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Abstract 

This study explores the impact of Artificial Intelligence (AI) integration on social network dynamics 

and collaboration patterns within open source software (OSS) communities. The following research 

question was developed: “How does the integration of Artificial Intelligence in Open Source Software 

projects impact the social network dynamics and collaboration patterns, compared to traditional OSS 

projects?” Data were collected from GitHub and Google, focusing on pull request activity within 

repositories. This research adopted the widely accepted two-way fixed effects model (TWFE) to 

quantitatively evaluate the impact of AI Copilot on OSS projects by comparing changes in outcomes 

through a difference-in-difference approach. The findings suggest that the hypotheses regarding AI 

integration in OSS are not supported. However, the thesis provides a preliminary overview of AI's 

impact on OSS communities and offers methods for constructing social networks based on GitHub 

data. The study also emphasized the potential drawbacks of using a single data type to define 

developer relationships, as well as the potential for a more complex or subtle effect of CoPilot 

implementation. Additionally, it discusses how the usage of averaging techniques for certain SNA 

metrics could potentially hide significant variations. In conclusion, this study opens up new avenues 

for future studies, aimed at enhancing our knowledge of the influence on AI-driven OSS projects.  

 

Keywords: Social Network Analysis, Artificial Intelligence, Open Source Software 

Communities, GitHub Copilot 
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1. Introduction 

Over the last several decades, businesses and individuals have embraced the use of open 

source software (OSS) for commercial purposes have contributed to its development (McClean, 

2021). When developers and startups have access to existing open source frameworks, AI tools and 

libraries, they can avoid the need to build everything from scratch. Therefore, it could accelerate the 

development process as individuals and organizations can leverage the collective efforts of the open 

source community, which contributed code, algorithms, and solutions.  

A report of Red Hat (2022) mentions the significance of enterprise open source, where 95% 

of its IT leaders’ respondents say that it is of huge importance to their overall organization’s 

enterprise infrastructure. A significant portion of modern computing is built upon open source; from 

known operating systems like Linux to programming languages as Python (McClean, 2021).  

The environment of OSS has evolved rapidly with the integration of Artificial intelligence, 

GitHub (2022) for example, announced the general availability of GitHub Copilot Chat in June 2022. 

These developments give new challenges and opportunities in software development and project 

management. Traditional OSS projects have been explored using various methodologies to understand 

collaboration and community dynamics. For example, Korchar et al. (2021) investigates the transition 

from closed to open source projects, focusing on community collaboration through interviews and 

surveys. But this approach can be response biased and might not be effective for larger communities. 

On the other hand, mining software repositories offers insights into technical aspects like code 

changes and bug reports but may overlook the social interactions within the community.  

Social Network Analysis (SNA) however provides a unique and holistic lens through which 

the structure and dynamics of OSS projects can be understood, making it a very effective way of 

studying collaboration patterns and community dynamics. For instance, the study of Schreiber (2023) 

provides insights into how people and groups interact and collaborate in TensorFlow, an open source 

software project. SNA captures the complexity of relationships among contributors, can identify key 

players within a project and it will allow the comparison of network structures across different 

projects. These advantages align with the subject that is addressed in this study.  

The integration of AI into OSS projects introduces a paradigm shift, necessitating a 

reevaluation of existing SNA frameworks. The complexity of AI-driven development, characterized 

by advanced algorithms and data-intensive processes, may alter social network structures within OSS 

communities. This shift raises questions about the applicability of traditional SNA methods and 

metrics, as observed in OSS projects without AI components.  

There is yet a noticeable gap in the literature regarding a comprehensive comparison of SNA 

applications in traditional OSS projects versus AI-powered OSS projects. While studies those 

conducted by Wu et al. (2023) explore the role of social and technical dependencies on OSS project 

success, an examination of these dynamic shifts in AI-driven projects remains unexplored. This gap 
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shows an opportunity to learn more about the field by analyzing and comparing the social networks of 

traditional and AI-powered OSS projects. Such an exploration is crucial for understanding the 

evolving landscape of OSS development, informing strategies for effective project management, 

community engagement and successful collaboration for open source community platforms.  

1.1. Problem Statement  

The problem lies in determining how AI integration affects social network structures and 

collaboration patterns within OSS projects. Although SNA has examined traditional OSS projects, the 

specific effects of AI on these networks remain less understood. At the same time, not much research 

has been done on this particular theme. This knowledge gap would therefore present an interesting 

research topic to explore. The problem is relevant to OSS project managers, developers and 

contributors who are incorporating AI into their projects. It also concerns academic researchers and 

organizations relying on OSS for their operations or product development. The integration of AI in 

OSS projects will help stakeholders better comprehend the social dynamics at play. The following 

research question has been developed based on the research framework: 

 

Research Question: “How does the integration of Artificial Intelligence in Open Source 

Software projects impact the social network dynamics and collaboration patterns, compared to 

traditional OSS projects?” 
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2. Theory 

2.1. Open Source Software Ecosystem 

Software that has source code available for anyone to see, edit and improve is known as open 

source software (OSS). OSS is present on internet based communities where software developers 

voluntarily collaborate in order to develop software that is needed (Von Krogh, 2003). Open Source 

helps increase the pace of innovation, leading to free exchange of novel ideas within these 

communities (Rathee, 2022). While OSS is likewise developed as proprietary software ( e.g., 

MySQL), much is developed by organizationally and geographically distributed teams of developers, 

in what is described as community-based development by Lee and Cole (2003). Furthermore, OSS is 

perceived as unrestricted access to source code, in contrast to the commercial world’s more traditional 

closed proprietary software approach (Bonaccorsi, 2003).  

The software economy now uses the word “ecosystem” as a common perspective 

(Messerschmitt, 2003). A software ecosystem is also defined by Manikas and Hansen (2013) as ”the 

interaction of a set of actors with a common technological platform used by several solutions.” This 

ecosystem frequently depends on a common platform that several parties overlay with their own 

software (Bosch, 2009). OSS ecosystems develop from self-organized and dynamic processes where 

businesses and volunteers work together in their contribution to software products (Gerber, 2010; 

Madey, 2002). A platform is used for establishing such an ecosystem. Studies by Kilamo et al. (2012) 

and Jansen et al. (2009) mention the facets of such a platform.  From an engineering standpoint, a 

software ecosystem offers development process, environment for the entire software project 

infrastructure, and technology for implementation. Furthermore, in addition to the technical aspects, 

social, legal and business aspects must also be considered for the ecosystem.  

GitHub serves as a platform for hosting collaborative coding projects. It employs a "fork & 

pull" approach, where developers generate a personal copy of a repository and propose a pull request 

for the project maintainer to merge their changes into the primary branch. Beyond hosting code, 

GitHub facilitates collaborative code review and integrated issue tracking, and it incorporates social 

networking features (Kalliamvakou, 2014; Tan, 2020). GitHub today also serves as the largest 

developer community in the world with more than 100 million users (GitHub, 2023). The platform 

has integrated social features and the availability of metadata through an accessible API, which makes 

it attractive for software engineering researchers.  

The introduction of the social features of GitHub has drawn attention to researchers. For 

instance, the paper of Zöller et al. (2020) studies the collaboration patterns of OSS projects on GitHub 

by analyzing the pull request submissions and acceptances of repositories. While Moradi-Jamei et al. 

(2021) utilizes a large-scale historical dataset of 1.8 million GitHub users and their repository 

contributions. Whereas Dabbish et al. (2012) concentrated their research on a more qualitative 
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approach, discovering the importance of transparency for large-scale collaborations and communities 

on GitHub through a series of in-depth interviews with central and peripheral GitHub users. 

OSS thrives as a collaborative community where developers exchange code. These 

communities often evolve into dynamic software ecosystems, supported by platforms like GitHub. 

