity of univariate GARCH models in

the first stage of estimation. This two-step estimation process involves estimating univariate

GARCH models for each asset and then modeling the dynamic correlations. The DCC model

is computationally efficient and well-suited for large datasets, making it a popular choice in

empirical applications (Engle, 2002).

The DCC(1,1) GARCH model adjusts for heteroscedasticity and estimates the correlation

coefficients of standardized residuals, providing unbiased correlation estimates even in volatile

markets (Chiang et al., 2007; Celik, 2012; Cho and Parhizgari, 2009). While they offer

flexibility, accuracy, and robustness, their limitations include instability in highly volatile

data and incorrect risk estimation in the presence of structural breaks (Bauwens et al., 2006).

One disadvantage of the DCC(1,1) GARCH is that the parameters α and β are scalars, which

is necessary to ensure that the Rt matrix is positive definite for all t. However, because α

and β are scalars, all the correlations follow the same dynamics (Bauwens et al., 2006).

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Models

In financial econometrics, various Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) models have been developed to model time-varying volatility and correlations.

These models are critical in understanding the dynamic behavior of financial time series,

particularly for large datasets.
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Standard GARCH Model

The standard GARCH model, introduced by Bollerslev (1986), models the conditional vari-

ance as a function of past squared returns and past variances. While it is simple and widely

used, it is limited to univariate time series and does not capture the potential time-varying

correlations between multiple financial assets.

Multivariate GARCH Models: VEC and BEKK

In multivariate settings, the Vector Error Correction (VEC) and BEKK (Baba, Engle, Kraft,

and Kroner) models were proposed by Engle and Kroner (1995). The VEC model parameter-

izes the covariance matrix directly but becomes computationally infeasible for large datasets,

making it less usefull if the dimensionality increases. The BEKK model, while ensuring the

positive definiteness of the covariance matrix and capturing dynamic interactions between

multiple time series, remains computationally challenging for very high-dimensional datasets.

Diagonal Versions of VEC and BEKK Models

Alternative to the VEC and BEKK models are the diagonal versions of the VEC and BEKK

models. These variations simplify estimation and enhance computational efficiency by re-

ducing the number of parameters, achieved through the assumption of no cross-asset effects

in the conditional variances. In the diagonal VEC model, this means that each variable is

influenced only by its own past short-term changes, and not by those of other variables.

Consequently, these models rely solely on long-term changes. The conditional correlations

between variables may be lower compared to those estimated using a full VEC model, as im-

mediate interactions between variables are not considered. Similarly, in the diagonal BEKK

model, the conditional covariance between two variables depends solely on long-term average

covariances, thereby ignoring short-term dynamics.

Constant Conditional Correlation (CCC) GARCH Model

The Constant Conditional Correlation (CCC) GARCH model, introduced by Bollerslev

(1990), assumes that correlations between assets are constant over time. This model simpli-

fies estimation significantly, but its assumption of constant correlations is often unrealistic

in financial markets where correlations can change rapidly due to market conditions.

Extensions: Multivariate GARCH (MGARCH) Models

Other extensions include the Multivariate GARCH (MGARCH) models, which provide a

general framework for modeling conditional variances and covariances of multiple time series.

The Exponential GARCH (EGARCH) model captures asymmetries in volatility but can be

complex to estimate in a multivariate context.
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Choosing the DCC(1,1) GARCH Model

Given the trade-offs between model complexity and computational feasibility, we will use

the DCC(1,1) GARCH model of Engle (2002) in our analysis. This choice is motivated by

its balance of flexibility and efficiency, allowing us to capture time-varying correlations in a

computationally manageable framework.

1.1.3 Structural Breaks in Stock-Bond Correlations

Identifying structural breaks in stock-bond correlations is crucial for understanding how

macroeconomic factors influence financial markets. Various studies have shown that correla-

tions between stocks and bonds are not stable over time and can be significantly affected by

economic conditions such as inflation, economic growth, and interest rates. Previous studies

have shed light on the factors influencing the correlation between stocks and bonds. Inflation

has been identified as a key determinant, with high inflation periods leading to changes in

discount rates that outweigh adjustments in cash flow expectations, thus affecting the stock-

bond correlation (Ilmanen, 2003; Andersson et al., 2008). Additionally, market volatility has

been shown to potentially induce an upward bias in correlation estimates during periods of

market stress (Forbes and Rigobon, 2002).

1.1.4 Methodologies for Detecting Structural Breaks

Several methodologies have been proposed for detecting structural breaks in financial time

series, online and offline. Online methods are methods that are able to detect breaks in real-

time. We look at offline methods to identify structural breaks in data over the last 60 years.

Among these offline methods is the change point detection method by Truong et al. (2020)

which offers a robust framework for identifying breaks. This method involves optimizing a

cost function to detect multiple breakpoints in a time series, providing a detailed picture of

how and when correlations change.

Cost Functions

In selecting appropriate cost functions for change point detection across different datasets,

aligning the function with the analysis’s underlying data characteristics and specific objec-

tives is crucial. Therefore, we look at non-parametric options since we do not assume a

specific distribution for the time-varying correlations. For detecting breaks in these corre-

lations, which often involve complex, non-linear interactions between variables, the Radial

Basis Function (RBF) cost function is used, just like Arlot et al. (2012). This choice is

motivated by the RBF’s flexibility and capability to handle complex data structures, mak-

ing it well-suited for modeling non-linear relationships (Truong et al., 2020). However, this

approach comes with considerations of potential overfitting and increased computational

demands, which are mitigated through careful regularization and parameter tuning.

Conversely, for datasets where relationships are expected to be more linear and less

volatile, a linear cost function is preferred. The advantages of using a linear cost function
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include computational efficiency which is particularly beneficial for large datasets. This is

essential for econometric analyses where computational speed is a priority (Truong et al.,

2020). Additionally, the linear cost function is less prone to overfitting compared to the RBF,

ensuring that the models remain robust and generalizable across similar economic datasets.

The deliberate choice of cost functions is aligned in these papers with the nature of the data

and the analytical goals, ensuring that each model is optimally fitted to provide reliable and

interpretable results.

Iterative Methods for Structural Break Detection

To find these structural breaks, we have to iterate over the data in an efficient way. The

following methods are based on the analysis of Killick et al. (2012), who studied several

methodologies that have been developed to identify shifts in data distributions.

Binary Segmentation Binary Segmentation is one of the earliest and easiest approaches

for multiple change point detection. It iteratively applies a single change point detection

method to progressively smaller segments of the data. Binary Segmentation is computa-

tionally efficient, with a complexity of O(n log n), making it suitable for large datasets. The

algorithm is also relatively simple to implement and understand, which contributes to its

widespread use. However, Binary Segmentation is not guaranteed to find the global mini-

mum of the cost function. It often provides a suboptimal solution because it only considers

a local subset of possible change points at each step.

Segment Neighborhood Method Alternatively, the Segment Neighborhood method,

proposed by Auger and Lawrence (1989), is an exact search method that explores all possible

segmentations to find the optimal one. Unlike Binary Segmentation, Segment Neighborhood

guarantees finding the global minimum of the cost function, thus providing an optimal seg-

mentation. It can also deal with various penalty functions, allowing for customization based

on the specific requirements of the analysis. However, the method has a large computational

cost of O(Qn2), where Q is the upper limit on the number of changepoints. If the number

of changepoints increases linearly with the data size, the cost becomes O(n3), which is the

case for this thesis, since we do not impose a restriction on the number of breakpoints.

Optimal Partitioning Alternatively, Optimal Partitioning, as proposed by Jackson et al.

(2005), aims to minimize a cost function over all possible segmentations by conditioning on

the last point of change. Similar to Segment Neighborhood, Optimal Partitioning provides

an exact solution, ensuring that the segmentation is optimal. However, the method also has

a high computational cost of approximately O(n2).

Pruned Exact Linear Time (PELT) Method Alternatively, the PELT method is de-

signed to find multiple changepoints with a computational cost that is linear under certain

conditions. It uses pruning to reduce the number of potential change points that need to be



8 Introduction

considered, significantly improving efficiency. PELT’s primary advantage is its linear com-

putational cost, O(n), making it very efficient and scalable to larger datasets. Despite its

efficiency, PELT provides an exact solution, ensuring optimal segmentation without sacrific-

ing accuracy. However, the pruning mechanism and the conditions under which it achieves

linearity can be complex and difficult to implement correctly.

1.1.5 Conclusion

This literature review highlights the significance of employing time-varying models to capture

the dynamic correlations between stocks and bonds. The RWC model is selected for its

simplicity and its utility as a benchmark for comparing other models. Additionally, the

DCC(1,1) GARCH model is chosen for its computational efficiency and its capability to

account for cross-asset relations when determining the covariance. Furthermore, to capture

the non-linear relationship in the correlation data, we use the Radial Basis Function (RBF)

cost function. For the macroeconomic factors data, we use eather a linear cost function

or an RBF cost function based on what fits better with the underlying data. For detecting

structural breaks in the time series, we adopt the Pruned Exact Linear Time (PELT) method,

which provides an exact solution with a lower computational cost of O(n)

This study underscores the importance of using advanced models and methods to better

understand the fluctuating nature of stock-bond correlations and the macroeconomic factors

influencing these changes. The integration of the RWC and DCC(1,1) GARCH models, along

with the RBF and linear cost functions, and the PELT method, provides a robust framework

for analyzing these complex relationships.
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In this section, we present the data used in the analyses, detailing the data itself. We also

discuss the assumptions made about the data, the conditions that the data must satisfy to

be able to use the DCC(1,1) GARCH model effectively, and we introduce the macroeconomic

factors that could potentially influence the stock-bond correlation, such as the 10-year ex-

pected inflation, the growth of the CPI, the federal funds effective rate and the moments

where the chair of the Federal Reserve changed.

The data used to represent stocks are the prices of the S&P5001 from 1950 until now.

The dataset contains daily opening and closing prices. The descriptive statistics of this data

set can be found in Table 2.1. The data used to represent bonds are the 10-year notes2. This

dataset contains the market yield on U.S. Treasury Securities at 10-year constant maturity,

quoted on an investment basis, percent, daily, not seasonally adjusted from 1962 until now.

Both datasets have been used in multiple other papers such as Andersson et al. (2008) and

Chen et al. (2009). The descriptive statistics for this dataset can also be found in Table 2.1.

