
G E T T I N G T O K N O W T H E
N U T R I - S C O R E

P R E D I C T I N G T H E N U T R I - S C O R E S O F C O N S U M E R
S H O P P I N G B A S K E T S U S I N G M A C H I N E L E A R N I N G

L E S L E Y H A E R K E N S

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university



student number

2026727

committee

dr. Čule
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Abstract

The increasing prevalence of obesity and related chronic diseases
underscores the need for tools guiding consumers toward health-
ier food choices. This research delves into the Nutri-Score, a label
designed to evaluate the overall nutritional quality of food and bev-
erages. By investigating factors that impact consumer nutritional
decisions, including features related to shopping baskets and house-
hold demographics, valuable insights are gained to contribute to
ongoing initiatives promoting healthier nutritional choices and ad-
dressing health concerns linked to dietary habits. To predict the
average Nutri-Score of shopping baskets, various machine learning
algorithms are employed. The study reveals modest improvements
compared to a blind baseline model that predicts the overall av-
erage for each instance, with XGBoost Regressor emerging as the
top-performing model, achieving a Mean Absolute Error of 0.419

and a Root Mean Square Error of 0.553. Nonetheless, the discussion
highlights suboptimal performance, particularly for extreme values,
indicating challenges in predicting shopping baskets with very low
or high average Nutri-Scores. Another aspect of this study focuses on
improving model interpretability by employing eXplainable AI tech-
niques. These techniques shed light on features such as the influence
of private label products on health-conscious shopping. Additionally,
association rule mining uncovers patterns, such as the presence of
seemingly healthy products like ’milk’ and ’yogurt’ in unhealthy
baskets, underscoring the multifaceted nature of shopping choices.
Lastly, the research suggests future avenues for exploration to refine
the understanding of shopping basket healthiness. This aligns with
the overarching goal of "getting to know the Nutri-Score", i.e., obtaining
a comprehensive understanding of consumers’ nutritional decisions
during grocery shopping.
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1 introduction

With the rising prevalence of obesity globally, there is an urgent need for
effective tools to assist consumers in selecting healthier food and beverage
options (De Temmerman et al., 2021). Obesity rates have increased in Euro-
pean countries, including the Netherlands, where over half of adults were
overweight in 2021, and approximately 14 percent had obesity (Bergmann
et al., 2022; Tarrahi, 2023). Promoting healthier nutritional choices is a vital
public health goal worldwide. Governments globally have implemented
interventions to address nutrition-related health concerns, and the Nutri-
Score, a labeling system on product packaging, emerges as a valuable
tool to assess and communicate the overall nutritional quality of food and
beverages (Karpyn et al., 2020; Ter Borg et al., 2021).

The Nutri-Score, with its five-colored categories, provides a quick and
easy way for consumers to evaluate nutritional quality based on various
factors (Clark et al., 2022; Julia & Hercberg, 2018). This thesis delves into
understanding how consumers make nutritional choices during supermar-
ket shopping, investigating factors such as promotions, demographics, and
other elements that influence these choices. Addressing the critical issues
of obesity and poor dietary choices, this research contributes valuable
insights to ongoing efforts aimed at promoting healthier nutritional choices
and combating health concerns related to dietary habits.

1.1 Research Strategy & Research Questions

Firstly, this thesis explores the capability of Machine Learning (ML) models
to accurately predict the average Nutri-Score of shopping baskets. The
study compares a blind baseline model, predicting the overall average
for each instance, with more complex ML models, including Decision
Tree (DT), Random Forest (RF), Gradient Boosting Regressor (GBR), and
XGBoost Regressor (XGBoost). Model performance is evaluated using
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Square Error (RMSE). Accordingly, this thesis considers the following
research question:

RQ1. To what extent can ML algorithms, specifically DT, RF, GBR and XGBoost,
effectively predict the average Nutri-Score of consumer shopping baskets
based on household panel features, with a focus on assessing predictive
accuracy using MAE, MSE, and RMSE metrics?

Secondly, eXplainable AI (XAI) techniques are a crucial component of
this study. Tree-based models, such as RF and gradient boosted trees,
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while accurate, often act as black boxes, making it challenging for hu-
mans to understand their decision-making processes (S. Lundberg et al.,
2020). Examining the predictive capabilities of ML models for average
Nutri-Scores and identifying the factors influencing these predictions un-
derscores the crucial role of XAI as a link between data-driven insights
and decision-making. This aligns with the goal of understanding and pro-
moting healthier nutritional choices during grocery shopping. Leveraging
the study findings, XAI becomes valuable for marketing experts to gain
insights into consumer behavior, enabling tailored strategies. Public health
professionals can use XAI for evidence-based interventions, customizing
programs to enhance public health. The thesis addresses the following
research question:

RQ2. How can XAI techniques, such as feature importance analysis, partial
dependence plots, and SHAP values, be effectively applied to enhance the in-
terpretability of ML models in explaining the factors influencing nutritional
choices in shopping settings?

Lastly, Association Rule Mining (ARM) is a powerful data mining tech-
nique that identifies patterns and correlations between co-purchased items.
Involving the mining of frequent itemsets and association rules, the Apriori
algorithm is commonly used, favored for its simplicity and efficiency with
large datasets. In this study, ARM is used to reveal patterns within both
healthy and unhealthy shopping baskets, addressing the following research
question:

RQ3. What insights can be derived from the association rules extracted through
the Apriori algorithm, revealing patterns of co-occurrence and relationships
between specific food and beverage items or categories in both healthy and
unhealthy shopping baskets?

In summary, this thesis investigates the predictive capabilities of ML in de-
termining the average Nutri-Score of consumer shopping baskets. Through
a comprehensive exploration, this study aims to uncover insights into the
factors influencing nutritional choices. It seeks to bridge the gap between
predictive accuracy, model interpretability using XAI techniques, and the
intricate patterns within shopping baskets. Considering this context, this
thesis considers the following overarching research question:

RQ. To what extent can ML algorithms predict the average Nutri-Score of
consumer shopping baskets based on household panel features, and what
insights can be gained regarding the factors influencing nutritional choices,
including the exploration of ARM to uncover patterns within shopping
baskets?
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1.2 Motivation & Relevance

This study addresses the pressing issue of unhealthy dietary decisions
by investigating factors influencing consumers’ nutritional choices during
grocery shopping. The emphasis on understanding elements such as pro-
motions and demographic information, along with uncovering patterns in
healthy and unhealthy shopping baskets, is crucial for promoting healthier
nutritional choices. Unlike existing literature that primarily focuses on the
Nutri-Score’s effectiveness or predicting Nutri-Scores at the product level,
this study uniquely employs ML to predict the average Nutri-Score of
shopping baskets. Moreover, it demonstrates the utility of XAI methods in
interpreting ML results and offering actionable insights. Additionally, the
application of ARM extends beyond conventional sales-boosting purposes,
providing deeper insights into consumers’ decision-making regarding the
nutritional quality of their shopping baskets.

1.3 Ethics, Data & Technology Statement

The data for this study is obtained from Aimark and GfK1. Tilburg Univer-
sity maintains ownership of the data, notified about its use in this thesis.
Consumers voluntarily scan their purchases, and data collection is com-
pensated. While this involves human participants, this thesis uses the end
product created by GfK, not the data collection process. Nutri-Scores at
the category level, publicly published by Clark et al. (2022), complement
the GfK data.

The figures are owned by the author. Figure 12 is adapted from Clark
et al. (2022) under their license. Additionally, R is used for data cleaning,
while Exploratory Data Analysis (EDA) and modeling are carried out in
Python. The list of packages and versions is provided in Appendix A.
The code is not publicly available. The use of AI-powered technologies is
restricted to ChatGPT for code debugging and rephrasing, without using
other typesetting tools or services (OpenAI, 2023).

1 GfK is a global market research company, providing insights into consumer behavior and
market trends, and Aimark facilitates collaboration between academics and businesses to
generate and apply novel insights.

https://creativecommons.org/licenses/by/4.0/
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2 related work

2.1 Predicting Nutri-Scores

Previous research on Nutri-Scores primarily delves into the effectiveness
of the Nutri-Score as a Front-of-Pack labeling system. The Nutri-Score,
on a scale from -15 (healthiest) to 40 (least healthy), is represented by a
color-coded system using letters A (healthiest) to E (least healthy) and
corresponding colors from dark green to red (De Temmerman et al., 2021).
Originating from the National Epidemiology Research Institute in France,
the Nutri-Score gained official status in France in 2017 and has since
been adopted by several European countries, including Belgium, Spain,
Germany, Switzerland, Luxembourg, and the Netherlands (Ter Borg et al.,
2021). After a trial period of almost three years, the Nutri-Score gained
official status in the Netherlands as of January 1

st, 2024 (NOS, 2024). The
Nutri-Score aims to guide consumers toward healthier choices, and for
producers it serves as an incentive to improve nutritional content, such as
reducing salt or sugar and increasing fiber (Ter Borg et al., 2021).

Despite skepticism about the Nutri-Score’s effectiveness, especially
regarding category differentiation, where a relatively healthy frozen pizza
receives a green A-score and fatty smoked salmon receives a D-score
(Van Benthem, 2022), academic research consistently supports its efficacy.
This includes aiding consumers in ranking food and beverage products
by nutritional quality (Dréano-Trécant et al., 2020), enhancing nutritional
intake (Julia et al., 2021) and promoting the purchase of healthier options
(Dubois et al., 2020; Fialon et al., 2020). Regarding Nutri-Score prediction,
research focuses on using ML models, such as decision trees and gradient-
boosting machines, to accurately predict Nutri-Scores for plant-based foods
based on nutrient content, potentially enhancing label accuracy and aiding
informed consumer decisions (Tachie et al., 2023).

The approach by Tachie et al. (2023) differs from the one in this study,
which aims to predict the average Nutri-Score of shopping baskets by con-
sidering features related to shopping baskets and household demographics.
The decision to incorporate demographic and basket-level features, rather
than individual purchase data, aligns with the primary goal of under-
standing the factors influencing nutritional choices. While retail data is
valuable for public health research, obtaining individual purchase data is
often challenging due to privacy concerns and the absence of longitudinal
data for individual customers (Egan et al., 2014). Opting for the strategy
adopted in this study ensures broader relevance and extends the findings’
utility beyond specific and often limited data contexts. Additionally, past
research has explored socioeconomic and marketing factors influencing
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consumers’ nutritional choices, with age impacting food preferences (Mon-
terrosa et al., 2020), higher-income individuals favoring organic and locally
sourced foods (Ogundijo et al., 2021), and effective marketing strategies
promoting healthier, lesser-known, food choices (Glanz et al., 2012; Melovic
et al., 2020).

