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Abstract

Myocardial Infarction (MI) is one of the most challenging medical
emergencies where the heart muscle begins to die due to a lack of
blood flow. About 50% of the patients contract complications that
lead to worsening of the disease or even death. Creating accurate
machine and deep learning models that can predict lethal compli-
cations holds paramount importance for pre-emptive interventions.
Conventional machine learning algorithm XGBoost is widely consid-
ered the current state-of-the-art for predictive modeling on tabular
data. However, a shift from machine to deep learning techniques
has been identified in the medical field. This study builds on the
limited research on deep learning techniques for tabular data in the
field of MI complication mortality classification. The MI dataset from
the University of California machine learning repository was used
to build predictive models with the Logistic Regression, XGBoost,
TabNet, and Long-term Cognitive Network (LTCN) algorithms. Ad-
ditionally, the study explores the effect of the Synthetic Minority
Oversampling Technique (SMOTE) to address the class imbalance in
the dataset. Furthermore, feature importance methods have identified
the most prominent features. After evaluating model performances,
the XGBoost combined with SMOTE model provided the best kappa
score of 0.572, closely followed by the LTCN model without SMOTE,
achieving a kappa score of 0.542. LTCN in combination with SMOTE
yielded the highest ROC-AUC score of 0.820.
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1 data source , ethics , code , and technology statement

1.1 Source/Code/Ethics/Technology Statement Example

The MI dataset has been acquired from the UCI machine learning repository
through an online request. Work on this thesis did involve collecting data
from human participants. The obtained data is anonymized. No new data
was collected by the author. The original owner of the data and code used
in this thesis retains ownership of the data and code during and after
the completion of this thesis. However, the institution made the dataset
publicly available for research. All the figures belong to the author. The
thesis code can be accessed through the GitHub repository following the
link [https://github.com/CodingPex]. In terms of writing, the author used
assistance with the language of the paper. A generative language model
named Grammarly was used to improve the author’s original content, for
paraphrasing, spell-checking, and grammar. Chat-GPT was used to help
understand coding errors and to make small modifications to code. Finally,
websites like kaggle.com, machinelearningmastery.com, stackoverflow.com,
and towardsdatascience.com were consulted for coding examples and
questions.
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2 introduction

This work will contribute to the literature on Myocardial Infarction (MI)
and the potential of machine and deep learning techniques to assist in this
medical emergency. Myocardial Infarction (MI) is a medical emergency
where the heart muscle begins to die due to a lack of blood flow (“cleve-
land”, 2023). MI is more commonly known as a heart attack and can be
described as one of the most challenging problems of modern medicine
(Golovenkin et al., 2020). In the US alone more than a million people suffer
from MI every year.

About 50% of the patients in the acute and sub-acute periods contract
complications that lead to the worsening of the disease or can even lead to
mortality. Foreseeing these complications is one of the greatest challenges
of this medical emergency. Therefore, using the potential of machine
and deep learning techniques to help predict the mortality of potential
complications, is a valuable task. Creating accurate models that can predict
complications leading to death is important to carry out the necessary
preventive measures.

TabNet and Long-Term Cognitive Network (LTCN) are relatively novel
deep learning algorithms. These algorithms are designed explicitly for
tabular data, which corresponds with the input data for this study. No-
tably, both algorithms claim to have high interpretability and explainability,
which contributes to the social relevance of the study. Limited studies have
tested deep learning techniques for tabular data to predict complications
and/or mortality after an MI incidence. While TabNet has demonstrated
promise in various classification and prediction tasks across diverse do-
mains (Arik & Pfister, 2021), it has primarily been tested on large tabular
datasets. It will be interesting to see how TabNet performs on the smaller
dataset that is available for this binary classification study.

2.1 Scientific Novelty

Classifying complication mortality after an MI incidence has been studied
extensively (see section 3). The widely adopted XGBoost algorithm is
considered as the current state-of-the-art in studies with tabular data
for this research domain. More recently, a transition from machine to
deep learning techniques has been identified in the medical field (Garg
& Mago, 2021; Sharifani & Amini, 2023). While tabular data is still the
most common data type in real-world applications (Shwartz-Ziv & Armon,
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2022), deep learning techniques for tabular data have generally trailed
behind when compared to image, text, and audio data. More recently,
deep learning algorithms such as TabNet and LTCN have been created
specifically for tabular data. This study will test these deep learning
algorithms and compare their performances to the XGBoost algorithm.
Additionally, these algorithm’s performances will all be compared to a
baseline Logistic Regression model.

Furthermore, TabNet has mainly been tested on larger datasets (de Car-
valho et al., 2023; Kim et al., 2023). It will be intriguing to see how it
performs on the relatively small dataset that is available for this study.
In contrast, LTCN, while less extensively tested, is computationally less
expensive than TabNet and is not explicitly designed for large datasets.
These characteristics might make LTCN more suitable for the classification
task at hand. Both TabNet and LTCN claim to have higher interpretability
than traditional black box models which contributes to the transparency
of this study. The transparency will be further enhanced by providing a
thorough error analysis, distinguishing this study from previous studies
employing the same dataset. Finally, various feature importance methods
will be tested to provide insights into the most prominent features, which
contributes to the importance of explainable artificial intelligence in the
medical field.

2.2 Research Questions

The main Research Question is as follows:

"To what extent do deep learning models perform compared to conven-
tional machine learning models for classifying Myocardial Infarction
(MI) complication mortality?"

Several sub-questions have been derived to support the main research
question and provide a basis for the study.

"RQ1: To what extent do the performance metrics of the TabNet,
LTCN, and XGBoost models compare to the performance metrics of
the baseline model for predicting MI complication mortality? "

RQ1 provides an evaluation of all the tested algorithms. The models will
be evaluated based on their kappa, ROC-AUC, F1, recall, and precision
scores.
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"RQ2: To what extent does the model performance differ when using
SMOTE to address the class imbalance in the dataset?"

RQ2 aims to evaluate the effect of applying SMOTE to the training data.
The following performance metrics will be used to measure the effect:
kappa, ROC-AUC, F1-Score, recall, and precision.

"RQ3: Which important features in the dataset can be identified
through feature importance methods for the best-performing model?"

RQ3 aims to identify the features in the dataset that contribute most to the
predictive power of the various models. Shap, SKLearn’s random feature
permutation method, and the best-performing algorithm’s built-in feature
importance method will be tested. Through the pixel flipping experiment,
the best-performing feature importance method will be chosen to identify
the most prominent features.

2.3 Main Findings

After evaluating the model performances, XGBoost in conjunction with
SMOTE yielded the best results in terms of the kappa score, achieving
a score of 0.572. LTCN combined with SMOTE demonstrated superior
performance in terms of ROC-AUC, achieving a score of 0.820. Unexpect-
edly, TabNet failed to outperform the baseline model. LTCN exhibited
commendable performance without treating the class imbalance, achiev-
ing a kappa score of 0.542. Both XGBoost and LTCN were deemed most
suitable for the classification task in this study. The application of SMOTE
enhanced the model’s ability to accurately classify instances belonging to
the minority class. Additionally, this enhancement had minimal impact
on misclassifying instances belonging to the majority class, particularly
evident in the XGBoost model’s performance. Further analysis revealed
three prominent features contributing significantly to the classification task
in this study: the electrocardiogram rhythm at the time of admission to the
hospital, the use of calcium blockers in the intensive care unit, and the sex
of the patient.
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3 related work

Machine learning has become an essential tool in the process of analyzing
complex medical data. One literature review on this topic has concluded
that a shift in artificial intelligence techniques is happening (Garg & Mago,
2021). This work states that deep learning techniques are taking precedence
over conventional machine Learning techniques. This statement supports
the plan to test the proposed deep learning algorithms for this work’s clas-
sification task. This paper also identifies the importance of advancements
in the field. In the US, 80% of healthcare spending is spent on chronic
disease treatment. Furthermore, in China, 86% of disease-related deaths
are connected to chronic diseases.