A graphical representation of both datasets can be found in Appendix A.1. The analysis uses

the intersection of the two datasets, focusing exclusively on days for which data is available.

We use this approach because it covers the longest period possible with the available data.

An extended time-frame is essential due to the substantial evolution in the relationship be-

tween stock and bond returns over time.

2.1 Assumptions

The data must satisfy specific properties to use a DCC(1,1) GARCH model effectively. First,

the data must be stationary, meaning the statistical properties such as mean and variance

should not change over time. Second, we test for the presence of autocorrelation using

a Ljung-Box test. Third, we will test for volatility clustering in the residuals in Section

4. Finally, in the latter section, we will test for the normality of the residuals using the

Jarque-Bera test.

1The data belongs to Transtrend and is based on the SPX index ISIN US78378X1072.
2From https://fred.stlouisfed.org/series/DGS10



10 Data

Table 2.1: Descriptive Statistics of Log Returns

Statistic 10-year Note Log Returns S&P 500 Log Returns

Count 15,455 15,455

Mean 3.63e-8 2.45e-4

Standard Deviation 1.6e-2 1.04e-2

Minimum -0.315 -0.229

25th Percentile -5.48e-3 -4.35e-3

Median 0.00 4.24e-4

75th Percentile 5.35e-3 5.19e-3

Maximum 0.342 0.103

Notes: The log returns are calculated from the yields of the 10-year Note and the closing

prices of the S&P 500. The descriptive statistics are based on the data from February

2nd, 1962, to January 30th, 2024.

2.1.1 Stationarity

The data needs to be stationary. Stationarity is essential because the error terms in the

model capture variability, and non-stationary returns would introduce trends that could

compromise the reliability of the DCC(1,1) GARCH results. Typically, financial returns

are not stationary (Nazir et al., 2021; Hsu, 1984). We will use the Augmented Dickey-

Fuller (ADF) test to assess if the data is stationary. When there is no unit root (indicating

stationarity), a series moves around a consistent long-term average, suggesting that the

series possesses a finite variance that remains constant over time (Glynn et al., 2007). The

hypotheses for the ADF test are as follows:

• H0: The time series has a unit root (i.e., the time series is non-stationary).

• H1: The time series does not have a unit root (i.e., the time series is stationary).

The Augmented Dickey-Fuller test examines the stationarity of the time series of the log

returns of bonds. The ADF statistic of −17.75 significantly exceeds the critical values at

the 1%, 5%, and 10% levels, being smaller than −3.43,−2.86, and −2.57, respectively. This

indicates a strong rejection of the null hypothesis, which is evidence against the presence of

a unit root in the time series.

The p-value, approximately 3.36e-30, further supports this rejection, suggesting that the

probability of observing such a test statistic under the null hypothesis is nearly zero. This

leads to the conclusion that the time series is stationary, with no unit root present, at a high

confidence level. This also holds for the log returns of the bonds with maturities 2-, 5- and

30-years.

Given these findings, the time series is considered to exhibit consistent statistical prop-

erties over time, thus validating the use of models that require stationarity as a fundamental

assumption, like the DCC(1,1) GARCH model.

The Augmented Dickey-Fuller (ADF) test is also used to evaluate the stationarity of the

time series of the log returns of stocks. The test statistic of −19.93 is below the critical
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values at all levels of significance (1%, 5%, and 10%), which are −3.43, −2.86, and −2.57,

respectively. This substantial deviation from the critical values allows for the robust rejection

of the null hypothesis, which is evidence against the presence of a unit root within the

series, indicating stationarity. A p-value of 0.0 reinforces the rejection of the null hypothesis,

suggesting an extremely high confidence level in the stationarity of the time series under

investigation.

2.1.2 Autocorrelation

To test for the presence of autocorrelation, we use a Ljung-Box test. Generally, there is no

autocorrelation among stock and bond returns (Engle, 2002), although some studies, such

as Andersson et al. (2008), account for autocorrelation. The hypotheses for the Ljung-Box

test are as follows:

• H0: The time series exhibits no autocorrelation at the specified lag.

• H1: The time series exhibits autocorrelation at the specified lag.

The Ljung-Box test results for the log returns of bonds and stocks are summarized in

Table 2.2. Graph 2.1 presents a graphical representation of the autocorrelation.

Table 2.2: Ljung-Box Test Results for Log Returns

Data Type Lags Statistic p-Value

Log Bond Returns 1 1.74 0.187

2 35.41 2.04e-8***

3 55.53 5.29e-12***

4 70.21 2.05e-14***

5 104.38 6.30e-21***

10 231.38 4.41e-44***

20 294.63 1.01e-50***

Log Stock Returns 1 1.87 0.171

2 2.20 0.333

3 2.20 0.532

4 10.41 3.40e-2**

5 10.65 5.88e-2*

10 30.66 6.68e-4***

20 54.40 5.00e-5***

Note: This table summarizes the Ljung-Box test results

for autocorrelations in the log bond and stock returns.

Using the 10-year notes as bond data. Significance lev-

els: ∗ : p < 0.10, ∗∗ : p < 0.05, ∗ ∗ ∗ : p < 0.01.

The Ljung-Box test statistic and corresponding p-values for log bond returns reveal sig-

nificant autocorrelations at lags greater than 1. Specifically, the p-values at lags two and
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(a) Autocorrelation for Demeaned Log Re-

turns of the 10-year Notes

(b) Autocorrelation for Demeaned Log Re-

turns of the S&P500

Figure 2.1: Autocorrelation Function (ACF) Plots

higher are all extremely low (smaller than 10e-8), firmly rejecting the null hypothesis of

no autocorrelation. This indicates that log bond returns exhibit significant autocorrelation,

suggesting that past returns substantially impact future returns at these lags. This result is

the same for bond returns.

In contrast, the log stock returns show a different pattern. The p-values are above a 5%

significance level for the first three lags, suggesting no significant autocorrelation at these

short lags. However, at lag 4, the p-value drops to 0.034, indicating a weak rejection of the

null hypothesis at a 5% significance level. As the lags increase, the p-values decrease, with

lags 10 and 20 showing significant autocorrelation (p-values of 6.68e-4 and 5e-5, respectively).

This implies that while log stock returns do not exhibit substantial autocorrelation at very

short lags, there is evidence of autocorrelation at longer lags.

To further verify the robustness of these findings, the Ljung-Box test is performed on

bond data with maturities of 2, 5, and 30 years. Autocorrelation is even more noticeable in

these test results, particularly at lag 1 for bonds with 2-year and 5-year maturities, as shown

in Table 2.3. This table also indicates that the results for bonds with 30-year maturities

remain consistent with the initial findings.

Overall, these results suggest that while both bond and stock returns exhibit autocorre-

lation, the pattern and strength of this autocorrelation differ between the two asset classes.

Bond returns show significant autocorrelation at nearly all tested lags, while stock returns

show significant autocorrelation primarily at longer lags. The presence of autocorrelation

aligns with the findings of Baele et al. (2010), who also found some autocorrelation in bonds

and stock returns.

Therefore, an AR(1) model is used to find the error terms of the log returns.
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Table 2.3: Ljung-Box Test Results for Log Bond Returns

Bond Type Lags Statistic p-Value

2 year maturity 1 213.02 3.009e-48***

2 221.16 9.48e-49***

3 221.42 9.92e-48***

4 222.39 5.73e-47***

5 225.37 1.05e-46***

10 238.58 1.36e-45***

20 268.81 1.80e-45***

5 year maturity 1 10.34 1.30e-3**

2 35.73 1.75e-08***

3 54.60 8.36e-12***

4 54.98 3.28e-11***

5 63.19 2.65e-12***

10 109.01 8.43e-19***

20 162.04 3.04e-24***

30 year maturity 1 0.523 0.469

2 23.60 7e-6***

3 39.28 1.51e-08***

4 59.57 3.57e-12***

5 76.14 5.37e-15***

10 158.17 7.72e-29***

20 207.63 3.47e-33***

Note: This table summarizes the Ljung-Box test results

for autocorrelations in log bond returns across various lags

for 2YR, 5YR and 30YR bonds. Significance levels: ∗ :

p < 0.10, ∗∗ : p < 0.05, ∗ ∗ ∗ : p < 0.01.

2.1.3 Volatility Clustering

Volatility clustering is a characteristic that justifies the use of a model that can accommodate

changing volatility. Volatility clustering is a fundamental characteristic of financial time

series, where periods of high volatility tend to be followed by similarly high volatility, and

low volatility periods are followed by low volatility. Typically, financial data shows volatility

clustering (Lo and MacKinlay, 2011; Cont, 2001). We test for volatility clustering using

Engle’s Autoregressive Conditional Heteroskedasticity (ARCH) test in Section 4.

2.1.4 Normality of the Residuals

To use the DCC(1,1) GARCH model effectively, it is necessary to assume a distribution for

the residuals. A common assumption is that the residuals follow a normal distribution, an

assumption supported by various studies Engle (2002); Andersson et al. (2008); Bautista
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(2003); Cappiello et al. (2006); Manera et al. (2006). Consequently, we test for the normality

of the residuals using the Jarque-Bera test. The results of this test are presented in Section

4.

2.2 Macroeconomic Factors

Based on factors identified in previous studies, we examine various additional elements that

empirically influence the correlation between stocks and bonds or are expected to do so.

Czasonis et al. (2020) demonstrated that inflation significantly affects the stock-bond corre-

lation. Consequently, we analyze the monthly Consumer Price Index (CPI) growth rate for

all items in the United States as a measure of inflation3. The data is illustrated in Figure

2.2.

Several potential breakpoints can be identified from a visual inspection of the CPI data

in Figure 2.2. The 1960s to the early 1970s shows relative stability with minor fluctuations.

Around the mid-1970s, there is a noticeable increase in volatility. The early 1980s exhibit

significant spikes in the rate, reflecting high inflation. Following the early 1980s, the period

from 1990 until 2000 seems relatively stable with less volatility. Around 2008-2010, there

was a sharp drop followed by increased volatility, likely due to the global financial crisis.

Post-2010, the rate exhibits more fluctuations, but the mean remains relatively constant.

After 2020, the CPI growth rate starts to increase again.

The expected breakpoints in the CPI growth rate data are around the mid-1970s, early

1980s, late 1990s, late 2000s, and early 2020s. These breakpoints will be identified in Section

4.3.2.

