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Abstract

In the dynamic landscape of retail demand forecasting, traditional
methods face challenges, necessitating a comprehensive considera-
tion of influential factors like price changes, population shifts, and
logistics complexities. This study focuses on enhancing predictive
capabilities in retail sales forecasting, utilizing machine learning mod-
els—LightGBM (LGBM) and Random Forest (RF)—on weekly sales
data from Walmart. The central problem involves adapting forecast-
ing models to evolving sales patterns.

Distinguishing itself from prior approaches, the research employs
a comprehensive evaluation of direct and recursive forecasting meth-
ods, integrating sliding and expanding window techniques. The
primary dataset comprises weekly sales data from Walmart, trans-
formed from daily to accommodate computational constraints.

Key findings reveal that RF models consistently outperform LGBM
ones in the direct approach, indicating lower Root Mean Squared Er-
ror (RMSE) and Weighted Root Mean Squared Scaled Error (WRMSSE)
metrics. In contrast, LGBM exhibits better performance in the recur-
sive approach, highlighting adaptability to evolving patterns over
successive forecasting periods.

This study contributes by assessing model performance and ex-
ploring various forecasting approaches, recommending the considera-
tion of longer observation windows and the incorporation of external
factors like weather. Despite limitations, such as the transformation of
daily sales data into weekly data, this research provides valuable in-
sights into the strengths and weaknesses of machine learning models
in retail sales forecasting, guiding future research for more effective
predictive modeling in the evolving retail landscape.
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1 data source , ethics , code , and technology statement

The dataset used in this thesis, publicly accessible due to its association
with the M5 competition organized by Markidakhs was obtained through
an online request and is anonymized 1. No data collection involving human
participants or animals was conducted. All libraries and frameworks used,
including version numbers, are listed. All figures in the thesis, were
created by the author. ChatGPT has been used as a debugging tool to
resolve coding errors 2. For assistance in academic writing and grammar,
the author used Thesaurus 3 and Grammarly was employed for additional
spelling and grammar checks 4.The Overleaf LaTeX template provided by
Tilburg University was used for typesetting, and no other typesetting tools
or services were employed.

2 introduction

The retail industry, particularly giants like Walmart, serves as a linchpin
in society’s socioeconomic fabric, having a profound impact on many
aspects of daily life. These retail behemoths are more than just commercial
entities; they shape the economic landscape and influence societal stability.
The National Retail Federation and PwC report on the retail industry’s
economic impact highlights the industry’s significant role as a vital pillar
of the US economy.

In 2018, the retail business supported 52 million jobs, accounting for
25.8% of total US employment. This impact stretched to a total labor
income of $2.3 trillion, accounting for 18.7% of national labor income,
and a total GDP impact of $3.9 trillion, accounting for 18.7% of US GDP.
These data highlight the retail sector’s enormous economic importance,
putting it as a primary driver of employment, income, and GDP at both the
national and state levels. The broad network of outlets throughout many
states, together with a diverse range of product categories, reinforces the
industry’s societal significance (Federation, 2020).

The retail industry, on the other hand, is subject to a plethora of external
factors that can introduce volatility and uncertainty into their operations.
These factors include anything from technological advancements to eco-
nomic conditions to social trends. The retail trade volume index, for
example, fell sharply in April 2020 as a result of the Covid-19 crisis 5 .

1 Kaggle:https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
2 Chat GPT 3.5https://chat.openai.com
3 Thesaurus:https://www.thesaurus.com/
4 Grammarly:https://www.grammarly.com/
5 eurostat: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Impact_of_

Covid-19_crisis_on_retail_trade

https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
https://chat.openai.com
https://www.thesaurus.com/
https://www.grammarly.com/
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Impact_of_Covid-19_crisis_on_retail_trade
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Impact_of_Covid-19_crisis_on_retail_trade
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As a result, the ability to forecast future sales becomes critical for these
companies to navigate the volatile retail environment and secure their
future.

To some extent, the retailers’ future strategic planning is dependent
on demand predictions made possible by methodologies and procedures
integrated into a forecasting support system. The accuracy of demand
forecasting has a significant impact on organizational performance by
improving a variety of processes throughout the retail supply chain. There
is a significant and direct increase in profitability, particularly in low-
margin, high-volume retail scenarios (Ben Taieb & Hyndman, 2012).

Unfortunately, a few large corporations, such as Walmart and Amazon,
are still laggards in data analytics (Tan, 2020). Furthermore, most retailers
use basic analytic tools despite the fact that advanced tactics can increase
their margins by 60% (DeHoratius et al., 2023; Lekhwar et al., 2019). This is
a disadvantage for the current industry because small and medium-sized
businesses account for 99 percent of the retail ecosystem 6. As a result,
advanced sales prediction models are in high demand in the industry.

Retail behemoths like Walmart can make informed decisions about
resource allocation, strategic planning, and risk management by accurately
forecasting sales. This not only ensures the long-term viability of their
operations, but also contributes to the overall stability of the retail industry
and, by extension of the society. As a result, this study has important
implications for both academia and business, providing valuable insights
into the use of machine learning techniques in sales forecasting for large-
scale retail operations.

Accurately forecasting sales for large-scale retail operations like Wal-
mart is a challenging task due to the sheer volume and complexity of the
data. This research proposes a novel approach that utilizes tree-based
algorithms and transforms daily sales data into weekly aggregates. This
transformation not only reduces computational costs but also enables ef-
ficient data processing across all stores, states, and product categories.
Additionally, this study comprehensively evaluates direct and recursive
prediction methods, as well as sliding and expanding tuning techniques,
providing insights into the effectiveness of various forecasting methods.
This holistic approach effectively captures the complexities of Walmart’s
operations and sheds light on the most effective forecasting methods and
techniques for large retailers.

Based on the aforementioned challenges, an overarching research ques-
tion was developed:

6 retail_eu: https://single-market-economy.ec.europa.eu/single-market/services/retail_en

https://single-market-economy.ec.europa.eu/single-market/services/retail_en
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To what extent do different Tree based machine learning models
perform in forecasting Walmart’s retail weekly sales?

As such, the sub-questions can be listed separately:

RQ1 How do direct and recursive forecasting strategies affect the predictive
performance of LGBM and Random Forest models predictive performance?

RQ2 To what extent do sliding and expanding window techniques affect the
predictive performance of LGBM and Random Forest?

3 related work

Time series forecasting is a difficult analysis, especially when dealing
with large hierarchical datasets, where the complexity and computational
cost rise. Large retail chains sell a diverse range of products in a vari-
ety of locations, making high-quality predictions difficult and frequently
inaccurate.

Several studies have used machine learning techniques for time series
forecasting, with the goal of improving the prediction models’ accuracy
and efficiency. For instance, Effrosynidis et al. (2023) stated that machine
learning models outperformed statistical models for forecasting in large-
scale data, with tree-based algorithms accounting for three out of seven
machine learning models. Another study that used historical data to
estimate the number of confirmed cases of COVID-19 in the next two
weeks found that the Extreme Gradient Boosting Machine (XGBM) and
Light Gradient-Boosting Machine (LGBM) models outperformed other
models, including statistical models (Radwan, 2021). Finally, the LGBM
outperformed other models in the M5 Competition, which contained
42,840 hierarchical sales data from 10 Walmart stores (Makridakis et al.,
2022a). Chakraborty et al. (2020) show that LGBM, NGBM, and XGBM are
comparable and top performers when comparing six different machine
learning algorithms. They also claim that those models are not affected by
under- or over-fitting. LGBM is a gradient boosting algorithm that includes
objective function regularization, reducing the likelihood of overfitting
and increasing process speed. In the Makridakis competition, which had
7092 participants, the top 20% used machine learning models rather than
statistical ones, and the top 50 competitors used LGBM, a decision tree-
based ML approach that reportedly outperformed all other alternatives
(Makridakis et al., 2022a).

Furthermore, another study comparing the Long Short-Term Memory
(LSTM) model to the LGBM, focusing on Demand Forecasting of a Multi-
national Retail Company, concluded that the LGBM outperformed the
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LSTM model (Saha et al., 2022). A recent study comparing XGBM and
deep learning algorithms for tabular datasets found that XGBM and LGBM
outperformed Tabular Neural Network (TabNet) on multiple datasets
(Shwartz-Ziv & Armon, 2021), supporting another study’s conclusion that
deep learning algorithms for tabular data are still understudied (Arik &
Pfister, 2021).

