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Abstract

This research investigates the predictive effectiveness of utilizing
multiple nonverbal behavioral cues during entrepreneurial pitches to
determine their success in securing funding. Employing a multimodal
approach, this study integrates both the acoustic and body expression
modalities to predict an investment score, while previous research
has explored these modalities in isolation. The models implemented
in this study adopt a deep learning framework, employing either a
Gated Recurrent Unit or a Long Short-Term Memory layer to capture
temporal information within a pitch. The findings present promising
results for predicting the likelihood of investment using a multimodal
strategy that incorporates both acoustic and body expression modali-
ties. Specifically, a late fusion multimodal model, consisting of the
best single feature representation from each modality, has proven to
be the most predictive.

1 data source , ethics , code , and technology statement

1.1 Data Source and ethics

The dataset is gathered by W.J. Liebregts, D. Urbig, and M.M. Jung
(Liebregts et al., 2018-2023). The dataset is unpublished, and ongoing
efforts are in place to collect additional data. It consists of video data
featuring entrepreneurial pitches delivered by university students in the
Entrepreneurship course. Only pitches from students who provided ex-
plicit consent for their data to be used in research are included in the
dataset; pitches from students who did not grant consent are excluded.
The dataset’s owners have granted consent for its utilization in research,
facilitated by the signing of a non-disclosure agreement. The images used
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in this research are predominantly created specifically for this study. In
instances where external images are incorporated, the source is explicitly
cited, and the images are governed by a non-commercial license.

1.2 Code

The code is primarily handwritten, sometimes based on example code that
is listed within the Google Drive of the dataset, hence it has similarity with
studies that use the same dataset (e.g. Goossens et al., 2022; Jung et al.,
2023; Van Aken et al., 2023). The code of this project is included in the
Google Drive of the dataset. Code snippets from the documentation of the
following packages may have been employed:

Library Version

Numpy 1.21.6
Scipy 1.7.3
Matplotlib 3.5.3
XlsxWriter 3.1.9
Openpyxl 3.1.2
Keras 2.10.0
Tensorflow-gpu 2.10.0
Scipy 1.7.3
Pandas 1.1.5
MoviePy 1.0.3
Scikit-learn 1.0.2
Shap 0.42.1
Pydub 0.25.1
openSMILE 3.0
OpenPose 1.7.0

1.3 Technology

ChatGPT-3.5 was utilized for generating LaTeX code for tables and fig-
ures. The assessment of spelling and grammar correctness was conducted
using Grammarly. It is important to note that no tool was employed for
the generation of entire textual content; rather, tools like Grammarly or
ChatGPT-3.5 were employed at most to revise specific segments of the text.
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2 introduction

This thesis seeks to contribute to the domain of entrepreneurial decision-
making, specifically focusing on business pitches that aim to acquire in-
vestments. In Section 2.1, the research motivation is given, including the
context of the research, relevant prior studies, and the scientific as well
as societal significance of the research. In Section 2.2, the main research
question is addressed, accompanied by the introduction of requisite sub-
questions crucial for addressing the main research question. In Section 2.3,
a brief overview is provided of the key findings from the thesis.

2.1 Research motivation

Startup companies frequently deliver their business proposals to potential
investors in pursuit of funding to facilitate business expansion. Within
a brief time frame, the pitcher communicates the core elements of the
proposal, and the rationale behind their funding needs, and explains
why an investor should contemplate investing in their startup company.
Investment decisions are frequently made based on limited information,
including subjective statements and nonverbal cues exhibited by the pitcher
(Raab et al., 2020). In recent years, there has been an increasing focus
on research aimed at understanding how an investor makes decisions
concerning investments (Clarke et al., 2019).

Research in this domain holds the potential to offer invaluable insights
for entrepreneurs aspiring to enhance their pitching skills. Additionally,
it has the potential to provide insight into the decision-making processes
for investors, pitchers, and researchers. Exploring this field of research can
provide insight into the relationship between nonverbal cues such as body
expressions, and vocal behavior displayed by the pitcher.

The entrepreneurial decision-making process, which involves deter-
mining the most suitable course of action based on the available infor-
mation, is marked by high levels of uncertainty (Shepherd et al., 2015).
The entrepreneurial decision-making process consists of decisions made
by entrepreneurs themselves as well as those made by external actors
with immediate repercussions for the entrepreneur (Shepherd, 2011). At
the heart of effective business operations lies the pivotal role played by
entrepreneurial decision-making.

A pitcher influences the decision-making process during an entre-
preneurial pitch through both verbal and nonverbal cues. According to
(Clarke et al., 2019), research often looks at the effects of verbal and non-
verbal cues in isolation. Consequently, integrating various behavioral cues
within a unified analysis holds the potential to yield valuable insights into
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the interplay among these behavioral cues and their collective influence
on the entrepreneurial decision-making process. behavioral cues that have
a strong influence on the decision-making process are physical appear-
ance, gestures and posture, face and eye behavior, vocal cues, space and
environment (Liebregts et al., 2020).

A substantial proportion of communication emanates through body
expressions, such as posture and gestures. Theoretical frameworks on
gestures suggest that they play a pivotal role in conveying crucial informa-
tion, facilitating cognitive processes, and enhancing learning and memory
(Clough & Duff, 2020). Likewise, studies have reported that facial expres-
sions and eye behavior during social interactions, coupled with gestures,
influence the individuals’ perceptual assessments (Ciuchta et al., 2017;
Nagy et al., 2012). Another behavioral cue to consider is vocal behavior,
which transmits information through acoustic features like amplitude,
pitch, tempo, and tone. Vocal behavior encapsulates both an individual’s
personality traits and emotional state. (Warner & Sugarman, 1986) suggests
that vocal information is embedded in the speech style and significantly
influences the perception of the decision-maker in terms of personality
dimensions.

behavioral cues can be categorized into various modalities, and pre-
viously investigated modalities for forecasting investment likelihood, in
four out of the six sessions of the entrepreneurial dataset (Liebregts et al.,
2018-2023), involve verbal, visual, and vocal modalities (Goossens et al.,
2022; Jung et al., 2023; Van Aken et al., 2023). Notably, (Van Aken et al.,
2023) achieved commendable results in predicting the vocal modality by
extracting acoustic features from the entrepreneurial dataset. The research
within the visual modality has concentrated on body expressions, facial
expressions, head movement, and mimicry (Prabawa et al., 2022; Stoitsas
et al., 2022). (Jung et al., 2023) attained commendable results through the
incorporation of body expressions coupled with deep learning networks,
such as a Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM).

