
MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 1

Navigating New Networks: The AI

Revolution in Open Source Software

Communities

Rutger Zoetelief

A thesis presented for the master’s degree in Information Management

Tilburg School of Economics and Management

Department Information Systems and Operation Management (ISOM)

Supervisor: Dr. P.K. Medappa

July 2024

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 2

Email

R.J.R.Zoetelief@tilburguniversity.edu

Student number

2103151

Committee

Supervisor: Dr. P.K. Medappa

The Second Reader: Dr. I.F. Kanellopoulos

Location

Tilburg University

School of Economics and Management

Department Information Systems and Operation Management (ISOM)

Tilburg, The Netherlands

Date

June 6, 2024

Acknowledgements

I present to you my master’s thesis “Navigating New Networks: The AI revolution in open source

software communities.” It was written for the completion of the MSc Information Management at

Tilburg University. I was engaged in researching and writing this thesis from January to June 2024.

I would like to express my sincere gratitude to my supervisor Dr. P.K. Medappa, for his knowledge

and support. But also introducing me to this really interesting world of open source software and its

communities. And I would also like to thank my family and friends, who supported me throughout the

completion of my master’s.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 3

Abstract

This study explores the impact of Artificial Intelligence (AI) integration on social network dynamics

and collaboration patterns within open source software (OSS) communities. The following research

question was developed: “How does the integration of Artificial Intelligence in Open Source Software

projects impact the social network dynamics and collaboration patterns, compared to traditional OSS

projects?” Data were collected from GitHub and Google, focusing on pull request activity within

repositories. This research adopted the widely accepted two-way fixed effects model (TWFE) to

quantitatively evaluate the impact of AI Copilot on OSS projects by comparing changes in outcomes

through a difference-in-difference approach. The findings suggest that the hypotheses regarding AI

integration in OSS are not supported. However, the thesis provides a preliminary overview of AI's

impact on OSS communities and offers methods for constructing social networks based on GitHub

data. The study also emphasized the potential drawbacks of using a single data type to define

developer relationships, as well as the potential for a more complex or subtle effect of CoPilot

implementation. Additionally, it discusses how the usage of averaging techniques for certain SNA

metrics could potentially hide significant variations. In conclusion, this study opens up new avenues

for future studies, aimed at enhancing our knowledge of the influence on AI-driven OSS projects.

Keywords: Social Network Analysis, Artificial Intelligence, Open Source Software

Communities, GitHub Copilot

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 4

Contents

1. INTRODUCTION 5

1.1. Problem Statement 8

2. THEORY 9

2.1. Open Source Software Ecosystem 9

2.2. Social Network Analysis on Open Source Software Ecosystem 10

2.3. AI Integration in Open Source Software Ecosystem 13

2.4. Hypothesis development 15

2.5. Conceptual model 17

3. METHODOLOGY 18

3.1. Data Collection 18

3.2. Construction of the Network 19

3.3. Two cases 20

3.4. Difference-in-Differences Approach 20

3.5. Regression Models 21

4. RESULTS 25

4.1. Data Cleaning and Preparation 25

4.2. Descriptive Statistics 25

4.3. Parallel Trends Test 26

4.4. Main Analysis Results 27

5. DISCUSSION 29

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 5

5.1. Findings 29

5.2. Implications 30

5.3. Limitations 30

5.4. Future Research 31

6. CONCLUSION 32

BIBLIOGRAPHY 33

APPENDICES 39

A. Utilization of AI Tools 39

B. Computations of Measures 40

C. Case Study Repository 42

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 6

List of Figures

Figure 1: Social network ..11

Figure 2: Conceptual model ...17

Figure 3: Construction of the social networks on GitHub ...19

Figure 4: Construction of repository training-kit...20

Figure 5: Timeframe technical preview effect ...20

Figure 6: Case Study Repository Networks ...44

Figure 7: Case Study Degree Histogram ...45

List of Tables

Table 1: Summary of total of social network measures during technical preview effect18

Table 2: Variables actor-level and network-level ..21

Table 3: Regression variables ..24

Table 4: Descriptive statistics GitHub ...26

Table 5: Descriptive statistics Google ...26

Table 6: Parallel trend test results ..27

Table 7: Main results ...27

Table 8: Support for hypotheses ..28

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 7

1. Introduction

Over the last several decades, businesses and individuals have embraced the use of open

source software (OSS) for commercial purposes have contributed to its development (McClean,

2021). When developers and startups have access to existing open source frameworks, AI tools and

libraries, they can avoid the need to build everything from scratch. Therefore, it could accelerate the

development process as individuals and organizations can leverage the collective efforts of the open

source community, which contributed code, algorithms, and solutions.

A report of Red Hat (2022) mentions the significance of enterprise open source, where 95%

of its IT leaders’ respondents say that it is of huge importance to their overall organization’s

enterprise infrastructure. A significant portion of modern computing is built upon open source; from

known operating systems like Linux to programming languages as Python (McClean, 2021).

The environment of OSS has evolved rapidly with the integration of Artificial intelligence,

GitHub (2022) for example, announced the general availability of GitHub Copilot Chat in June 2022.

These developments give new challenges and opportunities in software development and project

management. Traditional OSS projects have been explored using various methodologies to understand

collaboration and community dynamics. For example, Korchar et al. (2021) investigates the transition

from closed to open source projects, focusing on community collaboration through interviews and

surveys. But this approach can be response biased and might not be effective for larger communities.

On the other hand, mining software repositories offers insights into technical aspects like code

changes and bug reports but may overlook the social interactions within the community.

Social Network Analysis (SNA) however provides a unique and holistic lens through which

the structure and dynamics of OSS projects can be understood, making it a very effective way of

studying collaboration patterns and community dynamics. For instance, the study of Schreiber (2023)

provides insights into how people and groups interact and collaborate in TensorFlow, an open source

software project. SNA captures the complexity of relationships among contributors, can identify key

players within a project and it will allow the comparison of network structures across different

projects. These advantages align with the subject that is addressed in this study.

The integration of AI into OSS projects introduces a paradigm shift, necessitating a

reevaluation of existing SNA frameworks. The complexity of AI-driven development, characterized

by advanced algorithms and data-intensive processes, may alter social network structures within OSS

communities. This shift raises questions about the applicability of traditional SNA methods and

metrics, as observed in OSS projects without AI components.

There is yet a noticeable gap in the literature regarding a comprehensive comparison of SNA

applications in traditional OSS projects versus AI-powered OSS projects. While studies those

conducted by Wu et al. (2023) explore the role of social and technical dependencies on OSS project

success, an examination of these dynamic shifts in AI-driven projects remains unexplored. This gap

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 8

shows an opportunity to learn more about the field by analyzing and comparing the social networks of

traditional and AI-powered OSS projects. Such an exploration is crucial for understanding the

evolving landscape of OSS development, informing strategies for effective project management,

community engagement and successful collaboration for open source community platforms.

1.1. Problem Statement

The problem lies in determining how AI integration affects social network structures and

collaboration patterns within OSS projects. Although SNA has examined traditional OSS projects, the

specific effects of AI on these networks remain less understood. At the same time, not much research

has been done on this particular theme. This knowledge gap would therefore present an interesting

research topic to explore. The problem is relevant to OSS project managers, developers and

contributors who are incorporating AI into their projects. It also concerns academic researchers and

organizations relying on OSS for their operations or product development. The integration of AI in

OSS projects will help stakeholders better comprehend the social dynamics at play. The following

research question has been developed based on the research framework:

Research Question: “How does the integration of Artificial Intelligence in Open Source

Software projects impact the social network dynamics and collaboration patterns, compared to

traditional OSS projects?”

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 9

2. Theory

2.1. Open Source Software Ecosystem

Software that has source code available for anyone to see, edit and improve is known as open

source software (OSS). OSS is present on internet based communities where software developers

voluntarily collaborate in order to develop software that is needed (Von Krogh, 2003). Open Source

helps increase the pace of innovation, leading to free exchange of novel ideas within these

communities (Rathee, 2022). While OSS is likewise developed as proprietary software (e.g.,

MySQL), much is developed by organizationally and geographically distributed teams of developers,

in what is described as community-based development by Lee and Cole (2003). Furthermore, OSS is

perceived as unrestricted access to source code, in contrast to the commercial world’s more traditional

closed proprietary software approach (Bonaccorsi, 2003).

The software economy now uses the word “ecosystem” as a common perspective

(Messerschmitt, 2003). A software ecosystem is also defined by Manikas and Hansen (2013) as ”the

interaction of a set of actors with a common technological platform used by several solutions.” This

ecosystem frequently depends on a common platform that several parties overlay with their own

software (Bosch, 2009). OSS ecosystems develop from self-organized and dynamic processes where

businesses and volunteers work together in their contribution to software products (Gerber, 2010;

Madey, 2002). A platform is used for establishing such an ecosystem. Studies by Kilamo et al. (2012)

and Jansen et al. (2009) mention the facets of such a platform. From an engineering standpoint, a

software ecosystem offers development process, environment for the entire software project

infrastructure, and technology for implementation. Furthermore, in addition to the technical aspects,

social, legal and business aspects must also be considered for the ecosystem.

GitHub serves as a platform for hosting collaborative coding projects. It employs a "fork &

pull" approach, where developers generate a personal copy of a repository and propose a pull request

for the project maintainer to merge their changes into the primary branch. Beyond hosting code,

GitHub facilitates collaborative code review and integrated issue tracking, and it incorporates social

networking features (Kalliamvakou, 2014; Tan, 2020). GitHub today also serves as the largest

developer community in the world with more than 100 million users (GitHub, 2023). The platform

has integrated social features and the availability of metadata through an accessible API, which makes

it attractive for software engineering researchers.

