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Abstract  

Due to the rise of online advertising, novel forms of fraud have emerged, posing new 

challenges to organizations’ business activities. One of those novel forms of fraud is click fraud, in 

which advertisers are disadvantaged by publishers or competitors who perform insincere clicks on the 

advertisers’ ads. This form of fraud is exploited when the pay-per-click business model is applied. 

This leads to depletion of the advertisers’ budgets, without contributing to their business goals. To 

counteract this issue, machine learning has been employed to build classifiers that can prematurely 

detect a fraudulent click, and possibly prevent it. The current study aimed to investigate the 

classification capabilities of TabNet for click fraud detection, as this model had, at present, not been 

utilized for this purpose. Additionally, the performance of TabNet was compared to the two best-

performing methods as proposed in the current literature on detecting click fraud. The TalkingData 

dataset was used, in which roughly 185 million clicks were collected in a period of four days. The data 

was first split into a train and test set. Feature selection, feature engineering, and SMOTE were 

performed separately on the train and test set to prevent leakage. Afterward, the train set was split into 

a train and validation set. Modeling and hyperparameter optimization were performed on the training 

data and examined on the validation set. The final model with optimized hyperparameters yielded an 

accuracy score of 95.7%. However, the precision score of 4.2% illustrated a poor performance in 

predicting the positive class. Although the classification capability of TabNet showed decent 

performance on the TalkingData dataset, the model was unable to outperform the best-performing 

models. Limitations and future directions are discussed in the final chapter.  

Keywords: online advertising, pay-per-click, click fraud detection, deep learning, TabNet  
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Technology statement 

The dataset was retrieved from Kaggle and has been offered by the leading big data service 

platform in China, TalkingData. The data contains clicking information on a mobile app 

advertisement. IP addresses and other information that could identify the used have been label 

encoded. Hence, the dataset does not contain any personal information. As stated on the competition 

page on Kaggle, under competition Rules, permission has been granted to use the dataset for academic 

purposes.  

The tables in this study have been created by the author of this study, however, table 1 has 

been adapted from Byun & Batool (2022). Furthermore, code has been adopted from a Kaggle 

submission for the feature engineering stage, and various Stack Overflow posts have been employed 

for debugging purposes. Lastly, three writing tools have been employed, namely, the thesaurus from 

Merriam-Webster to help with paraphrasing, the Writing Center from the University of Richmond to 

aid in suitable transitional words and phrases, and Grammarly for a spelling, grammar, and 

punctuation review of the final version of the present study.  

 

Click Fraud Detection Using TabNet 

With the rise of online advertising, unprecedented forms of fraud have arisen, posing problems 

in the domain of online advertising. One of those fraudulent techniques is click fraud, which involves 

generating synthetic clicks on advertisements, depleting the budget of advertisers, and leaving 

dishonest publishers with more revenue (Minastireanu & Mesnita, 2019; Thejas et al., 2021). 

According to a global PPC click fraud report, small and medium-sized businesses (SMBs) lose 

US$14,900 on average per year due to click fraud (PPC Protect, 2021). Furthermore, professor Cavazo 

from the University of Baltimore estimated that the total number of losses due to digital ad fraud 

amounted to US$35 billion in 2020 (University of Baltimore, 2020). Additionally, cybersecurity 

company Cheq estimated a total loss of US$61 billion in online advertising fraud in 2022 (Trajcheva, 

2023). This illustrates the continuing and rapid growth of digital fraudulent behavior. Therefore, 

detecting and preventing fraudulent clicks can be of great benefit to the marketing activities of 

https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-detection/overview
https://www.kaggle.com/code/ranitsarkar01/talkingdata-fraudulent-click-prediction/notebook
https://www.kaggle.com/code/ranitsarkar01/talkingdata-fraudulent-click-prediction/notebook
https://www.merriam-webster.com/
http://writing2.richmond.edu/writing/wweb/trans1.html
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companies that employ online advertising, as their budget will be administered as intended, and 

positively impact their business goals. 

Various machine learning methods have been developed to detect click fraud. For instance, 

one study found the random forest algorithm to be the best machine learning algorithm, yielding an 

accuracy of 84% (Aljabri & Mohammad, 2023). A different study employed a novel machine learning 

method for the task of click fraud detection, the LightGBM method, yielding an accuracy of 98% 

(Minastireanu & Mesnita, 2019). Furthermore, research in this field has employed deep learning 

methods, namely, Artificial Neural Networks (ANN) and Generative Adversarial Networks (GAN), 

realizing 94.7% accuracy (Thejas et al., 2019). Lastly, an ensemble of methods, comprised of a 

Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory network (BiLSTM), 

and Random Forest was applied, detecting click fraud with 99.6% accuracy (Batool & Byun, 2022). 

Amongst the aforementioned studies, many other studies have applied a variety of methods, either 

alone standing or hybrid, to detect false clicking behavior.  

Although many methods have been used to detect click fraud, to the best of my knowledge, no 

studies have employed TabNet for this purpose. TabNet is a novel deep learning algorithm developed 

for tabular data and has been used for a variety of tasks (Arik & Pfister, 2020). For instance, TabNet, 

combined with SMOTE, was employed for a binary classification task detecting card fraud, obtaining 

an AUC-ROC score of 89.2% and an accuracy score of 97.2%, outperforming all other methods used 

during this study (Meng et al., 2022).  Moreover, TabNet has also been employed in a medical context, 

namely, to classify Alzheimer’s disease, realizing an accuracy score of 88.3% for multi-class 

classification, and 93.8% for binary classification (Jin et al., 2023). These studies exemplify the 

potential of TabNet for classification tasks.    

Given that TabNet can be effective for fraud detection and binary classification tasks, it is 

reasonable to suggest that TabNet can be an effective method for detecting click fraud. Therefore, the 

central research question of this study is: How accurately can click fraud be detected using TabNet? In 

addition, one sub-question will be investigated, namely, how does TabNet perform compared to the 

two currently most accurate methods on detecting click fraud? These methods will be discussed in the 

next chapter. Societally, investigating this research question can be of relevance to businesses making 
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use of online advertising, as it might allow for more accurate detection of click fraud, which, in turn, 

can reduce budget losses. Shown by the scarcity of literature on TabNet, scientifically, exploring this 

research question broadens our current understanding of TabNet and its functioning, by applying it to 

a task that, at present, has not utilized the model.    

 

Literature review  

Click fraud 

Online advertising involves four parties: publishers, advertisers, end-users, and advertising 

networks. Publishers possess websites or apps that facilitate advertising opportunities in the form of 

advertising space. For example, on websites, those ads include banners, display ads, or video ads. The 

types of in-app advertising opportunities entail, amongst others, playable ads, offerwalls, and rewarded 

video ads. Advertisers purchase advertising space from publishers via advertising networks, which, in 

turn, display their ads to end-users. Advertising networks are large companies such as Google and 

Meta that facilitate the advertising process between advertisers and publishers (Wilbur & Zhu, 2009; 

Aljabri & Mohammad, 2023).  