Additionally, Tachie et al. (2023) distinguish between predicting the
precise Nutri-Score (a numerical range from -15 to 40) and the Nutri-Score
grade (ranging from A to E) displayed on product labels. The Nutri-
Score assesses products based on seven key aspects, penalizing high levels
of energy, saturated fat, sugars, and sodium, while rewarding favorable
compositions of protein, fiber, and the proportion of fruits, vegetables, nuts,
and certain oils. This study adopts a 1-5 scale transformation, aligning
with Clark et al. (2022), who converted the A-E scale for nutritional impact
comparison. This transformation assigns 1 to the best and 5 to the poorest
nutritional composition, allowing linear mapping of Nutri-Score values
to a 1-5 scale, supporting nutritional impact comparisons across diverse
foods. As the target variable spans 1 to 5, this study approaches it as a
supervised regression task (Bonaccorso, 2017).

In another study, Hossain et al. (2019) explored ML methods, including
RF and XGBoost, to predict calorie-based indicators of food security, as-
sessing household food consumption sufficiency in terms of calorie intake.
The study focused on indicators such as "calorie poor" (a binary feature
with values yes = 1) and actual calorie intake as a continuous variable
(Hossain et al., 2019). They assessed the performance of ML methods
against non-ML techniques such as logistic regression and ordinary least
squares, considering various household-level features, including education,
age, gender of the household head and the household size, to predict food
security indicators (Hossain et al., 2019).

2.2 eXplainable AI

Tree-based ML methods such as RF and gradient boosted trees are widely
employed for their accurate predictions based on input features (S. Lund-
berg et al., 2020). In contexts where interpretability is crucial, understand-
ing how these models use input features becomes essential, despite their
often black-box nature. Obtaining explanations for ML models is vital for
enhancing reliability, enabling human assessment of causality, and aligning
machine reasoning with existing mental models (Haag et al., 2022). With
the increasing interest in XAI, various methods have emerged to explain
ML model predictions, categorized by interpretability level, applicability,
and the necessity of procedures to enhance interpretability (Haag et al.,
2022). Post-hoc methods, such as feature permutation, explain already



2.2 eXplainable AI 8

trained models, while intrinsic approaches such as linear regression are
inherently interpretable (Adadi & Berrada, 2018; Haag et al., 2022).

This study places its emphasis on model-agnostic post-hoc methods
for explaining feature attributions in predicting the average Nutri-Score.
Two widely used methods are Local Interpretable Model-agnostic Expla-
nations (LIME), which perturbs data and fits an interpretable model, and
Shapley Additive Explanations (SHAP), using cooperative game theory to
determine feature impacts (Haag et al., 2022; Tallón-Ballesteros & Chen,
2020). While LIME has faced criticism for stability issues, SHAP, which
avoids randomness, is considered a more stable method (Haag et al., 2022).
SHAP transcends merely demonstrating the impact of individual features,
extending to reveal its contribution across all possible combinations of
features that collectively determine the model’s output (Tallón-Ballesteros
& Chen, 2020). Additionally, this study incorporates Partial Dependence
Plots (PDPs), a conventional method introduced by Friedman (2001), il-
lustrating the relationship between the target response and specific input
features while considering the average values of all other input features
(Pedregosa et al., 2011).

XAI provides interpretable and human-understandable explanations for
AI decisions, proving valuable across various sectors, including healthcare,
finance (Öztoprak & Orman, 2022), legal and government decisions, and
applications such as autonomous vehicles and image analysis (Schlegel
et al., 2019; Tiwari, 2023). In marketing, XAI unveils the role of specific cus-
tomer experience features and aids companies in decision-making (Rallis
et al., 2022). In a broader context, XAI promotes transparency in complex
models, addresses evidence-based policy needs and generates actionable
insights (de Carvalho & da Silva, 2021). Therefore, XAI is useful in un-
derstanding consumers’ nutritional choices during grocery shopping by
making intricate models transparent. Interpretable models contribute to
global health by suggesting opportunities and actionable insights for poli-
cymakers and marketing professionals. Without XAI, conveying insights
beyond predictive accuracy, such as the MAE and related metrics, would
be challenging.
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2.3 Association Rule Mining

ARM is a data mining technique focused on discovering patterns and
correlations in large transaction databases, such as frequent co-purchased
items (R. Agrawal & Srikant, 1998). It identifies relationships by mining
frequent itemsets and generating association rules, which evaluate subsets
and calculate support and confidence for each rule (R. Agrawal & Srikant,
1998). ARM, widely applied in domains such as analyzing consumer pur-
chase data (Hemalatha, 2020; Raorane & Kulkarni, 2011; Sani et al., 2022),
proves valuable for business decision support, cross-selling, and customer
relationship management (Shah et al., 2016). The Apriori algorithm, a pop-
ular method for mining frequent itemsets and association rules, is chosen
for this study due to its simplicity and efficiency in handling substantial
datasets, making it advantageous over other methods such as Frequent
Pattern Growth (Han et al., 2011; Kumarr et al., 2019; Shah et al., 2016;
Wicaksono et al., 2020).

Furthermore, within the context of promoting healthy decision-making,
the exploration of using ARM to establish rules for (un)healthy shopping
behavior remains limited in existing literature. For instance, Li (2009) used
the Apriori algorithm to find dietary patterns focusing on health, but their
approach involved extracting rules based on associations among nutrient
information within products. One rule they found, for example, shows a
close link between total fat content and magnesium for healthy products.
Additionally, Sharma (2017) applied ARM to tackle rising obesity rates by
revealing hidden relationships between health-related factors, emphasizing
the benefits of regular physical activity. While related to health, ARM
serves a different purpose in this study, where it uncovers patterns within
healthy and unhealthy shopping baskets, offering insights into consumer
preferences for nutritious choices.
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3 methodology

3.1 Dataset Description

3.1.1 GfK Household Panel

The raw data files, obtained from Aimark and GfK, comprises individual-
level datasets from Dutch households, documenting consumer packaged
goods purchases. Categorized into purchase, barcode, shopcode, and
panelist sections, the purchase files include details such as purchase date
and retailer, barcode files provide product information, shopcode files
contain retailer details, and panelist files feature household demographics.
The purchase data spans from 2012 to 2022, with varying sizes, totaling
149,461,450 rows when merged. Each row corresponds to a product pur-
chased by a panelist, scanned on a specific day, from a particular store.
The shopcode file involves 241 stores, categorized as discount, mid-range,
service supermarkets, or other locations. This study encompasses 31,328

distinct panelists, varying in household size, age, income, and education
levels of the household head. Appendix B provides the codebooks for these
raw data files.

3.1.2 Nutri-Scores

Clark et al. (2022) developed an algorithm to estimate the environmen-
tal impact and nutritional quality of food and beverage products using
publicly accessible data. Their approach leverages government-mandated
regulations in the UK and Ireland, where ingredient listings must be ar-
ranged in descending order of abundance, and packaging should include
the percentage composition of characterizing ingredients (e.g., the propor-
tion of beef in beef lasagna). The algorithm extrapolates information for
89.6% of ingredients lacking percentage composition data based on insights
from the remaining 10.4%. Appendix C illustrates this approach. For nu-
tritional assessment, Clark et al. (2022) employed the Nutri-Score, relying
on provided information for energy, (saturated) fat, sugars, salt/sodium,
carbohydrates, protein, fiber, and the proportion of fruits, vegetables, nuts,
and certain oils. In cases of missing data, they estimated composition using
ingredient proportions and nutrient data across 52 categories. As indicated
previously, to facilitate comparisons, Clark et al. (2022) standardized the A-
E scale from 1 to 5, allowing for averaging nutritional impacts across retail
categories despite conversion threshold variations. Appendix D provides
an example calculation.
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3.1.3 Linking Purchases to Nutri-Scores

Products were systematically categorized into departments, aisles, and
shelves to align with the common practice of grouping items with similar
Nutri-Scores together in supermarket aisles, ensuring the nutritional rep-
resentation of each aisle corresponding to the products it contains (Clark
et al., 2022). For brevity, these organizational tiers are referred to as ’cate-
gories’, with a list provided in Appendix E. Introducing a new category,
’50% Beef and 50% Pork’, this study calculates the average Nutri-Scores
by combining those of ’Beef and Lamb’ and ’Meat’ to offer a more precise
estimation for products containing a mix of beef and pork. Aligning Nutri-
Scores with individual household purchases in the GfK panel is crucial
for the analysis, accomplished by matching GfK barcode file categories
with those established by Clark et al. (2022). Over 95% of the unmatched
barcodes (42,739 out of 450,482) are alcoholic beverages, omitted due to
the absence of Nutri-Score estimates by Clark et al. (2022). Non-food and
non-beverage products lacking Nutri-Score information are also excluded
from the analysis.

3.2 Data Cleaning & Exploratory Data Analysis

3.2.1 Shopping Baskets

This thesis focuses on shopping baskets, aggregating individual purchases
made by a single panelist on a specific day at a particular store2. The study
centers on the retail sector, specifically ’discount supermarkets’, ’mid-range
supermarkets’, and ’service supermarkets’. Table 1 offers an overview of
the variables used in this study. The variables are derived as follows: (i)
’Nutri-Score’ is calculated by averaging Nutri-Scores across all items in
the basket3 , (ii) ’Items per Basket’ is determined by summing the items
within the basket, (iii) ’Promotion Ratio’ and ’Private Label Ratio’ are
computed as ratios of items on promotion or private label, respectively,
and (iv) the remaining categorical variables are directly extracted from
individual purchases since they remain constant when aggregating to
shopping baskets.

2 In instances where consumers make multiple shopping trips on the same day at the same
store using the same purchase method, their purchases are merged into a single basket.