This thesis endeavors to integrate the visual and vocal modalities, both
of which have demonstrated predictive value in prior research. It adopts a
multimodal approach that transcends the isolation of these modalities and
captures the temporal aspect through the utilization of deep learning. The
multimodal approach enables the exploration of the interplay between the
visual and vocal modalities, shedding light on their collective impact on
the likelihood of investment. Furthermore, the thesis investigates whether
a combined utilization of these modalities enhances the predictive accuracy
of the investment likelihood. The thesis aims to broaden the research scope
by including two additional in-person pitch sessions (19 pitches), bringing
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the total to six sessions (44 pitches) within the entrepreneurial dataset
(Liebregts et al., 2018-2023).

2.2 Research strategy

To address the problem statement, the following research strategy has been
devised comprising the main research question:

Can the likelihood of investment be predicted from acoustic and body
expression features from a pitcher during an entrepreneurial pitch by
using multimodal analysis?

To evaluate the main research question, the following sub-questions need
to be answered:

RQ1 How do the acoustic features of openSMILE and VGGish or a combination
of both compare in predicting the likelihood of investment?

RQ2 Which distinct body expression feature set or combination of features of
OpenPose has the best performance in predicting the likelihood of invest-
ment?

RQ3 How does a Gated Recurrent Unit model perform in comparison to a Long
Short-Term Memory model in predicting the likelihood of investment?

RQ4 How does early fusion of the multimodal compare to late fusion in predicting
the likelihood of investment?

2.3 Thesis findings

The findings indicate that both acoustic and body expression features
possess the capacity to discern temporal patterns, and, to some degree, can
be used to predict the likelihood of investment. Combining single feature
representations within an unimodal enhances predictability, particularly
with the adoption of a late fusion approach. Notably, the LSTM model
demonstrates superior performance over the GRU model when applied
to unimodal data with a singular feature representation. However, in the
context of combining feature representation and multimodal approaches,
the GRU models surpass the LSTM models. The combination of the
modalities slightly improves its accuracy in predicting the likelihood of
investment.
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3 literature review

3.1 Related work

In the entrepreneurial field, not all decisions originate solely from en-
trepreneurs, some decisions are made by external entities, like fundraising
decisions. An integral facet of the entrepreneurial process involves securing
financial support from investors to facilitate business expansion (Liebregts
et al., 2020). The subject of decision-making holds a well-established po-
sition of interest within the field of entrepreneurship research (Shepherd,
2011; Shepherd et al., 2015). Entrepreneurs make numerous decisions on a
daily basis, often navigating through circumstances characterized by high
risk and uncertainty (Baron, 1998). Considering the uncertainty inherent
in operating a business and decision-making, entrepreneurs frequently
resort to a set of flexible decision-making principles (Dew et al., 2009; Saras-
vathy, 2008). In an instance where a decision involves other individuals
and the entrepreneur is unable to gather additional information about the
counterpart, stereotyping can significantly influence the entrepreneur’s
assessments and decisions (Bodenhausen, 1993; Greenwald & Banaji, 1995).
This holds particularly valid when the decision-making process is im-
pacted by one or more social interactions between the entrepreneur and
the involved parties (Huang et al., 2013). In the existing entrepreneurship
literature, considerable attention has been directed towards funding de-
cisions, particularly those made by investors (Chen et al., 2009; Huang &
Pearce, 2015).

The prevailing evidence unambiguously indicates that behavioral cues
exhibited during human-to-human interactions have a significant influence
over the decision-making process (Ambady & Rosenthal, 1992; Bonaccio
et al., 2016; Mcneill, 2005). This has also been extensively demonstrated
concerning entrepreneurial decision-making with particular emphasis has
been placed on decisions related to hiring or employment decisions (Koch
et al., 2014). Numerous studies have explored entrepreneurial pitches as a
specific context wherein investors assess business ideas, observing that their
funding decisions are typically influenced by the verbal and nonverbal
expressions of entrepreneurs (Ciuchta et al., 2017; Clarke et al., 2019;
Pollack et al., 2012). Based on prior research, both verbal and nonverbal
elements are recognized as pivotal in decision-making processes within
the entrepreneurial context (Chen et al., 2009; Clark, 2008). Consequently,
behavioral cues including both verbal and nonverbal cues during social
interactions have been demonstrated to have a substantial influence on
individuals’ decision-making process in an entrepreneurship environment
(Liebregts et al., 2020).
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The persisting inquiry revolves around the extent to which verbal
and nonverbal behavioral cues can be used to predict decision-making
processes within the entrepreneurial context and the consequential value
of distinct behavioral cues. As stated in Section 2.1, prior research of
the entrepreneurial decision-making process is exploring these behavioral
cues, some of which have yielded promising outcomes (e.g., Goossens
et al., 2022; Jung et al., 2023; Van Aken et al., 2023) on the entrepreneurial
dataset (Liebregts et al., 2018-2023). (Goossens et al., 2022) explored the
influence of vocal behavior on funding decisions. The research sought to
determine whether deep learning methods could be utilized to predict the
decisions of investors based on vocal behavior. The application of deep
learning methodology employing a Gated Recurrent Unit (GRU) and Long
Short-Term Memory (LSTM) model resulted in a predictive accuracy of
77.8% for predicting investors’ decisions.

Subsequently, (Van Aken et al., 2023) used a comparable deep learning
methodology, extending its application to behavioral cues, such as acoustic
and linguistic modalities, through a multimodal approach. The acous-
tic and linguistic features are derived from recordings of entrepreneurial
pitches using a combination of handcrafted and deep features extracted
through tools such as openSMILE, VGGish, LIWC, and Longformer. The
multimodal approach facilitates the integration of feature representations,
even between different modalities, thereby enhancing the predictive accu-
racy of investment likelihood. The results of a multimodal approach in the
entrepreneurial context have demonstrated promise, attaining an average
Mean Absolute Error (MAE) of 13.91 across the initial four sessions of the
entrepreneurial dataset. This was accomplished through the utilization
of both acoustic and linguistic features, complemented by a multimodal
approach utilizing early fusion.