GitHub not only facilitates code sharing and review but also enhances collaboration through its 

sophisticated fork & pull model and integrated social networking features. This environment enables 

diverse teams to contribute to OSS projects, significantly influencing the pace of software 

development. 

2.2. Social Network Analysis on Open Source Software Ecosystem 

The study of Texeira et al. (2015) employed a mixed method approach using archival data 

with mining software repositories and Social Network Analysis (SNA). However, while this approach 

would be in line with the same method of this thesis subject, Teixeira’s research question focused 

more on understanding competition within an open source project, utilizing different SNA metrics 

than those employed in this study. Horta et al. (2022) discuss a more content-driven approach of 

analyzing open source communities that is extracted from text or social tags, offering valuable 

insights. But this would require extensive data collection and preprocessing of textual data, which can 

be time-consuming and complex. Given the limited timeframe for this research, the focus in this study 

will be on a more traditional SNA. 

Various methods are applied to analyze communities focusing on a broader understanding 

beyond the more structural analysis of social networks. The role of social comparison theory is 

emphasized by Lumbard et al. (2024) on understanding how open source community health. Which 

argues how community dynamics are influenced by social comparisons rather than just network 

structures. Case studies from Kilamo et al. (2012) and ethnographic studies from Sigfridsson and 

Sheehan (2011) can all provide information about the social network dynamics and collaboration 

patterns of these open source communities. However, this paper adopts a data-driven approach rather 

than a qualitative one for several reasons. SNA allows for analysis of complex relational data; this is 

especially necessary when these communities have thousands of contributors who may interact with 

each other. SNA focuses on measurable objectives such as centrality and density which is crucial for 

assessing the impact of AI integration on OSS. As a result, it makes for an engaging, time-efficient, 

and overall holistic approach by enabling a comparative analysis and the utilization of preexisting 

data.  

2.2.1. Social Network Analysis 

Social network is recognized as a unique research and structural approach within the social 

and behavioral sciences; distinct because it assumes of the importance of relationships among 

interacting units or actors (Freeman, 2004; Wasserman, 1994). Broadly speaking, a social network is 
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constructed from relational data and can be characterized as a collection of social entities, including 

individuals, groups, and organizations (Oliveira, 2012). Social network theory models these social 

entities as nodes in a graph, while the connections between them, denoting relationships, are depicted 

as the graph's edges. Therefore, if two individuals share a relationship, they are directly connected 

within this graphical model (Madey, 2002), see figure 1. These relationships can either be of personal 

or professional nature and can range from casual to a closer familiar bond. Besides social relations, 

edges can also represent flow of information, money, goods, transactions or similarities among others.  

 

Figure 1: Social network 

Oliveira and Gama (2012) also discuss how social networks can be modeled using different 

types of graphs based on the direction of their links. Undirected graphs connect pairs of nodes without 

any order, meaning the relationship goes both ways equally. Directed graphs, or digraphs, include 

edges with a set direction, indicating that the relationship between nodes has a specific orientation. A 

value can also be assigned towards edges where a distinction can be made between unweighted and 

weighted graphs. Unweighted graphs are either present or not. Whereas weighted graphs provide 

richer information. According to Granovetter (1973), the weight of a tie is typically determined by its 

duration, emotional intensity, frequency of interaction, intimacy and service exchange. As a result, 

weak relationships typically reflect acquaintances while strong ones typically indicate close friends. 

2.2.1.1. Network Measures 

In this section, we will explore various metrics that are important for analyzing social networks. 

These measures offer valuable insights into the network's structure, which is crucial for the analysis of 

this study. Subsequently, these measures can be divided based on the preference to analyze small 

units, like actors, or the entire network. Both will be considered as they are all relevant to answering 

the research question.  

Actor-Level Measures  

Centrality is an over-all measure of how the position of an actor is within the overall structure 

of the social network and can be computed through to several metrics. In this study, three metrics are 

chosen (degree centrality, betweenness centrality and closeness centrality), because they are the most 

frequent used centrality metrics in SNA (Newman, 2010). These measures define the importance of 

actors within a network. Greater centrality among these nodes or actors, would signify to more 
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powerful actors in the network since their central position gives them several advantages. For 

instance, giving them access to other actors more quickly. You can find the definitions of these 

centrality measures below.   

Each of these metrics offers a unique angle on a node's significance. Degree centrality 

assesses influence established on the number of direct connections a node has, providing a 

straightforward but somewhat limited perspective since it does not consider the broader network 

context. On the other hand, closeness and betweenness centrality offer insights based on the global 

network structure, capturing a node's influence more comprehensively by considering its position 

relative to all other nodes in the network, thus reflecting its importance from both a local and global 

standpoint (Sheng J. D., 2020).  

• Degree Centrality: Measures the number of direct connections a node has (Degenne, 1999).   

• Betweenness Centrality: Quantifies how often a node acts as a bridge along the shortest 

path between two other nodes (Oliveira, 2012). High betweenness are often knowledge 

brokers, connecting multiple communities (He, 2012; McClean, 2021) 

• Closeness Centrality: Indicates how close a node is to all other nodes in the network, 

reflecting cohesion or fragmentation (Degenne, 1999).  

Network-Level Measures  

Network-level measures such as density, clustering coefficient, and average path length 

provide comprehensive insights into the overall structure and connectivity of a network. These 

metrics are essential for understanding how densely connected the nodes are, how tightly knit groups 

form, how efficiently information travels across the network.  

• Density: Explains the general level of connectedness in a network, representing the 

proportion of existing links (Degenne, 1999).   

• Clustering Coefficient: Assesses the degree to which nodes tend to cluster together 

(Newman, 2010). Considered to be a measure of the “cliqueness” of a network. 

• Average Path Length: Reflects the overall connectedness and efficiency of information 

flow across the network. Defined as the average distance between all pair of its nodes 

(Newman, 2010).  

2.2.2. Application of Social Network Analysis on Open Source Software 

The literature on OSS through the lens of SNA offer a wide variety of different insights. For 

instance, Concas et al. (2008) studies successful OSS projects via SNA to analyze developer mailing 

lists and social network interactions, providing insights into communication flows and coordination 

within OSS communities.  Meanwhile, Torres et al. (2011) applies SNA techniques to understand the 

role of core groups in fostering community participation. Further, Martínez-Torres et al. (2015) 

explored the dynamics of OSS communities over time, focusing on the roles of users who join and 
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leave, and how these changes affect the network’s structure. Additionally, Zanetti et al. (2012) 

provides a detailed analysis of collaboration network in OSS, examining structural features and their 

implications on community cohesion. Research has also been conducted on open source projects on 

the platform GitHub utilizing SNA. The study of Kabakus (2020) offers insights into the 

characteristics of the GitHub network, including popular programming languages, repositories, and 

developers. Whereas Schreiber (2023) displays the community of TensorFlow through SNA, where 

they identify key players and relationships between those. Lastly, Wu et al. (2023) examines the role 

of social dependency networks in developer and module networks. 

All studies show significant contribution towards the field. However, this study is one of the 

first attempts to include the integration of Copilot and its effect it would have on the social network 

dynamics and collaboration patterns through the lens of SNA. As a result of the fact that Copilot is a 

very recent AI tool, little research has been conducted on its effect on social network dynamics and 

collaboration patterns (Friedman, 2021). Thus, this research aims to contribute to the field by 

exploring this topic. The application of SNA in this research is critical for understanding how the 

integration of AI might transform these social network dynamics and collaboration patterns in OSS 

projects. By leveraging SNA, this study aims to uncover how AI technologies influence both the 

structural properties of networks and behavior of individuals within them, providing a comprehensive 

view of the changes that the AI integration brings to the environment in OSS. This analysis is crucial 

for developing strategies that improve the efficiency and cohesion of OSS communities within the AI 

revolution.  