Figure 2.2: Consumer Price Index (CPI) growth rate

Furthermore, David and Veronesi (2001) indicated that fluctuations in inflation uncer-

tainty explain certain variations in the volatilities and covariances of stock and bond returns.

Therefore, we include the 10-year expected inflation rate for the United States4, as shown in

3https://fred.stlouisfed.org/series/CPALTT01USM657N
4https://fred.stlouisfed.org/series/EXPINF10YR/
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Figure 2.3.

Visual inspection of the data in Figure 2.3 identifies several potential breakpoints. The

period from 1980 to around 1987 shows a large decline in the rate, followed by a period of

relative stability with fluctuations between 1985 and 1995. Around 1995, another significant

decline was observed, lasting until approximately 1998.

The rate seems to have moved downwards from 2000 to 2010. After 2010, it appears to

stabilize. Finally, there is a noticeable increase in the rate after 2020.

The expected breakpoints in the 10-year expected inflation data are around 1987, around

1995, around 2000, late 2000s, and early 2020s. These breakpoints will be identified in section

4.3.2.

Figure 2.3: 10-Year Expected Inflation

Pericoli (2018) showed that unconventional monetary policies can impact the stock-bond

correlation. To investigate this, we consider two different aspects. First, we examine the

monthly federal funds effective rates set by the Federal Reserve5, shown in Figure 2.4. Ad-

ditionally, we analyze the periods during which each individual served as the Chair of the

Federal Reserve. Table 2.5 lists all Federal Reserve Chairs starting from the beginning of our

dataset. A graphical representation is given in Figure 2.6. We use the transitions between

these chairs as breakpoints to test their potential to explain the stock-bond correlation.

Several potential breakpoints can be identified based on the visual inspection of the

federal funds effective rate data in Figure 2.4. There seems to be a sharp increase in the

federal funds effective rate around the mid-1970s. The late 1970s to early 1980s also show

a sharp increase in the rate, reaching peaks above 17.5%. This is followed by a significant

decline in the mid-1980s. The late 1980s exhibited fluctuations with moderate peaks and

troughs, reflecting economic adjustments. The early 1990s show a large drop. The early

2000s show a large drop followed by a peak of the same size and an even more significant

drop around 2008, reflecting the response to the global financial crisis with near-zero interest

rates. Post-2015, the rate gradually increases. Finally, there is a noticeable increase around

5https://fred.stlouisfed.org/series/fedfunds



16 Data

2020.

The expected breakpoints in the federal funds effective rate data are around the mid-

1970s, the late 1970s to early 1980s, mid-1980s, late 1980s to early 1990s, 2000s, 2008-2010,

post-2015, and 2020 onwards. These breakpoints will be identified in Section 4.3.2.

Figure 2.4: Federal Funds Effective Rate
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Figure 2.5: Chairs of the Federal Reserve and Their Years of Service

Chair Years as Chair

William McChesney Martin 1951-1970

Arthur F. Burns 1970-1978

G. William Miller 1978-1979

Paul Volcker 1979-1987

Alan Greenspan 1987-2006

Ben Bernanke 2006-2014

Janet Yellen 2014-2018

Jerome Powell 2018-Present

Figure 2.6: Federal Reserve Chairs
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The analysis in this thesis explains two primary models: the Rolling Window Correlation

(RWC) model and the Dynamic Conditional Correlation Generalized Autoregressive Condi-

tional Heteroskedasticity (DCC(1,1) GARCH) model, as introduced by Engle (2002). The

DCC model is a more efficient variant of the multivariate Generalized Autoregressive Con-

ditional Heteroskedasticity (GARCH) model (Andersson et al., 2008). This section provides

a detailed explanation of both models, alongside a change point detection method and the

formulas of the F1 score which are used to evaluate the effectiveness of various factors in

explaining structural breaks in the correlation data. These methodologies together facilitate

a robust analysis of the time-varying relationships between stock and bond returns.

3.1 Rolling Window Correlation

The Rolling Window Correlation (RWC) method is a fundamental approach for analyzing the

dynamic relationship between financial assets, such as stocks and bonds. The mathematical

formulation of the RWC, as adapted from Andersson et al. (2008) and Nazir et al. (2021),

can be found in Equation 3.1, which is presented below:

ρt,S,B =

∑T
i=1(rS,t−i − r̄S,t)(rB,t−i − r̄B,t)√∑T

i=1(rS,t−i − r̄S,t)2
∑T

i=1(rB,t−i − r̄B,t)2
(3.1)

Here, rt,S and rt,B denote the returns on stocks and bonds, respectively, while r̄S and r̄B

represent the average returns over the T day window looking back from time t. It is acknowl-

edged that for certain days within the window, data for rS,t−i or rB,t−i may be unavailable.

These instances are consequently excluded from the calculation, acknowledging that some

T day windows may contain a variable number of data points. This approach shows the

model’s adaptability in handling real-world data inconsistencies.

3.2 DCC(1,1) GARCH model

The DCC(1,1) GARCH model, initially proposed by Engle (2002) and adapted by Andersson

et al. (2008), offers a sophisticated approach to modeling the conditional correlation between

stocks and bonds over time. This model uses a two-step estimation process to capture the

dynamics between these financial assets.
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The first step deviates from the original model by Engle (2002). It incorporates possible

autocorrelation in the returns, based on modifications made by Andersson et al. (2008).

This involves fitting a linear regression to both the autoregressive process of returns and the

autoregressive process of volatilities. Let rt denote the demeaned log returns of bonds and

stocks, represented as rt = {rS,t, rB,t}, where rS,t and rB,t are the returns of the stocks and

bonds, respectively.

The log returns follow an AR(1) process, as shows in Equation 3.2.

rt = γ + ϕrt−1 + εt (3.2)

where γ is the constant term accounting for a potential non-zero mean and ϕ captures the

autocorrelation in the returns. The error term εt is assumed to follow a normal distribution

with a mean of zero and a time-varying variance Hii,t, conditional on past information It−1,

εi,t|It−1 ∼ N(0, Hii,t). There are multiple papers that also assume normality of the error

term such as Engle (2002), Andersson et al. (2008), Bautista (2003), Cappiello et al. (2006)

and Manera et al. (2006). The matrix Ht is given by:

Ht = DtRtDt (3.3)

In the next step, we model the conditional variance Dt. The conditional variance is given

by:

D2
t = diag{ω}+ diag{κ} ◦ εt−1ε

′
t−1 + diag{λ} ◦D2

t−1 (3.4)

In this equation, Dt is a diagonal matrix with elements
√

hBB,t and
√
hSS,t representing

the conditional standard deviations of the returns of the bonds and stocks, respectively. ω

represents the baseline variance. Which we expect to be close to zero as the variance is then

completely captured by the other variables. κ represents how recent shocks in the log returns

impact the volatility. λ shows how much past variances influence the current variance.

Where Rt represents the conditional correlation matrix. Given the assumption of nor-

mally distributed error terms, we define the standardized residuals zt, as:

zt = D−1
t εt ∼ N(0, I) (3.5)

In the second step we use the standardized residuals, zt, to model the conditional covari-

ance matrix Qt as:

Qt = (1− α− β)Q̄+ αzt−1z
′
t−1 + βQt−1 (3.6)

Here, Q̄ = 1
T

∑T
t=1 ẑtẑt

′ is the unconditional covariance matrix of zt
1. The parameters α

and β are very important as they ensure the stationarity of the model, with the condition

α+ β < 1.

Finally, the time-varying correlation matrix Rt is derived from the conditional covariance

matrix Qt:

1Multiple papers choose different matrices for Q̄, for this thesis we will follow the approach of Lee et al.

(2006) and Bautista (2003) who use the unconditional covariance matrix.
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Rt = {ρij,t} where i, j ∈ S,B (3.7)

with the correlation between assets i and j given by:

ρij,t =
qij,t√
qii,tqjj,t

(3.8)

Where qij,t are entries of Qt.

To estimate the parameters of the model, we maximize the log-likelihood function, which

can be decomposed into the likelihood of the volatility component LV (θ) and the likelihood

of the correlation component LC(θ, ϕ).

L = −1

2

T∑
t=1

(n log(2π) + 2 log |Dt|+ r′tD
−1
t D−1

t rt︸ ︷︷ ︸
LV (θ)

−ε′tεt + log |Rt|+ ε′tR
−1
t εt︸ ︷︷ ︸

LC(θ,ϕ)

) (3.9)

By first maximizing LV (θ), we obtain the estimates of the volatility and return parame-

ters, γ, ϕ, ω, κ and λ. These estimates are then filled in Equation 3.2 and 3.4 which are both

used to calculate 3.5. After which we then maximize LC(θ, ϕ) with the optimal values from

LV (θ) to obtain the estimates of the conditional covariance parameters, α and β. These es-

timates are then used to calculate the conditional covariance in Equation 3.6 and the matrix

Qt is then used to calculate the correlation like in Equation 3.8. Which then leads to the

correlation matrix Rt as given in Equation 3.7.

3.3 Change Point Detection

To identify structural breaks in a data sequence, it is essential to use change point detection

methods. These methods find the moments at which the statistical properties of the sequence,

such as the mean or variance, change significantly. All the following methods are based on

the paper of Truong et al. (2020) unless mentioned otherwise.

Consider a time series signal y = {yt}Tt=1 representing our input data. We define a sub-

signal of length b − a from the series {yt}bt=a+1 (1 ≤ a < b ≤ T ) as ya..b, thus the complete

signal can be expressed as y = y0..T . A set of indexes is denoted by T = {t1, t2, . . .} ⊂
{1, . . . , T}, with |T | denoting its cardinality. For a finite index set T = {t1, . . . , tK}, the
dummy indices t0 := 0 and tK+1 := T are included. Here, K represents the number of

change points.

In this context, change point detection assumes that the data process y = {yt}Tt=1 is

piecewise stationary, implying that some characteristics change abruptly at unknown times

t∗1 ≤ t∗2 ≤ . . . ≤ t∗K . Change point detection aims to estimate these indices tK . The number

of change points K is unknown and must be estimated.