(Jung et al., 2023) explored the nonverbal behavioral cues of body
expressions. The study included both traditional regression models as well
as deep recurrent regression models, capable of capturing the temporal
aspect from the recordings. The study extracted body expression features
using OpenPose, a tool designed to capture anatomical key points of the
human body. The deep recurrent regression models, such as the GRU
and LSTM, demonstrated superior performance compared to traditional
regression models like decision trees, random forests, and support vector
machines. The findings of this study indicated that employing a GRU
model for temporal modeling of body expressions resulted in the most
favorable performance (average MAE of 16.9).
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3.2 State-of-the-art methods

In Section 2.1, the problem statement is established, and in Section 2.2,
the research strategy is formulated in main and sub-questions based on
Section 3. In this section, the state-of-the-art methods are discussed for
integrating acoustic and body expression features in a multimodal analysis,
based on prior research outlined in Section 3.1.

Acoustic features constitute a fundamental basis of human interaction.
These acoustic features are extensively utilized to analyze human behavior,
including the decision-making processes. The extraction of features from
raw audio signals and the subsequent creation of feature representations
constitute an integral component of vocal behavior analysis. Broadly
speaking, two distinct approaches exist for feature engineering related to
acoustics. Feature representations are either handcrafted using domain
knowledge or learned through the utilization of deep learning algorithms
(Swain et al., 2018).

The extraction of handcrafted audio features is commonly performed
using a tool known as openSMILE (e.g., Goossens et al., 2022; Marchi et al.,
2016; Sun et al., 2020; Van Aken et al., 2023). The openSMILE feature
extraction toolkit integrates feature extraction algorithms from both the
speech processing and the Music Information Retrieval communities. It
supports a range of audio low-level descriptors, including CHROMA and
CENS features, loudness, Mel-frequency cepstral coefficients, perceptual
linear predictive cepstral coefficients, linear predictive coefficients, line
spectral frequencies, fundamental frequency, and formant frequencies.
Additionally, delta regression and various statistical functionals can be
applied to these low-level descriptors (Eyben et al., 2010).

The extraction of audio features through deep learning is commonly per-
formed utilizing a tool called VGGish (e.g., Goossens et al., 2022; Sun et al.,
2020; Van Aken et al., 2023). The VGGish architecture is pre-trained on an
extensive YouTube dataset (Yu et al., 2020), incorporating 128-dimensional
embeddings for each AudioSet segment generated through a VGG-like
audio classification model (Hershey et al., 2017).

The extraction of body expression features commonly employs deep
learning algorithms due to their adeptness in efficiently recognizing the
body posture and gestures of individuals. Two notable instances of such
algorithms, capable of extracting body posture and gestures from video
data, include OpenPose and DensePose (Cao et al., 2017). (Jung et al., 2023)
utilized OpenPose to extract anatomical key points. Subsequently, mathe-
matical calculations were performed to determine angles, distance ratios,
and area ratios between various body parts based on the anatomical key
points. OpenPose has multiple deep learning models designed for feature
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extraction from the body, face, and hands (Cao et al., 2019; Simon et al.,
2017; Wei et al., 2016). The features extracted from OpenPose can function
as a baseline for comparing the results of the mathematical calculations, or
they can be integrated into a combined feature representation.

When behavioral cues exist in isolation, they are commonly referred to
as unimodal features, comprising a specific behavioral cue such as vocal
behavior, or gestures and posture. In human-to-human communication,
reliance is often not placed on a single unimodal feature, but rather on the
combination of various unimodal features. The established literature con-
sistently outlines the superiority of multimodal approaches over unimodal
ones (D’mello & Kory, 2015; Stoitsas et al., 2022; Van Aken et al., 2023).
The integration of unimodal models into a multimodal model is known as
fusion, and there are two types: early fusion at the feature level and late
fusion at the decision level. Early fusion involves concatenating the feature
vectors from different modalities into a single vector. On the other hand,
late fusion entails training separate unimodal models for each modality,
and the results are then fused to make a final decision (Poria et al., 2017).

Figure 1: Visualization of early and late fusion, image source: Zhang et al., 2021

4 methodology

4.1 Entrepreneurial dataset

The dataset utilized in this study comprises video recordings capturing
entrepreneurial pitches (Liebregts et al., 2018-2023). The in-person video
recordings contain 44 pitches. Among these, 25 pitches were recorded
between 2018 and 2020, featuring a resolution of 1080p at 25 frames per sec-
ond (FPS). Simultaneously, the remaining 19 pitches were recorded in the
subsequent years, 2022 and 2023, with a resolution of 720p and a frame rate
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of 29.97 FPS. The video recordings contain the pitch of a business proposal
by a university student who participates in an entrepreneurship course.
The student presents the proposal to a panel of three experienced investors.
Following the pitch, the investors are provided with the opportunity to
pose inquiries related to the business proposal in a question-and-answer
(Q&) session. In this study, the analysis focuses specifically on the pitch
segment within the video, the Q&A sessions are being excluded during the
pre-processing stage. The 44 pitches were recorded across six distinct ses-
sions, each characterized by a consistent set of investors. However, varying
sessions involve different investors. Each session contains 5-10 pitches of
approximately 3 minutes. After each session, each investor independently
asses the pitches by assigning an investment probability rating (i.e., 0-100),
and the investors complete a survey containing nonbehavioral cues, such
as demographics, entrepreneurial traits, and entrepreneurial competencies.

Due to the COVID-19 pandemic, the format of pitch sessions under-
went a transition from an in-person setting to an online environment. The
online setting, however, introduces additional constraints compared to the
in-person setting. Notably, online sessions often exhibit notable drawbacks,
such as compromised audio and video quality, and a tendency for pitchers
to be seated, thereby constraining their body movements (Kuhn & Sarfati,
2021). Furthermore, (Kuhn & Sarfati, 2021) explored the impact of transi-
tioning to online settings on the perception of social signals by investors.
The results indicate that acoustic features fulfill a more prominent role in
the assessment of pitches within online settings. Therefore, it is probable
that the association between acoustic and body expression features differs
between in-person recordings and online recordings. Hence, the six in-
person sessions, totaling 44 videos, are utilized for training the models and
comparing results.