3.1 Machine Learning and Myocardial Infarction

Studies utilizing machine and deep learning techniques in the context of
myocardial infarction have mainly focused on predicting the mortality
rate among patients after experiencing an MI incidence (Cho et al., 2021).
This study states that acute MI is the leading cause of death globally and
explores the potential of machine learning to predict mortality after an
MI incidence. SMOTE was applied to overcome class imbalance, which
improved the model performance within Cho et al. (2021)’s study.

Furthermore, numerous studies have focused on predicting the likelihood
of an MI incidence based on electrocardiogram (ECG) data (Kora et al.,
2018) (Kora & Sri Rama Krishna, 2016) (Sharma et al., 2018). Additionally,
Chakraborty et al. (2022)’s study provides a comprehensive review that sys-
tematically analyzed and discussed multiple research papers that employed
machine and deep learning techniques to predict the likelihood of an MI
incident (Chakraborty et al., 2022). The potential of machine and deep
learning becomes apparent when assessing the high accuracy scores in the
comparative table. However, several of the reviewed studies in this paper
solely relied on accuracy as a performance metric. The absence of more
comprehensive metrics such as recall and kappa, especially in the realm
of medical data, can lead to inadequate assessments. Imbalanced datasets
can provide high accuracy scores when solely predicting the majority
class. This emphasizes the importance of including more comprehensive
performance metrics since false negatives should be avoided.

When comparing the results with previous studies that utilized the same
dataset, the most recent study by Newaz et al. (2023) has notably yielded
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the most compelling results. Newaz et al. (2023) tested various conven-
tional machine learning algorithms for predicting complications of MI and
XGBoost was the best-performing algorithm in terms of "ROC-AUC" score,
which is a good performance measure when working with imbalanced data.
The latest study demonstrates a notable increase of 0.12 in the ROC-AUC
score when compared to the previous studies (Farah et al., 2022; Joshi et al.,
2022; Reddy & Thangam, 2022). Interestingly, none of the aforementioned
studies offer comprehensive insights into individual model performance
concerning each class. Given the significant class imbalance present in the
dataset, the absence of an error analysis presents a crucial research gap.

3.2 TabNet and Long-Term Cognitive Network

As mentioned in section 2.1, a shift from machine to deep learning tech-
niques has been identified in the medical field. Both TabNet and LTCN
are deep learning algorithms explicitly created for tabular data. TabNet
has shown promise accros various datasets (Arik & Pfister, 2021). LTCN is
inspired by fuzzy cognitive map-based models and designed for tabular
data with well-defined features. In this FCM-like model, the weights are
not constrained to a specific interval. Moreover, the tunable parameters
within LTCN are determined using a non-synaptic backpropagation algo-
rithm (Nápoles et al., 2021). The TabNet algorithm has been tested in two
studies within the research domain of this study (de Carvalho et al., 2023;
Kim et al., 2023). Both of these studies used different input data to create
predictive models.

3.2.1 TabNet

de Carvalho et al. (2023) tested the TabNet algorithm for its ability to
predict short-term outcomes after an MI incidence. Utilizing a relatively
large dataset, the TabNet algorithm demonstrated superior performance,
yielding an accuracy of 0.946 (de Carvalho et al., 2023). A second study
by Kim et al. (2023), used a relatively extensive dataset of the Korea
acute MI registry and observed TabNet’s outperformance of conventional
machine learning algorithms (Kim et al., 2023). These studies show the
potential of the TabNet algorithm. An intriguing prospect for further
exploration involves examining TabNet’s ability to surpass conventional
machine learning algorithms when applied to the smaller dataset available
for this study.
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3.2.2 LTCN

The LTCN algorithm is another deep learning algorithm created specifically
for tabular data. Unlike TabNet, the LTCN algorithm has not yet been tested
within the research domain of this study. LTCN is a recently proposed
algorithm by Nápoles et al. (2021) that has undergone less extensive testing
compared to TabNet. However, a comparative analysis suggests that LTCN
might be better suited for the smaller dataset in this study. This proposition
arises from LTCN’s absence of explicit design for high dimensional or
larger datasets and lower complexity, as is evident from its testing across
datasets ranging from 846 to 10,922 instances. LTCN provides competitive
performance when compared to state-of-the-art algorithms in terms of
kappa score on the tested datasets (Napoles et al., 2022).

3.3 Class imbalance

As described by Chawla et al. (2002), real-world datasets often consist
of a majority of "normal" cases and a smaller percentage of "abnormal"
cases (Chawla et al., 2002). Class imbalances can lead classifiers to be
biased towards the majority class. There are various ways to address
class imbalances such as resampling techniques, cost functions, and class
weights (Abd Elrahman & Abraham, 2013).

Newaz et al. (2023) explored several different methods to handle class
imbalance in the MI dataset. Most notably, Newaz et al. (2023) proposed a
new hybrid approach that combined sampling techniques with the cost-
sensitive learning framework. Within this approach SMOTE was used as
resampling approach as it provided the best performance (Newaz et al.,
2023). Other variations of SMOTE like Edited Nearesst Neighbours (ENN),
Tomek-links, and Adaptive Synthetic oversampling (ADASYN) were also
tested. The previous studies that used the same MI dataset all failed to pro-
vide an error analysis, which prevents seeing the effect of class imbalance
treatment for each class (Farah et al., 2022; Joshi et al., 2022; Newaz et al.,
2023; Reddy & Thangam, 2022). Lastly, Rai and Chatterjee (2022) used a
hybrid approach of SMOTE and Tomek link sampling methods to tackle
class imbalance. This approach parallelly generates oversamples while
maintaining data dissimilarity between minority and majority samples,
and also balance the classes (Rai & Chatterjee, 2022).
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3.4 Feature importance methods

Explainable artificial intelligence has emerged as an important research
direction to provide insights and explanations for the behaviour of more
complex machine and deep learning models. Within this research direction,
feature importance techniques are one of the most popular approaches
to provide more transparency and interpretability (Saarela & Jauhiainen,
2021). Explainable artificial intelligence is important when working with
sensitive medical data, where transparency about how complex models
work is crucial for full adoption (Mohanty & Mishra, 2022).

Local Interpretable Model-agnostic Explanations (LIME) and SHapley
Additive exPlanations (SHAP) are two popular examples of post-hoc inter-
pretable machine learning methods (Knapič et al., 2021). There are multiple
studies in the healthcare domain that have used one or both of these meth-
ods to provide insights into prominent features and how they contributed
to the predictions (Alabi et al., 2023; Lewin-Epstein et al., 2021; Prendin
et al., 2023; Seki et al., 2021; Wu et al., 2023). Lai et al. (2019) conducted a
comparison between feature importance techniques from built-in model
mechanisms and post-hoc methods like SHAP and LIME. Their findings
indicated that post-hoc methods tend to yield more similar prominent
features more consistently (Lai et al., 2019).