2.3. AI Integration in Open Source Software Ecosystem 

The integration of AI into OSS projects is transforming the landscape of software 

development. AI enables computers to perform complex tasks that mimic human-like cognitive 

functions, such as natural language processing, decision-making and visual perception (Hazmi Hassri, 

2023). This rapid transformation, characterized by the integration of AI into software development 

practices, is reshaping how code is developed for new software (Zohair, 2018). According to the study 

of Bird et al. (2022) software development is changing from only writing code to letting the tool write 

it. Where developers now have to understand the code that the tool writes rather than finishing it 

themselves. This could indicate a more necessity to comprehend the interactions that take place 

between developers and AI-powered tools. This adoption is now seen with the use of AI assistants for 

programming. AI is already used for different goals and in various areas of software engineering (A. 

Mashkoor, 2022). GitHub Copilot and ChatGPT are examples of these tools that have increasingly 

been adopted in the past years (Kharrufa, 2023). According to Crawford et al. (2023) AI and ML have 

the potential to become valuable to software engineering, not just on the active parts of software 

development, but also on project management side. GitHub Copilot can function similarly to an 

automatic program synthesis tool. Which is defined as the process where source code is created from 
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a given definition, such as a description in natural language or through specific examples of what the 

input and output should be (Sobania, 2022). But fundamentally it is designed as an AI pair 

programmer that rather assist than completely take over the software development process. 

Nevertheless, the usage of the technique is already beginning to form a standard tool in software 

development.   

The integration of AI tools like Copilot in OSS projects shows examples of changing effects, 

serving as a powerful assistant that not only enhances capabilities of developers but also introduces 

new methods and approaches to software creation. As discussed by Savary‐Leblanc et al. (2022) these 

software assistants empower engineers by enriching their design, construction and maintenance tasks 

with advanced autonomy and intelligence, fundamentally improving productivity and creativity 

within the software engineering environment. This large language model is also recognized by 

Gunnell et al. (2024) as an important trend in scientific computing. Advancements in LLM have 

helped in the use of application of open source platforms. As the documentation is open and available 

for many packages. A distinct production version of the model Codex powers GitHub Copilot. The 

LLM is a GPT-3 based language model with up to 12 billion parameters which has been pre-trained 

on 159 GB of code samples from 54 million GitHub repositories (Brown, 2020). When using Codex, 

it shows a good performance in solving a series of handwriting Python programming problems (Chen, 

2021). Copilot can be installed as an add-on for the Visual Studio Code development environment 

(Sobania, 2022). AI-trained tools can possibly move optimization engineers, data scientists and 

machine learning specialists to higher levels of productivity.  

However, some liabilities are discussed in the paper of Dakhel et al. (2023). The authors have 

examined and compared Copilot code-generation capabilities with humans. The outcomes 

demonstrate that Copilot is capable of producing accurate and ideal answers for a number of 

significant algorithm design issues. Nevertheless, the developer’s prompt’s depth and conciseness 

could play an important factor in how well-written the resulting code is. Meaning that Copilot can be 

an asset in software engineering if it is used by expert developers that are familiar with problem 

context and correct coding improvement methods.  

Lastly, Shah (2019) highlight the importance of promoting collaboration between different 

roles within software engineering, as they can bring diverse expertise to develop holistic solutions. 

While Wang et al. (2019) describes opportunities for infusing AI into team collaboration practices. 

Finally, Washizaki (2020) present a vision called “value co-creation of software by AI and 

developers.” The paper addresses the need for collaborative efforts and exchanges between 

developers, where they should work together with developers and with assistance of AI to achieve this 

value co-creation. All these papers mention several fundamental transformations within the landscape 

of software development where collaboration and social network dynamics can play a pivotal role. 
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2.4. Hypothesis development 

Based on the research question and the exploration of relevant theory, hypotheses are 

developed. The hypotheses are categorized into two subsets: collaboration network and network 

structure. Each based on the metrics as discussed within the theory. Allowing to capture the social 

network dynamics and collaboration patterns to address the research question. 

2.4.1. Collaboration Network 

First of all, hypothesized is that AI integration of Copilot will affect the collaboration 

network. Various studies emphasize a positive impact on programmers’ productivity (Bird, 2022). For 

instance, the study of Imai (2022) conducted an experiment comparing Copilots programming to that 

of a developer, where Copilot generated the most lines of code. In another study Dakhel et al. (2023), 

Copilot demonstrated promising results in its ability to solve most algorithmic problems. These 

studies indicate an enhancement of productivity for programmers. This could possibly result in more 

centralized networks on OSS platforms. The study of Schreiber (2023) highlight how productivity in 

open source software projects often lead to groups becoming more central in project development. 

Based on that we can argue that AI integration could potentially lead to a higher degree of centrality.  

Conversely, AI could also potentially decentralize a community itself by lowering entry 

barriers for new contributors. Engineers reason, according to Gottlander and Khademi (2023) that 

widespread of AI coding assistants can lower the profession entry barrier. As a result of the lower 

entry barrier, new contributors could join and participate in projects more rapidly. The study of 

Steinmacher et al. (2018) also discuss in how lowering entry barriers can lead to an increase in 

number of contributors.  

Therefore, because of the nuanced view, the following dual outcome is hypothesized:  

 

Hypothesis 1a: AI integration in OSS will lead to greater centralization of the OSS network. 

AND 

Hypothesis 1b: AI integration in OSS will lead to greater decentralization of the OSS 

network. 

 

In graph theory, betweenness centrality represents the degree to which nodes stand between 

each other, acting as a bridge between two other nodes (Oliveira, 2012). These nodes can link 

multiple communities (He, 2012; McClean, 2021). Here, theorized is, a decrease in reliance on these 

specific key developers that form as bridges due to several reasons. AI can lead to the automation of 

coding task (Dakhel, 2023), and this may reduce dependence on these key developers within a 

network. Also, because of the tool providing coding suggestions (Savary‐Leblanc, 2022), it might 

decentralize the coding process, resulting in contributors feeling less necessity to ask for advice on 
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problem solving. Besides the theorization of a reduction in intermediary roles, one could argue that 

Copilot encourages direct collaboration between team members by providing relevant information 

through these code suggestions and thereby reducing dependency on knowledge brokers or central 

nodes for guidance. Hence this conceptualized hypothesis:  

 

Hypothesis 2: AI integration in OSS will lead to a decrease in the average betweenness 

centrality of the network. 

 

Finally, during interactions in the development of a project, users may need help from 

somebody else but do not have a direct link towards that specific individual. In SNA, closeness 

centrality can indicate in how many steps a node can reach every other node from a given node 

(Freeman, 2004); in this case, the person who needs assistance from somebody else. Research like the 

study of Li et al. (2022) indicate that the introduction of AI can positively impact knowledge sharing. 

Another research discusses how AI can help redesigning roles and processes, making it easier for 

knowledge workers (important nodes) to share information (Sundaresan, 2022). Thus, this study 

hypothesizes a positive relationship between the closeness centrality of a developer network and AI:  

 

Hypothesis 3: AI integration in OSS will lead to an increase in the average closeness 

centrality of the network. 

2.4.2. Network Structure 

Subsequently, this study also hypnotizes that the introduction of AI affects the network 

structure of communities on GitHub. The first theorization regards the density, which explains the 

level of connectedness in a network. In other words, representing the proportion of existing links 

(Degenne, 1999). According to social network theory, tools that facilitate communication and reduce 

resistance of interaction may increase network density (Borgatti, 2024). And as mentioned, software 

engineers speculate that AI potentially will lead to a lower entry barrier (Gottlander, 2023), resulting 

in an increase of contributors (Steinmacher, 2018). Which could lead to an increase in participation 

and collaboration, increasing the number of connections within a network. Following up on that, 

research on AI and organizational connectedness have shown that AI-enabled platforms that enable 

communication and collaboration have been found to stimulate the overall connectedness of teams, or 

within this study, networks (Li N. Y., 2022). Therefore, it is hypothesized that AI integration will lead 

to an increase in density for OSS communities: 

 

Hypothesis 4: AI integration in OSS will lead to an increase in density. 
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Within social network theory, the clustering coefficient is described as the extent to which 

cliques form within a network (Newman, 2010). As discussed before, AI could potentially enhance 

knowledge sharing within communities and let individuals work more closely together (Sundaresan, 

2022). Combined with the study of Li et al. (2022) that emphasized the role of AI and its effect on 

organizational connectedness, we theorize that the introduction of Copilot will lead to an increase in 

the average clustering coefficient. Which means a shift from more fragmented groups within 

communities towards more cohesive networks within the open source community: 

 

Hypothesis 5: AI-integration in OSS will lead to an increase in the average clustering 

coefficient. 