Each pitch is associated with three investment probability scores pro-
vided by the investors. However, predictive models are designed to es-
timate a singular likelihood of investment. Two options for creating a
singular likelihood of investment exist: the first involves averaging the
scores, and the second selects the highest likelihood of investment score.
In this study, the latter option is adopted for several reasons. Firstly, the
primary objective of the pitcher is to secure capital, and achieving this
goal does not necessarily require convincing every individual investor.
Secondly, instances may arise where certain investors are less enthusiastic
due to factors such as a mismatch in the background with the business
proposal’s sector or lack of experience in the pitch’s industry. However, as
long as at least one investor is receptive, the overarching goal is achieved.
Averaging the probabilities in such scenarios might yield a lower score.
Lastly, previous research conducted on the dataset has consistently utilized
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the highest probability score as a metric, and deviating from this standard
makes it difficult to compare results. In figure 2, the distribution of the
highest investment scores can be seen for each in-person session.

Figure 2: Box plots visualizing the distribution of the highest investment scores
by each in-person session.

4.2 Feature Extraction

In this section, we will delve into the pre-processing procedures applied
to the video data. Subsequently, the pre-processed data will be employed
for the extraction of acoustic and body expression features. This extraction
process will be facilitated through the utilization of the openSMILE toolkit,
VGGish, and OpenPose.

4.2.1 Pre-processing data

Before the extraction of features from the data and the training of models
on these features, various pre-processing steps must be executed. The raw
data consists of video files in the MPEG-4 format and the following steps
are taken to pre-process the data:

1 The initial step involves removing videos from the dataset for which
no consent has been granted by the pitcher, as well as excluding
videos from the online setting. This process results in a reduction of
the dataset from 70 videos to 44 distributed across 6 sessions.
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2 The subsequent step involves identifying the start and end times of
each pitch and subsequently trimming the video to match the actual
duration of the pitch utilizing the MoviePy package in Python. The
trimmed video incorporates both audio and video data, and it is
stored in MPEG-4 format.

3 The third step involves determining the duration of the videos and
establishing a uniform length for all videos in the dataset. In this
instance, the second-longest pitch, totaling 5 minutes and 17 seconds,
is used as a benchmark, since the longest pitch exceeds 9 minutes.
Given the utilization of a Recurrent Neural Network (RNN), specifi-
cally a GRU or LSTM, it is necessary that every video in the dataset
conforms to the same predetermined length. Consequently, videos
shorter than the specified duration undergo zero-padding to meet
the set length, while videos exceeding the predetermined length are
trimmed accordingly.

4 The fourth step involves extracting audio data from videos. This
process involves utilizing the MoviePy package in Python to extract
audio data from the MPEG-4 files. Subsequently, the extracted audio
data is stored in WAV files, chosen for their uncompressed nature,
facilitating the preservation of more information for the feature ex-
traction processes.

5 The fifth stage involves segmenting the audio into chunks with the
Pydub package in Python. Given that VGGish extracts a feature
vector every 0.96 seconds, it necessitates dividing the audio data
into chunks of 0.96 seconds. This segmentation ensures that the
handcrafted features, extracted using openSMILE, align with the
same temporal rate as VGGish. Consequently, openSMILE utilizes
corresponding data segments, ensuring alignment with the feature
extraction rate employed by VGGish.

6 The sixth stage involves extracting a frame from the video data at
a consistent rate of 0.96 seconds, aligning with the temporal rate
established in the preceding step. This synchronization is crucial to
maintaining a uniform temporal rate for both the body expression
features and acoustic features. The frame extraction is accomplished
using the OpenCV package in Python. The decision to extract a frame
every 0.96 seconds was prioritized over averaging frames within the
same interval. This choice was made based on OpenPose’s preference
for images of higher quality, essential for accurate determination
of anatomical key points. Averaging frames sometimes presented
challenges for OpenPose in identifying these key points.
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7 The final step involves generating a singular prediction score as stated
in Section 4.1. The investment probabilities of each investor are stored
in a comprehensive spreadsheet. This spreadsheet includes crucial
details regarding the pitches, including the pitch ID, session ID, and
file path. The highest score for each pitch is determined and stored in
a distinct column within the spreadsheet. The column is structured
for convenient loading into Python using the Pandas package.

4.2.2 Acoustic features

After the pre-processing of the dataset into usable audio data, suitable for
the extraction of acoustic features, the subsequent step involves feature
extraction within two distinct categories. The first category involves ex-
plainable and handcrafted features, while the second category involves
features derived from deep learning methodologies. The extraction of
handcrafted features involves the utilization of the openSMILE toolkit, as
detailed in Section 3.2. Concurrently, the VGGish tool is utilized to extract
deep learning features.

Within the openSMILE toolkit, the extraction process involves employ-
ing the extended Geneva Minimalistic Acoustic Parameter Set, resulting in the
extraction of 88 features. The feature set is conceived as a fundamental
standard acoustic parameter set, designed with the aim of establishing a
shared baseline for research within the acoustic domain (Eyben et al., 2016).
The features include Low-Level Descriptors (Table 1) and Functionals (Ta-
ble 2), extracted at a regular interval of 0.96 seconds, as outlined in step 5

of Section 4.2.1.
The extracted features are structured into a matrix of dimensions T x 88

for each pitch, where T denotes the quantity of 0.96-second segments that
align with the duration of the pitch. To capture temporal information in
the audio signal, a model utilizes either a Gated Recurrent Unit (GRU) or a
Long Short-Term Memory (LSTM) layer, Both are categorized as Recurrent
Neural Networks (RNN). The GRU and LSTM layers require uniform input
shapes, requiring consistency in the dimension denoted by T for each pitch.
Shorter pitches undergo zero-padding to establish feature vectors of equal
length, while longer pitches are trimmed, following the procedure outlined
in step 3 of Section 4.2.1. This approach is outlined as a standard method
for achieving uniform feature vector lengths in the audio modality (Han
et al., 2020).