3.5 Research Gaps

As inferred in section 3, a shift from machine to deep learning techniques
has been identified in the medical field. Deep learning techniques for
tabular data have not experienced the same improvements as other forms
of data in recent years (Jang & Cho, 2019; Razzak et al., 2018). How-
ever, recently more attention has been given to the development of new
algorithms with a deep learning architecture to compete with the current
state-of-the-art for tabular data. The limited studies in the field of MI
complication classification that have tested these deep learning techniques
for tabular data introduce the first research gap.

Two of these deep learning algorithms for tabular data are TabNet and
LTCN. TabNet has been tested extensively and has been able to outperform
XGBoost in various fields (Arik & Pfister, 2021). One study by Nguyen
and Byeon (2023) tested the TabNet algorithm for the prediction of out-of-
hospital cardiac arrest survival. In that study, TabNet outperformed the
XGBoost algorithm with a "ROC-AUC" score of 0.9934 (Nguyen & Byeon,
2023). While Nguyen and Byeon (2023) predicted out-of-hospital cardiac
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arrest, this study will aim to predict if patients contract a fatal complication
before leaving the hospital.

Given TabNet’s purported suitability for large tabular datasets, its per-
formance on the comparatively smaller dataset available for this study
presents an interesting research gap. Conversely, the LTCN algorithm is
not necessarily designed for larger datasets (Napoles et al., 2022). Thus,
while TabNet has been tested more extensively with success, LTCN could
be more suitable for this particular study while also offering computational
efficiency. Both TabNet and LTCN claim to have higher interpretability
than the traditional black box models which contributes to the transparency
of the study.

Finally, multiple feature importance methods will be tested during the fea-
ture importance analysis to determine the best method and most prominent
features. Identifying these features will provide social relevance and can
help provide insights for future research. Furthermore, previous studies
failed to provide an error analysis of the predictions made by their models.
This study will provide a transparent overview in the form of confusion
matrices, supplemented by recall, precision and F1-scores.



4 method 11

4 method

The Logistic Regression algorithm was used to build a baseline model for
this study. Furthermore, the XGBoost model was identified as the current
state-of-the-art in MI classification studies with tabular data. Lastly, the
TabNet and LTCN algorithms were used to build deep learning models
for tabular data. These algorithms will be explained and justified in this
section. Figure 1 provides a flowchart of the data science pipeline in this
study.

Figure 1: Data Science Pipeline

4.1 Baseline Model

The Logistic Regression algorithm was used to build the baseline model
for this study. Logistic Regression is a common machine learning algo-
rithm used in binary classification tasks across fields, including medical
applications (Austin & Tu, 2004; Tsien et al., 1998). The convenience and
low computational cost of the algorithm make it an ideal baseline model.
Hyperparameter optimization was carried out using GridSearchCV, with
the hyperparameter grid specified in table 1.
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Table 1: The selected Hyperparameter grid for the baseline model

Hyperparameters Default Value Parameter Grid
C 1 [0.001, 0.01, 0.1, 1, 10, 100, 1000]
Solver "lbfgs" [liblinear, newton-cg]

[lbfgs, sag, saga]

The "C" hyperparameter specifies the regularization of the model, where
a smaller value specifies a stronger regularization. The "Solver" hyper-
parameter specifies the algorithm to be used in the optimization process
(Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Pretten-
hofer, Weiss, Dubourg, et al., 2011a).

4.2 XGBoost

XGBoost, a machine learning algorithm inspired by tree boosting, is exten-
sively utilized across diverse research domains. It is widely acknowledged
as the current state-of-the-art for tabular data (Chen & Guestrin, 2016b).
XGBoost is an ensemble gradient boosting technique that builds multiple
models which are then combined to produce superior results. XGBoost
creates a more generalizable model through optimization of specific loss
functions and the application of various regularization techniques, which
mitigates the risk of overfitting (Chen & Guestrin, 2016b).

4.2.1 XGBoost Hyperparameter Tuning

Hyperparameter tuning is imperative for optimizing the XGBoost model,
as emphasized in the work by Putatunda and Rama (2018) (Putatunda &
Rama, 2018). The XGBoost documentation page was consulted to spec-
ify a hyperparameter grid. This hyperparameter grid was subsequently
employed as input for the GridSearchCV technique, facilitating the iden-
tification of the optimal hyperparameters. The XGBoost hyperparameter
grid utilized in this study is specified in table 2.

The various parameters are carefully chosen to find a balance in model
complexity and performance. In general, lower values for subsample,
colsample, max depth, and n estimators prevent overfitting. While a larger
value for Min child weight and Gamma makes the model more conservative.
Finally, the learning rate affects the time needed for the model to learn
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Table 2: The selected Hyperparameter grid for the XGBoost model including the
optimal value after Grid Search Cross Validation

Hyperparameters Default Value Parameter Grid Best Value
Min child weight 1 [1, 5, 10] 0.5
Gamma 0 [0.5, 1, 1.5, 2, 5] 1

subsample 1 [0.6, 0.8, 1.0] 0.8
colsample bytree 1 [0.6, 0.7, 0.8, 0.9] 0.9
max depth 6 [3, 4, 5] 6

n estimators 100 [100, 200, 400] 200

learning rate 0.3 [0.01, 0.1, 0.2] 0.1

and is also used as a measure to make a model more conservative (Chen &
Guestrin, 2016a).
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4.3 TabNet

4.3.1 TabNet’s Architecture

The most recent advancements in the field of Artificial Intelligence have
mainly attributed to deep learning techniques for image, video, text, and
audio data. Conventional machine learning algorithms are still widely
considered superior to deep learning algorithms for tabular data (Shwartz-
Ziv & Armon, 2022). In recent years however, more attention has been
given to the development of deep learning algorithms for tabular data,
leading to the introduction of TabNet by the Google team in 2019. TabNet’s
architecture operates more like a Deep Neural Network and claims to have
the interpretability of traditional tree models (Arik & Pfister, 2021).

Figure 2: TabNet Encoder Architecture

Figure 2 shows the architecture of the TabNet algorithm. TabNet is made
up of a feature transformer that extracts the features that pass through
the algorithm. After passing through the feature transformer the attentive
transformer is used for feature selection. TabNet optimizes the learning
capacity and makes the model parameter efficient through sparse feature
selection of the most prominent features (Arik & Pfister, 2021).

Figure 3 shows how the feature transformer works within the TabNet
algorithm. At each decision step, the input data passes through a Fully
Connected Layer (FC), Batch Normalization Layer (BN), and a Gated Linear
Unit (GLU). Eventually, the decision steps are normalized with

√
0.5 to

stabilize the learning and variance across the model (Gehring et al., 2017).
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Figure 3: TabNet Feature Transformer

Figure 4 shows the function of the attentive transformer within the TabNet
algorithm. TabNet uses a learnable mask based on prior decision steps to
select the most prominent features. In this study, the sparsemax normaliza-
tion was used for feature selection. The formula for the sparsemax mask is
specified below.