The process commences with an online advertising campaign devised by the advertiser. The 

advertiser determines a budget for the campaign and submits it to the advertising network’s interface. 

Publishers inform the advertising networks of the advertising space that they offer on their website or 

in their app. The advertising network takes the ad from the advertiser and displays it on the website or 

in the app of the publisher to reach the end-users (i.e., the target audience). Each time an end-user 

clicks on the advertisement, the publisher generates revenue, the advertising network earns a portion 

of the publisher’s revenue, and the budget of the advertiser depletes. This business model is called 

pay-per-click (PPC; Thejas et al., 2021; Aljabri & Mohammad, 2023).  

However, this construction allows for fraudulent activities to unfold. Malignant publishers or 

competitors of the advertiser can generate illegal clicks to, generate more revenue for the publisher, or 

deplete the advertising budget of the advertiser, instigated by competitors. Naturally, parties who carry 

out these illegal clicks have no interest in the ad, causing the advertiser’s budget to decline, without 

benefitting the business goals intended for the advertising campaign (Aljabri & Mohammad, 2023). In 
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addition to publishers and competitors, click fraud can be committed by other sources. Bots, for 

example, generate the majority of internet traffic and therefore the largest source of fraudulent clicks. 

Furthermore, proxy clicks are often illegal as the IP address and geolocation are hidden, contaminating 

the marketing data of advertisers. Lastly, click farms created for fraudulent interactions with websites 

and social media, and dissatisfied customers, have shown to be a source of click fraud (Gohil & 

Meniya, 2021).   

Click fraud detection  

Given that there are various sources and methods for click fraud, it can be difficult to detect 

this illegal behavior. Additionally, the lack of quality control in the world of online advertising, 

specifically regarding PPC, leads to a continuous increase in budget losses for advertisers (Gohil & 

Meniya, 2021). To combat the issue of click fraud, various machine learning methods have been 

developed to detect ungenuine clicks. Doing so can diminish the problem of click fraud, allowing 

advertisers to use their budgets as originally intended. For instance, if it is likely that an end-user with 

a certain IP address and device is performing fraudulent clicks, detecting their presence in the app or 

on the website prematurely can prevent them from performing a fraudulent click by hiding the 

advertisement. However, the publisher’s compliance is required to do so as their traffic information is 

integral to this solution. If the fraudster is the publisher, this solution does not work. Nevertheless, 

other solutions can be constructed with the accurate prediction of click fraud to potentially overcome 

or reduce this challenge.   

The methods in the current literature consist of machine learning, deep learning, or 

hybrid/ensemble models for click fraud detection. To see an overview of the models and their 

performances, see Table 1. As can be seen in Table 1, no two studies use the same method for the task 

of click fraud detection. This complicates determining the current state-of-the-art method for click 

fraud detection, as the robustness of one method can be questioned, i.e., performance on a dataset 

different from the one applied in the adhering studies to investigate if the performance of the method 

is comparable across multiple datasets.  
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Table 1 

Machine learning methods for click fraud detection   

Note: this graph was adapted from Batool & Byun (2022). Furthermore, this graph is not exhaustive 

of all studies that have been conducted on click fraud detection using machine learning techniques. 

Studies that have not reported accuracy score have been left out.  

 

Nonetheless, at present, the CNN-BiLSTM-RF method seems to be the most accurate method 

to detect fraudulent clicks, with an accuracy score of 99.6%. The architecture is comprised of a  

 convolutional neural network for automatic implicit feature extraction, a bidirectional long short-term 

memory network used for learning long-term data sequences in a forward and backward fashion, and a 

random forest for (binary) classification (Batool & Byun, 2022). The second best-performing method 

for the task of click fraud detection is LightGBM, which is a gradient boosting decision tree method, 

using leaf-wise growth to build a decision tree. The method yielded an accuracy score of 98% 

(Minastireanu & Mesnita, 2019).  

Although both studies aimed to accurately detect click fraud, and realized a good performance 

on this task, there are several differences between the ensemble method applied by Batool & Byun 

Author(s) Year Model(s)  Dataset  Accuracy  

Thejas et al. 2019 ANN-GAN TalkingData 94.7% 

Minastireanu & Mesnita 2019 LightGBM TalkingData 98% 

Viruthika et al.  2020 XGBoost -  91% 

Liu et al.  2020 Cost-Sensitive CNN BuzzCity Dataset  93% 

Li & Jia 2020 Random Forest  Real-Click Fraud Data 93.6% 

Thejas et al.  2021 Cascaded Forest and 

XGBoost  

TalkingData, Avazu, Kad 94.5% 

Gohil & Meniya  2021 XGBoost Gradient Boosting  Online Advertising Data 96% 

Aberathne  2021 Hidden Markov Scoring 

Model  

Mobile Advertising Company  94% 

Batool & Byun  2022 CNN-BiLSTM-RF TalkingData 99.6% 

Aljabri & Mohammad  2023 Random Forest  Beacon  84% 
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(2022) and the machine learning method applied by Minastireanu and Mesnita (2019). Firstly, the 

former looked at a mobile ad system’s relationship with users, publishers, and advertisers, while the 

latter assessed instances based on the click portfolio of a single user (i.e., how many clicks were 

performed without downloading the app). Secondly, the CNN-BiLSTM-RF method was trained on 

one million random samples, maintaining the class ratio of the full dataset, and utilizing the original 

features of the dataset. Contrastingly, the LightGBM model was trained on the whole dataset and 

applied feature engineering, training the model on a total of 19 features. Furthermore, Batool & Byun 

(2022) applied SMOTE on the train set to counteract the problem of imbalance, while Minastireanu & 

Mesnita (2019) did not apply an over or under sampling method to solve this issue. Lastly, the 

performance of CNN-BiLSTM-RF was evaluated on the Area Under the Curve (AUC), accuracy, 

precision, sensitivity, F1-score, and specificity, while LightGBM was evaluated solely on accuracy.   

TabNet 

Where deep learning for data types like images, audio, and text is widely researched and has 

shown to be successful in comparison to other machine learning models, tabular data is relatively 

underrepresented in the field of deep learning. However, tabular data is the largest encountered 

datatype in today’s world. To realize similar success of deep learning for tabular data, as has been the 

case for other datatypes, TabNet was developed (Arik & Pfister, 2020).  

TabNet is a novel canonical deep neural network algorithm for tabular data. The algorithm 

uses gradient descent to find the minimum value of the loss function, and sequential attention for 

feature selection, making feature selection before training nonessential (Arik & Pfister, 2020). TabNet 

has been applied to a variety of tasks like, credit card fraud detection yielding an accuracy score of 

96.5% (Zhang et al., 2022), rainfall prediction yielding an RMSE score of  0.619 (Yan et al.., 2021), 

and diabetes detection realizing an accuracy score of 99.4% (Joseph et al., 2022). In the 

aforementioned research, TabNet outperformed all other benchmark models used during these studies.  