The introduction of the social features of GitHub has drawn attention to researchers. For

instance, the paper of Zöller et al. (2020) studies the collaboration patterns of OSS projects on GitHub

by analyzing the pull request submissions and acceptances of repositories. While Moradi-Jamei et al.

(2021) utilizes a large-scale historical dataset of 1.8 million GitHub users and their repository

contributions. Whereas Dabbish et al. (2012) concentrated their research on a more qualitative

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 10

approach, discovering the importance of transparency for large-scale collaborations and communities

on GitHub through a series of in-depth interviews with central and peripheral GitHub users.

OSS thrives as a collaborative community where developers exchange code. These

communities often evolve into dynamic software ecosystems, supported by platforms like GitHub.

GitHub not only facilitates code sharing and review but also enhances collaboration through its

sophisticated fork & pull model and integrated social networking features. This environment enables

diverse teams to contribute to OSS projects, significantly influencing the pace of software

development.

2.2. Social Network Analysis on Open Source Software Ecosystem

The study of Texeira et al. (2015) employed a mixed method approach using archival data

with mining software repositories and Social Network Analysis (SNA). However, while this approach

would be in line with the same method of this thesis subject, Teixeira’s research question focused

more on understanding competition within an open source project, utilizing different SNA metrics

than those employed in this study. Horta et al. (2022) discuss a more content-driven approach of

analyzing open source communities that is extracted from text or social tags, offering valuable

insights. But this would require extensive data collection and preprocessing of textual data, which can

be time-consuming and complex. Given the limited timeframe for this research, the focus in this study

will be on a more traditional SNA.

Various methods are applied to analyze communities focusing on a broader understanding

beyond the more structural analysis of social networks. The role of social comparison theory is

emphasized by Lumbard et al. (2024) on understanding how open source community health. Which

argues how community dynamics are influenced by social comparisons rather than just network

structures. Case studies from Kilamo et al. (2012) and ethnographic studies from Sigfridsson and

Sheehan (2011) can all provide information about the social network dynamics and collaboration

patterns of these open source communities. However, this paper adopts a data-driven approach rather

than a qualitative one for several reasons. SNA allows for analysis of complex relational data; this is

especially necessary when these communities have thousands of contributors who may interact with

each other. SNA focuses on measurable objectives such as centrality and density which is crucial for

assessing the impact of AI integration on OSS. As a result, it makes for an engaging, time-efficient,

and overall holistic approach by enabling a comparative analysis and the utilization of preexisting

data.

2.2.1. Social Network Analysis

Social network is recognized as a unique research and structural approach within the social

and behavioral sciences; distinct because it assumes of the importance of relationships among

interacting units or actors (Freeman, 2004; Wasserman, 1994). Broadly speaking, a social network is

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 11

constructed from relational data and can be characterized as a collection of social entities, including

individuals, groups, and organizations (Oliveira, 2012). Social network theory models these social

entities as nodes in a graph, while the connections between them, denoting relationships, are depicted

as the graph's edges. Therefore, if two individuals share a relationship, they are directly connected

within this graphical model (Madey, 2002), see figure 1. These relationships can either be of personal

or professional nature and can range from casual to a closer familiar bond. Besides social relations,

edges can also represent flow of information, money, goods, transactions or similarities among others.

Figure 1: Social network

Oliveira and Gama (2012) also discuss how social networks can be modeled using different

types of graphs based on the direction of their links. Undirected graphs connect pairs of nodes without

any order, meaning the relationship goes both ways equally. Directed graphs, or digraphs, include

edges with a set direction, indicating that the relationship between nodes has a specific orientation. A

value can also be assigned towards edges where a distinction can be made between unweighted and

weighted graphs. Unweighted graphs are either present or not. Whereas weighted graphs provide

richer information. According to Granovetter (1973), the weight of a tie is typically determined by its

duration, emotional intensity, frequency of interaction, intimacy and service exchange. As a result,

weak relationships typically reflect acquaintances while strong ones typically indicate close friends.

2.2.1.1. Network Measures

In this section, we will explore various metrics that are important for analyzing social networks.

These measures offer valuable insights into the network's structure, which is crucial for the analysis of

this study. Subsequently, these measures can be divided based on the preference to analyze small

units, like actors, or the entire network. Both will be considered as they are all relevant to answering

the research question.

Actor-Level Measures

Centrality is an over-all measure of how the position of an actor is within the overall structure

of the social network and can be computed through to several metrics. In this study, three metrics are

chosen (degree centrality, betweenness centrality and closeness centrality), because they are the most

frequent used centrality metrics in SNA (Newman, 2010). These measures define the importance of

actors within a network. Greater centrality among these nodes or actors, would signify to more

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 12

powerful actors in the network since their central position gives them several advantages. For

instance, giving them access to other actors more quickly. You can find the definitions of these

centrality measures below.

Each of these metrics offers a unique angle on a node's significance. Degree centrality

assesses influence established on the number of direct connections a node has, providing a

straightforward but somewhat limited perspective since it does not consider the broader network

context. On the other hand, closeness and betweenness centrality offer insights based on the global

network structure, capturing a node's influence more comprehensively by considering its position

relative to all other nodes in the network, thus reflecting its importance from both a local and global

standpoint (Sheng J. D., 2020).

• Degree Centrality: Measures the number of direct connections a node has (Degenne, 1999).

• Betweenness Centrality: Quantifies how often a node acts as a bridge along the shortest

path between two other nodes (Oliveira, 2012). High betweenness are often knowledge

brokers, connecting multiple communities (He, 2012; McClean, 2021)

• Closeness Centrality: Indicates how close a node is to all other nodes in the network,

reflecting cohesion or fragmentation (Degenne, 1999).

Network-Level Measures

Network-level measures such as density, clustering coefficient, and average path length

provide comprehensive insights into the overall structure and connectivity of a network. These

metrics are essential for understanding how densely connected the nodes are, how tightly knit groups

form, how efficiently information travels across the network.

• Density: Explains the general level of connectedness in a network, representing the

proportion of existing links (Degenne, 1999).

• Clustering Coefficient: Assesses the degree to which nodes tend to cluster together

(Newman, 2010). Considered to be a measure of the “cliqueness” of a network.

• Average Path Length: Reflects the overall connectedness and efficiency of information

flow across the network. Defined as the average distance between all pair of its nodes

(Newman, 2010).

2.2.2. Application of Social Network Analysis on Open Source Software

The literature on OSS through the lens of SNA offer a wide variety of different insights. For

instance, Concas et al. (2008) studies successful OSS projects via SNA to analyze developer mailing

lists and social network interactions, providing insights into communication flows and coordination

within OSS communities. Meanwhile, Torres et al. (2011) applies SNA techniques to understand the

role of core groups in fostering community participation. Further, Martínez-Torres et al. (2015)

explored the dynamics of OSS communities over time, focusing on the roles of users who join and

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 13

leave, and how these changes affect the network’s structure. Additionally, Zanetti et al. (2012)

provides a detailed analysis of collaboration network in OSS, examining structural features and their

implications on community cohesion. Research has also been conducted on open source projects on

the platform GitHub utilizing SNA. The study of Kabakus (2020) offers insights into the

characteristics of the GitHub network, including popular programming languages, repositories, and

developers. Whereas Schreiber (2023) displays the community of TensorFlow through SNA, where

they identify key players and relationships between those. Lastly, Wu et al. (2023) examines the role

of social dependency networks in developer and module networks.

All studies show significant contribution towards the field. However, this study is one of the

first attempts to include the integration of Copilot and its effect it would have on the social network

dynamics and collaboration patterns through the lens of SNA. As a result of the fact that Copilot is a

very recent AI tool, little research has been conducted on its effect on social network dynamics and

collaboration patterns (Friedman, 2021). Thus, this research aims to contribute to the field by

exploring this topic. The application of SNA in this research is critical for understanding how the

integration of AI might transform these social network dynamics and collaboration patterns in OSS

projects. By leveraging SNA, this study aims to uncover how AI technologies influence both the

structural properties of networks and behavior of individuals within them, providing a comprehensive

view of the changes that the AI integration brings to the environment in OSS. This analysis is crucial

for developing strategies that improve the efficiency and cohesion of OSS communities within the AI

revolution.

2.3. AI Integration in Open Source Software Ecosystem

The integration of AI into OSS projects is transforming the landscape of software

development. AI enables computers to perform complex tasks that mimic human-like cognitive

functions, such as natural language processing, decision-making and visual perception (Hazmi Hassri,

2023). This rapid transformation, characterized by the integration of AI into software development

practices, is reshaping how code is developed for new software (Zohair, 2018). According to the study

of Bird et al. (2022) software development is changing from only writing code to letting the tool write

it. Where developers now have to understand the code that the tool writes rather than finishing it

themselves. This could indicate a more necessity to comprehend the interactions that take place

between developers and AI-powered tools. This adoption is now seen with the use of AI assistants for

programming. AI is already used for different goals and in various areas of software engineering (A.

Mashkoor, 2022). GitHub Copilot and ChatGPT are examples of these tools that have increasingly

been adopted in the past years (Kharrufa, 2023). According to Crawford et al. (2023) AI and ML have

the potential to become valuable to software engineering, not just on the active parts of software

development, but also on project management side. GitHub Copilot can function similarly to an

automatic program synthesis tool. Which is defined as the process where source code is created from

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 14

a given definition, such as a description in natural language or through specific examples of what the

input and output should be (Sobania, 2022). But fundamentally it is designed as an AI pair

programmer that rather assist than completely take over the software development process.

Nevertheless, the usage of the technique is already beginning to form a standard tool in software

development.