M[i] = sparsemax(P[i − 1] ∗ hi(a[i − 1])) (1)

P[i-1] represents the prior scale term that specifies how much a feature
has been used at prior decision steps. At P[0], all features are initialized
as ones since they have not passed through any decision steps yet. Later,
unused features corresponding values are set as zeros. a[i-1] represents
the processed feature information from the preceding step. hi is a train-
able function that can be trained through the Fully Connected and Batch
Normalization layer seen in Figure 4.

Figure 4: TabNet Attentive Transformer



4 method 16

Batch normalization is applied to the numerical and categorical features
of the input data. Then, the same amount of N-dimensional features are
passed to each decision step. TabNet is a sequential algorithm which means
that at each decision step, the model takes the processed information of
the (i − 1)th step for feature selection. Subsequently, the processed feature
representation is aggregated in the decision process (Arik & Pfister, 2021).

4.3.2 TabNet Hyperparameter Tuning

The TabNet documentation was consulted to form the hyperparameter grid.
GridSearhCV was used to find the optimal hyperparameter combination
within the specified parameter grid. The predetermined parameter grid
can be seen in figure 3.

Table 3: The selected Hyperparameter grid for the TabNet model and the optimal
value of the best performing model after GridSearchCV

Hyperparameters Default Value Parameter Grid Best Value
N-steps 3 [3,5,7,9] 3

Gamma 1.3 [1,1.3,1.5,2] 1.3
N-independent GLU 2 [1,2,3,4] 1

N-shared GLU 2 [1,2,3,4] 1

Momentum 0.02 [0.02,0.05,0.1,0.4] 0.02

The N-steps parameter specifies the number of steps which can range from
3 to 10. Gamma is a coefficient for feature re-usage in the masks. The
Gamma hyperparameter can range from 1 to 2, where a value closer to 1

means less correlation between layers during mask selection. Finally, the
momentum hyperparameter for batch normalization typically ranges from
0.01 to 0.4 (Arik & Pfister, 2021).

4.4 Long Term Cognitive Network (LTCN)

The relatively new LTCN algorithm proposed by Napoles et al. (2022)
will be tested in this study as an alternative Deep Learning technique to
TabNet. LTCN is a recurrence-aware model that is designed for explainable
pattern classification. The LTCN-based algorithm introduces a quasi-
nonlinear reasoning rule. This rule incorporates a nonlinear coefficient that
controls the extent of the transfer function’s impact on the neuron’s initial
activation value. LTCN can be seen as a type of recurrent neural network
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(RNN) (Napoles et al., 2022). The target labels were one-hot-encoded to be
compatible with the LTCN’s architecture.

4.4.1 LTCN’s architecture

The LTCN algorithm consists of two building blocks where the first one is
designed to capture the dynamics of the system. This first building block,
contains a LTCN model where each neuron maps a feature through an
unsupervised learning approach. The second building block is designed to
connect the inner neurons denoting the features with the decision neurons.
Unlike the first neural block, the second one uses a supervised learning
approach (Napoles et al., 2022).

The second component of the algorithm is a recurrence-aware sub-network
that connects each temporal state with the decision neurons. This network
uses the results of these states from the recurrent reasoning rule for a new
instance. This is where the LTCN model differs from traditional FCM-
based classifiers. LTCN considers all temporal states that are produced
during the recurrent reasoning process, while the latter only considers
the last state. This makes the LTCN model less sensitive to the unique
fixed-point attractor (Napoles et al., 2022). The decision models of a classic
FCM-based classifier and the LTCN algorithm are visualized in figure 5.
Where ’A’ indicates the temporal states, ’W’ the inner weights connecting
the features, ’B’ the bias weights, and ’R’ represents the outer weights
connecting the temporal states with the decision neurons.
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Figure 5: LTCN decision model

4.4.2 LTCN Hyperparameter Tuning

The LTCN documentation was consulted to determine the hyperparameter
grid (see table 4). The method parameter specifies the regression approach
and the function parameter specifies the activation function used when
fitting the model. The ’T’ parameter specifies the number of iterations to be
performed. The ’Phi’ parameter denotes the amount of non-linearity used
during reasoning and finally, ’Alpha’ specifies the positive penalization for
L2-regularization (Napoles et al., 2022).

Table 4: The selected Hyperparameter grid for the LTCN model and the optimal
value of the best-performing model after GridSearchCV

Parameters Default Value Parameter Grid Best Value
method ’inverse’ [’inverse’, ’ridge’] ’inverse’
T 20 [5, 10, 20, 40] 10

Function ’sigmoid’ [’sigmoid’, ’hyperbolic’] ’sigmoid’
Phi 0.8 [0.2, 0.4, 0.6, 0.8, 1] 0.2
Alpha 1.0E-4 [0.00001, 0.0001, 0.001, 0.01] 0.00001
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4.5 SMOTE

The dataset exhibits class imbalance, with 16% representing the minority
’Lethal complication’ class and 84% the majority ’Alive’ class. Imbalanced
datasets tend to create a bias towards the majority class in predictive
modeling, as highlighted by Blagus and Lusa (2013) (Blagus & Lusa, 2013).
To enhance the model’s ability to correctly predict the minority class,
Synthetic Minority Oversampling Technique (SMOTE) has been employed
to resample the training data.

Synthetic Minority Oversampling (SMOTE), a widely adopted resampling
technique for imbalanced datasets, represents an enhanced method over
random oversampling. The algorithm creates synthetic examples based on
interpolation between several minority classes within a defined neighbor-
hood (Fernández et al., 2018). Importantly, SMOTE is exclusively applied
to the training data to ensure that the test set remains untouched for pre-
dictions post-model training. Additionally, a pipeline is created to apply
SMOTE and avoid data leakage into the validation set. To asses the effect
of SMOTE, model performances will be analyzed both with and without
its application.

4.6 Feature Importance Methods

SHAP will be tested as one of the feature importance methods in this
study, it assigns an importance value to each feature for a particular
prediction. SHAP creates a theoretically reliable way of explaining model
predictions by combining several existing methodologies to show how
estimations change after specific features are removed. The magnitude
of this change is quantified in SHAP values that can either be positive or
negative (Lundberg & Lee, 2017; Scavuzzo et al., 2022). Besides SHAP,
SKLearn’s random feature permutation method will also be tested. This
method captures the dependence of a model on a feature by randomly
shuffling a single feature value. Finally, the built-in feature importance
method of the best-performing algorithm will conclude the tested feature
importance methods.

The performance of the three methods will be analyzed through the pixel
flipping experiment, which tests the robustness of the feature importance
methods. The term "pixel flipping" originates from its initial application
in image interpretability, where it assesses the impact of changing specific
pixels. In this study, the pixel flipping experiment will systematically
marginalize the top features by imputing the mean value. This happens
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iteratively from the highest-ranked feature to the lowest, as determined by
each feature importance method.

5 experimental setup

5.1 Data and pre-processing

The anonymized dataset is publicly accessible in csv format through the UC
Irvine machine learning repository and originates from the Krasnoyarsk
Interdistrict Clinical Hospital in Russia (Dua & Graff, 2017). Comprising
111 distinct features and 1,700 rows, the dataset includes both categorical
data like gender and numerical features such as blood pressure. The
dataset is labeled with various complications of Myocardial Infarction
(MI), with the lethal outcome designated as the target label for the binary
classification task. The patient data can be divided into 2 classes: "Still
Alive" (84%) and "Lethal Complication" (16%). These classes distinguish
between patients who remain alive at the end of data collection and those
who suffered a lethal complication after the Myocardial Infarction.