As previously stated, TabNet has, at present, not been utilized for the task of click fraud 

detection. Given the high accuracy scores of the currently best performing methods, CNN-BiLSTM-

RF and LightGBM, for the task at hand, one can argue the relevance of applying TabNet to this 

context, as there is little room for improving the accuracy of click fraud detection that the currently 
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best performing methods provide. However, the market size of online advertising in 2022 was valued 

at US$236.9 billion and is expected to realize annual growth of 15.7% up to and including 2030 

(Grand View Research, 2022). In 2022, the total loss to ad fraud was estimated at US$61 billion, 

which is more than a quarter of the total market size (Trajcheva, 2023). Because of the context of the 

current study, concerning enormous amounts of money, a small improvement in the accuracy of click 

fraud detection can lead to a large decrease in economic losses caused by click fraud. Not only does 

this help commercial organizations with the optimization of their advertising budgets, but it can also 

help government agencies with tackling this criminal activity. When ad fraud becomes less lucrative 

due to even the higher accuracy of fraud detection and prevention, ad fraudsters might lose interest and 

abandon their criminal activities, decreasing the threat of this type of cybercrime.   

 

Methodology  

Dataset Description  

In this study, the TalkingData dataset was used, offered by the leading big data service 

platform in China. TalkingData provided a separate train and test file in CSV format for competition 

purposes. However, the test file does not contain a target feature and, therefore, only the train dataset 

was used in the current study. This dataset contains information on roughly 185 million clicks 

collected between 06-11-2017 and 10-11-2017. The dataset was retrieved from Kaggle and has been 

used in other studies that aimed to predict click fraud (see Table 1). Eight features are included in the 

dataset: ip_address, app, device, os, channel, click time, downloads time, and is_attributed. See 

Appendix A for a description of each feature. The features ip_address, app, device, os, and channel 

have already been label encoded by the provider of the data. The target feature is the is_attributed 

feature, indicating if an app was downloaded after clicking a mobile app advertisement. There is a 

major imbalance in the data as the target feature pertains for 99.75% to value 0, meaning that the app 

was not downloaded, and 0,25%  pertains to the class that did download the app denoted as value 1.  

Algorithms and Software  

During this study, all code was written in Python language (version 3.11.5; Van Rossum & 

Drake, 2009). The TabNet model is trained using the open-source PyTorch_tabnet package, developed 

https://www.kaggle.com/competitions/talkingdata-adtracking-fraud-detection/overview
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by French software company DreamQuark (2023). The model uses gradient descent for optimization 

and sequential attention for soft feature selection. A single encoding step consists of three processes: a 

feature transformer, an attentive transformer, and a mask. The feature transformer process includes a 

fully connected layer, batch normalization layer, and a gated linear unit to select the features for each 

decision step. The attentive transformer encompasses a fully connected layer, a batch normalization 

layer, prior scales indicating prior use of a feature, and a sparsemax activation function, which results 

in the selection of salient features. The mask indicates what features to use for the next decision step. 

The decoder architecture, aimed at reconstructing tabular features from the encoding step, consists of a 

feature transformer followed by a fully connected layer at each step.  

Next to Pytorch_tabnet, various other packages were used for preprocessing the data, 

visualizing the data, hyperparameter optimization, and calculating the evaluation metrics. These 

processes are discussed in more detail in the next subparagraph. Firstly, Pandas (McKinney, 2010) and 

NumPy (Harris et al., 2020) were used for data manipulation, structuring the data in such a manner 

that it could be used for feature engineering, oversampling, and training the model. Furthermore, 

Pandas was used to convert the click_time feature to a time object. Secondly, the Python module 

datetime was employed to extract individual time features (i.e., minute, hour, etc.) from the click_time 

feature. Furthermore, Imblearn was used for the Synthetic Minority Oversampling Technique 

(SMOTE; Lemaître, 2017), and the Python module collections to count the instances of the majority 

and minority classes before and after the application of SMOTE. Additionally, Scikit-learn was used 

for the three-way splitting of the data, hyperparameter optimization with randomized search, and 

calculating the evaluation metrics (Pedregosa et al., 2011). Also, the built-in attribute of Scikit-learn, 

feature_importances_, was used to calculate the feature importance. Lastly, Matplotlib was utilized to 

visualize the exploratory data analysis, confusion matrices, and feature importance (see Figures 4 and 

5; Hunter, 2007). See Appendix B for an overview of all packages and their versions used for the 

current study. The aforementioned methods are discussed in more detail in the following 

subparagraph.  

The performance of TabNet on detecting click fraud was compared to the two currently best-

performing methods for click fraud detection, namely, CNN-BiLSTM-RF and LightGBM (see Table 
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1). As previously mentioned, TalkingData provided separate train and test files. The study by Batool 

& Byun (2022) used the train file provided by TalkingData, containing roughly 185 million rows, and 

trained the CNN-BiLSTM-RF method on one million random samples because of computational 

limitations, which was also applicable to the current study. Therefore, the CNN-BiLSTM-RF method 

was not retrained in the current study. Contrastingly, Minastireanu and Mesnita (2019) trained 

LightGBM on a combined dataset of the train and test file provided by TalkingData, which amounted 

to approximately 200 million. Therefore, in the present study, LightGBM was retrained to explore the 

performance of the model when trained on the same data as was used by Batool & Byun (2022), and in 

the current study. By using the exact same data for all three models, a more impartial comparison 

could be made between, CNN-BiLSTM-RF and LightGBM, and TabNet. The LightGBM package was 

used to retrain LightGBM in the present study (Ke et al., 2017).      

Workflow  

TabNet 

A graphical representation of the workflow can be found in Figure 1. Firstly, exploratory data 

analysis was performed to gain a better understanding of the data and visualize its patterns. Next, the 

data was split into a train and test set, with 80% of data reserved for the training set, and 20% for the 

test set. The training and test set consisted of roughly 148 million, and 37 million rows respectively, 

after the train/test split. This was done to avoid data leakage from occurring. Due to computational 

limitations and time restrictions, the training set was reduced to one million random samples, reducing 

run time on modeling and hyperparameter optimization. Next, preprocessing was implemented for 

both the training and test sets separately. Feature selection was performed by dropping the 

attributed_time feature. Because TabNet does not allow the input of missing values, and 99.75% of 

this column consisted of missing values, the feature was dropped from both the train and test set.  

Next, feature engineering was performed. First, the click_time feature was used to add time-

related features to the subsets. The day in the week and year on which the click was performed were 

added as separate features. Furthermore, the hour, second, and minute of the click timestamp were 

extracted and added as individual features. Secondly, features were created by grouping the IP address 

with other features and counting the occurrences. For instance, ip_count was added, showing the 
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number of clicks one IP address performed in the course of four days. Another addition is the feature 

ip_hour_channel, indicating the number of times a click was performed from one IP address, in a 

specific publisher app, at a certain hour. For all added features based on IP grouping and time-related 

features, see Appendix C. Again, the aforementioned methods were performed on both the train and 

test set, separately.  