The integration of AI tools like Copilot in OSS projects shows examples of changing effects,

serving as a powerful assistant that not only enhances capabilities of developers but also introduces

new methods and approaches to software creation. As discussed by Savary‐Leblanc et al. (2022) these

software assistants empower engineers by enriching their design, construction and maintenance tasks

with advanced autonomy and intelligence, fundamentally improving productivity and creativity

within the software engineering environment. This large language model is also recognized by

Gunnell et al. (2024) as an important trend in scientific computing. Advancements in LLM have

helped in the use of application of open source platforms. As the documentation is open and available

for many packages. A distinct production version of the model Codex powers GitHub Copilot. The

LLM is a GPT-3 based language model with up to 12 billion parameters which has been pre-trained

on 159 GB of code samples from 54 million GitHub repositories (Brown, 2020). When using Codex,

it shows a good performance in solving a series of handwriting Python programming problems (Chen,

2021). Copilot can be installed as an add-on for the Visual Studio Code development environment

(Sobania, 2022). AI-trained tools can possibly move optimization engineers, data scientists and

machine learning specialists to higher levels of productivity.

However, some liabilities are discussed in the paper of Dakhel et al. (2023). The authors have

examined and compared Copilot code-generation capabilities with humans. The outcomes

demonstrate that Copilot is capable of producing accurate and ideal answers for a number of

significant algorithm design issues. Nevertheless, the developer’s prompt’s depth and conciseness

could play an important factor in how well-written the resulting code is. Meaning that Copilot can be

an asset in software engineering if it is used by expert developers that are familiar with problem

context and correct coding improvement methods.

Lastly, Shah (2019) highlight the importance of promoting collaboration between different

roles within software engineering, as they can bring diverse expertise to develop holistic solutions.

While Wang et al. (2019) describes opportunities for infusing AI into team collaboration practices.

Finally, Washizaki (2020) present a vision called “value co-creation of software by AI and

developers.” The paper addresses the need for collaborative efforts and exchanges between

developers, where they should work together with developers and with assistance of AI to achieve this

value co-creation. All these papers mention several fundamental transformations within the landscape

of software development where collaboration and social network dynamics can play a pivotal role.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 15

2.4. Hypothesis development

Based on the research question and the exploration of relevant theory, hypotheses are

developed. The hypotheses are categorized into two subsets: collaboration network and network

structure. Each based on the metrics as discussed within the theory. Allowing to capture the social

network dynamics and collaboration patterns to address the research question.

2.4.1. Collaboration Network

First of all, hypothesized is that AI integration of Copilot will affect the collaboration

network. Various studies emphasize a positive impact on programmers’ productivity (Bird, 2022). For

instance, the study of Imai (2022) conducted an experiment comparing Copilots programming to that

of a developer, where Copilot generated the most lines of code. In another study Dakhel et al. (2023),

Copilot demonstrated promising results in its ability to solve most algorithmic problems. These

studies indicate an enhancement of productivity for programmers. This could possibly result in more

centralized networks on OSS platforms. The study of Schreiber (2023) highlight how productivity in

open source software projects often lead to groups becoming more central in project development.

Based on that we can argue that AI integration could potentially lead to a higher degree of centrality.

Conversely, AI could also potentially decentralize a community itself by lowering entry

barriers for new contributors. Engineers reason, according to Gottlander and Khademi (2023) that

widespread of AI coding assistants can lower the profession entry barrier. As a result of the lower

entry barrier, new contributors could join and participate in projects more rapidly. The study of

Steinmacher et al. (2018) also discuss in how lowering entry barriers can lead to an increase in

number of contributors.

Therefore, because of the nuanced view, the following dual outcome is hypothesized:

Hypothesis 1a: AI integration in OSS will lead to greater centralization of the OSS network.

AND

Hypothesis 1b: AI integration in OSS will lead to greater decentralization of the OSS

network.

In graph theory, betweenness centrality represents the degree to which nodes stand between

each other, acting as a bridge between two other nodes (Oliveira, 2012). These nodes can link

multiple communities (He, 2012; McClean, 2021). Here, theorized is, a decrease in reliance on these

specific key developers that form as bridges due to several reasons. AI can lead to the automation of

coding task (Dakhel, 2023), and this may reduce dependence on these key developers within a

network. Also, because of the tool providing coding suggestions (Savary‐Leblanc, 2022), it might

decentralize the coding process, resulting in contributors feeling less necessity to ask for advice on

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 16

problem solving. Besides the theorization of a reduction in intermediary roles, one could argue that

Copilot encourages direct collaboration between team members by providing relevant information

through these code suggestions and thereby reducing dependency on knowledge brokers or central

nodes for guidance. Hence this conceptualized hypothesis:

Hypothesis 2: AI integration in OSS will lead to a decrease in the average betweenness

centrality of the network.

Finally, during interactions in the development of a project, users may need help from

somebody else but do not have a direct link towards that specific individual. In SNA, closeness

centrality can indicate in how many steps a node can reach every other node from a given node

(Freeman, 2004); in this case, the person who needs assistance from somebody else. Research like the

study of Li et al. (2022) indicate that the introduction of AI can positively impact knowledge sharing.

Another research discusses how AI can help redesigning roles and processes, making it easier for

knowledge workers (important nodes) to share information (Sundaresan, 2022). Thus, this study

hypothesizes a positive relationship between the closeness centrality of a developer network and AI:

Hypothesis 3: AI integration in OSS will lead to an increase in the average closeness

centrality of the network.

2.4.2. Network Structure

Subsequently, this study also hypnotizes that the introduction of AI affects the network

structure of communities on GitHub. The first theorization regards the density, which explains the

level of connectedness in a network. In other words, representing the proportion of existing links

(Degenne, 1999). According to social network theory, tools that facilitate communication and reduce

resistance of interaction may increase network density (Borgatti, 2024). And as mentioned, software

engineers speculate that AI potentially will lead to a lower entry barrier (Gottlander, 2023), resulting

in an increase of contributors (Steinmacher, 2018). Which could lead to an increase in participation

and collaboration, increasing the number of connections within a network. Following up on that,

research on AI and organizational connectedness have shown that AI-enabled platforms that enable

communication and collaboration have been found to stimulate the overall connectedness of teams, or

within this study, networks (Li N. Y., 2022). Therefore, it is hypothesized that AI integration will lead

to an increase in density for OSS communities:

Hypothesis 4: AI integration in OSS will lead to an increase in density.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 17

Within social network theory, the clustering coefficient is described as the extent to which

cliques form within a network (Newman, 2010). As discussed before, AI could potentially enhance

knowledge sharing within communities and let individuals work more closely together (Sundaresan,

2022). Combined with the study of Li et al. (2022) that emphasized the role of AI and its effect on

organizational connectedness, we theorize that the introduction of Copilot will lead to an increase in

the average clustering coefficient. Which means a shift from more fragmented groups within

communities towards more cohesive networks within the open source community:

Hypothesis 5: AI-integration in OSS will lead to an increase in the average clustering

coefficient.

The last hypothesis introduces the average path length. Which describes how fast information

can travel from point A to point B within a network. Based on multiple studies, it is argued that this

information will spread more quickly than traditional OSS projects. For example, Schreiber (2023)

describes how using the AI tool could boost productivity. Furthermore, research by Dakhel et al.

(2023) shows that, when utilized by professionals, Copilot can be a useful tool in software projects.

Thus, this study argues that appropriate application of AI in software development could result in a

more effective and efficient flow of information:

Hypothesis 6: AI-integration in OSS will lead to a decrease in the average path length.

2.5. Conceptual model

Based on the argumentation in the previous hypothesis section, we can construct a conceptual

model for our research. Additionally, the number of pull requests is incorporated as a control variable,

ensuring that the analysis accounts for underlying activity levels per project. In figure 2, the

conceptual model is visualized.

Figure 2: Conceptual model

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 18

3. Methodology

The section includes the methodology section, which describes the data collection process

used in this study. Here, the development of the construction of the networks is also shown.

Following this, the timeframe is discussed here. Additionally, a statistical framework is offered.

Lastly, a transparent summary of the use of AI tools in this research is provided in appendix A.

3.1. Data Collection

To empirically test our hypotheses, data were collected from GitHub, using the GitHub

GraphQL API, specifically targeting pull request activity within all repositories maintained by GitHub

and Google (GitHub, 2001). This data was methodically organized into one panel dataset in April

2024, which includes observations for both companies from 2020 until the end of 2023. Ultimately, a

total of 37.9868 observations belonging to 1265 repositories were extracted.

Using the pull request data, the repository networks were constructed. These were aggregated

on a monthly basis within the time frame. For GitHub, 2078 networks were aggregated and

constructed in total, whereas for Google, 8155 networks were aggregated and built. To elaborate on

that, one network corresponds to one repository, and within that repository, a network is built every

month if pull request data is available for that specific repository and month.

Based on the constructed networks a dataset was constructed to capture social network

metrics for both companies. After the removal of incomplete observations and the outliers’ analysis, a

more refined dataset was created which allows for a comparative analysis of the technical preview

effects of the introduction of GitHub’s Copilot. Ultimately, table 1 shows the data that was utilized to

capture the difference in pre- and post-treatment for our treatment group GitHub in comparison with

our control group Google. Representing the timeframe for the technical preview, which starts from the

beginning of 2020 until the public release of July 2022.

Table 1: Summary of total of social network measures during technical preview effect

Company Social network measures

GitHub 880

Google 4.168

Total Observations 5.048

The detailed computations of all the social network measures applied in this study, including

formulas, are provided in appendix B. The formulas are expressed for an undirected graph and if

necessary, the formulas are normalized due to the different sizes of the constructed networks.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 19

3.2. Construction of the Network

After collecting the data from GitHub, the networks were constructed, which is described in

this section. In each relational transaction, contributors are identified as nodes. The edges represent

the relationships or interactions between these nodes, established through pull requests. Each

relational transaction begins with a pull request initiated by a contributor, who is identified as the

source node (Oliveira, 2012). The target nodes are those that engage within this pull request through

actions such as commenting, reviewing or committing code in response (GitHub, sd). For a link

(edge) to be established between two contributors, they must participate in that same transaction,

either one being the source and the other a target, or both being targets collaborating within the same

transaction.