3 In this context, averaging the Nutri-Score entails calculating the mean of individual product
scores in the basket, without considering their weights. The exclusion of weights prevents
multi-packs from disproportionately influencing the overall average score of a basket.
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Table 1: Overview of Variables

Variable (Type) Description
Nutri-Score (num) The Nutri-Score of the basket
Items per Basket (num) The number of items per basket
Promotion Ratio (num) The ratio of items on promotion per basket
Private Label Ratio (num) The ratio of private label items per basket
Purchase Method (cat) The channel where the purchase was made
Store Type (cat) The retail store type
Household Size (cat) The size of the panelists’ household
Income Group (cat) The panelists’ income group
Age Group (cat) The panelists’ age group
Social Group (cat) The panelists’ social (or educational) group
Year (cat) The year in which the purchase took place

Notes. ’num’ indicates ’numerical’; ’cat’ indicates ’categorical’

3.2.2 Handling Missing Values

Table 2 provides an overview of where data is missing across different
variables in the dataset. Dealing with missing values commonly involves:
(i) dropping the feature with missing values, (ii) removing instances with
missing values, (iii) imputing missing values with inferred data, and (iv)
estimating missing values using data-driven methods (Aggarwal, 2015).

Table 2: Missing Values

Variable Missing Values
Purchase Method 7,806,462

Social Group 99,960

Income Group 54,476

Age Group 54,476

Household Size 54,476

Private Label 20,175

Notably, ’Purchase Method’ contains a lot of missing values, and Figure
1 highlights that the majority of purchases are made in physical stores
(’winkelaankoop’), with very few using online delivery (’online-bezorgen’)
or pickup (’online-ophalen’) methods. The large imbalance in classes and
the substantial amount of missing data could introduce noise in the model’s
predictions (Radwan, 2017). Therefore, the feature ’Purchase Method’ will
be removed.
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Figure 1: Distribution of Purchase Method (Excluding Missing Values)

Furthermore, ’Social Group’ has the second-highest number of missing
values, posing challenges for imputation due to limited methods for cat-
egorical data. Given the absence of this feature in only around 0.6% of
shopping baskets, instances with missing ’Social Group’ values are ex-
cluded, simultaneously leading to the removal of corresponding missing
values in ’Income Group’, ’Age Group’, and ’Household Size’. These in-
stances, marked by multiple missing features, contribute less information
for predicting the average Nutri-Score and are thus eliminated. An even
smaller fraction, about 0.1%, of shopping baskets lacks completeness in
terms of the ratio of products in the basket that are private label. The
instances with missing values for this variable are also removed from the
dataset.

Additionally, this study assesses the impact of removing missing val-
ues in ’Social Group’ (and consequently, in the remaining socioeconomic
variables) and ’Private Label’ on the distributions of the variables included
in this study. Appendix F contains the distributions of the features before
and after removing the missing values in ’Social Group’ and ’Private Label’.
Visual inspection shows a remarkable similarity between the distributions
before and after the removal of missing values, supporting the removal
in ’Social Group’ and ’Private Label’ due to the slightly smaller dataset
effectively representing the larger one.
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3.2.3 Handling Duplicates & Outliers

In this study, the presence of duplicates is limited to the panelist file,
where each panelist’s record appeared for every month they participated.
Nevertheless, since each panelist is assigned a unique identifier once during
their lifetime, it is permissible to eliminate any duplicate entries from this
file. This process ultimately yields the previously mentioned count of
31,328 distinct panelists.

Furthermore, boxplots displaying the presence of outliers in the nu-
merical variables ’Nutri-Score’, ’Items per Basket’, ’Promotion Ratio’, and
’Private Label’ can be found in Appendix G. The boxplot for ’Items per Bas-
ket’ suggests that many shopping baskets contain a relatively low number
of items, with only a few exceptions having more items. This observation
aligns with typical supermarket transaction patterns where a majority of
shopping baskets consist of a small number of items (Martin et al., 2020).
Regarding the boxplot of ’Promotion Ratio’, the outliers indicate shopping
baskets where a high proportion of items are on promotion, potentially
corresponding to smaller shopping baskets with few items that are on
promotion. Given that these outliers are conceptually valid, they will not
be treated as anomalies but rather considered as relevant insights for the
analysis.

3.3 Preprocessing

3.3.1 Encoding, Scaling & Sampling

In ML, transforming categorical variables into numerical representations is
a crucial preprocessing step to effectively use them in modeling techniques.
Categorical data can be classified as either nominal or ordinal (Verma,
2021). Nominal data includes variables with names but no inherent nu-
merical values. Ordinal data, on the other hand, involves categories with
an inherent order or scale (Verma, 2021). Accordingly, ’Store Type’ is
considered nominal and the variables ’Household Size’, ’Income Group’,
’Age Group’, ’Social Group’ and ’Year’ are classified as ordinal due to their
inherent order4. As a result, one-hot encoding is applied to ’Store Type’,
while label encoding is used for the ordinal variables. Given the normal
distribution of the target variable, the average Nutri-Score, and sufficient
coverage in categorical variables, no additional preprocessing steps, such
as scaling, undersampling, or oversampling are considered necessary.

4 E.g., in the case of ’Household Size’, the order is defined as 1 person < 2 persons < 3

persons, and so forth. Similarly, for ’Income Group’, the order is structured as ’below 700

euros’ < ’700-900 euros’ < ’900-1100 euros’, and so on.
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3.3.2 Feature Importance

To gain an initial understanding of the importance of the features used
in this study, the default feature_importances_ scikit function of DT was
applied. The importance of a feature, or Gini importance, is calculated
by measuring how much it contributes to reducing the overall criterion
(impurity) in a normalized way (Pedregosa et al., 2011). Figure 2 displays
the relative importance scores for each feature, with ’Items per Basket’
holding the highest importance, signifying its significant role in Nutri-Score
predictions. ’Year’ and ’Income Group’ also make substantial contributions.
Notably, due to one-hot encoding for store types, the model omits one level
(’Discount Supermarkets’) to avoid the dummy variable trap5. As a result,
only the importance of the other two store types can be inferred.

Figure 2: Feature Importance Scores

The significance of ’Income Group’ and ’Items per Basket’ as important
features is not unexpected, as prior studies have highlighted their impact on
consumer behavior and food choices. Puddephatt et al. (2020) demonstrate
that income is a key influencer of eating behaviors, with higher income
often facilitating access to a variety of food choices. Additionally, Prasad
et al. (2008) show that households with higher incomes tend to be more
health-conscious. Moreover, while not directly tied to the healthiness
of shopping baskets, extensive research has explored the dynamics of
basket sizes, examining factors such as store variety, basket profitability,

5 The dummy variable trap occurs in regression analysis with one-hot encoding, where the
creation of k dummy variables for a categorical variable results in multicollinearity. To
prevent this issue, it is recommended to produce k-1 dummy variables by excluding one
category (Pramoditha, 2023).
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shopping trip types, and even consumer-related variables such as consumer
embarrassment (Martin et al., 2020; Nichols et al., 2014; Walters & Jamil,
2003). This highlights that the number of items in a basket is not a random
number but plays a multifaceted role in various contexts, shedding light
on its importance in consumer decision-making.

The unexpected prominence of ’Year’ as a significant factor needs ex-
ploration, as it differs from the other variables directly linked to shopping
basket composition or household characteristics. Figure 3 shows the aver-
age Nutri-Score of shopping baskets over time, indicating a subtle decrease
with peaks and lows in December and January, possibly due to holiday
indulgence and New Year’s resolutions. According to Kamińśki et al.
(2021), December sees common purchases of goods such as processed fish,
food fats and wine, while January experiences a decrease in sales indexes
for most consumer goods and increased interest in healthy lifestyle topics
based on Google searches. To address December and January seasonality,
two extra features are introduced, taking the value of 1 for purchases in
those months and 0 otherwise. The ’Year’ feature remains to capture subtle,
long-term variations without unnecessary temporal complexity.

Figure 3: Average Nutri-Score Over Time

3.3.3 Association Rule Mining

To prepare the dataset for the Apriori algorithm, additional preprocessing
involves adding a basket ID to the purchase-level dataset, creating an
individual purchase dataset with two new columns for the Basket ID and
the average Nutri-Score. To analyze purchase patterns in relatively healthy
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and unhealthy shopping baskets, the dataset is split into two subsets: one
with average Nutri-Scores less than or equal to 2 and the other with scores
greater than or equal to 3.

The decision to split the dataset into relatively healthy baskets (average
Nutri-Score ≤ 2) and relatively unhealthy baskets (average Nutri-Score
≥ 3) is rooted in the normal distribution of the average Nutri-Score. With
the majority of baskets exhibiting an average Nutri-Score around 2.5, this
split focuses on discerning association rules in the tails of the distribution,
excluding those closer to the mean. This approach ensures that the associa-
tion rule exploration is tailored to the extremes of the average Nutri-Score
distribution, providing insights into factors influencing both healthier and
less healthy shopping choices.

3.4 Algorithms & Hyperparameter Tuning

3.4.1 Predicting Nutri-Scores

Blind Baseline
The blind baseline model used in this study adopts a straightforward
approach by predicting the average Nutri-Score value observed in the
training dataset, which is equal to 2.544, for all instances in the test dataset.
This simplistic model assumes that the mean value reasonably represents
the target variable and serves as a basic benchmark for evaluating the
performance of more complex models.

Decision Tree
A DT is a hierarchical structure that recursively divides the data using se-
lected features and split points, determined by criteria such as information
gain (Tachie et al., 2023). The process continues until a stopping criterion,
such as maximum tree depth or minimum samples per leaf, is met. The
final prediction is made by traversing the tree from the root node to a leaf
node based on input feature values (Agarwal, 2013; Tachie et al., 2023).

In ML algorithms, tuning hyperparameters is one of the important
aspects in building efficient models. One of the most straightforward
methods to determine the optimal set of hyperparameters is to train the
dataset using every possible combination. This method is commonly
known as grid search and offers a highly reliable way to identify the best
hyperparameters (T. Agrawal, 2020). The dataset is divided into a training
set (70%) and a test set (30%). To ensure the reliability of the results and
mitigate computational expenses, a representative sample of the training
set, comprising approximately 10,000 rows or 0.1% of the training data,
is used. The distributions of the selected sample, as shown in Appendix
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H, closely resemble those of the original training set. Additionally, 5-fold
cross-validation was employed for the hyperparameter tuning process.

The hyperparameters explored for tuning the DT include ’max_features’
(i.e., the number of features to consider for the best split), ’max_depth’ (i.e.,
the maximum depth of the tree), ’min_samples_split’ (i.e., the minimum
number of samples required to split an internal node), ’min_samples_leaf’
(i.e., the minimum number of samples required to be a leaf node), and
’splitter’ (i.e., the strategy used to choose the split at each node during the
tree-building process). The candidate values are displayed in Table 3. In
optimizing each ML model, the tuning process relies on the MAE as the
scoring metric. The selection of hyperparameter values is informed by both
reasoned choices and, where applicable, insights gained from literature.

