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Abstract

This thesis introduces an experimental spectral measure of fragility
within financial networks, designed to capture the non-linearities in
liability payments that can exacerbate systemic risk during large sys-
tematic shocks. The study is motivated by the need for more precise
tools to analyze and predict the propagation of financial distress within
interconnected banking systems. This spectral method is compared to
standard linear measures of network centrality.

Using a combination of theoretical modeling based on the seminal
work of Eisenberg and Noe (2001) and recent enhancements, this the-
sis develops a framework that incorporates various recent theoretical
contributions to literature. The research focuses on the role of de-
pendency cycles and their impact on the robust-yet-fragile nature of
highly interconnected financial systems. Through theoretical special
cases of financial networks and strong components, the study explores
how different network configurations affect the spectral fragility mea-
sure.

The theoretical building blocks that the spectral measure is built
upon are controlled for using a naive simulation method, demonstrat-
ing the practical applications of the spectral fragility measure and its
ability to capture the desired non-linearity. The results highlight the
potential of this measure to inform regulatory strategies and risk man-
agement practices by identifying fragile components within the net-
work and links within financial networks that are most susceptible to
cascading failures.

The thesis concludes with a discussion of the implications of these
findings for policymakers and financial institutions, emphasizing the
need for enhanced monitoring tools that can dynamically adjust to
changing shape of financial networks.
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1 Introduction
"The robust-yet-fragile property of networks helps make sense of
(...) non-linear financial dynamics. Though they looked and felt
like chaos, these dynamics were in fact manifestations of a new
network order" (Haldane, 2009, p. 5).

The increased levels of globalization over the past few decades
are reflected in the increased interconnectedness of financial insti-
tutions on a global scale. Bilateral contractual obligations link fi-
nancial institutions and expose these institutions to counterparty
risk (Bernard et al., 2022).

The risks are compounded by the network structure of the
financial system, which can be robust-yet-fragile (Haldane, 2009;
Acemoglu et al., 2015; Jackson and Pernoud, 2020).

While interconnectedness can diversify some risks, it also makes
the system more fragile to widespread losses that can cascade
through the network (Haldane, 2009; Jackson and Pernoud, 2020).

Contagion refers to the process by which financial distress in
one institution spreads to other institutions (Bernard et al., 2022).
Contagion is just one of the dimensions of systemic risk. Bardos-
cia et al. (2021) consider different financial networks and review
models of contagion.

An illuminating summary of the different dimensions of sys-
temic risk is provided in the online appendix of Jackson and
Pernoud (2020). These dimensions are explained by Duffie (2019)
in the context of the 2008 financial crisis.

In one respect, financial intermediation plays a crucial role
in economies by leveraging economies of scope and scale to pool
risks, providing trading opportunities, and matching funds with
investments (Jackson and Pernoud, 2020).

In another respect, the potential for disaster is exacerbated if
sufficiently many institutions are invested in similarly distressed
portfolios, as was the case in 2008 (Jackson and Pernoud, 2019).
This crisis underscored the financial system’s capacity to absorb
small shocks while highlighting its vulnerability to large shocks
(Jackson and Pernoud, 2019).

To illustrate the level of interconnectedness post-crisis, Duarte
and Jones (2017) estimate that 23% of all assets of bank holding
companies and 48% of liabilities still come from other financial
intermediaries.

The seminal work by Eisenberg and Noe (2001) introduced a
model where financial entities are linked through nominal liabili-
ties. This model is the first to consider the fundamental aspect of
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financial structures that the inability of a bank to pay the nom-
inal liabilities in full, affects the solvency of other banks which,
in turn, are unable to pay the initially insolvent bank, ultimately
furthering its insolvency.

Clearing payments are payments following a default that must
satisfy several rules.

Eisenberg and Noe (2001) highlights in an example that the
presence of a directed cycle without cash injections can imply the
existence of inefficient equilibria of clearing payments. Rogers
and Veraart (2013) find the inclusion of default costs allows for
inefficient clearing payment even with cash injections. This the-
sis considers similar default costs to capture the consequences of
inefficient clearing payments.

The presence of these directed cycles forms a fundamental
building block in the spectral fragility measure as defined in this
thesis.

Eisenberg and Noe (2001) provide mild regularity conditions
for the uniqueness of clearing payments. Glasserman and Young
(2015) and Kusnetsov and Veraart (2019) provide alternative
uniqueness conditions. These results are generalized to weaker
sufficiency conditions and more general bankruptcy rules by Csóka
and Herings (2024). Another generalization exists for a reason-
able subset of default costs (Jackson and Pernoud, 2023). The
latter two papers reinforce the importance of directed cycles for
inefficiencies in financial networks. Both these papers indicate
that it is impossible to have inefficient clearing payments if there
are no directed liability cycles in the network.

Acemoglu et al. (2015) consider banks with identical roles and
find that if a network is just a directed cycle, this always produces
the largest number of defaults because of the spillover effect.

Acemoglu et al. (2015) argue that the standard spectral mea-
sures to find contagious banks fail to capture the non-linear jumps
in liability payments in case of default.

In response, this thesis aims to define a spectral measure
that captures these non-linearities with a particular focus on the
fragility of financial networks to large systematic shocks.

Eisenberg and Noe (2001) and much of the work that is based
on this framework assumes a central clearing agency performs all
bankruptcy proceedings.

As Elsinger et al. (2006) and Gai and Kapadia (2010) note, the
governing bodies possess only partial information on the true con-
nections between intermediaries. Furthermore, Franken (2012)
explains how in international insolvency proceedings, courts typ-
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ically operate in parallel.
In response, the work by Csóka and Herings (2018) on de-

centralized clearing algorithms captures the consequences of the
non-cooperative nature of bankruptcy proceedings and sequen-
tial bankruptcy filings prevalent in real-world financial systems.
Csóka and Herings (2018) find that decentralized clearing algo-
rithms typically lead to the least clearing payments and provide
an upper bound on the differences with the optimal clearing pay-
ments. As a consequence, their work concludes that the costs
could outweigh the benefits of organizing a central clearing mech-
anism.

The goal of this spectral measure is to predict the difference
in aggregate costs of financial networks for the least and greatest
clearing payments.

The spectral measure proposed in this thesis is a weighted
average of the fragility of subcomponents in the network. These
subcomponents, which are explained in later sections as strong
components, can contain many directed cycles. The larger the
number of dependency cycles within a strong component, the
more interconnected this component is. The more interconnected
this component is, the more fragile it is to large systematic shocks.

These weights are based on the fraction of total liabilities ex-
posed to the credit risk of these fragile components. Different
parameters allow for network topology-based adjustments to the
weights and fragility measures for different strong components.

The spectral measure as defined in this thesis could allow reg-
ulators to assign risk capital to strong components based on their
fragility.

Risk capital allocation methods could then decide the allo-
cation to the individual banks in a strong component. See, e.g.,
Bauer and Zanjani (2013) and Baione et al. (2018), among others,
for a description of desirable properties of risk capital allocations.

In essence, the spectral fragility measure may pave the way
toward pricing a part of systemic risk.

Note that a measure of fragility in terms of the degree of in-
terconnectedness of banks in a financial network is automatically
a measure of robustness. These properties of financial networks
are two sides of the same coin. After all, the fragility of large
systematic shocks is inherently linked to the robustness against
small idiosyncratic shocks.

The focus of this thesis lies on the fragility side of this coin.
The context is a financial crisis, following a large systematic
shock. The motivation is in part to compare the empirical per-
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formance of standard network measures in literature to simulated
results in the Eisenberg and Noe (2001) model as a control for
the spectral fragility measure.

Groote Schaarsberg et al. (2013); Csóka and Herings (2018,
2023, 2024) consider different rules, such as constraint equal loss
and the pairwise netting pro-rata rule.

Gai et al. (2011) highlight that methods from statistical physics
for complex networks could significantly improve the understand-
ing of financial network structures based on partial information.

Mezić et al. (2019) provides an efficient algorithm that calcu-
lates an eigenvalue-based complexity measure that mainly high-
lights the presence of cyclical structures in complex networks.
In particular, this method approximates a dominant cycle in di-
rected networks by utilizing the ability of complex eigenvalues
to describe cyclical patterns. This dominant cycle partitions the
banks in a financial network into clusters. This method sup-
plements the standard spectral measures, e.g., the spectral gap
(Fiedler, 1973; Chung, 2005; Montenegro and Tetali, 2006), and
the borrower and lender Bonacich (Bonacich and Lloyd, 2001)
and Katz (Katz, 1953) centrality measures.

Craig et al. (2013) find that the Bonacich lender centrality
measure for German banks had a significant positive effect on
sealed bids for liquidity in refinancing operations of the ECB dur-
ing the 2008 financial crisis. However, this effect is relatively very
small. Craig et al. (2013) find that the direct links in the net-
work much more consistently explain the willingness to pay for
liquidity. Intuitively, during a financial crisis, when exposed to a
high degree of credit risk, financial institutions are willing to pay
more for liquid assets on average relative to institutions that are
less exposed to credit risk (Craig et al., 2013).

Acemoglu et al. (2015) argue that this difference in effect can
be explained by the failure of the Bonacich centrality to capture
non-linearities in financial contracts.

Thus, the presence of directed cycles in financial networks,
measured through Bonacich lender centrality, was much less im-
portant for German banks during the 2008 crisis than the direct
exposure to credit risk for liquidity demand.

Periphery banks that directly lend to highly Bonacich lender
central banks bid much more aggressively to cover their liquidity
needs during the 2008 financial crisis (Craig et al., 2013).

This indicates that the Katz lender centrality measure (Katz,
1953; Bonacich and Lloyd, 2001; Puhr et al., 2012; Glasserman
and Young, 2016) with a high discount parameter is preferable to
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the borrower or lender Bonacich measure and the borrower Katz
measure. That is, the Katz centrality scales down the indirect
relationships exponentially, such that the indirect liability links
between banks are still considered with significantly less weight
relative to the direct links. In contrast, the presence of the di-
rected cycles had an estimated dominating impact on failures in
the U.S. treasury market.

However, Puhr et al. (2012) finds that the Katz borrower cen-
trality measure is useful for detecting the potential for contagion
through a particular bank. These results follow from simulations
based on data from the Austrian interbank markets and it is not
clear whether their conclusions stem from the simulations or the
underlying data (Glasserman and Young, 2016).

This thesis considers a measure based on a version of the Katz-
Bonacich borrower centrality measure to control for the predic-
tive power regarding the aggregate costs in the network due to
inefficient clearing payments.

The goal is to compare the effectiveness of assessing complex
tools based on simple assumptions.

This measure holds high predictive power which is likely due
to the oversimplified simulation methods. In addition, the Katz-
Bonacich discount parameter that optimizes the predictive power
of the measure is incredibly small. This could provide some moti-
vation for the poor empirical performance of Katz-Bonacich cen-
trality measures as predictors of contagion. In addition, Fleming
and Keane (2021) estimate that approximately three-quarters of
failures in the U.S. treasury market in March 2020 were poten-
tially caused by directed cycles in the network that would have
been prevented if claims were centrally cleared.

Glasserman and Young (2016) argue that the lack of consen-
sus in the empirical literature on systemic risk measures could
indicate that standard network measures from other fields are
ill-equipped to capture systemic risk in financial networks.

However, experimental systemic risk measures from, e.g., sta-
tistical physics and engineering should not be disregarded.

The paper is organized as follows. In Section 2, the network
model is defined. Section 3 establishes the proportional payment
rule. Section 4 generalizes the framework to include default costs.
Section 5 links the network structure to inefficient clearing pay-
ments. Section 6 establishes the theoretical foundation of the
spectral fragility measure. Section 7 defines the spectral fragility
measure. Section 8 establishes the simulation methods and re-
sults. Section 9 summarizes the key findings of this thesis and
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discusses directions for future research.

2 Model Description

2.1 Financial Network
To start, the most basic version of the model is described based
on the seminal work by Eisenberg and Noe (2001).

The standard framework is the following. There are n financial
entities, referred to as banks for simplicity. These banks are part
of a complex system of mutual liabilities and earn exogenous cash
from regular operations. Sometimes these banks are referred to
as nodes, which indicates their presence in the graph of a financial
network.

This complex system allows for many interpretations which
are rarely consistent across different articles. Other interpreta-
tions of the operational cash flow pertain, e.g., net asset value
from an investment portfolio (Jackson and Pernoud, 2023) or gen-
eral initial endowments (Csóka and Herings, 2023). Groote Schaars-
berg et al. (2013) and Csóka and Herings (2023) consider the
structure of nominal liabilities payments into an upper triangular
matrix of , one part of this focuses on transformation of liability
Definition 1 (Financial Network)
A financial network is a tuple (N, L, c), where N = {1, ..., n}
represents the finite set of banks, L ∈ Rn×n

+ is the non-negative
liability matrix, and c ∈ Rn

+ is the non-negative cash vector.
The ij-th entry of the liability matrix, ∀i, j ∈ N : Lij repre-

sents the nominal liability of bank i to j. The nominal liabilities
of any node to itself are always zero, i.e., ∀i ∈ N : Lii = 0. The to-
tal nominal liabilities of a bank i ∈ N are denoted li = ∑

j∈N Lij.
These total nominal liabilities are captured in the liability vector
Lι = l, where ι ∈ Rn is the vector of ones.

The operational cash flow of bank i ∈ N is a result of regular
business operations and is denoted ci ≥ 0. These operational
cash flows are captured in the cash vector c = (ci)i∈N ∈ Rn

+.
The nominal asset value of bank i ∈ N , is the amount of cash

available to pay off liabilities in case all the debtors of this bank
do not default on their loans. Formally, the nominal asset value
of node i ∈ N is

ηi = ci +
∑
k∈N

Lki. (1)
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These nominal asset values are captured in the vector η = c+LT ι.
Consider a financial network (N, L, c). The primary variable

of a financial network is the payment. A payment occurs between
banks to pay off the liabilities. ∀i, j ∈ N : Pij ∈ [0, Lij] denotes
the payment from node i ∈ N to j ∈ N . These payments are
collected in a non-negative payment matrix P ∈ Rn×n

+ , where the
ij-th entry is a Pij for all banks i, j ∈ N . The total payments by
bank i ∈ N are denoted pi = ∑

j∈N Pij and are collected in the
payment vector Pι = p.

Given a payment matrix P , the asset value of node i ∈ N and
the nominal asset value ηi are the total amount of cash available
for their liability payments. Formally, the asset value of node
i ∈ N is a function ai : [0, L] 7→ [0, ηi], defined by

ai(P ) = ci +
∑
k∈N

Pki, (2)

where 0 ∈ Rn×n is the zero matrix. The asset values are collected
in the vector a(P ) = c + P T ι. Under regular circumstances,
the liabilities in a financial network are paid in full, i.e., ∀i, j ∈
N : Pij = Lij. In contrast, a problem occurs when any node
i ∈ N is unable to pay the nominal liabilities in full due to,
e.g., an idiosyncratic (Glasserman and Young, 2015) or systematic
(Rogers and Veraart, 2013) drop in the operational cash flow
ci. When at least one bank is unable to pay all its liabilities,
there must be a set of rules that dictate the resulting payments
following default.

Given a payment matrix, the book value of a bank is the capital
shortfall where negative values represent insolvency. That is, the
book value of bank i ∈ N is a function vi : [0, L] 7→ R, defined by

vi(P ) = ai(P ) − li. (3)

The book values are collected in the book vector v(P ) = a(P )− l.
A bank i ∈ N defaults in case the book value is negative fol-

lowing payments, i.e., vi(P ) < 0. The interpretation of solvency
for vi(P ) = 0 lies in the idea that at least some banks in the net-
work are willing to roll over on their loans because the bank was
able to pay off all its liabilities. In the short term, these banks are
not able to verify the financial health of the barely solvent bank.
In turn, this allows the regular operations of banks to continue
which facilitates their new debt and operational cash flows.

The tighter regulations in the banking sector since the 2008
crisis greatly reduced such scenarios (Duffie, 2019). However,

10



regional and sectoral regulatory arbitrage is designed to game
regulations and a large part of the risk is potentially unaccounted
for (Nouy, 2017).

In contrast, Rogers and Veraart (2013) implicitly assume that
zero book values represent insolvency because they require the to-
tal equity improvement to be strictly positive for banks to merge
and save the initial set of defaulting banks. That is, even the
banks that would be able to pay all their liabilities if and only
if they agreed to a merger had no incentive because the equity
improvement would be zero.1

The equity of bank i ∈ N is the positive part of its book value
and thus a function ei : [0, L] 7→ R+, defined by

ei(P ) = (vi(P ))+. (4)

The equity values are collected in the equity vector e(P ) = (v(P ))+.
Clearing payments are payments between banks that settle

claims of creditors on a bank that defaults on their loans by es-
tablishing payment rules (Eisenberg and Noe, 2001; Csóka and
Herings, 2018, 2023).

The first condition, limited liability, requires that no bank
i ∈ N can pay more than the available assets ai(P ) allow, i.e.,∑

i∈N Pik ≤ ai(P ). The second property, the absolute priority of
creditors, requires equity holders to be paid last for a bank that
defaults, i.e., ∀i ∈ N : ai(P ) < li =⇒ ei(P ) = 0.

For a financial network (N, L, c), a clearing matrix must thus
be part of the set of feasible payment matrices, given by

Q =
{
P ∈ Rn×n

+ : P ≤ L, p ≤ a(P )
}

, (5)

where the first inequality ensures the clearing matrix is a payment
matrix and the second inequality imposes limited liability.

Let K ∧ M = min{K, M}, denote the coordinate-wise min-
imum operator for any two matrices K, M ∈ R

r×z for general
dimensions r, z ∈ N. If a payment matrix in Q satisfies the abso-
lute priority of creditors, it is a clearing matrix which is formalized
in the following definition.
Definition 2 (Clearing Matrix and Vector)
A payment matrix, P̃ ∈ Q, is a clearing matrix if it complies with
the absolute priority of creditors, i.e., p̃ = l ∧ a(P̃ ), for p̃ = P̃ ι.

1This is easily prevented by positive merger costs. This ensures that there is no incentive
as both merging and not merging lead to insolvency. Otherwise, the conclusion that there
is no incentive for insolvent banks to become solvent is problematic.
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A clearing vector is a payment vector corresponding to clear-
ing payments.

Let the set of clearing matrices be denoted M and the clearing
vectors be denoted CV .

2.2 Objective Function
It is important to quantify the economic damages suffered for
different clearing payments in the same, or a different financial
network.

For an appropriate objective function, it is possible to obtain
the largest clearing payments as the solution to an optimization
problem.

Assume f : Q 7→ R is any decreasing function in the sense
that P ′ ⪇ P ′′ implies f(P ′) > f(P ′′). Csóka and Herings (2018)
show that

P ∗ = arg min
P ∈Q

{f(P )} , (6)

satisfies absolute priority of creditors, i.e., P ∗ ∈ M.
The proof is based on the principle that in a financial network

(N, L, c), the problem is essentially a problem that assigns the
total value of the network to claimants with mutual liabilities that
have unique final allocations (Groote Schaarsberg et al., 2013;
Csóka and Herings, 2024).

In practice, there are additional constraints on the clearing
payments, such as the pro-rata rule as modeled by Eisenberg and
Noe (2001).2 Before the inclusion of an additional bankruptcy
rule, the greatest clearing matrix of the financial network (N, L, c)
provides a lower bound for the optimal objective function after
the inclusion of the additional bankruptcy rule, see, e.g., Calafiore
et al. (2022a). After all, additional constraints can only yield
weakly less optimal solutions to any optimization problem.