Figure 3 illustrates the network’s construction process. Here, two pull requests are joined

based on the same repository ID, year, and month. Appendix C provides a more detailed case study of

one of the constructed networks from the company GitHub.

Figure 3: Construction of the social networks on GitHub

Even though the pull request data shows in what direction nodes are connected with each

other, this study constructed undirected graphs instead of directed graphs for several reasons

(Oliveira, 2012). The construction process becomes easier because one treats all observations equally

in an undirected graph and this would require less computational power compared to directed graphs.

Additionally, undirected graphs used in the calculation of our metrics have no bearing on the final

results. Furthermore, this makes the calculation of the measures simpler in terms of having a clearer

insight into the structure and dynamics of the network.

The assumption is made that within the same transaction, each node is connected to the other,

reflecting their engagement with each other around the pull request. This approach creates a detailed

map of collaboration among nodes within repositories on a monthly basis, capturing the dynamics of

interaction between users. By constructing the network in this matter, we can accurately represent the

patterns of collaboration and engagement on GitHub, which is crucial for analyzing the collaboration

patterns and social network.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 20

Ultimately, in Python, these networks are created and grouped by repository ID, month and

year. See figure 4 for a limited timeframe pre- and post-treatment for the repository called training-

kit.

Figure 4: Construction of repository training-kit

3.3. Two cases

This study will treat the collected data as panel data to evaluate the integration of Artificial

Intelligence (AI) into open source projects. To calculate and compare SNA metrics, it investigates the

effect across two different levels (actor and network). Additionally, two distinct cases (GitHub and

Google) are examined. The time span includes the technical preview phase, starting at the beginning

of 2020 and continuing until the public release launch. Which allows for a comparison of the effects

before and after the adoption of the AI tool for our treatment group GitHub. The timeframe is shown

in figure 5.

Figure 5: Timeframe technical preview effect

3.4. Difference-in-Differences Approach

Differences-in-differences (DiD) is a popular method for estimating causal effect in non-

experimental setting (Roth, 2023). This approach will be used to determine the effect of the

integration of AI on OSS projects. Within this study, the technical preview period is examined.

GitHub serves as the treatment group, while Google, which was introduced to Copilot at a later date,

acts as the control group. This setup allows us to compare changes in outcomes over time between

these two groups. DiD approach enables the comparison of these changes, accounting for time-

invariant unobserved characteristics as typically analyzed in panel data studies. This method

effectively isolates the impact of specific interventions by comparing temporal changes across groups

(Fredriksson, 2019).

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 21

3.5. Regression Models

To quantitatively evaluate the influence of AI integration on OSS projects within the context

of SNA we adopt the widely used two-way fixed effects (TWFE) model for DiD analysis, as

described by Roth et al. (2023). This model calculates the causal impact by calculating and comparing

the average effects over time between two groups. Those exposed to an intervention (treatment) and

those that are not (control). In this case, GitHub is acting as the treatment group, whereas Google

functions as the control group.

Furthermore, this study conducts an actor- and network-level analysis of GitHub and Google.

Here, centrality measures and network metrics are included. Additionally, pull request is incorporated

as a control variable in the regression model, which allows controlling for the activity level and helps

to distinguish between activity level and the influence of Copilot for different measures. See table 2

for the variables.

Table 2: Variables actor-level and network-level

Context Variables

Treatment Actor-level Average; Degree Centrality, Betweenness Centrality, Closeness

Centrality

Control Actor-level Average; Degree Centrality, Betweenness Centrality, Closeness

Centrality

Treatment Network-level Density, Average Clustering Coefficient, Average Path Length

Control Network-level Density, Average Clustering Coefficient, Average Path Length

Control variable Pull Request Count

The TWFE approach, however, assumes uniform treatment effects across different units and

time periods; it does not account for potential changes in treatment effects over time. Given these

constraints, this study does not explore the varied impacts of AI tools across different OSS

communities. Instead, a focus is placed on specific instances where the AI introduction is consistent,

simplifying the analysis by maintaining homogenous treatment timing. This is especially relevant for

all the SNA variables, such as density, clustering coefficient, and average path length. Allowing for

clear observation of the general effects of AI tools on these network characteristics without the

complexity of varying treatment effects.

However, given the fact that TWFE assumes a homogenous treatment effect, it may not be as

effective in capturing diverse impacts on the centrality measures unless data is segmented to account

for within-group variations. As a result, to align with the two-way fixed effects, this study calculates

the monthly average of centrality measures for each network. Averaging these measures helps to

smooth out individual outliers and considers the fact that not every node will be present in every

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 22

network on monthly basis. Moreover, it would stay focussed on overarching trends within the network

with the integration of AI, rather than specific individual nodes who might or might not be present in

the subsequential network. This approach not only supports the TWFE model’s assumption of

homogeneous treatment effect, but it will also improve the statistical robustness of the analysis. By

examining these monthly effects, this paper aims to get a clearer understanding of the developments

in the OSS communities regarding social network dynamics and collaboration patterns. Therefore, the

regression model that is employed, is specifically tailored to fit within this TWFE framework:

𝑌𝑖𝑠𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡

Where

• 𝑌𝑖𝑠𝑡: Dependent variable (e.g., Avg_Degree_Centrality).

• 𝛼𝑖 : Individual Fixed Effects

• 𝛾𝑡: Time-specific fixed effects.

• 𝑃𝑅_𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡 : The number of pull requests made by the actors.

• 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡: A binary variable indicating if the observation is from GitHub (1) or

Google (0).

• 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡: A binary variable indicating if the observation is from the

period after the technical preview (1) or before (0).

• 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡: The interaction term between treatment and

technical preview.

• 𝜖𝑖𝑠𝑡 : The error term, capturing random variation in 𝑌𝑖𝑠𝑡, not explained by the model.

The equation within the context of our study aims to find if the dependent variables social

network metrics, will change due to the integration of Copilot for GitHub compared to Google. Where

𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
 represents the number of pull requests per observation. The presence of the treatment

group is indicated by the binary variable 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡, which takes the value of 1 for GitHub and 0

for Google. The variable 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡 indicates whether an observation is from the period

after the intervention, in this case, the technical preview of Copilot, with 1 for the period after the

preview and 0 for the period before. Additionally, the interaction term

𝛽4𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡 combines the effects of being in the treated group and the time

period after the technical preview.

The symbols 𝑖, 𝑠, and 𝑡 represent individual actors, specific observations, and time periods.

This means that the model accounts for variations across individuals, different data points for those

individuals, and changes over time.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 23

The TWFE model accounts for both individual fixed effects (𝛼𝑖), which control for

unobserved characteristics that are constant over time for each invidual, such as specific repository

characteristics, and time fixed effects (𝛾𝑡), which represent temporal changes that effect all

observations over time. These simplifications allow the model to crearly assess how AI integration on

OSS projects influence social and collaboration dynamics over time, represented by months, using

pre-calculated SNA metrics at either the actor or network level.

3.5.1. Hypotheses

3.5.1.1. Collaboration Network

Hypothesis 1: AI integration affects the collaboration network, potentially centralizing or

decentralizing the network.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑔𝑟𝑒𝑒 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡

Hypothesis 2: AI integration will lead to a decrease in the average betweenness centrality of

the network.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡

Hypothesis 3: AI integration will lead to an increase in the average closeness centrality of the

network.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡

3.5.1.2. Network structure

Hypothesis 4: AI integration in OSS will lead to an increase in density.

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡

Hypothesis 5: AI-integration in OSS will lead to an increase in the average clustering

coefficient.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 24

Hypothesis 6: AI-integration in OSS will lead to a decrease in the average path length.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡

The variables are all defined in accordance with the statistical framework and hypotheses,

Table 3 provides an overview.

Table 3: Regression variables

Variables Description

Independent Variables

Treated

Technical Preview

Treated x Technical Preview

Indicating presence of treatment group.

Indicating presence of exposed to technical preview.

Interaction term between treatment and technical preview.

Dependent Variables

Degree Centrality

Betweenness Centrality

Closeness Centrality

Density

Clustering Coefficient

Average Path Length

Measures node connectivity in network.

Tracks control over network’s information flow.

Indicates speed of accessing network nodes.

Proportion of potential connections realized.

Extent of nodes’ interconnectivity, forming cliques.

Average distances between all node pairs.

Control Variable

Pull Request Count

Number of pull requests.

For each hypothesis, the regression model is calculated using Stata, and the results are

interpreted and compared to understand the effects of AI integration on OSS projects.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 25

4. Results

This section presents the findings from the analysis. Firstly, a review is given for the cleaning

and preparing of the data. Then, descriptive statistics are presented. Following this, the results of the

parallel trends are discussed. Ultimately leading to the main results of the statistical analysis.

4.1. Data Cleaning and Preparation

4.1.1. Outliers Analysis

During the data analysis, several severe outliers across multiple variables were identified.

Outliers are frequently encountered while collecting data, which can reduce the reliability of results. It

also reduces data efficiency and introduces a large bias into the outcomes. These outliers were notably

extreme and unreal, likely due to incorrect calculations in Python when computing the measures.

Studies like Kwak et al. (2017) emphasize the necessity of addressing this issue. The identified

outliers, a total of 502 observations, were replaced with the average of the mean values from both

GitHub and Google networks. This approach allowed us to retain the total number of observations,

which was crucial given the limited number of data points available. Omitting these observations

entirely would have further reduced the sample size, potentially compromising the robustness and

reliability of the analysis.