After preprocessing, the data train data was split into 80% train data and 20% validation data, 

which amounted to 800.000 and 200.000 rows respectively. All subsets housed 17 columns. Hold-out 

cross-validation (i.e., three-way split) was applied in this study, as opposed to k-fold cross-validation, 

because of the large dataset providing a sufficient amount of data for modeling (Yadav & Shukla, 

2016). On the remaining training data, SMOTE was performed to counteract the sizable imbalance in 

the dataset, leaving both classes with 800.000 rows. SMOTE was chosen for the current dataset as it 

has shown to be the most effective technique for highly imbalanced data compared to other 

oversampling, undersampling, or hybrid techniques (Bach et al., 2017; Vimalraj & Porkodi 2018). 

Next, with the synthetically oversampled training dataset, the first TabNet model was trained, 

employing the default hyperparameters. The maximum number of epochs was 100 and for each epoch, 

the performance was evaluated on balanced accuracy. This metric was chosen because of the 

imbalanced data. Early stopping was performed when the performance did not show improvement 

within 10 epochs. The original paper introducing TabNet recommended a batch size of up to 10% 

(Arik & Pfister, 2020). Accordingly, the batch size was set at 64000 training examples, which was 

10% of the training data after the train validation split.  

To tune the hyperparameters of the model, due to time restrictions, randomized search was 

applied for six hyperparameters. For randomized search, the number of iterations to find the optimal 

hyperparameters can be specified, as opposed to grid search which exhaustively searches for the 

optimal hyperparameters. The number of iterations was set at 130, exploring about a quarter of all 

possible hyperparameter combinations (486) specified in the parameter grid. See Appendix D for all 

hyperparameters and values examined during randomized search. Note that, because randomized 

search does not search for the optimal hyperparameters exhaustively, the true combination of optimal 
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hyperparameters might have never been found. With the improved hyperparameters, the TabNet 

model was optimized, predicted on the test set, and evaluated on its performance.  

Figure 1 

Methodology workflow TabNet

 

Note: this workflow only applies in whole to the training of TabNet, not LightGBM, which has mostly 

been retrained based on the data science techniques reported in the original paper (Minastireanu & 

Mesnita, 2019).  

 

LightGBM 

The workflow for retraining LightGBM is relatively the same for TabNet up to and including 

the preprocessing of the training and test set. Doing so allows for retraining the model on the same 

dataset as was done for TabNet. SMOTE was not applied because the original paper did not make use 

of such a technique (Minastireanu & Mesnita, 2019). Furthermore, the exact hyperparameters that 

were used in the original paper were also used in the current study to retrain LightGBM for click fraud 

detection. See Appendix E for an overview of all the hyperparameters and theirs values. For 

exploratory purposes, the retrained LightGBM model was also trained on the full train set (i.e., 148 

million rows) to investigate the dependence of LightGBM on the amount of data that the model is 

trained on. LightGBM is less computationally demanding and could therefore also be trained on the 

full train dataset, instead of only one million random samples.    
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Evaluation Method  

The evaluation metrics for the performance of TabNet and benchmark models will be 

accuracy, as this is the only evaluation metric that was reported in both the original papers of the 

benchmark models. Additionally, the study by Batool & Byun (2022) also evaluated the CNN-

BiLSTM-RF method on precision, sensitivity, specificity, and the F1-score, and will therefore also be 

reported in the current study for TabNet and the retrained LightGBM model. Not all evaluation 

metrics that will be reported in the current study, were reported in the original study by Minastireanu 

& Mesnita (2019), and can therefore only be compared based on accuracy score.  

Furthermore, to give a better overview of TabNet’s and retrained LightGBM’s predictive 

performances on the positive and negative classes, the confusion matrices for both models will be 

reported. Moreover, feature importance for both TabNet and the retrained LightGBM was calculated 

and visualized to examine the individual contribution of the original features and engineered features, 

to the classification performance of both models. This was primarily done to examine the contribution 

of the feature engineering phase to the performance of the models.  

Accuracy is not effective for highly imbalanced data, as is the case for the TalkingData dataset 

(Thölke, 2023). Therefore, the balanced accuracy score, which is the arithmetic mean of specificity 

and sensitivity, developed for imbalanced data, was used to as the evaluation metric for each epoch 

during the training of TabNet (Garcia et al., 2009).  

 

Results  

In this section, EDA, data preprocessing, hyperparameter optimization, and classification 

performance of TabNet and the retrained LightGBM on the TalkingData dataset, as described in the 

methodology section, will be reported.  

Exploratory data analysis  

Firstly, the number of clicks performed per hour was examined. Figure 2 shows that the most 

clicks were performed at 4 a.m. This might illustrate the activity of clicks performed by bots, as this is 

an unusual time for actual end users to be active, and demonstrates the challenge of click fraud.  
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Figure 2 

Number of clicks per hour   

 

 

Furthermore, associations between the categorical features, ip, app, device, os, and channel 

were investigated to see if there were highly associated features that could be removed to potentially 

improve the model’s performance and enhance computational efficiency. The effect size measurement 

Cramer’s V was used, which is a statistic for measuring the association between categorical variables 

(Kearney, 2017). Figure 3 shows a moderate association between ip and device, indicating that clicks 

from unique users are often performed on the same device, and app and channel, implying that ads of 

advertisers are often displayed to end-users on one certain app. Because the associations were only 

moderate, no features were removed from the dataset.  
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Figure 3 

Feature associations  

 

TabNet 

Initial training of TabNet with default hyperparameters achieved an accuracy score of 88.5%, 

a balanced accuracy score of 84.7%, a precision score of 1.8%, a sensitivity score of 80.9%, an F1 

score of 3.5%, a specificity score of 88.5%, and an AUC score of 84.7% on the validation set. After 

hyperparameter tuning, the model showed improved performance, achieving an accuracy score of 

94.0%, a balanced accuracy score of 87.8%, a precision score of 3.3%, a sensitivity score of 88.0%, an 

F1 score of 6.4%, a specificity score of 94%, and an AUC score of 87.8% on the validation set. See 

Appendix F for the hyperparameter values after the execution of randomized search to find optimal 

parameters. The final predictions of TabNet on the test set achieved an accuracy score of 95.7%, a 

balanced accuracy score of 85.3%, a precision score of 4.2%, a sensitivity score of 74.9%, an F1 score 

of 7.9%, a specificity score of 95.7%, and an AUC score of 85.3%. See Table 2 for an overview of all 

aforementioned performance scores at each stage.  