Demand forecasting techniques, notably recursive and direct strategies,
play a pivotal role in enhancing predictive accuracy. Recursive strategies
continuously refine forecasts as new data arrive, while direct strategies
generate a final forecast using all historical data upfront. As exemplified in
the study by Xue et al. (2019) about predicting next-day heat load curves,
recursive strategies have demonstrated superiority over direct strategies in
terms of accuracy, stability, and the overall modeling process.

In time-series forecasting, the selection between sliding and expand-
ing windows is crucial. Sliding windows, employed in finance research
(Bollerslev et al., 2018; Degiannakis & Filis, 2017; Ma et al., 2019), adapt
to structural data changes by using recent observations for parameter esti-
mation. Conversely, expanding windows, often used in macroeconomics
(Gillitzer & McCarthy, 2019), incorporate all data for comprehensive anal-
ysis. A study on ARIMA models for short-term export forecasts across
European countries demonstrates that sliding windows outperform ex-
panding windows for immediate forecasts, indicating their relative efficacy
in certain predictive scenarios (Lehmann, 2021).

Despite the widespread use of sliding and expanding windows along-
side direct and recursive prediction methods in various forecasting applica-
tions, research on their applications in the retail industry remains limited.
More studies are needed to investigate the effectiveness of these techniques
in the specific context of retail sales forecasting.

This thesis fills a significant gap in the existing literature on time series
forecasting in the broad area of Walmart sales. In addition, we plan to
utilize the best-performing algorithms identified through related work in
this domain, which are tree-based algorithms. The transformation of daily
sales data into a weekly format is a unique feature of this study, as no
study of the related dataset was conducted on weekly sales. This change
speeds up the training process across the entire dataset, which includes
sales data from multiple stores and states. This study distinguishes itself
in the field of forecasting techniques by systematically investigating the
performance of tree-based models using direct and recursive prediction
methodologies. Furthermore, the study incorporates expanding and sliding
window techniques into the tuning process, providing novel insights into
the optimal combination of these techniques within tree-based algorithms.
This research aims to fill a critical gap in understanding the most effective
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forecasting methods tailored for large-scale retail datasets, by leveraging
findings from the M5 Competition, including insights from esteemed
participants contacted by Makridakis.

4 method

4.1 Experimental Setup

The experimental procedure entails a methodically structured series of
tasks for extracting insights and improving the accuracy of time series
forecasting. These foundational datasets, include: sales.csv,’ , ’calendar.csv,’
and ’sell_price.csv,’ lay the groundwork for subsequent analyses and model
development. Following exploratory data analysis on daily sales patterns,
data frames are preprocessed to handle missing values and ensure data
integrity. Data frames are combined to form a comprehensive dataset,
which allows for exploratory analysis of weekly sales patterns, revealing
trends and variations. Feature engineering is a critical stage in which
new variables are created to capture critical information, such as pricing,
calendar features, and object features, using encoding techniques.

Furthermore, strategic dataset splitting ensures temporal integrity, al-
lowing for more effective model training and evaluation. For subsequent
model development, the dataset is divided into training, validation and
test sets. LGBM and RF, two well-known machine learning algorithms, are
implemented for adaptive learning using sliding and expanding window
methodologies. The identification of the best parameters through rigorous
tuning processes is critical for optimizing model performance. Model
performance is assessed using key metrics such as RMSE and WRMSSE in
both direct and recursive forecasting. The experimental steps are encap-
sulated in the Figure 1 concise flowchart, ensuring a systematic approach
to time series forecasting. Each phase contributes to the development of
robust models capable of accurately predicting complex sales dynamics.
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Figure 1: Flowchart of experimental procedure

4.2 Dataset Description

The M5 dataset is a rich collection of sales data from Walmart, the world’s
largest company by revenue 7. It was used in the M5 Forecasting Com-
petition conducted by the Makridakis Open Forecasting Center (MOFC)
at the University of Nicosia. The main objective of the competition was
to estimate or predict the unit sales of Walmart retail goods at stores in
various locations for the next 28 days.

The data-set is organized in the form of grouped time series and
involves the unit sales of various products sold in the USA. It includes
several CSV files:

7 Kaggle:https://www.kaggle.com/competitions/m5-forecasting-accuracy/data

https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
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• calendar.csv

• sales.csv

• sell_prices.csv

4.2.1 Sales Data

The Sales data set includes the historical unit sales of 3049 products,
categorized into 3 product categories and 7 departments, sold in 10 stores
in 3 states . The dataset has one column for each of the 1941 days from
2011-01-29 to 2016-05-22 (d_1 to d_1941.). The first 5 columns of the
data set represent the ‘item_id’ (3049 products), ‘state_id’ (CA, TX, WI),
cat_id’ (Foods, Household, Hobbies),‘store_id’ (10 stores), and ‘dept_id’ (7
departments). The Sales data is available in Table 13, in Appendix A. For
a more detailed description of the unique values of each variable, please
refer to Table 14, in Appendix A.

4.2.2 Calendar Data

The Calendar data set has dates and promotion features. It also contains
a primary key feature ‘d’ (Day number, d_1 to d_1941), which matches
the Sales columns, and ‘wm_yr_wk’ (week number), which is the same
in the Price data. Furthermore, the Calendar data set includes date re-
lated features and binary features indicating whether a specific day is
applicable to promotion or not. The ’event_name_1’ feature indicates if
the specific day is Valentines day, Super Bowl day, Presidents day, etc.
The ’event_name_2’ feature indicates if the specific day is Father’s day,
Easter, Cinco De Mayo, etc. The ’event_type_1’ and ’event_type_2’ features
indicate if those events are Religious, National or Cultural. The binary
features ’snap_CA’, ’snap_TX’ and ’snap_WI’ correspond to the Supple-
mental Nutrition Assistance Program (SNAP), a federal assistance program
providing funds for eligible individuals and families to purchase food. The
Calendar data is available in Table 15, in Appendix A.

4.2.3 Price Data

The Price data set has ‘store_id’, ‘item_id’, ‘wm_yr_wk’, and ‘sell_price’
features, which contain the weekly price of each product and store, and
the first three serve as primary key for the future merging with the other
data sets. The Price data set doesn’t include product prices for every week,
meaning that in weeks where there is no price, the specific product did not
have any sales. The Price data is available in the Table 16, in Appendix A.
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4.3 Data Preprocessing

The preprocessing steps performed on the M5 Walmart Sales Forecast-
ing data set aim to transform raw data into a structured format suitable
for model training. The list of the software, and packages used, is pro-
vided in Table 17 Appendix A. The following description outlines the key
preprocessing steps:

4.3.1 Melting and Aggregation

The first stage of preprocessing entails melting the sales training data to
convert it from a wide to a long format. This step is accomplished by
melting the data using the identifier variables ’id’, ’item_id’, ’dept_id’,
’cat_id’,’store_id’, ’state_id’, and the remaining columns as melted val-
ues representing the unit sales (’sold’) for each day (’d’); the result is
58.327.370 rows in total. After adding the ’wm_yr_wk’ from the calendar,
the melted data are aggregated on a weekly basis.csv based on ’id’, to-
taling unit sales for each unique combination of ’id’, ’item_id’, ’dept_id’,
’cat_id’,’store_id’,’state_id’, and ’wm_yr_wk’ features. After aggregation,
the total number of rows is 6.688.671, allowing the models to be trained at
every level of hierarchy.

A critical transformation in the preprocessing phase is aggregating
the initial daily sales data into weekly sales. This strategic conversion
improves computational efficiency while retaining the essence of temporal
patterns. The data set’s granularity is effectively reduced by adding the
weekly unit sales for each unique combination of product, store, and state.
This not only makes the data set more manageable, but it also allows for a
comprehensive model to capture sales patterns for each store, state, and
product category. Because there are seven days in a week, the compu-
tational load is significantly reduced, potentially reducing the required
computational power by a factor of seven. This transformation optimally
aligns the data set with the forecasting task’s periodicity, ensuring efficient
resource utilization in the subsequent modeling process.