Change point detection is a model selection problem, which involves selecting the optimal

segmentation T based on a quantitative criterion V (T , y) that must be minimized.
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We assume that the criterion function V (T ) for a given segmentation is the sum of the

costs of all segments defining the segmentation:

V (T , y) :=
K∑
k=0

c(ytk..tk+1
) (3.10)

where c(·) is a cost function that evaluates the goodness-of-fit of the sub-signal ytk..tk+1
=

{yt}
tk+1

t=tk+1 to a specific model. The ”best segmentation” T̂ is the minimizer of the criterion

V (T ). Given the unknown number of changes, the change point detection problem involves

solving the following discrete optimization problem:

min
T

V (T ) + pen(T ) (3.11)

where pen(T ) is a penalization term that influences the number of detected breaks. A higher

value results in fewer breaks, while a lower value allows for more breaks.

The cost function c(·), as introduced in Equation 3.10, is a measure of ”homogeneity.”

Its selection dictates the type of changes detectable. Ideally, c(ya..b) is low if the sub-signal

ya..b is ”homogeneous” (i.e., contains no change points) and high if ya..b is ”heterogeneous”

(i.e., contains one or more change points).

We employ a non-parametric kernel-based detection method to avoid assumptions about

the underlying data. This method, proposed by Harchaoui and Cappé (2007), performs

change point detection in a non-parametric setting by mapping the original signal y onto a

reproducing kernel Hilbert space (RKHS) H associated with a user-defined kernel function

k(·, ·) : Rd × Rd → R. The mapping function ϕ : Rd → H is implicitly defined by ϕ(yt) =

k(yt, ·) ∈ H, leading to the following inner product and norm:

⟨ϕ(ys)|ϕ(yt)⟩H = k(ys, yt) and ∥ϕ(yt)∥2H = k(yt, yt) (3.12)

for any samples ys, yt ∈ Rd. The corresponding cost function, denoted ckernel, is defined as

follows:

ckernel(ya..b) :=

b∑
t=a+1

∥ϕ(yt)− µ̄a..b∥2H (3.13)

where µ̄a..b ∈ H is the sample mean of the signal {ϕ(yt)}bt=a+1 and ∥ · ∥H is defined in 3.12.

After algebraic manipulation, which can be found in Appendix B.1, ckernel(ya..b) can be

expressed as:

ckernel(ya..b) =

b∑
t=a+1

k(yt, yt)−
1

b− a

b∑
s,t=a+1

k(ys, yt). (3.14)

Different kernel functions can be combined with this cost function (Shawe-Taylor and

Cristianini, 2004). Examples used in this thesis include the linear kernel and the Gaussian

kernel, as shown in Equation 3.15. According to Truong et al. (2020), these are also among

the most commonly used kernels.

k(x, y) =

⟨x, y⟩ = xT y with x, y ∈ Rd linear kernel

exp(−γ∥x− y∥2) with x, y ∈ Rd gaussian kernel
(3.15)
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where γ ≥ 0 is the bandwidth parameter. While most papers do not specify a value for

γ (Killick et al., 2012; Jackson et al., 2005), Garreau and Arlot (2018) provided a value for

the bandwidth parameter, setting γ to 50.

By substituting these kernel functions into the cost functions, we obtain:

crbf(ya..b) := (b− a)− 1

b− a

b∑
s,t=a+1

exp(−γ∥ys − yt∥2)

clinear(ya..b) :=

b∑
t=a+1

yTt yt −
1

b− a

b∑
s,t=a+1

yTs yt

(3.16)

After determining the cost function, it is essential to incorporate a penalty to limit an

excessive number of breaks. The choice of penalty is subjective and highly dependent on

the characteristics of the underlying data. Therefore, to identify an appropriate penalty

value, we must evaluate the detected breaks using various penalties. The goal is to select

the penalty that aligns best with the breaks we visually interpret as a break. This iterative

process ensures that the chosen penalty value reflects the true underlying structure of the

data, balancing the trade-off between overfitting and underfitting.

When the number of changes is unknown, we solve the following penalized optimization

problem:

K̂, {t̂1, . . . , t̂K̂} := arg min
K,{t1,...,tK}

V (t1, . . . , tK) + βK (3.17)

where β > 0 is a parameter set to different values for different purposes and K̂ is the

estimated number of change points. Higher values of β yield fewer K̂.

The objective is to solve Equation 3.17. A straightforward approach involves applying the

optimization method for different values of K (from 1 to a sufficiently large Kmax) and then

selecting the segmentation that minimizes the penalized criterion. However, this approach

is computationally inefficient due to the complexity of the optimization method.

A more efficient algorithm exists for a broad class of penalty functions, specifically linear

penalties, expressed as:

pen(T ) = β|T |

where β > 0 is the same parameter. The Pelt algorithm (”Pruned Exact Linear Time”) is

introduced to find the exact solution efficiently by using a specific pruning rule to eliminate

unlikely change points (Killick et al., 2012). For two indexes t and s (where t < s < T ), the

pruning rule is defined as follows:

if

[
min
T

V (T , y0..t) + β|T |
]
+ c(yt..s) ≥

[
min
T

V (T , y0..s) + β|T |
]
,

then, t cannot be the last change point prior to s. This rule significantly speeds up

the computation. Assuming that the length of a regime is randomly drawn for a uniform

distribution, the complexity of the Pelt algorithm is linear, i.e., O(T ). The algorithm’s

pseudo-code can be found in the paper of Truong et al. (2020).
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3.4 F1 Score

After using the change detection method and finding these breaks, we will assume that these

detected breaks in the correlation between bonds and stocks, as determined by the DCC(1,1)

GARCH model, represent the true breaks. Using the same change point detection methods,

we will analyze additional data sequences of different macroeconomic factors to find breaks,

applying different cost functions and penalties to accommodate the distinct properties of

these datasets.

Subsequently, we will use an F1 score to evaluate the influence of macroeconomic factors

on the stock-bond correlation. The F1 score uses precision and recall to calculate a metric

that can compare the breaks found in both data sequences. To the best of our knowledge,

this approach has not been previously applied in this context. Traditionally, this metric

is utilized to assess the performance of change point detection methods by comparing the

identified breakpoints against the true breakpoints, as demonstrated by Truong et al. (2020).

Precision measures the ratio of true positive predictions to the total number of positive

predictions made by the model, indicating how many predicted breaks in the macroeconomic

factor dataset coincide with breaks in the correlation data within an error margin M > 0.

On the other hand, recall measures the ratio of true positive predictions to the total number

of actual positive cases, reflecting how many true breaks in the correlation data are also

breaks in the macroeconomic factor dataset.

True positives (TP) are defined where a structural break in a macroeconomic factor

is within a margin M of a break in the time-varying correlation. Formally, this can be

represented as:

TP(T ∗, T̂ ) :=
{
t∗ ∈ T ∗ | ∃t̂ ∈ T̂ s.t. |t̂− t∗| < M

}
(3.18)

Precision and recall are then given by:

PREC(T ∗, T̂ ) :=
|TP(T ∗, T̂ )|

|K̂|
and REC(T ∗, T̂ ) :=

|TP(T ∗, T̂ )|
|K∗|

(3.19)

Where K̂ is the number of predicted breakpoints in the macroeconomic factor dataset and

K∗ is the number of true breakpoints found in the correlation data. Precision and recall

are defined between 0 and 1 if the margin, M , is less than the minimum length between

two true change point indices t∗k and t∗k+1. Over-segmentation of a signal results in precision

approaching zero and recall approaching one, whereas under-segmentation has the reverse

effect. The F1 score is given by:

F1-Score(T ∗, T̂ ) = 2× Prec(T ∗, T̂ )× Rec(T ∗, T̂ )

Prec(T ∗, T̂ ) + Rec(T ∗, T̂ )
(3.20)

This approach allows us to assess which macroeconomic factors have the most significant

impact on the stock-bond correlation by measuring the alignment of breakpoints across

datasets using the F1 score.
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This section presents the results from the Rolling Window Correlation (RWC), the DCC(1,1)

GARCH model correlations, the structural breaks obtained from applying change point

detection methods, and the analysis of macroeconomic factors explaining these structural

breaks.

4.1 Rolling Window Correlation

Figure 4.1 presents the results of the Rolling Window Correlation (RWC) model using a

30-day window1. The results reveal significant volatility in the correlation between stock

and bond returns. From 1960 to 1970, the correlation fluctuated around zero, showing more

negative values until 1967 and then becoming more positive. This pattern aligns with findings

from Ilmanen (2003). Between 1970 and 2000, the correlation was predominantly positive,

after which it shifted to being negative until the mid-2000s. Following this period, the

correlation turned positive again until around 2008, during the financial crisis, when it once

more became negative, remaining so until the early 2020s. This observation is consistent

with the European Central Bank’s Financial Stability Review (European Central Bank,

2022b), which shows a positive stock-bond correlation in the United States from 1990 to

2000, mirroring the movements observed in the RWC model from 2000 to 2010. Notably, the

correlation from 2013 to 2022 is more negative in our results than the ECB report, showing a

movement around -0.3. For a robustness check, the market yields on U.S Treasury Securities

at a 2-year, 5-year and 30-year2 constant maturity, quoted on an investment basis, percent,

daily, not seasonally adjusted are used. The figures for the Rolling Window Correlations can

be found in the Appendix D.1. These results show a similar pattern to the pattern observed

in Figure 4.1.

1Appendix C.1 provides the outcomes for other window lengths.
2From https://fred.stlouisfed.org/series/DGS2, https://fred.stlouisfed.org/series/DGS5 and

https://fred.stlouisfed.org/series/DGS30.
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Figure 4.1: Rolling Window Correlation

4.2 DCC(1,1) GARCH

Table 4.1: Parameter Estimates for Log Bonds and Stocks Returns with T-Statistics

Bond T-Statistic Stock T-Statistic

γ 0.0002 1.342e2*** 0.0031 1.621e2***

ϕ 0.1000 1.47* 0.1000 1.01

ω 1.024e-06 0.27 5.13e-07 0.16

κ 0.2167 6.454e3*** 0.2165 6.453e3***

λ 0.7997 5.692e2*** 0.8002 6.124e2***

Note: This table displays parameter estimates and their

corresponding t-statistics, where the t-statistics are calcu-

lated using a hessian matrix. Significance: ∗ : p < 0.1, ∗∗ :

p < 0.05, ∗ ∗ ∗ : p < 0.01.

The results of the first step of the DCC(1,1) GARCH correlation analysis are shown in Table

4.1. The coefficient γ is very small, indicating minimal additional volatility dynamics not

captured by the other parameters. This is consistent with the findings of Andersson et al.