Meanwhile, VGGish undertakes the transformation of audio input into
a semantically meaningful 128-dimensional embedding. This embedding
is generated at regular intervals of 0.96 seconds for each segment of audio.
Consequently, a feature set of dimensions T x 128 is produced for every
pitch, with T representing the count of 0.96-second intervals aligning with



4 methodology 14

Table 1: Low-Level Descriptors (LLD) features extracted with OpenSMILE

Feature Group Description

Waveform Zero-Crossings, Extremes, DC
Loudness Energy, Intensity, Auditory model loudness
FFT spectrum Phase, Magnitude
ACF, Cepstrum Autocorrelation, Cepstrum
Mel/Bark spectrogram Bands 0-N
Semitone spectrogram FFT based and filter based
Cepstral Cepstral features (e.g., MFCC, PLPCC)
Pitch F0 via Autocorrelation and sub-harmonic summation,

smoothed by Viterbi algorithm
Voice Quality HNR, Jitter, Shimmer, Voice Probability
LP LPC Coefficient, reflect coefficient, residual Line Spectral

Pairs (LSP)
Auditory Auditory spectra, psychoacoustic sharpness
Formants Centre frequencies and bandwidths
Spectral Energy in N user-defined bands, roll-off points, centroid,

entropy, y
Tonal CHROMA, CENS, CHROMA-based features

Table 2: Functionals extracted with OpenSMILE

Category Description

Extremes Extreme values, positions, and ranges
Means Arithmetic, quadratic, geometric
Moments Standard deviation, variance, kurtosis, skewness
Percentiles Percentiles and percentile ranges
Regression Linear and quad, approximation coefficients, regression

error, and centroid
Peaks Number of peaks, mean and standard deviation peak distance,

mean and standard deviation peak amplitude
Segments Number of segments based on delta thresholding or various

fixed thresholds, mean and standard deviation segment length
Sample values Values of the contour at configurable relative positions
Times/durations Up- and down-level times, rise and fall times, duration
Onsets Number of onsets, relative position of first and last on- and offset
DCT Coefficients of the DCT
LPC Autoregressive coefficients
Zero-Crossings Zero-crossing rate, Mean-crossing rate
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the duration of the pitch. The identical procedure, involving zero-padding
and trimming to a standardized size of 5 minutes and 17 seconds, as out-
lined in Section 4.2.1, is applied to the pitches. This process yields a feature
matrix with dimensions 330 x 128, thereby constructing a comprehensive
and temporal representation of the acoustic modality.

4.2.3 Body expression features

The body expression modality engages in feature extraction through the
utilization of OpenPose, since OpenPose yielded promising results in prior
studies conducted on the same dataset (Jung et al., 2023). OpenPose
utilizes video data to identify the body parts of the pitcher. To align
with the temporal rate established in the acoustic modality, a frame from
the video is extracted at intervals of 0.96 seconds, as outlined in step
6 of Section 4.2.1. The quality of the extracted frame is important for
OpenPose’s accurate recognition of anatomical key points. However, due
to computational efficiency, the frames are downscaled to a resolution of
368x368, as recommended by Simon et al., 2017. This uniform resolution
across individual frames and pitches enables the use of automatic feature
scaling by OpenPose, resulting in the normalization of feature values
within the range of 0 to 1.

OpenPose has multiple models designed for the extraction of anatomi-
cal key points from the human body. Within the scope of this study, the
selected models are BODY_25 and FACE. The BODY_25 model captures
25 anatomical key points of the full body for each frame. However, as the
recordings solely focus on the upper half of the pitchers, the key points
corresponding to the legs and feet are discarded. The FACE model extracts
70 anatomical key points specifically from the facial region of the pitcher.

Following the extraction, the anatomical key points from both models
are stored in separate JSON files for each individual frame. Subsequently,
these key points are aggregated for each JSON file, and their alignment is
mapped based on Figure 3. The resulting features are then compiled into a
CSV file, wherein the confidence statistic for each feature is discarded.

In addition to the features derived from the BODY_25 and FACE
models, Jung et al., 2023 computed affective body expression features
based on perception, recognition, and generation, using data from the
BODY_25 model. These affective body expression features consist of seven
angles, five distance ratios, and three area ratios, collectively capturing
nuances in body openness and alterations in body posture throughout the
temporal domain (Table 3).
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Figure 3: The anatomical key points extracted with the BODY_25 model on the
left, and FACE model in OpenPose. Source: OpenPose Github

Table 3: Extracted Affective Body Expression Features, based on Jung et al., 2023

Feature Type Body Parts

Angle Left upper arm - left lower arm
Right upper arm - right lower arm
Left shoulder - neck
Right shoulder - neck
Left shoulder - left upper arm
Right shoulder - right upper arm
Neck - nose
Left wrist - nose / left wrist - mid hip
Left wrist - neck / left wrist - mid hip

Distance Ratio Right wrist - nose / right wrist - mid hip
Right wrist - neck / right wrist - mid hip
Left wrist - right wrist / mid hip - nose
Left wrist - right wrist - neck / left wrist - right wrist - mid hip

Area Ratio Right wrist - nose - mid hip / left wrist - nose - mid hip
Right wrist - neck - mid hip / left wrist - neck - mid hip

4.3 Experimental Setup

This section focuses on delineating the experimental setups pertaining
to the unimodal feature representations of each modality. Subsequently,
the singular feature representations will be amalgamated to form a com-
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prehensive combined feature representation for each modality. Finally, a
detailed discussion on the multimodal approach involving these modalities
will be presented. This discussion will encompass the experimental setup
for reproducibility purposes and the evaluation metrics employed in this
study.

4.3.1 Unimodal models: single feature representations

The primary objective of the initial phase of the experimental setup is to
address the sub-questions about the optimal performance of feature sets
derived from the acoustic and body expression modalities in predicting
the likelihood of investment. Additionally, this phase aims to offer partial
insights into the comparative effectiveness of Recurrent Neural Network
(RNN) types, specifically the GRU and LSTM.

Figure 4: The workflow of the unimodal single feature representations.