4.3.2 Processing Null Values

The Prices data set, as mentioned in the methodology, is missing pricing
information for a few weeks. To address this, rows in the sales data
set were removed that did have corresponding null values in the price
data set. This step was critical because the models used in this study
cannot handle missing values. Those were unofficially sold products that
contributed insignificantly to the data set. This arrangement recognizes
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the ever-changing retail landscape in which products may be introduced
or discontinued.

The Prices data set, as outlined in the methodology, exhibited a no-
table proportion of null values before the aggregation of weekly sales,
amounting to 58%. Post-aggregation, a substantial reduction to 23% in the
prevalence of null values was observed. Additionally, it is noteworthy that
the aggregation process effectively addressed the challenge of numerous
continuous days with zero sales for various products. This refinement is
reflected in Figures 2 and 3, which visually demonstrate the minimization
of this issue by showing the overall demand of a single product. It is imper-
ative to highlight that the removal of rows without corresponding non-null
values in the price data set was a crucial preprocessing step, considering
the incompatibility of the models used with missing values.

Figure 2: Daily Unit Sales of FOODS_1_001_CA_1

Figure 3: Weekly Unit Sales of FOODS_1_001_CA_1

The remainder of Calendar’s data are incorporated into the data set
to provide a temporal context. On the ’wm_yr_wk’ column, the weekly
aggregated sales data is combined with the calendar information. This
integration contains information such as the date and the following:



4 method 11

4.3.3 Calendar Features Extraction

To enrich the data set, additional features are extracted from the calendar
data. Event types (event_type_1 and event_type_2) are used to generate
new columns that represent the number of occurrences for each event type
per week. This step refines the data set by capturing the temporal patterns
associated with events.

4.3.4 Snap Counts Calculation

The calendar ’s’ snap_CA’, ’snap_TX’, and ’snap_WI’ columns are con-
verted to binary format, and the number of occurrences of ’1’ is calculated
per week. These totals represent the number of days in each week with
specific snap conditions.

4.4 Feature Engineering

4.4.1 Generation of Time Related Features

The introduction of innovative features aims to enrich the model’s ability to
discern patterns within the dataset. Among these features are indicators for
the first or last week of the month, along with extracted date components
such as week, month, quarter, year and season, based on specific seasonal
trends.

Date-time decomposition is applied to derive ’week,’ ’month,’ and ’year’
features, enabling the model to capture weekly, monthly, and yearly sea-
sonality and trends. Binary features ’is_month_end’ and ’is_month_start’
are incorporated. An analysis of monthly average sales reveals increased
demand during specific months, such as November, December, and sum-
mer, as shown in Figure 4. This increase in demand is likely attributed to
a surge in people shopping for gifts during the winter holiday weeks. To
address these seasonality effects, a ’season’ feature is introduced. Moreover,
Figure 5 encapsulates the aggregate weekly demand spanning the years
2011 to 2016, unveiling significant and notable seasonal patterns within
each annual cycle.
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Figure 4: Monthly Overall Demand

Figure 5: Total Weekly Demand

The months are organized into distinct seasons. Spring (1) encompasses
March, April, and May. Summer (2) spans June, July, and August. Au-
tumn (3) includes September, October, and November. Winter (4) covers
December, January, and February. Despite the absence of significant trends
between quarters in aggregate sales, a ’quarter’ feature is added to account
for potential meaningful trends in (Product-Store) time series (see Figure
18 in Appendix A).

4.4.2 Demand Related Lag & Rolling Features

This study focuses on identifying principal features for forecasting weekly
unit sales, employing statistical methods to enhance predictive accuracy.
The Augmented Dickey-Fuller (ADF) test assesses sales data stationarity, a
prerequisite for Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) application. Statistical analysis reveals 99% stationarity,
indicating consistent behavioral patterns.

Having established the stationarity of the data, the ACF was then uti-
lized to evaluate the correlation between the time series and its past values
at varying time lags. The generated correlation coefficients, within the
range of -1 to 1, elucidated the strength and orientation of the relationship.
The ACF diagram provided a comprehensive view of how correlation
strength evolves over different lags, offering insights into the enduring
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patterns within the time series. PACF extends the analysis, measuring
correlation with lagged versions, eliminating intermediate lag influences
to discern immediate impacts (Ensafi et al., 2022).

ACF and PACF identify significant lag values (1, 2, 3, 4) capturing
relevant patterns as shown in Figure 6. These values enhance subsequent
time series forecasting models, based in sales data structure.

Recognizing the lag features’ fundamental role, we extend our method-
ology to include rolling mean, standard deviation, maximum, and min-
imum at different time spans (2, 3, 4, 5). These rolling statistics capture
evolving trends, providing a smoothed representation to discern patterns
and outliers impacting accuracy.

The choice of rolling statistics stems from their ability to encapsulate
different aspects of time series dynamics. The rolling mean indicates
the general trend, standard deviation quantifies variability, and maxi-
mum/minimum values highlight extremes and anomalies.

By integrating lag features and rolling statistics, we have created a
nuanced feature set contributing to a comprehensive understanding of
temporal dependencies within weekly unit sales data. This approach
strengthens predictive models, providing a robust feature set capable of
capturing intricate patterns in dynamic sales environments. Lag and rolling
features are presented in Table 18, Appendix B.

Figure 6: ACF & PACF Diagrams of weekly demand
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4.4.3 Price-related Features

In order to improve our time series forecasting models, we introduced a
set of carefully chosen price-related features, each selected for its unique
contribution to capturing distinct aspects of pricing dynamics. Among the
features are:

• Maximum Store and Daily Prices (price_store_max, price_day_max):
capture the highest observed prices at the store and daily levels,
revealing potential outliers and extreme fluctuations influencing con-
sumer behavior.

• Overall Maximum and Minimum Prices (price_max, price_min): rep-
resent global price extremes across all stores and days, assisting in
the identification of broader pricing trends and periods of exceptional
pricing.

• Price Variability and Central Tendency (price_std, price_mean): this
metric measures price variability and average pricing, providing
valuable insights into price distribution and volatility.

• Normalized Price (price_norm): enabling comparison by normalizing
prices relative to their mean or another reference point, ensuring that
relative changes rather than absolute levels are prioritized.

• Price Momentum (price_momentum, price_momentum_m): identify
trends and directional changes in pricing by capturing the rate of
change in prices over time.

These characteristics, taken together, improve our model’s ability to dis-
cern intricate relationships between pricing dynamics and sales patterns,
resulting in a more robust forecasting framework. Table 19, in Appendix B
shows the price features created.

4.4.4 Feature Transformation and Encoding

The inherent ability of decision tree-based algorithms, such as LGBM to
recursively split data based on feature sets and threshold values elimi-
nates the need for scaling features. In essence, the algorithm adjusts its
thresholds during the splitting process, making the original feature scale
irrelevant. As part of the preprocessing steps, the categorical variables
’event_type_1_count’, ’event_type_2_count’,’snap_CA’,’snap_TX’, and
’snap_WI’ were transformed into numerical representations. This conver-
sion is required for model compatibility, as it ensures that the categorical
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nature of these features is translated into an algorithmic-processable for-
mat.

In the case of the Random Forest algorithm, a distinct challenge arises
due to its requirement for categorical features to be encoded into numerical
values. Given the computational complexities associated with alternative
encoding methods, such as one-hot encoding, a pragmatic approach was
adopted. Specifically, ’id,’ ’item_id,’ ’store_id,’ and ’state_id’ features un-
derwent label encoding. Notably, the ’id’ variable alone encompasses 3049

unique values, emphasizing the computational burden that alternatives like
one-hot encoding could impose, particularly in scenarios with a consider-
able number of categories. On the other hand, mean encoding was avoided
due to its overfitting risk and potential for data leakage, particularly with
categorical variables. Label encoding emerged as a practical solution that
facilitated model compatibility, while mitigating the computational burden
inherent in handling a large number of unique categories.