The next section establishes the clearing payment rule applied
throughout this thesis.

3 Pro-Rata
This section establishes the pro-rata rule which is a common
principle for clearing payments in case of default. The pro-rata
rule states that if a default occurs, the defaulting bank pays all

2For alternative rules to the pro-rata rule, see, e.g., Groote Schaarsberg et al. (2013);
Csóka and Herings (2023).
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claimant banks in proportion to the size of their nominal claims
on the assets of the defaulting bank (Rogers and Veraart, 2013).
After some definitions, the first result establishes a relationship
between the structure of a network graph and optimal and sub-
optimal clearing payments.

The following definitions are provided by Ross (2019). A non-
negative square matrix A ∈ Rn×n is said to be row-stochastic if all
its rows sum to 1: ∀i ∈ N : ∑j∈N Aij = 1, and row sub-stochastic
if ∀i ∈ N : ∑j∈N aij ≤ 1. Matrix A ≥ 0 is stochastic if Aι = ι and
sub-stochastic if Aι ≤ ι. A matrix A is strictly sub-stochastic if
at least one row does not sum up to one. That is Aι ⪇ ι.

For their analysis, Eisenberg and Noe (2001) define a propor-
tionality matrix which is by definition strictly sub-stochastic if at
least one of the nodes does not have any liabilities. It is possible to
define the matrix that it is always stochastic which may be useful
for specific applications.3 However, the sub-stochastic property
is useful in later sections of this thesis. Define the proportionality
matrix A ∈ [0, 1]n×n by

Aij =


Lij

li
if li > 0,

0 else.
(7)

The pro-rata rule implies ∀i, j ∈ N : Pij = Aijpi where pi is the
total payment by node i ∈ N . Because of the pro-rata rule it is
thus possible to identify all clearing payments by just the total
amount paid by each node and the fraction of total liabilities
owed to each other node provided in A. In addition, the nominal
liabilities are identified in the same sense that Lij = Aijli are the
nominal liabilities from node i to j.

It is now possible to reformulate the financial system (N, L, c)
using the proportionality matrix A, the vector of total liabilities
l, and the cash vector c.
Definition 3 (Pro-Rata Network)
A pro-rata network is a tuple (N, A, l, c), where N represents the
set of banks, A is the proportionality matrix, l is the liability
vector, and c is the cash vector.

Thus, the financial network (N, L, c) under the pro-rata rule
is equivalent to the pro-rata network (N, A, l, c).

3Eisenberg and Noe (2001) do mention the possibility of a node without liabilities to
serve as the receiver of operating costs if one seeks to model negative operational cash flow.
However, in their model, Eisenberg and Noe (2001) treat their proportionality matrix as
row-stochastic and thus implicitly assume that there is no explicitly modeled bank without
liabilities. This is not problematic because none of their results rely on row-stochasticity.
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Consider (N, A, l, c). All functions of payment matrices are
reduced to functions of payment vectors. In particular, the asset
value, book value, and equity value are functions ai, vi, ei : [0, l] 7→
R, defined by

ai(p) = ci + (AT p)i, (8)
vi(p) = ai(p) − li, (9)
ei(p) = (vi(p))+. (10)

These values are collected, respectively, in the vectors a(p) =
c + (AT p), v(p) = a(p) − l, and e(p) = (v(p))+. Clearly, a(·) is
weakly increasing, i.e., ∀p′ ≤ p′′ : a(p′) ≤ a(p′′). In addition, if
p′ ⪇ p′′ then a(p′) ⪇ a(p′′). That is, if at least one coordinate of
p increases then all coordinates weakly increase and at least one
coordinate strictly increases of a(p).

Given a pro-rata network, the set of defaulting banks is a
function of the payment vector. Let P(N) be the power set of N .
Formally, the default set is a function D : [0, l] 7→ P(N), defined
by,

D(p) = {i ∈ N : vi(p) < 0}. (11)

The set of payment vectors that satisfy limited liability is re-
ferred to as the set of feasible payment vectors and is given by
(Eisenberg and Noe, 2001),

Q =
{
p ∈ Rn

+ : p ≤ l, p ≤ a(p)
}

. (12)

This facilitates a reformulation of clearing payments in terms of
total payments by each node, collected in a clearing vector.
Definition 4 (Clearing Vector in a Pro-Rata Network)
A vector p∗ ∈ Q is a clearing vector, i.e., p∗ ∈ CV , if it complies
with absolute priority of creditors. That is,

p∗ = l ∧ a(p∗). (13)

It is possible and useful to reformulate the objective function
in terms of the set of feasible vectors Q.

Assume that f : Q → R is any decreasing function in the sense
that p′, p′′ ∈ Rn : p′ ⪇ p′′ implies f(p′) > f(p′′). Any solution,
p∗ ∈ Q, to the following problem

min
p∈Q

{f(p)} . (14)
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is a clearing vector (Eisenberg and Noe, 2001), i.e., p∗ ∈ CV .
Let the set of clearing vectors under the pro-rata rule be denoted
CV = CV ∩ Q.

Calafiore et al. (2022a) define the system-level cost as the total
deviations between the nominal asset value and asset value values
of all nodes. This choice is formalized in the following definition.
Definition 5 (System-Level Costs)
The system-level costs is a function f : Q 7→ R, defined by

f(p) = ιT (η − a(p)). (15)

Clearly, this objective function is decreasing in p ≥ 0 through
a(p) in the appropriate sense and thus satisfies (13).

As mentioned at the start of this section, any such optimiza-
tion function requires a central clearing agency that possesses
all information. For simplicity, the central clearing agency is as-
sumed to do all payments simultaneously.

The existence of an all-knowing central clearing agency does
not reflect reality (Gai and Kapadia, 2010; Elsinger et al., 2006).

3.1 Equivalent Weighted Digraphs
The following definitions are standard in graph theory and are
useful tools to intuitively understand and theoretically derive re-
sults that reveal the structure of complex networks.

Every non-negative square matrix A = (Aij)i,j∈N corresponds
to a weighted digraph G[A] = (N, E[A], A) whose nodes are in-
dexed by N and whose set of arcs is defined as E[A] = {(i, j) ∈
N × N : Aij > 0}. The value Aij > 0 represents the weight of arc
(i, j) ∈ E[A]. A sequence of arcs (h0, h1), (h1, h2), . . . ,
(hs−1, hs) ∈ E[A] form a directed path between nodes h0 ∈ N
and hs ∈ N in graph G[A]. The set of nodes J ⊆ N is reachable
from node i if u ∈ J or a path from i to some element j ∈ N
exists; J is called globally reachable in the graph if it is reachable
from every node u /∈ J .

In a directed graph G[A], a component is a subset of nodes
S ⊆ N that can hold certain properties, in terms of reachability.
An important example is, that a set of nodes S ⊆ N forms a
strong component if it is a maximal subgraph where every pair of
nodes i, j ∈ S are mutually reachable. This implies that, starting
from any node in S it is possible to reach every other node. Strong
refers to the strong relationship between any two nodes in such
a component. Furthermore, the maximal part of the definition
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implies that it is impossible to add another node to the component
without violating the mutual reachability for all nodes in the
component.

A strong component is non-trivial in case it contains at least
two nodes.

This intuitively implies that there are multiple strong compo-
nents in a digraph as long as not all nodes are mutually reachable.

In contrast, if any pair of nodes in a digraph is mutually reach-
able, then the digraph is connected If there is a direct path be-
tween any pair of nodes in both directions, the digraph is fully
connected.

A sink component has no arcs leaving it, a source component
has no arcs entering it.

Additional definitions for digraphs, G[A] = (N, E[A], A) are
relevant for the study of inefficient equilibria outcomes in case
of default costs (Jackson and Pernoud, 2023) or bare minimum
sufficiency conditions for uniqueness of the clearing vector with
no default costs (Csóka and Herings, 2024). In particular, a de-
pendency cycle is a directed path (i0, i1), ..., (is−1, is) such that
for 0 ≤ j ≤ s − 1 : (ij, ij+1) ∈ E[A], s ≥ 2, is = i0, and
∀j /∈ {0, s}∀h ̸= j : ij ̸= ih. Note that the last requirement
differs from similar definitions by, e.g., Csóka and Herings (2024)
and Jackson and Pernoud (2023) that allow for cycles or depen-
dency cycles to pass the same node twice. Thus, a dependency
cycle is a directed path of positive nominal liabilities that starts
and ends at the same node, passes at least one other node, and
never passes the same node twice.

Note, that any dependency cycle must be part of a strong
component. Either the dependency cycle is the strong compo-
nent or multiple dependency cycles form the strong component.
Thus, roughly speaking, a non-trivial strong component starting
from node i ∈ N is the largest collection of dependency cycles
that contains i ∈ N . For this reason, Csóka and Herings (2024)
and Jackson and Pernoud (2023) define the cycle to be the strong
component. Both the presence of a dependency cycle and a non-
trivial strong component provide the same necessary condition
for the existence of inefficient clearing vectors. These results un-
derline Proposition 1.

3.2 Uniqueness Condition for the Clearing
Vector

Eisenberg and Noe (2001) add a bankruptcy rule and highlight
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that the equity after clearing payments is constant and is essen-
tially an allocation of total operational cash flows. This result
is generalized by Groote Schaarsberg et al. (2013) to the entire
set of bankruptcy rules. That is, choosing a different bankruptcy
rule does not change the invariance of equity for different clearing
vectors.

The works by Eisenberg and Noe (2001); Glasserman and
Young (2015); Kusnetsov and Veraart (2019), describe condi-
tions for unique clearing vectors. In addition, Csóka and Her-
ings (2024) provide a uniqueness condition that combines these
conditions and holds Eisenberg and Noe (2001); Glasserman and
Young (2015) as special cases.
Proposition 1 Consider a pro-rata network (N, A, l, c).

(i) There is a unique least and greatest clearing vector, i.e.,
∃p∗, p∗ ∈ CV ∀p ∈ CV : p∗ ≤ p ≤ p∗ (Eisenberg and Noe, 2001).

(ii) The solution to (14) is unique, the largest clearing vector, and indepen-
dent of f provided f is decreasing (Eisenberg and Noe, 2001).

(iii) Let p̃, p̂ ∈ CV . Then e(p̃) = e(p̂) (Eisenberg and Noe, 2001; Groote Schaars-
berg et al., 2013).

(iv) If each dependency cycle has at least one bank with positive operational
cash flow or a path of liabilities toward a sink node, then the clearing
vector is unique and thus CV = {p∗}, where p∗ is the unique solution to
(14) (Csóka and Herings, 2024).

Proof. The proof of (i) is provided in the next section in a more
general setting. The proof of (ii) follows from (i) and that each
solution must be a clearing vector in combination with the de-
creasing property of f in (14). The proof of (iii) is provided
explicitly below because of the relevant distinction with the gen-
eral setting of this thesis in Section 4. This proof follows the
seminal work by Eisenberg and Noe (2001).

The following proof of (iv) utilizes the proof provided by Eisen-
berg and Noe (2001) and is based in large part on property
(iii). Alternative proofs for these properties are more technical
and available in Glasserman and Young (2016); Calafiore et al.
(2022b); Csóka and Herings (2024).
(iii) Note, ∀p ∈ CV : e(p) = (v(p))+ = (AT p − l)+ = AT p − p. In addition,

ιT AT = ιT because AT is column stochastic and thus total equity satisfies
ιT e(p∗) = ιT (AT p∗ + c−p∗) = ιT (p∗(1−1)+ c) = ιT c = ιT (p(1−1)+ c) =
ιT (AT p + c − p) = ιT e(p) for the largest clearing vector p∗ ∈ CV and
another clearing vector p ∈ CV \ {p∗}. Thus, total equity is equal to
total operational cash flow irrespective of the clearing vector.
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Suppose now, ∃p̂ ∈ CV \ {p∗} : e(p̂) ̸= e(p∗). Because of (i), it holds that
∀p ≤ p∗ : e(p) ≤ e(p∗) such that e(p̂) ⪇ e(p∗). Then, 0 = ιT (c − c) =
ιT (e(p) − e(p∗)) < 0 which provides a contradiction.

(iv) Eisenberg and Noe (2001) show the uniqueness of the clearing vector if
each node reaches at least one bank with positive operational cash flow.
In addition, Glasserman and Young (2015) show that another unique-
ness condition is provided if each bank reaches an outside bank with no
nominal liabilities.
Both these results follow from (iii) in Proposition 1 because there is
at least one insolvent bank that pays different amounts for the least and
greatest clearing vector to a bank that is solvent such that equity changes
of the solvent bank which is a contradiction.
The core idea is that only non-trivial strong components can create non-
unique clearing vectors. This property is established by (i) of Theorem 2
in Section 5.
If there is a strong component that is not a sink, there is a directed path
from that strong component toward a sink component because the path
either ends at a sink node or a non-trivial strong sink component. The
path cannot reenter the strong component because all nodes on the path
leaving the strong component would be inside the strong component.
This implies that all the banks with potentially non-unique payments
and not part of a strong sink component have a directed path toward a
sink component with at least one solvent bank. If the strong component
is a sink there is at least one solvent bank as well because total equity
must equal total operational cash flow and thus be strictly positive in
the sink. By (iii) and the arguments above, multiple clearing vectors
would contradict constant equity. After all, total equity must equal total
positive operational cash flow. The positive cash flow cannot escape the
sink component. This is indicated in the sketch of a digraph below.

1 2 3

c1

Assume c1 > 0 is the only positive operational cash flow. The total equity
in this network must equal c1 > 0. Banks 1 and 2 are part of a non-
trivial strong component and bank 3 is a sink node. As a consequence,
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the positive constant equity of bank 3 forces banks 1 and 2 to have unique
clearing payments.
The set of all nodes reachable from node i ∈ N is denoted R(i). ∀i ∈ N :
R(i) is a sink component. Suppose not, then there is a bank j ∈ N \ R(i)
on an outwards pointing path from R(i). Thus, j ∈ R(i) provides the
necessary contradiction.
Suppose there is another clearing vector p ∈ CV : p ⪇ p∗. The equity
for the largest clearing vector can only be weakly larger than the equity
for a sub-optimal clearing vector because e(p) = (a(p) − l)+ is weakly
increasing in p. Then, ∃j ∈ N \ D(p∗) : ej(p∗) > ej(p). That is, the
payments along a directed path from an insolvent bank toward a solvent
bank increase which results in larger equity for the bank solvent for both
clearing vectors. This contradicts constant equity in (iii).

In summary, there always is a clearing vector due to (i). In ad-
dition, the largest clearing vector uniquely optimizes the system-
level costs by (ii). Furthermore, the constant equity property
(iii) ensures that a clearing vector is unique as long as each in-
solvent bank always reaches at least one solvent bank. This last
property facilitates the uniqueness condition in (iv). Separating
all banks into a zero or positive equity subset and the existence
of a directed path from the first to the latter are both essential
to proving the uniqueness condition. The existence of a path
toward a sink node or the existence of positive operational cash
flow among the nodes reachable from dependency cycles ensures
that multiple equilibria are contradictory of constant equity.

Eisenberg and Noe (2001) establish that a sufficient condition
for uniqueness of (13) is provided by ∀i ∈ N : ci > 0. Eisen-
berg and Noe (2001) suggest that any negative operational cash
flow can be modeled separately by the inclusion of a bank without
nominal liabilities where all banks i ∈ N that receive negative op-
erational cash flow instead hold positive nominal liabilities equal
to the size of the negative cash flow. That is, N = {0, 1, ..., n}
and ∃i ∈ N : Lu0 > 0. This inclusion implies from any strong
component there is positive operational cash flow or there is a
directed path towards a sink component. By (iv) the clearing
vector is unique.

Consider the following example to demonstrate the implica-
tions of propostion 1 in an intuitive example.
Example 1 Suppose the pro-rata network (N, A, l, c), where A
has the equivalent weighted digraph
G [A]:
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Table 1: Pro-rata network parameters for example 1

N A l c G[A]

{1, 2, 3}

0 1 0
1 0 0
1 0 0


1
1
1


 0

0
c3

 (N, {(1, 2), (2, 1), (3, 1)}, A)

1 2

3

1

1

1

First, consider c3 = 0. (ii) implies the largest clearing vector
exists which must be the unique solution to (14). Furthermore,
there are infinitely many clearing vectors. In particular, the set of
clearing vectors is all convex combinations of the least and largest
clearing vectors. That is,
CV = conv{[0, 0, 0]T , [1, 1, 0]T }. Plug any vector λ × [1, 1, 0]T for
λ ∈ [0, 1] into the definition of a clearing vector (13) to see this.
This example provides a similar context to the example by Eisen-
berg and Noe (2001) to demonstrate the possibility for multiple
clearing vectors. The presence of the dependency cycle provides
some intuition behind (iv) in Proposition 1 imposing restrictions
on dependency cycles. Note that a lack of dependency cycles
trivially satisfies the requirement of (iv). In that sense, if there
are no dependency cycles, it is a certainty that there is just one
clearing vector. The fundamental importance of the dependency
cycle for the model by Eisenberg and Noe (2001)is obvious as
this seminal paper already mentions that their contribution to
the literature is the first to consider the dependency cycle. This
importance generalizes well to more complex assumptions, such
as default costs, as will be formally established in Section 5.

For p∗ = [1, 1, 0]T , both 1 and 2 are solvent, whereas, for
p ∈ CV \{p∗}, both 1 and 2 are insolvent. Note, that the equity of
nodes 1 and 2 must be zero by Proposition 1 because these banks
are insolvent for at least one clearing vector. As demonstrated in
the proof for (iii) of Proposition 1, total equity must equal total
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operational cash flow, i.e., ∀p ∈ CV : e1(p) + e2(p) + e3(p) =
c1 + c2 + c3 = 0.

Note, if c > 0 then (iv) and the unique clearing vector p∗ ∈ CV
optimizes system-level costs by (ii).

In the following, the definition of a clearing vector is used to
demonstrate how cash injections affect dependency cycles.

For sure, [1, 1, c3 ∧ l3]T ∈ CV as c3 > 0 is not required to
have p1 = p2. This could seem odd. However, there is no order
in the clearing payments. The central clearing agency wires all
payments simultaneously, by assumption. The implicit assump-
tion is that the agency observes that banks 1 and 2 owe each 1
in mutual liabilities. Thus, bank 1 pays bank 2 because bank 2
pays bank 1 via the central clearing agency.

Suppose there is a p̄ ∈ CV \ {p∗}. For c3 > 0, if either 1 or 2
is insolvent, then at least 2 is insolvent because p̄1 = l1 ∧ c3 + p̄2.
Thus, p̄1 > p̄2 as p̄2 = l2 implies p̄1 ≥ c3 + p̄2 > p̄2 = l1 and
thus both banks would be solvent. Because of absolute priority
of creditors, p̄2 = a2(p̄) = p̄1 = c3 + p̄2 ∧ l1 = c3 + p̄2 ∧ l2 > p̄2 =⇒
0 < 0. This only covers the case where p̄1 = l1. If p̄1 < l1, the
same argument implies p̄2 < p̄2 + c3 = p̄1 = a2(p̄) which again is
a contradiction.