The procedural sequence unfolds as follows: initially, the dataset un-
dergoes pre-processing steps, subsequently, features are extracted from
the data using diverse tools, as outlined in Section 4.2. Following this, the
extracted features are input into a single GRU or LSTM layer, as Recurrent
Neural Networks (RNN) can capture the temporal dynamics inherent in
human behavior. The output of the RNN layer is directed into a regression
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layer, generating a continuous value that represents the probability of
investment in an entrepreneurial pitch. Figure 4 illustrates the workflow
corresponding to each feature representation. This approach was utilized
in the following studies: (Soleymani et al., 2019; Tavabi et al., 2020; Van
Aken et al., 2023).

For each model, hyperparameter tuning is conducted through the im-
plementation of a grid search algorithm. This algorithm systematically
explores all possible combinations of predefined parameters. The combina-
tion of parameters yielding the lowest validation score on the validation
set is selected to train the model. Explicit procedures for training and
evaluating the models are elaborated upon in Section 4.4.

4.3.2 Unimodal models: combining feature representations

The second phase of the experimental setup continues to address the sub-
questions concerning the optimal performance of feature sets derived from
the acoustic and body expression modalities in predicting the likelihood of
investment. However, in this phase, the focus shifts to the integration of
single feature representations into a combined feature representation. Ad-
ditionally, the evaluation compares the performance of the best-performing
GRU and LSTM models for each modality. This assessment is crucial for
determining their integration within the multimodal approach.

Figure 5: The workflow of the acoustic combined feature representations.

To address the first sub-question, How do the acoustic features of openS-
MILE and VGGish or a combination of both compare in predicting the likelihood
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of investment?, the hand-crafted feature representation from openSMILE
will be combined with the deep learning features from VGGish. In Figure
5, the workflows illustrate the combination of these feature representations.
The first representation utilizes early fusion, achieved by concatenating
the feature representation into a single feature vector, which is then input
into a GRU or LSTM layer. Subsequently, the regression layer predicts an
investment score. The second representation utilizes late fusion, wherein
the single feature representations are input into a GRU or LSTM layer. The
outcomes of these layers are subsequently combined into another GRU
or LSTM layer. Finally, the output of the combined layer is fed into the
regression layer, which predicts an investment score.

To address the second sub-question, Which distinct body expression feature
set or combination of features of OpenPose has the best performance in predicting
the likelihood of investment?, The features extracted from OpenPose, includ-
ing BODY_25, FACE, and affective body expression, will be combined
into a unified feature representation. The feature representations will be
combined with an early fusion and late fusion approach, as shown in
Figure 6. The early fusion approach works the same as the early fusion
approach of the acoustic modality, where the single feature representations
are concatenated into a single feature vector and are then fed into a single
GRU or LSTM layer. Whereas the late fusion approach utilizes a GRU
or LSTM layer for every single feature representation. The outcomes of
these layers are then aggregated into a singular GRU or LSTM layer. Ulti-
mately, the results from the single GRU or LSTM layer are directed into a
regression layer for predicting the investment probability.

4.3.3 Multimodal models

After identifying the optimal feature sets for each modality and the most
effective RNN, as detailed in the preceding subsections of 4.3, multiple mul-
timodal approaches are developed for answering the fourth sub-question
How does early fusion of the multimodal compare to late fusion in predicting the
likelihood of investment? The multimodal models are designed to predict the
probability of an investment score by leveraging two distinct modalities.
The multimodal models are constructed using the Keras module within the
Tensorflow package. Each model utilizes two types of fusion, early fusion
and late fusion. In early fusion, the single feature vectors from different
modalities are concatenated into one feature vector. The combined vector is
then fed into an RNN, and the resulting output from the RNN is directed
to a regression layer for predicting the investment score. In late fusion, an
RNN computes the output for each modality, and these individual outputs
are then input into a single RNN layer. The resulting output from the
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Figure 6: The workflow of combining the feature representations utilizing early
and late fusion on the body expression features.

single RNN layer is subsequently fed into a regression layer for predicting
the investment score.

The multimodal models will utilize both the best-performing single fea-
ture representation of each modality and the most effective combination of
feature representations for each modality. The results obtained from these
models collectively contribute to addressing the main research question.
The optimal GRU or LSTM model, identified as the best performer for each
modality, will also be incorporated into the multimodal models. In Figure
7, the workflow of the multimodal model integrating the best-performing
single feature representations along with their respective best-performing
RNN for each modality is illustrated. The initial workflow demonstrates
an early fusion approach, while the subsequent workflow illustrates the
late fusion approach.

In addition to the multimodal model incorporating the best-performing
single feature representations for each modality, there will be another
multimodal model utilizing a combination of the best-performing feature
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Figure 7: The multimodal model workflows with the best-performing single
feature representations of each modality

representations for each modality. Illustrated in Figure 8, the early fusion
multimodal model integrates the combined feature representations, feeding
them into a bidirectional GRU to capture temporal information inherent
in the features. The GRU output is then passed through a fully connected
layer, transforming the task into a regression problem and producing an
investment score as the output for every single pitch.

In Figure 9, the multimodal model incorporating the combined acoustic
and body expression feature representations is visualized. The individual
acoustic feature representations are input into an LSTM layer, and the
outputs are subsequently directed into another LSTM layer to generate
an outcome for the combined feature representation. Simultaneously, the
singular body expression feature representations are fed into a GRU layer,
and the outcomes of the GRU layer are then input into another GRU layer,
producing an outcome for the combined feature representation. Finally, the
outcomes from the acoustic and body expression modalities are directed
in a final GRU layer, and the resulting output is fed into a regression layer,
predicting an investment score for each pitch. The choice of utilizing a
single RNN layer between the modalities was made to effectively capture
the temporal aspects of both modalities within a unified RNN layer.
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Figure 8: Multimodal model workflow utilizing early fusion on the best-
performing combination of feature representations of each modality.

4.4 Training and Evaluation

In this section, the methodologies for training and evaluating the models
described in Section 4.3, are explained. Before training the models, the
dataset is split into a training, validation, and test set. While the conven-
tional approach for dividing the dataset involves random sampling, it was
decided to create a fold for each specific session. This decision ensures that
each fold, or test set, is representative of an actual session. Consequently,
the 44 in-person recordings are distributed over 6 folds, where each fold
includes all the pitches from a session. The number of pitches within
each fold varies, ranging from 5 to 10 pitches per fold. In Table 11, a
comprehensive overview of the pitches and their distribution across the
folds is provided.