Finally, the feature transformation methods were carefully chosen to
align with the inherent requirements of the specific algorithms used. The
encoding decision was made with the characteristics of each algorithm in
mind, ensuring optimal model compatibility and performance.

4.5 Data Types Optimization

Finally, a memory reduction function is provided to optimize the mem-
ory usage of a Pandas DataFrame, which is especially useful for large
datasets such as the Walmart sales dataset. Based on observed data ranges,
the function dynamically adjusts numeric column types to the smallest
suitable types (for example, from int64 to int16). This results in a more
memory-efficient representation of the data, which contributes to lower
computational overhead and better performance in subsequent analyses
or machine learning tasks. This optimization is consistent with best prac-
tices for managing large datasets, such as those used in Walmart sales
forecasting.

4.6 Custom Split for Hyperparameter Tuning: Facilitating Sliding and Expand-
ing Windows

The specific requirement to implement sliding and expanding window
methodologies necessitated a departure from the traditional time series
split during the hyperparameter tuning phase. The traditional time series
split follows a strict chronological order, with the validation set coming after
the training set. However, the need to incorporate sliding and expanding
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windows for tuning purposes necessitated a customized approach to better
simulate real-world forecasting scenarios.

The primary reason for the custom split was to make it easier to
implement sliding and expanding window methodologies. Sliding win-
dows enable a dynamic assessment of model performance by sequentially
moving through the dataset, whereas expanding windows include more
data for training progressively, allowing for a comprehensive evaluation.
Designed for sliding and expanding windows to closely align with the
forecasted period, the Custom Split is presented in Table 1. This config-
uration includes distinct validation sets (v1, v2, v3, v4), contributing to
an enhanced evaluation of the model’s performance. . During the model
evaluation phase, this deliberate design aimed to create a more realistic
simulation of the forecasting scenario.

Set Week (wm_yr_wk)
Training Set 11106–11608

v1 11609

v2 11610

v3 11611

v4 11612

p1 11613

p2 11614

p3 11615

p4 11616

Table 1: Custom Data Split

Traditional time series splits may not capture the dynamics of the fore-
casting task effectively, especially when sliding and expanding windows
are used in the evaluation. In scenarios where the goal is to predict future
weeks, the custom split strategy allowed for a more relevant assessment
of model performance. The custom split attempted to bridge the gap
between the rigidity of chronological splits and the dynamic requirements
posed by the task’s forecasting nature, by embracing sliding and expanding
windows. This method attempted to align model evaluation with evolving
data patterns.

From the creation of the final training set (final training) to the start
of the validation periods, the models were exposed to a wide range of
temporal patterns. This exposure aided in the generalization and robust
learning required for forecasting tasks. The advantages of the custom split
stemmed from its ability to accommodate the complexities of sliding and
expanding window methodologies, thereby increasing the relevance of
model evaluations in the context of real-world forecasting scenarios.
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4.6.1 Sliding Window Approach

The sliding window methodology takes a dynamic approach, training the
forecasting model iteratively with a rolling window of historical data. This
enables the model to adapt to changing patterns considering a subset of
the data at each iteration. The algorithm starts with a training set and
gradually slides the window forward, updating the model parameters
and fine-tuning hyper parameters as it goes. Each prediction task entails
training the model with the appropriate sliding window and adjusting
parameters to achieve the best forecasting accuracy. The sliding window
approach is shown in the Figure 7.

Figure 7: Sliding Window Method

4.6.2 Expanding Window Approach

The expanding window method takes a cumulative approach, gradually
expanding the training set to include all historical data up to the current
time point. This captures the evolving nature of time series data consider-
ing all previous observations. The algorithm starts with a small training
set and expands iteratively to include the next data point. The updated set
is then used to train the model, and the hyper parameters are fine-tuned
accordingly. The model thus trained on the entire expanding training set is
used for prediction tasks and hyper parameters can be adjusted for each
prediction task. The expanding window approach is show in the Figure 8.
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Figure 8: Expanding Window Method

4.7 Algorithms and Software

This section elucidates the machine learning models and forecasting tech-
niques employed in the study. Initially, recursive and direct techniques
were introduced, paving the way for a detailed exploration of the Random
Forest (RF) and LGBM regression algorithms, which constitute integral
components of the analytical framework applied in this research effort.
Lastly, Optuna is described as the tool of hyperparametring tunning of
both models. The list of the software and packages used, is provided in
Table 17, Appendix A.

4.7.1 Recursive Prediction

The forecasting process in the recursive prediction strategy involves pre-
dicting one-time step at a time, while incorporating the predicted values
into the input features for subsequent predictions. The prediction iteration
then proceeds by predicting the next time step, updating input features
with the predicted value and repeating the circle until the entire prediction
horizon has been covered. A more detailed description can be found in
Figure 9.
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Figure 9: Detailed recursive methodology

4.7.2 Direct Prediction

Direct prediction, in contrast to the recursive strategy, entails training a
single model to predict all time steps of the desired horizon at the same
time. The algorithm begins with a complete training set that does not
include the prediction horizon. The prediction phase is straightforward,
with the trained model predicting all time steps at once. The evaluation
process assesses forecasting accuracy across the entire prediction horizon,
providing insights into the model’s ability to capture dependencies across
multiple time steps at the same time.

4.7.3 Moving Average

The moving average model, widely adopted for time series forecasting,
predicts future values by averaging past values within a specified window,
effectively smoothing short-term fluctuations and emphasizing longer-
term trends. This choice aligns with a study by Cerqueira et al. (2020),
comparing performance estimation methods for time series forecasting.
The authors used a simple moving average model with a four-week window
as a baseline to assess advanced models like ARIMA, ETS, and TBATS.
Their findings indicated that while the moving average model is often
outperformed by sophisticated models, especially in non-stationary time
series, it serves as a valuable reference, highlighting both the strengths and
limitations of the moving average model in forecasting scenarios.

In this study, we treated the window size as a hyperparameter, sys-
tematically exploring various sizes to determine the optimal configuration.
Our analysis revealed that the moving average model achieved the lowest
WRMSSE and RMSE when employing a four-week window. This obser-
vation led us to select the four-week window, as it demonstrated superior
performance in capturing patterns within the time series data. Our find-
ings, summarized in Table 2, indicated that the lowest WRMSSE and RMSE
were achieved with a four-week window for the moving average. This dis-
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covery suggests that a four-week window size effectively captures patterns
in the time series data.

Window Size Average RMSE Average WRMSSE
3 7.815 10 0.255 23
4 7.796 74 0.256 60
5 7.902 99 0.256 59
6 8.092 09 0.259 66
7 8.280 32 0.262 68

Table 2: Average RMSE and RMSSE for Different Window Sizes

4.7.4 Light Gradient Boosting Machine (LGBM)

LGBM is a gradient boosting framework for distributed and efficient de-
cision tree model training. It was created by Microsoft in 2017 and has
gained popularity due to its speed and scalability, especially on large
data sets. LGBM uses a leaf-wise tree growth strategy rather than the
traditional level-wise strategy, which allows for faster training times. This
method reduces the number of nodes in the tree, resulting in less memory
usage and greater efficiency. LGBM is well-suited for tasks like regression,
classification and ranking, making it a versatile machine learning tool.

Distinguishing itself from the XGBoost model which was invented by
Chen and Guestrin (2016), LGBM employs histogram-based algorithms to
expedite the training process, diminish memory usage, and adopt a leaf-
wise growth strategy within specified depth constraints. The fundamental
concept behind the histogram algorithm involves discretizing continuous
floating-point eigenvalues into k bins and constructing a histogram with
a width of k. Unlike methods requiring additional storage for pre-sorted
results, the histogram algorithm eliminates this need. Furthermore, it
preserves the value post-discretization of features, typically stored with an
8-bit integer, thereby reducing memory consumption to 1/8 of the original.
Despite this coarse partitioning, there is no compromise in the model’s
accuracy (Ke et al., 2017a).