 

The last hypothesis introduces the average path length. Which describes how fast information 

can travel from point A to point B within a network. Based on multiple studies, it is argued that this 

information will spread more quickly than traditional OSS projects. For example, Schreiber (2023) 

describes how using the AI tool could boost productivity. Furthermore, research by Dakhel et al. 

(2023) shows that, when utilized by professionals, Copilot can be a useful tool in software projects. 

Thus, this study argues that appropriate application of AI in software development could result in a 

more effective and efficient flow of information: 

 

Hypothesis 6: AI-integration in OSS will lead to a decrease in the average path length. 

 

2.5. Conceptual model 

Based on the argumentation in the previous hypothesis section, we can construct a conceptual 

model for our research. Additionally, the number of pull requests is incorporated as a control variable, 

ensuring that the analysis accounts for underlying activity levels per project. In figure 2, the 

conceptual model is visualized.  

 

Figure 2: Conceptual model 
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3. Methodology 

The section includes the methodology section, which describes the data collection process 

used in this study. Here, the development of the construction of the networks is also shown. 

Following this, the timeframe is discussed here. Additionally, a statistical framework is offered. 

Lastly, a transparent summary of the use of AI tools in this research is provided in appendix A.  

3.1. Data Collection  

To empirically test our hypotheses, data were collected from GitHub, using the GitHub 

GraphQL API, specifically targeting pull request activity within all repositories maintained by GitHub 

and Google (GitHub, 2001). This data was methodically organized into one panel dataset in April 

2024, which includes observations for both companies from 2020 until the end of 2023. Ultimately, a 

total of 37.9868 observations belonging to 1265 repositories were extracted. 

Using the pull request data, the repository networks were constructed. These were aggregated 

on a monthly basis within the time frame. For GitHub, 2078 networks were aggregated and 

constructed in total, whereas for Google, 8155 networks were aggregated and built. To elaborate on 

that, one network corresponds to one repository, and within that repository, a network is built every 

month if pull request data is available for that specific repository and month. 

Based on the constructed networks a dataset was constructed to capture social network 

metrics for both companies. After the removal of incomplete observations and the outliers’ analysis, a 

more refined dataset was created which allows for a comparative analysis of the technical preview 

effects of the introduction of GitHub’s Copilot.  Ultimately, table 1 shows the data that was utilized to 

capture the difference in pre- and post-treatment for our treatment group GitHub in comparison with 

our control group Google. Representing the timeframe for the technical preview, which starts from the 

beginning of 2020 until the public release of July 2022.  

Table 1: Summary of total of social network measures during technical preview effect 

Company Social network measures 

GitHub 880 

Google 4.168 

Total Observations  5.048 

 

The detailed computations of all the social network measures applied in this study, including 

formulas, are provided in appendix B. The formulas are expressed for an undirected graph and if 

necessary, the formulas are normalized due to the different sizes of the constructed networks. 
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3.2. Construction of the Network 

After collecting the data from GitHub, the networks were constructed, which is described in 

this section. In each relational transaction, contributors are identified as nodes. The edges represent 

the relationships or interactions between these nodes, established through pull requests. Each 

relational transaction begins with a pull request initiated by a contributor, who is identified as the 

source node (Oliveira, 2012). The target nodes are those that engage within this pull request through 

actions such as commenting, reviewing or committing code in response (GitHub, sd). For a link 

(edge) to be established between two contributors, they must participate in that same transaction, 

either one being the source and the other a target, or both being targets collaborating within the same 

transaction.  

Figure 3 illustrates the network’s construction process. Here, two pull requests are joined 

based on the same repository ID, year, and month. Appendix C provides a more detailed case study of 

one of the constructed networks from the company GitHub.  

 

Figure 3: Construction of the social networks on GitHub 

Even though the pull request data shows in what direction nodes are connected with each 

other, this study constructed undirected graphs instead of directed graphs for several reasons 

(Oliveira, 2012). The construction process becomes easier because one treats all observations equally 

in an undirected graph and this would require less computational power compared to directed graphs. 

Additionally, undirected graphs used in the calculation of our metrics have no bearing on the final 

results.  Furthermore, this makes the calculation of the measures simpler in terms of having a clearer 

insight into the structure and dynamics of the network. 

The assumption is made that within the same transaction, each node is connected to the other, 

reflecting their engagement with each other around the pull request. This approach creates a detailed 

map of collaboration among nodes within repositories on a monthly basis, capturing the dynamics of 

interaction between users. By constructing the network in this matter, we can accurately represent the 

patterns of collaboration and engagement on GitHub, which is crucial for analyzing the collaboration 

patterns and social network.  
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Ultimately, in Python, these networks are created and grouped by repository ID, month and 

year. See figure 4 for a limited timeframe pre- and post-treatment for the repository called training-

kit.  

 

Figure 4: Construction of repository training-kit 

3.3. Two cases 

This study will treat the collected data as panel data to evaluate the integration of Artificial 

Intelligence (AI) into open source projects. To calculate and compare SNA metrics, it investigates the 

effect across two different levels (actor and network). Additionally, two distinct cases (GitHub and 

Google) are examined. The time span includes the technical preview phase, starting at the beginning 

of 2020 and continuing until the public release launch. Which allows for a comparison of the effects 

before and after the adoption of the AI tool for our treatment group GitHub. The timeframe is shown 

in figure 5.  

 

Figure 5: Timeframe technical preview effect 

3.4. Difference-in-Differences Approach  

Differences-in-differences (DiD) is a popular method for estimating causal effect in non-

experimental setting (Roth, 2023). This approach will be used to determine the effect of the 

integration of AI on OSS projects. Within this study, the technical preview period is examined. 

GitHub serves as the treatment group, while Google, which was introduced to Copilot at a later date, 

acts as the control group. This setup allows us to compare changes in outcomes over time between 

these two groups. DiD approach enables the comparison of these changes, accounting for time-

invariant unobserved characteristics as typically analyzed in panel data studies. This method 

effectively isolates the impact of specific interventions by comparing temporal changes across groups 

(Fredriksson, 2019).  
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3.5. Regression Models 

To quantitatively evaluate the influence of AI integration on OSS projects within the context 

of SNA we adopt the widely used two-way fixed effects (TWFE) model for DiD analysis, as 

described by Roth et al. (2023). This model calculates the causal impact by calculating and comparing 

the average effects over time between two groups. Those exposed to an intervention (treatment) and 

those that are not (control). In this case, GitHub is acting as the treatment group, whereas Google 

functions as the control group.  

Furthermore, this study conducts an actor- and network-level analysis of GitHub and Google. 

Here, centrality measures and network metrics are included. Additionally, pull request is incorporated 

as a control variable in the regression model, which allows controlling for the activity level and helps 

to distinguish between activity level and the influence of Copilot for different measures. See table 2 

for the variables. 