Table 3: Hyperparameter Tuning - DT

Hyperparameter Candidate Values
max_features auto, sqrt
max_depth None, 5, 10, 15, 20

min_samples_split 2, 3, 4, 5, 6, 7, 8, 9, 10

min_samples_leaf 1, 2, 3, 4

splitter best, random

Random Forest
RF is an ensemble method that enhances predictive accuracy by com-
bining multiple decision trees. It effectively handles diverse data types
and demonstrates robust performance on large datasets. Random Forest
builds individual decision trees on bootstrapped samples, incorporating
random feature subsets for each split, and the final prediction is deter-
mined by averaging the predictions of these trees (Khan et al., 2022; Tachie
et al., 2023). The hyperparameters explored for tuning the RF model in-
clude ’n_estimators’ (i.e., the number of trees in the forest), ’max_features’,
’max_depth’, ’min_samples_split’, and ’min_samples_leaf’. The candidate
values are displayed in Table 4.
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Table 4: Hyperparameter Tuning - RF

Hyperparameter Candidate Values
n_estimators 50, 100, 150, 200, 250

max_features auto, sqrt
max_depth None, 5, 10, 15, 20

min_samples_split 2, 3, 4, 5, 6, 7, 8, 9, 10

min_samples_leaf 1, 2, 3, 4

Gradient Boosting Regressor
GBR in scikit-learn is a versatile implementation of the gradient boost-
ing algorithm. In gradient boosting, an ensemble of decision trees is
built sequentially, with each tree aiming to correct the errors of the
previous one. The model’s predictions are the cumulative sum of the
individual tree predictions, providing a powerful approach for regres-
sion tasks. The hyperparameters explored for tuning the GBR model
include ’n_estimators’, ’learning_rate’ (i.e., the step size for updating the
model’s parameters during training, impacting algorithm convergence
and optimization), ’max_features’, ’max_depth’, ’min_samples_split’, and
’min_samples_leaf’. The candidate values are displayed in Table 5.

Table 5: Hyperparameter Tuning - GBR

Hyperparameter Candidate Values
n_estimators 50, 100, 150, 200, 250

learning_rate 0.01, 0.05, 0.1
max_depth None, 10, 20

min_samples_split 2, 4, 8, 10

min_samples_leaf 2, 4, 8, 10

XGBoost Regressor
XGBoost is a specialized and highly optimized implementation of the
gradient boosting algorithm. XGBoost adheres to the core principles of
gradient boosting but introduces several improvements, such as regulariza-
tion terms, to enhance both efficiency and performance. Notably, XGBoost
is recognized for its speed, scalability, and superior performance, making
it a popular choice in ML and a broad range of applications (Hossain et al.,
2019). In essence, XGBoost can be considered a specific and advanced
implementation of the gradient boosting algorithm. The hyperparameters
explored for tuning the XGBoost model include ’n_estimators’, ’learn-
ing_rate’, ’max_depth’, and ’min_samples_split’. The candidate values are
displayed in Table 6.
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Table 6: Hyperparameter Tuning - XGBoost

Hyperparameter Candidate Values
n_estimators 50, 100, 150, 200

learning_rate 0.01, 0.05, 0.1
max_depth 3, 4, 5

min_samples_split 1, 2, 3

3.4.2 Association Rule Mining: Apriori

Apriori, an algorithm for mining frequent itemsets and association rules in
transaction databases, operates through iterative candidate itemset genera-
tion and pruning based on a minimum support threshold (R. Agrawal &
Srikant, 1998). The key insight behind the Apriori algorithm is the Apriori
principle, which states that any subset of a frequent itemset must also be
frequent. This allows the algorithm to avoid generating and counting the
support of all possible itemsets, which would be computationally infeasible
for large databases (R. Agrawal & Srikant, 1998). The algorithm comprises
two main phases: (i) the frequent itemset generation phase, where it scans
the database, counts item support, and iteratively generates candidate item-
sets, and (ii) the rule generation phase, where all possible association rules
are generated from frequent itemsets, producing rules of the form X → Y
to signify strong relationships between items in X and Y (R. Agrawal &
Srikant, 1998). The pseudocode outlining this process is provided below
(Shah et al., 2016).

Pseudocode Apriori Algorithm

Ck: Candidate Itemset of size k
Lk: Frequent Itemset of size k
L1 = {Frequent Items}
for k = 1; Lk ̸= ∅; k ++ do

Ck+1: Candidates generated from Lk
for each transaction t in database do

Increment the count of all candidates in Ck+1 that are contained in t
end for
Lk+1: Candidates in Ck+1 with min_support

end for
return

⋃
k Lk
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3.5 Evaluation Metrics

3.5.1 Predicting Nutri-Scores: MAE, MSE & RMSE

The evaluation of the predictive performance of ML models relies on
several key metrics, including the MAE, MSE, and RMSE. MAE measures
the average absolute differences between predicted and actual values, while
MSE computes the average of squared differences, giving higher weight to
larger errors. Furthermore, RMSE is calculated by taking the square root
of the average of squared differences between predicted (ŷi) and actual (yi)
values. The formula for RMSE is denoted as:

RMSE =

√
∑n

i=1(ŷi − yi)2

n
(1)

Here, n is the number of observations in the dataset.

3.5.2 Association Rule Mining: Support, Confidence & Lift

The strength of the relationship is measured by the support and confidence
of the rule, which are defined in terms of the frequency of occurrence of
the itemsets in the database (R. Agrawal & Srikant, 1998). The support of
an association rule is the proportion of transactions that contain both the
antecedent (X) and consequent (Y) of the rule (R. Agrawal & Srikant, 1998).
This formula is mathematically expressed as:

Support(X → Y) = P(X ∩ Y) (2)

The confidence is the proportion of transactions that contain the consequent
(Y), given that they also contain the antecedent (X) (R. Agrawal & Srikant,
1998). This formula is mathematically formulated as:

Confidence(X → Y) = P(Y|X) (3)

In addition, Lift measures the likelihood of an itemset appearing together
compared to their individual probabilities of occurrence. It indicates
whether the occurrence of one item affects the likelihood of the occurrence
of another item in the same transaction. Higher lift values suggest stronger
associations between items. This formula is mathematically expressed as:

Lift(X → Y) =
P(X ∩ Y)

P(X) · P(Y)
(4)
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3.6 Workflow

Figure 4 illustrates the workflow used in this study, emphasizing the in-
tegration of ML, XAI, and ARM. The process starts with data collection,
preparation, and cleaning. The ML models provide predictive insights,
while XAI methods aid in comprehending these predictions. Simultane-
ously, the Apriori algorithm uncovers association rules, unveiling patterns
and relationships in the data. This cohesive approach enables exploration of
both predictive patterns and understandable associations within shopping
basket data.
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Figure 4: Workflow
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4 results

4.1 Predicting Nutri-Scores

The Mean Baseline model, which serves as a simple benchmark by predict-
ing the overall average for each instance, demonstrates a MAE of 0.431,
MSE of 0.320, and RMSE of 0.566. The performance of this blind baseline
model is compared against the performance of more advanced models.
The latter models are tuned, and the best sets of hyperparameters are
shown in Table 7.

Table 7: Hyperparameter Tuning - Optimal Values

Model Hyperparameter and Optimal Value
Decision Tree splitter = ’best’, max_features = ’auto’, max_depth = 5,

min_samples_split = 6, min_samples_leaf = 2

XGBoost Regressor n_estimators = 150, learning_rate = 0.1, max_depth = 3,
min_child_weight = 3

GB Regressor n_estimators = 100, learning_rate = 0.01, max_depth =
10, min_samples_split = 2, min_samples_leaf = 10

Random Forest n_estimators = 200, max_features = ’auto’, max_depth
= 10, min_samples_split = 10, min_samples_leaf = 1

Comparatively, the more sophisticated models, including DT, XGBoost, RF,
and GBR, demonstrate slightly improved performance across all metrics,
as detailed in Table 8. However, RF, showing the most preferable results
across all metrics comes at the cost of significantly longer execution times,
highlighting the trade-off between predictive accuracy and computational
efficiency. Balancing both factors, XGBoost emerges as the best-performing
model.

Table 8: Results - Test Set

Model MAE MSE RMSE Execution Time

Mean Baseline 0.431 0.320 0.566 < 1 min
Decision Tree 0.422 0.309 0.556 < 1 min

XGBoost Regressor 0.419 0.306 0.553 < 5 min
GB Regressor 0.420 0.306 0.553 90 min

Random Forest 0.418 0.305 0.552 111 min
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Supplementary results in Appendix I further support these findings, indi-
cating that more sophisticated ML models exhibit only marginal enhance-
ments over the simple baseline in terms of the Maximum Error, Median
Absolute Error and Explained Variance. Moreover, the similarity in per-
formance metrics for both the test and training sets (performance on the
training set is available in Appendix J) indicates that the models are not
prone to overfitting. The subsequent section will explore the results of the
XGBoost model, with selected outcomes for the DT, RF, and GBR models
provided in Appendix K, L, and M, respectively.

Although the results of XAI will be interpreted in the next section, cau-
tion is warranted as the ML models exhibit suboptimal performance, par-
ticularly for extreme values, as detailed in the error analysis in Appendix
O. The consistent prediction of values in the range of 2 to 3 highlights
the need for improvement in capturing diverse patterns. Additionally,
confusion matrices for relatively healthy and unhealthy baskets show a
high false negative rate, challenging the model’s accuracy in providing
meaningful insights into nutritional quality.

4.1.1 Feature Importance & Partial Dependence Plots

Figure 5 displays the importance scores generated by the tuned XGBoost
model. Interestingly, the scores differ from those provided previously. It
is important to note that Figure 2 aimed to offer an initial understanding
using the untuned DT model, while Figure 5 presents the actual scores
after tuning the XGBoost model. The latter reveals that ’Year’ is not as
crucial as initially assumed. Instead, the ratio of private label products and
the age group of panelists, in addition to the number of items per basket
and the income group of panelists, appear to be significant.

Furthermore, PDPs offer a nuanced perspective alongside feature im-
portance scores. While feature importance scores quantify each feature’s
overall impact on model predictions, PDPs provide a detailed insight into
how a specific feature influences predictions in isolation while keeping
other features constant. Using PDPs, the impact of a feature on the model’s
prediction is illustrated by fixing the feature values, varying the fixed
feature over a range of values, and averaging the model’s predictions for
each value. For instance, Figure 6 depicts a respectively positive and nega-
tive linear relationship between ’Household Size’ and ’Social Group’ and
the predicted average Nutri-Score, maintaining constant values for other
features. Notably, the differences are minimal, and the y-axis is highly
zoomed in for a detailed view.
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Figure 5: Feature Importance: XGBoost Regressor

Figure 6: PDPs (XGBoost Regressor): Household Size & Social Group. Please note
that the numbering of social groups corresponds to the social groups specified in
Appendix B.