The dataset is rich in information and includes extensive descriptions for
all its features. Notably, the dataset is clean and mostly complete which
contributes to the task at hand. However, a class imbalance is present in the
dataset, with considerably more patients belonging to the "Still Alive" class
than the "Lethal Complication" class. The data originates from patients
who were admitted to the hospital following an MI incident, with data
collection at admission and the end of the first, second, and third day. For
the purpose of this study, the focus is on the data collected at the time of
admission since it is desirable to predict the medical outcomes of patients
as soon as possible. This refinement reduced the dataset to 102 features
and 1,700 instances.

5.1.1 Missing Values

Upon inspecting the missing values in the dataset, it was evident that 4

features were missing more than 60% of their data. Among these, two
features pertained to systolic blood pressure, one measured the Creatine
Phosphokinase value in the blood, and the last feature provided infor-
mation about heredity to heart failure. Consequently, the final dataset
was reduced to 98 features and 1,700 instances. To address the remaining
missing values in features, the MICE imputation algorithm was employed,
which fills missing values based on observed patterns in existing data (see
section 5.2).
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5.1.2 Outlier Analysis

An outlier analysis was conducted to find potential extreme values in the
dataset. For the categorical features in the dataset, calling the describe
function on the data frame provided a quick overview of the minimum
and maximum values. For these features, no outliers were detected. For
the numerical data features like age and blood pressure, histogram and
boxplot distribution plots were plotted (see figure 6, 7, 8, 9). Although
some more extreme values were observed, they were retained in the dataset
as they remained within realistic ranges.

Figure 6: Age Outlier Analysis

Figure 7: Diastolic BP Outlier Analysis

5.1.3 Feature Correlation Analysis

A feature correlation analysis provided insight into the correlation and
relationships between features. The ten features exhibiting the highest
correlation with the target variable were selected to create the correlation
matrix. Since there are many features, it is impossible to provide a clear
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Figure 8: Serum AsAt content Outlier Analysis

Figure 9: Serum Sodium content Outlier Analysis
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correlation matrix featuring all features. After inspecting the correlation
matrix, no problematic correlations were encountered.

5.2 MICE Imputation

Multivariate Imputation by Chained Equations (MICE) is a popular and
widely employed method for handling missing values. This approach
predicts missing values through iteratively running a series of predictive
models. MICE assumes that data is missing at random, missing values
are then predicted based on the data that is available. Generally, 5-10

iterations should be sufficient to obtain reliable estimates for the missing
values (Azur et al., 2011). In this study, the number of iterations was set to
5, with 50 imputations per iteration for both the training and test sets.

5.3 Train-Test Data Split

To ensure the generalization ability of the models, the data will undergo
a stratified train-test split. The data will be split, reserving 80% for the
training set and 20% for the test set. The stratified split will be executed
based on the target variable, ensuring that both sets maintain the same
ratio of both majority and minority classes. Furthermore, during hyperpa-
rameter tuning, GridSearchCV will leverage the training set in combination
with stratified k-fold cross-validation. The training set is split into multiple
subsets of data, using one of the subsets as the test set while the model
is trained on the remaining data. This process repeats iteratively and
the model’s performance is evaluated on the test set within each cross-
validation iteration. Through this method, the optimal hyperparameters
from the predetermined parameter grid are determined.

5.4 Class Imbalance

A class imbalance is present in the MI dataset used in this study. Around
84% of the patients belong to the class that is "Alive" and 16% of the patients
belong to the "Lethal Complication" class. As inferred in section 3.3, there
are various ways to address class imbalances. This study will apply SMOTE
in a pipeline during GridsearchCV to explore the effect of SMOTE on model
performances without data leakage into the test set.
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5.5 Hyperparameter Optimization

Hyperparameter tuning is an essential step of the data science pipeline,
as it can mitigate overfitting/underfitting, improve model performance,
and help create more robust models. In this study, GridSearchCV was
utilized to find the optimal hyperparameters for each model within a
predetermined parameter grid. GridSearchCV was chosen as the more
exhaustive method as opposed to RandomizedSearchCV. StratifiedKFold
was utilized to ensure an equal distribution of each class within each fold
during cross-validation and hyperparameter tuning (Pedregosa, Varoquaux,
Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg,
et al., 2011a). The predetermined hyperparameter grid for each model can
be found in section 4. Each algorithm’s documentation was consulted to
obtain the parameter grids.

5.6 Evaluation Strategy

In this work, Cohen’s Kappa score (Cohen, 1960) is considered the most
important performance metric of each model. Kappa estimates the inter-
rater agreement for categorical items and can range from -1 to 1. Within
this range, -1 means there is no agreement and a value of 1 indicates a
perfect agreement. A value of 0 indicates a random agreement. The kappa
score provides a more robust measure for the evaluation of predictions on
imbalanced datasets (Napoles et al., 2022).

Additionally, more traditional performance metrics like accuracy, recall,
precision, F1, and ROC-AUC will be considered to provide comparability
with previous studies. Finally, an error analysis will be provided for the
model’s ability to predict each class. This is especially desirable since there
is a class imbalance present in the MI dataset. Providing an error analysis
in the form of confusion matrices provides a more complete overview of
model performance, unlike previous studies (Farah et al., 2022; Joshi et al.,
2022; Reddy & Thangam, 2022).

5.7 Description of Actual Implementation

Python (version 3.11.5) (Van Rossum & Drake Jr, 1995) will be used as
the programming language for this project. The Logistic Regression (Cox,
1958), XGBoost (Chen & Guestrin, 2016a), TabNet (Arik & Pfister, 2021),
and LCTN (Napoles et al., 2022) algorithms will be used to generate binary
classification models. Various packages were installed to use for various
tasks within the data science pipeline: Numpy (Harris et al., 2020), Pandas
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(McKinney et al., 2010), Imbalanced Learn (Lemaître et al., 2017), Matplotlib
(Hunter, 2007), Seaborn (Waskom et al., 2017), Scikit-learn (Pedregosa,
Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss,
Dubourg, et al., 2011b), Pytorch (Paszke et al., 2019), Miceforest, and Shap.
Finally, Visual Studio Code (version 1.82.2) will be used as a code editing
program.

6 results

This section will discuss the performance of the tested algorithms and their
corresponding models. Cohen’s Kappa score is used as the main metric to
measure model performance. According to Cohen (1960), the kappa score
should be interpreted as follows: "values lower or equal to 0 as indicating
no agreement and 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41– 0.60

as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as an almost perfect
agreement" (Cohen, 1960).
Additionally, accuracy, recall, precision, F1, and the ROC-AUC score will
also be discussed. These performance metrics will provide comparability
with previous studies. This section will also provide insights into the most
prominent features and into the effect of resampling techniques to handle
class imbalance. Lastly, confusion matrices will be evaluated to provide
insight into the model’s ability to classify each class.