(2008), who reported γ values of zero, with γB not being statistically significant. However, in

this case, the t-statistics for both γ coefficients are remarkably high, reflecting the precision

and statistical significance of these estimates.

The parameter ϕ, nearly identical for both bonds and stocks (approximately 0.10), sug-

gests an autoregressive component in both return series. This similarity indicates that returns

for both assets are similarly influenced by their past values, implying that past returns have

a moderate impact on current returns. The t-statistics for ϕ show that the parameter for
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bonds is statistically significant at a 90% confidence level, while the parameter for stocks is

not. The ϕ value of 0.1000 found in this study is slightly higher than the results of Ander-

sson et al. (2008), who reported a statistically insignificant ϕS of −0.007 and a statistically

significant ϕB of 0.054. This suggests that there is almost no autocorrelation in the stock

returns in Andersson et al. (2008)’s study, while there is some in this thesis.

The baseline variance, denoted by ω, measures the baseline level of volatility. This

parameter varies between the two assets, indicating differences in their inherent volatility.

The t-statistics for ω are very low and not statistically significant. Andersson et al. (2008)

reported ω estimates of 0.005 for bonds and 0.003 for stocks, both statistically significant.

While these low values align with Andersson et al. (2008)’s results, the values found by our

model might be too low.

Both assets exhibit a relatively large κ value (around 0.216), indicating that recent shocks

substantially impact current volatility. The equality in the magnitude of this parameter for

both asset classes underscores a similar responsiveness to new information or market events

in terms of increasing the volatility. The high t-statistics for κ confirm the strong effect of

recent shocks on volatility. In contrast, Andersson et al. (2008) reported lower κ values of

0.042 for stocks and 0.034 for bonds, both statistically significant, suggesting that recent

shocks influence current volatility less in their case, which seems less logical.

High values of λ (close to 0.8 for both assets) suggest that past conditional variances

are highly predictive of current variances, indicating strong volatility clustering. This means

that bonds and stocks tend to maintain their previous levels of volatility over time. The

t-statistics for λ are also very high, indicating that the persistence in volatility is highly

statistically significant. Andersson et al. (2008) reported λ values of 0.954 for stocks and

0.951 for bonds, both statistically significant, showing a higher persistence of variance in

their parameters.

The κ and λ values are very close across the two assets, suggesting similar dynamics in

terms of volatility clustering and reaction to new information. However, differences in γ and

ω imply that the baseline levels and sensitivities to new shocks are different, with stocks

generally being more volatile. The high t-statistics across most of the parameters reflect the

robustness of these findings and provide strong evidence for the described dynamics in bond

and stock returns.

The results of the same analysis, but using different data for the log bond returns as a

robustness check, are presented in the Appendix, Table D.13. The findings, estimates, and

t-statistics are very similar, indicating that the method is highly robust. The implications

that the parameters have on the correlation will be discussed in Section 4.2.3.

4.2.1 Volatility Clustering

We apply Engle’s Autoregressive Conditional Heteroskedasticity (ARCH) test to the residuals

of log returns for bonds and stocks to detect this phenomenon. The ARCH test specifically

3The estimates for the log stock returns also vary since the datasets with different maturities have different

time-frames. Therefore, the results are not identical.
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checks whether there are significant autocorrelations in the squared residuals of the time

series, an indicator of volatility clustering. For Engle’s ARCH test, the hypotheses are:

• H0: No ARCH effects (the residuals are not conditionally heteroskedastic, which implies

no significant autocorrelations in the squared residuals)

• H1: Presence of ARCH effects (the residuals exhibit conditional heteroskedasticity,

indicating significant autocorrelations in the squared residuals)

For the residuals of log bond returns, the test statistic is significantly high at 6,816.08

with a p-value of 0.0. Similarly, the log stock returns exhibit a substantial test statistic

of 2,143.85 with a p-value of 0.0. Due to these p-values, we reject the null hypothesis of

no autoregressive conditional heteroskedastic effects, confirming the presence of volatility

clustering. This pattern is also observed in the residuals of log bond returns with maturities

of 2, 5, and 30 years4.

These findings confirm the need to use models capable of accommodating the changing

volatility, such as the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

models. Since the DCC(1,1) GARCH model addresses volatility clustering by dynamically

updating the volatility matrix at each time point, thereby capturing the time-varying nature

of volatility.

4.2.2 Normality of the Residuals

The Jarque-Bera test assesses the distributional characteristics of the daily returns data.

This test is beneficial for spotting deviations from the normal distribution by capturing both

its skewness and kurtosis.

For the residuals of the log bond returns, the Jarque-Bera test statistic is 2.07e6, with

a p-value of 0.000. This extremely high test statistic and corresponding p-value indicate

strong evidence against the null hypothesis that the residuals are normally distributed. As

a robustness check, the Jarque-Bera test was also performed on the log bond returns for

maturities of 2, 5, and 30 years5. In each case, the results similarly indicate a strong rejection

of the normality assumption.

Similarly, the log stock returns’ residuals yield a Jarque-Bera test statistic of 3.68e5 with

a p-value of 0.000. Like the bond returns, this result strongly rejects the null hypothesis of

normality in the distribution of the residuals. These findings suggest that the log returns on

both stocks and bonds significantly deviate from a normal distribution when considered over

a period of 60 years. This deviation could be attributed to the presence of heavy tails and

skewness in the distribution of returns, which is typical in financial markets due to factors like

market sentiment, large jumps in prices due to economic events, and other market anomalies

(Lo and MacKinlay, 2011).

The error terms are not normally distributed. However, for this thesis, we will assume

normality. This approach follows the methodology of Andersson et al. (2008), who analyzed

4The results are not included in this thesis since the results show no new insights.
5The results are not included in this thesis since the results show no new insights.
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the same datasets over a shorter timeframe. We have redone the analysis of Andersson et al.

(2008) on the timeframe that they used to test for normality. The results are indicated in

Table E.1. These results show that the residuals for the dataset within this timeframe used

by Andersson et al. (2008) are also not normally distributed. Additionally, testing different

periods within the timeframe used by Andersson et al. (2008) reveals that the residuals

remain non-normally distributed in both their results and those derived in this thesis, as

shown in Tables E.2 and E.3.

4.2.3 DCC(1,1) GARCH Step 2

The estimated parameters of the second step of the DCC(1,1) GARCH model are as follows:

Table 4.2: Parameter Estimates

Parameter Bootstrap 50 Bootstrap 10

Estimate T-Statistic T-Statistic

α 0.0325 8.41*** 6.14***

β 0.9619 3.44*** 4.08***

Note: This table displays parameter estimates and their corre-

sponding t-statistics, where the t-statistics are calculated based

on a bootstrap method. Bootstrap 50 means that the data was

resampled 50 times. Significance: ∗ ∗ ∗ : p < 0.01.

The estimated value of α is 0.0325, indicating the responsiveness of the correlation dy-

namics to new shocks or innovations. This relatively low value suggests that new shocks

have a small impact on changing the correlation between bonds and stocks. This implies

that daily market fluctuations or specific news events do not tend to change the correlation

structure between these two asset classes drastically. The parameter estimate is statistically

significant for 10 and 50 bootstrap samples, as presented in Table 4.2, which supports the

findings of Andersson et al. (2008), who reported a value for α of 0.042.

The estimated value of β is 0.9619, indicating high persistence in correlations. This high

β value signifies that once established, the correlation between stock and bond returns tends

to remain stable over time. The parameter estimate is statistically significant at a 99%

confidence interval for 10 bootstrap samples and 50, as shown in Table 4.2. This resembles

the results from Andersson et al. (2008) closely, as they reported a value for β of 0.950.

The sum of α and β is approximately 0.9944, slightly below 1, which is needed for model

stability. This near-unit sum indicates that the correlations are mean-reverting, ensuring

that the model’s predictions remain realistic and bounded, thus avoiding extreme over- or

underestimations of correlations over time, which was also an assumption of the model.

The results of the same analysis, but using different data for the log bond returns as a

robustness check, are presented in Appendix D.2. The findings are very similar, indicating

that the method is highly robust.

The Dynamic Conditional Correlations (DCC) graph can be found in Figure 4.2. The

DCC model correlations follow a similar dynamic to the Rolling Window correlations, al-
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though it exhibits less volatility and consequently less noise. The stock-bond correlation is

slightly negative from 1962 until 1967, aligning with the theory proposed by Ilmanen (2003).

Subsequently, the correlation becomes positive from 1967 until a slight dip around 1990,

after which it returns to positive values until approximately 1999. It then turns negative

but reverts to positive a year later, briefly dropping to very negative values, even below

-0.6. Around 2005, the correlation became slightly positive again, only to collapse around

2008 and remain negative until the early 2020s. These observations are consistent with the

movements described in the European Central Bank’s Financial Stability Review (European

Central Bank, 2022b).

Figure 4.2: Correlation DCC(1,1) GARCH using the 10-year Note

4.3 Break-test

4.3.1 Correlation

When detecting breakpoints in data sequences, this is done through the minimization of a

cost function plus a penalty. For these results, the penalties were selected based on visual

inspection of the correlation graphs as shown in Figure 4.3 and 4.4. This approach ensured

the detection of large changes in the correlation. The Radial Basis Function (RBF) cost

function was used to identify these breakpoints. This method was chosen because visual

inspection indicated it was the most effective in detecting the expected breaks.

The penalties were calibrated to detect only larger changes, thus avoiding overfitting

the model with an excessive number of breakpoints. This calibration involved checking

multiple penalties and examining the resulting breakpoints. Very low penalties could result

in over 100 breakpoints, which is beyond the scope of this thesis. The objective is to identify

macroeconomic factors affecting the bond-stock correlation on a broader basis rather than on

a monthly basis. For the rolling window correlations, a penalty of 50 was chosen, resulting in

9 structural breaks over approximately 60 years6. This aligns with the findings of A’Hearn

6The last break is excluded because the model always shows a break after the final data point.
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and Woitek (2001), who noted that a typical business cycle has an average duration of 7-10

years. For the DCC(1,1) GARCH correlations, a penalty of 100 was selected, resulting in 10

structural breaks over the same period7, which is also consistent with the results of A’Hearn

and Woitek (2001). In contrast, the rolling window correlation (RWC) method results in

fewer breakpoints, likely due to higher volatility in the correlation estimates, as shown in

Figure 4.3, compared to those generated by the Dynamic Conditional Correlation (DCC)

GARCH model, as illustrated in Figure 4.4. Consequently, the RWC method failed to detect

a noticeable strutural break that the DCC(1,1) GARCH model could identify, which is the

break around 20138. However, all other breaks seems to be rather similar.