Furthermore, Figure 7 illustrates that as ’Private Label Ratio’ increases, the
predicted average Nutri-Score decreases, suggesting healthier shopping
baskets, while holding all other feature values constant. A similar relation-
ship holds for ’Promotion Ratio’, although the association is less strong.
The PDPs for the remaining features are provided in Appendix N.
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Figure 7: PDPs (XGBoost Regressor): Private Label Ratio & Promotion Ratio

4.1.2 Shapley Additive Explanations Values

The SHAP summary plot in Figure 8 visually demonstrates the impact
of the features on the average Nutri-Score predictions, explicitly showing
both the strength and direction of each feature (Chan et al., 2022). Notably,
a higher ratio of private label products correlates with a lower average
Nutri-Score (i.e., healthier shopping baskets), while a larger shopping
basket is associated with a higher average Nutri-Score (i.e., less healthy
shopping baskets). To delve deeper into the ML model’s insights on
individual features, SHAP PDPs are generated for the crucial features
’Private Label Ratio’, ’Items per Basket’ and ’Age Group’, alongside an
intriguing interaction feature. Although similar plots were explored for
other features, they are not presented here, as they did not reveal distinct
interactions.

A SHAP dependence plot illustrates a single feature’s influence on
model predictions, with dots representing dataset predictions. The x-axis
denotes the feature’s value, the y-axis shows the SHAP value indicating
its impact, and color indicates a potential interaction effect with another
feature, visible as a distinct vertical pattern (S. M. Lundberg & Lee, 2017).
Figure 9 shows the relationship between income groups and the private
label item ratio in shopping baskets. Lower income groups positively
impact predictions, as indicated by slightly higher SHAP values. The
plot highlights an interaction effect with ’Private Label Ratio’, where a
higher ratio contributes positively to predictions for low-income groups
(depicted in red), suggesting a preference for less healthy shopping baskets.
Conversely, for high-income groups, a higher ratio of private label products
negatively impacts predictions, indicating healthier choices.
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Figure 8: SHAP Summary (XGBoost Regressor)

Figure 9: SHAP Dependence Plot (XGBoost Regressor): Income Group vs. Private
Label Ratio. Please note that the numbering of income groups corresponds to the
income groups specified in Appendix B.

Figure 10 depicts the interaction between ’Household Size’ and ’Items per
Basket’. Smaller households generally result in slightly lower SHAP values,
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indicating a negative effect on the model’s predictions. The plot suggests a
positive impact on the model’s predictions for larger household sizes with
an increased number of items per basket, reflected in higher (red) dots.
Conversely, smaller household sizes negatively affect the model’s predic-
tions with larger shopping baskets, suggesting that smaller households
tend to make healthier purchases when the shopping basket is larger.

Finally, Figure 11 illustrates the SHAP dependence plot for ’Age Group’
and ’Promotion Ratio’. Younger age groups generally positively impact
the model’s predictions, as indicated by slightly higher SHAP values.
The plot suggests that, for younger age groups, an increase in the ratio
of products on promotion has a positive effect on predictions, while for
older age groups, it has a negative impact. This implies that households
with younger household heads tend to make less healthy purchases when
there are more promoted items in the basket, whereas households with
older household heads make healthier purchases in such scenarios. Please
consider that the interaction effect for the features in Figure 11 is relatively
weaker compared to Figure 9 and 10. This is evident in the less distinct
separation of red and blue dots.

Figure 10: SHAP Dependence Plot (XGBoost Regressor): Household Size vs. Items
per Basket
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Figure 11: SHAP Dependence Plot: Age Group vs. Promotion Ratio (XGBoost
Regressor). Please note that the numbering of age groups corresponds to the age
groups specified in Appendix B.

4.2 Association Rule Mining

In this study, both for healthy and unhealthy shopping baskets, the min-
imum support level is set at 0.5% to find meaningful patterns in retail
transactions with numerous products. Additionally, the study focuses on
the 706 specific category names of products rather than individual bar-
codes, ensuring the identification of patterns across different supermarkets.
Furthermore, the minimum confidence and lift levels are set at 0.3 and 2,
respectively, to filter out less significant associations. With these settings,
the analysis reveals a total of 509 distinct rules for unhealthy shopping bas-
kets, and a total of 67 rules for healthy shopping baskets. To streamline the
presentation of results, this study reports the first 20 rules when arranged
in descending order of the lift measure.

Table 9 presents association rules and associated metrics for unhealthy
shopping baskets. Notable patterns include the strong positive relation-
ships between certain antecedents and the consequent ’extruded products6’.
For instance, when ’peanuts and nuts’ and ’chips’ are both present, there is
a support of 0.006, confidence of 0.344, and lift of 4.564, indicating a high
likelihood of ’extruded products’ being part of the basket. Extruded prod-

6 In the context of food, extruded refers to a process where the food material is forced
through a machine, typically in a specific shape or form. This process is commonly used in
the production of certain snacks, cereals, and pasta.
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ucts, distinct from extruded bread substitutes in the GfK dataset, include
specific types of chips such as Cheetos®, processed into a particular form.
Similar patterns emerge with other antecedents such as ’deli meats’, ’cook-
ies’ and combinations such as ’milk’ and ’chips’. These rules, characterized
by high confidence and lift values, suggest a consistent association between
specific items and the inclusion of ’extruded products’ in the shopping
basket, providing insights into consumer behavior and preferences for
unhealthy food choices.

While the focus of the association rules is on unhealthy shopping
baskets, it is intriguing to note the inclusion of seemingly healthier products
such as ’milk’, ’yogurt’, and ’cheese’ in some rules. This observation
highlights the complexity of shopping behavior, where individuals may
opt for a mix of both healthy and unhealthy items in their overall purchases.
The association of these relatively healthier products with items such as
’chips’, ’soft drinks’ and ’extruded products’ suggests that consumers might
be making conscious choices to balance their shopping baskets with both
indulgent and nutritious options.

Table 9: Association Rules and Metrics: Unhealthy Shopping Baskets

Antecedent Consequent Sup. Conf. Lift
(milk, extruded products) (soft drinks, chips) 0.007 0.310 6.146

(Dutch cheese, soft drinks, chips) (extruded products) 0.005 0.365 4.832

(salty biscuits-cookies, chips) (extruded products) 0.005 0.358 4.748

(peanuts and nuts, chips) (extruded products) 0.006 0.344 4.564

(deli meats, chips) (extruded products) 0.007 0.344 4.553

(foreign cheese, chips) (extruded products) 0.007 0.333 4.415

(custard, chips) (extruded products) 0.006 0.330 4.367

(small cookies, chips) (extruded products) 0.006 0.328 4.347

(biscuit, chips) (extruded products) 0.006 0.323 4.278

(large cookies, chips) (extruded products) 0.008 0.322 4.270

(soft drinks, chips) (extruded products) 0.016 0.321 4.258

(yogurt, chips) (extruded products) 0.007 0.319 4.233

(fruit juices-drinks, chips) (extruded products) 0.007 0.319 4.232

(fresh deli, chips) (extruded products) 0.008 0.314 4.156

(milk, soft drinks, custard) (yogurt) 0.006 0.460 4.054

(bread spread, custard) (yogurt) 0.005 0.460 4.048

(milk, chips) (extruded products) 0.011 0.303 4.022

(Dutch cheese, chips) (extruded products) 0.009 0.303 4.010

(gingerbread, custard) (yogurt) 0.006 0.444 3.914

(biscuit, custard) (yogurt) 0.007 0.442 3.893

(milk, Dutch cheese, deli meats) (fresh deli) 0.005 0.471 3.890

Notes. ’sup.’ indicates support; ’conf.’ indicates confidence
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The association rules presented in Table 10 offer insights into shopping
patterns associated with healthier nutritional choices. Notably, the pres-
ence of certain items, such as ’bell pepper’ is positively correlated with
the likelihood of purchasing ’vegetables other’ with a support of 0.006,
confidence of 0.425, and lift of 4.941. Similarly, combinations such as ’bell
pepper’, ’yogurt’ and ’vegetables other salad’ are linked, indicating a 0.442

confidence and a lift of 3.632. Distinct vegetables identified within the
specified categories include leafy greens, bell peppers, onions, carrots, cu-
cumbers, corn, and mushrooms. Broader classifications include ’vegetables
other’, ’frozen vegetables’, and ’canned vegetables’. The rule involving
’pears’ suggests a connection with ’fruit large other’ with a confidence of
0.391 and a lift of 4.118. Distinct fruit categories within the specified cate-
gories include but are not limited to apples, pears, citrus fruits (other), and
oranges. The category labeled ’vegetables other salad’ includes snackable
vegetables, such as cherry tomatoes, (small) cucumbers, and celery. More-
over, the designation ’K’ corresponds to ’koelvers’, indicating products that
are chilled or refrigerated.