Another derivation for c3 ∈ (0, 1) is the following. Any digraph
that is not part of a larger digraph is a sink. Any sink with at
least some positive operational cash flow has at least one solvent
bank Eisenberg and Noe (2001). If 0 < c3 < 1, 3 is not solvent.
Thus p∗ = [1, 1, c3]T is the unique clearing vector following the
same arguments in the last derivation where the absolute priority
of creditors ensures node 2 is solvent if and only if 1 is. This is
precisely the reason that positive operational cash flow for any
dependency cycle that does not have a directed path towards a
sink node ensures there is always a path towards a solvent node
which facilitates the uniqueness by (iv) in Proposition 1. Node 3
is a source. Of course, if c3 = 1, each bank is solvent.

Table 2: Pro-rata network parameters for example 2

N A l c G[A]

{1, 2, 3, 4}


0 1 0 0
1 0 0 1
1 0 0 0
0 0 0 1



1
2
1
0



0
0
0
0

 (N, {(1, 2), (2, 1), (3, 1), (2, 4)}, A)

Example 2 Consider the same network now with an added glob-
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ally reachable sink node (N, A, l, c) , where A has the equivalent
weighted digraph

G [A]:

1 2

3 4

1

1

1 1

The solution is now unique due (iv) in Proposition 1. Without
proof, the unique solution is now [0, 0, 0, 0]T .4

Consider the following example to illustrate how the system-
level costs objective function in (15) behaves under specific con-
ditions.

Table 3: Pro-rata network parameters for example 3

N A l c G[A]

{1, 2}
[
0 1
0 1

] [
1
0

] [
c1
0

]
(N, {(1, 2)}, A)

Example 3 Consider a simple pro-rata (N, A, l, c) with equiva-
lent weighted digraph G [A] :

1 2
1

Among all exogenous quantities in the above pro-rata network,
only the operational cash flow of node 1 varies across the next
three scenarios.

Sink node 2 is globally reachable and the clearing vector is thus
unique. First, suppose c1 = 1. This implies 0 system-level costs.
Thus, all nominal liabilities are paid and there are no defaulting
banks. Second, suppose c1 = 1

2 which results in an objective
function value of 1

2 and bank 1 defaults. Finally, suppose c1 = 0,
then the objective function value is 1, and bank 1 defaults. An
important question now arises about the difference in objective

4For a proof, use the least algorithm in Section 4.2 for zero default costs, i.e., α, β = 0.
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values between the last two scenarios. Is the third situation twice
as bad as the second situation? Should the situation with an
extra default and 1

2 less equity decrease the objective function as
much as losing another 1

2 in equity without another default? This
observed problem in the interpretation of the objective function
is solved by the inclusion of default costs.

4 Default Costs
In a pro-rata network (N, A, l, c), the incoming clearing payments
from a defaulting bank are proportional to the entire asset value
plus the operational cash flow. In reality, there are typically
consequences for when and how much the claimants are paid when
a bank defaults (Battiston et al., 2016). It is not uncommon for
bankruptcy proceedings to reduce the available cash to around
half of nominal liabilities. More precisely, Jackson and Pernoud
(2020) highlight in a survey based on several studies that the
bankruptcy recovery rates are between 56 − 57%. This statistic
motivates the inclusion of default costs in the model, in addition
to the interpretation problem of the system-level costs at the end
of the previous section. Furthermore, Bennett and Unal (2015)
estimate the costs of bank resolutions using FDIC data over the
period 1986–2007 for the 25 largest banks in their sample, these
costs ranged from 0.33 − 13.19%. Similar to Rogers and Veraart
(2013), Jackson and Pernoud (2019) propose default costs linear
in the asset value ai(p) of the defaulting bank i. The default costs
of bank i ∈ N are defined as a function of the payment vector and
are generally considered heterogeneous across different banks.

It is useful to distinguish between default costs in case a bank
defaults and actual default costs.
Definition 6 (Pro-Rata Cost Network)
A pro-rata cost network is a tuple (N, A, l, c, α, β) where N rep-
resents the set of banks, A is the proportional liability matrix, l
is the liability vector, c is the cash vector, and the vectors α and
β contain the default cost coefficients in the potential default
costs. The potential default costs of bank i ∈ N is a function
γi : [0, l] 7→ [0, li], defined by,

γi(p) = (αi + βi × ai(p)) ∧ ai(p), (16)

where 0 ≤ αi and 0 ≤ βi ≤ 1 ensure that γi ∈ [0, li].5

5Jackson and Pernoud (2023) choose to allow for default costs to supersede the asset
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Notably, these default costs do not depend on how insolvent
a bank is at default. In particular, bank i ∈ N defaults whether
li − pi = e0.01 or li − pi =e1000000.00. If a bank operates under
regular market conditions, liquidity is available via short-term
repurchase agreements (Jackson and Pernoud, 2023). In contrast,
the bank run scenario in the 2008 financial crisis demonstrates
that losses in confidence can deplete the liquid capital available for
short-term borrowing (Duffie, 2019; Jackson and Pernoud, 2023).

Thus, the independence of the potential default costs of how
insolvent a bank is lies in the fact that no short-term liquidity is
available, and the moment a bank becomes insolvent the tremen-
dously costly legal proceedings initiate.

The marginal costs, i.e., βi, are estimated to be around 20%
to 30% of the bank’s assets and even worse in financial crises
(Davydenko et al., 2012; Jackson and Pernoud, 2023). The fixed
costs αi are harder to estimate and presumably positive due to the
costly nature of legal proceedings that vastly exceeds the marginal
costs (Jackson and Pernoud, 2023).

The pro-rata network (N, A, l, c) is equivalent to the pro-rata
cost network (N, A, l, c, 0, 0).

The default costs of bank i ∈ N is a function δi : [0, l] 7→ [0, li],
defined by

δi(p) =
γi(p) if ai(p) < li,

0 else.
(17)

The possibility of α = 0 and β = 0 is mainly included to be
able to write the pro-rata network as a special case of a pro-rata
network with default costs. Any conclusions for general vectors
0 ≤ α and 0 ≤ β ≤ 1 must hold for general pro-rata networks.

The inclusion of positive default costs of this type has two
important effects. The inclusion of αi > 0 ensures that for each
bank i ∈ N that receives asset value ai(p) > 0 there is at least
some consequence to collapsing in terms of the system-level costs.
In addition, the coefficient 0 < βi ≤ 1 ensures that the cash asset
value of node i ∈ N is reflected in the size of the system-level
costs.

Consider a pro-rata cost network (N, A, l, c, α, β). The set of

value of a bank. As Jackson and Pernoud (2023) argue, the costs that exceed the assets
still represent real costs, e.g., debts or legal costs that are never paid, capital or labor that
are idled, etc., which can be incurred by the bank itself if it does not act under (ii) limited
liability, or by the government or agents outside of the network.
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feasible payment vectors is given by

Q =
{
p ∈ Rn

+ : p ≤ l, p ≤ a(p) − δ(p)
}

. (18)

The clearing vector can be defined similarly to the pro-rata net-
work counterpart.
Definition 7 (Clearing Vector)
Consider the pro-rata cost network (N, A, l, c, α, β). A vector
p∗ ∈ Q is a clearing vector, i.e., p∗ ∈ CV ,if it complies with
absolute priority of creditors. That is,

p∗ = l ∧ (a(p∗) − δ(p∗)) . (19)

Similar to Rogers and Veraart (2013), the clearing vector for
the pro-rata payment rule with default costs can be expressed as
a fixed point of a function Φ : [0, l] 7→ [0, l], defined by

Φi(p) =
li if li ≤ ai(p),

ai(p) − δi(p) else.
(20)

Importantly, the first case prevents the scenario where banks have
sufficiently many funds available to pay all liabilities and still de-
fault based on default costs alone, instead of the consequences.
This point is elaborated on in Jackson and Pernoud (2023). Thus,
even though default costs are incurred when pi < li, the defini-
tion of the clearing vector ensures this only occurs for clearing
payments where the asset value is insufficient to cover liabilities.

The interpretation of the clearing vector p∗ does not change.
The clearing vector is the amount each node has available to pay
their liabilities. If the asset value of cash to node i ∈ N is at least
li, i.e., ai(p∗) ≥ li, then node i meets their financial obligations.
If node i fails to do so, the node must liquidate its assets, and
due to, e.g., legal costs, payment delays (Battiston et al., 2016),
liquidity (Strömberg, 2000; Cifuentes et al., 2005), and all other
costly inefficiencies of the liquidation process, there is a fixed
penalty αi > 0 and proportional penalty βi × ai(p∗). Of course,
it is not possible to reduce more than all of the asset value of
the asset value, thus, these penalties are summed up as no larger
than the total asset value. This implies the total recovered asset
value to pay off the liabilities at default is equal to (ai(p∗) − γi)+.

The definitions of the book and equity values change due to
the inclusion of default costs. In particular, for the pro-rata cost
network, the book value, and equity value of bank i ∈ N are
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functions vi, ei : [0, l] 7→ R, defined by

vi(p) = ai(p) − li − δi(p), (21)
ei(p) = (vi(p))+. (22)

These values are collected, respectively, in the vectors v(p) =
a(p) − l − δ(p), and e(p) = (v(p))+. This implies that ai(p) <
li ⇐⇒ vi(p) < 0. Thus, bank i ∈ N defaults if and only if it
does not hold sufficient funds to cover all liabilities.

Note, Proposition 1 is unlikely to hold because total equity
reduces whenever default costs are incurred.

Furthermore, the default set is a function D : [0, l] 7→ P(N),
defined by

D(p) = {i ∈ N : vi(p) < 0}. (23)

Following Rogers and Veraart (2013), the following simple and
important properties hold for the mapping Φ.
Lemma 1 The mapping Φ satisfies:

(i) Φ is bounded from below by 0 and above by l. For any p we have Φ(p) ≤ l.
(ii) Φ is monotone. If p̃ ≤ p then Φ(p̃) ≤ Φ(p).

Proof. (i) The first property follows from the definition.
(ii) To prove the second property, note if p̃ ≤ p then

D(p) ⊆ D(p̃). Thus, if i ∈ D(p), then
Φi(p̃) = ((1 − βi)ai(p̃) − αi)+ ≤ ((1 − βi)ai(p) − αi)+ = Φi(p) because
a(p) weakly increases in p. If i ∈ D(p̃) \ D(p), then Φ(p̃) < li = Φi(p). If
u /∈ D(p̃) then Φi(p̃) = li = Φi(p).

The following existence Theorem and proof are based on a
similar result by Rogers and Veraart (2013).
Theorem 1 (Existence of the Clearing Vector)
For every pro-rata cost network (N, A, l, c, α, β), there exists a
least clearing vector p∗ and greatest clearing vector p∗. That is,
∃p∗, p∗ ∈ CV such that p∗ ≤ p̃ ≤ p∗ for each clearing vector
p̃ ∈ CV .

Proof. The following proof is more complex than it needs to be, to
demonstrate the structure of an algorithm to arrive at the least
and greatest clearing vector. Furthermore, this version of the
proof uses common analytical principles taught in real analysis
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courses. In contrast, an alternative proof that requires additional
knowledge is available in Appendix A.1.

Define a sequence, p̂0 = l, define ∀k ∈ N : p̂k = Φ (p̂k−1). By
lemma 1, the sequence {p̂i}∞

u=0, is decreasing and bounded from
below. Thus, the sequence is convergent. The following holds
because of convergence combined with a finite number of nodes,
namely n. The set Fk = {u ∈ N : ai(p̂k) = li}, becomes constant
after k has become sufficiently large. This is evident as there are
at most n jumps due to default costs, and, as k → ∞, eventually,
the last jump must occur. Note, that this does not prove that
the last jump occurs in finitely many iterations. Because the
transformation Φ(.) is continuous from above, where jumps occur
at li = ai(p), the limit of the sequence belongs to the same n-
dimensional line segment as the last tail of the sequence. The
last tail of the sequence occurs at the value k such that Fk no
longer changes. Thus, lim

k→∞
p̂k = p∗ = Φ(p∗).

Now, consider the sequence p̂0 = 0 and ∀k ∈ N : p̂k =
Φ(p̂k−1). Using the same arguments, now for an increasing se-
quence bounded from above, the sequence will converge. How-
ever, the limit may not be a clearing vector, as the limit may lay
outside of the set of sequence elements, such that ∀k ∈ N : p̂k < v
and v = lim

k→∞
p̂k. If Φ(v) ⪈ v, the jump occurs in v, and thus, as

basic analysis dictates, lim
k→∞

p̂k ⪇ Φ( lim
k→∞

p̂k). That is, the supre-
mum of an increasing sequence is the limit, which need not be
inside of the set which is not closed. This is intuitively clear when
you consider that p̂k never needs to reach the limit exactly, just
approach it arbitrarily close. The value after the jump is not close
to any element in the sequence in a limiting sense. This requires
the sequence to start again starting at p̂0 = v. Then, the first
limit which is a clearing vector, is the least clearing vector.

Finally, although not explicitly demonstrated, it is not possi-
ble to surpass the least and greatest clearing vector. Although
lemma 1 indicates Φ(·) is increasing in a weak sense, it is not
addressed whether it is possible to surpass, e.g., the least clear-
ing vector, in the following way. Suppose p̂k ≤ p∗ and p̂k+1 is
larger in some and smaller in other elements than p∗. This would
not contradict the weak monotonicity in lemma 1, though is still
impossible. The proof of this property is based on the principles
underlying Tarski’s fixed point (Zeidler, 1986) which will be used
to demonstrate an important second proof of this model. The
importance of this second proof lies in the general applicability
to many similar models.
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An additional, faster proof requires a specific characterization
of sets and element-wise ordering. This proof is based on Tarski’s
fixed point and is available and provided in appendix A.1.

4.1 Importance of the Least Clearing Vector
The inclusion of default costs has some important implications
when considering the difference between a centralized and decen-
tralized clearing mechanism. Csóka and Herings (2018) find that
a decentralized algorithm based in only partial information will
lead to the least clearing matrix. This decentralized algorithm
terminates in finitely many steps because each payment must be
a multiple of the smallest unit of account. To illustrate the impor-
tance of having at least some minimal level of payment, consider
the following simplified example of a clearing mechanism without
default costs. Example 2: Assume the following nominal liability
matrix

L =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 , (24)

where first node 1 owns net assets c1 = 1 and c2 = c3 = 0. Then
no default occurs after infinitely many payments. This happens
in the following steps.

• Step 1: Node 1 pays P12 = P13 = 1
2 .

• Step 2: Node 2 and 3 pay both separately in total 1
2 via P21 = P23 = 1

4 =
P31 = P32.

• Step 3: Node 2 and 3 pay both separately in total 1
4 via P21 = P23 = 1

8 =
P31 = P32.

• step 3: . . .

Then, after infinitely many steps, node 2 and 3 have paid off their
nominal liabilities as well. That is, both 2 and 3 have paid 1

2 + 1
4 +

1
16 + ... = 1

1− 1
2

− 1 = 1. Of course, in real life, there is a smallest
unit of account. It is not necessary to assume all payments are
a multiple of the smallest unit of account to fix this particular
problem. It suffices to assume that there is some ϵ > 0 such
that any remaining liabilities smaller than this value are forgiven.
Csóka and Herings (2018) consider what happens if there are no
default costs and the unit of account approaches zero. Their
findings indicate that the decentralized algorithm approaches the
maximum clearing matrix and provides bounds that indicate the
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equity costs of decentralized clearing are relatively small and do
not necessitate central bankruptcy proceedings.

One interesting aspect to note is that, if a decentralized model
is designed such that all clearing payments occur at the first pos-
sibility to do so, the analysis for decentralized and centralized
versions of the model coincide. The order of payments, which
distinguishes the decentralized from the centralized models, is no
longer relevant. This should be kept in mind if one aims to com-
pare simple examples from both types of model. For example,
the hierarchical financial network (Csóka and Herings, 2024). A
hierarchical contains no dependency cycles.

4.2 Least and Greatest Clearing Algorithm
The following algorithms to find the least or greatest clearing
vector for any pro-rata cost network (N, A, l, c, α, β) closely follow
the algorithms by Eisenberg and Noe (2001); Rogers and Veraart
(2013) to find the greatest clearing vector. Rogers and Veraart
(2013) adjusts the fictitious default algorithm by Eisenberg and
Noe (2001) to account for default costs. These algorithms take
at most n iterations and arrive at the least and greatest clearing
vectors respectively.

The idea of the greatest algorithm is that you identify which
banks default if all banks meet their nominal liabilities. These
banks will always default because it is not possible to receive
more. Set the corresponding clearing payments to variables while
keeping the remaining banks at nominal. Solve a set of linear
equations where only the defaulting banks thus have variable pay-
ments. The solution must be unique if either β > 0 or α = β = 0.
Start the next iteration with the solution of the last iteration.
Select the banks that will additionally default for this payment
vector. Repeat this process until the set of defaulting banks re-
mains constant for an iteration and terminate the algorithm. The
process of payment vectors results in the greatest clearing vector
at termination.

The least algorithm utilizes the same principles in the oppo-
site direction (Rogers and Veraart, 2013). Start with the zero
payment vector and identify which banks are solvent. Set those
clearing payments to nominal liabilities and set the payments of
the remaining banks to variable and the resulting vector is the
payment vector for the next iteration. At each iteration check
whether new banks become solvent until the set of defaulting
banks does not change. This results in the least clearing vector.
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Consider (N, A, l, c, α, β).
1. µ = 0

Least Algorithm: Set p∗0 = 0, U−1 = ∅,
Greatest Algorithm: Set p∗

0 = l, Y−1 = ∅.
2. Default sets: Uµ = D(p∗µ),Yµ = D(p∗

µ),
Solvent bank sets: Sµ = N \ Uµ, Zµ = N \ Yµ;

3. If Uµ = Uµ−1, terminate the Least Algorithm and set p∗ = p∗µ.
Else, set p∗µi = li for i ∈ Sµ. Then solve,
xi = ai(ISµl + IUµx) − γi(ISµl + IUµx) for i ∈ Uµ, where ISµ is the identity
matrix where the j-th diagonal element is replaced with zero in case
j /∈ Sµ, and IUµ is defined analogously. Set p∗µi = xi for i ∈ Uµ.
If Yµ = Yµ−1, terminate the Greatest Algorithm and set p∗ = p∗

µ.
Else, set p∗

µi = li for i ∈ Zµ. Then solve,
xi = ai(IZµl + IYµx) − γi(IZµl + IYµx) for i ∈ Yµ, where IZµ is the identity
matrix where the j-th diagonal element is replaced with zero in case
j /∈ Zµ, and IYµ is defined analogously. Set p∗

µi = xi for i ∈ Yµ.;
4. µ → µ + 1 and go back to step 2.;

The idea behind such an algorithm is intuitive. By starting from
below the least clearing payments, if banks i, j ∈ N become sol-
vent in an iteration, then bank i ∈ N can only be better off in
the next iteration when the solvency of j ∈ N is processed in
the clearing vector in the next iteration. Analogously, when the
algorithm starts from above the greatest clearing payments and
banks i, j ∈ N become insolvent in an iteration, then i ∈ N can
only be worse off in the next iteration when the insolvency of
j ∈ N is processed in the clearing vector.

The solutions xi, for i ∈ Uµ ∪ Yµ, in step 3 are unique if
β > 0 (Rogers and Veraart, 2013) because it is possible to write
the right-hand sides in vector form as contractions of IUµx. The
proof is provided in appendix A.2.

For α = β = 0, the uniqueness of the xi values are slightly
different, and sufficient conditions are available Eisenberg and
Noe (2001). In particular, if c > 0, or more generally, if (iii) in
Proposition 1 holds, the clearing vector is unique. Moreover, (iii)
ensures solutions xi in step 3 are unique.