Figure 4.3: Breakpoints Rolling Window Correlation 30 day time window

Figure 4.4: Breakpoints DCC(1,1) GARCH Correlation

7The same exclusion applies to the breaks of the DCC(1,1) GARCH correlation.
8Adjusting the rolling window size might resolve this issue.
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4.3.2 Macroeconomic Factors

A different kernel function was used for all additional datasets compared to the one used

for detecting breaks in the correlation data. Specifically, a Gaussian kernel was used for

the correlation data, whereas a linear kernel was applied to the additional datasets. This

decision was based on a visual inspection of applying both kernels to all the datasets and

selecting the option that most effectively detected the expected breaks.

The approach for determining the penalties for all additional datasets mirrors the method

employed for calibrating the penalties for the correlation data. These penalties are precisely

calibrated to identify only larger changes, thereby preventing the model from overfitting with

an excessive number of breakpoints. This calibration process includes evaluating multiple

penalty values and analyzing the corresponding breakpoints.

The results from the change point detection method applied to the federal funds effective

rate are shown in Figure 4.5. A penalty of 100 was chosen for the analysis, and the results

proved to be highly robust, as the identified breakpoints remained consistent, with penalties

ranging from 81 to 140. As expected, a breakpoint was observed around the mid-1970s. Ad-

ditionally, an unexpected break was detected before 1970. We predicted a break between the

late 1970s and early 1980s, between the late 1980s to early 1990s, around 2000, and around

the financial crisis in 2008 which were all confirmed. Additionally, an unanticipated break

between 2000 and 2008 appears justified due to the rate’s increase followed by a decrease

in 2008. Finally, a break in the early 2020s was detected, aligning with our expectations,

although this break occurred slightly later than predicted.

Overall, the results align closely with our initial expectations, demonstrating the method’s

effectiveness in identifying significant changes in the federal funds effective rate.

Figure 4.5: Breaks in the Federal Funds Effective Rate

The results from the change point detection method applied to the 10-year expected

inflation are presented in Figure 4.6. A penalty of 2 is used for this analysis. The first

observed break was around the mid-1980s, which was not anticipated. The second break,

around 1986, closely matches our prediction. Although we expected a break around 1995,
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breaks were detected around 1992 and 1998. These breaks appear to be more accurate than a

single break around 1995. Additionally, the break around 1998 captures the expected break

around 2000, and the break around 2003 better divides the data. The anticipated breaks

around the late 2000s, around 2008 and early 2020s align with the results.

Overall, the results align closely with our initial expectations, demonstrating the method’s

effectiveness in identifying significant changes in the 10-year expected inflation.

Figure 4.6: Breaks in Expected 10-Year Inflation

The results from the change point detection method applied to the Consumer Price Index

(CPI) are shown in Figure 4.7. A penalty of 1 is used for this analysis. The first observed

break is around the mid to late 1960s, which was not in line with our earlier expectations

but seems logical given the differing average rates in both regimes. The following two breaks,

around the mid-1970s, align with our expectations and capture this movement effectively.

The fourth break, in the late 1970s, was not expected. The fifth break, in the early 1980s,

aligns with our expectations. Although we anticipated a break around the late 1990s, no

break was detected there. However, the expected break around the late 2000s was observed

in 2008, around the financial crisis, with the model detecting two breaks there. The final

breakpoints, around the early 2020s, also align with our expectations.

Overall, while the results align with our initial expectations, they are less consistent than

those for the other datasets.
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Figure 4.7: Breaks in the Consumer Price Index (CPI)

4.4 F1 Score

4.4.1 Comparison of RWC and DCC(1,1) GARCH

To compare the performance of the Rolling Window Correlation model and the DCC(1,1)

GARCH model, we use the F1 score as a metric. The precision and recall are well-defined

up to a margin of 240 because this method requires that the minimum distance between true

breakpoints (DCC(1,1) GARCH breakpoints) is larger than the maximum margin. Since the

minimum distance is 247, we use 240 as the maximum margin.

The F1 scores for various margins are presented in Table 4.3. Initially, at a margin of 30 days,

the F1 score is already very high and further increases as the margin increases. This indicates

that with a margin of 30 days, the Rolling Window Correlation model and the DCC(1,1)

GARCH model exhibit a precision of 0.625, meaning that 62.5% of the breakpoints identified

by the Rolling Window Correlation model are also detected by the DCC(1,1) GARCH model.

Similarly, a recall of 0.556 implies that 55.6% of the breakpoints identified by the DCC(1,1)

GARCH model are also recognized by the Rolling Window Correlation model. With a margin

between 210 and 240, the F1 score is 0.824, indicating a very high score that demonstrates the

robustness of the detected breaks. Figure 4.8 shows the DCC(1,1) GARCH correlation with

the breaks found in the DCC(1,1) GARCH correlation and the breaks found in the RWC.

This figure confirms a similarity between the breaks found in both time-varying correlations.

Table 4.3: F1 Score for RWC Breakpoints at Different Margins

Margin (days) precision recall F1 score

30–120 0.625 0.556 0.588

150–180 0.750 0.667 0.706

210–240 0.875 0.778 0.824
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Figure 4.8: DCC GARCH correlation with Breakpoints and RWC Breakpoints

4.4.2 Macroeconomic Factors

The results of the F1 score for the federal funds effective rate, presented in Table 4.4, demon-

strate a noticeable improvement as the margin increases. For a margin ranging from 30 to

120 days, the F1 score is 0.0879, indicating relatively low performance in detecting the true

breaks, which are the breaks found in the DCC(1,1) GARCH correlation data. However,

when the margin increases to 210-240 days, the F1 score significantly improves to 0.348.

This suggests that with a larger margin, the model’s ability to accurately identify breaks

in the correlation data improves, reflecting higher precision and recall. A graphical repre-

sentation of the breaks found in the federal funds effective rate and the breaks detected in

the DCC(1,1) GARCH correlation is presented in Figure 4.9. This figure illustrates that the

federal funds effective rate does not explain the structural breaks identified in the DCC(1,1)

GARCH correlation.

Choosing an appropriate margin is crucial for interpreting the influence of the federal

funds effective rate on the correlation between stock and bond returns. A smaller margin

suggests that the federal funds effective rate does not influence the correlation, as it fails to

capture true breaks due to the narrow window. On the other hand, a larger margin could

lead to the mistaken conclusion that the federal funds effective rate influences the correlation

when this might merely be coincidental.

9Considering that change detection methods always place a break at the end of the dataset, all the

macroeconomic factors in our case share at least one break with the breaks found in the DCC(1,1) GARCH

correlation
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Table 4.4: F1 Score for Fed Fund Rate at Different Margins

Margin (days) precision recall F1 score

30–120 0.071 0.111 0.087

150–180 0.143 0.222 0.174

210–240 0.286 0.444 0.348

Figure 4.9: Breaks in the Federal Funds Effective Rate and Breaks in the DCC GARCH

Correlation

The results of the F1 score for the expected 10-year inflation at different margins, pre-

sented in table 4.5, show a similar trend. For a margin of 30, the F1 score is 0.133, which

is very low. However, the F1 score improves significantly when the margin is slightly in-

creased. For a margin of 90-240 days, the F1 score becomes 0.4, indicating better detection

of true breaks. This suggests that the model’s performance in identifying breaks in expected

inflation data also benefits from a larger margin. A graphical representation is presented in

Figure 4.10, which shows a similarity between the structural breaks in the DCC(1,1) GARCH

correlation and the breaks detected in the 10-year expected inflation. However, between 1980

and 1990, there are two breaks in the 10-year expected inflation that are not detected in the

DCC(1,1) GARCH correlation.

Table 4.5: F1 Score for 10-Year Expected Inflation at Different Margins

Margin (days) precision recall F1 score

30 0.143 0.125 0.133

60 0.286 0.250 0.267

90–240 0.429 0.375 0.400
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Figure 4.10: Breaks in the Expected 10-year Inflation and Breaks in the DCC GARCH

Correlation

The F1 scores for the Consumer Price Index growth rate at various margins are presented

in Table 4.6. The results indicate that the F1 score remains low across all margins, suggesting

that CPI growth data does not influence the correlation between stocks and bonds. This is

confirmed by the breaks shown in Figure 4.11.

Table 4.6: F1 Score for Consumer Price Index growth rate at Different Margins

Margin (days) precision recall F1 score

30–240 0.111 0.100 0.105

Figure 4.11: Breaks in the CPI Growth Rate and Breaks in the DCC GARCH Correlation

The F1 scores for the Federal Reserve Chairs at various margins are presented in Table

4.7. While it would be ideal to consider a margin of one year before and after a break due
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to the use of yearly data, the metrics do not allow for this approach because multiple breaks

occur within a one-year interval. Nevertheless, the change in Federal Reserve Chairs does

not appear to be a reliable indicator of structural breaks in the stock-bond correlation. This

is confirmed by the breaks shown in Figure 4.12.

Table 4.7: F1 Score for Fedederal Reserve Chairs at Different Margins

Margin (days) precision recall F1 score

30–120 0.167 0.125 0.143

150–240 0.333 0.250 0.286

Figure 4.12: Switches of the chair of the Federal Reserve and Breaks in the DCC GARCH

Correlation

Examining a margin of 240 days across all datasets reveals that the 10-year expected

inflation most closely aligns with the actual breaks identified in the DCC(1,1) GARCH

correlation data. The Fed Funds rate follows closely, exhibiting higher recall but lower

precision. This means that the 10-year expected inflation is better in the sense that breaks

in the 10-year expected inflation are also breaks in the DCC(1,1) GARCH correlation, and the

Fed Fund rate has a higher recall because more breaks in the DCC(1,1) GARCH correlation

correspond to breaks in the Fed Fund rate. The results vary with the choice of margin.