Table 2: Variables actor-level and network-level 

Context Variables 

Treatment Actor-level Average; Degree Centrality, Betweenness Centrality, Closeness 

Centrality 

Control Actor-level Average; Degree Centrality, Betweenness Centrality, Closeness 

Centrality 

Treatment Network-level Density, Average Clustering Coefficient, Average Path Length  

Control Network-level Density, Average Clustering Coefficient, Average Path Length  

Control variable Pull Request Count 

 

The TWFE approach, however, assumes uniform treatment effects across different units and 

time periods; it does not account for potential changes in treatment effects over time. Given these 

constraints, this study does not explore the varied impacts of AI tools across different OSS 

communities. Instead, a focus is placed on specific instances where the AI introduction is consistent, 

simplifying the analysis by maintaining homogenous treatment timing. This is especially relevant for 

all the SNA variables, such as density, clustering coefficient, and average path length. Allowing for 

clear observation of the general effects of AI tools on these network characteristics without the 

complexity of varying treatment effects. 

However, given the fact that TWFE assumes a homogenous treatment effect, it may not be as 

effective in capturing diverse impacts on the centrality measures unless data is segmented to account 

for within-group variations. As a result, to align with the two-way fixed effects, this study calculates 

the monthly average of centrality measures for each network. Averaging these measures helps to 

smooth out individual outliers and considers the fact that not every node will be present in every 
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network on monthly basis. Moreover, it would stay focussed on overarching trends within the network 

with the integration of AI, rather than specific individual nodes who might or might not be present in 

the subsequential network. This approach not only supports the TWFE model’s assumption of 

homogeneous treatment effect, but it will also improve the statistical robustness of the analysis. By 

examining these monthly effects, this paper aims to get a clearer understanding of the developments 

in the OSS communities regarding social network dynamics and collaboration patterns. Therefore, the 

regression model that is employed, is specifically tailored to fit within this TWFE framework:  

 

𝑌𝑖𝑠𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡  

Where 

• 𝑌𝑖𝑠𝑡: Dependent variable (e.g., Avg_Degree_Centrality).  

• 𝛼𝑖 : Individual Fixed Effects  

• 𝛾𝑡: Time-specific fixed effects.  

• 𝑃𝑅_𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡 : The number of pull requests made by the actors.  

• 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡: A binary variable indicating if the observation is from GitHub (1) or 

Google (0). 

• 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡: A binary variable indicating if the observation is from the 

period after the technical preview (1) or before (0).   

• 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡: The interaction term between treatment and 

technical preview.  

• 𝜖𝑖𝑠𝑡 : The error term, capturing random variation in 𝑌𝑖𝑠𝑡, not explained by the model.  

 

The equation within the context of our study aims to find if the dependent variables social 

network metrics, will change due to the integration of Copilot for GitHub compared to Google. Where 

𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
 represents the number of pull requests per observation. The presence of the treatment 

group is indicated by the binary variable 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡, which takes the value of 1 for GitHub and 0 

for Google. The variable 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡 indicates whether an observation is from the period 

after the intervention, in this case, the technical preview of Copilot, with 1 for the period after the 

preview and 0 for the period before. Additionally, the interaction term 

𝛽4𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡 combines the effects of being in the treated group and the time 

period after the technical preview.  

The symbols 𝑖, 𝑠, and 𝑡 represent individual actors, specific observations, and time periods. 

This means that the model accounts for variations across individuals, different data points for those 

individuals, and changes over time. 
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The TWFE model accounts for both individual fixed effects (𝛼𝑖), which control for 

unobserved characteristics that are constant over time for each invidual, such as specific repository 

characteristics, and time fixed effects (𝛾𝑡), which represent temporal changes that effect all 

observations over time. These simplifications allow the model to crearly assess how AI integration on 

OSS projects influence social and collaboration dynamics over time, represented by months, using 

pre-calculated SNA metrics at either the actor or network level. 

3.5.1. Hypotheses 

3.5.1.1. Collaboration Network 

Hypothesis 1: AI integration affects the collaboration network, potentially centralizing or 

decentralizing the network. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑔𝑟𝑒𝑒 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡  

 

Hypothesis 2: AI integration will lead to a decrease in the average betweenness centrality of 

the network. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡  

 

Hypothesis 3: AI integration will lead to an increase in the average closeness centrality of the 

network. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡  

3.5.1.2. Network structure 

Hypothesis 4: AI integration in OSS will lead to an increase in density. 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡  

 

Hypothesis 5: AI-integration in OSS will lead to an increase in the average clustering 

coefficient. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡  
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Hypothesis 6: AI-integration in OSS will lead to a decrease in the average path length. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ𝑖𝑡

= 𝛼𝑖 + 𝛾𝑡 + 𝛽1𝑃𝑅𝐶𝑜𝑢𝑛𝑡𝑖𝑠𝑡
+ 𝛽2𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 + 𝛽3𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡

+ 𝛽4(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑠𝑡 𝑥 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑟𝑒𝑣𝑖𝑒𝑤𝑖𝑠𝑡) + 𝜖𝑖𝑠𝑡  

 

The variables are all defined in accordance with the statistical framework and hypotheses, 

Table 3 provides an overview.  

Table 3: Regression variables 

Variables Description 

Independent Variables 

Treated 

Technical Preview 

Treated x Technical Preview 

 

Indicating presence of treatment group. 

Indicating presence of exposed to technical preview. 

Interaction term between treatment and technical preview. 

Dependent Variables 

Degree Centrality 

Betweenness Centrality 

Closeness Centrality 

Density 

Clustering Coefficient 

Average Path Length 

 

Measures node connectivity in network. 

Tracks control over network’s information flow. 

Indicates speed of accessing network nodes. 

Proportion of potential connections realized. 

Extent of nodes’ interconnectivity, forming cliques. 

Average distances between all node pairs. 

Control Variable 

Pull Request Count  

 

Number of pull requests. 

 

For each hypothesis, the regression model is calculated using Stata, and the results are 

interpreted and compared to understand the effects of AI integration on OSS projects.  
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4. Results 

This section presents the findings from the analysis. Firstly, a review is given for the cleaning 

and preparing of the data. Then, descriptive statistics are presented. Following this, the results of the 

parallel trends are discussed. Ultimately leading to the main results of the statistical analysis.  

4.1. Data Cleaning and Preparation 

4.1.1. Outliers Analysis 

During the data analysis, several severe outliers across multiple variables were identified. 

Outliers are frequently encountered while collecting data, which can reduce the reliability of results. It 

also reduces data efficiency and introduces a large bias into the outcomes. These outliers were notably 

extreme and unreal, likely due to incorrect calculations in Python when computing the measures. 

Studies like Kwak et al. (2017) emphasize the necessity of addressing this issue. The identified 

outliers, a total of 502 observations, were replaced with the average of the mean values from both 

GitHub and Google networks. This approach allowed us to retain the total number of observations, 

which was crucial given the limited number of data points available. Omitting these observations 

entirely would have further reduced the sample size, potentially compromising the robustness and 

reliability of the analysis.  

The primary reason behind these extreme outliers was linked to the construction of the 

network measures. Upon closer examination, A discovery was made that many constructed networks 

were not connected within a repository. This lack of connectivity likely led to the calculation of 

measures that were not applicable or realistic. Most of the social network analysis (SNA) metrics used 

in this study typically range from 0 to 1. However, the disconnected nature of these networks resulted 

in values that fell outside this expected range. The dataset’s integrity could be preserved, and the 

reliability of the subsequent analysis was improved by substituting mean values for outliers.  

4.1.2. Removal of Incomplete Observations 

In addition to addressing outliers, a significant number of observations were removed due to 

the lack of sufficient data. 2,767 observations, where more than four variables were empty or 

indicated as zero, were excluded from the statistical analysis. This step was necessary to ensure the 

quality and reliability of the data. Including such incomplete observations could lead to biased or 

inaccurate results, as the absence of zero values might distort the analysis (Kwak, 2017). 