Considering the aforementioned evaluation metrics, TabNet seems to perform relatively well 

based on accuracy score. From all instances, the model predicts 95.7% correctly. However, when 

considering precision and the F1 score, it becomes evident that the model performs very poorly on the  



 17 

Table 2  

Performance of  TabNet  

Phase Accuracy Balanced 

accuracy 

Precision Sensitivity F1 Specificity AUC 

Initial 

training 

88.5% 84.7% 1.8% 80.9% 3.5% 88.5% 84.7% 

Optimized 

training 

94.0% 87.8% 3.3% 88.0% 6.4% 94.0% 87.8% 

Evaluation on 

test set 

95.7% 85.3% 4.2% 74.9% 7.9% 95.7% 85.3% 

 

positive classes, i.e., the instances leading to a download of the app. This can also be observed from 

the confusion matrix in Figure 4, showing that the model predicted 1.56 million instances as positive 

when they were, in fact, negative, out of all 36.9 million instances (4.2%), while 22.908 out of 91.345 

positive instances were predicted incorrectly (25.1%). This illustrates that the error rate for prediction 

in positive instances is considerably higher compared to the error rate in the negative instances.  

 

Figure 4 

Confusion matrix TabNet 
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Interestingly, the AUC score of 85.3% suggests that the model is capable of distinguishing the 

classes fairly well, and thus, the predictive performance can potentially be improved by moving the 

classification threshold. Nevertheless, the original LightGBM and CNN-BiLSTM-RF methods 

achieved a higher accuracy score. Therefore, TabNet was not able to outperform the best performing 

models (see Table 3).  

Lastly, the contribution to the model’s prediction, of the original features and the features from 

the engineering stage, are considered. Figure 5 shows that the original features app and device 

contribute the most to the model’s prediction, contributing 33.9% and 21.2%, respectively. The 

original feature channel shows adequate importance, contributing for 15.6%. The features from the 

engineering stage did not contribute much to the model’s predictions.  

 

Table 3 

Comparison of TabNet to the best-performing models 

Model Accuracy Balanced 

accuracy 

Precision Sensitivity F1 Specificity AUC 

CNN-

BiLSTM-

RF 

99.6% - 99.6% 99.6% 99.6% 99.6% 99.6% 

LightGBM 98.0% - - - - - - 

TabNet 94.6% 85.3% 4.2% 74.9% 7.9% 95.7% 85.3% 

Note: in this graph, the performance of LightGBM from the original paper by Minastireanu and 

Mesnita (2019) is reported, not the performance of the LightGBM model retrained in the present 

study.  
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Figure 5  

Feature importance TabNet 

 

Note: the values on the x-axis of this graph display percentages. For an explanation of each feature 

exhibited on the y-axis, please see Appendix A and C.   

 

Retrained LightGBM 

First, LightGBM was retrained using the reduced dataset of one million samples. The model 

achieved an accuracy score of 72.2%, a balanced accuracy score of 58.1%, a precision score of 0.2%, a 

sensitivity score of 43.9%, an F1 score of 1.0%, a specificity score of 72.2%, and an AUC score of 

58.1%. Next, LightGBM was retrained using the full train dataset in the current study, achieving an 

accuracy score of 87.1%, a balanced accuracy score of 52.3%, a precision score of 0.3%, a sensitivity 

score of 17.3%, an F1 score of 1.0%, a specificity score of 87.2%, and an AUC score of 52.3%. For an 

overview of the aforementioned metrics, see Table 4.  

These performance metrics and the confusion matrices in Figures 7 and 8, demonstrate some 

interesting findings. Firstly, the improvement in accuracy shows that LightGBM is dependent on the 

amount of data that the model is trained on, as the accuracy score improves when the amount of data 

increases (see Table 4). Therefore, it might be preferable to use a different model for click fraud 

detection when there is only little data available for training.  
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Table 4  

Comparison of retrained and original LightGBM models  

Model Accuracy Balanced 

accuracy 

Precision Sensitivity F1 Specificity AUC 

Retrained LightGBM 

small dataset 

72.2% 58.1% 0.2% 43.9% 1.0% 72.2% 58.1% 

Retrained LightGBM 

large dataset  

87.1% 52.3% 0.3% 17.3% 1.0% 87.2% 52.3% 

Original LightGBM 98.0% - - - - - - 

Note: the model named Retrained LightGBM small dataset refers to the model being retrained on one 

million random samples, while Retrained LightGBM large dataset refers to the model being retrained 

on the complete train dataset.  

 

Figure 7 

Confusion matrix retrained LightGBM one million samples 
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Figure 8  

Confusion matrix retrained light GBM full train set 

 

 

Secondly, although accuracy scores are relatively high, the balanced accuracy score and F1 

score are not, especially the precision and F1 scores. When looking at the confusion matrices, and the 

sensitivity and specificity scores (Figures 7 and 8), it becomes evident that the model performs better 

in predicting the negative classes as opposed to the positive classes. When trained on the small dataset, 

the model predicted 27.8% of all negative instances incorrectly, and 12.8% when trained on the large 

dataset. Contrastingly, the model predicted 56.0% of all positive instances incorrectly when trained on 

the small dataset, and 82.7% when trained on the large dataset, illustrating the poor predictive 

performance in the positive class. It is likely that the unbalanced data, without applying a technique to 

counteract this problem, is the cause for this poor predictive performance. Moreover, the AUC scores 

(58.1% and 52.3%, respectively) illustrate that the model has poor discriminatory capability between 

the classes and that the model is not capable of improving considerably when moving the 

classification threshold.  
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Lastly, the feature importance charts in Figures 9 and 10 show that, when LightGBM is 

retrained on the small dataset, the features that contribute the most are the original features app and 

channel, which contribute to the model’s performance for 20.3% and 26.6%, respectively. 

Additionally, the feature ip_count, from the feature engineering phase, contributes 19.1%, which is a 

considerable amount to the model’s performance in comparison to the other features. Interestingly, 

when the model is retrained on the large dataset, more features from the feature engineering phase 

increase in importance, while the contribution of the channel feature substantially decreases from 

26.6% to 4.8%. The original feature app remains amongst the most important features, contributing 

16.0% to the model’s performance. In addition, ip_day_hour, ip_hour_os, and ip_hour_device are the 

most important features when LightGBM is retrained on the large dataset, contributing 16.8%, 15.2%, 

and 15.8%, respectively.  

 

Figure 9 

Feature importance retrained LightGBM one million samples  

 

Note: the values on the x-axis of this graph display percentages. For an explanation of each feature 

exhibited on the y-axis, please see Appendix A and C.  
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Figure 10 

Feature importance  retrained light GBM full train set 

 

Note: the values on the x-axis of this graph display percentages. For an explanation of each feature 

exhibited on the y-axis, please see Appendix A and C.  