Note, for b = 0, a = 0 is essential to guarantee the uniqueness
of the solution in step 3 if (iii) holds, in contrast to the case
where β > 0. a = 0 ensures constant equity which is essential
for uniqueness in step 3. A detailed explanation is provided in
appendix A.2.
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The algorithm is applied to the pro-rata network in example
1, now with default costs.

Table 4: Pro-rata and pro-rata cost network parameters for example 4

N A l c α β G[A]

{1, 2, 3}

0 1
2

1
2

1 0 0
0 0 1


1
1
1


0

0
1
4




1
4
1
4
1
4




1
4
1
4
1
4

 (N, {(1, 2), (2, 1), (1, 3)}, A)

Example 4 Consider (N, A, l, c, α, β). Thus, for each i ∈ N the
potential default costs are γi(p) = 1

4(1 + ai(p)) ∧ ai(p).

1. µ = 0
Least Algorithm: Set p∗0 = [0, 0, 0]T , U−1 = ∅,
Greatest Algorithm: Set p∗

0 = [1, 1, 1]T , Y−1 = ∅.
2. ∀i ∈ {1, 2} : vi(p∗0) = ai(p∗0) − li = 0 − 1 = −1, v3(p∗0) = a3(p∗0) − l3 =

1
4 − 1 = −3

4 ,
∀i ∈ {1, 2} : vi(p∗

0) = ai(p∗
0)−li = 1−1 = 0, v3(p∗

0)a3(p∗
0)−l3 = 1

4 −1 = −3
4 ;

U0 = {1, 2, 3}, Y0 = {3},
S0 = ∅, Z0 = {1, 2};

3. U0 ̸= U−1.
∀i ∈ U0 : xi = 0 = ai([0, 0, 0]T ) − βi([0, 0, 0]T ). Set p∗0i = xi = 0 for
i ∈ U0.
Y0 ̸= Y−1.
Set p∗

0i = li = 1 for i ∈ Z0.
x3 = 0 = r3([1, 1, 0]T ) − β3([1, 1, 0]T ). Set p∗

0i = xi = 0 for i ∈ Y0.;
1. µ = 1;
2. Note, p∗1 = [0, 0, 0]T = p∗0. Terminate the least algorithm as no change

in the clearing vector implies the set of insolvent banks will not change.
Thus, p∗ = [0, 0, 0]T .
p∗

1 = [1, 1, 0]T ̸= p∗
0,

∀i ∈ Z0 : vi(p∗
1) = ai(p∗

1)−li = 1−1 = 0, v3(p∗
1) = a3(p∗

1)−l3 = 1
4 −1 = −3

4 ;
Y1 = {3}, Z1 = {1, 2};

3. Y1 = Y0, terminate the Greatest Algorithm. Thus, p∗ = p∗
1 = [1, 1, 0]T .
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5 The Structure of Inefficient
Clearing Payments

5.1 Dependency Cycles
A large part of literature, e.g., Eisenberg and Noe (2001); Rogers
and Veraart (2013); Acemoglu et al. (2015); Glasserman and
Young (2016); Csóka and Herings (2018), hints at the prominence
of dependency cycles for inefficient clearing payments. Jackson
and Pernoud (2023) provide a precise formulation of necessary
and sufficient conditions for inefficient clearing payments for a
large collection of default costs. These results require mild regu-
larity conditions on the default costs and are significant for the
network topology approach to systemic risk. These results for-
malize and reinforce the importance of directed cycles of nominal
liabilities. Notable is their choice of the book value as the primary
variable. Importantly, this choice does not change the underlying
structure of the model. In particular, there exists a bijection from
the set of clearing vectors to the vector of book values.

This equivalence motivates the derivation and study of their
results under the equivalent clearing vector formulation that is
both intuitive and consistent with most work based on the seminal
work by Eisenberg and Noe (2001).

Eisenberg and Noe (2001); Csóka and Herings (2018); Jackson
and Pernoud (2023) argue that if payments occur sequentially, as
in the real world, self-fulfilling default cycles can occur in the
following sense. If bank A must pay bank B which must pay
bank C which in turn, must pay A. This represents a dependency
cycle. If none of these banks have the funds for the payment
at the current time, each will default, even though a small cash
injection into one of these banks would be able to start a cycle
of payments that makes all banks solvent again (Eisenberg and
Noe, 2001; Jackson and Pernoud, 2023).

This is precisely what occurs in Example 1. Banks 1 and 2
form a dependency cycle with no operational cash flows and bank
3 acts as a potential cash injection. If the operational cash flow
of node 3 is zero, there is the potential for 1 or 2 to be solvent,
or not, with arbitrary gaps in clearing vector values and nominal
liabilities. The choice of any arbitrarily small positive operational
cash flow of bank 3 forces a unique clearing vector where both
banks 1 and 2 are solvent. Importantly, a dependency cycle need
not lead to inefficient clearing vectors. This is demonstrated in
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Example 1 as well. Only c = 0 leads to non-unique clearing
vectors.

In contrast, Proposition 1 no longer holds, as the inclusion
of positive default costs reduces the equity of solvent banks that
receive clearing payments from defaulting banks. As a conse-
quence, (iii) in Proposition 1 no longer holds because this result
is fundamentally built upon constant equity.

Thus, c > 0, or, equivalently, the presence of a globally reach-
able sink node is no longer sufficient to ensure p∗ = p∗.

The most important result of this section is that uniqueness
is guaranteed in case there are no dependency cycles. If one of
the two arcs between bank 1 and 2 was removed in Example 1,
there would not have been multiple clearing vectors.

In reality, these self-fulfilling default cycles are commonly pre-
vented through short-term contracts, such as repo contracts (Ci-
fuentes et al., 2005; Jackson and Pernoud, 2020). However, the
decreasing confidence in short-term contracts as occurred in 2008,
greatly affected the liquidity of such contracts leading to the col-
lapse of Lehman Brothers (Jackson and Pernoud, 2020). Without
explicitly modeling the state of the economy, the default costs
vary in interpretation. In case of an economic crisis, the default
costs are default costs, or if the economy is not in crisis, the de-
fault costs can be interpreted as the loss due to costs associated
with delayed payments (Jackson and Pernoud, 2023).

The following result describes the relationship between finan-
cial network structures and inefficient clearing payments in a pro-
rata cost network.6

Theorem 2 (Jackson and Pernoud, 2023)
Consider a pro-rata cost network (N, A, l, c, α, β). Let p∗, p∗ ∈

CV denote the least and greatest clearing vectors, respectively.
(i) If there is no dependency cycle, then all clearing vectors coincide, i.e.,

p∗ = p∗.
(ii) Conversely, if there is a dependency cycle, then there exist potential de-

fault costs γ(·) as described in (16), and operational cash flows c ≥ 0 such
that the least and greatest clearing vector are distinct, i.e., ∃p∗, p∗ ∈ CV :
p∗ ⪇ p∗.

6Apart from the formulation in terms of clearing payments, the corresponding proof
deviates slightly from the approach by Jackson and Pernoud (2023) to utilize a common
method of reformulating one problem as a special case of another. This approach indicates
general properties of the latter problem must hold for the first problem. Thus, an ’efficient’
algorithm for the latter problem can solve the first problem efficiently, provided the refor-
mulation itself is efficient. This application is an important example. For details, see Cook
(1971).
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(iii) Any clearing vector that differs from the greatest clearing vector, i.e.,
p ∈ CV \ {p∗}, corresponds to a default set that contains the default
set for the greatest clearing vector, i.e., D(p∗) ⊆ D(p), plus all banks of
at least one entire dependency cycle. Any other banks defaulting in this
equilibrium but not in the best equilibrium lie on outpointing paths from
the original defaulting banks and the newly defaulting dependency cycles.

The networks without dependency cycles are referred to as
hierarchical networks.

Before the proof is provided, consider the following nuances
regarding property (iii).

The distinction between a dependency cycle and a strong com-
ponent is important here. There can be many dependency cycles
in a strong component. (iii) implies that inefficient clearing pay-
ments result in at least one strong component that contains a
defaulting dependency cycle that did not default for the best
clearing payments. In contrast, it is possible that all the depen-
dency cycles in the component default as well. However, this is
not a requirement. It is even possible that there are many strong
components with each a dependency cycle that defaults only for
inefficient clearing payments.

and only one of these cycles must default in addition to the
banks that default for the sub-optimal clearing vector. That is,
This motivates the distinction between the term dependency cy-
cle and strong component. An entire dependency cycle must cer-
tainly default additionally, for if not, then the dependency cycles
can have at least one bank in each dependency cycle that is sol-
vent for multiple clearing vectors such that it can be replaced
by adjusting the parameters such that there no longer are de-
pendency cycles. In turn, there cannot be non-unique clearing
vectors and thus a contradiction is provided. This fundamental
aspect is also used in the proof.

Proof. (i) Let ∀i ∈ N : R−1(i) denote the set of banks that hold nominal
liabilities towards bank i, i.e., R−1(i) = {j ∈ N : Lji > 0}.
By Theorem 1, there exists a clearing vector p ∈ CV .
There are no dependency cycles, thus there is a non-empty set X0 ⊆ N
such that for each i ∈ X0 it holds that R−1(i) = ∅7. Thus, for each i ∈ X0,
it holds that ∀p ∈ [0, l] : γi(p) = αi + βi × ai(p) = αi + βi × ci. Thus,

∀i ∈ X0 : pi = (ci − (αi + βi × ci)1{ci<li})+ ∧ li, (25)

is constant, where 1 denotes an indicator function.
7This property is explained in Appendix A.3
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Define by X1 ⊆ N the set that receives nominal liabilities only from X0.
Then, ∀i ∈ X1 : ai(p) = ci +∑

u∈X0 Auipi is constant. Thus,

∀i ∈ X1 : pi =
(
ai(p) − [αi + βi × ai(p)]1{ai(p)<li}

)+
∧ li, (26)

is constant. Creating a sequence of sets Xk which only receive liabilities
form ⋃k−1

s=1 Xs in this way, there are at most n = |N | iterations of this
sequence until Xl = N is reached for some l ≤ n and ∀i ∈ N : pi is
constant. Thus, p∗ = p∗.

(ii) To start of this proof, note that there are at most 4 possible exhaustive and
mutually disjoint sets of nodes. Let G0 contain the nodes of a particular
dependency cycle. Let G1 ⊆ N be the strong component that contains
G0. Let G2 ⊆ N be the set of banks that have nominal debt flow towards
G1 and are not in G1. Let G3 ⊆ N \ G1 be the set of nodes that receive
nominal debt flow from G1 and are not part of G1 and thus G2 ∩ G3 = ∅.8
Let G4 ≡ N \ (G1 ∪ G2 ∪ G3) be the set that neither receives nor pays
nominal liabilities towards any element in the specified strong component.
Note, there is no nominal debt flow from G3 and G4 to G2 and thus G1.
Set ci = 0 for i ∈ G2. This implies that all cash flow to G1 elements stems
from ci for i ∈ G1. The possible clearing payments are indicated in the
following sketch of a digraph.

G1

G2 G3

G4

0 ≥
0

0

≥
0

Assume that αi = 0 and βi = 1. Note, ∀p ∈ [0, l]∀i ∈ G1 : ai(p) = ci +∑
u∈G1 Auipi. For all i ∈ G1 take ci as the smallest element ensuring that

8Jackson and Pernoud (2023) do not state that G1 must be the nodes of a strong com-
ponent containing a particular cycle, but any node in a dependency cycle, and still treat
G2 ∩ G3 = ∅ as given. However, there can be two dependency cycles such that receiv-
ing nominal liabilities from one and paying to another is possible without being part of a
dependency cycle.
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each ai(l) ≥ li. Thus, take ci = (li −∑
j∈G1 Ajilj)+. Under the assumption

that γi(p) = ai(p), as each element of a dependency cycle receives and
pays both positive nominal liabilities, it holds that, if ai(v) = ci for each
i ∈ G1, then, pi = ci(1 − 1) = 0 < li.
Thus, p∗ ⪇ p∗ because the clearing payments change from positive to zero
for at least some banks.
To show it is possible for the more reasonable default parameters of this
thesis, i.e., αi > 0 and 0 < β < 1, suppose the following. Let αi > 0 and
βi < 1, yet sufficiently high such that it does not bridge the gap between
pi < li.

(iii) Because the set of clearing vectors is a complete lattice, those nodes that
default in the best equilibrium must default in any other equilibrium be-
cause ∀p ∈ CV : p ≤ p∗ ⇐⇒ D(p∗) ⊆ D(p) as demonstrated in the proof
of lemma 1. In particular, ∀i ∈ D(p∗)∀p ∈ CV : pi ≤ p∗

i < li. Further-
more, the set of all banks that only default in an inefficient equilibrium
contains all nodes of at least one entire cycle. Suppose not, by (i) there
must be a dependency cycle where inefficient equilibria occur and there is
at least one sub-optimal clearing vector for which each cycle contains one
solvent bank.
Let G1 be as in the proof of (ii). Thus, there is an i ∈ G1 for each cycle
G0 ⊆ G1 such that pi = li for an p ∈ CV \ {p∗}. Let all these solvent
banks in G1 be collected in the set G−1.
Define a new pro-rata cost network, in the following way. If Aij > 0, set
cj → cj + Aijli and li → 0. This implies aj(p) → aj(p) + Aijli − Aijli
for the cash flows of nodes j ∈ N which received liabilities from i. Thus,
each clearing payment that depends on payments from i ∈ G−1, remains
the same. Only ∀i ∈ G−1 : pi changes and does so by a constant, namely
pi → 0. That is, p solves the original problem if and only if p after
subtracting li from the i-th element solves the second problem. Let G[A]
be the digraph corresponding to the original problem and G′[A] be the
digraph concerning the newly defined problem.
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G[A]

i ∈ G1 j cj

Aijli

G′[A]

i j cj + Aijli

Because of (i), the second problem has a unique solution. This is equiv-
alent to the first problem having a unique solution. This contradicts the
assumption of at least one sub-optimal clearing vector. The only property
left to prove is that other nodes that only default for sub-optimal clearing
vectors must lie on outwards pointing paths of nodes in D(p∗) and the
dependency cycles that default for sub-optimal clearing vectors. Suppose
not, then those nodes are not affected by any defaulting cycle, removing
said cycle and taking all values that are owed to the cycle are now owed
to a newly defined node, n + 1, does not change the clearing payments
of the newly defaulting i ∈ N for any clearing vector. Let G[A] be the
digraph corresponding to the original problem and G′[A] be the digraph
concerning the newly defined problem.

G[A]

Cycle G1

i j

G′[A]

n + 1

i j

Thus, the clearing payments of node i ∈ N have been made unique without
changing them. This provides the necessary contradiction.

This Theorem establishes there is a dependency cycle if and
only if it is possible to find a cash vector c ≥ 0 and appropri-
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ate potential default costs default costs γ(p) such that there are
multiple clearing vectors, i.e., p∗ ̸= p∗.

One important distinction between a pro-rata network (N, A, l, c)
and a pro-rata cost network (N, A, l, c, α, β) is the following. (i)
implies that if there were no dependency cycle in the pro-rata
network in Example 1, it would not have been possible to have
multiple clearing vectors. (i) tells us that there is no combination
of reasonable default costs, including 0, and operational cash flows
such that it is possible to have multiple clearing vectors. How-
ever, (ii) does not prove that there are operational cash flows such
that the Example 1 has multiple clearing vectors. Thus, if there
are no dependency cycles in a pro-rata network, there must be a
unique clearing vector. If there is a dependency cycle, there could
be multiple clearing vectors. However, there need not be multiple
clearing vectors. That there need not be multiple equilibria for no
default costs is not surprising. The proof of (ii) utilizes strictly
positive default costs. There can be multiple clearing vectors as
already proven in Example 1. The fact that there need not be
multiple clearing vectors if there are no default costs is apparent
in the following example.

Table 5: Pro-rata and pro-rata cost network parameters for Example 5

N A l c α β G[A]

{1, 2, 3}

0 1
2

1
2

1 0 0
0 0 1


2

1
2
0


 2
11

2
0


 2

3
4

α3




1
2
1
2
1
2

 (N, {(1, 2), (2, 1), (1, 3)}, A)

Example 5 Consider the pro-rata network (N, A, l, c):

1

2 3

1

1
2 1

It is immediately clear that the solution is unique because
there is a globally reachable sink node by (iv) in Proposition
1. Apply the least algorithm in Section 4.2 to find the unique
clearing vector. Because no node has positive operational cash
flow, x1 = x2 and x2 = 1

2x1 imply x1 = x2 = 0 in step 3. Thus,
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p∗ = p∗ = [0, 0, 0]T .
To ensure there are multiple clearing vectors, set the opera-

tional cash flows for banks 1 and 2 to ci = (li − (AT l)i)T as in the
proof of (ii). Afterward, include sufficiently large default costs
for all nodes in the cycle. An obvious choice for the required pos-
itive default costs is to set αi = (AT l)i + ci. Thus, consider the
pro-rata cost network (N, A, l, c, α, β).

If 1 or 2 defaults, their clearing payments are 0 because their
default costs are larger than their asset value. If 1 pays nomi-
nal, then 2 pays nominal, and vice versa. It is thus that p∗ =
[2, 3

4 , 0] ⪈ p∗ = [0, 0, 0]T .

6 Spectral Analysis for Financial
Networks

The previous section highlights the importance of dependency
cycles for the existence of inefficient clearing vectors and Section
4.1 highlights the relevance and decentralized interpretation of
the least clearing vector. Furthermore, Haldane and May (2011)
and Acemoglu et al. (2015) highlight that a fully connected net-
work is both robust against small idiosyncratic shocks and fragile
against large systematic shocks. This fragility is the focus of this
thesis. Throughout the remainder of this thesis, fragility refers
to the level of interconnectedness between banks that potentially
expose these banks to large systematic shocks. This fragility con-
cerns both individual components and entire networks.

These core theoretical and empirical results regarding the struc-
tures of financial networks and the complexities of intersectoral
bankruptcy proceedings motivate a measure based on the net-
work structure that indicates the presence of a large gap between
the best and worst clearing payments.

Furthermore, Cerutti and Zhou (2017) highlight the lack and
biases of data on intersectoral liability relations. The last two
arguments support a frugal systemic risk measure that can be
computed efficiently and only depends on the parameters of the
general framework provided by Eisenberg and Noe (2001).

From a regulatory perspective, it is important to identify the
most problematic components of the financial network.

The costs of organizing a central clearing mechanism poten-
tially outweigh the benefits of moving from the worst to the best
clearing payments (Csóka and Herings, 2018).
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Even if this generally holds, assigning values to strong compo-
nents that indicate the fragility of these components could pave
the way toward pricing some dimensions of systemic risk.9

Consider, e.g., various insurers that belong to different strong
components with different levels of fragility to large systematic
shocks.

Based on the points mentioned above, this section defines a
systemic risk measure that efficiently calculates the contribution
of individual network components to systemic risk. The individ-
ual components can then be represented in a hierarchical graph
that highlights and neatly summarizes the linkages between the
different components. This representation of linkages in the net-
work highlights both the role of individual nodes as inducers and
receivers of systemic risk.

The individual components, in particular, the non-trivial strong
components, serve as building blocks of the systemic risk of the
entire network. These components themselves can be character-
ized in relationship to two fundamental building blocks of non-
trivial strong sink components, adjusted for the proportion of
liabilities that leave the non-sink components. The adjustment
for proportions of liabilities leaving these blocks behaves in a way
that is consistent with the systemic risk interpretation.