The data preprocessing phase preceding the application of LGBM
entails converting object type features to categorical. The primary machine
learning model used in this research is LGBM, which was chosen for its
efficiency, speed, low memory usage and top performance in the the M5

competition (Makridakis et al., 2022b). The model will be used in a multi-
step direct and recursive forecast and will be tuned based on the expanding
and the sliding techniques.
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4.7.5 Random Forest Regression

Random Forest(RF), initially proposed by Breiman (Breiman, 2001), is a
powerful ensemble-learning algorithm with applications in both classifica-
tion and regression tasks. This method entails assembling a collection of
distinct classification and regression decision trees to form a comprehensive
decision forest ensemble. The algorithm applies hierarchically organized
conditions from root to the leaf, representing the regression function, in
the context of regression.

Importantly, the Random Forest method generates trees at each node
separation using bootstrap samples and randomly chosen m features. The m
features ensure diversity within the ensemble by being significantly smaller
than the total number of features. During the regression process, decision
trees created with the Random Forest remain unpruned and continually
divide until only a few units remain in the leaf node.

Random Forest distinguishes itself among machine learning techniques
by combining validity estimation and model interpretation. The use of
random sampling, combined with improved ensemble method properties,
results in better generalizations and valid estimates. Karasu and Altan
(2019) provide additional details on the Random Forest algorithm for a
comprehensive understanding.

4.7.6 Hyperparameter Tuning of LGBM and RF Using Optuna

Optuna is a Python hyper parameter optimization library that uses a versa-
tile and efficient Bayesian optimization algorithm. This library employs a
probabilistic model to forecast the behavior of the objective function in hy-
per parameter space, allowing it to make informed decisions about where
to look for the next set of hyper parameters. The Tree-structured Parzen
Estimator (TPE) algorithm is used by Optuna, a Bayesian optimization
technique that efficiently balances exploration and exploitation. Optuna,
in particular, provides a user-friendly and extensible interface for defining
hyper parameter search spaces and running optimization experiments. Its
use in hyper parameter tuning ensures that machine learning models such
as LightGBM and Random Forest are fine-tuned for optimal performance.
The systematic exploration of hyper parameter space is critical for balanc-
ing model complexity and predictive accuracy, which contributes to the
overall effectiveness of the forecasting methodology (Akiba et al., 2019b).

For the hyperparameter tuning process, we utilize an expanding win-
dow and a sliding window split in every iteration. This approach involves
manually performing the data split, ensuring that the model is trained
and validated on distinct subsets of the dataset in each iteration. This
nuanced strategy contributes to a robust evaluation of the model’s perfor-
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mance under varying conditions, thereby enhancing the reliability of the
hyperparameter optimization process.

4.7.7 Hyperparameters for LGBM

LGBM, as a gradient boosting framework, demands meticulous tuning of
hyperparameters to attain optimal performance. The chosen hyperparame-
ters and their rationale combine to create a model that balances accuracy
and convergence speed. The learning rate strikes a balance between model
accuracy and convergence speed. A moderate rate ensures efficient conver-
gence while minimizing the risk of overshooting. The number of estimators
is chosen to avoid overfitting and underfitting while capturing patterns
without adding unnecessary complexity. The tree learner’s ’data’ setting
corresponds to data set characteristics, balancing computational efficiency
and model performance (Ding et al., 2021). Considerations for modeling
specific target variable characteristics, such as financial data or insurance
claims, are reflected in Tweedie variance power (He Zhou & Yang, 2022).
A balanced number of leaves prevents over fitting by capturing enough
information without going into unnecessary detail. The max bin parameter
strikes a balance between granularity and computational efficiency, which
is critical for dealing with outliers. The addition of bagging fraction and
frequency introduces randomness, which improves model robustness with-
out sacrificing stability. The feature fraction balances the model’s feature
diversity without overly constraining it. Min data in leaf prevents over-
specification, by balancing granularity and generalization. Regularization
is provided by the min sum hessian in the leaf, which ensures model
flexibility without sacrificing stability. This methodology takes a compre-
hensive approach, considering into account factors such as convergence
speed, model complexity and data set characteristics (Ke et al., 2017a). In
Tables 3, 4 and 5 the selected parameter ranges are specified, accompanied
by their optimal values following the tuning procedure, using the sliding
and expanding techniques.
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Table 3: LightGBM Hyperparameter Tuning

Hyperparameter Search Space
"objective" ["tweedie", ’regression’]
"random_state" 42

"learning_rate" [0.01, 0.3]
"n_estimators" [3, 10]
"metric" "rmse"
"boosting_type" "gbdt"
"tree_learner" ["feature", "data"]
"tweedie_variance_power" [1.1, 1.2, 1.4, 1.7, 1.8]
"num_leaves" [5, 20]
"max_bin" [50, 100]
"bagging_fraction" [0.4, 0.9]
"bagging_freq" [1, 10]
"feature_fraction" [0.4, 0.9]
"min_data_in_leaf" [2, 16]
"min_sum_hessian_in_leaf" [1, 10]

Table 4: LGBM Hyper Parameters - Sliding Window

Hyper Parameters Value

Learning Rate 0.272528

N Estimators 9

Tree Learner ’data’
Tweedie Variance Power 1.2
Num Leaves 14

Max Bin 70

Bagging Fraction 0.753449

Bagging Freq 2

Feature Fraction 0.669199

Min Data in Leaf 6

Min Sum Hessian in Leaf 9
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Table 5: LGBM Hyper Parameters - Expanding Window

Hyper Parameters Value

Learning Rate 0.28097707291851126

N Estimators 9

Tree Learner ’data’
Tweedie Variance Power 1.2
Num Leaves 18

Max Bin 95

Bagging Fraction 0.5439292388995909

Bagging Freq 8

Feature Fraction 0.6407865116499937

Min Data in Leaf 7

Min Sum Hessian in Leaf 6

4.7.8 Hyperparameters for Random Forest

The hyper parameters used to train the Random Forest model were care-
fully chosen to strike a balance between model complexity and generaliza-
tion performance. The reasoning behind each parameter choice is outlined
below.

To balance computational efficiency and model robustness, the number
of estimators, which represents the number of decision trees in the forest,
was chosen moderately. This decision is consistent with the principle that
a large number of estimators may result in diminishing returns, without
significantly improving predictive accuracy. Setting a relatively larger
maximum depth for each decision tree aims to allow the trees to capture
intricate patterns in the data, potentially improving the model’s ability
to represent complex relationships. Higher values were assigned to the
parameters controlling the minimum number of samples required to split
an internal node (min_samples_split) and the minimum number of samples
required to be at a leaf node (min_samples_leaf). This option is intended to
prevent overfitting to noise in the training data by requiring a higher degree
of generalization, thereby promoting model robustness. The max_features
parameter ’sqrt’ setting encourages diversity among individual trees, by
limiting the maximum number of features considered for splitting a node.
This constraint prevents the model from being overly influenced by specific
features, resulting in better generalization (Liaw & Wiener, 2001). Because
bootstrap sampling is disabled (boot-strap=False), each tree is trained on
the entire data set. This option increases tree diversity. while lowering the
risk of overfitting, by preventing the model from relying too heavily on
specific subsets of data (Bilolikar et al., 2023).
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Tables 6, 7 and 8 specify the selected parameter ranges, accompanied
by their optimal values following the tuning procedure using the sliding
and expanding techniques.

Table 6: Random Forest Hyperparameter Tuning

Hyperparameter Search Space
n_estimators [3, 10]
max_depth [5, 20]
min_samples_split [2, 16]
min_samples_leaf [1, 10]
max_features ["sqrt", "log2"]
bootstrap [True, False]
random_state 42

Table 7: Random Forest Hyper Parameters - Sliding Window

Hyper Parameters Value

n_estimators 7

max_depth 19

min_samples_split 4

min_samples_leaf 8

max_features ’sqrt’
bootstrap False

Table 8: Random Forest Hyper Parameters - Expanding Window

Hyper parameters Value

n_estimators 8

max_depth 15

min_samples_split 12

min_samples_leaf 9

max_features ’sqrt’

bootstrap False

4.8 Evaluation Method

Various measures were employed in previous studies to evaluate point fore-
cast accuracy, with the M5 "Accuracy" competition primarily utilizing the
root mean squared scaled error (RMSSE). As a variant of the mean absolute
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scaled error (MASE), RMSSE is independent of data scale, has predictable
behavior and symmetrically penalizes both positive and negative forecast
errors (Makridakis et al., 2022a). It overcomes challenges associated with
sporadic unit sales and zero values, thus providing a robust evaluation
for series with intermittent demand patterns (Davydenko & Fildes, 2013;
Prestwich et al., 2014).