For instance, with a margin of 30, the F1 score is highest for different periods of chairs of

the Federal Reserve. However, for all other margins, the F1 score for the 10-year expected

inflation remains the highest.
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The main findings of this research show that the results of the Rolling Window Correlation

and the Dynamic Conditional Correlation GARCH (DCC(1,1) GARCH) model appear sim-

ilar at first glance, a conclusion supported by robustness checks. Nonetheless, the Rolling

Window Correlation with a 30-day window exhibits more volatility than the DCC(1,1)

GARCH correlation. Both results show significant changes in the correlation over time,

suggesting that these correlations vary over time. This answers the first research question

which asks if the stock-bond correlation is time-varying. This variability is consistent with

prior studies (Engle, 2002; Andersson et al., 2008; Ang and Bekaert, 2002), demonstrating

that correlations can fluctuate between positive and negative values. Additionally, in recent

years, the stock-bond correlation is changing to a positive correlation again.

Our analysis further reveals that recent shocks to returns significantly affect the variance,

and past conditional variances are highly predictive of current variances, indicating strong

volatility clustering. While new shocks have a limited effect on altering the correlation, the

persistence of these correlations remains high, suggesting that the correlation tends to be

relatively stable over time.

Visual inspection suggests a degree of similarity when examining structural breaks in the

time-varying correlations of the RWC correlations and the DCC(1,1) GARCH correlation.

This is confirmed by the calculated F1 score. Since the breaks are very similar we can say

that the detected breaks are very robust.

Due to its reduced noise, the DCC(1,1) GARCH model was used for further analysis

to identify macroeconomic factors influencing the stock-bond correlation. Change point

detection methods applied to the Consumer Price Index (CPI), federal funds effective rate,

and 10-year expected inflation revealed multiple breaks in all three datasets. The switch of

the Federal Reserve chairs was also considered. The F1 score was calculated for each factor

to assess its ability to predict structural breaks in the stock-bond correlation. Among these,

the 10-year expected inflation had the highest F1 score of 0.400. This indicates that it was

the most predictive of structural breaks. This is in line with the result of Ilmanen (2003). All

other macroeconomic factors had a lower F1 score. This leads to the conclusion that CPI, the

federal funds effective rate, the switch of Federal Reserve chairs, and the 10-year expected

inflation do not fully account for the observed breaks in the correlation data. This suggests

that there are no structural breaks caused by macroeconomic factors. Which answers the

second research question which asks if there are any macroeconomic factors that cause a

structural break in the stock-bond correlation.
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In summary, our analysis confirms the time-varying nature of stock-bond correlations,

identifies that there are no macroeconomic factors tested in this thesis that can explain

structural breaks in the stock-bond correlation, and highlights the use performance of the

DCC(1,1) GARCH model which offers a robust tool for filtering noise and capturing the

true dynamics of the stock-bond relationship, making it valuable for financial analysis, risk

management, and policy decision-making.
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This study aimed to investigate the time-varying correlation between stock and bond returns

and identify the macroeconomic factors influencing this correlation by detecting structural

breakpoints. Understanding that stock-bond correlations are time-varying is crucial for in-

vestors, monetary policymakers, and risk managers. For investors, this insight helps con-

struct more resilient portfolios that account for the dynamic nature of asset correlations. For

risk managers, it allows for better assessing and mitigating risks associated with portfolio

diversification and asset allocation. For policymakers, recognizing the factors that influence

these correlations, even indirectly, can aid in better forecasting and managing economic con-

ditions. For example, central banks could use these findings to anticipate and mitigate the

impact of economic shocks on financial markets. For example, knowing that the federal

funds effective rate does not cause structural breaks in the stock-bond correlation will help

in deciding how to set the federal funds effective rate. Investors with a standard 60/40 port-

folio also want to know if their allocation is negatively correlated, suggesting a hedge in a

portfolio, or if they are positively correlated, which would increase the portfolio’s risk.

This research is especially relevant this year due to the timing of the U.S. elections in

November 2024. Former President Trump has been outspoken in his criticism of Federal

Reserve Chair Jerome Powell, accusing him of intending to lower interest rates to benefit the

Democrats (Goldman and Ross, 2024). Consequently, Powell might not be reappointed if

Trump is elected. If the chairs of the Federal Reserve significantly influences structural breaks

in the stock-bond correlation, the political and economic tensions could have substantial

impacts on the financial markets. However, according to the results of this thesis, this is not

the case.

This study has multiple strengths, such as its comprehensive approach to modeling the

time-varying correlations using an advanced DCC(1,1) GARCH model and a large dataset

spanning multiple decades. However, this approach also had some limitations.

One limitation is the window size of the rolling window correlation method since its effec-

tiveness is highly dependent on this chosen window size. A different window size might yield

better alignment with the breakpoints found by the DCC(1,1) GARCH model. The rolling

window approach captures short-term variations but can be sensitive to the window length.

Future research could explore optimal window sizes or adaptive window techniques that ad-

just based on data characteristics to enhance the accuracy of break detection. Comparing the

practical implications of using Rolling Window Correlation and DCC(1,1) GARCH models

shows different advantages and challenges. The rolling window approach is straightforward
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and computationally less intensive, making it suitable for real-time applications. However,

the DCC(1,1) GARCH model offers a more sophisticated and dynamic approach to captur-

ing time-varying correlations. One must weigh these trade-offs when choosing a method for

correlation estimation in asset- and risk management.

Another limitation of this study is the assumption of normality for the error term in the

DCC(1,1) GARCH model. This assumption does not hold, as seen in the normality test.

This implication is very significant since the results could be completely different ff normality

is assumed, when this does not hold. Section 7 presents a possible solution for this.

Determining which penalty to use in change-point detection methods is subjective, rep-

resenting a significant shortcoming. As highlighted by Celisse et al. (2018), varying penalties

can lead to different detection results. This subjectivity introduces biases and inconsistencies

in identifying structural breaks, affecting the robustness of the results. Future research could

look at developing more automated methods for penalty selection to enhance the reliabil-

ity of change-point detection outcomes. The penalty term exhibits significant sensitivity to

changes, as does the bandwidth parameter, γ. Variations in γ greatly influence the number

of detected breakpoints. The choice of cost function, kernel, and optimization method also

considerably impacts the results.

The F1 score, as used in this study, is limited in its ability to detect multiple breakpoints

within a close margin of a true breakpoint. This limitation suggests a need for adapting the

F1 score or developing new metrics that can better capture the multiplicity and proximity

of breakpoints. Improved metrics provide a more nuanced evaluation of factors that could

result in a structural break in the stock-bond correlation.

The findings of this thesis have broader implications for financial theory and practice.

Understanding the dynamics of the stock-bond correlation and the factors driving structural

breaks can inform asset allocation, risk management, and policy-making, as mentioned.

In summary, this thesis provides valuable insights into the time-varying correlation be-

tween bonds and stocks, the macroeconomic vectors influencing these correlations. Future

research should continue to extend these models and explore their applications in broader

financial contexts.



7 Proposal for Further Research

7.1 Different Distribution

In this thesis, we initially assume that the residuals follow a normal distribution. However,

subsequent tests reveal that this assumption does not hold true, suggesting that another

distribution might better fit the data. Orskaug (2009) discusses the possibility of achieving a

better fit by modifying the log-likelihood functions. One alternative that might fit the data

better is the Student-t distribution. Nevertheless, as shown in Figure 7.1, which displays

Q-Q plots for the residuals of log bond and stock returns against the Student-t distribution,

this distribution also fails to provide a perfect fit. The Q-Q plots reveal significant deviations

at the tails, indicating the presence of heavy tails or outliers that the Student-t distribution

does not fully capture. Figure 7.2 further highlights that for log bond returns with shorter

maturities, the fit deviates even more from the Student-t distribution. The Q-Q plot for the

bond with a 30-year maturity closely resembles that of the residuals of the log bond returns

for the 10-year maturity. Therefore, future research may need to explore other distributions

or more advanced modeling techniques to better represent the residuals.

(a) Q-Q Plot for the Residuals of Log Bond

Returns

(b) Q-Q Plot for the Residuals of Log Stock

Returns

Figure 7.1: Q-Q Plots for Bond and Stock Residuals
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(a) Q-Q Plot for the Residuals of Log Bond

Returns (2 Year maturity)

(b) Q-Q Plot for the Residuals of Log Bond

Returns (5 Year maturity)

Figure 7.2: Q-Q Plots for Bond Residuals with different maturities

7.2 Finding Breakpoints in Real Time

To make effective investment decisions, it is crucial to identify breakpoints in the data quickly

and in real time. Future research should focus on assessing how rapidly these breakpoints

can be detected using real-time data. One approach could be to apply the process of detect-

ing breakpoints incrementally, using data up to various points in time and applying online

change-point detection methods. We could then compare these results with the result of this

thesis. This would allow us to determine whether breakpoints can be identified within days

or if it takes several years.

If the exact date of the breakpoint is not necessary, a margin can be used to evaluate

whether the newly detected date falls within an acceptable range of the actual breakpoint.

This approach provides flexibility in the detection process and can help if precision is not

very necessary.

7.3 Look at Different Data

Another area for future research could be to recalculate the DCC(1,1) GARCH correlation

after specific events. For instance, the DCC(1,1) GARCH correlation could be calculated

for periods corresponding to different Federal Reserve chairman’s periods, analyzing the

correlation during each chairman’s term.

Additionally, this approach could be applied to periods of varying inflation rates. By

comparing the DCC(1,1) GARCH correlations during periods of low inflation with those

from periods of high inflation, researchers can also assess if inflation impacts the correlation.

Another idea for future research is to redo the analysis using different datasets, such as

bond and stock indices from European countries or China. This would help determine if the

findings of this paper hold across different markets and economic environments.
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A Data visualization

The following representation includes the stock data and bond data used. It displays the

yields of the 10-year notes and the closing prices of the S&P 500, alongside the demeaned

log returns of both datasets.

(a) Log Bond Returns Demeaned (b) Yield Log

(c) Log Returns Demeaned Stock (d) Close price Stock

Figure A.1: Bond and Stock data



B Cost function: kernel

Equation B.1 shows the derivation of the cost function of a general kernel.

ckernel(ya..b) =
b∑

t=a+1

∥ϕ(yt)− µ̄a..b∥2H

=
b∑

t=a+1

⟨ϕ(yt)− µ̄a..b, ϕ(yt)− µ̄a..b⟩H

=

b∑
t=a+1

⟨ϕ(yt), ϕ(yt)⟩H − 2

b∑
t=a+1

⟨µ̄a..b, ϕ(yt)⟩H +

b∑
t=a+1

⟨µ̄a..b, µ̄a..b⟩H

Using that µ̄a..b =
1

b− a

b∑
s=a+1

ϕ(ys), we get

=

b∑
t=a+1

⟨ϕ(yt), ϕ(yt)⟩H − 2

b− a

b∑
s,t=a+1

⟨ϕ(ys), ϕ(yt)⟩H +
1

b− a

b∑
s,t=a+1

⟨ϕ(yt), ϕ(ys)⟩H

=
b∑

t=a+1

⟨ϕ(yt), ϕ(yt)⟩H − 1

b− a

b∑
s,t=a+1

⟨ϕ(ys), ϕ(yt)⟩H

Using 3.12, we get

=
b∑

t=a+1

k(yt, yt)−
1

b− a

b∑
s,t=a+1

k(ys, yt).