In the following, non-trivial strong components are referred
to as strong components because the role of non-trivial strong
components is represented by a node with certain characteristics
in a hierarchical network. In a hierarchical network, all nodes are
trivial strong components thus such a distinction is superfluous.

For special cases, it is possible to derive exact properties that
describe the approximate properties of more complex strong com-
ponents.

Before the intuition is provided behind this quantification of
systemic risk, it is necessary to formally define the values that
provide this quantification.

6.1 The Spectrum of Proportionality
Matrices

In linear algebra, an eigenvector ς remains directionally unchanged
under a linear transformation via a matrix-vector product Aς, be-
ing scaled by a factor λ ∈ R, i.e., Aς = λς (Burden and Faires,

9In particular, contagion and potentially amplification to the extent this results in a large
shock to the network.
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1993). By definition ς ̸= 0 because this describes no properties
of the matrix. The scalar λ is the eigenvalue associated with ς
(Burden and Faires, 1993). The spectrum of a matrix refers to
the set of eigenvalues of a matrix. From hereon out i can refer to
imaginary units. It is clear from the context when i ∈ N or when
i ∈ C.

Additional mathematical properties are described at a later
point after the following intuition. The eigenvalues of a matrix
A ∈ Rn×n are determined by solving for the roots of the char-
acteristic polynomial, i.e., det (λI − A) = 0, which has n roots
in the complex numbers. The determinant must be zero because
Aς = λς = Iλς ⇐⇒ λIς − Aς = 0. Thus, the eigenvector must
be in the null space of λI − A which contains non-zero vectors if
and only if the determinant is zero.

The equation, det (λI − A) = 0, is referred to as the character-
istic polynomial of A because it characterizes the multiplicative
properties of A corresponding to eigenvectors.

Note that, if the order of banks is changed in N , this does
not change the underlying liabilities between the banks. Such
a reordering is referred to as a permutation. This implies, in
particular, that the proportionality matrix of a network is unique
up to a permutation. That is, by reordering the banks in N , the
relationship between the banks does not change, only the position
of elements in A.

Such a permutation of the proportionality matrix A does not
change the eigenvalues of A. This further validates the use of
eigenvalues of the proportionality matrix without consideration
of the order of banks in N . This invariance to a permutation
furthermore holds if only a subset of banks is considered.

One useful purpose of eigenvalues is to efficiently calculate a
matrix-vector product where the matrix is a power of another ma-
trix, i.e., Akς = λkς. This can additionally describe the notion of
payment by a bank that returns to a bank through a dependency
cycle in the network. In particular, if the payment vector is an
eigenvector, this can be represented by (AT )dp = λdp if there
is a dependency cycle of length d. At most 1 of the payment
can return to a bank, and it is no coincidence that the size of
eigenvalues for the proportionality matrix is at most 1.

This does not mean payment vectors have to be eigenvectors.
If only part of the payments returns to banks it is unlikely to
result in a clearing eigenvector. Even if individual strong compo-
nents are considered, the corresponding payment vector entries
need not represent an eigenvector of the submatrix.
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6.2 Eigenvalues Versus Dependency Cycles
Consider the financial network (N, L, c).

Our goal is to use the average eigenvalues of the matrices cor-
responding to individual strong components in a weighted average
to describe the contributions of these components to overall sys-
temic risk. Roughly speaking, the closer these eigenvalues are to
zero, the more fragile a strong component and the banks that
receive liability payments from these components are to large
systematic shocks. In particular, these eigenvalues move closer
to zero if there are many nominal liabilities toward other banks
in or outside the strong component. The fragility of a strong
component thus refers to the interconnectedness within and out-
side of a strong component as measured by these eigenvalues. The
term fragility is deliberately chosen over contagion because a large
number of nominal liability relations within a strong component
can act as a buffer against small idiosyncratic shocks (Haldane
and May, 2011; Acemoglu et al., 2015).

For special cases, the eigenvalues can be determined exactly.
For more complex configurations, the eigenvalues behave approx-
imately in line with these special cases. This section establishes
these results, starting with the most simple example.

The running example to explain this interpretation pertains
to a dependency cycle that is a strong component by itself. From
here on out, such a strong component is referred to as a circular
component.

Consider a circular sink component of length 2, described by

A =
[
0 1
1 0

]
. Suppose there is a payment of p1 = 1 by bank 1.

If bank 2 pays back this value, this can be represented by the
matrix-vector product AT × p = 1 × p, where p = [1, 1]T and

A =
[
0 1
1 0

]
. The intuition here is that all payments move one

step in the cycle. The payment of 1 by bank 1 is done by bank 1
to bank 2 and vice versa. The other eigenvalue of A is −1, with
corresponding eigenvector [1, −1]T . This is not a payment vector.
However, there is still intuition behind the eigenvalue, λ = −1.
The core idea is that, for a cycle of length 2, for all eigenvalues of
the submatrix, it is required that λ2 is positive. This requirement
generalizes to the notion that for a circular strong component of
length d, the d-th power of all eigenvalues must be positive and
will be formalized in Theorem 3.

The eigenvalues are represented in the graph below for the
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running example in red.
−1 0 1

It is thus possible to describe this pattern using [−1, 1]. This
is a special case of describing the eigenvalues on the complex unit
circle.

The core idea behind complex numbers is that there is a real
term, y ∈ R, and an imaginary term z ∗ i, where i2 = −1 and
z ∈ R. There is no literal interpretation of i, it is merely a
definition. In a sense, the space of all complex numbers denoted
C, is a generalization of the real line where even roots of negative
numbers exist.

Complex numbers have special properties. The most impor-
tant property for this thesis is the bijective relationship with any
vector in R2. This is immediately clear because the complex
number y + zi describes [y, z]T and vice versa. This allows us to
describe the unit circle in R2 by using the complex unit circle, i.e.,
a number in [−1, 1] plus a number in [−i, i] that jointly describes
two dimensions.

Consider the eigenvalues of the submatrix corresponding to
the running example of a dependency cycle of length 2, now on
the complex unit circle.

Real axis

Imaginary axis

1

i

−1

−i

Starting from 1, a rotation over π radians counterclockwise,
arrives at −1. Doing another rotation over the same angle, one
arrives again at 1. It is possible to describe this pattern using
∀j ∈ {1, 2} : λj = cos

(
2jπ

2

)
+ sin

(
2jπ

2

)
i. The sinus term is

always zero because this function is always zero if the input is an
integer multiple of π, i.e., ∀j ∈ Z : sin(jπ) = 0.

In general, for a circular sink component of length d, it is pos-
sible to describe the eigenvalues of the corresponding submatrix
as ∀j ∈ {1, ..., d} : λj = cos

(
2jπ
d

)
+ sin

(
2jπ
d

)
i.

From this representation of the eigenvalues, it is clear that

43



the eigenvalues are on the complex unit circle, such that λj+1 is
obtained via a counterclockwise rotation from λj, over an angle
2π
d

.
For any dependency cycle of length d > 2, at least two of

the eigenvalues must be complex. This is represented in Table 6
for d = 4. Furthermore, using Euler’s identity, it is possible to
describe these eigenvalues as ∀j ∈ {1, ..., d} : λj = exp

(
2jπ
d

i
)
.

Euler’s identity intuitively demonstrates that the d-th power
if the d eigenvalues all equal 1. In particular, exp

(
2jπ
d

i
)d

=
exp

(
2jπ
d

di
)

= exp (2jπi) = cos (2jπ) + sin (2jπ) i = 1, for each
j ∈ {1, ..., d}.

Without going into any details, the size of y + zi ∈ C is given
|y +zi| =

√
y2 + z2 ∈ R which coincides with the l2 norm in R2.10

The size of the largest eigenvalue corresponding to a matrix A is
referred to as the Spectral Radius and is denoted ρ (A).

The eigenvalues for the circular strong component are repre-
sented on the complex unit circle in Table 6 for d = 4 in red.

Table 6: Circular Strong Sink Component of Length 4

A G[A] Complex Unit Circle


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



1

2 3

41

1

1

1
Real axis

Imaginary axis

1

i

−1

−i

Thus, the presence of dependency cycles is equivalent to the
possibility of describing the properties of these circular strong
components in terms of rotation. This pattern can be generalized
to more complex strong components and is known as the Perron-
Frobenius Theorem. Before this theorem is provided, more con-
text is necessary.

A node i ∈ N has periodicity d(i) ∈ N if i can reach itself in
only multiples of d(i) steps. That is, for all paths from i to i, the

10See Appendix A.2 for details on the l1 and l2 norms.
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number of arcs is always a multiple of d(i). A strong component
only has nodes with the same periodicity. For this reason, the
period of all nodes in a strong component is denoted in shorthand
d. If the period of a node or non-trivial strong component is 1,
this node or component is a-periodic.

The period of the strong component is precisely what is re-
flected in the rotation along the complex unit circle at the start
of this section.

The goal of this thesis is to decompose the financial network
into a hierarchy of non-trivial strong components and use the
eigenvalues corresponding combined with the position within this
hierarchy to measure their contribution to overall systemic risk.
For this reason, the remainder of this section will be under the as-
sumption that it is possible to find at least one non-trivial strong
component.

From hereon, assume there always are κ ≥ 1 non-trivial strong
components in the financial network (N, E[A], A) and let these
be collected in the set SC = {SC1, ..., SCκ} ⊆ P (N). A princi-
pal submatrix is a submatrix where only rows and columns with
the same index can be removed. In a similar sense to a permu-
tation, no relationship between nodes is changed. A principal
submatrix of the proportionality matrix describes a subgraph of
the network. Let ASC be the principal submatrix corresponding
to a strong component SC ∈ SC. Thus, G[ASC ] is a subgraph of
G[A] corresponding to the strong component SC ∈ SC.

The fundamental link between strong components and pro-
portionality matrices is the following. A matrix is referred to as
irreducible if it is not possible to permute it into a triangular
matrix. This implies that it is not possible to rearrange the el-
ements of the matrix to reflect a hierarchical structure without
changing the underlying structure. In Table 6, A reflects this for
the circular component.11.

There are many proofs of the Perron-Frobenius Theorem, see,
e.g., Smyth (2002). The proof will only be provided for a special
case regarding a circular component that need not be a sink, in

11To provide some intuition, consider the proportionality matrix that describes a circular
network, without loss of generality, it is possible to permute this matrix into the same
structure as that in 6. It is necessary to have in order a path from the first node to the final
node and back. That is, there must be n positive elements not on the diagonal such that
there is precisely one per row and column. Such a value can only occur at most n − 1 above
or below the diagonal. Thus, the final arc that creates the cycle cannot be added without
violating the triangular requirement. Note, this is a sketch of another proof that if there is
no dependency cycle there is at least one bank that does not receive nominal liabilities. A
graphical approach is described in A.2
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Proposition 2.
Theorem 3 (Perron-Frobenius)
Let SC ∈ SC with period d and let ASC have spectral radius

ρ (ASC). There are d eigenvalues with size ρ (ASC), given by
∀j ∈ {1, ..., d} : exp

(
2jπ
d

i
)

ρ (ASC).
Before the proposition concerning the eigenvalues of a circu-

lar component is provided, consider the following nuances of the
Perron-Frobenius Theorem regarding the spectral radius.

First of all, a non-trivial strong component is a sink if and only
if ρ(ASC) = 1. A non-trivial strong component is not a sink if and
only if 0 < ρ(ASC) < 1. These last two properties follow from
the substochastic nature of ASC . In this sense, the d eigenvalues
corresponding to the period of such a component are closer to 0
if there are nominal liabilities that leave the component. This al-
ready hints at the general property of strong components that the
larger the fraction of liabilities that leave the strong components
ceteris paribus, the closer the eigenvalues are to zero. 12

Now suppose the two-bank circular component in the running
example is no longer a sink. What if, e.g., for one of the two
banks, three-quarters of the liabilities are toward banks outside
this cycle? It may seem like this implies one of these values should
be scaled down to 1

4 . However, for each bank in the cycle, only 1
4

of the payments returns after the cycle has been traversed.

Consider the matrix ASC =
[
0 1

4
1 0

]
for the circular component

SC = {1, 2} in the network represented by Table 7. The corre-
sponding characteristic polynomial is det (λI − ASC) = λ2 − 1

4 ,
which has the roots λ = 1

2 , −1
2 as indicated within the complex

unit circle in red in Table 7.
Thus, this uniformity in the fraction of their payment that

returns to these banks, is reflected in the size of both eigenvalues
which are 1

2 times the eigenvalues of the circular sink component
in the running example.

The following proposition formally establishes the eigenvalues
of a general circular component.
Proposition 2 (Eigenvalues of a Circular Component)
Assume SC is a circular strong component with period d = |SC|.
Without loss of generality, assume that SC = {1, ..., d} , and each
bank j ∈ SC contributes xj = Ljj+1

lj
of proportional liabilities to

12This concept is referred to as leakage for Markov chain applications and extensive dis-
cussions are available (Huisinga and Schmidt, 2005).
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Table 7: Circular Component of Length 2 in a Network with 4 Banks

A G[A] Complex Unit Circle


0 1

4 0 3
4

1 0 1 0
0 1 0 0
0 0 0 0



1

2 3

4
3
4

1
4

1

1

Real axis

Imaginary axis

1−1
2

1
2

i

−1

−i

the cycle. Let πx =
(∏d

j=1 xj

) 1
d . Then,

(i) The eigenvalues of ASC are ∀j ∈ {1, ..., d} : λj =
(∏d

j=1 xj

) 1
d exp

(
2jπ
d

i
)
.

(ii) If x1 ∈ (0, 1], and ∀j > 1 : xj = 1, then πx →
d→∞

1.

Proof. (i) The characteristic polynomial is det(λI−A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −x1 0 · · · 0
0 λ −x2 · · · 0
... ... . . . . . . ...
0 0 · · · λ −xd−1

−xd 0 · · · 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −x1 0 · · · 0
λ2

x1
0 −x2 · · · 0

... ... . . . . . . ...
λd−1∏d−2
j=1 xj

0 · · · 0 −xd−1

λd∏d−1
j=1 xj

− xd 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)d+1

(
λd∏d−1

j=1 xj

− xd

)∏d−1
j=1 −xj = λd −∏d

j=1 xj.

Take λj = πx exp
(

2jπ
d

i
)
.

(ii) πx = x
1
d
1 →

d→∞
1.

(i) tells us that the amount of proportional liabilities that re-
main within the circular component are evenly distributed among
the eigenvalues via the geometric mean, i.e., πx. This is an ap-
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plication of the Perron-Frobenius Theorem because the circular
component of length d has period d.

(ii) implies that the size of the eigenvalues is affected by the
amount of proportional liabilities that leave the circular compo-
nent only in relation to the length of the circular component.
Thus, if the cycle is not very long and only one bank has a large
proportion of liabilities leaving the cycle, then πx will be signifi-
cantly smaller in comparison to the case where there are twice as
many banks. This motivates the consideration of the eigenvalues
in relation to the liabilities that are exposed to the risk of this
component to measure the contribution of a circular component
to systemic risk. Otherwise, the average eigenvalues may be the
same for a very large circular component and a very small circular
component with the same average of liabilities that leave these
components per bank.

This property generalizes to more complex configurations of
strong components.

Another comment on the Perron-Frobenius Theorem is that,
if cycles of different lengths are likely it is reasonable for some
strong components to be a-periodic. Take, e.g., a cycle of length
2 connected to a cycle of length 3 by one node. The periodicity of
1 does not tell us anything about the sizes of almost all eigenval-
ues. However, the rotational pattern on the complex unit circle
is still roughly present for more complex configurations of strong
components.

Consider the following proposition to establish the difference
between the circular component and a strong component of two
cycles connected at one bank.
Proposition 3 (Two-Cycle Strong Sink Component)
Let SC ∈ SC be a strong sink component and let |SC| = 2k +

u − 1, SC consists of two dependency cycles of lengths k and
k + u. The following properties hold for the spectrum of ASC .
(i) The spectrum of ASC contains k − 1 eigenvalues 0.

(ii) There are as many complex eigenvalues as the larger cycle has in isolation.
(iii) −1 is an eigenvalue of ASC if and only if k and u are both even.

The proof is provided in Appendix A.2. Consider the following
implications that are represented in Table 8.

Properties (i) − (iii) indicate the largest cycle dominates the
pattern along the complex unit circle. There are as many non-zero
eigenvalues as there are for the larger cycle in isolation. Further-
more, the non-zero eigenvalues are adjusted to move closer to the
eigenvalues of the smaller cycle. This is clear in the examples in
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Table 8: Eigenvalues of two-cycle strong components. Green dots indicate
common eigenvalues among the cycles of different lengths in isolation.

Cycle Sizes Connected Eigenvalues Separate Eigenvalues

2, 3

Real axis

Imaginary axis

Real axis

Imaginary axis

3, 5

Real axis

Imaginary axis

Real axis

Imaginary axis

4, 6

Real axis

Imaginary axis

Real axis

Imaginary axis

5, 6

Real axis

Imaginary axis

Real axis

Imaginary axis

Table 8.
This dominance of the larger cycle is reinforced by the fact

that there is only a negative eigenvalue if the larger cycle has one
in isolation, and it is only −1 if the smaller cycle has an eigenvalue
−1 in isolation as well.13

13The latter property is a consequence of the Perron-Frobenius Theorem. If both k and u
are even, then the period of the strong component must be even, and an even period implies
−ρ (ASC) = −1 is an eigenvalue. This follows from the bank that connects the nodes being
able to reach itself in only even steps and all other banks in even and even plus even steps.
In contrast, if both u and k are uneven, then k + u is even and the bank that connects the
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There is a clear distinction between the one-cycle strong com-
ponent in Proposition 3. The sizes for the two-cycle strong com-
ponent are not all on the complex unit circle even if the compo-
nent is a sink. This highlights that the reduction in the size of
the eigenvalues reflects liabilities from one dependency cycle to-
ward another. Roughly speaking, this means that the more con-
nected the banks are within the strong components, the smaller
the eigenvalues are.

The interaction between the sizes of the individual cycles and
the sizes of the eigenvalues is complex. Note, e.g., that the dis-
tribution of sizes can be uneven, as demonstrated in the 3 and
5, and 5 and 6 cycle size example in Table 8.14 Still, the reduc-
tion in average size is a clear indication of a more complex strong
component then the case of a circular strong component.

It should not be surprising that for even more complex con-
figurations of strong components with more cycles intersecting at
different banks, the sizes or typically much smaller. The ’most
fragile’ strong component is formalized in the following proposi-
tion. This is a slight deviation of a theorem by Mezić et al. (2019)
to fit the context of financial networks.
Proposition 4 (Fully Connected Symmetric Strong Sink Com-
ponent)
Consider SC ∈ SC. Assume SC = {1, ..., h} such that ∀j ∈ SC :
Lij

li
= 1

h−1 . Then λ1 = 1 and ∀j ∈ SC \ {1} : λj = − 1
h−1 are the

eigenvalues of ASC .

Proof. ASC is row stochastic and thus λ1 = 1 is an eigenvalue.
Furthermore, note that λI − ASC has h linearly depended rows
such that only 1 in isolation can be linearly independent if λ =
− 1

h−1 . That is, the characteristic polynomial has h − 1 roots
− 1

h−1 .