Table 10: Association Rules and Metrics: Healthy Shopping Baskets

Antecedent Consequent Sup. Conf. Lift
(veg. o. K, salad veg. o. K) (veg. o. K salad) 0.005 0.315 5.096

(bell pepper K) (veg. o. K) 0.006 0.425 4.941

(veg. o., veg. o. K salad) (veg. o. K) 0.006 0.367 4.262

(pears K) (fruit large other K) 0.006 0.391 4.118

(veg. o. K salad, fruit large other K) (veg. o.r K) 0.006 0.349 4.055

(apples K) (fruit large other K) 0.014 0.374 3.947

(veg. o., fruit large other K) (veg. o. K) 0.007 0.335 3.892

(yogurt, veg. o. K) (fruit large other K) 0.006 0.366 3.856

(veg. o. salad, fruit large other K) (veg. o. K) 0.006 0.326 3.784

(fruit compote) (vegetables preserves) 0.007 0.369 3.706

(bell pepper, yogurt) (veg. o. salad) 0.005 0.442 3.632

(veg. o., bell pepper) (veg. o. salad) 0.010 0.425 3.491

(mixed vegetables, bell pepper) (veg. o. salad) 0.006 0.418 3.435

(veg. o., leafy vegetables lettuce) (veg. o. salad) 0.008 0.411 3.377

(leafy vegetables lettuce, yogurt) (veg. o. salad) 0.005 0.397 3.257

(buttermilk) (yogurt) 0.006 0.377 3.243

(veg. o., fruit large other) (veg. o. salad) 0.007 0.387 3.181

(bell pepper, fresh mushrooms) (veg. o. salad) 0.006 0.380 3.119

(foreign cheese) (veg. o. salad) 0.009 0.377 3.097

(milk, veg. o. salad) (yogurt) 0.005 0.356 3.062

Notes. ’veg. o.’ indicates ’vegetables other’; ’sup.’ indicates support; ’conf.’ indicates
confidence
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5 discussion

5.1 Discussion of Results

Predicting the average Nutri-Score of a shopping basket poses challenges,
with complex ML models offering only marginal improvements over a
simple baseline. The XGBoost model’s MAE of 0.419 and RMSE of 0.553,
together with the model’s suboptimal performance for extreme values,
raise concerns about assessing basket healthiness. XGBoost is regarded as
the top-performing model, despite RF displaying slightly more favorable
metrics, when considering both computation time and accuracy. Compar-
isons with existing literature are complicated by the novel approach of
this study. For instance, Tachie et al. (2023) predict individual product
Nutri-Scores on a different scale (-15 to 40), achieving MAE and MSE
of 0.97 and 2.62, respectively. Furthermore, feature variations exist, as
Tachie et al. (2023) focus on micronutrients and product-level Nutri-Scores,
while this study emphasizes household panel features and the average
Nutri-Score of a shopping basket.

The decision to predict the average Nutri-Score of a shopping basket
using demographic details and basket-related features, rather than indi-
vidual purchase data, is grounded in three key considerations. Firstly,
this aligns with the study’s goal of addressing unhealthy dietary choices
by exploring factors influencing consumers’ nutritional decisions during
grocery shopping. Secondly, methodologically, opting for demographic
details and basket-related features is a strategic decision. Since products
in the basket are directly tied to the average Nutri-Score, using individual
purchase data could result in a less complex and less informative model.
Lastly, choosing broader demographic and basket-level features enhances
method applicability across diverse data contexts where detailed individual
purchase data might be limited or unavailable (Egan et al., 2014).

Subsequently, the feature importance results will be explored in con-
nection with existing literature. Hossain et al. (2019) emphasize the critical
role of factors such as education level, household size, and household
assets in predicting caloric intake using RF. While XGBoost is the primary
focus in this study, the results demonstrate a consistent pattern. The fea-
ture importance scores presented in Figure 5 suggest that ’Income Group’,
’Household Size’, and ’Social Group’ are potentially influential features
in predicting the average Nutri-Score. This aligns with the emphasis on
household assets, household size, and education level in the context of
food security, as noted by Hossain et al. (2019). Additionally, SHAP val-
ues in Figure 8 provide insights into the direction of the features’ impact
on the model’s predictions. Higher values of ’Private Label Ratio’, ’Age
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Group’, ’Promotion Ratio’, ’Store Type Service’, ’Social Group’, ’Store Type
Mid-range’, and ’Income Group’ generally negatively impact predictions,
indicating slightly healthier shopping baskets. Conversely, higher values of
’Items per Basket’ and ’Household Size’ generally have a positive impact,
indicating slightly less healthy shopping baskets.

The observed feature trends align with prior research. Ogundijo et al.
(2021) propose that older individuals lean towards healthier food choices,
while higher-income individuals prefer organic and locally sourced foods.
Although not directly tied to the Nutri-Score, these findings highlight the
preferences of specific demographic groups for healthier food selections.
In a related context, Volpe et al. (2018) evaluate consumers’ food purchases
using the USDA’s Healthy Eating Index and Consumer Nutrition Environ-
ment Index, finding that higher household income, larger household size,
and higher education correlate with healthier shopping baskets. While gen-
erally consistent, this study reveals a positive impact of larger household
sizes on Nutri-Score predictions, suggesting less healthy shopping baskets.
This influence may be attributed to the number of items in a basket, as
shown in Figure 10, where larger baskets are associated with less healthy
predictions, especially for larger household sizes. It is prudent to interpret
these findings with caution, given the models’ challenges in accurately
predicting extremely (un)healthy average Nutri-Scores.

Beyond predicting average Nutri-Scores, this study delves into healthy
and unhealthy shopping baskets through ARM. Literature typically sets
support and confidence thresholds around 0.1% and 50-80%, respectively
(Rana & Mondal, 2021; Supriyadi, 2020). The rules presented in Tables
9 and 10 align with these thresholds, with slightly higher support and
lower confidence levels. However, the emphasis on Lift scores over support
and confidence metrics aims to spotlight rules that unveil surprising as-
sociations, offering profound insights into consumers’ nutritional choices.
Unlike support and confidence, which measure frequency and reliability,
respectively, Lift identifies the strength and significance of associations
between items. This supplementary analysis becomes particularly evident
in the following subsection, underscoring the significance of the findings
for diverse stakeholders.

5.2 Relevance

The findings have potential implications for various stakeholders, including
policymakers, researchers, and marketers. Policymakers addressing public
health concerns related to nutrition may find valuable insights into factors
influencing shopping basket healthiness, facilitating more targeted interven-
tions. For instance, the SHAP values suggest that a higher ratio of private
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label products is associated with healthier shopping baskets, particularly
for individuals in higher income groups, aligning with existing literature
emphasizing the role of income in shaping dietary choices. Policymak-
ers could consider using this information to design incentives promoting
healthier private label options. Additionally, the study contributes to the
nutritional analysis field by shedding light on the complexities of predict-
ing average Nutri-Scores. Insights from SHAP values and DPDs, such as
the impact of household size and private label ratio, present avenues for
further research into socioeconomic factors influencing shopping choices
and overall basket healthiness. This aligns with existing literature em-
phasizing comprehensive studies considering multiple demographic and
contextual factors in understanding dietary patterns (Hossain et al., 2019;
Ogundijo et al., 2021; Volpe et al., 2018).

Marketers in the food industry can capitalize on the ARM results,
which uncover patterns associated with (un)healthy shopping baskets. For
instance, the association rule linking ’peanuts and nuts’ and ’chips’ to the
presence of ’extruded products’ provides concrete insights into consumer
snack preferences. Marketers can strategically position healthier snack
alternatives, such as ’cherry tomatoes’ or ’cucumbers’ which are apparent
in healthier baskets, in proximity to these popular combinations to encour-
age healthier choices. Moreover, the identification of seemingly healthier
products such as ’milk’ and ’yogurt’ in unhealthy baskets highlights the
complexity of consumer choices. Marketers can use this information to
develop targeted marketing campaigns that emphasize the nutritional ben-
efits of these products, potentially influencing consumer perceptions and
choices. This aligns with existing literature on the importance of product
placement and marketing strategies in shaping consumer behavior towards
healthier food choices (Hecht et al., 2020).

5.3 Limitations & Future Work

The study is not without limitations, and future work could address several
aspects to enhance the robustness of the findings. Notably, the Nutri-Scores
are estimated at the category level, following the approach by Clark et al.
(2022), rather than at the more granular product level. This distinction
is crucial as it affects the precision of the nutritional assessment. Future
research could explore the implications of estimating Nutri-Scores at the
product level, acknowledging that nutritional content can vary within
categories. Additionally, the linear mapping of Nutri-Scores to a 1-5 scale
by Clark et al. (2022) raises concerns about treating it as a ratio-scaled
variable. A more accurate representation might be as an ordinal-scaled
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variable, considering the different cut-offs for Nutri-Scores labelled on the
A-E scale (refer to Appendix D, point 5).

Another limitation related to the Nutri-Score is that the Nutri-Score may
not be the optimal variable for expressing the healthiness of a shopping
basket. This could also clarify why the model faces challenges, even
when the features themselves may serve as indicators of shopping basket
healthiness. According to Van Der Bend et al. (2022), the Nutri-Score
may not fully capture food healthfulness due to the exclusion of certain
essential nutrients. Including components such as vitamins or minerals
could enhance differentiation among food products. Additionally, the "per
100 g or 100 ml" reference unit may inaccurately represent healthfulness,
especially for foods consumed in larger portions (Van Der Bend et al., 2022).
Accordingly, future research might explore alternative predictor variables
for a more accurate depiction of basket healthiness.

Moreover, studying more countries would enhance the global perspec-
tive on dietary patterns, addressing the current limitation of focusing solely
on the Netherlands in this study. Finally, optimizing hyperparameters on
the entire training set rather than on a sample, could further refine the
models and enhance the generalizability of the findings. These avenues for
future research would contribute to a more nuanced and comprehensive
understanding of the factors influencing shopping basket healthiness.
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6 conclusion

This section concludes the study by addressing the established research
questions.

RQ1. To what extent can ML algorithms, specifically DT, RF, GBR and XGBoost,
effectively predict the average Nutri-Score of consumer shopping baskets
based on household panel features, with a focus on assessing predictive
accuracy using MAE, MSE, and RMSE metrics?

In contrast to the baseline model, the fine-tuned DT, RF, GBR, and XGBoost
algorithms exhibit marginal improvement, achieving MAE, MSE, and
RMSE values of 0.422, 0.309, and 0.556; 0.418, 0.305, and 0.552; 0.420, 0.306,
and 0.553; and 0.419, 0.306, and 0.553, respectively. Although RF and
produces the lowest error metrics, the computation time of 90 minutes
is also considerably higher. Considering that XGBoost results are only
about 0.001 higher in error across the different metrics, but estimated
with considerably lower computation time (around 5 minutes), XGBoost
emerges as the best-performing model. The results of the models, however,
raise concerns about potential inaccuracies in assessing basket healthiness,
and comparisons with existing literature are challenging due to the novelty
of this study’s approach.

RQ2. How can XAI techniques, such as feature importance analysis, partial
dependence plots, and SHAP values, be effectively applied to enhance the in-
terpretability of ML models in explaining the factors influencing nutritional
choices in shopping settings?