  

Discussion  

Results and current literature 

The goal of this study was to investigate to what degree TabNet was capable of accurately 

detecting click fraud. At first glance, the model showed an adequate performance when looking at the 

accuracy score (95.7%). In addition, TabNet has shown the ability to detect click fraud more 

accurately than other machine learning methods in the current literature (see Table 1). These findings 

are in line with the previous literature, stating the notable classification capabilities of TabNet on 

tabular data (Zhang et al., 2022; Joseph et al., 2022). However, to answer the sub-question 

investigated in the present study, TabNet was not able to outperform the two best-performing models, 

CNN-BiLSTM-RF (99.58%) and LightGBM (98%), on detecting click fraud, when considering their 

accuracy scores, which contradicts the findings in the current literature on TabNet, which displayed 
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superiority to all other benchmark models investigated in these studies (Zhang et al., 2022; Yan et al., 

2021, Joseph et al., 2022).  

Furthermore, the precision (4.2%) and F1 (7.9%) score illustrate that TabNet performs very 

poorly on predicting the positive class, predicting only 4.2% of all positive classes correctly. This also 

contradicts the current findings in the literature, as literature has shown a good performance of TabNet 

on both classes of an unbalanced dataset (Joseph et al., 2022). Therefore, it is reasonable to suggest 

that the poor performance in the minority class is a result of the methods used in the current study, not 

the classification capability of the model itself. It can be concluded that the model was still biased 

towards the prediction of the negative class due to the imbalanced data, even though SMOTE was 

applied to counteract this issue. Comparing the workflow of the current study to the workflow from 

Batool & Byun (2022), one considerable difference in the techniques is the application of k-fold cross-

validation, in addition to SMOTE. Hence, the application of k-fold cross-validation might have 

positively affected the classification performance of TabNet on the minority class, making a less 

biased model.  

Lastly, LightGBM was retrained in the current study for exploratory purposes, and to improve  

the comparative potential between LightGBM, CNN-BiLSTM-RF, and TabNet. The reason being is 

that the authors of the original paper used a larger dataset to train the model, compared to the study by 

Batool & Byun (2022) and the current study, which used one million randomly sampled rows for 

training. The results showed that the retrained LightGBM model was dependent on the amount of data 

that the model was trained on, achieving lower accuracy scores (i.e., 72.2% and 87.1%) compared to 

the original model (i.e., 98.0%). Likewise to TabNet, the retrained LightGBM showed poor 

performance in predicting positive instances, achieving a precision score of 0.2% on the small dataset 

(i.e., one million random samples) and 0.3% on the large dataset (i.e., the full training dataset in the 

current study). This raises the possibility that the model in the original paper by Minastireanu and 

Mesnita (2019) was equally poor in correctly predicting the positive class. Important to note is that 

this notion is based on the fact that the authors solely provided the accuracy score, giving no further 

insight into the model’s classification performance in the positive and negative classes individually.  
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Interestingly, the AUC scores of the retrained LightGBM model on the small and large 

datasets were 58.1% and 52.3%, respectively, illustrating that the model performs inadequately in the 

discrimination between classes. However, TabNet achieved an AUC score of 85.3%, demonstrating 

that the performance of TabNet could be improved by moving the classification threshold. 

Considering this, one might argue that TabNet is preferred over LightGBM for the task at hand. At 

any rate, Batool & Byun’s (2022) CNN-BiLSTM-RF model for click fraud detection remains superior 

to LightGBM, TabNet, and other benchmark models.  

Limitations and future directions 

Although the performance based on accuracy was sufficient, changes to some techniques that 

were applied during this study might positively affect the classification capability of TabNet on the 

task at hand. Firstly, due to time constraints and computational limitations, a subset of only one 

million rows was used for both training and hyperparameter tuning. Increasing this number enables the 

model to learn from a larger body of data which can improve its predictive performance (Banko & 

Brill, 2001). Moreover, using more data can potentially show superior hyperparameters to the ones 

unveiled during the hyperparameter optimization stage in the current study. For future research, it is 

advised to utilize all the data available and opt for GPU employment, so that an enhanced predictive 

performance of TabNet on detecting click fraud might be attained.  

Secondly, random search was used to find the optimal hyperparameters for the employed 

model. Again, this technique was chosen over grid search to reduce run time. However, this raises the 

possibility that the true optimal hyperparameters were never found. Therefore, the use of grid search 

might yield different results, showing superior hyperparameters to the ones used in the current study, 

because this method searches for optimal hyperparameters exhaustively. Consequently, this might 

enhance TabNet’s classification performance. Investigating the impact on the classification 

performance when using grid search for hyperparameter optimization in future research might yield 

improved results.  

Lastly, a different evaluation metric for updating the model for each epoch might have yielded 

better results. In the current study, balanced accuracy was used because of the imbalanced data, with 

the intention of achieving a good performance in both the majority and minority classes. However, this 
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metric favors classifiers that perform better on the positive class instead of the negative class. In the 

current study, however, illustrated by the specificity and sensitivity scores, performance in the 

negative class was superior to performance in the positive class. Contrastingly, the metric F1 gives no 

weight to the number of correctly predicted negative instances (Wegier & Ksieniewicz, 2020). 

Therefore, to improve prediction on the positive instances, F1 might have been a better metric for 

updating the model at each epoch, resulting in a less biased model. To possibly reduce the bias even 

further, as mentioned in the previous sub-paragraph, it is advised to use k-fold cross-validation and 

move the classification threshold to improve classification performance in the minority class.  

Yet, in the context of the current study, one might argue that predicting the positive classes is 

less important than the negative classes, because the positive instances indicate a download of the app, 

and are therefore unlikely to concern click fraud. At any rate, applying the aforementioned alterations 

in methods to future research might result in a superior classification performance of TabNet on the 

TalkingData dataset, compared to the currently best-performing models on click fraud detection.     

 

Conclusion  

The current study aimed to investigate how accurately click fraud could be detected using a 

novel canonical network for tabular data, TabNet, with the central research question being: How 

accurately can click fraud be detected using TabNet? The sub-question investigated during this study 

was: how does TabNet perform compared to the two currently most accurate methods on detecting 

click fraud? These models were CNN-BiLSTM-RF and LightGBM (Batool & Byun, 2022; 

Minastireanu & Mesnita, 2019).  

The rise of online advertising marked the onset of click fraud, in which malicious publishers 

and unsportsmanlike competitors deplete the budgets of advertisers without contributing to their 

business goals. Many machine learning methods have been developed to detect click fraud, which can 

possibly prevent these illegal clicks from taking place. However, a deep learning model for tabular 

data called TabNet, had not been exploited for the task of click fraud detection to this date, even 

though the current literature has unveiled its promising classification potential. The model achieved an 

adequate performance with an accuracy score of 95.7%. Although the model outperformed other 
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methods investigated in the current literature, it was not able to outperform the two best-performing 

models for detecting click fraud. In addition, the model performed poorly on classifying instances in 

which an actual download of the app occurred (i.e., the minority class).   