After partitioning the dataset into training, validation, and test sets, a
Grid Search algorithm is employed to optimize the hyperparameters for
the models. The hyperparameter tuning process for each model involves
running 10 epochs for every possible combination of hyperparameters. The
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Figure 9: Multimodal model workflow utilizing late fusion on the best-performing
combination of feature representations of each modality.

hyperparameter space is detailed in Table 4. The hyperparameters that
result in the lowest validation score are selected as the optimal hyperpa-
rameters.

Hyperparameters Explored Values
Number of units 64, 128, 256

Learning rate 0.01, 0001

Drop-out rate 0, 0.1
Optimizer Adam, SGD

Table 4: The possible hyperparameters utilized in the Grid Search algorithm.

After determining the optimal hyperparameters, the models are trained
on the training and validation sets with a batch size of 5 for a total of 300

epochs. Subsequently, the performance of the trained models is evaluated
using the test set. The performance of all models is evaluated using
the Mean Absolute Error (MAE) as the chosen metric. This decision
facilitates direct comparisons between different models and aligns with
the widespread acceptance of MAE for assessing regression problems.
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Previous research on the dataset has also employed MAE as an evaluation
metric, enabling comparisons between the current models and prior work,
such as Van Aken et al., 2023 and Jung et al., 2023. The MAE is calculated
by summing the absolute errors and dividing by the sample size.

5 results

In this section, the outcomes of the conducted experiments, as outlined
in 4.3, are presented. The structure of the chapters mirrors that of the
methodology, with a focus on addressing the sub-questions, as outlined in
2.2.

5.1 Unimodal models: single feature representations

The findings derived from the single feature representations within the
acoustic modality are provided in Table 5. The outcomes are presented
through the utilization of the Mean Absolute Error (MAE) evaluation
metric for each specific fold, alongside the computation of the average
MAE across the entire model. The best-performing model within the
modality is emphasized through the application of bold formatting.

The handcrafted features derived from openSMILE exhibit superior
performance compared to the deep learning features obtained from VG-
Gish, for both the GRU and LSTM models. This observation is noteworthy,
especially in light of the findings in Van Aken et al., 2023, where the identi-
cal feature extraction methodology resulted in the deep learning features
outperforming the handcrafted features. A plausible explanation for this
disparity could be attributed to the inclusion of two additional sessions,
wherein the handcrafted features demonstrate better generalization capa-
bilities across the dataset in contrast to the deep learning features. An
intriguing observation arises from the acoustic singular feature represen-
tation results, particularly when employing the first fold as the test set.
The substantial variations in the outcomes strongly suggest that the gener-
alization of the other five folds onto the first fold is notably challenging
within the context of the acoustic modality. This observation is particularly
noteworthy, especially when taking into account the relatively limited
distribution of pitch scores for the first session. A potential explanation for
this could be the relatively high mean of the pitch scores, as illustrated in
Figure 2.

The outcomes derived from the single feature representations within the
body expression modality are detailed in Table 6. An intriguing observation
is the consistent trend wherein all feature sets within the body expression
modality tend to outperform their counterparts in the acoustic modality,
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Feature Set MAE 1 MAE 2 MAE 3 MAE 4 MAE 5 MAE 6 avg MAE
openSMILE (GRU) 22.28 11.57 13.37 27.36 22.56 12.18 18.22

VGGish (GRU) 32.67 21.20 14.98 30.61 24.08 9.53 22.18

openSMILE (LSTM) 14.85 11.43 15.05 30.83 23.17 8.82 17.36
VGGish (LSTM) 25.35 17.63 14.45 30.83 23.64 12.21 20.69

Table 5: The single feature representation results of the acoustic modality.

particularly evident in the first fold. Across both modalities, the LSTM
models consistently outperform their GRU counterparts. Additionally, a
noteworthy pattern emerges in the uniform results observed in the fourth
fold, particularly within the LSTM models. The models utilizing singular
feature representations encounter challenges in effectively generalizing
onto this fold, often resorting to predicting a mean value based on the
remaining folds.

Feature Set MAE 1 MAE 2 MAE 3 MAE 4 MAE 5 MAE 6 avg MAE
Aff. Body Expr. (GRU) 19.95 15.15 6.97 31.21 23.32 17.35 18.99

BODY_25 (GRU) 14.54 16.40 12.70 27.21 25.23 10.20 17.71

FACE (GRU) 15.79 15.93 8.51 30.83 23.02 8.28 17.06

Aff. Body Expr. (LSTM) 15.43 15.54 7.36 30.83 23.17 8.44 16.80
BODY_25 (LSTM) 16.13 15.71 9.92 30.83 23.12 8.69 17.40

FACE (LSTM) 16.47 15.85 8.20 30.83 24.67 8.35 17.40

Table 6: The single feature representation results of the body expression modality.

The most effective feature set within the body expression modality
is the affective body expression feature set, particularly when employed
in combination with an LSTM model. Nevertheless, the BODY_25 and
FACE models demonstrate substantial competitiveness, surpassing the
performance of feature sets within the acoustic modality. Intriguingly,
when utilizing a GRU model, these models even outperform the affective
body expression feature set. The affective body expression feature set is
the best-performing single feature representation while having the least
amount of features.

5.2 Unimodal models: combined feature representations

In Table 7, the outcomes of the combined feature representation in the
acoustic modality are presented. Both early fusion and late fusion ap-
proaches are employed for both GRU and LSTM layers. Notably, the LSTM



5 results 26

Feature Set MAE 1 MAE 2 MAE 3 MAE 4 MAE 5 MAE 6 avg MAE
EF GRU
openSMILE + VGGish

26.65 11.90 19.37 33.02 23.25 8.51 20.45

LF GRU
openSMILE + VGGish

28.44 9.74 19.97 26.56 23.69 15.72 20.69

EF LSTM
openSMILE + VGGish

23.54 16.39 14.35 25.79 23.22 8.36 18.61

LF LSTM
openSMILE + VGGish

15.69 13.81 15.91 24.87 23.37 8.62 17.05

Table 7: The combined feature representation results of the acoustic modality.

layers consistently demonstrate superior performance compared to the
GRU layers within the acoustic modality, with the late fusion approach
outperforming the early fusion approach. The best-performing average
MAE model is denoted in bold, alongside the best scores of each fold
across all models in Tables 7 and 8.