One immediate consequence of this observation is that |λ1|+...+|λh|
h

=
1+ h−1

h−1
h

= 2
h

→
h→∞

0. The average size of the eigenvalues of a fully
connected symmetric strong sink component approaches 0 fast as
the size of the strong component increases. This implies that even
though all liabilities are within the strong component, the com-
plexity of this component causes the eigenvalues to be on average
very close to zero. As one can imagine, this effect is exacerbated

cycle can reach itself in odd steps and all other banks in both odd and even steps.
14The symmetry in the real axis follows from the property that for real matrices eigenvalues

come in conjugate pairs.
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if this component is not a sink but there is a rather large fraction
of total liabilities per bank that leave the component.

6.3 Remarks on the Sizes of Eigenvalues
There is some nuance to the notion that smaller sizes indicate
a larger fragility of circular components. This nuance mainly
concerns special cases where the structure of the financial network
mainly has circular components in SC.

Consider again a version of the running example to illustrate
this fact. If there are two banks in a dependency cycle repre-

sented by the following submatrix
[

0 1
100

1
100 0

]
. Assume that the

operational cash flow is zero for both banks. Assume furthermore
that both banks hold the same total liabilities and both banks
receive twice as much in liability payments as they owe to other
banks if all banks are solvent. This implies that ηi = 2li, for
i = 1, 2. Finally, assume for the sake of simplicity that default
costs are total upon default, i.e., β = ι. Then it is very well
possible that the first bank defaults and only 1

200 of the liabilities
paid to the second bank are lost. This in turn implies that the
second will not default and the default of the first bank behaves
as if there is no dependency cycle. It is thus unlikely that the size
in the eigenvalues, which must be λ = 1

100 , − 1
100 by Theorem 3,

are indicative of the self-fulfilling defaults inherent to the model.
This is unlikely because only a small amount of proportional lia-
bilities is lost for one of the two banks that causes the default. In
that sense, it is unlikely to have defaults propagate through the
system from these two banks because of this dependency cycle.

Luckily, unless a large proportion of non-trivial strong compo-
nents are circular components, this is unlikely to be a problem.
Still, suppose this scenario holds a significant likelihood. In that
case, one possibility is to ensure these occurrences are ignored by
discriminating between circular and non-circular strong compo-
nents and determining some threshold on the liabilities.15

7 Spectral Fragility
By identifying the non-trivial strong components and separating
them from the individual nodes, the rotational aspect is always

15For more complex configurations the eigenvalues will be generally much smaller and
such a threshold may be much harder to establish.

51



present in the eigenvalues of the corresponding principle subma-
trices and is less relevant to quantifying the fragility of a com-
ponent, as the previous section indicates. Instead, the size tells
us a lot more about how many connections are within the strong
component and the proportion of liabilities that leave the strong
component.

Thus, the average size of the eigenvalues tells us how fragile a
strong component and its neighbors are to large systematic shocks
in terms of proportional liabilities. For this reason, one minus
the average size of the eigenvalues corresponding to SC ∈ SC, is
referred to as the fragility of SC.

In addition, the contribution of a strong component to the
fragility of the entire network depends both on the liabilities
within the strong component and on paths pointing toward other
banks in this network. If the size of the liabilities is not consid-
ered, two strong components that are identical in proportional
liabilities, but one component holds 106 as much liabilities as the
other would be considered equal in contribution to the fragility
of the network.

Furthermore, it is possible to represent the network as hierar-
chical in case all non-trivial strong components are replaced by
individual nodes. This hierarchy tells us how much liabilities are
exposed to the fragility of the individual strong components.

These arguments motivate a measure that weighs the fragility
of individual strong components by the proportion of total liabil-
ities in the network exposed to the fragility of the component.

This measure can be calculated based on the liability matrix
alone and allows for adjustments depending on how important the
presence of strong components in the network is compared to the
number of connections within the strong components themselves.

Because there exist efficient algorithms to find all strong com-
ponents and all nodes reachable by each strong component, and
more complex calculations are only performed on the strong com-
ponents themselves, this measure is computationally efficient and
a viable indicator of systemic risk that incorporates both network
topology and the size of the total liabilities per bank.

Due to its nature based on the established literature in finan-
cial network topology, this indicator should measure the potential
for a large gap in best and worst clearing payments and can thus
potentially indicate whether it is beneficial to organize a costly
central clearing mechanism or whether decentralized clearing suf-
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fices via local bankruptcy proceedings.16

Even if such a central clearing mechanism is generally too
costly as motivated in literature (Csóka and Herings, 2018), the
contribution of this measure could be to price systemic risk in
terms of fragility per strong component.17

Based on the arguments throughout this thesis, we propose
the following measure of financial network fragility.
Definition 8 (Spectral Fragility of a Financial Network)
The spectral fragility of a financial network (N, L, c) is a function
SF : Rn×n

+ 7→ [0, 1], defined by,

SF (L) = 1
|SC|

∑
SC∈SC

∑
j∈R(SC) wj(SC)lj

ιT l

(
1 − r(SC) + r(SC)

(
1 − ||λ (ASC) ||l1

|SC|

))
,

(27)

where SC is the set of non-trivial strong components of the fi-
nancial network (N, L, c), wj(SC) ∈ [0, 1] is a discount factor,
r(SC) ∈ [0, 1] weighs the presence of strong components versus
their fragility, λ (ASC) is the vector that contains the eigenvalues
of ASC , and R(SC) contains all nodes reachable by the set SC.

The discount factor is chosen to be just a constant factor w ∈
[0, 1] to the power of the shortest path of liabilities between the
strong component and a bank. If e.g., the shortest path from SC
to j is k, then wj = wk.18 This allows us to control for the ideas in
literature that centrality is far less important than the liabilities
to and from neighboring nodes (Acemoglu et al., 2015).19

As discussed at the start of this section, once all non-trivial
strong components are replaced by nodes, the resulting network
must be hierarchical. This implies that there is a hierarchy of
strong components in the following sense. Consider a financial
network (N, L, c). Suppose there are 3 strong components and
SC = {SC1, SC2, SC3} is in order of the hierarchy. The hierar-
chy of strong components in the network can be represented by

16The importance of the worst clearing payments is discussed in Section 4.1.
17There is already extensive literature available on the allocation of risk capital. See, e.g.,

Bauer and Zanjani (2013) and Baione et al. (2018). These tools are perhaps suitable to
allocate risk capital based on the fragility of strong components.

18To make w = 0 meaningful, define 00 = 1. Thus, if w = 0, the weight of the strong
components is merely the fraction of total liabilities in the network owed by banks in the
strong component.

19Network centrality refers to the role a node plays in a network. This concept plays
a crucial role in network analysis that transcends scientific fields. Such readily available
tools are not always appropriate, as argued by Acemoglu et al. (2015). To control for
centrality concepts, an alternative measure based on established spectral centrality measures
is proposed in Section 8.
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the following graph.

SC1

SC2 SC3

G[A]

Any path that is not in between elements of SC is either to
sink nodes or from source nodes. The arrows from and to ele-
ments of SC reflect the hierarchy that must exist between the
strong components. The paths between strong components may
contain many nodes which contribute to the weight of the strong
component the path leaves from, via the total liabilities of these
nodes.

The expression (27) reflects this structure as follows. After
the average size of the eigenvalues of each SC ∈ SC have been
calculated, their assigned weight is the fraction of cumulative
total liabilities of the entire network that are exposed to their
default risk.

Intuitively, a less complex strong component can induce more
systemic risk at the top of the hierarchy than a very complex
strong component at the bottom of the hierarchy.

To understand this, consider the following example.
Example 6 Because the Spectral Fragility measure only depends
on proportional and total liabilities, the example is stated only
in terms of (N, A, l).

The first strong component is an example of a two-node cir-
cular component and the second strong component is a fully con-
nected strong sink component of 3 nodes.

By Proposition 2, the eigenvalues of SC1 are λ1 = 3
4 and

λ2 = −3
4 . The fragility of SC1 is thus 1 − 2× 3

4
2 = 1

4 . All nodes
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Table 9: Spectral Fragility Example

N A l

{1, 2, 3, 4, 5, 6}



0 3
4

1
4 0 0 0

3
4 0 0 0 0 1

4
0 0 0 1

2
1
2 0

0 0 1
2 0 1

2 0
0 0 1

2
1
2 0 0

0 0 0 0 1 0





1
1
1
1
1
1



are reachable from this component and thus, the weight of this
strong component is 6

6 = 1.
By Proposition 4, the eigenvalues of SC2 are λ1 = 1 and λ2 =

λ3 = − 1
3−1 = −1

2 . Thus, the fragility of SC2 is 1 − 1+2× 1
2

3 = 1
3 .

The only liabilities exposed to the fragility of this component
are the liabilities in this component. Thus, the weight of SC2 is
3
6 = 1

2 .
Thus, the spectral fragility of this network is SF (L) = 1× 1

4 + 1
2 × 1

3
2 =

5
24 .

These components and their contribution to the spectral fragility
measure are available in Table 10.

1 2

3
6

4
5

3
4

1
4

1
4

1
2

1
2

1
2

1

SC1

SC2

61
4

1
4

1

Take r = 1 for simplicity. Note that, the eigenvalue sizes on
average indicate that the second component is more fragile then
the first component. However, because there are twice as much
liabilities that can be affected by defaults in the first component
versus the amount of liabilities that can be affected by defaults
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in the second component, the first component contributes more
to systemic risk than the second component. The first compo-
nent contributes 3

24 and the second component 2
24 to the spectral

fragility of the network. This score is not very high and this is
mainly due to the small size of the fully connected sink compo-
nent in combination with the position of this component at the
bottom of the hierarchy. If the strong sink component would have
contained, e.g., 10 banks, without altering the total liabilities in
the component, the contribution of this component would have
been 4

5 × 1
2 × 1

2 = 1
5 . This is a significant increase compared to 1

12 ,
but still not very large due to the position of the component.

Table 10: Spectral Fragility Components for Example 6

SC 1 − ||λ(ASC)||l1
|SC|

∑
j∈R(SC) lj

ιT l
1

|SC|

∑
j∈R(SC) lj

ιT l

||λ(ASC)||l1
|SC|

{1, 2} 1
4 1 1

8
{3, 4, 5} 1

3
1
2

1
12

In general, the larger the r value is, the smaller the spectral
fragility measure is. If r = 0, the measure just counts the non-
trivial strong components and assigns each component a weight
depending on the fraction of total liabilities that are exposed to
a default in the component.

The smaller the parameter r ∈ [0, 1] is, the less the complexity
differences between each strong component matters.

Furthermore, if it is suspected for some reason that the net-
work consists mainly of a large number of circular strong compo-
nents with few liabilities on outward pointing paths, their pres-
ence contributes barely anything to the overall fragility of the
financial system if r ≈ 1.

On the one hand, for a large network with many banks that
are not directly lending to these components, their presence may
not contribute much to systemic risk.

On the other hand, if the network consists mainly of these
large circular structures then there is still a large fraction of total
liabilities exposed to these fragile components. It may thus be
useful to consider the spectral fragility for a wide range of values r.
For the low values of r, the measure is indicative of the presence of
strong components and the fraction of liabilities that are exposed
to these strong components.

For larger values of r, the amount of liabilities from and to
different cycles within the same strong component and banks out-
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side the component plays a much larger role in the difference in
values between two different networks. Luckily, all the complex
operations to determine the relevant quantities are done before r
is included in the calculations and thus, calculating the measure
for a range of r values remains computationally efficient.

A natural question is whether it is possible to have a network
with a spectral fragility of 1. This is indeed possible, at least in
theory. If the network is just a fully connected symmetric strong
component with a large number of banks, the weight of this com-
ponent is 1, and by Proposition 4, the fragility is approximately
1. Thus, the spectral fragility of such a network is approximately
1. This provides an intuitive upper bound on the fragility of a
financial network because such a network is the most fragile to
large systematic shocks. This holds independent of the parameter
r ∈ [0, 1].

An important reason to include the parameter r ∈ (0, 1) is
to not have a zero spectral fragility for a network that is just a
circular component. Even though such a network is unlikely to
exist for any practical implementation if there are a lot of circular
strong components, the network may be incredibly fragile to large
systematic shocks. If one chooses r = 1, the spectral fragility may
be almost 0.

The particular relevance of these parameters vary per network
setup. In Section 8.2, a stylized example is provided to compare
with some of the simulation results.

8 Random Networks and Regression

8.1 Random Networks
This section describes the simulation methods to arrive at random
networks that will be used to generate relevant data for regression
analysis.

That is, both the nominal liabilities and the operational cash
flow become independent identically distributed random variables.

Much of the literature on network topology regarding conta-
gion in financial networks assumes banks with identical roles in
the network which allows for simple analysis. This assumption
naturally extends to independent and identically distributed ran-
dom liabilities. However, this assumption typically does not simu-
late a large variation of strong component configurations required
to measure the effectiveness of the spectral fragility measure. The
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interaction between the hierarchy of strong components and the
fragility of individual strong components is crucial in assessing
the effectiveness of this spectral measure.

Regardless, the random networks described in the following
pertain to independent and identically distributed liabilities.

The main reason is computational efficiency based on simple
standard distributions for random variables.

Another important motivation for this approach is to high-
light why this approach is ill-equipped to capture the potential
predictive power of the measure and discuss directions for future
research. The complex nature of network topology can obscure
the true predictive efficacy for measures of systemic risk.

Another reason to keep the simulation approach simple is the
exponential increase in configurations in the number of alterna-
tive parameter values. There is a strong interaction between the
different parameters of the financial network and the effect of
changing one parameter results in vastly different outcomes when
controlling for the other parameters.

All random variables are assumed to be independent to allow
for efficient simulations. The remainder of the exogenous quanti-
ties are identical to those in the pro-rata cost network.
Definition 9 (Random Financial Network)
A random financial network is a tuple (N, B, L, ĉ, c̃, α, β), where
N = {1, ..., n} is the set of banks, B ∈ {0, 1}n×n is a Bernoulli
matrix, L ∈ {1, ..., k}n×n is a uniform matrix, ĉ ∈ {0, z} is the sys-
tematic operational cash flow, c̃ ∈ {0, ..., z}n is the idiosyncratic
cash vector, and α, β ∈ Rn

+ are default parameters.
The Bernoulli matrix contains random variables ∀, i, j ∈ N, i ̸=

j : Bij
i.i.d∼ B(1, b), where B is the binomial distribution and

b ∈ (0, 1) is the interbank liability probability.
The uniform matrix has a zero diagonal and contains elements

∀i ∈ N∀j ∈ \{i} : Lij
i.i.d∼ UD{1, k}, where UD is the discrete

uniform distribution. The liability matrix is constructed by the
element-wise product L = B ⊗ L.

Furthermore, the operational cash flows ∀i ∈ N : ci = ĉ +
ĉi consists of a systematic part ĉ ∼ UD{0, z} and an idiosyn-
cratic part ĉi

i.i.d∼ UD{0, z}. The distribution of ci then satisfies
∀x ∈ {1, ..., z} : P (ci = x) = x+1

(z+1)2 and ∀x ∈ {z + 1, ..., 2z} :
P (ci = x) = 2z+1−x

(z+1)2 . Intuitively, this implies a distribution of ci

where P(ci = z) = z+1
(z+1)2 and in both directions, the probability

decreases linearly with slope 1
(z+1)2 until P (ci = 0) = P (ci = 2z) =
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1
(z+1)2 . That is, ci has a symmetric distribution around ci = z of
which half is determined by a systematic component, i.e., ĉ, and
half is determined by an idiosyncratic component, i.e., ĉi. Thus,
the average operational cash flow equals E (ci) = E (ĉ + ĉi) =
2 z

2 = z.
Because all idiosyncratic parts and the systematic part are

independent, it holds that ∀i, j ∈ N : cov(ci, cj) = ĉ. This implies
that a systematic shock that results in a low value ĉ affects all
banks in the random network.

Thus, the average operational cash flow equals E (ci) = E (ĉ + ĉi) =
2 z

2 = z.

8.2 Regression Analysis
Throughout this section, there is much discussion on the two
parameters of the spectral fragility measure regarding the effects
in different network setups. These values are discussed mainly in
terms of the eigenvalues corresponding to the strong components.
Of course, the eigenvalues are only relevant concerning the total
liabilities that are exposed to the fragility of a strong component.
For the sake of brevity, the liabilities are not always mentioned
unless there is a reason to highlight this. Consider, e.g., the
core-periphery network where presumably a large fraction of total
liabilities in the financial network are exposed to the fragility
of one large strong component. This special case warrants the
mention of the liabilities that are exposed to the fragility of the
core.

Thus, arguments that describe how the main explanatory power
lies in the eigenvalues of a strong component assume that the
reader understands that the eigenvalues are only relevant to the
extent the liabilities are exposed to the fragility of the strong
component.

The dependent variable in all regressions pertains to the dif-
ference in the system-level costs for the least and greatest clearing
vectors divided by the aggregate total liabilities in the network.20

This dependent is from hereon referred to as the delta system-
level costs. The choice for the delta system-level costs as the
dependent is based on the necessity of strong components for a
multiplicity of strong components. The spectral fragility measure

20The reason to favor the difference in system-level costs as a fraction of the total liabilities
in the system is that the interpretation of the variance depends only on the interaction of
variables. No information is lost because the size of the values in isolation is irrelevant.
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is a weighted average of the fragility of strong components. This
logic is controlled for in a later section.

The predictor of interest in this section is the spectral fragility
measure. In the next section, the predictive power is compared to
another spectral measure based on the Katz Borrower Centrality
for different weight configurations.

To allow for complex regression models, this section considers
a polynomial regression up to the sixth-order.

All regressions are performed for m = 10000 simulations of
random networks, each with n = 100 banks. To examine the
potential for over- and underfitting, the data is split into a train
set of 7000 simulations and a test set of 3000 simulations. The
accuracy of the predictors is assessed using the R2 of the test set.
This approach is appropriate because the actual values are not of
interest but rather the explanatory power.

Before the results are provided, some limitations of the simu-
lation method are discussed. These limitations dictate to a large
extent what we can and cannot conclude from the results. After
the results are provided, these limitations are elaborated on.

The interpretation and effect of changing one parameter on the
prediction power of the measure depend severely on the values of
the other parameters.

In addition, although n = 100 banks may seem like a suffi-
ciently large number of banks, the required sparsity for our anal-
ysis necessitates the probability of interbank liabilities to be suf-
ficiently small. This requirement rests on two arguments.

First of all, real-world financial networks are typically sparse
(Bardoscia et al., 2021).

Second, the spectral fragility measure decomposes the network
into a hierarchical network of strong components.

On the one hand, if the probability of interbank liabilities is
too large, the likelihood of just one strong component is approx-
imately 1.

On the other hand, the strong components need to have a suf-
ficiently large amount of liabilities both within and outside the
component to ensure sufficient variation in the spectral fragility
measure. Finally, the number of simulations required to accu-
rately assess the effect of the different parameters of the spectral
fragility measure is large and results in a time-expensive compu-
tation.

The regression analysis starts with a base case. The parame-
ters for the base case are available in Table 11.

The choice of the interbank liability probability b = 0.062
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Table 11: Base Case

RNG m n b z k α β

69 10000 100 0.062 10 10 0.5 0.75

is based on ad hoc analysis to balance the presence of multiple
strong components versus sufficient variation in the fragility of
the strong components.

The test R2 values are plotted for the first to the sixth-order
polynomial regression on the spectral fragility measure for weight
values w ∈ {0, 0.5, 1}.