The primary reason behind these extreme outliers was linked to the construction of the

network measures. Upon closer examination, A discovery was made that many constructed networks

were not connected within a repository. This lack of connectivity likely led to the calculation of

measures that were not applicable or realistic. Most of the social network analysis (SNA) metrics used

in this study typically range from 0 to 1. However, the disconnected nature of these networks resulted

in values that fell outside this expected range. The dataset’s integrity could be preserved, and the

reliability of the subsequent analysis was improved by substituting mean values for outliers.

4.1.2. Removal of Incomplete Observations

In addition to addressing outliers, a significant number of observations were removed due to

the lack of sufficient data. 2,767 observations, where more than four variables were empty or

indicated as zero, were excluded from the statistical analysis. This step was necessary to ensure the

quality and reliability of the data. Including such incomplete observations could lead to biased or

inaccurate results, as the absence of zero values might distort the analysis (Kwak, 2017).

4.2. Descriptive Statistics

The descriptive statistics for both groups are presented in Table 4 and Table 5, respectively,

covering observations from the start of 2020 until the end of July 2022. It is important to note the

significant difference in the number of observations between GitHub and Google. This difference

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 26

arises from the larger volume of pull request data available for Google compared to GitHub. Apart

from this, the descriptive measures of the variables appear quite similar between the two groups.

Table 4: Descriptive statistics GitHub

GitHub

Variable Observations Mean Std. Dev. Min Max

Avg_Degree_Centrality 838 0.717698 0.313089 0.0095656 1

Avg_Betweenness_Centrality 838 0.0605625 0.0986475 0 0.333333

Avg_Closeness_Centrality 838 0.8099672 0.235539 0.1555556 1

Density 838 0.7197618 0.313614 0.0095656 1.31338

Avg_Clustering_Coefficient 838 0.4486482 0.4233635 0 2.3067

Avg_Path_Length 731 1.242078 0.3362158 1 2.842208

PR_Count 838 39.53461 115.1027 2 1070

Table 5: Descriptive statistics Google

4.3. Parallel Trends Test

For the DiD approach to be valid, it is essential that the parallel trends assumption holds,

meaning that the treatment and control groups must exhibit similar trends in the pretreatment period

(Ryan, 2015). This is crucial because the control group serves as the “counterfactual,” representing

the unobserved outcome of the treatment group had no intervention occurred. Since the parallel trends

assumption involves an unobservable counterfactual, it cannot be proven; however, reasonable

evidence can support it. To test the parallel assumption, the similarity of linear trends between the

treatment group and control groups are examined through statistical analysis utilising a treated time

interaction term (Ryan, 2015). Here, the binary variable ‘treated’ is indicated with either the treatment

Google

Variable Observations Mean Std. Dev. Min Max

Avg_Degree_Centrality 3,989 0.7590317 0.2766065 0.002097 1

Avg_Betweenness_Centrality 3,989 0.0627614 0.095923 0 0.3333333

Avg_Closeness_Centrality 3,989 0.8492892 0.1961159 0.010989 1

Density 3,989 0.7597258 0.2773711 0.002097 1.31338

Avg_Clustering_Coefficient 3,989 0.4540545 0.4306082 0 2.3067

Avg_Path_Length 3,778 1.22867 0.2875217 1 2.841667

PR_Count 3,989 31.11682 111.8373 1 2000

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 27

group (1) or the control group (0) and ‘time’ refers to the period before the introduction of the

technical preview. Table 6 presents the results of this parallel test for the pretreatment period.

Table 6: Parallel trend test results

Variable Interaction Term Coefficient Std Err. P-value

Avg_Degree_Centrality treated: time -.0006363 .0028056 0.821

Avg_Betweenness_Centrality treated: time .0003258 .0008395 0.698

Avg_Closeness_Centrality treated: time -.0002268 .0019832 0.909

Density treated: time -.0013196 .0026778 0.622

Avg_Clustering treated: time .0113265 .003524 0.001***

Avg_Path_Length treated: time .002662 .0032596 0.414

PR_Count treated: time .5550582 1.094782 0.612

Note: *p<0.1; **p<0.05; ***p<0.01

The results indicate that for most variables, there is no significant difference in trends

between the treatment and control groups in the pretreatment period, which is identified by the treated

variable not having statistically significant p-values for our social network metrics and pull request

count metrics. However, it is important to note that the p-value for the average clustering coefficient

is p<0.001. This means there is strong evidence against the null hypothesis (which states that the

coefficient is zero), suggesting that the interaction term has a statistically significant effect on the

dependent variable Avg_Clustering. This indicates that the effect of time on the average clustering

coefficient is different for the treatment group compared to the control group. Therefore, it is essential

to approach this variable with caution when interpreting the outcomes.

4.4. Main Analysis Results

Within this section a description is given for all regression models used in the analysis with

the adoption of the two-way fixed effects (TWFE) model for the DiD analysis. See table 7 for a

summary of the DiD model, examining its relationship with the interaction between treatment and

technical preview.

Table 7: Main results

Dependent Variable Coefficient Std Err. P-value R-squared

Avg_Degree_Centrality -.006615 .0200327 0.741 0.5595

Avg_Betweenness_Centrality .0011479 .0079902 0.886 0.2460

Avg_Closeness_Centrality -.0020516 .0151706 0.892 0.5130

Density -.0116017 .0209683 0.580 0.5511

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 28

Avg_Clustering .0564138 .0312898 0.072 0.3694

Avg_Path_Length .0312104 .0251279 0.215 0.5816

It is notable that almost none of the dependent variables show a statistically significant

relationship with the interaction term between treatment and technical preview. The p-values for most

of the variables are above conventional significance levels (p > 0.05 or 0.10), indicating that the

interaction term does not significantly affect these social network metrics. The only variable that

shows results below the p<0.10 threshold is Avg_Clustering. But, overall, this indicates that the

introduction of AI Copilot on GitHub does not significantly alter these social network dynamics

compared to the control group.

It is essential to approach the interpretation of these results with caution, especially

considering the p-value for Avg_Clustering below to the p<0.10 threshold, indicating a potential area

for further research. However, as mentioned in the section above, this variable could also have been

influenced by fixed effects. The results suggest that the AI integration of Copilot does not have a

statistically significant effect on most of the social network metrics. Table 8 presents our support for

the hypotheses.

Table 8: Support for hypotheses

Hypothesis Dependent Variable Support for

Hypothesis

H1a: AI integration in OSS will lead to

greater centralization of the OSS network.

Avg_Degree_Centrality No

H1b: AI integration in OSS will lead to

greater decentralization of the OSS network.

Avg_Degree_Centrality No

H2: AI integration in OSS will lead to a

decrease in the average betweenness

centrality of the network.

Avg_Betweenness_Centrality No

H3: AI integration in OSS will lead to an

increase in the average closeness centrality of

the network.

Avg_Closeness_Centrality No

H4: AI integration in OSS will lead to an

increase in density.

Density No

H5: AI integration in OSS will lead to a

increase in the average clustering coefficient.

Avg_Clustering Only at 0.10

threshold

H6: AI integration in OSS will lead to a

decrease in the average path length.

Avg_Path_Length No

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 29

5. Discussion

Artificial Intelligence (AI) has become a prominent topic in open source communities. This

technological advancement is reshaping the landscape of software development (Zohair, 2018),

shifting the focus from traditional coding practices to a model where new contributors, in

collaboration with AI, primarily understand and utilize code for software creation (Bird, 2022). Such

a paradigm shift raises questions about how social network dynamics and collaboration patterns may

evolve. Therefore, this research specifically investigates how the increasing adoption of AI Copilot

(Kharuffa, 2023) will introduce different approaches in software creation (Savary-Leblanc, 2022) and

what effect it could have on various social aspects for GitHub communities.

5.1. Findings

The study adopted the two-way fixed effects (TWFE) regresssion model for DiD analysis

(Roth, 2023). The key goal for this research is to find out if the integration of AI in open source

software (OSS) projects impact the social network dynamics and collaboration patterns, compared to

traditional OSS projects. The empirical results reveal that none of the dependent variables show a

statistically significant relationship. This indicates that there is no support for the theorization that the

introduction of AI Copilot significantly alters social network dynamics compared to the control group.

Therefore, suggesting that the anticipated impacts of AI integration on social network dynamics and

collaboration patterns may not be as pronounced or may require further data and refined analysis to

detect.

The statistical analysis yielded several unexpected results. Most of the key metrics of the

social network analysis contained a notably high p-value, above a p<0.05 significance threshold. For

instance, average degree centrality has a coefficient of (-0.006615) with a p-value of (0.741),

suggesting no significant change post-intervention. Similarly, betweenness centrality (coefficient

0.0011479, p-value 0.886) and density (coefficient -.0116017, p-value 0.580) also show no significant

variations. The only metric approaching significance is average clustering (coefficient 0.0564138, p-

value 0.072), indicating a potential and at a p<0.10 threshold significantly increase. However, this

variable should be approached with caution, as the paralell trend may be violated for this specific

variable. The results are unexpected, particularly given the intervention of Copilot, which was

hypothesized to impact these network metrics significantly. Previous research in structural

intervention in networks reported more pronounced changes. For instance, studies by Sun (2023)

demonstrated significant impacts of structural interventions on network efficiency and collaborations

patterns.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 30

5.2. Implications

The insignificant results of social network analysis provide nonetheless several relevant

contributions to the academic field. The theoretical framework presents an initial review of existing

theories which analyses how AI can potentially affect the social network dynamics and collaboration

patterns on OSS repositories on GitHub. Combined with the conceptual framework, it constitues an

interesting and novel view for others scholars to built further upon. Moreover, by examining pull

request data, this study exposes potential pitfalls on the reliance on a single type of interaction with

definining the edges for these complex networks. Li et al. (2022) ackownledges this insight as well

that while pull request offer rich and valuable data, relying solely on PR data present challenges,

where it can miss important interactions to capture the real social network dynamics. In addition, the

usage of averaging techniques for certain metrics has revealed the potential that such methods can

potentially hide significant variations in network metrics. This reflection is valuable towards future

research in social network analysis, where this study suggest more nuanced aggregation methods

might be necessary to capture the true dynamics of community interactions. Studies like those of

(Borgatti, 2024; Lee J. B., 2021) support the same view that temporal granularity can significantly

impact the interpretation of social network data. Finally, this is one of the first attempts to capture the

effects of the introduction of Copilot through the lens of social network analysis on GitHub’s social

network dynamics and collaboration patterns. This approach provides a valuable foundation for future

research. By exploring existing theories, forming methodologies and identifying potential challenges,

this study provides insights for subsequent research to refine these techniques and delve further into

this area. Researchers can build on this foundation to develop more comprehensive models and

analyses to better capture the dynamics of software development communities.