The weighted RMSSE (WRMSSE), calculated by averaging RMSSE
scores across all series with appropriate weights based on cumulative
actual unit sales, serves as a measure of overall forecast accuracy. It
considers unit sales, selling volumes and prices hierarchically, aiming to
identify forecasting methods suitable for accurately predicting series with
higher revenues (Makridakis et al., 2022a). The equal weighting of all
aggregation levels in WRMSSE aligns with the competition’s emphasis on
comprehensive evaluation, rather than addressing specific decision-making
problems.

RMSE (Root Mean Squared Error) measures a model’s accuracy in
comparison to a naive forecast. It was chosen for its ability to reduce the
impact of zero sales days, which is especially important for time series
forecasting in retail settings (Makridakis et al., 2022a). While RMSSE
provides a comprehensive evaluation of forecast accuracy, RMSE adds
value by addressing specific challenges associated with zero sales days.
These metrics, when combined, provide a solid assessment framework for
forecasting methods in the context of the M5 competition.

5 results

The time series forecasting experiments on historical sales data from Wal-
mart utilized two prominent machine learning models: LGBM and RF.
Predictions were generated using both direct and recursive approaches,
after being tuned with sliding and expanding window techniques and
the forecasting performance was assessed through RMSE and WRMSSE
metrics. Detailed results can be found in Tables 9 & 10.

5.1 Root Mean Squared Error (RMSE) Analysis

In the comprehensive RMSE analysis, both RF and LGBM models consis-
tently outperformed the baseline moving average model. Specifically, RF
models, including RF Sliding Direct and RF Expanding Direct, exhibited
notable superiority over LGBM models. Across all forecasting weeks, RF
Sliding Direct and RF Expanding Direct consistently demonstrated lower
RMSE values, surpassing their LGBM counterparts, highlighting the effec-
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Table 9: RMSE

Model Week 1 Week 2 Week 3 Week 4 Average

Base Line MA 7.49882 8.31027 8.22504 7.15285 7.79674

LGBM Sliding Direct 6.71488 7.81394 7.65157 7.12367 7.32602

LGBM Sliding Recursive 6.71488 7.83352 7.96409 7.29677 7.45232

LGBM Expanding Direct 6.64904 7.91746 7.54046 7.17658 7.32089

LGBM Expanding Recursive 6.64904 7.87266 7.71498 7.21667 7.36334

RF Sliding Direct 6.46578 7.23178 7.04479 6.84074 6.89577

RF Sliding Recursive 7.49907 8.31027 8.22504 7.152285 7.79681

RF Expanding Direct 6.36794 7.38401 7.00152 6.80354 6.88925

RF Expanding Recursive 6.34998 8.21201 8.04721 7.20548 7.79681

Table 10: WRMSSE

Model Week 1 Week 2 Week 3 Week 4 Average

Base Line MA 0.25874 0.26253 0.25484 0.25049 0.25660

LGBM Sliding Direct 0.23169 0.24685 0.23708 0.24947 0.24133

LGBM Sliding Recursive 0.39245 0.42377 0.43973 0.41504 0.41779

LGBM Expanding Direct 0.22942 0.25012 0.23363 0.25132 0.24119

LGBM Expanding Recursive 0.38860 0.42589 0.42598 0.41049 0.41277

RF Sliding Direct 0.22310 0.22846 0.21827 0.23956 0.22742

RF Sliding Recursive 0.37146 0.45578 0.47841 0.43162 0.43443

RF Expanding Direct 0.21972 0.23327 0.21693 0.23826 0.22711

RF Expanding Recursive 0.37112 0.44424 0.44432 0.40985 0.41742

tiveness of the direct approach within RF models for superior predictive
performance.

The percentage differences in average RMSE values between RF and
LGBM models further highlighted this superiority. Specifically, RF Sliding
Direct exhibited a 5.87% lower average RMSE (6.8925), when compared to
LGBM Sliding Direct (7.32601) and RF Expanding Direct showed a 5.89%
lower average RMSE compared to LGBM Expanding Direct. Additionally,
it is noteworthy that both models demonstrated the smoothest and lowest
distribution of errors in the direct method when compared to the recursive
approach. However, RF’s performance in the direct method stood out as
superior, underscoring its efficacy in minimizing errors in direct forecasting
scenarios.
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Examining the week-to-week variation, it is noteworthy that, in the
recursive approach, as shown in Table 11, both the LGBM and RF models
demonstrated significant increases in RMSE values, suggesting potential
challenges in adapting to evolving patterns. Specifically, in the case of
LGBM Sliding Recursive, the RMSE increased by 16.65% after the first
week, followed by additional increases of 1.66% in the third week and a
decrease of 8.37% in the last week. Similarly, the RF Sliding Recursive
exhibited a 10.81% increase after the first week, followed by additional
decreases of 1.02% and 13.03%. Furthermore, in the second week of our
analysis, a significant uptrend in actual sales occurred, with an increase of
10.53%. Notably, during this period, RF demonstrated a superior ability to
capture and adapt to this uptrend as compared to LGBM. RF exhibited a
more accurate prediction that aligned closely with the observed increase
in actual sales, thus emphasizing its robust performance in responding
to immediate changes in sales patterns. Subsequently, Figures 10 and 11

illustrate the observed trends in the models’ performance over consecutive
weeks.

Models Week 1 Week 1-2 Week 2-3 Week 3-4
Base Line MA 7.49881 10.82% -1.02% -13.03%
LGBM Sliding Direct 6.71488 16.36% -2.07% -6.89%
LGBM Sliding Recursive 6.71488 16.65% 1.66% -8.37%
LGBM Expanding Direct 6.64904 19.07% -4.76% -4.82%
LGBM Expanding Recursive 6.64904 18.40% -2.00% -6.45%
RF Sliding Direct 6.46577 11.84% -2.58% -2.89%
RF Sliding Recursive 7.49906 10.81% -1.02% 13.03%
RF Expanding Direct 6.36794 15.95% -5.17% -2.82%
RF Expanding Recursive 6.34998 29.32% -2.00% -10.45%

Table 11: Weekly Percentage Change in RMSE
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Figure 10: Recursive forecasting with LGBM(Sliding)

Figure 11: Recursive forecasting with RF(Sliding)

For the expanding window approach, LGBM Expanding Recursive
exhibited an initial increase of 18.40% in the first week, followed by more
modest decreases of 2.0% and 6.45%. In contrast, RF Expanding Recursive
demonstrated the largest increase of 29.32% after the first week, making
it not only the most substantial increase but also the highest absolute
error observed, reaching levels comparable to the Baseline Moving Average.
Subsequent decreases of 2.00% and 10.45% followed. This nuanced analysis
sheds light on the challenges associated with the RF recursive approach,
particularly in capturing evolving patterns over successive forecasting
periods. Figures 12 and 13 visually present the observed trends in the
models’ performance over consecutive weeks.
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Figure 12: Recursive forecasting with LGBM(Expanding)

Figure 13: Recursive forecasting with RF(Expanding)

Conversely, LGBM models revealed a consistent advantage in the recur-
sive approach over both sliding and expanding windows. LGBM Sliding
Recursive and LGBM Expanding Recursive consistently achieved lower av-
erage RMSE values compared to their RF counterparts, by 4.62% and 5.89%,
respectively. It is worth noting that, overall, the expanding window method
performed slightly better in both recursive and direct approaches in both
models, exhibiting around a 1% difference in performance as compared to
the sliding window method.

5.2 Weighted Root Mean Squared Scaled Error (WRMSSE) Analysis

The WRMSSE metric, considering both sales volume and the impact of zero
sales over the previous four weeks, provides a nuanced perspective. The
observed week-to-week variations in WRMSSE align with the RMSE trends,
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but with more moderate changes, highlighting the metric’s sensitivity to
sales volume dynamics and its ability to capture subtler variations in model
performance.