Nevertheless, the current study has important implications on both a societal and scientific 

level. Scientifically, this study demonstrates the ability of TabNet to accurately predict click fraud and, 

therefore, further supports the current literature showing that TabNet is an adequate model for 

classification tasks. Although the model was not able to outperform the best-performing models, 

implementing the changes proposed in the discussion might improve the performance to such an 

extent that the model is able to outperform the other methods established in the current literature. As 

for the implications on a societal level, the current study did not show a superior performance in 

comparison to the best-performing models. Therefore, organizations that are trying to encounter the 

problem of click fraud might want to opt for a better performing model to predict click fraud as 

accurately as currently possible.  

 

References  

Aljabri, M., & Mohammad, R.M.A. (2023). Click fraud detection for online advertising using machine 

learning. Egyptian Informatics Journal, 24(2), 341-350 

https://doi.org/10.1016/j.eij.2023.05.006  

Arik, S. Ö., & Pfister, T. (2020). TabNet: Attentive Interpretable Tabular Learning. ArXiv. 

https://doi.org/10.48550/arXiv.1908.07442  

Bach, M., Werner, A., Zywiec, J., & Pluskiewicz, W. (2017). The study of under- and over-sampling 

methods’ utility in analysis of highly imbalanced data on osteoporosis. Information Sciences, 

384, 174-190. https://doi.org/10.1016/j.ins.2016.09.038  

Banko, M., & Brill, E. (2001). Scaling to very very large corpora for natural language disambiguation. 

Conference of the European Chapter of the Association for Computational Linguistics: 

Proceedings of the Conference, 39, 26-33. https://doi-

org.tilburguniversity.idm.oclc.org/10.3115/1073012.1073017  

https://doi-org.tilburguniversity.idm.oclc.org/10.1016/j.eij.2023.05.006
https://doi.org/10.48550/arXiv.1908.07442
https://doi.org/10.1016/j.ins.2016.09.038
https://doi-org.tilburguniversity.idm.oclc.org/10.3115/1073012.1073017
https://doi-org.tilburguniversity.idm.oclc.org/10.3115/1073012.1073017


 28 

Batool A., & Byun, Y-C. (2022). An Ensemble Architecture Based on Deep Learning Model for Click 

Fraud Detection in Pay-Per-Click Advertisement campaign IEEE Access, 10, 113410-113426. 

https://doi.org/10.1109/ACCESS.2022.3211528  

DreamQuark. (2021). PyTorch-TabNet: PyTorch implementation of TabNet, version 4.1.0. 

https://github.com/dreamquark-ai/tabnet  

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174. 

https://doi.org/10.1016/j.physrep.2009.11.002  

Garcia, V., Mollineda, R. A., & Sánchez, J. S. (2009). Index of Balanced Accuracy: A Performance 

Measure for Skewed Class Distributions. Pattern Recognition and Image Analysis, 441-448. 

https://doi.org/10.1007/978-3-642-02172-5_57  

Gohil, N. P., & Meniya, A. D. (2021). Click Ad Fraud Detection Using XGBoost Gradient Boosting 

Algorithm. Computer and Information Science, 1416, 67-81. https://doi.org/10.1007/978-3-

030-76776-1_5    

Grand View Research. (2022). Online Advertising  Market Size & Trends. https://shorturl.at/jBCI3   

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wies, 

E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk, M. H., Brett, 

M., Haldane, A., Fernandez del Rio, J., Wiebe, M., Peterson, P., …Oliphant, T. E. (2020). 

Array programming with NumPy. Nature, 585(7825), 357-362. 

https://doi.org/10.1038/s41586-020-2649-2  

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 

9(3), 90-95. DOI: 10.1109/MCSE.2007.55  

Jin, Y., Ren, Z., Wang, W., Zhang, Y., Zhou, L., Yao, X., & Wu, T. (2023). Classification of 

Alzheimer’s disease using robust TabNet neural networks on genetic data. Mathematical 

Biosciences and Engineering, 20(5),  8358-8374. https://doi.org/10.3934/mbe.2023366  

Jianzhuo, Y., Tianyu, X., Yonchuang, Y., & Hongxia, X. (2021). Rainfall Forecast Model Based on 

the TabNet Model. Water, 13. https://doi.org/10.3390/w13091272  

https://doi.org/10.1109/ACCESS.2022.3211528
https://github.com/dreamquark-ai/tabnet
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1007/978-3-642-02172-5_57
https://doi.org/10.1007/978-3-030-76776-1_5
https://doi.org/10.1007/978-3-030-76776-1_5
https://shorturl.at/jBCI3
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.3934/mbe.2023366
https://doi.org/10.3390/w13091272


 29 

Joseph, L. P., Joseph, E. A., & Prasad, R. (2022). Explainable diabetes classification using hybrid 

Bayesian-optimized TabNet architecture. Computers in Biology and Medicine, 151. 

https://doi.org/10.1016/j.compbiomed.2022.106178  

Ke., G., Meng, A., Finley, T., Wang, T., Chen, W., Ma, Ye, Q., & Liu, T-Y. (2017). LightGBM: A 

highly efficient gradient boosting descision tree. Advances in Neural Information Processing 

Systems, 30, 3146-3154. 

https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76

fa-Paper.pdf  

Kearney, M. W. (2017). Cramér’s V. In The SAGE Encyclopedia of Communication Research 

Methods.  https://doi.org/10.4135/9781483381411  

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A Python Toolbox to Tackle 

the Curse of Imbalanced Datasets in Machine Learning. Journal of Machine Learning 

Research, 18(17), 1-5. http://jmlr.org/papers/v18/16-365.html  

McKinney, W. (2010). Data structures for statistical computing in python. Proceedings of the 9th 

Python in Science Conference, 445, 51-56. http://dx.doi.org/10.25080/Majora-92bf1922-00a   

Meng, C. C., Lim, K. M., Lee, C. P., & Lim, J. Y. (2023). Credit Card Fraud using TabNet. 

International Conference on Information and Communication Technology (ICoICT), 394-399. 

https://doi.org/10.1109/ICoICT58202.2023.10262711   

Minastireanu, E.A., & Mesnita, G. (2019). Light GBM Machine Learning Algorithm to online Click 

Fraud Detection. Journal of Information Assurance & Cybersecurity. DOI: 

10.5171/2019.263928.   