XAI enhances complex model interpretability, meeting evidence-based pol-
icy requirements and providing actionable insights. In this study, XGBoost
feature importance analysis, PDPs, and SHAP values bridge the gap be-
tween data-driven predictive metrics and actionable decisions. The feature
importance scores suggest that factors such as ’Private Label Ratio’, ’Items
per Basket’, ’Age Group’, and ’Income Group’ may play influential roles
in predicting average Nutri-Scores. PDPs visually illustrate relationships,
including positive associations of the average Nutri-Score with ’Household
Size’ and negative linear relationships with ’Social Group’, ’Private Label
Ratio’, and ’Promotion Ratio’. SHAP values offer detailed insights into
individual feature contributions, revealing that higher values of ’Private
Label Ratio’ and ’Age Group’ negatively impact predictions, while higher
values of ’Items per Basket’ have a positive effect. SHAP dependence plots
unveil interaction effects, indicating that a higher ratio of private label
products is associated with healthier shopping baskets, particularly for
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individuals in higher income groups. While these insights are valuable, it’s
crucial to acknowledge the complexity of predicting average Nutri-Scores
and interpret the results with consideration of the models’ limitations.

RQ3. What insights can be derived from the association rules extracted through
the Apriori algorithm, revealing patterns of co-occurrence and relationships
between specific food and beverage items or categories in both healthy and
unhealthy shopping baskets?

Insights drawn from ARM, generated through the Apriori algorithm, unveil
valuable patterns of co-occurrence and relationships among specific food
and beverage items or categories in both healthy and unhealthy shopping
baskets. For instance, identified associations such as the pairing of ’peanuts
and nuts’ and ’chips’ with the presence of ’extruded products’, or ’bell
pepper’ with ’chilled vegetables other’ provide an intuitive understanding
of consumer preferences. Besides, the presence of seemingly healthier
items such as ’milk’ and ’yogurt’ in unhealthy baskets adds depth to this
understanding, emphasizing the multifaceted nature of shopping decisions.
Overall, these insights contribute to a richer comprehension of the factors
influencing nutritional choices in diverse shopping settings.

RQ. To what extent can ML algorithms predict the average Nutri-Score of
consumer shopping baskets based on household panel features, and what
insights can be gained regarding the factors influencing nutritional choices,
including the exploration of ARM to uncover patterns within shopping
baskets?

The fine-tuned ML models, DT, RF, GBR, and XGBoost, demonstrate
marginal improvement over the baseline, with XGBoost emerging as the
best-performing model, achieving a MAE of 0.419 and RMSE of 0.553.
However, these outcomes reveal suboptimal performance, particularly for
extreme values. Furthermore, XAI techniques, such as feature importance
analysis, PDPs, and SHAP values, enhance interpretability by revealing
influential factors and visualizing relationships. Finally, insights from ARM
using the Apriori algorithm uncover valuable patterns in both healthy
and unhealthy shopping baskets, offering a nuanced understanding of
consumer preferences and the multifaceted nature of shopping decisions.
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appendix a : packages and versions

Data cleaning is performed in R (version 4.3.2), while EDA and modeling
are performed in Python (version 3.9.13).

Table 11: List of R and Python Packages with Versions and Sources

Package Version Source

R Packages
plyr 1.8.9 (Wickham, 2011)
dplyr 1.1.3 (Wickham, François, et al., 2023)
data.table 1.14.8 (Dowle & Srinivasan, 2023)
readr 2.1.4 (Wickham, Hester, & Bryan, 2023)
readxl 1.4.3 (Wickham & Bryan, 2023)
stringr 1.5.1 (Wickham, 2023)
caret 6.0-94 (Kuhn & Max, 2008)

Python Packages
numpy 1.21.5 (Harris et al., 2020)
pandas 1.4.4 (McKinney, 2010)
scikit-learn 1.0.2 (Pedregosa et al., 2011)
xgboost 2.0.2 (Chen & Guestrin, 2016)
shap 0.43.0 (S. Lundberg et al., 2020)
shap TreeExplainer 0.43.0 (S. M. Lundberg et al., 2020)
apyori 1.1.2 (“apyori”, 2019)
matplotlib 3.5.2 (Hunter, 2007)
seaborn 0.11.2 (Waskom, 2021)
json 2.0.9 (JSON encoder and decoder, n.d.)
time (Time access and conversions, n.d.)
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appendix b : codebooks raw data files

Table 12: Column Descriptions - Purchase file

Column Name Column Description
Panelist The internal ID of the household
Date_of_Purchase The date that the purchase took place
Banner_Name The name of the retailer in which the pur-

chase occasion took place
Barcode The barcode of the product that was pur-

chased
Total_Unit_Sales The amount of pieces of the product that was

purchased
Total_Value_Sales The amount of euro-cents that was spent for

that purchase
Total_Volume_Sales The amount of volume (gr, ml, pieces, etc.)

that was purchased for that product
Quarter The quarter the purchase took place in
Promo Indicator if the product was on promotion

(yes or no)
Purchase_method Channel where the purchase was made (of-

fline, online-delivery, online-pickup)



appendix 48

Table 13: Column Descriptions - Barcode file

Column Name Column Description
Barcode The barcode of the product
Barcode_Description The description of the product
PL Whether or not this product is a Private Label
Brand The name of the brand that this product be-

longs to
Sub_Brand The name of the sub-brand that this product

belongs to
Category_Name The name of the category that this product

belongs to
Measurement_unit The unit of mass that this product is mea-

sured with ("SU-Waarde", "grams", "ml",
"stuks", "n/a")

Volume_per_unit The size of the product
BG_category_name BG20 category name the product belongs to,

as identified by the country
BG_category_number BG20 category number the product belongs

to, as identified by the country
Country specific addi-
tional information

Additional variables delivered by the country
all starting with "pa", e.g. paEKO, paDieet,
paGezondheid, etc.
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Table 14: Column Descriptions - Panelist file

Column Name Column Description
Panelist The internal ID of the household
Quarter The quarter in which the panelist was present
Postal_code The zip code within which the household

resides
Age The age of the head of the household. Age

is delivered in 11 different age bands (12-19,
20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,
55-64, 65-74, 75 or older)

Household_size The number of household members
Social_class The social band/Education of the head of the

household (’A’, ’B-plus’, ’B-minus’, ’C’, ’D’,
Unknown)

Income_class Net income of the household per month,
based on all income sources for all house-
hold members (’Below 700 euro’, ’700-900

euro’, ’900-1100 euro’, ’1100-1300 euro’, ’1300-
1500 euro’, ’1500-1700 euro’, ’1700-1900 euro’,
’1900-2100 euro’, ’2100-2300 euro’, ’2300-2500

euro’, ’2500-2700 euro’, ’2700-2900 euro’,
’2900-3100 euro’, ’3100-3300 euro’, ’3300-3500

euro’, ’3500-3700 euro’, ’3700-3900 euro’,
’3900-4100 euro’, ’4100 euro or more)

Region The region within which the household re-
sides

Province The province within which the household re-
sides
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appendix c : machine learning approach nutri-scores

Figure 12: Machine Learning Approach to Estimate Nutri-Scores of Products
(Adapted from Clark et al. (2022), p. 3)
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appendix d : example calculation nutri-score

Example Calculation of Nutri-Score Estimation (Adapted from Supple-
mentary Text; Estimating Nutrition Quality of Food Products; Example
Calculations of a Product’s Nutrition Impact Score (Clark et al., 2022))
Consider a hypothetical product containing 100g of the following: 400kJ of
energy, 3g of sugar, 0.5g of saturated fats, 700mg of sodium, 5g of fiber, 10g
of protein, and with 30 percent of its composition being fruit, vegetables,
nuts, or healthy oils (FVNO).

1. Each aspect receives a score within its potential range: 0-10 for energy,
sugar, saturated fat, and sodium, and 0-5 for fiber, protein, and FNVO.
Higher scores indicate a higher content of the respective component
in the product. For this example, the scores are as follows: energy: 1,
sugar: 0, saturated fats: 0, sodium: 7, fiber: 5, protein: 5, FVNO: 0.

2. The scores for negative components (energy, sugar, saturated fat, and
sodium) are summed to assess aspects associated with poorer health.
In this example, the sum is 8 (1 + 0 + 0 + 7).

3. The scores for positive components (fiber, protein, and FVNO) are
summed to evaluate aspects linked to health benefits. For this exam-
ple, the sum is 10 (5 + 5 + 0).

4. The overall Nutri-Score is determined by subtracting the sum of
positive component scores from the sum of negative component
scores. In this example, this results in a value of -2 (8 - 10).

5. Finally, the numeric value is mapped to the A-E scale used in Nutri-
Score, which involves specific thresholds. Solid foods are classified
as ’A’ if their score falls between -15 and -1, ’B’ for scores from 0 to
2, ’C’ for scores from 3 to 10, ’D’ for scores from 11 to 18, and ’E’ for
scores from 19 to 40. Beverage thresholds are slightly different. Water
is ’A,’ beverages with a score of 1 or less are ’B,’ scores from 2 to 5

are ’C,’ scores from 6 to 9 are ’D,’ and scores from 10 to 40 are ’E.’
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appendix e : category list

Table 15: Clark et al. (2022) Categories

50% Beef and 50% Pork
Bakery Free From
Beef and Lamb
Biscuits & Cereal Bars
Bread & Rolls
Breakfast Cereals
Cakes, Cake Bars, Slices & Pies
Cheese
Chilled Desserts
Chocolate
Coffee
Cooking Ingredients
Cooking Sauces & Meal Kits
Crackers & Crispbreads
Crisps, Snacks & Popcorn
Croissants, Brioche & Pastries
Crumpets, Muffins & Pancakes
Dairy Alternatives
Deli Meat and Cheese
Desserts
Doughnuts, Cookies & Muffins
Dried Fruit, Nuts, Nutrient Powders & Seeds
Dried Pasta, Rice, Noodles & Cous Cous
Easy Entertaining
Fish & Seafood
Fizzy Drinks & Cola
Fresh Fruit and Nuts
Fresh Salad & Dips
Fresh Soup, Sandwiches & Salad Pots
From our Bakery
Frozen Breakfast, Fruit & Pastry
Frozen Chips, Onion Rings, Potatoes & Rice
Frozen Desserts, Ice Cream & Ice Lollies
Frozen Party Food & Sausage Rolls
Frozen World Foods & Halal
Frozen Yorkshire Puddings & Stuffing
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Table 16: Clark et al. (2022) Categories - Continued

Gluten Free Range
Home Baking
Hot Chocolate & Malted Drinks
Hot Drinks
Jams, Sweet & Savoury Spreads
Juices & Smoothies
Kids & Lunchbox Drinks
Meat
Meat Alternatives
Milk, Butter & Eggs
Milkshake
Olives, Antipasti, Pickles & Chutneys
Pies, Quiches & Party Food
Pizza & Garlic Bread
Premium Drinks & Mixers
Ready Meals
Sports & Energy Drinks
Squash & Cordial
Sugar & Sweeteners
Sweets, Mints & Chewing Gum
Table Sauces, Marinades & Dressings
Tea
Teacakes, Fruit Loaves & Scones
Tins, Cans & Packets
Vegetables
World Foods
Wraps, Pittas, Naan & Thins
Yoghurts
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appendix f : distributions before and after removal missing

values

(a) Age Group (Before) (b) Age Group (After)