Consider Figure 1. The base case simulations are performed
for two alternative RNG seed values to establish what remains
consistent and what does not in Figures 2 and 3.

Figure 1: Simulation results with parameters: m = 10000, n = 100, b = 0.062,
z = 10, k = 10, α = 0.5, β = 0.75, RNG seed 69. SF k refers to the k-th order
polynomial regression of the delta system-level costs on SF .

Consider the following implications of the results in figure 1.
First of all, the effect of different choices of the weight parame-

ter is negligible. This remarkable consistency in predictive power
is robust against different order polynomials.

Two potential explanations come to mind.
One reason could be that different choices of the weight pa-

rameter capture different equally relevant variations in the model
parameters. This seems the most likely explanation.

However, another explanation could be that the simulated
random networks that contribute to the predictive power of the

61



spectral measure have a small probability of any semblance of a
hierarchy of strong components.

In that case, the choice of weight parameter is irrelevant. How-
ever, as later results indicate, this is unlikely because later results
show the relevance of this parameter.

Second, the performance of the polynomial increases with its
order. After the ninth order, an increase in order does not alter
the results. Importantly, the near identical test R2 values for the
polynomials of at least the ninth-order, clearly indicate a cut-off
point in the complexity.

There is no reason to assume that the real-world predictive
power does not further increase for more complex models due to
the limited variation in the random network configurations. In
all likelihood, the optimal amount of complexity depends to a
significant degree on the variation of the configurations of strong
components and the hierarchy of these components.

The effectiveness of higher-order polynomial regressions rela-
tive to a linear regression generalizes well to other parameter con-
figurations. This is a strong indicator of a complex correlation
between the spectral fragility measure and the delta system-level
costs.

This complex correlation need not surprise us. After all, if the
predictor and the dependent are both complex, their correlation
is potentially complex as well. Intuitively, complex models should
be better able to capture the complex interactions of strong com-
ponents. This interaction is precisely what is captured by the
hierarchy of strong components.

The choice of high-order polynomials as complex regression
models need not be appropriate. Alternative, sophisticated meth-
ods may be more appropriate.

Note that the predictive power in terms of test R2 is zero if
r = 0.21 This implies the presence of strong components cannot
predict the delta system-level costs. After all, if r = 0 the eigen-
values that describe the fragility of the strong components do not
affect the spectral fragility measure. In particular, r = 0 should
only be relevant if the eigenvalues capture mainly noise, which is
unlikely to hold for models that reflect real-world financial sys-
tems.

Consider the results of the base case in Figures 2 and 3, where
21An important nuance of the test R2 is that it can be negative. This implies that the

predictive power is worse than the average of the dependent. Thus, the test R2 essentially
compares the model’s predictive power to a constant prediction, and an overfit can result in
negative values.
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Figure 2: Simulation results with parameters: m = 10000, n = 100, b = 0.062,
z = 10, k = 10, α = 0.5, β = 0.75, RNG seed 71. SF k refers to the k-th order
polynomial regression of the delta system-level costs on SF .

only the RNG seeds are altered.
Both these RNG seeds reduce the test R2 in level, although

the shape of the test R2 values remains stable as a function of r.22

Note that the dominance in the predictive power of the higher-
order polynomials remains stable. The predictive power remains
unaffected by the choice of the weight parameter w ∈ {0, 0.5, 1}.

Note that the local maximum for the lower range of r val-
ues for the fifth-order polynomial appears to move toward the
left relative to the base case. This is likely due to the particular
variance in strong components and the interaction with the hi-
erarchy of strong components generated by these RNG seeds. If
perchance these seeds result in financial networks where the noise
is more prevalent for a slightly higher range of r values, the local
maximum moves toward the left compared to the base case.

In all these examples, the predictive power vastly improves
with the complexity of the model for low values of r ∈ [0, 1].
This implies that the complex correlation of the measure with
the dependent is not just a consequence of the eigenvalues corre-
sponding to a strong component in the measure. are there should
be some compounding effect in the fraction of liabilities exposed
to the credit risk via strong components. As the spectral fragility

22The choice of taking the RNG seed that maximizes the predictive power for the base case
follows the assumption that these simulations perchance better capture the desired variation
in the configurations of the strong components. Note that this is highly speculative.
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Figure 3: Simulation results with parameters: m = 10000, n = 100, b = 0.062,
z = 10, k = 10, α = 0.5, β = 0.75, RNG seed 71. SF k refers to the k-th order
polynomial regression of the delta system-level costs on SF .

is an index in [0, 1], the higher powers capture more nuanced vari-
ation in the spectral fragility which perhaps captures the effect
of the

It is unlikely that low values of r, e.g., r < 0.05, are particu-
larly relevant for realistic financial systems. To understand this
argument, consider the following important example that consid-
ers both parameters of the spectral fragility measure.

Consider, one large strong component in a core-periphery struc-
ture of which the eigenvalues should tell a lot about the fragility of
the entire network. A large fraction of total liabilities are affected
by the interconnectivity of the core and its neighbors. Thus, ide-
ally, r should be large to capture the connectivity of the strong
component that reflects the fragility of the core to large shocks.

In such a framework the choice of the weight parameter should
be particularly relevant.

On the one hand, the weight parameter should explain to what
extent periphery banks are sensitive to credit risk originating in,
or, before the core in the hierarchy of strong components.

On the other hand, suppose that there are a lot of disjoint
dependency cycles that hold direct liabilities toward the core of
the financial system. If all these liabilities are particularly small,
then all these dependency cycles could default without signifi-
cantly affecting the core and thus the remainder of the network
to a large extent. This implies that the optimal w should be
small. If not, the spectral fragility measure is incredibly large
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due to the frequent occurrence of these large liabilities with high
weights corresponding to these strong components.

Consider an example of such a core-periphery network config-
uration with 3 dependency cycles, each of 4 banks. Take, e.g.,
total liabilities of 1 per each small strong component above the
core in the hierarchy of strong components. Assume the core itself
is a cycle of 3 banks that each hold 1000 in nominal liabilities.

Each liability from the small cycles to the core cycle is towards
a different bank. Take a weight of, e.g., w = 0.9. It is unlikely
that the core of 3000 in liabilities is severely affected if 3 in total
liabilities are not paid. For the sake of simplicity, first assume r =
0. Then, the 3 irrelevant strong components jointly contribute
at least 3×(0.9+0.92+0.93)×1000

ιT l
= ×(0.9+0.92+0.93)×3000

ιT l
to the spectral

fragility measure. Suppose no arcs leave the core, then the core
itself contributes only 3000

ιT l
to the spectral fragility measure. This

is problematic because this would indicate that this network is
much more fragile compared to the same network without the 3
cycles. This is highly misleading. Preferably, the network with
the dependency cycles should have only a slightly larger spectral
fragility measure.

If r ̸= 0 it is possible that the proportional liabilities that leave
the cycles before the core are sufficiently small to vastly reduce
the problematic interpretation of the high weight for the spectral
fragility measure. The weights may be preferably high for the
banks that receive liability payments from the core. A simple and
perhaps naive approach could be to have small weights before and
high weights after the core in the hierarchy of strong components.

This example is represented in the following digraph. The
nodes in the cycles are labeled C1, .., C12. The banks in the core
are labeled B1, B2, B3.
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It is possible to come up with stylized examples that motivate
that the r parameter need not be 1 in a core-periphery network
to optimize the predictive power of the spectral fragility measure.

For instance, suppose there are a large number of smaller
strong components that occur sequentially on a path of liabilities
toward the core. Due to decentralized clearing, the self-fulfilling
default cycles in these smaller strong components could result in
a large level of system-level costs for the least clearing payments.
These high system-level costs could follow the amplification of
a small shock through the sequential strong components that,
upon reaching the largest strong component, behave as a large
systematic shock to the core of the network.

Suppose these strong components before the core in the hi-
erarchy are, e.g., large circular components with only one large
bank with large liabilities that leave the cycle. As a consequence,
the contribution of the fragility of these strong components to the
overall fragility of the network is not captured by the eigenvalues
of these smaller cycles.

An example of such a core-periphery network configuration is
the following. Consider 3 dependency cycles of 4 banks sequential
in the hierarchy of strong components and suppose only the final
component in this sequence reaches the core. The liabilities that
leave the dependency cycles are in order 10, 100, and 1000, to
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allow for the amplification of a small shock in the first dependency
cycle to a large systematic shock to the core. This is represented
in the following graph.
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Based on the arguments above, it is likely preferable to use
existing knowledge on the shape of financial systems to assign
distinctive parameters to individual strong components.

The lack of accurate data on financial institutions implies that
it may not be possible or desirable to optimize these parameters
via data science methods.

It is possible to assign personal parameters to different strong
components by adding simple heuristics to the algorithm that
obtains the spectral fragility measure. These heuristics should
preferably be determined by those knowledgeable on the shape of
financial systems and potentially improved by data science meth-
ods. This adjustment to the algorithm should not significantly
affect the computational efficiency of obtaining the measure.23

23This computational efficiency can be decreased entirely by choosing infinitely complex
heuristics. The question arises as to whether such complex heuristics are beneficial. If
these heuristics are too complex, setting up regulation based on this measure may become
infeasible.
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8.3 Katz Bonacich Spectral Centrality
Measure

Acemoglu et al. (2015) find that traditional eigenvector-based
centrality measures such as the Fiedler vector (Fiedler, 1973;
Montenegro and Tetali, 2006) and the Bonacich centrality mea-
sure (see, e.g., Glasserman and Young (2016)), are less able to
capture non-symmetric relationships among banks present in fi-
nancial systems. To fix this problem, Acemoglu et al. (2015)
propose the harmonic distance to measure the position of banks
to a distressed bank. The harmonic distance from bank i ∈ N to
j ∈ N is the average number of arcs on a path from i to j. The
total harmonic distance from any bank i ∈ N to all other banks
does not depend on the bank. It is rather a property of the entire
network, just like spectral fragility.

In the following, established spectral measures are adjusted to
fit the current model. This is done briefly such that in the next
section linear regression can be performed to compare the ex-
planatory power of the individual measures and the explanatory
power for combinations of these measures.

The following explanation can be found in, e.g., Katz (1953)
and Puhr et al. (2012).

The Katz-Bonacich centrality determines how central banks
are to the network in terms of liabilities toward or from other
banks. This is a variation of the Bonacich centrality where the
more direct links are more important than the indirect links. This
is established via a discount factor factor w. Consider the follow-
ing motivation.

The geometric sum I + A + A2 + ... may converge, depending
on the eigenvalues of A. In particular, I +A+A2 + ... = (I −A)−1

if ρ(A) < 1. This is not guaranteed for A, in particular, if A is
row stochastic.

In addition, one may wish to discount the effect of Ak for
higher powers k. That is, the direct liabilities between banks
should weigh much heavier than the indirect path of 10 liabilities
between two banks.

To ensure both convergence of the geometric sum and the
reduced importance of indirect liabilities, Katz (1953) chooses a
discount factor w ∈ (0, 1) such that wρ(A) < 1. This ensures
that I + wA + (wA)2 + ... = (I − wA)−1 and the Katz vector
ς = (I − wA)−1ι exists. Each element in this vector is indicative
of how central a bank is in the network in terms of proportional
liabilities.
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The Katz-Bonacich Borrower Centrality is a function, KBBC :
Rn×n

+ 7→ R, defined by

KBBC(L) = ιT (I − wA)−1l − ιT l. (28)

The regression of the delta-system level costs on the Katz-
Bonacich borrower centrality consists of a linear and fifth-order
polynomial form.

Figure 4: Simulation results with parameters: m = 10000, n = 100, b = 0.62,
z = 10, k = 10, α = 0.5, β = 0.75, RNG seed 69. KBBCk refers to the k-th
order polynomial regression of the delta system-level costs on KBBC.

One notable aspect of these simulation results is the high test
R2 values. This high level of predictive power generalizes well to
different parameter configurations.

There can be several reasons for these high test R2 values. On
the one hand, this may be a natural consequence of oversimplified
simulation methods. In light of poor empirical performance in
literature and theoretical arguments at the individual bank level
from literature, this explanation seems plausible.

One remarkable implication of these results is that the per-
formance of this measure is maximized for an incredibly small
weight parameter.24 This supports earlier observations in the lit-
erature on financial networks (Acemoglu et al., 2015) that direct
liability relations are far more important in explaining contagion.
To understand why, consider the following.

24The measure is zero for w = 0 and after refinement of the interval several times it was
not possible to determine for what w values the test R2 jumps from 0 to over 0.1. This
implies that the w that optimizes the test R2 for this measure is exceptionally small.
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Note, w
w2 = 1

w
→
w↓0

∞. Thus, the predictive power of the mea-
sure is optimized in case the direct liabilities far outweigh the
closest indirect liability relations. That is, the weights of liabil-
ity paths of at least 2 steps in the network should optimally be
infinitesimal relative to the direct liability weights.

This result motivates controlling for alternative RNG seeds.
Consider the results in Figure 6 for the RNG seed set to 70.

Note that the fifth-order polynomial performs similarly to the
linear regression. This is likely due to the linear nature of the
Katz-Bonacich centrality measure. This could explain the poor
empirical performance of these measures. If the predictive power
of this measure is optimal for linear regression models, it is un-
likely that this predictive power translates well to real-world fi-
nancial systems.

Based on the arguments in this section, the likely reason for
the superior predictive power of this measure is that its simple
nature better suits the simple simulation setup. Although not
included, parameter setups that allow for very little variation
in financial networks typically improve the performance of this
measure.

8.4 Controlling for the System-Level Costs
as Dependent

The spectral measures can predict the system-level costs for the
least clearing payments as well. In particular, the parameter
choices determine to a large extent whether the largest and the
smallest system-level costs are correlated. Furthermore, the size
and sign of the correlation depend on the parameter choice as
well.

Consider the configuration where the liabilities are on aver-
age large relative to the operational cash flow of banks and the
probability of interbank liabilities is much smaller in Figure

.
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Figure 5: Simulation results with parameters: m = 10000, n = 100, b = 0.02,
z = 1, k = 20, α = 0.5, β = 0.75, RNG seed 69. SF k refers to the k-th order
polynomial regression of the delta system-level costs on SF .

Figure 6: Simulation results with parameters: m = 10000, n = 100, b = 0.02,
z = 1, k = 20, α = 0.5, β = 0.75, RNG seed 69. KBBCk refers to the k-th
order polynomial regression of the delta system-level costs on KBBC.

The predictive power is maximized for r = 0. This result is somewhat
misleading.
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Figure 7: The variance of the system-level costs in case of the least and greatest
clearing payments and the correlation of these costs for the simulation results
with parameters: m = 10000, n = 100, b = 0.02, z = 1, k = 20, α = 0.5,
β = 0.75, RNG seed 69.

Consider the following. In this scenario, these results are determined en-
tirely, within a precision of 5 decimal places, by the variation of the system-level
costs in case of the greatest clearing payments. This is represented in Figure
7.

Intuitively, the Katz-Bonacich measure is better suited to predict the system-
level costs because the non-linearities induced by default costs are less pro-
nounced. In that sense, if there is a significant gap in the least and great-
est clearing payments, the system-level costs behave more linearly than the
system-level costs for the least clearing payments.

Thus, the larger the relative size of the variance of the system-level costs
relative to the variance of the system-level costs for the least clearing payments,
the larger the prediction power held by the Katz-Bonacich measure for the
delta system-level costs.

This indicates that the arguments against linear centrality measures hold
much more credence for the analysis of the least clearing payments.

The infinitesimal variance of the system-level costs for the least clearing
payments is likely in part due to the frequency of interbank liabilities being so
small that the fragility as captured by the eigenvalues generally captures a lot
of noise.

If there even is a significant variation in the fragility of strong components,
the rarity implies that the presence of these components can explain more than
their configurations.

As a consequence, although it is unlikely for financial systems, if the r
parameter is optimally set to 0, this is indicative of a relatively linear network
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configuration.
This is due to the sharp increase in the average liabilities and vastly reduced

average operational cash flow. This results in the maximum system-level costs
In addition, the likelihood of small strong components implies that any

liabilities that leave the strong component are relatively large compared to the
total aggregate liabilities of the strong component.

In addition, the unlikely presence of banks that receive liabilities from the
strong component may result these liabilities capturing noise.

Figure 8: The variance of the system-level costs in case of the least and greatest
clearing payments and the correlation of these costs for the simulation results
with parameters: m = 10000, n = 100, b = 0.62, z = 10, k = 10, α = 0.5,
β = 0.75, RNG seed 69.

The complex models are again better able to predict for all cases. Thus,
even if only the presence of strong components is particularly relevant relative
to the fragility, the complex correlation with the dependent variable is present
as well.

This is clear from the similar shapes in the test R2 values as functions of r
and the lack of variability in the w parameter.

The delta system-level costs instead of the system-level costs for the least
clearing payments, the regressions are repeated for the base case with the latter
as the dependent. Consider Figures 9 and 10 with the spectral fragility and
Katz-Bonacich measures as the predictors, respectively.
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Figure 9: Simulation results with parameters: m = 10000, n = 100, b = 0.62,
z = 10, k = 10, α = 0.5, β = 0.75, RNG seed 69. SF k refers to the k-th order
polynomial regression of the system-level costs for the least clearing payments
on SF .

These results support the theoretical arguments that the spectral fragility
measure primarily predicts the delta system-level costs.

Figure 10: Simulation results with parameters: m = 10000, n = 100, b = 0.62,
z = 10, k = 10, α = 0.5, β = 0.75, RNG seed 69. KBBCk refers to the
k-th order polynomial regression of the system-level costs for the least clearing
payments on KBBC.
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9 Conclusions
The spectral fragility measure is a new spectral measure based on theoretical
results on the interconnectivity of strong components. This measure is based
on the principle that highly interconnected financial networks are fragile to
large shocks.

The theoretical building blocks of this spectral measure indicate its efficacy
is best captured for a network with a large variance in strong component
configurations and sizes.

As predicted, the simulation method that considers banks with indepen-
dent and identically distributed random liabilities is likely unable to capture
the predictive power of this measure. In particular, the sparsity of financial
networks and the heterogeneous roles of different financial institutions in these
networks require a large number of banks with a low average probability of
interbank liabilities. As the number of banks increases, the required number
of simulations to effectively predict the difference in the system-level costs for
the least and the greatest clearing payments increases rapidly. Future research
with a focus on simulation methods can greatly increase efficiency via the cre-
ation of a large number of random network distributions that each focus on
different network shapes.

This approach allows for efficient simulation without fixing the outcome
beforehand. Note that this is a complex task.

One important reason for this complexity is the exponential increase in
scenarios to consider when controlling for different parameter values. That
is, the consideration of one particular model with one alternative value for 5
parameters results in 25 = 32 combinations.

This problem can be mitigated to some extent. Some of these combinations
lead to similar results because the interaction of parameter values is far more
important than the size of any particular coefficient if the focus is on theoretical
modeling. For example, the effect of an increase in the average operational cash
flow can have a similar effect as a decrease in the average nominal liability.
Furthermore, the effect of an increase in the likelihood of liabilities between
any two banks is likely mitigated if the number of banks increases as well. The
importance of such a preliminary analysis should not be underestimated.

The literature on financial networks considers special cases of financial net-
work structures to arrive at conclusions on systemic risk. These special cases
enable us to understand different dimensions of systemic risk in isolation. In
turn, these conclusions allow others to hypothesize and control for the inter-
action of these dimensions.