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 

M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of 

Machine Learning Research, 12, 2825-2830. https://doi.org/10.48550/arXiv.1201.0490  

PPC protect. (2021). The Global PPC Click Fraud Report 2020-21. 

https://www.searchenginejournal.com/the-global-ppc-click-fraud-report-2020-21/391493/  

https://doi.org/10.1016/j.compbiomed.2022.106178
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.4135/9781483381411
http://jmlr.org/papers/v18/16-365.html
http://dx.doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/ICoICT58202.2023.10262711
https://doi.org/10.48550/arXiv.1201.0490
https://www.searchenginejournal.com/the-global-ppc-click-fraud-report-2020-21/391493/


 30 

Spelman, V. S., & Porkodi, R. (2018). A Review on Handling Imbalanced Data. 2018 International 

Conference on Current Trends towards Converging Technologies (ICCTCT), 1-11. https://doi-

org.tilburguniversity.idm.oclc.org/10.1109/ICCTCT.2018.8551020  

Thejas, G. S., Boroojeni, K., Chandna, K., Bhatia, I., Iyengar, S. S., & Sunitha, N. R. (2019). Deep 

Learning-based Model to Fight Against Ad Click Fraud. ACM SE '19: Proceedings of the 

2019 ACM Southeast Conference, 176-181. http://dx.doi.org/10.1145/3299815.3314453   

Thejas, G. S., Dheeshjith, S., Iyengar, S. S., Sunitha, N. R., & Badrinath, P. (2021). A hybrid and 

effective learning approach for Click Fraud detection. Machine Learning with Applications, 3. 

https://doi.org/10.1016/j.mlwa.2020.100016  

Thölke, P., Mantilla-Ramos, Y-J., Abdelhedi, H., Maschke, C., Dehgan, A., Harel, Y., Kemtur, A., 

Berrada, L. M., Sahraoui, M., Young, T., Pépin, A. B., Khantour, C. E., Landry, M., 

Pascarella, A., Hadid, V., Combrisson, E., O’Byrne, J., & Jerbi, K. (2023). Class imbalance 

should not throw you off balance: Choosing the right classifiers and performance metrics for 

brain decoding with imbalanced data. NeuroImage, 277. 

https://doi.org/10.1016/j.neuroimage.2023.120253   

Trajcheva, S. (2023). The ultimate list of click fraud statistics 2023. Cheq. https://shorturl.at/hsv34  

University of Baltimore. (2020). Prof. Cavazos's Latest Report: Digital Ad Fraud Costs Will Rise to 

$35B Globally This Year. University of Baltimore. http://www.ubalt.edu/news/news-

releases.cfm?id=3621  

Van Rossum, G., & Drake, F. L. (2009) Python 3 Reference Manual. Scotts Valley, CAL CreateSpace.  

Wegier, W., & Ksieniewicz, P. (2020). Application of Imbalanced Data Classification Quality Metrics 

as Weighting Methods of the Ensemble Data Stream Classification Algorithms. Entropy 

(Basel), 22(8), 849-849. https://doi.org/10.3390/e22080849  

Wilbur, K.C., & Zhu, Y. (2009). Click fraud. Marketing Science, 28(2), 293-308. https://doi-

org.tilburguniversity.idm.oclc.org/10.1287/mksc.1080.0397 

Yadav, S., & Shukla, S. (2016). Analysis of k-Fold Cross-Validation over Hold-Out Validation on 

Colossal Datasets for Quality Classification. 2016 IEEE 6th International Conference on 

https://doi-org.tilburguniversity.idm.oclc.org/10.1109/ICCTCT.2018.8551020
https://doi-org.tilburguniversity.idm.oclc.org/10.1109/ICCTCT.2018.8551020
http://dx.doi.org/10.1145/3299815.3314453
https://doi.org/10.1016/j.mlwa.2020.100016
https://doi.org/10.1016/j.neuroimage.2023.120253
https://shorturl.at/hsv34
http://www.ubalt.edu/news/news-releases.cfm?id=3621
http://www.ubalt.edu/news/news-releases.cfm?id=3621
https://doi.org/10.3390/e22080849
https://doi-org.tilburguniversity.idm.oclc.org/10.1287/mksc.1080.0397
https://doi-org.tilburguniversity.idm.oclc.org/10.1287/mksc.1080.0397


 31 

Advanced Computing (IACC), Bhimavaram, India, 2016, pp. 78-83, doi: 

10.1109/IACC.2016.25. 

Zhang, L., Ma, K., & Fang, W. (2022). A TabNet based card Fraud detection Algorithm with Feature 

Engineering. 2022 2nd international conference on consumer electronics and computer 

engineering (iccece), 911-914. https://doi.org/10.1109/ICCECE54139.2022.9712822.  

Zou, M., Gan, Z., Cao, R.C., Guan, C., & Leng, S. (2023). Similarity-navigated graph neural networks 

for node classification. Information Sciences, 633, 41-69. 

https://doi.org/10.1016/j.ins.2023.03.057  

 

Appendix 

Appendix A 

Feature name  Feature description  

IP IP address of click  

App  App ID for marketing 

Device Device type ID of user mobile phone (e.g., iPhone 6 plus, iPhone 7, Huawei 

Mate 7, etc.) 

Os Os version ID of mobile ad publisher 

Channel  Channel ID of mobile ad publisher  

Click_time Timestamp of click (UTC) 

Attributed_time  If the user downloads the app after clicking an ad, this is the time for the app 

download  

Is_attributed  The target that is to be predicted, indicating the app was downloaded  
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Appendix B 

Package Version  

Pandas 1.5.3 

NumPy 1.24.3 

DaTetime (Python) 3.10.9 

PyTorch_tabnet 4.1.0 

Scikit-learn  1.2.1 

Imblearn  0.10.1 

Matplotlib 3.7.0 

LightGBM 4.2.0 

 

Appendix C 

Feature name  Feature description  

Click_day_week The day in the week on which the click was performed  

Click_day_year The day in the year on which the click was performed  

Click_hour The hour on which the click was performed  

Click_minute The minute in which the click was performed  

Ip_count The number of times a unique IP address is found in the dataset  

Ip_day_hour The number of times a unique IP address has clicked on an advertisement within one hour on the 

same day 

Ip_hour_channel The number of times a unique IP address has clicked on the advertisement of a specific publisher 

within one hour  

Ip_hour_os The number of times a unique IP address, using a specific operating system, has clicked on an 

advertisement within one hour 

Ip_hour_app The number of times a unique IP address has clicked on an advertisement in a specific app within 

one hour. 

Ip_hour_device The number of times a unique IP address, using a specific device, has clicked on an advertisement 

within one hour  
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Appendix D 

Hyperparameter Examined values  

n_d 8, 30, 64 

n_steps 1, 5, 10 

gamma 1, 1.5, 2 

n_shared 1, 3 ,5 

lambda_sparse 1e-6, 1e-5, 1e-3 

mask_type sparsemax, entmax  

 

Appendix E 

Hyperparameter Value  

max_depth 3 

learning_rate  0.20 

num_leaves 7 

min_child_samples 100 

max_bin 100 

subsample 0.7 

subsample_freq 1 

colsample_bytree 0.9 

scale_pos_weight  200 

gamma  0.9 

min_child_weight 0 
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Appendix F 

Hyperparameter Value  

n_d 30 

n_a  8 

n_steps 5 

gamma 2 

n_independent 2 

n_shared 1 

epsilon  1e-15 

seed  42 

momentum  0.02 

clip_value 2 

lambda_sparse 1e-06 

optimizer_fn torch.optim.Adam 

scheduler_fn torch.optim.lr_scheduler.StepLR 

device_name  ‘cpu’ 

mask_type sparsemax  

 