In the thorough examination of WRMSSE, the continued excellence of
RF Sliding Direct and RF Expanding Direct models was evident, surpassing
various setups, including those involving LGBM models. The effectiveness
of the direct approach within RF models was re-emphasized through the
scaled error analysis, mirroring the trends observed in the RMSE results.

The percentage differences in average WRMSSE values between RF
and LGBM models remained noticeable. RF Sliding Direct demonstrated a
5.76% lower average WRMSSE compared to LGBM Sliding Direct, and RF
Expanding Direct exhibited a 5.85% lower average WRMSSE as compared
to LGBM Expanding Direct. Figures 14 & 15 demonstrate how the models
performed in each week.

Figure 14: Direct forecasting with LGBM(Sliding)

Figure 15: Direct forecasting with RF(Sliding)
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Analyzing week-to-week variations, a similar trend to the RMSE analy-
sis is observed in the WRMSSE results. Under the recursive approach, as
shown in Table 12, both LGBM and RF models show increases, indicating
potential challenges in adapting to evolving patterns. Following the first
week, LGBM Sliding Recursive experienced a WRMSSE increase of 7.98%,
with additional increases of 3.76% and a subsequent 5.61% decrease. In
comparison, RF Sliding Recursive demonstrated a WRMSSE increase of
22.69% after the first week, indicating that the change in error is higher
than the RMSE (10.81%), followed by a further increase of 4.97% and a
subsequent 9.78% decrease. The big difference between the two errors
is due to the sharp increase in sales in the second week, as WRMSSE is
impacted more significantly by changes in sales scale than RMSE. This oc-
curs because RMSSE, and consequently WRMSSE, scales RMSE relative to
historical data trends, typically using the historical mean. Hence, substan-
tial week-to-week changes in sales, such as the notable increase observed
impacted disproportionately RMSSE. This scaling amplifies RMSSE’s re-
sponse to significant sales fluctuations, especially when these deviate from
historical patterns.

Models Week 1 Week 1-2 Week 2-3 Week 3-4
Base Line MA 0.25874 1.46% -2.92% -1.70%
LGBM Sliding Direct 0.23169 6.54% -3.95% 5.22%
LGBM Sliding Recursive 0.39245 7.98% 3.76% -5.61%
LGBM Expanding Direct 0.22942 9.02% -6.59% -7.57%
LGBM Expanding Recursive 0.38860 9.59% 0.02% -3.63%
RF Sliding Direct 0.22309 2.40% -4.45% 9.75%
RF Sliding Recursive 0.37145 22.69% 4.96% -9.77%
RF Expanding Direct 0.21972 6.16% -7.00% 9.82%
RF Expanding Recursive 0.37112 19.70% 0.01% -7.75%

Table 12: Weekly Percentage Change in WRMSSE

For the expanding window approach, LGBM Expanding Recursive
showed an increase of 9.59% after the first week, followed by more moder-
ate increases of 0.02% and a decrease of 3.63%. RF Expanding Recursive
exhibited a WRMSSE increase of 19.7% after the first week, remaining the
same in the third week, followed by a 7.75% decrease. This granular exam-
ination underscores the challenges associated with the recursive approach,
particularly in the context of scaled error metrics where capturing evolving
patterns is crucial. Figures 16 & 17 demonstrate how the models performed
in each week.
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Figure 16: Direct forecasting with LBGM(Expanding)

Figure 17: Direct forecasting with RF(Expanding)

Reiterating the trend observed in the RMSE analysis, LGBM mod-
els consistently demonstrated a marginal, yet discernible, superiority in
performance in the recursive approach over both sliding and expanding
windows. LGBM Sliding Recursive and LGBM Expanding Recursive con-
sistently achieved lower average WRMSSE values when compared to their
RF counterparts by 8.33% and 8.45%, respectively.

These detailed findings provide a nuanced understanding of the com-
parative performance of LGBM and RF models under various configu-
rations, emphasizing the complexities associated with the recursive and
sliding approaches and their impact on capturing evolving patterns in
the context of Walmart sales forecasting. The ensuing discussion will
delve into the implications of these results, offering insights into potential
contributing factors and paths for further exploration.
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6 discussion

6.1 Results Discussion

Our exploration into the performance of tree-based algorithms, specifically
LGBM and RF, against the Moving Average baseline uncovered a substan-
tial enhancement in predictive capabilities. Both LGBM and RF consistently
surpassed the baseline, demonstrating the proficiency of machine learning
models in capturing intricate patterns within Walmart’s sales data.

In the comparative analysis of recursive and direct approaches in fore-
casting models, a notable performance discrepancy was observed between
the LGBM and RF algorithms. Specifically, the LGBM consistently demon-
strated superior performance over RF when utilizing the recursive strategy.
In contrast, the direct approach revealed an opposite trend, with RF models
outperforming LGBM. This variation in performance invites further inves-
tigation into each algorithm’s adaptability to changing patterns and the
impact of input sequences on forecasting accuracy. Additionally, in both
models, the direct approach exhibited overall better performance than the
recursive method. However, this finding contrasts with the study by Xue
et al. (2019), which reported a superior performance of recursive prediction
over direct prediction. This contradiction underscores the importance of
data characteristics and domain-specific dynamics in determining the most
effective prediction technique.

Notably, LGBM’s boosting framework plays a pivotal role in its ob-
served superiority in the recursive approach. Boosting algorithms, such as
LGBM, are designed to iteratively correct errors in previous predictions,
allowing the model to adapt and learn from the evolving nature of the
data. This characteristic proves particularly advantageous in recursive
predictions, where the model needs to continuously refine its forecasts as
new information becomes accessible.

Our investigation into the sliding and expanding window methodolo-
gies, despite their relatively short four-week window, provided intriguing
insights into their impact on predictive performance. The expanding win-
dow consistently beat the sliding window, underscoring the significance
of progressively incorporating more historical data in the domain of retail
forecast. This contradict the findings of Lehmann (2021), were the rolling
window was superior in performance. However, the overall impact was
somewhat constrained, possibly due to the short window duration.

In contrasting our findings with the broader landscape of time series
analysis, we compare them to the M5 forecasting competition by Makri-
dakis et al. (2022b). While our study focused on weekly data with a
four-week forecast horizon, differing from the M5 competition’s daily data
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and 28-day forecast horizon, these disparities highlight the potential influ-
ence on the optimal algorithm choice. Unlike the M5 competition, where
LGBM was identified as the best-performing model, our study highlights
RF as the superior algorithm. This deviation underscores the sensitivity
of model performance to factors like temporal granularity and forecast
horizon, suggesting that the effectiveness of machine learning algorithms
in time series forecasting is highly contingent on dataset specifics and the
methodology employed.

Detailed analysis exposes significant differences between recursive
and direct approaches, notably in RF. Recursive models face challenges
capturing substantial sales fluctuations, underlining immediate pattern
recognition issues. A marked decrease in errors in the last week of the
recursive approach suggests potential parity with the direct approach’s
performance over a larger predictive horizon. Investigation into handling
extreme values highlights RF’s effectiveness in capturing sudden sales
increases, attributed to its ensemble nature. Aligning algorithmic strengths
with the forecasting task is crucial, emphasizing the significance of handling
extreme values for accurate sales predictions.

This discussion provides a comprehensive exploration of our results,
offering insights into the intricate dynamics of algorithmic performance,
temporal considerations, and the broader implications for time series
forecasting in the retail domain.

6.2 Limitations

Despite the comprehensive analysis and valuable insights gained from our
study, several limitations merit consideration. Firstly, due to computational
constraints, we transformed the original daily sales data into a weekly
format to enable training on the entire data set. This transformation might
have resulted in the loss of subtle daily patterns, potentially impacting the
models’ ability to capture short-term dependencies.

The relatively short four-week window used in sliding and expanding
methodologies may have constrained the models’ ability to capture long-
term dependencies. A more extended window could offer a more robust
evaluation of their impact.