However, simple assumptions are unlikely able to capture the complexity
of these financial networks.

One particular observation is that the Katz-Bonacich measure predicts a
lot better in case of the variance of the system is incredibly small. In general,
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this measure is able to achieve more test R2 because it is able to capture more
variance in the system-level costs for the least clearing payments.

This is a natural consequence because the measure does not require the
existence of non-trivial strong components to predict system-level costs.

To predict the delta system-level costs, this should be considered as over-
fitting the predictive power of the delta-system level costs. This is the main
reason that even only a change in RNG can change the optimal weight pa-
rameter from one side of the interval toward the other side.

The incredible sensitivity of the optimal weight parameter for slight changes
in the data under these incredibly simple assumptions reinforces the ineffec-
tiveness of standard spectral measures that are linear.

Although the ninth-order polynomial performed the best, the effectiveness
for the relevant parameter values in the base case indicates that a second-order
polynomial is effective as well.
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A Details on Theoretical Results

A.1 Alternative Proof of Theorem 1
The following proof is faster for those familiar with the literature or particular
knowledge of the underlying theory.

The following definitions are found in Gierz et al. (1980) and are simplified
for this thesis.

A partially ordered set (L, ≤) is called a lattice if any two elements in L
have a supremum and infimum in L. That is, ∀{a, b} ⊆ L : {a ∧ b, a ∨ b} ⊆ L.
Note, ∨ is the maximum counterpart of ∧. That is, this operator finds the
maximum between the real numbers beside it, i.e., a ∨ b ≡ max{a, b}, for
a, b ∈ R. A complete lattice is a lattice in which any subset has a unique
infimum and supremum inside the set. Importantly, ’any subset’ implies any
sequence contained in L must have the limit in L as well. The proof could be
reduced to the following. Any line segment [a, b] ⊆ Rn is a complete lattice
for the coordinate-wise ≤ operator because the set is a closed ball in Rn. A
set in Rn is a closed ball if and only if all sequences within the set have their
limit within the set. This ensures that infima and suprema of any subset are
contained within the set. In contrast, (a, b) ⊆ Rn can contain sequences with
the limits being potentially a or b. Take, e.g., a − ι ∗ 1

k
−−−→
k→∞

a /∈ (a, b). This
implies a is the infimum and thus the greatest under bound is not contained
within the set.

This does not mean ((a, b), ≤) is not a lattice. We can compare each vi

and ui for any two vectors u, v ∈ (a, b) in at most n steps. Each vi and ui

are contained within (ai, bi). It must thus hold that the resulting infimum and
supremum are contained within (a, b). Tarski’s fixed point implies that the
set of fixed points of a monotone transformation from a complete lattice to the
same complete lattice is itself a complete lattice, and thus there is a unique
greatest and least fixed point (Zeidler, 1986) within the set of clearing vectors.
That is, Φ([0, l]) ⊆ [0, l] and Φ is monotone by lemma 1.

Note, for any two elements u, v ∈ [a, b] ⊆ Rn it is not always required to
satisfy u ≤ v or u ≥ v. Thus, for the other complete lattice, the set of clearing
vectors, it need not hold that one is necessarily weakly larger than the other.
This possibility does require the set of clearing vectors to contain at least three
elements because it is established that p∗ ≤ p∗.

A.2 Contraction Theorem
Rudin (1976) defines metric spaces and explains that the space of real vectors
is an example. The distance of payment vectors is defined slightly differently
than typical distances in Rn. It is therefore useful to acknowledge what changes
and what does not when switching norms in Rn. Rudin (1976) states the
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contraction Theorem which provides a uniqueness condition for fixed points
in some metric spaces. All the following definitions are provided by Rudin
(1976). In particular, A set X, whose elements we shall call points, is said to
be a metric space if with any two points p and q of X there is associated a real
number d(p, q), called the distance from p to q, such that

(i) d(p, q) > 0 if p ̸= q; d(p, p) = 0;
(ii) d(p, q) = d(q, p);

(iii) d(p, q) ≤ d(p, r) + d(r, q), for any r ∈ X.
Any function with these three properties is called a distance function, or a
metric. The most important examples of metric spaces, from our standpoint,
are the Euclidean spaces Rk, especially R1 (the real line) and R2 (the real
plane); the distance in Rk is defined by

d(x, y) = ||x − y||, x, y ∈ Rk. (29)

Typically, the distance in Rn is chosen to be the L2 norm. The Euclidean
norm (or L2 norm) of a vector x in Rn, where x = (x1, x2, . . . , xn), is defined
as:

||x||2 =
(

n∑
u=1

x2
i

)1/2

, (30)

where xi represents the i-th component of the vector x. The Euclidean norm
measures the "length" of the vector x in the Euclidean space Rn. Given a
vector x ∈ Rn, the L1 norm of x, denoted as ||x||1, is defined as the sum of
the absolute values of its components. Formally, this can be expressed as:

||x||1 =
n∑

u=1
|xi|, (31)

where x = (x1, x2, . . . , xn) and xi represents the i-th component of the vector x
(Eisenberg and Noe, 2001). The L1 norm is used when the vectors are payments
because the cumulative absolute distance between payments is relevant instead
of the geometric norm, i.e., the square root of the sum of squared payments.
What does the length from in the origin in a two-dimensional graph to the point
which is p1 > 0 to the right and p2 > 0 above the origin? The importance lies
in the size of p1 and p2.

Definition: A sequence {pn} in a metric space X is said to be a Cauchy
sequence if for every ε > 0 there is an integer N such that d(pn, pm) < ε if
n ≥ N and m ≥ N .

Definition: A metric space in which every Cauchy sequence converges is
said to be complete.

It is also noteworthy that all compact metric spaces and all Euclidean spaces
are complete.
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Definition 10 (Contraction) Let (M, d) be a metric space. A function T :
M → M is called a contraction if there exists a constant 0 < k < 1 such that
for all x, y ∈ M , the inequality

d(T (x), T (y)) ≤ k · d(x, y)

holds. The constant k is known as the contraction constant.
Theorem 4 (Contraction Mapping Theorem) Let (X, d) be a complete metric
space. Suppose T : X → X is a contraction mapping on X, that is, there exists
a constant 0 ≤ k < 1 such that for all x, y ∈ X,

d(T (x), T (y)) ≤ k · d(x, y).

Then, the following assertions hold:
1. There exists a unique fixed point x∗ ∈ X such that T (x∗) = x∗.
2. For any x0 ∈ X, the sequence defined by xn+1 = T (xn) converges to x∗.

Given two vectors a and b in Rn, the triangle inequality for the L1 norm
is expressed as:

||a + b||1 ≤ ||a||1 + ||b||1. (32)
This is thus property (iii) of the distance function.

From here on out it is assumed that ||x|| denotes the L1 norm of x ∈ Rn.
Let Aj· denote row j of matrix A. One important property of the norm
for a row-stochastic matrix A is the following. ||AT x|| = ||∑n

u=1 xiAi·|| ≤∑n
u=1 ||xiAi·|| = ∑n

u=1 ||xi||||Ai·|| = ∑n
u=1 ||xi|| = ||x|| because A is row-stochastic.

This property need not hold for L2 norms which is an important distinction.
This allows for the following prove of uniqueness as long as β > 0.
Let ⊗ denote the Hadamard, or piece-wise, vector product. Then, the

solution in step 3 for the least algorithm can be written as IUµx = IUµ [(AT ISµl+
AT IUµx) ⊗ (ι − b) − IUµa] ∨ 0. Thus, for x̂ ̸= x̃ : ||IUµ([(AT ISµl + AT x̂) ⊗
IUµ(ι − b) − IUµa] ∨ 0 − [(AT ISµl + AT IUµx̃) ⊗ IUµ(ι − b) − IUµa] ∨ 0)|| ≤
||IUµ [(AT ISµ(l − l) + AT IUµ(x̂ − x̃)) ⊗ (ι − b) − IUµ(a − a)]|| = ||IUµAT (x̂ − x̃) ⊗
(ι − b)|| < ||IUµAT IUµ(x̂ − x̃) ⊗ (ι − 0)|| = ||IUµAT IUµ(x̂ − x̃) ⊗ IUµ(ι − b)|| ≤
||IUµAT IUµ(x̂ − x̃) ⊗ (ι − 0)|| ≤ ||IAT I(x̂ − x̃)|| ≤ ||AT (x̂ − x̃)|| ≤ ||x̂ − x̃||. The
right-hand side is thus a contraction of x. By the contraction Theorem, the
solutions must be unique. The proof of uniqueness for the greatest algorithm
if β > 0 is identical and thus omitted.

If B ∈ Rn×n is column sub-stochastic and at least one column is strictly
sub-stochastic and x ∈ Rn

+, then ||Bx|| = ∑n
u=1 |(Bx)i| = ∑n

u=1
∑n

j=1 Bijxj =∑n
j=1 xj

∑n
u=1 Bij <

∑n
j=1 xj because at least one column of BV does not sum

up to 1 (Karlin, 1959; Eisenberg and Noe, 2001).
Note, β > 0 is a mild regularity requirement that should realistically hold.

However, the result holds as well for b = 0 if just one column of IUµAT sums
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up to less than 1. If a = 0 and ∀i ∈ N∃j ∈ o(i) : cj > 0, then (ii) and (xi),
and thus (iii) in Proposition 1 hold. This implies both the uniqueness of the
clearing vector and the values xi in step 3. By (ii) in Proposition 1, there is
a solvent bank reachable from any defaulting node in step 3 of the algorithm.
This implies that at least one column in IUµAT sums up to less than 1 because
it is not possible to have both ∃j ∈ o(i) : cj > 0 and ∀s ∈ o(i) : es = 0
(Eisenberg and Noe, 2001). It could seem odd that a = 0 is required because
the a values cancel as seen in the proof of uniqueness for β > 0. However,
e = ιT c must hold for all clearing vectors to establish uniqueness. Constant
equity need not hold if a ⪈ 0.

These fundamental results are often omitted in the present for these types
of financial network models because it is assumed to be standard knowledge
that is proven in earlier work. For this reason, this appendix acts as a shortcut
to understanding these results.

A.3 No Dependency Cycle
The following result is used, though not motivated, in a relevant proof by
Jackson and Pernoud (2020). If there are no dependency cycles, there must
be a subset of nodes X0 which hold no nominal liability assets. To prove this
result, assume there is no dependency cycle, and suppose for all nodes in N
there is at least one bank that owes them nominal liabilities. This implies
we can subdivide the nodes into two sets, one, denoted SI, which contains
sink nodes that do not hold nominal liabilities, and one, possibly empty set,
N \ SI, which contains nodes that receive and pay nominal liabilities. This
can be represented in the following sketch of a digraph.

N \ SI SI

The amount of arcs that point towards a node i ∈ N is referred to as the
in-degree of node i. Let the number of nodes in the complement of the sink
component be denoted t = |N \ SI|. Then, because there are t receivers in
the set, we have t nodes connected by at least t directed arcs of which each
must be a recipient. That is, each node has the in-degree of at least 1. The
following fundamental property from undirected graph theory is useful. This
property states that a graph with i nodes can only be acyclic if it contains at
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most u − 1 arcs. Thus, a graph that contains at least i arcs for i nodes must
immediately result in at least one undirected cycle. This result itself only tells
us that there is at least a cycle without mandating for the direction of the arcs
to align to form a directed cycle. In the case of t arcs, the fact that each node
has in-degree at least 1 in the same set ensures that an equivalent directed
cycle must hold for the N \ SI set. Note, it is always possible to obtain a
digraph of t nodes with in-degree 1 from any digraph where there are more
than t arcs for t nodes with in-degree at least one 1 by only removing arcs if
the receiving node has an in-degree larger than 1.

A.4 Proof of Proposition 3
Proof.

ASC =



0 1 · · · 0 0 0 0 · · · 0
0 0 . . . ... ... ... . . . . . . ...
... ... . . . 1 0 0 . . . 0 0
... ... . . . 0 1 0 . . . 0 0
x 0 · · · 0 0 1 − x 0 . . . 0
0 0 · · · 0 0 0 1 . . . 0
... ... . . . ... ... 0 0 . . . ...
0 0 · · · 0 0 0 0 . . . 1
0 0 · · · 0 1 0 0 · · · 0



.

Then det(λI − ASC) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 · · · 0 0 0 0 · · · 0
0 λ

. . . ... ... ... . . . . . . ...
... ... . . . −1 0 0 . . . 0 0
... ... . . . λ −1 0 . . . 0 0

−x 0 · · · 0 λ −(1 − x) 0 . . . 0
0 0 · · · 0 0 λ −1 . . . 0
... ... . . . ... ... 0 λ

. . . ...
0 0 · · · 0 0 0 0 . . . −1
0 0 · · · 0 −1 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 · · · 0 0 0 0 · · · 0
λ2 0 . . . ... ... ... . . . . . . ...
... ... . . . −1 0 0 . . . 0 0
... ... . . . 0 −1 0 . . . 0 0

λk − x 0 · · · 0 0 −(1 − x) 0 . . . 0
λλk−x

1−x
0 · · · 0 0 λ −1 . . . 0

... ... . . . ... ... 0 λ
. . . ...

λk+u−2 λk−x
1−x

0 · · · 0 0 0 0 . . . −1
λk+u−1 λk−x

1−x
− λk−1 0 · · · 0 0 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)2k+u(−1)2k−3+u(−(1 − x))λk−1

[
(λk−x)

1−x
λu − 1

]
= λk−1[(λk − x)λu − (1 −

x)]. Thus, there are k − 1 eigenvalues 0 due to the term λk−1, there is an
eigenvalue 1 because the matrix is stochastic, and all other eigenvalues are
either complex pairs or complex pairs plus a negative value.

The first step is to prove that 1 is the only positive eigenvalue. By the
Perron-Frobenius Theorem, there is only one root 1. Thus it is possible to
write the characteristic polynomial as det (λI − A) = (λ − 1)(· · · ) but not
det (λI − A) = (λ − 1)m(· · · ) for m ∈ N \ {1}. Thus, if there are more
positive roots, this implies λ ∈ (0, 1). This implies (λk − x)λu − (1 − x) <
(1 − x) × 1 − (1 − x) = 0. Thus, the only positive eigenvalue is 1. If there are
other real eigenvalues, these must be negative or zero. This is unsurprising.
There is no other positive root than the spectral radius for an isolated cycle
as demonstrated in the proof of Theorem 3. Thus, there is no reason for the
presence of either cycle to create a new positive eigenvalue or push it down
from the spectral radius.

Specifically, if k and u are even, then ∃v, y ∈ N : (λk − x)λu − (1 − x) =
((λ2)v − x)λ2y − (1 − x) = 0 for both λ = 1 and λ = −1. Note, for a circular
graph with period d = 2v for v ∈ N, λ = −1 is a root as well. If u and
k are both odd then u + k is still even. This results in a negative root as
well, however, now the negative root is not on but within the unit circle. Note,
∃v ∈ N : (λ2)v −λux−(1−x) = (λ2)v +|λ|ux−(1−x) = |λ|k+u +|λ|ux−(1−x).
Note, if |λ| = 0 then |λ|k+u + |λ|ux−(1−x) = −(1−x) whereas |λ| = 1 implies
|λ|k+u + |λ|ux − (1 − x) = 1 − 1 + 2x = 2x > 0. Thus by the intermediate value
theorem ∃|λ| ∈ (0, 1) such that |λ|k+u + |λ|ux− (1−x) = 0. Thus ∃λ ∈ (−1, 0)
such that det (λI − A) = 0. This is the only negative root. Suppose not , note
that |λ|k+u + |λ|ux − (1 − x) is strictly monotone in λ ∈ [−1, 0]. This provides
the necessary contradiction.

Let k + u be odd. Apart from 1 and 0, there are only complex roots.
Suppose not and consider first the case where k is odd such that u must be
even. If λ ∈ [−1, 0). Then (λk −x)λu − (1−x) = (λ (λ2)v −x)λ2y − (1−x) < 0
for v, y ∈ N. Consider the case where k is even and thus u must be odd. Then
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(λk − x)λu − (1 − x) = ((λ2)v − x) (λ2)y
λ − (1 − x) < 0.

B Implementation of The Spectral Fragility
Measure

This section outlines how the spectral fragility of a financial network can be
calculated efficiently. This section first outlines an important algorithm to find
strong components in directed graphs. Other algorithms to find general strong
components are available by Csóka and Herings (2024) and for core-periphery
networks by Jackson and Pernoud (2023)» CHECK.

B.1 Time Complexity
To understand the computational efficiency of the spectral fragility measure it
is important to quantify this efficiency.

Let t(n) denote the number of steps in the algorithm, where n is the number
of banks. Then t(n) = O(g(n)) if ∃c, n0 > 0 : t(n) ≤ cg(n) for all n ≥ n0.
O(g(n)) is the time complexity of the spectral fragility algorithm. Once we
have such a function g(n), the number of steps in the algorithm cannot increase
faster than linear in the function g(n).

The first step in the algorithm consists of summing each row of L. This
has time complexity O(n). Calculating l then has the same time complexity.

The second step is to divide each non-zero row of L by the row sums to
obtain A. This has time complexity O(n) as well.

The next step is to apply Tarjan’s algorithm to find strong components,
this has time complexity O(n+ |E[A]|) which is not worse than O(n2) (Tarjan,
1972).

B.2 Worst Case Time Complexity
The following concepts closely follow the work by Tarjan (1972).

A stack is an arbitrary datatype with two operations. The push operation
adds an element and the pop operation removes the latest element.

The Tarjan algorithm performs a depth-first search approach that starts at
an arbitrary node and follows a directed path to nodes not in the stack and
saves the earliest reachable node in the stack at each step.25

Once all arcs to nodes not in the stack have been exhausted, nodes are
moved from the stack to a strong component array until the earliest reachable
node in the stack is the final node in the stack. Then, the strong component
is complete.

25For simplicity, the algorithm starts at node 1.
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For this thesis, the algorithm is adjusted to distinguish between sink and
non-sink trivial strong components. This distinction is relevant for both spec-
tral complexity and network analysis.

The matlab function that performs the Tarjan algorithm is included
The next step is to sum all values of l per strong component. This has time

complexity O(n).
The following step consists of collapsing strong components to individual

nodes. First each node is assigned the new index, intuitively this implies time
complexity O(n). Next, for each off-diagonal value of L, it is checked whether
it is positive and if so it is assigned to the correct node in the new matrix. This
has time complexity O(n2) because it loops over each off-diagonal element of
the matrix L.

The next step consists of creating an adjacency matrix where each arc is
indicated by a 1 and otherwise 0. This has time complexity O(n2).

Because the spectral fragility measure requires for each strong component
to know what nodes are reachable, a matrix is required where each 1 indicates
whether there is a path of any length to the component corresponding to the
column. This can be done by the Floyd-Warshall algorithm with time com-
plexity O(n3) (Floyd and Warshall, 1962). Intuitively, the algorithm considers
from each node, n × n potential paths. In particular, indirect paths from each
node to n − 1 other nodes through at most n − 2 other banks. The time
complexity for the weight parameters depends on the choice of this parameter.
This can be as complex as desired. For the exponential weight parameter ap-
plied in this thesis, the weights are calculated efficiently by taking the weight
parameter to the element-wise power of a matrix that contains the number of
arcs on the shortest path.

The calculation of the eigenvalues a time complexity dependent on the
properties of the matrix and the strong components.

The final calculations are rather simple and thus the dominating time com-
plexity is O(n3)
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