(c) Income Group (Before) (d) Income Group (After)

(e) Social Group (Before) (f) Social Group (After)

(g) Household Size (Before) (h) Household Size (After)

Figure 13: Distributions of Socioeconomic Variables Before (Dark-Grey) and After
(Light-Grey) Removal of Missing Values
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(a) Store Type (Before) (b) Store Type (After)

(c) Year (Before) (d) Year (After)

Figure 14: Distributions of Other Categorical Variables Before (Dark-Grey) and
After (Light-Grey) Removal of Missing Values
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(a) Nutri-Score (Before) (b) Nutri-Score (After)

(c) Items per Basket (Before) (d) Items per Basket (After)

(e) Promotion Ratio (Before) (f) Promotion Ratio (After)

(g) Private Label Ratio (Before) (h) Private Label Ratio (After)

Figure 15: Distributions of Numerical Variables Before (Dark-Grey) and After
(Light-Grey) Removal of Missing Values
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appendix g : outlier analysis

(a) Nutri-Score (b) Items Per Basket

(c) Promotion Ratio (d) Private Label Ratio

Figure 16: Boxplots of Numerical Variables
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appendix h : distributions training set

(a) Age Group (Complete) (b) Age Group (Sample)

(c) Income Group (Complete) (d) Income Group (Sample)

(e) Social Group (Complete) (f) Social Group (Sample)

(g) Household Size (Complete) (h) Household Size (Sample)

Figure 17: Distributions of Socioeconomic Variables in Training Set: Complete
(Dark-Grey) and Sample (Light-Grey)
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(a) Year (Complete) (b) Year (Sample)

(c) December (Complete) (d) December (Sample)

(e) January (Complete) (f) January (Sample)

Figure 18: Distributions of Other Categorical Variables in Training Set: Complete
(Dark-Grey) and Sample (Light-Grey). Note that ’December’ and ’January’ dummy
variables are added to address seasonality.
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(a) Store Type: Mid-Range (Complete) (b) Store Type: Mid-Range (Sample)

(c) Store Type: Service (Complete) (d) Store Type: Service (Sample)

Figure 19: Distributions of Other Categorical Variables in Training Set - Continued:
Complete (Dark-Grey) and Sample (Light-Grey). ’Store Type’ has undergone one-
hot encoding, such that direct comparisons of sample and complete distributions
to those in Appendix F are less straightforward.
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(a) Nutri-Score (Complete) (b) Nutri-Score (Sample)

(c) Items per Basket (Complete) (d) Items per Basket (Sample)

(e) Promotion Ratio (Complete) (f) Promotion Ratio (Sample)

(g) Private Label Ratio (Complete) (h) Private Label Ratio (Sample)

Figure 20: Distributions of Numerical Variables in Training Set: Complete (Dark-
Grey) and Sample (Light-Grey)
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appendix i : additional results test set

Table 17: Additional Results - Test Set

Model Max Error Median AE Explained Variance

Mean Baseline 2.240 0.337 0.000

Decision Tree 2.737 0.327 0.034

XGBoost Regressor 2.867 0.325 0.043

GB Regressor 2.669 0.325 0.043

Random Forest 2.914 0.323 0.048

Examining the additional results in Table 17 provides insights into the
models’ performance beyond the primary evaluation metrics.

• Max Error: This metric indicates the maximum absolute error ob-
served in the predictions. Lower values are desirable, reflecting
reduced discrepancies between predicted and actual values. The
Mean Baseline exhibits the lowest max error, indicating that it makes
less extreme errors compared to the more complex ML models.

• Median Absolute Error: This metric represents the median value of
the absolute errors, providing insight into the central tendency of
prediction accuracy. The median absolute error is slightly smaller
for the more complex ML models compared to the Mean Baseline,
indicating that the more complex ML models tend to have smaller
errors around the median.

• Explained Variance: This metric quantifies the proportion of variance
in the target variable that the model explains. A value of 1 indicates
perfect prediction, while 0 suggests that the model does not capture
any variance. The explained variance is close to 0 for all models,
suggesting that only a small proportion of the variance in the target
variable is captured by each model.
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appendix j : (additional) results training set

Table 18: Results - Training Set

Model MAE MSE RMSE

Decision Tree 0.422 0.309 0.556

XGBoost Regressor 0.420 0.306 0.553

GB Regressor 0.420 0.306 0.553

Random Forest 0.418 0.304 0.552

Table 19: Additional Results - Training Set

Model Max Error Median AE Explained Variance

Decision Tree 2.737 0.326 0.034

XGBoost Regressor 2.857 0.324 0.043

GB Regressor 2.666 0.325 0.044

Random Forest 2.952 0.323 0.049
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appendix k : xai results decision tree

Figure 21: Feature Importance: Decision Tree

Figure 22: PDPs (Decision Tree): Household Size & Social Group
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Figure 23: PDPs (Decision Tree): Private Label Ratio & Promotion Ratio

Figure 24: PDPs (Decision Tree): Age Group & Income Group
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Figure 25: PDPs (Decision Tree): Store Type Mid-Range & Store Type Service

Figure 26: PDPs (Decision Tree): Items per Basket & Year
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Figure 27: PDPs (Decision Tree): December & January
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appendix l : xai results random forest

Figure 28: Feature Importance: Random Forest

Figure 29: PDPs (Random Forest): Household Size & Social Group
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Figure 30: PDPs (Random Forest): Private Label Ratio & Promotion Ratio

Figure 31: PDPs (Random Forest): Age Group & Income Group



appendix 70

Figure 32: PDPs (Random Forest): Store Type Mid-Range & Store Type Service

Figure 33: PDPs (Random Forest): Items per Basket & Year
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Figure 34: PDPs (Random Forest): December & January
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appendix m : xai results gradient boosting regressor

Figure 35: Feature Importance: Gradient Boosting Regressor

Figure 36: PDPs (Gradient Boosting Regressor): Household Size & Social Group
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Figure 37: PDPs (Gradient Boosting Regressor): Private Label Ratio & Promotion
Ratio

Figure 38: PDPs (Gradient Boosting Regressor): Age Group & Income Group
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Figure 39: PDPs (Gradient Boosting Regressor): Store Type Mid-Range & Store
Type Service

Figure 40: PDPs (Gradient Boosting Regressor): Items per Basket & Year
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Figure 41: PDPs (Gradient Boosting Regressor): December & January
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appendix n : additional xai results (xgboost regressor)

Figure 42: PDPs (XGBoost Regressor): Age Group & Income Group

Figure 43: PDPs (XGBoost Regressor): Store Type Mid-Range & Store Type Service
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Figure 44: PDPs (XGBoost Regressor): Items per Basket & Year

Figure 45: PDPs (XGBoost Regressor): December & January



appendix 78

appendix o : error analysis

In Figure 46, the average prediction errors of the XGBoost model are
visually represented across various ranges of actual values. The horizontal
dashed line at y = 0 acts as a baseline, indicating no prediction error. The
figure clearly illustrates the model’s suboptimal performance, particularly
evident for more extreme values where the prediction error is large, such
as in the range of 4.5 to 5.

Figure 46: Average Prediction Errors (XGBoost Regressor)

Additionally, Figure 47 displays the actual and predicted values for the
initial 1,000 data points. As observed in the plot, the model consistently
predicts values in the range of approximately 2 to 3 for each instance. While
there is some variation in predicted values, deviating from a constant aver-
age prediction (explaining the slight improvement over the blind baseline
model used in this study), the observed variation is not sufficient. The
plot is limited to the first 1,000 data points to avoid a cluttered illustration,
but this pattern in predicted and actual values persists across the entire
dataset.
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Figure 47: Actual vs. Predicted Values (XGBoost Regressor)

The mentioned observations raise concerns regarding the model’s potential
inaccuracies in predicting or classifying (un)healthy shopping baskets. To
further explore this issue, two confusion matrices are generated: one for
baskets categorized as relatively healthy and another for those considered
relatively unhealthy. It is important to note that these matrices correspond
to two distinct classification tasks, each determined by a different threshold.
The previously established thresholds of ≤ 2 and ≥ 3 for respectively
healthy and unhealthy shopping baskets are used. This implies that all
shopping baskets with an average Nutri-Score of 2 or lower should be
classified as ’healthy’, while those with an average Nutri-Score of 3 or
higher should be classified as ’unhealthy’.

Regarding the classification of healthy baskets, if a shopping basket is
not categorized as healthy, it falls into either the neutral category (i.e., an
average Nutri-Score between 2 and 3) or the unhealthy category (i.e., an
average Nutri-Score of 3 or higher). For the Healthy class with a threshold
of ≤ 2, the model exhibited a False Negatives rate of approximately 100%,
with 628,722 instances actually healthy misclassified as not healthy (i.e.,
either neutral or unhealthy). True Positives were limited to 2,026, reflecting
instances correctly predicted as healthy. The vast majority of instances are
baskets that are correctly classified as being not healthy (i.e., either neutral
or unhealthy).
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Confusion Matrix Healthy (Threshold ≤ 2)

Model Predictions
Positive Negative Total

Actual Values
Positive 2, 026 628, 722 630, 748
Negative 1, 056 3, 604, 906 3, 605, 962

Total 3, 082 4, 233, 628 4, 236, 710

Regarding the classification of unhealthy baskets, if a shopping basket is
not categorized as unhealthy, it falls into either the neutral category (i.e.,
an average Nutri-Score between 2 and 3) or the healthy category (i.e., an
average Nutri-Score of 2 or lower). When considering the Unhealthy class
with a threshold of ≥ 3, the model displayed a 100% False Negative rate,
predicting all instances actually unhealthy as not unhealthy (i.e., either neu-
tral or healthy). This highlights a significant underestimation of unhealthy
baskets, potentially impacting the model’s ability to provide accurate and
meaningful insights into the nutritional quality of the baskets.

Confusion Matrix Unhealthy (Threshold ≥ 3)

Model Predictions
Positive Negative Total

Actual Values
Positive 0 786, 638 786, 638
Negative 0 3, 450, 072 3, 450, 072

Total 0 4, 236, 710 4, 236, 710
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