5.3. Limitations

A possible explanation for these insignificant results is the limited amount of data being used.

The analysis was restricted to a smaller subset of pull request data from GitHub, possibly insufficient

to capture impacts of the introduction of Copilot. Larger datasets typically provide more robust

insights, reducing noise and variability than alter effects. This limitation align with findings by

Dhawan et al. (2021), who highlights the need for large datasets in social network analysis for

accurately defining and evaluating network communities. Moreover, the method of averaging node

activity could also weaken significant variations. As discussed in the methodology section, averaging

can smooth out the variables which in return hides true variability and dynamics over the constructed

networks. In other words, making it challenging to detect true changes. Freeman (2004) highlights

that centrality measures are sensitive to network change. The involvement of compiling data from

multiple points into a single aggregated measure, or within this study, taking the average of certain

metrics is also discussed by Borgatti et al. (2024). The authors mention that it could potentially vague

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 31

significant network dynamics by smoothing out these short-term variations. Lastly, the introduction of

Copilot may have had a more subtle or complex effect than anticipated. Network interventions often

lead to multifaceted changes that are not immediately seen in simple metrics. The study by Lima et al.

(2014) suggest that the impact of interventions and user interactions develop progressively, requiring

extended observation to fully understand their significance. Meaning that, within the context of this

study, the introduction of Copilot perhaps could take a much longer time to manifest significantly.

5.4. Future Research

Further research is needed to determine whether the introduction of Copilot could have a

significant impact on network dynamics and collaboration patterns on the GitHub platform. Based on

the conducted research, future studies within this topic should take several factors into account. To

begin with, it is recommended to gather a larger amount of diverse data in order to build social

networks. This means not relying solely on pull request data, as the nature of this data can make

network constructing challenging. This difficulty arises due to the fact that pull requests are not

present every month in the repositories, leading to either the absence of network or the construction of

non-interconnected networks. Additionally, through these unconnected networks a significant amount

of extreme outliers was identified per observation. Which, given the nature of the aforementioned

networks, is most likely the result of errors made during the network’s construction and analysis in

Python. Therefore, it is recommended to establish a more comprehensive network which goes beyond

solely pull request data to incorporating various types of relational data like issues and commits.

Besides incorporating an increasing amount of various data, future studies should consider the issue

of averaging multiple metrics for the calculations of the SNA metrics (i.e., average centrality

measures and average clustering coefficient). As mentioned in the limitations section, temporal

aggregation might influence our metrics. The research of Borgatti et al. (2024) revealed that some

approaches could more accurately capture the true measures by using finer temporal granularity.

These methods could use overlapping time windows to maintain some temporal granurality while

smoothing out the data, or they could be applied on a weekly basis to capture short-term variations

and more immediate impact of interventions. However, it is essential to keep in mind that these results

could also be the consequence of lack of data in creating the networks.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 32

6. Conclusion

This study explored the potential impact of Artificial Intelligence (AI) Copilot before and

after the technical preview of June 2021 on various repositories from GitHub. The study compared

these effects with those observed from Google repositories, which were exposed to AI Copilot at a

later stage. These effects were measured through multiple social network metrics to capture the social

network dynamics and collaboration patterns within these communities. However, the main research

question remains unanswered due to several reasons presented in detail in the results and discussion

section.

Nonetheless, during the process, several important insights emerged. Firstly, significant

attention must be paid to the data collection. Collecting pull request data initially made the most sense

because of their more collaborative nature during the development process on GitHub. But they are

less frequent than issues or commits, which resulted in a lot of networks that were disconnected or did

not exist in that particular month at all. Therefore, additional data sources like issues and commits

could provide a more comprehensive view of the network. Subsequent research should consider

collecting more pull request data or adding other sources. However, due to time constraints, it was not

possible to gather more for this study. In addition to data collection and network construction, the

social network metrics could potentially be calculated in different ways. Perhaps instead of taking the

average at node level, keep track of individual nodes and see how they develop over time before and

after the intervention of Copilot. Alternatively, creating different temporal granular effects can

possibly have an impact on the results.

Open source software project managers, developers, and contributors incorporating AI into

their projects can use this study as a foundation for understanding the creation and construction of

networks within AI context. Future studies can build upon, confirm, or enrich these findings,

addressing the identified limitations and expanding knowledge in this dynamic and volatile

environment of open source communities.

Understanding the potential effects AI may have on GitHub and other OSS platforms is

critical as it continues to impact the industry. GitHub’s social structure encourages cooperation among

communities in software development. The introduction of Copilot, which acts as an assistant or even

replacement for coding tasks, accelerates the dynamics in ways that developers must closely monitor.

There is still a lot to explore within this environment, particularly concerning the social aspects. In

conclusion, this research opens new avenues for future studies aimed at enhancing our understanding

of the social network dynamics and collaboration patterns between AI and developers. Such insights

will be vital in navigating new networks within the AI revolution in OSS.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 33

Bibliography

A. Mashkoor, T. M. (2022). Artificial intelligence and software engineering: Are we ready? Computer,

24 - 28.

Bird, C. F. (2022). Taking Flight with Copilot: Early insights and opportunities of AI-powered pair-

programming tools. Queue, 35 - 57.

Blumberg, B. C. (2014). EBOOK: Business research methods. McGraw Hill.

Bonaccorsi, A. &. (2003). Why Open Source software can succeed. Research Policy, 1243 - 1258.

Borgatti, S. P. (2024). Analyzing social networks. SAGE Publications.

Bosch, J. (2009). From software product lines to software ecosystems. From software product lines to

software ecosystems.

Božić, V. &. (2023). Chat GPT and education. Preprint.

Brown, T. M. (2020). Language models are few-shot learners. Advances in neural information

processing systems, 1877 - 1901.

Chen, M. T. (2021). Evaluating Large Language Models Trained on Code . Cornell University.

Chittibala, D. R. (2024). Advancements in Automated Code Scanning Techniques for Detecting

Security Vulnerabilities in Open Source Software. International Journal of Computing and

Engineering, 16 - 25.

Concas, G. L. (2008). Open Source Communities as Social Networks: an analysis of some peculiar

characteristics. 19th Australian Conference on Software Engineering (pp. 387 - 391). IEEE.

Crawford, T. D. (2023). AI in Software Engineering: A Survey on Project Management Applications.

Crowston, k. S. (2002). Open source software projects as virtual organisations: competency rallying for

software development. IEEE Proceedings - Software, 3 - 17.

Dabbish, L. S. (2012). Social coding in GitHub: transparency and collaboration in an open software

repository. Proceedings of the ACM 2012 conference on computer supported cooperative work,

(pp. 1277 - 1386).

Dakhel, A. M. (2023). GitHub Copilot AI pair programmer: Asset or Liability? Journal Of Systems And

Software/�The �Journal Of Systems And Software.

De Chaisemartin, C. &. (2023). Two-way fixed effects and differences-in-differences with

heterogeneous treatment effects: A survey. . The Econometrics Journal, C1 - C30.

Degenne, A. &. (1999). Introducing Social Networks. London: Sage Publications.

Dhawan, S. K. (2021). Defining and Evaluating Network Communities Based on Ground-Truth in

Online Social Networks. Recent Innovations in Computing: Proceedings of ICRIC 2020.

Singapore: Springer.

Dias, L. S. (2018). Who drives company-owned OSS projects: internal or external members? Journal

of the Brazilian Computer Society.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 34

Dohmke, T. (2022, June 22). The GitHub Blog. Opgehaald van GitHub: https://github.blog/2022-06-

21-github-copilot-is-generally-available-to-all-developers/

Dohmke, T. (2023, November 8). GitHub. Opgehaald van GitHub blog: https://github.blog/2023-11-

08-universe-2023-copilot-transforms-github-into-the-ai-powered-developer-platform/

Duijn, V. &. (2006). What is special about social network analysis. Methodology.

Evers, S. (2000). An Introduction to Open Source Software Development. Technische Universität

Berlin, Fachbereich Informatik, Fachgebiet Formale Modelle, Logik und Programmierung

(FLP).

Fredriksson, A. a. (2019). Impact evaluation using Difference-in-Differences. RAUSP Management

Journal, 519 - 532.

Freeman, L. C. (2004). The development of social network analysis: A study in the sociology of science.

Vancouver : Emperical Press.

Friedman, N. (2021, June 29). Introducing GitHub Copilot: your AI pair programmer. Opgehaald van

The GitHub Blog: https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-

programmer/

Gerber, A. M. (2010). Documenting open sourcing migration processes for re-use. Proceedings of the

2010 Annual Research Conference of the South African Institute of Computer Scientists and

Information Technologists, 75 - 95.