4.2. Descriptive Statistics 

The descriptive statistics for both groups are presented in Table 4 and Table 5, respectively, 

covering observations from the start of 2020 until the end of July 2022. It is important to note the 

significant difference in the number of observations between GitHub and Google. This difference 
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arises from the larger volume of pull request data available for Google compared to GitHub. Apart 

from this, the descriptive measures of the variables appear quite similar between the two groups.  

Table 4: Descriptive statistics GitHub 

GitHub 

Variable Observations Mean Std. Dev. Min Max 

Avg_Degree_Centrality 838 0.717698 0.313089 0.0095656 1 

Avg_Betweenness_Centrality 838 0.0605625 0.0986475 0 0.333333 

Avg_Closeness_Centrality 838 0.8099672 0.235539 0.1555556 1 

Density 838 0.7197618 0.313614 0.0095656 1.31338 

Avg_Clustering_Coefficient 838 0.4486482 0.4233635 0 2.3067 

Avg_Path_Length 731 1.242078 0.3362158 1 2.842208 

PR_Count 838 39.53461 115.1027 2 1070 

 

Table 5: Descriptive statistics Google 

 

4.3. Parallel Trends Test 

For the DiD approach to be valid, it is essential that the parallel trends assumption holds, 

meaning that the treatment and control groups must exhibit similar trends in the pretreatment period 

(Ryan, 2015). This is crucial because the control group serves as the “counterfactual,” representing 

the unobserved outcome of the treatment group had no intervention occurred. Since the parallel trends 

assumption involves an unobservable counterfactual, it cannot be proven; however, reasonable 

evidence can support it. To test the parallel assumption, the similarity of linear trends between the 

treatment group and control groups are examined through statistical analysis utilising a treated time 

interaction term (Ryan, 2015). Here, the binary variable ‘treated’ is indicated with either the treatment 

Google 

Variable Observations Mean Std. Dev. Min Max 

Avg_Degree_Centrality 3,989 0.7590317 0.2766065 0.002097 1 

Avg_Betweenness_Centrality 3,989 0.0627614 0.095923 0 0.3333333 

Avg_Closeness_Centrality 3,989 0.8492892 0.1961159 0.010989 1 

Density 3,989 0.7597258 0.2773711 0.002097 1.31338 

Avg_Clustering_Coefficient 3,989 0.4540545 0.4306082 0 2.3067 

Avg_Path_Length 3,778 1.22867 0.2875217 1 2.841667 

PR_Count 3,989 31.11682 111.8373 1 2000 
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group (1) or the control group (0) and ‘time’ refers to the period before the introduction of the 

technical preview. Table 6 presents the results of this parallel test for the pretreatment period.  

Table 6: Parallel trend test results 

Variable Interaction Term Coefficient Std Err. P-value 

Avg_Degree_Centrality  treated: time -.0006363 .0028056 0.821 

Avg_Betweenness_Centrality treated: time .0003258 .0008395  0.698 

Avg_Closeness_Centrality treated: time -.0002268 .0019832 0.909 

Density treated: time -.0013196 .0026778 0.622 

Avg_Clustering treated: time .0113265 .003524 0.001*** 

Avg_Path_Length treated: time .002662 .0032596 0.414 

PR_Count treated: time .5550582 1.094782 0.612 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

The results indicate that for most variables, there is no significant difference in trends 

between the treatment and control groups in the pretreatment period, which is identified by the treated 

variable not having statistically significant p-values for our social network metrics and pull request 

count metrics. However, it is important to note that the p-value for the average clustering coefficient 

is p<0.001. This means there is strong evidence against the null hypothesis (which states that the 

coefficient is zero), suggesting that the interaction term has a statistically significant effect on the 

dependent variable Avg_Clustering. This indicates that the effect of time on the average clustering 

coefficient is different for the treatment group compared to the control group. Therefore, it is essential 

to approach this variable with caution when interpreting the outcomes.  

4.4. Main Analysis Results 

Within this section a description is given for all regression models used in the analysis with 

the adoption of the two-way fixed effects (TWFE) model for the DiD analysis. See table 7 for a 

summary of the DiD model, examining its relationship with the interaction between treatment and 

technical preview. 

Table 7: Main results 

Dependent Variable Coefficient Std Err. P-value R-squared 

Avg_Degree_Centrality -.006615 .0200327 0.741 0.5595 

Avg_Betweenness_Centrality .0011479 .0079902 0.886 0.2460 

Avg_Closeness_Centrality -.0020516 .0151706 0.892 0.5130 

Density -.0116017 .0209683 0.580 0.5511 
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Avg_Clustering .0564138 .0312898 0.072 0.3694 

Avg_Path_Length .0312104 .0251279 0.215 0.5816 

  

It is notable that almost none of the dependent variables show a statistically significant 

relationship with the interaction term between treatment and technical preview. The p-values for most 

of the variables are above conventional significance levels (p > 0.05 or 0.10), indicating that the 

interaction term does not significantly affect these social network metrics. The only variable that 

shows results below the p<0.10 threshold is Avg_Clustering. But, overall, this indicates that the 

introduction of AI Copilot on GitHub does not significantly alter these social network dynamics 

compared to the control group.  

It is essential to approach the interpretation of these results with caution, especially 

considering the p-value for Avg_Clustering below to the p<0.10 threshold, indicating a potential area 

for further research. However, as mentioned in the section above, this variable could also have been 

influenced by fixed effects. The results suggest that the AI integration of Copilot does not have a 

statistically significant effect on most of the social network metrics. Table 8 presents our support for 

the hypotheses. 

Table 8: Support for hypotheses 

Hypothesis Dependent Variable Support for 

Hypothesis 

H1a: AI integration in OSS will lead to 

greater centralization of the OSS network. 

Avg_Degree_Centrality No 

H1b: AI integration in OSS will lead to 

greater decentralization of the OSS network. 

Avg_Degree_Centrality No 

H2: AI integration in OSS will lead to a 

decrease in the average betweenness 

centrality of the network. 

Avg_Betweenness_Centrality No 

H3: AI integration in OSS will lead to an 

increase in the average closeness centrality of 

the network. 

Avg_Closeness_Centrality No 

H4: AI integration in OSS will lead to an 

increase in density. 

Density No 

H5: AI integration in OSS will lead to a 

increase in the average clustering coefficient. 

Avg_Clustering Only at 0.10 

threshold 

H6: AI integration in OSS will lead to a 

decrease in the average path length. 

Avg_Path_Length No 
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5. Discussion 

Artificial Intelligence (AI) has become a prominent topic in open source communities. This 

technological advancement is reshaping the landscape of software development (Zohair, 2018), 

shifting the focus from traditional coding practices to a model where new contributors, in 

collaboration with AI, primarily understand and utilize code for software creation (Bird, 2022). Such 

a paradigm shift raises questions about how social network dynamics and collaboration patterns may 

evolve. Therefore, this research specifically investigates how the increasing adoption of AI Copilot 

(Kharuffa, 2023) will introduce different approaches in software creation (Savary-Leblanc, 2022) and 

what effect it could have on various social aspects for GitHub communities.  

5.1. Findings 

The study adopted the two-way fixed effects (TWFE) regresssion model for DiD analysis 

(Roth, 2023). The key goal for this research is to find out if the integration of AI in open source 

software (OSS) projects impact the social network dynamics and collaboration patterns, compared to 

traditional OSS projects. The empirical results reveal that none of the dependent variables show a 

statistically significant relationship. This indicates that there is no support for the theorization that the 

introduction of AI Copilot significantly alters social network dynamics compared to the control group. 

Therefore, suggesting that the anticipated impacts of AI integration on social network dynamics and 

collaboration patterns may not be as pronounced or may require further data and refined analysis to 

detect. 