6.1 Overview Model Performances

When looking at table 5, it is clear that the XGBoost + SMOTE model
outperformed the other models with a kappa score of 0.572, an ROC-AUC
of 0.764, and an overall test accuracy of 89.4%. Interestingly, without the
application of SMOTE, the LTCN model had the superior performance
over the other models with a kappa score of 0.542, an ROC-AUC score of
0.737, and an overall test accuracy of 89.1%. Furthermore, table 5 shows
that SMOTE improved the Kappa and ROC-AUC scores for all models.
The overall test accuracy however, decreased after SMOTE for every model
except the XGBoost model. This indicates that SMOTE made the models
more robust and better at correctly predicting the minority class. It is
also important to note that the LTCN model + SMOTE provided the best
ROC-AUC score of 0.820. Finally, it is fair to say that TabNet did not meet
the expectations set by prior studies. The most likely explanation could
be that the small dataset available for this study was not suitable for the
complex TabNet algorithm. So to conclude, the XGBoost + SMOTE was
the best-performing and most robust model with a kappa score of 0.572.
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Table 5: Overview of the model performances

Metric Kappa ROC-AUC Test Accuracy
Baseline model 0.347 0.658 84.1%
XGBoost 0.465 0.701 87.6%
TabNet 0.228 0.592 83.2%
LTCN 0.542 0.737 89.1%
Metric Kappa ROC-AUC Test Accuracy
Baseline + SMOTE 0.393 0.760 78.5%
XGBoost + SMOTE 0.572 0.764 89.4%
TabNet + SMOTE 0.343 0.689 80.6%
LTCN + SMOTE 0.491 0.820 82.1%

Table 6 shows the precision, recall, and F1 score for the best-performing
models and both classes. XGBoost and LTCN provide the best results.
XGBoost + SMOTE does not necessarily provide the best score for each
metric, but as is evident in table 5, it is the more robust model with the
highest Kappa score. High scores for LTCN + SMOTE on the minority
class are at the expense of the model’s ability to predict the majority class
correctly.

Table 6: Overview of the error analysis best-performing models. P = Precision, R
= Recall

Class ’Alive’ ’Lethal’
Metric P R F1 P R F1

Baseline + SMOTE 0.938 0.797 0.862 0.402 0.722 0.517

XGBoost + SMOTE 0.922 0.955 0.938 0.705 0.574 0.633
TabNet + SMOTE 0.904 0.860 0.882 0.412 0.519 0.459

LTCN - SMOTE 0.911 0.965 0.937 0.737 0.509 0.602

LTCN + SMOTE 0.959 0.821 0.885 0.469 0.818 0.596

6.2 Baseline Logistic Regression Model

The Logistic Regression algorithm was used to build a baseline model for
this study. This baseline model provides a benchmark for the more ad-
vanced algorithms that are tested in this study. The hyperparameters were
optimized using GridSearchCV and the model was tested with and with-
out SMOTE to address the class imbalance. The results of the optimized
baseline model can be seen in table 7.
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Table 7: Performance metrics for Logistic Regression models

Metric Kappa ROC-AUC Test Accuracy
Logistic Regression 0.347 0.658 84.1%
Logistic Regression + SMOTE 0.393 0.760 78.5%

Immediately, table 7 shows that it is important to include more performance
metrics than only the accuracy score when dealing with an imbalanced
dataset. While the more robust performance metrics improve after applying
SMOTE to the training data, the overall model accuracy goes down. Since
Kappa and the ROC-AUC score are considered more important measures
of model performance in this study, we can conclude that SMOTE improves
model performance. The best-performing baseline model provides a kappa
score of 0.393 and an ROC-AUC score of 0.760.

6.2.1 Logistic Regression error analysis

When looking at the model’s ability to predict each class, it is important to
note that 16% of the patients belong to the "lethal complication" class, and
84% belong to the "Alive" class. In this error analysis, we only look at the
best-performing baseline model. The confusion matrix for this model can
be seen in figure 10.

Table 8: Overview of Recall, Precision and F1 score for the baseline model

Metric Recall Precision F1-score
Lethal Complication 0.722 0.402 0.517

Alive 0.797 0.938 0.862

Upon inspecting table 8, it is evident that the recall scores for both classes
are relatively close. However, the precision score exhibits a very high value
for the majority class and a relatively low score for the minority class.
Coupled with a lower F1-score, this suggests that the model encounters
more difficulty in predicting the minority class and tends to produce more
false positives.
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Figure 10: Confusion Matrix Logistic Regression with SMOTE

6.3 XGBoost model

In table 9 we can see that the XGBoost model in combination with SMOTE
was the superior model since the kappa, ROC-AUC, and accuracy scores are
all higher. A kappa score of 0.572 indicates there is moderate agreement, on
the verge of substantial agreement between the raters. The overall accuracy
of the best-performing model was 89.4%. In the next subsection, the error
analysis of this model will be provided.

Table 9: Performance metrics for XGBoost models

Metric Kappa ROC-AUC Test Accuracy
XGBoost 0.465 0.701 87.6%
XGBoost + SMOTE 0.572 0.764 89.4%

6.3.1 XGBoost Error Analysis

Upon inspecting table 10, a clear difference can be seen in the model’s
ability to predict each class. The model scores very highly for the majority
"Alive" class, while it is unable to provide the same results for the minority
class. A recall of 0.955 indicates that the model can correctly predict
95.5% of the "alive" class with a relatively high precision score of 0.922.
When comparing the recall score for predicting the minority class of the
XGBoost model with the Logistic Regression model, we can see that the
latter provided a higher recall score. This can be explained by looking
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at the precision score, which indicates a considerably lower rate of false
positives compared to the Logistic Regression model (table 10).

Table 10: Overview of Recall, Precision and F1 score for the best-performing
XGBoost model

Metric Recall Precision F1-score
Lethal Complication 0.574 0.705 0.633

Alive 0.955 0.922 0.938

The confusion matrix for the XGBoost model can be seen in figure 11,
which gives a visual overview of the predictions made by the model.

Figure 11: Confusion Matrix XGBoost with SMOTE

6.4 TabNet Model

The TabNet algorithm was selected based on the prior studies where TabNet
was able to outperform XGBoost and other conventional machine learning
algorithms on tabular data. Interestingly though, when looking at the
kappa scores of 0.228 and 0.343 (see table 11), TabNet did not perform very
well. It was outperformed by the baseline Logistic Regression model. This
suggests that TabNet might not be suitable for this dataset and supports the
implication that it works better with large and high dimensional datasets
(Arik & Pfister, 2021).
When evaluating the effect of SMOTE in combination with the TabNet
model, it is evident that SMOTE improves the kappa and ROC-AUC scores.
The overall model accuracy, however, decreases after SMOTE is applied to
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Table 11: Performance metrics for the TabNet models

Metric Kappa ROC-AUC Test accuracy
TabNet 0.228 0.592 83.2%
TabNet + SMOTE 0.343 0.689 80.6%

the training data. This indicates that after applying SMOTE, the model’s
ability to correctly predict the minority class increases. Contrary to this,
the decrease in the overall accuracy score, most likely indicates that this is
at the expense of the model’s ability to predict the majority class.