GitHub. (2001, May 2). GitHub GraphQL API documentation. Opgehaald van GitHub Docs:

https://www.scribbr.com/citation/generator/folders/4H6dXOHFOiME7SGMnvxu8F/lists/7jlu

zJNIQgvPGMWoDBzfTn/

GitHub. (2023, January 25). 100 million developers and counting. Opgehaald van GitHub:

https://github.blog/2023-01-25-100-million-developers-and-counting/

GitHub. (sd). About pull requests. Opgehaald van GitHub Docs: https://docs.github.com/en/pull-

requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-

requests/about-pull-requests

Gottlander, J. &. (2023). The Effects of AI Assisted Programming in Software Engineering.

Granovetter, M. (1973). The strenght of Weak Ties. American Journal Of Sociology, 1360 - 1380 .

Gunnell, L. N. (2024). Equation-based and data-driven modeling: Open-source software current state

and future directions. Computers & Chemical Engineering, 181.

Hazmi Hassri, M. &. (2023). The Impact of Open-Source Software on Artificial Intelligence. Journal

of Mathematical Sciences and Informatics.

He, P. L. (2012). Applying centrality measures to the behavior analysis of developers in open source

software community. 2012 Second International Conference on Cloud and Green Computing,

(pp. 418 - 423). Xiangtan.

Horta, V. A. (2022). Detecting topic-based communities in social networks: A study in a real software

development network. Journal of Web Semantics.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 35

Hossain, L. &. (2009). Social networks and coordination performance of distributed software

development teams. The Journal of High Technology Management Research, 52 - 61.

Iacus, S. M. (2012). Causal inference without balance checking: Coarsened Causal inference without

balance checking: Coarsened exact matching. matching. Political analysis, 1 - 24.

Imai, S. (2022). Is github copilot a substitute for human pair-programming? an empirical study.

InProceedings of the ACM/IEEE 44th International Conference on Software Engineering:

Companion Proceedings, (pp. 319 - 321).

Jansen, S. C. (2013). Software ecosystems: Analyzing and managing business networks in the software

industry. Edward Elgar Publishing.

Jansen, S. F. (2009). Sense of community: A research agenda for software ecosystems. Proceedings of

the 31st Inter- national Conference on Software Engineering (pp. 187 - 190). Companion

Volumne.

Jeffrey A. Roberts, I.-H. H. (2006). Understanding the Motivations, Participation, and Performance of

Open Source Software Developers: A Longitudinal Study of the Apache Projects. Management

Science.

Kabakus, A. T. (2020). Githubnet: Understanding the characteristics of github network. Journal o Web

Engineering, 557 574.

Kalliamvakou, E. G. (2014). The promises and perils of mining GitHub. In Proceedings of the 11th

working conference on mining software repositories (pp. 92 - 101). ACM.

Kharrufa, C. B. (2023). Generative Artificial Intelligence Assistants in Software Development

Education: A Vision for Integrating Generative Artificial Intelligence Into Educational Practice,

Not Instinctively Defending Against It. IEEE Software, 52 - 59.

Kilamo, T. H. (2012). From proprietary to open source—Growing an open source ecosystem. The

Journal of Systems and Software, 1467 - 1478.

Kilamo, T. H. (2012). From proprietary to open source—Growing an open source ecosystem. Journal

of Systems and Software, 1467 - 1478.

Kochhar, P. S. (2021). Moving from Closed to Open Source: Observations from Six Transitioned

Projects to GitHub. IEEE Transactions on Software Engineering, 1838 - 1856.

Kwak, S. K. (2017). Statistical data preparation: management of missing values and outliers. Korean

journal of anesthesiology,, 70.

Latorre, R. S. (2017). Measuring social networks when forming information system project teams. The

Journal of Systems and Software, 304 - 323.

Lee, G. K. (2003). From a firm-based to a community-based model of knowledge creation: the case of

the Linux kernel development. Organization Science, 633 - 649.

Lee, J. B. (2021). Dynamic node embeddings from edge streams. IEEE Transactions on Emerging

Topics in Computational Intelligence (pp. 931 - 946). IEEE.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 36

Li, N. Y. (2022). Artificial intelligence capability and organizational creativity: the role of knowledge

sharing and organizational cohesion. Frontiers in Psychology, 13.

Li, Z. Y. (2022). Opportunities and challenges in repeated revisions to pull-requests: An empirical study.

Proceedings of the ACM on Human-Computer Interaction (pp. 1 - 35). New Yorkj: Association

for Computing Machinery.

Lima, A. R. (2014). Coding together at scale: GitHub as a collaborative social network. In Proceedings

of the international AAAI conference on web and social medi, (pp. 295 - 304).

Lumbard, K. G. (2024). An empirical investigation of social comparison and open source community

health. Information Systems Journal, 499 - 532.

Madey, G. F. (2002). The open source software development phenomenon: An analysis based on social

network theory. Americas Conference on Information Systems (AMCIS) . Association for

Information Systems (AIS).

Manikas, K. &. (2013). Software ecosystems–A systematic literature review. Journal of systems and

Software, 1294–1306.

Martínez-Torres, M. R. (2015). A quantitative study of the evolution of open source software

communities. World Academy of Science, Engineering and Technology, 1374 - 1379.

McClean, K. G.-L. (2021). Social network analysis of open source software: A review and

categorisation. Information and Software Technology.

Messerschmitt, D. G. (2003). Software ecosystem: understanding an indispensable technology and

industry. MIT Press.

Moradi-Jamei, B. K. (2021). Community formation and detection on GitHub collaboration networks.

Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining, (pp. 244 - 251).

Newman, M. (2010). Networks: An Introduction. Oxford: Oxford Academic.

Oliveira, M. &. (2012). An overview of social network analysis. WIREs Data Mining Knowl Discov,

99 - 115.

Otte, E. &. (2002). Social network analysis: a powerful strategy, also for the information sciences.

Journal of Information Science, 441 - 453.

Pammer-Schindler, M. L. (2021). Automation and Artificial Intelligence in Software Engineering:

Experiences, Challenges, and Opportunities. Proceedings of the 54th Hawaii International

Conference on System Sciences, (pp. 146 - 156).

Puryear, B. a. (2022). Github copilot in the classroom: learning to code with AI assistance. Journal of

Computing Sciences in Colleges, 37 - 47.

Rathee, S. &. (2022). Getting Started with Open Source Technologies: Applying Open Source

Technologies with Projects and Real Use Cases. Apress eBooks.

Red Hat. (2022). The State of Enterprise Open Source. Red Hat.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 37

Roth, J. S. (2023). What’s trending in difference-in-differences? A synthesis of the recent econometrics

literature. Journal of Econometrics, 2218 - 2244.

Ryan, A. B. (2015). Why We Should Not Be Indifferent to Specification Choices for Difference-in-

Difference. Health Services Research, 1211–1235.

Savary‐Leblanc, M. B. (2022). Software assistants in software engineering: A systematic mapping

study. Software, Practice & Experience/Software, Practice And Experience, 856 - 892.

Schreiber, R. (2023). Organizational Influencers in Open-Source Software Projects. International

Journal of Open Source Software and Processes. International Journal of Open Source

Software Processes.

Shah, V. (2019). Towards Efficient Software Engineering in the Era of AI and ML: Best Practices and

Challenges. International Journal of Computer Science and Technology, 63 - 78.

Sheng, J. D. (2020). Identifying influential nodes in complex networks based on global and local

structure. Physica A: Statistical Mechanics and its Applications.

Sheng, J. D. (2020). Identifying influential nodes in complex networks based on global and local

structure. Physica A: Statistical Mechanics and its Applications.

Sigfridsson, A. &. (2011). On qualitative methodologies and dispersed communities: Reflections on the

process of investigating an open source community. Information and Software Technology, 981

- 993.

Sobania, D. B. (2022). Choose your programming copilot: a comparison of the program synthesis

performance of github copilot and genetic programming. Proceedings of the genetic and

evolutionary computation conference (pp. 1019 - 1027). GECCO.

Steinmacher, I. P. (2018). Almost there: A study on quasi-contributors in open source software projects.

In Proceedings of the 40th international conference on software engineering , (pp. 256 - 266).

Sun, Y. Z. (2023). STRUCTURAL INTERVENTIONS IN NETWORKS. International Economic

Review, 1553 - 1563.

Sundaresan, S. &. (2022). AI-enabled knowledge sharing and learning: redesigning roles and processes.

International Journal of Organizational Analysis.

Tan, X. Z. (2020). A first look at good first issues on GitHub. In Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (pp. 398 – 409). Association for Computing Machinery (ACM).

Teixeira, J. G.-B. (2015). Lessons learned from applying social network analysis on an industrial

Free/Libre/Open Source Software ecosystem. Journal of Internet Services and Applications .

Torres, M. M. (2011). Analysis of the core team role in open source communities. In 2011 International

Conference on Complex, Intelligent, and Software Intensive Systems, (pp. 109 - 114).

Van Antwerp, M. &. (2010). The importance of social network structure in the open source software

developer community. Proceedings of the 43rd Hawaii International Conference on System

Sciences.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 38

Von Krogh, G. (2003, April 2003). MIT Sloan Management Review. Opgehaald van MIT Sloan

Management Review: https://sloanreview.mit.edu/article/opensource-software-development/

Wang, D. W. (2019). Human-AI collaboration in data science: Exploring data scientists' perceptions of

automated AI. Proceedings of the ACM on human-computer interaction (pp. 1 - 24). CSCW.

Wang, J. (2012). Survival factors for Free Open Source Software projects: A multi-stage perspective.

European Management Journal, 352 - 371.

Washizaki, H. (2020). Towards software value co-creation with AI. 2020 IEEE 44th annual computers,

software, and applications conference (pp. 1117 - 1118). Madrid: COMPSAC.

Wasserman, S. F. (1994). Social network analysis: Methods and applications. New York: Cambridge

University Press.

Wu, J. H. (2023). Social-technical network effects in open source software communities: Understanding

the impacts of dependency networks on project success. Information Technology & People.