The statistical analysis yielded several unexpected results. Most of the key metrics of the 

social network analysis contained a notably high p-value, above a p<0.05 significance threshold. For 

instance, average degree centrality has a coefficient of (-0.006615) with a p-value of (0.741), 

suggesting no significant change post-intervention. Similarly, betweenness centrality (coefficient 

0.0011479, p-value 0.886) and density (coefficient -.0116017, p-value 0.580) also show no significant 

variations. The only metric approaching significance is average clustering (coefficient 0.0564138, p-

value 0.072), indicating a potential and at a p<0.10 threshold significantly increase. However, this 

variable should be approached with caution, as the paralell trend may be violated for this specific 

variable. The results are unexpected, particularly given the intervention of Copilot, which was 

hypothesized to impact these network metrics significantly. Previous research in structural 

intervention in networks reported more pronounced changes. For instance, studies by Sun (2023) 

demonstrated significant impacts of structural interventions on network efficiency and collaborations 

patterns.  
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5.2. Implications 

The insignificant results of social network analysis provide nonetheless several relevant 

contributions to the academic field. The theoretical framework presents an initial review of existing 

theories which analyses how AI can potentially affect the social network dynamics and collaboration 

patterns on OSS repositories on GitHub. Combined with the conceptual framework, it constitues an 

interesting and novel view for others scholars to built further upon. Moreover, by examining pull 

request data, this study exposes potential pitfalls on the reliance on a single type of interaction with 

definining the edges for these complex networks. Li et al. (2022) ackownledges this insight as well 

that while pull request offer rich and valuable data, relying solely on PR data present challenges, 

where it can miss important interactions to capture the real social network dynamics. In addition, the 

usage of averaging techniques for certain metrics has revealed the potential that such methods can 

potentially hide significant variations in network metrics. This reflection is valuable towards future 

research in social network analysis, where this study suggest more nuanced aggregation methods 

might be necessary to capture the true dynamics of community interactions. Studies like those of 

(Borgatti, 2024; Lee J. B., 2021) support the same view that temporal granularity can significantly 

impact the interpretation of social network data. Finally, this is one of the first attempts to capture the 

effects of the introduction of Copilot through the lens of social network analysis on GitHub’s social 

network dynamics and collaboration patterns. This approach provides a valuable foundation for future 

research. By exploring existing theories, forming methodologies and identifying potential challenges, 

this study provides insights for subsequent research to refine these techniques and delve further into 

this area.  Researchers can build on this foundation to develop more comprehensive models and 

analyses to better capture the dynamics of software development communities.  

5.3. Limitations 

A possible explanation for these insignificant results is the limited amount of data being used. 

The analysis was restricted to a smaller subset of pull request data from GitHub, possibly insufficient 

to capture impacts of the introduction of Copilot. Larger datasets typically provide more robust 

insights, reducing noise and variability than alter effects. This limitation align with findings by 

Dhawan et al. (2021), who highlights the need for large datasets in social network analysis for 

accurately defining and evaluating network communities. Moreover, the method of averaging node 

activity could also weaken significant variations. As discussed in the methodology section, averaging 

can smooth out the variables which in return hides true variability and dynamics over the constructed 

networks. In other words, making it challenging to detect true changes. Freeman (2004) highlights 

that centrality measures are sensitive to network change. The involvement of compiling data from 

multiple points into a single aggregated measure, or within this study, taking the average of certain 

metrics is also discussed by Borgatti et al. (2024). The authors mention that it could potentially vague 
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significant network dynamics by smoothing out these short-term variations. Lastly, the introduction of 

Copilot may have had a more subtle or complex effect than anticipated. Network interventions often 

lead to multifaceted changes that are not immediately seen in simple metrics. The study by Lima et al. 

(2014) suggest that the impact of interventions and user interactions develop progressively, requiring 

extended observation to fully understand their significance. Meaning that, within the context of this 

study, the introduction of Copilot perhaps could take a much longer time to manifest significantly.  

5.4. Future Research 

Further research is needed to determine whether the introduction of Copilot could have a 

significant impact on network dynamics and collaboration patterns on the GitHub platform. Based on 

the conducted research, future studies within this topic should take several factors into account. To 

begin with, it is recommended to gather a larger amount of diverse data in order to build social 

networks. This means not relying solely on pull request data, as the nature of this data can make 

network constructing challenging. This difficulty arises due to the fact that pull requests are not 

present every month in the repositories, leading to either the absence of network or the construction of 

non-interconnected networks. Additionally, through these unconnected networks a significant amount 

of extreme outliers was identified per observation. Which, given the nature of the aforementioned 

networks, is most likely the result of errors made during the network’s construction and analysis in 

Python. Therefore, it is recommended to establish a more comprehensive network which goes beyond 

solely pull request data to incorporating various types of relational data like issues and commits. 

Besides incorporating an increasing amount of various data, future studies should consider the issue 

of averaging multiple metrics for the calculations of the SNA metrics (i.e., average centrality 

measures and average clustering coefficient). As mentioned in the limitations section, temporal 

aggregation might influence our metrics. The research of Borgatti et al. (2024) revealed that some 

approaches could more accurately capture the true measures by using finer temporal granularity. 

These methods could use overlapping time windows to maintain some temporal granurality while 

smoothing out the data, or they could be applied on a weekly basis to capture short-term variations 

and more immediate impact of interventions. However, it is essential to keep in mind that these results 

could also be the consequence of lack of data in creating the networks.  
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6. Conclusion 

This study explored the potential impact of Artificial Intelligence (AI) Copilot before and 

after the technical preview of June 2021 on various repositories from GitHub. The study compared 

these effects with those observed from Google repositories, which were exposed to AI Copilot at a 

later stage. These effects were measured through multiple social network metrics to capture the social 

network dynamics and collaboration patterns within these communities. However, the main research 

question remains unanswered due to several reasons presented in detail in the results and discussion 

section.  

Nonetheless, during the process, several important insights emerged. Firstly, significant 

attention must be paid to the data collection. Collecting pull request data initially made the most sense 

because of their more collaborative nature during the development process on GitHub. But they are 

less frequent than issues or commits, which resulted in a lot of networks that were disconnected or did 

not exist in that particular month at all. Therefore, additional data sources like issues and commits 

could provide a more comprehensive view of the network. Subsequent research should consider 

collecting more pull request data or adding other sources. However, due to time constraints, it was not 

possible to gather more for this study. In addition to data collection and network construction, the 

social network metrics could potentially be calculated in different ways. Perhaps instead of taking the 

average at node level, keep track of individual nodes and see how they develop over time before and 

after the intervention of Copilot. Alternatively, creating different temporal granular effects can 

possibly have an impact on the results.  

Open source software project managers, developers, and contributors incorporating AI into 

their projects can use this study as a foundation for understanding the creation and construction of 

networks within AI context. Future studies can build upon, confirm, or enrich these findings, 

addressing the identified limitations and expanding knowledge in this dynamic and volatile 

environment of open source communities.  

Understanding the potential effects AI may have on GitHub and other OSS platforms is 

critical as it continues to impact the industry. GitHub’s social structure encourages cooperation among 

communities in software development. The introduction of Copilot, which acts as an assistant or even 

replacement for coding tasks, accelerates the dynamics in ways that developers must closely monitor. 

There is still a lot to explore within this environment, particularly concerning the social aspects. In 

conclusion, this research opens new avenues for future studies aimed at enhancing our understanding 

of the social network dynamics and collaboration patterns between AI and developers. Such insights 

will be vital in navigating new networks within the AI revolution in OSS.  
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Appendices 

A. Utilization of AI Tools 

During the development of this research, two AI tools have played an important factor. 

Therefore, to remain as transparent as possible this section entails what tools are utilized and how 

they are utilized during the process of conducting this study. 

Chat GPT – Writing: First of all, Chat GPT is used as assistance during the writing process 

of this thesis. Chat GPT is a type of Generative Pre-trained Transformer (GPT), this large language 

model (LLM) is able respond to natural language inputs to generate text (Božić, 2023).  