Additionally, the data set’s temporal granularity and forecast horizon,
differing from the M5 competition, highlight the need for caution in gen-
eralizing our findings. The specific characteristics of weekly data and a
four-week forecast horizon may influence algorithm performance and our
results might not directly extrapolate to daily data and longer forecast
periods.interpretation and generalisation.
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6.3 Recommendations

Our study offers key recommendations for advancing retail sales fore-
casting. Researchers should explore the impact of longer observation
windows, specifically delving into the effects of sliding and expanding
window methodologies to understand the models’ adaptability to longer-
term sales dependencies. Sensitivity analyses on temporal granularity
are essential to comprehend the models’ performance under varying time
intervals. Investigating different temporal resolutions provides insights
into generalizability and adaptability to diverse datasets.

Expanding the scope to include diverse retail datasets beyond Wal-
mart’s enriches our understanding of algorithmic performance in various
retail contexts, identifying models with more universal effectiveness. In-
tegration of external factors, like weather conditions and inflation rates,
into forecasting models is crucial for enhancing contextual awareness and
improving predictions in dynamic retail environments.

Despite potential computational expenses, researchers are encouraged
to explore training and tuning models separately for different stores or
product categories. This tailored approach acknowledges potential het-
erogeneity in sales patterns across segments, potentially leading to more
accurate and context-specific predictions. In conclusion, addressing these
recommendations will refine existing methodologies and contribute to
the development of more effective predictive models in the complex and
dynamic landscape of retail sales forecasting.

7 conclusion

In conclusion, this study systematically evaluated the predictive perfor-
mance of LGBM and RF models using weekly sales data from Walmart.
Through an exhaustive exploration of direct and recursive approaches,
incorporating sliding and expanding window techniques, the research
uncovered valuable insights into the intricacies of retail sales forecasting.

Distinct patterns emerged from the comparative analysis, stressing out
the consistent superiority of RF models in the direct approach, whether
employing sliding or expanding windows. This superiority was evident
in lower RMSE and WRMSSE metrics. Conversely, LGBM models demon-
strated a slightly better performance in the recursive approach, highlighting
their adaptability to evolving patterns over successive forecasting periods,
as compared to RF models.

In addition, it is noteworthy that the expanding window technique
consistently outperformed the sliding window in both LGBM and RF mod-
els, across direct and recursive predictions. This observation emphasizes
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the significance of progressively incorporating more historical data for
improved predictions, suggesting that the expanding window approach
provides a valuable advantage in the context of retail sales forecasting.

The study significantly contributes to existing literature by not only
assessing model performance, but also delving into the nuances of various
forecasting approaches. Notably, the observed trends underscore that the
expanding window consistently outperformed the sliding window one,
thus emphasizing the significance of progressively incorporating more
historical data for improved predictions.

The findings suggest exploring longer observation windows, conduct-
ing sensitivity analyses on temporal granularity and incorporating external
factors like weather and inflation for more accurate predictions in dynamic
retail settings. However, limitations such as transforming daily sales into
weekly data and a short observation window do exist. Future research
can focus on diversifying algorithms, extending observation windows
and tailoring models for specific stores or product categories. Overall,
this research enhances understanding of machine learning in retail sales
forecasting, providing insights into model performance and guiding fu-
ture research for more effective predictive modeling in the evolving retail
landscape.

references

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019a). Optuna: A
next-generation hyperparameter optimization framework. Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019b). Optuna: A
next-generation hyperparameter optimization framework.

Arik, S. O., & Pfister, T. (2021). Tabnet: Attentive interpretable tabular
learning. Proceedings of the AAAI Conference on Artificial Intelligence,
35(8), 6679–6687.

Ben Taieb, S., & Hyndman, R. (2012). Recursive and direct multi-step fore-
casting: The best of both worlds (Monash Econometrics and Business
Statistics Working Papers No. 19/12). Monash University, Depart-
ment of Econometrics and Business Statistics. https://EconPapers.
repec.org/RePEc:msh:ebswps:2012-19

Bilolikar, D. K., More, A., Gong, A., & Janssen, J. (2023). How to out-
perform default random forest regression: Choosing hyperparame-
ters for applications in large-sample hydrology.

https://EconPapers.repec.org/RePEc:msh:ebswps:2012-19
https://EconPapers.repec.org/RePEc:msh:ebswps:2012-19


references 38

Bollerslev, T., Hood, B., Huss, J., & Pedersen, L. H. (2018). Risk Everywhere:
Modeling and Managing Volatility. The Review of Financial Studies,
31(7), 2729–2773. https://doi.org/10.1093/rfs/hhy041

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https:
//doi.org/10.1023/A:1010933404324
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appendix a

id item_id dept_id cat_id store_id state_id d_1 d_2 d_1940 d_1941

1 HOBBIES_1_001_CA_1 HOBBIES_1_001 HOBBIES_1 HOBBIES CA_1 CA 0 0 0 1

2 HOBBIES_1_002_CA_1 HOBBIES_1_002 HOBBIES_1 HOBBIES CA_1 CA 0 0 0 0

3 HOBBIES_1_003_CA_1 HOBBIES__003 HOBBIES_1 HOBBIES CA_1 CA 0 0 0 1

30488 FOODS_3_826_WI_3 FOODS_3_826 FOODS_3 FOODS WI_3 WI 0 0 1 0

30489 FOODS_3_827_WI_3 FOODS_3_827 FOODS_3 FOODS WI_3 WI 0 0 5 1

Table 13: Sales.csv

Variable Unique Counts

item_id 3049

dept_id 7

cat_id 3

store_id 10

state_id 3

week 52

month 12

quarter 4

year 6

season 4

Table 14: Unique Counts for Different Variables

date wm_yr_wk weekday wday month year d event_name_1 event_type_1 snap_CA
2011-01-29 11101 Saturday 1 1 2011 d_1 No event No event 0

2011-01-30 11101 Sunday 2 1 2011 d_2 No event No event 0

2011-01-31 11101 Monday 3 1 2011 d_3 No event No event 0

2011-02-01 11101 Tuesday 4 2 2011 d_4 No event No event 1

2011-02-02 11101 Wednesday 5 2 2011 d_5 No event No event 1

Table 15: Calendar.csv (excluding some columns due to size)

store_id item_id wm_yr_wk sell_price
CA_1 HOBBIES_1_001 11325 9.58

CA_1 HOBBIES_1_001 11326 9.58

CA_1 HOBBIES_1_001 11327 8.26

CA_1 HOBBIES_1_001 11328 8.26

CA_1 HOBBIES_1_001 11329 8.26

Table 16: Price.csv
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Package Source
python 3.12.1 (Python Software Foundation, 2021)
pandas (Pandas Development Team, 2020)
numpy (Harris et al., 2020)
Matplotlib (Hunter, 2007)
seaborn (Waskom, 2021)
Scikit-learn, RandomForestRegressor, MeanSquareError (Pedregosa et al., 2011)
optuna (Akiba et al., 2019a)
datetime (Python Software Foundation, 2021)
LGBMRegressor (Ke et al., 2017b)
statsmodels (Statsmodels Developers, 2021)

Table 17: Packages and Software

Figure 18: Unit sales per Season
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appendix b

Lag Features Rolling Features
’shift_1_sold’ ’shift_1_Rolling_mean_2’
’shift_2_sold’ ’shift_1_Rolling_std_2’
’shift_3_sold’ ’shift_1_Rolling_max_2’
’shift_4_sold’ ’shift_1_Rolling_min_2’

’shift_1_Rolling_mean_3’
’shift_1_Rolling_std_3’
’shift_1_Rolling_max_3’
’shift_1_Rolling_min_3’
’shift_1_Rolling_mean_4’
’shift_1_Rolling_std_4’
’shift_1_Rolling_max_4’
’shift_1_Rolling_min_4’
’shift_1_Rolling_mean_5’
’shift_1_Rolling_std_5’
’shift_1_Rolling_max_5’
’shift_1_Rolling_min_5’

Table 18: Lag and Rolling Features

Price-Related Features Description
’price_store_max’ Maximum price observed at the store level
’price_day_max’ Maximum price observed on a particular day
’price_max’ Overall maximum price observed
’price_min’ Overall minimum price observed
’price_std’ Standard deviation of prices
’price_mean’ Mean of prices
’price_norm’ Normalized prices relative to a reference point
’price_momentum’ Price momentum in the most recent period
’price_momentum_m’ Price momentum over an extended period

Table 19: Price-Related Features
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