6.4.1 TabNet Error Analysis

Table 12: Overview of Recall, Precision and F1 score for the best-performing
TabNet model

Metric Recall Precision F1-score
Lethal Complication 0.519 0.412 0.459

Alive 0.860 0.904 0.882

Table 12 shows the recall, precision, and F1-score of the best-performing
TabNet model. Upon inspecting these scores, it is evident that the model
encounters the most difficulty in accurately predicting the minority ’lethal
complication’ class. This observation is further emphasized when review-
ing the confusion matrix in figure 12.
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Figure 12: Confusion Matrix TabNet model with SMOTE

6.5 Long-Term Cognitive Network

The final algorithm assessed in this study is Long-Term Cognitive Net-
work (LTCN), a deep learning model chosen for its potential to surpass
traditional machine learning approaches on tabular data (Napoles et al.,
2022). An interesting observation emerges when inspecting the results of
the LTCN models: it demonstrates notable performance even without the
application of SMOTE to address the class imbalance. The LTCN model
without SMOTE yields a kappa score of 0.542, outperforming the model
with SMOTE, which achieves a kappa score of 0.491. Given the emphasis
on kappa as the primary performance metric in this study, the LTCN
model without SMOTE is considered the best-performing LTCN model.
It’s noteworthy that the LTCN model in conjunction with SMOTE provided
a relatively high ROC-AUC score of 0.820, while the overall model perfor-
mance decreased by 7% after applying SMOTE to the training data (see
table 13).

Table 13: Performance metrics for the LTCN models

Metric Kappa ROC-AUC Test Accuracy
LTCN 0.542 0.737 89.1%
LTCN + SMOTE 0.491 0.820 82.1%
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6.5.1 LTCN Error Analysis

Table 14 depicts the model’s ability to correctly predict each class. Similar
to the previously assessed models, LTCN encounters the most difficulty
in accurately predicting the minority ’lethal complication’ class. However,
it exhibits a relatively high precision score, suggesting that the erroneous
predictions have a lesser impact on the model’s ability to accurately predict
the majority ’alive’ class. Figure 13 shows the confusion matrix for the
LTCN model without SMOTE which provided the highest kappa score.

Table 14: Overview of Recall, Precision and F1 score for the best-performing LTCN
model (highest Kappa score)

Metric Recall Precision F1-score
Lethal Complication 0.509 0.737 0.602

Alive 0.965 0.911 0.937

Figure 13: Confusion Matrix LTCN model without SMOTE
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Table 15: Overview of Recall, Precision, and F1 score for the LTCN model with
SMOTE (lower Kappa score)

Metric Recall Precision F1-score
Lethal Complication 0.818 0.469 0.596

Alive 0.821 0.959 0.885

Considering the LTCN algorithm, the model with SMOTE was also ana-
lyzed and reported since it provided the highest overall ROC-AUC score.
Upon comparing table 14 and 15, the relatively high recall score for the
’lethal complication’ class is remarkable. On further inspection, this also
comes with a significant drop in precision score, indicating that more false
positives are predicted. Figure 14 shows the confusion matrix of the LTCN
model with the highest ROC-AUC score. As can be seen, the correct pre-
dictions are balanced for both classes, and SMOTE significantly improves
the recall score for the minority ’lethal complication’ class.

Figure 14: Confusion Matrix LTCN model with SMOTE

6.6 Feature Importance Analysis

To enhance the societal relevance of this study, a feature importance anal-
ysis was conducted. Identifying which features contribute most to the
predictive power of the model can help determining which type of data
should be collected. Three feature-importance methods were tested in
a pixel-flipping experiment to find out which method provides the best
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insight into the most prominent features of the best-performing model. The
three methods include Shap, XGBoost feature importance, and SKLearn’s
random feature permutation method. In the pixel-flipping experiment,
the top feature is marginalized by imputing the mean value. This is done
iteratively from top to bottom, based on the ranking made through each
method. The result can be seen in figure 15.

Figure 15: Pixel Flipping Experiment to identify best feature importance method

The graph shows that all three methods work quite well. In particular,
the XGB and Sklearn methods seem to work well since the Kappa score
decreases more or less every time the top feature is marginalized. Right
around the 10 features mark, the kappa score is zero or lower. This implies
that after the top 10 features have been marginalized, the model’s predictive
power is at less than chance level. Thus, also showing the impact of these
top 10 features and their importance for the classification problem in this
study. Based on this analysis, the XGBoost feature importance method will
identify the most prominent features (see figure 16).
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Figure 16: XGBoost top 10 Gini feature importance ranking

The most prominent feature according to the Gini importance ranking is
the ECG rhythm at the time of admission to the hospital, which checked
patients for a healthy heart rate between 60-90. The second most prominent
feature checked if calcium channel blockers were used in the ICU. The sex
of the patient was identified as the third most prominent feature. Followed
by the fourth feature that checked patients when they last experienced
chest pain. The fifth most prominent feature provides information about
the Aspirin intake in the ICU. The sixth most prominent feature provided
information about the Diabetes status of the patients. The seventh most
prominent feature provided information about the use of liquid nitrates in
the ICU. Followed by the eight most prominent feature that provides infor-
mation on the presence of a complete Right Bundle Branch Block within
the heart. The ninth most prominent feature provides information about
the time elapsed from the beginning of the heart attack to admission into
the hospital. Finally, the last feature of the ranking provides information on
the presence of a first-degree atrioventricular (AV) block. The description
of the feature names seen in figure 16, can be found in appendix A.
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7 discussion

7.1 General Results

This thesis aims to contribute to the limited literature in the field of MI
complication mortality classification in combination with deep learning
techniques for tabular data. Notably, it represents the first instance of
evaluating the Long-Term Cognitive Network (LTCN) algorithm for this
classification problem. Additionally, regarding the TabNet algorithm, it
is the first study in this in this domain that tests TabNet on a relatively
small dataset. In the end, four algorithms were tested. Logistic Regression
was used to build the baseline model and XGBoost was used to build the
machine learning model since it is widely considered to be the current state-
of-the-art for predictive modeling on tabular data. The class imbalance in
the dataset was addressed by applying SMOTE to the training data.

After comparing the model performances, it was clear that XGBoost and
LTCN performed the best. Interestingly, TabNet did not meet the expec-
tations set by the performance it showed in several previous studies (de
Carvalho et al., 2023; Kim et al., 2023; Nguyen & Byeon, 2023). When look-
ing at the kappa score of 0.343, it becomes apparent that TabNet was even
outperformed by the baseline model’s score of 0.393. One explanation for
this could be the relatively small dataset that was available for this classifi-
cation problem. Since TabNet is a complex model that is designed for high
dimensional and large datasets (Arik & Pfister, 2021). Still, it was expected
to outperform the baseline model and provide a good comparative model
to the LTCN and XGBoost models.

The LTCN and XGBoost models performed better than TabNet and they
provided competitive scores. The XGBoost model with SMOTE provided a
kappa score of 0.572 while the LTCN model without SMOTE provided a
kappa score of 0.542, which is only a 0.03 difference. Interestingly, LTCN
managed to score this kappa score without the application of SMOTE.
XGBoost only had a kappa score of 0.465 when SMOTE was not applied.
Furthermore, the LTCN model with SMOTE provided the highest overall
ROC-AUC score of 0.820. XGBoost’s highest ROC-AUC score was 0.764.
When comparing these two algorithms, it is fair to say that they are
competitive in this study. LTCN and XGBoost can be seen as suitable
algorithms for the classification problem in this study, unlike TabNet.
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7.2 Related Works

When comparing this work to the previous studies in the field of MI
complications and artificial intelligence similarities and differences can be
seen. First of all, distinctions can be made in the goal of the study. Some
studies aimed to build machine learning models to predict the likelihood
of a Myocardial Infarction (Kora & Sri Rama Krishna, 2016; Kora et al.,
2018; Sharma et al., 2018). Others tried to predict the long-term survival
rate after an infarction (Nguyen & Byeon, 2023). While there were also
studies that aimed to predict the short-term outlook after an infarction
(Farah et al., 2022; Joshi et al., 2022; Newaz et al., 2023; Reddy & Thangam,
2022). A similarity across most studies is the imbalanced datasets. Which
has been treated in various ways, like varying resampling methods and
adding a higher cost function to erroneous predictions of the minority class
(Newaz et al., 2023). An important aspect missing in the previous studies
on the same dataset, is the missing error analysis to provide transparency
of the model’s limitations. The difference in input data presents another
difference, notably some studies like de Carvalho et al. (2023)’s study
also included data information like smoking habits. Finally, the size of
the datasets of studies differ, which as can be seen from this work, is an
important consideration when choosing an algorithm to work with.