The LLM is a powerful tool, it helped me improving writing in an academic manner. 

However, I knew from the beginning when I was conducting this research that it would be beneficial 

for my research. This helped me in rewriting material to be able to present my own research more 

effectively, but every element of this study is based on my own research and input. In addition, I 

sought assistance from Chat GPT in situations when I was unsure whether or a grammar, spelling or 

stylistic errors was present or not.  

GitHub’s Copilot – Programming: Ironically speaking, I also used another GitHub’s 

Copilot tool for the programming part. It was especially important because, at the beginning of the 

semester, I was only a very basic Python programmer. I gained a lot of experience by using the 

GitHub platform and the installing the extension Copilot within my Visual Studio Code environment. 

Which helped me in developing myself on a more advanced level. Puryear and Sprint (2022) discuss 

AI-driven development environments (AIDE) like Copilot, and how its features likely are expected to 

become the new completion standard. However, it also encourages computer science programmers to 

become familiar with how it works while avoiding complete reliance on these resources.  

In the process, I realized that I required Copilot’s assistance, especially because I did not have 

enough time to complete this portion with my own programming skills. This included constructing the 

networks, calculating the social network metrics and merging everything together. Despite this, I did 

my best to able to understand what I was doing and checking everything that I received as output from 

the AI pair programmer.  

Additional contributions: Beyond these main applications, Chat GPT helped me to 

overcome some conceptual obstacles by presenting creative and innovative ideas. It was also very 

helpful in analysing and clarifying STATA outputs, which greatly helped in the completion to my 

thesis process.  

Challenges: While GPT and Copilot have possible benefits with it, scholars should also be 

aware of its potential limitations. Where I would like to express that GPT could lead to bias and 

inaccuracies. Moreover, this technology dependence of AI tools could negatively influence critical 

thinking skills and creates independence in learning. Being aware of such negative impacts I have 
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tried my best to form my own opinion on my master’s thesis and do not use these tools as a primary 

solution for different challenges that were encountered during the process of writing and research this 

study.  

Whereas Copilot can save a great deal of time by suggestion snippets, functions, or even 

whole files. Copilot may also result in poor coding practises that produce inefficient or insecure 

recommendations. In conclusion, the AI coding assistant could be useful for writing code, but just as 

Chat GPT, scholar should be mindful of the suggestions and how important it is to balance the 

benefits and its drawbacks.  

B. Computations of Measures 

See below here for the computations of the measures for the Social Network Metrics. 

Collaboration network 

Average Degree Centrality: This is equal to the number of edges a node has with other nodes. 

The equation can be expressed as follows:  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑔𝑟𝑒𝑒 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =
1

𝑛
∑ 𝑛

𝑖=1
 
deg (𝑖)

𝑛 − 1
 

Where 

• 𝐷𝑒𝑔(𝑖) is the number of direct connection (edges) for node 𝑖. 

• 𝑛 is the total number of nodes in the network. 

 

Average Betweenness Centrality: Measures how important a node is in a network. Based on 

how many of the shortest path between any two nodes in the network pass through the node in 

question: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =  
1

𝑛
∑ 𝑛𝑖=1 (

∑ 𝑗<𝑘 
𝑔𝑗𝑘(𝑖)

𝑔𝑗𝑘
1

2
𝑛(𝑛−1)

 ) 

Where 

• 𝑛 is the total number of nodes in the network. 

• 𝐺𝑗𝑘(𝑖) is the number of shortest paths between node 𝑗 and node 𝑘 that pass through 

node 𝑖.  

• 𝐺𝑗𝑘 is the number of shortest paths between node 𝑗 and node 𝑘. 

• The inner sum is taken over all pairs of nodes 𝑗 and 𝑘 where 𝑗 < 𝑘, ensuring each pair 

is only counted once for an undirected graph.  

• The outer sum averages this value over all nodes 𝑖 in the network. 
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Closeness centrality: Measures the distance of a node to all other in the network by focusing 

on the geodesic distance from each node to all others. It will ultimately show how long it will take 

information to spread from a given node to others in the network.  See formula below: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 =  
1

𝑛
∑ 𝑛 

𝑛−1

∑ 𝑑(𝑖,𝑢)𝑢≠𝑖
𝑖=1   

Where 

• 𝑛 − 1 represents the total number of other nodes (excluding 𝑖) in the network, ensuring 

normalization of the measure. 

• 𝑑(𝑖, 𝑢) is the distance between 𝑖 and 𝑢. 

• The denominator for each 𝑖 is the sum of the distances from 𝑖 to all other nodes 𝑢 in 

the network. 

• 𝑛 is the total number of nodes in the network. 

 

A higher closeness centrality means that a node is generally closer to all other nodes. If a 

developer in a project has a high score, it implies they can quickly and efficiently communicate with 

other developers.  

Network structure 

Network Density: Describes the proportion of potential connections in a network that are 

actual connections. This formula for density can be applied in one of two ways, the ‘ego-centric’ 

approach or ‘socio-centric’ approach (Hossain, 2009). We will the use socio-centric approach 

however, because we want to understand the overall connectivity within a network, therefore:  

 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
2 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑑𝑔𝑒𝑠

𝑛(𝑛 − 1)
 

Where 

• 𝑛 is the total number of nodes in the network. 

• The numerator 2 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑑𝑔𝑒𝑠 represents the actual number of edges 

in the network. The multiplication by 2 is necessary because each edge is counted twice in an 

undirected graph – one for each direction. 

• The term 𝑛(𝑛 − 1) in the denominator represents total number of possible edges in an 

undirected network. 

 

Average Clustering Coefficient: The clustering coefficient of a node measures how close its 

neighbors are to being a complete graph (clique): 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
1

𝑛
∑ 𝑛 

𝑖=1
𝐶𝑖  

 

Where 𝐶𝑖  is the local clustering coefficient for node 𝑖, which can be calculated as: 

 

𝐶𝑖 =
2𝑇𝑖

𝑘𝑖(𝑘𝑖 − 1)
 

Where 

• 𝑇𝑖  is the number of triangles through node 𝑖 and 𝑘𝑖 is the degree of node 𝑖.  

 

Average Path Length: The average number of steps along the shortest paths for all possible 

pair of network nodes. It is a measure of information efficiency.  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ =  
1

1
2 𝑛(𝑛 − 1)

∑ 𝑑(𝑖, 𝑗)
𝑖≠𝑗

 

 

Where 

• 𝑑(𝑖, 𝑗) is the shortest path length between nodes 𝑖 and 𝑗.  

C. Case Study Repository 

Within this section a case study is presented. This repository with the repository ID of 

MDEwOlJlcG9zaXRvcnkyNDY5MjkzNjI=, or called covid19-dashboard, from the company GitHub, 

provides a more detailed presentation of the construction of a social network. Including various 

monthly features for the entire network diagram for the duration of the technical preview (starting in 

June 2020 until the public release). Which are the constructed networks, a degree histogram, and an 

explanation of the network’s developments.  
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Figure 6: Case Study Repository Networks 

 

 

What is interesting is that the starting repository became an immediate active network in 

March 2020. Which make sense considering that COVID-19 arrived in the Netherlands in February 

2020. Indicating an increasing need for Covid dashboard software development. Besides the active 

start, the visualisations present a large number of empty constructed networks. These typically would 

not exist if pull request data for particular month was not available. However, after further 

examination of the pull request data, it reveals that there is an observation here, but the participants 

column is empty. This situation frequently arises in the analysis.  
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Figure 7 also shows a degree histogram, which is a graphical representation of the degree 

distribution of a network. Here, year 2020 in month 3 is presented. Each bar in the histogram 

represents the number of nodes in that network that have certain amount of connections. The height of 

the bar indicates how many nodes have that many connections. And as mentioned above, this month 

represents an active network. 

 

Figure 7: Case Study Degree Histogram 
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