(B.1)



C Rolling Window Correlation for differ-

ent time windows

The following figures show the Rolling Window correlation calculated using different time

windows.

(a) Rolling Window Correlation for a 60 day

window

(b) Rolling Window Correlation for a 183 day

window

(c) Rolling Window Correlation for a 365 day

window

(d) Rolling Window Correlation for a 731 day

window

(e) Rolling Window Correlation for a 1096 day

window

Figure C.1: Correlations between stocks and bonds using various time windows



D Robustness

D.1 Rolling Window Correlation

The following figures show the Rolling Window Correlation using a 30-day time window but

using different datasets for the bonds. Namely bond data with a 2-year, 5-year and 30-year

maturity. This is done as a robustness check.

(a) Rolling Window Correlation using the

two-year note

(b) Rolling Window Correlation using the

five-year note

(c) Rolling Window Correlation using the

thirty-year note

Figure D.1: Correlations between stocks and bonds using various bond data

D.2 DCC(1,1) GARCH

The same process is applied to the DCC(1,1) GARCH correlations. Below, the correlations

for various bond datasets are presented along with the estimated parameters used to calculate

these.



52 Robustness

(a) DCC(1,1) GARCH Correlation using 2-

year Bond data

(b) DCC(1,1) GARCH Correlation using 5-

year Bond data

(c) DCC(1,1) GARCH Correlation using 30-

year Bond data

Figure D.2: Correlations between stocks and bonds using various bond data

Table D.2: Parameter Estimates for Different Bond Maturities with Kappa and Theta

Estimate T-Statistic

2 YEAR

κ 0.0216 9.596***

θ 0.9730 3.668***

5 YEAR

κ 0.0239 6.790***

θ 0.9715 3.742***

30 YEAR

κ 0.0322 6.275***

θ 0.9642 3.864***

Note: This table displays the parameter es-

timates and their corresponding t-statistics

for kappa and theta for different bond matu-

rities. T-statistics are based on a bootstrap

of 50. Significance levels: ∗ ∗ ∗ : p < 0.01.
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Table D.1: Parameter Estimates for Different Bond Maturities and Stocks Returns with

T-Statistics

Bond T-Statistic Stock T-Statistic

2 YEAR

γ 0.0011 182.48*** 0.0040 70.69***

ϕ 0.1000 1.80* 9.9968e-2 1.40

ω 5.7385e-06 4.95e-2 9.778e-07 0.20

α 0.1982 4303.16*** 0.1975 4265.06***

β 0.7977 277.21*** 0.7991 346.82***

5 YEAR

γ 4.77e-4 28.39*** 3.147e-3 73.08***

ϕ 0.1000 1.02 9.9981e-2 1.01

ω 2.1900e-06 0.16 6.2100e-07 0.14

α 0.2113 1830.59*** 0.2109 1826.22***

β 0.7985 148.75*** 0.7999 176.52***

10 YEAR

γ 2.41e-4 134.19*** 0.0031 162.08***

ϕ 0.1000 1.47 9.9987e-2 1.01

ω 1.0229e-06 0.27 5.1253e-07 0.16

α 0.2167 6454.89*** 0.2165 6453.38***

β 0.7997 569.15*** 0.8002 612.37***

30 YEAR

γ 7.80e-4 127.24*** 4.399e-3 378.70***

ϕ 0.1000 1.07 9.9977e-2 1.84*

ω 3.7000e-06 0.16 1.2500e-06 0.55

α 0.1803 2042.07*** 0.1803 2033.00***

β 0.7977 170.62*** 0.7976 156.52***

Note: ∗ : p < 0.1, ∗∗ : p < 0.05, ∗ ∗ ∗ : p < 0.01. This table displays pa-

rameter estimates and their corresponding t-statistics categorized under

different bond maturities and stock.



E Additional results Jarque-Bera test

Furthermore, a Jarque-Bera test was performed to check the normality of the residuals in

Andersson et al. (2008), given their assumption of normality, which is also assumed in this

study. This is done for the whole length of the datasets as used in the paper of Andersson

et al. (2008) in Table E.1. In Table E.2, the results are presented for the analysis using the

time frame of Andersson et al. (2008) and in Table E.3 the results are presented for the the

analysis using the entire dataset used in this thesis.

Table E.1: Jarque-Bera Test Results for Bond and Stock returns using the timeframe of

Andersson et al. (2008)

Bond Stock

Statistic 1135.34 2356.80

p-value 2.9144e-247 0.0

Note: This table displays the

Jarque-Bera test statistics and their

corresponding p-values for the resid-

uals of log returns for both bonds

and stocks.
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Table E.2: Jarque-Bera Test Results for Different Periods using the timeframe of Andersson et al. (2008)(Log-transformed Data)

Period Description Jarque-Bera for Bonds Jarque-Bera for Stocks

Statistic p-value Statistic p-value

1991-01-01 to 1999-12-31 Pre Dot-com bubble 688.38 3.32e-150*** 3432.15 0.0***

2000-01-01 to 2002-12-31 Dot-com bubble burst 138.58 8.10e-31*** 42.06 7.37e-10***

2003-01-01 to 2005-12-31 Post Dot-com bubble burst 70.40 5.17e-16*** 59.67 1.10e-13***

1991-01-01 to 2000-12-31 Before 9/11 676.26 1.42e-147*** 2728.45 0.0***

2001-01-01 to 2002-12-31 Around 9/11 48.05 3.69e-11*** 28.78 5.64e-7***

2003-01-01 to 2005-12-31 After 9/11 70.40 5.17e-16*** 59.67 1.10e-13***

1991-01-01 to 1995-12-31 Early 90s recession recovery 333.73 3.39e-73*** 337.78 4.48e-74***

1996-01-01 to 2000-12-31 Economic expansion 302.73 1.83e-66*** 620.01 2.32e-135***

2001-01-01 to 2002-12-31 Early 2000s recession 48.05 3.69e-11*** 28.78 5.64e-7***

2003-01-01 to 2005-12-31 Recovery from early 2000s recession 70.40 5.17e-16*** 59.67 1.10e-13***

1991-01-01 to 1994-12-31 Pre-1992 election 304.73 6.76e-67*** 243.64 1.24e-53***

1995-01-01 to 1998-12-31 Pre-1996 election 451.41 9.51e-99*** 2723.02 0.0***

1999-01-01 to 2002-12-31 Pre-2000 election 160.60 1.34e-35*** 51.66 6.06e-12***

2003-01-01 to 2005-12-31 Pre-2004 election 70.40 5.17e-16*** 59.67 1.10e-13***

1991-01-01 to 1993-12-31 1991-1993 15.18 5.05e-4*** 211.99 9.26e-47***

1994-01-01 to 1996-12-31 1994-1996 462.42 3.86e-101*** 137.84 1.17e-30***

1997-01-01 to 1999-12-31 1997-1999 106.71 6.72e-24*** 478.45 1.27e-104***

Note: This table summarizes the results of the Jarque-Bera tests for bond and stock returns over various periods, using

the overall time frame of Andersson et al. (2008). The Jarque-Bera statistic tests the null hypothesis that the data follows

a normal distribution. Significance levels: ∗ ∗ ∗ : p < 0.01.
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Table E.3: Jarque-Bera Test Results for Different Periods using the whole dataset (Log-transformed Data)

Period Description Jarque-Bera for Bonds Jarque-Bera for Stocks

Statistic p-value Statistic p-value

1991-01-01 to 1999-12-31 Pre Dot-com bubble 684.05 2.88e-149*** 3434.27 0.0***

2000-01-01 to 2002-12-31 Dot-com bubble burst 138.35 9.09e-31*** 42.06 7.37e-10***

2003-01-01 to 2005-12-31 Post Dot-com bubble burst 70.17 5.78e-16*** 59.67 1.10e-13***

1991-01-01 to 2000-12-31 Before 9/11 672.30 1.03e-146*** 2729.80 0.0***

2001-01-01 to 2002-12-31 Around 9/11 47.95 3.88e-11*** 28.78 5.64e-7***

2003-01-01 to 2005-12-31 After 9/11 70.17 5.78e-16*** 59.67 1.10e-13***

1991-01-01 to 1995-12-31 Early 90s recession recovery 330.27 1.92e-72*** 338.16 3.71e-74***

1996-01-01 to 2000-12-31 Economic expansion 302.13 2.47e-66*** 619.99 2.35e-135***

2001-01-01 to 2002-12-31 Early 2000s recession 47.95 3.88e-11*** 28.78 5.64e-7***

2003-01-01 to 2005-12-31 Recovery from early 2000s recession 70.17 5.78e-16*** 59.67 1.10e-13***

1991-01-01 to 1994-12-31 Pre-1992 election 300.93 4.51e-66*** 244.04 1.02e-53***

1995-01-01 to 1998-12-31 Pre-1996 election 450.33 1.63e-98*** 2723.00 0.0***

1999-01-01 to 2002-12-31 Pre-2000 election 160.40 1.48e-35*** 51.66 6.06e-12***

2003-01-01 to 2005-12-31 Pre-2004 election 70.17 5.78e-16*** 59.67 1.10e-13***

1991-01-01 to 1993-12-31 1991-1993 14.54 6.98e-4*** 212.47 7.28e-47***

1994-01-01 to 1996-12-31 1994-1996 462.08 4.59e-101*** 137.83 1.18e-30***

1997-01-01 to 1999-12-31 1997-1999 106.37 7.98e-24*** 478.44 1.28e-104***

Note: This table summarizes the results of the Jarque-Bera tests for bond and stock returns over various periods.

The Jarque-Bera statistic tests the null hypothesis that the data follows a normal distribution. Significance levels:

∗ ∗ ∗ : p < 0.01.
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