Prior studies that have worked on building predictive models on the same
dataset as this study can provide a good benchmark (Farah et al., 2022;
Joshi et al., 2022; Newaz et al., 2023; Reddy & Thangam, 2022). The
results in these prior studies provide comparability and validity for the
performance of the models in this work. Newaz et al. (2023) provided a
concise overview of the results of the models tested in the previous studies
on this dataset. This overview will be used to compare with the model
performances in this work (see figure 16).

Table 16: Comparing results with previous studies

Studies Accuracy ROC-AUC
Farah 87.3 61.7
Reddy 84.9 68.0
Joshi 86.6 57.2
Newaz 91.9 80.9
LTCN + SMOTE 82.1 82.0
LTCN - SMOTE 89.1 73.7
XGBoost + SMOTE 89.4 76.4
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The best-performing models in this work outperformed most of the models
tested in prior studies on this dataset. It is important to note that the best
performing model in Newaz et al. (2023)’s work used XGBoost and a newly
proposed combination of methods to treat class imbalance. The LTCN
algorithm in our work managed to outperform most conventional machine
learning algorithms tested in previous studies and even scored the highest
ROC-AUC score of 82.0. It is the first deep learning algorithm that has
successfully provided competitive results on this data. It is fair to say that
the algorithm is suitable for this classification problem. The relatively high
accuracy score of 89.1 and ROC-AUC score of 73.7 without any treatment
to the class imbalance is quite remarkable. Furthermore, LTCN seems to
be more suitable for smaller datasets than the TabNet algorithm. Finally, it
could be interesting to test the algorithm on more imbalanced datasets to
see if it is fair to say that the algorithm works well on imbalanced datasets
without treating class imbalance.

7.3 Societal and Scientific impact

"RQ1: To what extent do the performance metrics of the TabNet,
LTCN, and XGBoost models compare to the performance metrics of
the baseline model for predicting MI complication mortality? "

Through RQ1 the model performances of TabNet, LTCN, and XGBoost have
been compared with each other and the baseline Logistic Regression model.
The main goal was to explore the potential of deep learning algorithms
for tabular data and compare their performance with the current state-of-
the-art (XGBoost) and a baseline model. To answer RQ1, the XGBoost +
SMOTE model provided the best kappa score of 0.572. The LTCN provided
relatively good results and was close to outperforming XGBoost. The
TabNet model did not seem suitable for the classification problem since
it was unable to outperform even the baseline model. While LTCN did
not outperform XGBoost, it can be considered a suitable model for the
classification problem. It could be possible that LTCN can outperform
XGBoost in similar studies with similar classification problems.

"RQ2: To what extent does the model performance differ when using
SMOTE to address the class imbalance in the dataset?"

Considering RQ2, the effect of SMOTE on the models is clearly visible.
With SMOTE applied to the training data, all models provide a higher ROC-
AUC score, indicating that the models improved at correctly predicting
the minority ’lethal complication’ class. When looking at the kappa score,
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however, all models improved after SMOTE except for LTCN. Surprisingly,
LTCN provided a high kappa score without SMOTE, achieving a score
of 0.542. SMOTE did drastically improve the LTCN recall score for the
minority class, which resulted in the highest ROC-AUC score of 0.820.
Overall model accuracy decreased for all models except XGBoost after
SMOTE was applied.

"RQ3: Which important features in the dataset can be identified
through feature importance methods for the best-performing model?"

Finally, RQ3 aimed to identify the most prominent features for the best-
performing model. Identifying these features with the most predictive
power can provide insight into the valuable data that should be collected to
create successful predictive models. After testing three methods and doing
a pixel-flipping experiment to decide on the best method, XGBoost feature
importance ranking was used to answer RQ3. The three most prominent
features were: The ECG rhythm at the time of admission to the hospital,
The use of calcium blockers in the ICU, and the sex of the patient.

So to conclude, the approach in this work has identified a new deep
learning algorithm that is suitable for the classification task and could
outperform the current state-of-the-art XGBoost algorithm in similar classi-
fication tasks. This contributes to the shift from machine to deep learning
that was identified in the medical field. Additionally, it interestingly pro-
vides a relatively good performance of LTCN without class imbalance
treatment that could be explored further in future research. Furthermore,
this study provides insight into the TabNet algorithm and its difficulty with
relatively small datasets. Lastly, this study gives a transparent overview of
the limitations of the tested models, unlike prior studies.

7.4 Limitations and Future Work

Some limitations have been identified in this study. The first one being,
more resampling techniques could have been tested to see the effect on
the models. Since the main difference with the best-performing model
of Newaz et al. (2023)’s study is the imbalanced data treatment, where
a newly proposed combination of methods was used. Future research
could explore the best resampling techniques for deep learning algorithms
in binary classification tasks, since the LTCN model was pretty sensitive
to SMOTE which decreased model robustness. The unsuitability of the
TabNet algorithm for the available dataset, presents the second limitation
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of this work. It would be interesting to test the TabNet algorithm on a
much larger dataset in future work.

A third limitation is the model performances when it comes to correctly
predicting the minority ’lethal complication’ class. To create a successful
predictive model that can be applied in real life, it is crucial that patients
at risk of dying are not misclassified. A main solution for this could be
gathering a bigger dataset with more minority examples. Additionally,
future work could test the LTCN algorithm on larger datasets to test it’s
performance on larger datasets. In this regard, it would be interesting
to compare the performance of LTCN and TabNet on a larger and high-
dimensional dataset within the research domain. Finally, upon comparison
with other algorithms, the LTCN algorithm performed surprisingly well
without any class imbalance treatment. Future research could test these
algorithms on more imbalanced datasets to see if this hypothesis is true.



8 conclusion 41

8 conclusion

This research aimed to contribute to the existing literature for Myocardial
Infarction (MI) complication mortality classification. This study sought to
successfully create predictive models using recent deep learning algorithms
explicitly designed for tabular data. The Long-Term Cognitive Network
(LTCN) and TabNet algorithms were compared to the current state-of-the-
art XGBoost algorithm. The XGBoost in conjunction with SMOTE model
yielded the highest kappa score of 0.572, closely followed by the LTCN
model without SMOTE, achieving a score of 0.542. Surprisingly, the TabNet
algorithm was unable to outperform the baseline Logistic Regression model.
This work can hopefully contribute to the advancements of deep learning
techniques for tabular data in the medical field. Given that tabular data is
still the biggest form of data, this will be crucial to keep up with the shift
from machine to deep learning in the medical field.
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appendix a

Figure 17: Description of top 10 features
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