Zanetti, M. S. (2012). A Quantitative Study of Social Organization in Open Source Software

Communities.

Zohair, L. M. (2018). The Future of Software Engineering by 2050s: Will AI Replace Software

Engineers? International Journal of Information Technology, 1 - 13.

Zöller, N. J. (2020). A topology of groups: What GitHub can tell us about online collaboration.

Technological Forecasting and Social Change.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 39

Appendices

A. Utilization of AI Tools

During the development of this research, two AI tools have played an important factor.

Therefore, to remain as transparent as possible this section entails what tools are utilized and how

they are utilized during the process of conducting this study.

Chat GPT – Writing: First of all, Chat GPT is used as assistance during the writing process

of this thesis. Chat GPT is a type of Generative Pre-trained Transformer (GPT), this large language

model (LLM) is able respond to natural language inputs to generate text (Božić, 2023).

The LLM is a powerful tool, it helped me improving writing in an academic manner.

However, I knew from the beginning when I was conducting this research that it would be beneficial

for my research. This helped me in rewriting material to be able to present my own research more

effectively, but every element of this study is based on my own research and input. In addition, I

sought assistance from Chat GPT in situations when I was unsure whether or a grammar, spelling or

stylistic errors was present or not.

GitHub’s Copilot – Programming: Ironically speaking, I also used another GitHub’s

Copilot tool for the programming part. It was especially important because, at the beginning of the

semester, I was only a very basic Python programmer. I gained a lot of experience by using the

GitHub platform and the installing the extension Copilot within my Visual Studio Code environment.

Which helped me in developing myself on a more advanced level. Puryear and Sprint (2022) discuss

AI-driven development environments (AIDE) like Copilot, and how its features likely are expected to

become the new completion standard. However, it also encourages computer science programmers to

become familiar with how it works while avoiding complete reliance on these resources.

In the process, I realized that I required Copilot’s assistance, especially because I did not have

enough time to complete this portion with my own programming skills. This included constructing the

networks, calculating the social network metrics and merging everything together. Despite this, I did

my best to able to understand what I was doing and checking everything that I received as output from

the AI pair programmer.

Additional contributions: Beyond these main applications, Chat GPT helped me to

overcome some conceptual obstacles by presenting creative and innovative ideas. It was also very

helpful in analysing and clarifying STATA outputs, which greatly helped in the completion to my

thesis process.

Challenges: While GPT and Copilot have possible benefits with it, scholars should also be

aware of its potential limitations. Where I would like to express that GPT could lead to bias and

inaccuracies. Moreover, this technology dependence of AI tools could negatively influence critical

thinking skills and creates independence in learning. Being aware of such negative impacts I have

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 40

tried my best to form my own opinion on my master’s thesis and do not use these tools as a primary

solution for different challenges that were encountered during the process of writing and research this

study.

Whereas Copilot can save a great deal of time by suggestion snippets, functions, or even

whole files. Copilot may also result in poor coding practises that produce inefficient or insecure

recommendations. In conclusion, the AI coding assistant could be useful for writing code, but just as

Chat GPT, scholar should be mindful of the suggestions and how important it is to balance the

benefits and its drawbacks.

B. Computations of Measures

See below here for the computations of the measures for the Social Network Metrics.

Collaboration network

Average Degree Centrality: This is equal to the number of edges a node has with other nodes.

The equation can be expressed as follows:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑔𝑟𝑒𝑒 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =
1

𝑛
∑ 𝑛

𝑖=1

deg (𝑖)

𝑛 − 1

Where

• 𝐷𝑒𝑔(𝑖) is the number of direct connection (edges) for node 𝑖.

• 𝑛 is the total number of nodes in the network.

Average Betweenness Centrality: Measures how important a node is in a network. Based on

how many of the shortest path between any two nodes in the network pass through the node in

question:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =
1

𝑛
∑ 𝑛𝑖=1 (

∑ 𝑗<𝑘
𝑔𝑗𝑘(𝑖)

𝑔𝑗𝑘
1

2
𝑛(𝑛−1)

)

Where

• 𝑛 is the total number of nodes in the network.

• 𝐺𝑗𝑘(𝑖) is the number of shortest paths between node 𝑗 and node 𝑘 that pass through

node 𝑖.

• 𝐺𝑗𝑘 is the number of shortest paths between node 𝑗 and node 𝑘.

• The inner sum is taken over all pairs of nodes 𝑗 and 𝑘 where 𝑗 < 𝑘, ensuring each pair

is only counted once for an undirected graph.

• The outer sum averages this value over all nodes 𝑖 in the network.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 41

Closeness centrality: Measures the distance of a node to all other in the network by focusing

on the geodesic distance from each node to all others. It will ultimately show how long it will take

information to spread from a given node to others in the network. See formula below:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =
1

𝑛
∑ 𝑛

𝑛−1

∑ 𝑑(𝑖,𝑢)𝑢≠𝑖
𝑖=1

Where

• 𝑛 − 1 represents the total number of other nodes (excluding 𝑖) in the network, ensuring

normalization of the measure.

• 𝑑(𝑖, 𝑢) is the distance between 𝑖 and 𝑢.

• The denominator for each 𝑖 is the sum of the distances from 𝑖 to all other nodes 𝑢 in

the network.

• 𝑛 is the total number of nodes in the network.

A higher closeness centrality means that a node is generally closer to all other nodes. If a

developer in a project has a high score, it implies they can quickly and efficiently communicate with

other developers.

Network structure

Network Density: Describes the proportion of potential connections in a network that are

actual connections. This formula for density can be applied in one of two ways, the ‘ego-centric’

approach or ‘socio-centric’ approach (Hossain, 2009). We will the use socio-centric approach

however, because we want to understand the overall connectivity within a network, therefore:

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
2 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑑𝑔𝑒𝑠

𝑛(𝑛 − 1)

Where

• 𝑛 is the total number of nodes in the network.

• The numerator 2 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑑𝑔𝑒𝑠 represents the actual number of edges

in the network. The multiplication by 2 is necessary because each edge is counted twice in an

undirected graph – one for each direction.

• The term 𝑛(𝑛 − 1) in the denominator represents total number of possible edges in an

undirected network.

Average Clustering Coefficient: The clustering coefficient of a node measures how close its

neighbors are to being a complete graph (clique):

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 42

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
1

𝑛
∑ 𝑛

𝑖=1
𝐶𝑖

Where 𝐶𝑖 is the local clustering coefficient for node 𝑖, which can be calculated as:

𝐶𝑖 =
2𝑇𝑖

𝑘𝑖(𝑘𝑖 − 1)

Where

• 𝑇𝑖 is the number of triangles through node 𝑖 and 𝑘𝑖 is the degree of node 𝑖.

Average Path Length: The average number of steps along the shortest paths for all possible

pair of network nodes. It is a measure of information efficiency.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ =
1

1
2 𝑛(𝑛 − 1)

∑ 𝑑(𝑖, 𝑗)
𝑖≠𝑗

Where

• 𝑑(𝑖, 𝑗) is the shortest path length between nodes 𝑖 and 𝑗.

C. Case Study Repository

Within this section a case study is presented. This repository with the repository ID of

MDEwOlJlcG9zaXRvcnkyNDY5MjkzNjI=, or called covid19-dashboard, from the company GitHub,

provides a more detailed presentation of the construction of a social network. Including various

monthly features for the entire network diagram for the duration of the technical preview (starting in

June 2020 until the public release). Which are the constructed networks, a degree histogram, and an

explanation of the network’s developments.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 43

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 44

Figure 6: Case Study Repository Networks

What is interesting is that the starting repository became an immediate active network in

March 2020. Which make sense considering that COVID-19 arrived in the Netherlands in February

2020. Indicating an increasing need for Covid dashboard software development. Besides the active

start, the visualisations present a large number of empty constructed networks. These typically would

not exist if pull request data for particular month was not available. However, after further

examination of the pull request data, it reveals that there is an observation here, but the participants

column is empty. This situation frequently arises in the analysis.

MSc Thesis Information Management – Navigating New Networks: The AI Revolution in Open Source Software Communities

R. Zoetelief 45

Figure 7 also shows a degree histogram, which is a graphical representation of the degree

distribution of a network. Here, year 2020 in month 3 is presented. Each bar in the histogram

represents the number of nodes in that network that have certain amount of connections. The height of

the bar indicates how many nodes have that many connections. And as mentioned above, this month

represents an active network.

Figure 7: Case Study Degree Histogram

	1. Introduction
	1.1. Problem Statement

	2. Theory
	2.1. Open Source Software Ecosystem
	2.2. Social Network Analysis on Open Source Software Ecosystem
	2.2.1. Social Network Analysis
	2.2.1.1. Network Measures
	Actor-Level Measures
	Network-Level Measures

	2.2.2. Application of Social Network Analysis on Open Source Software

	2.3. AI Integration in Open Source Software Ecosystem
	2.4. Hypothesis development
	2.4.1. Collaboration Network
	2.4.2. Network Structure

	2.5. Conceptual model

	3. Methodology
	3.1. Data Collection
	3.2. Construction of the Network
	3.3. Two cases
	3.4. Difference-in-Differences Approach
	3.5. Regression Models
	3.5.1. Hypotheses
	3.5.1.1. Collaboration Network
	3.5.1.2. Network structure

	4. Results
	4.1. Data Cleaning and Preparation
	4.1.1. Outliers Analysis
	4.1.2. Removal of Incomplete Observations

	4.2. Descriptive Statistics
	4.3. Parallel Trends Test
	4.4. Main Analysis Results

	5. Discussion
	5.1. Findings
	5.2. Implications
	5.3. Limitations
	5.4. Future Research

	6. Conclusion
	Bibliography
	Appendices
	A. Utilization of AI Tools
	B. Computations of Measures
	C. Case Study Repository