Feature Set MAE 1 MAE 2 MAE 3 MAE 4 MAE 5 MAE 6 avg MAE
EF GRU: Aff. Body
Exp., BODY_25, FACE

12.83 17.32 6.74 29.04 22.04 8.43 16.07

LF GRU: Aff. Body
Exp., BODY_25, FACE

16.05 15.75 16.09 30.45 24.30 7.09 18.29

EF LSTM: Aff. Body
Exp., BODY_25, FACE

15.75 16.00 7.43 30.83 24.73 8.78 17.25

LF LSTM: ff. Body
Exp., BODY_25, FACE

18.55 15.52 11.32 30.70 23.10 9.80 18.17

Table 8: The combined feature representation results of the body expression
modality.

In Table 8, the results of the combined feature representation within
the body expression modality are presented. In contrast to the acous-
tic modality, the GRU layers exhibit superior performance compared to
the LSTM layers, and early fusion consistently outperforms late fusion.
Notably, the body expression modality continues to face challenges in gen-
eralizing onto the second and fourth sessions, in contrast to the combined
feature representation of the acoustic modality, which demonstrated opti-
mal performance on these folds. Whereas the combined body expression
features exhibit remarkable performance on the remaining folds. An addi-
tional observation is that the combined feature representations demonstrate
the capability to make predictions on the fourth fold, an improvement
compared to the performance of single feature representations.
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5.3 Multimodal models

Derived from the outcomes of the unimodal models, two multimodal
models were devised. The first integrated the most effective single feature
representations from the acoustic and body expression modalities. Mean-
while, the second multimodal model incorporated the optimal combined
feature representations from both modalities.

The initial multimodal model incorporated handcrafted features from
openSMILE and affective body expressions derived from the BODY_25

model. Both features demonstrated optimal performance when integrated
with an LSTM layer. In Table 9, the results of the multimodal model are
presented, revealing that a late fusion multimodal model approach sur-
passes the outcomes of the unimodal models. Nevertheless, it is crucial to
acknowledge that while the overall performance improved, the individual
performance on specific folds decreased. This implies that the multimodal
model excels at incorporating results from both modalities and tends to
average the outcomes of both layers, aligning with its anticipated behavior.
Looking ahead, for further enhancement in results, a potential strategy
involves selecting the best-performing modality on a specific fold rather
than averaging the results of both modalities.

Feature Set MAE 1 MAE 2 MAE 3 MAE 4 MAE 5 MAE 6 avg MAE
EF: openSMILE
+ Aff. Body. Exp. (LSTM)

18.24 13.31 16.33 26.02 23.77 10.54 18.04

LF: openSMILE (LSTM)
+ Aff. Body. Exp. (LSTM)

14.28 11.28 12.41 26.21 23.16 9.01 16.06

Table 9: The single feature representation multimodal result.

The second multimodal model integrates the combined feature repre-
sentations from both the acoustic and body expression modalities. The
combined feature representation of the acoustic modality performed best
utilizing an LSTM layer, meanwhile the combined feature representation
of the body expression modality performed best utilizing a GRU layer. In
Table 10, the outcomes of the multimodal model utilizing combined feature
representations are displayed. The results suggest that the multimodal
models exhibit commendable performance for both early and late fusion,
although they do not surpass the performance of the multimodal model
employing single feature representations. Similar observations are noted
for this multimodal model; while achieving high scores on every fold, they
do not outperform the unimodal models on specific folds.
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Feature Set MAE 1 MAE 2 MAE 3 MAE 4 MAE 5 MAE 6 avg MAE
EF GRU: Acoustic
& Body expressions

15.14 17.12 13.15 29.56 22.97 8.49 17.74

LF: Acoustic (LSTM) +
Body expressions (GRU)

15.91 15.79 12.07 26.54 23.40 8.64 17.06

Table 10: The combined feature representation multimodal result.

6 discussion

6.1 Summary and discussion of results

This study aims to address the main research question, Can the likelihood of
investment be predicted from acoustic and body expression features from a pitcher
during an entrepreneurial pitch by using multimodal analysis? To achieve
this goal, the results of the sub-questions will be examined, leading to a
comprehensive discussion. Subsequently, the findings will be synthesized
to provide a conclusive response to the main research question.

To answer the first sub-question, the findings indicate that a feature
set, combining handcrafted features from openSMILE with deep learning
features from VGGish, surpasses the performance of individual single
feature representations. To address the second sub-question, the results
suggest that a feature set that combines affective body expressions with
the BODY_25 and FACE features exhibits superior performance compared
to the individual single feature representations.

Addressing the third sub-question concerning the optimal choice be-
tween a GRU or LSTM model, it is contingent upon the modality and
feature representation. Specifically, the LSTM model exhibits superior
performance on single feature representations and the combined feature
representation within the acoustic modality. Nevertheless, it is evident
that within the combined feature representation of the body expression
modality, the GRU models outperform their LSTM counterparts.

To address the fourth sub-question, it is observed that, in general, the
late fusion approach tends to outperform early fusion. The only exception
to this trend was noted in the case of the combined feature representation
for the body expressions, where both early fusion models outperformed
their late fusion counterparts. However, across all multimodal models
and the acoustic modality, the late fusion approach consistently exhibited
superior performance compared to early fusion.

To address the main research question, both the acoustic and body
expression modalities demonstrated the ability to yield satisfactory results
in predicting the likelihood of investment. However, it is noteworthy that
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the single feature representations faced challenges, particularly evident on
the fourth fold. This limitation was successfully addressed by combining
the feature representations for each modality, and the multimodal model
approach introduced a notable improvement in consistency across all
individual folds.

6.2 Comparison to literature

The first study for comparison is Van Aken et al., 2023, which adopted a
methodology similar to the one employed in this study. In that research,
focusing on the first four sessions of the dataset Liebregts et al., 2018-
2023, the best outcome entailed an average Mean Absolute Error (MAE)
of 13.91. This was achieved by employing the best feature set of each
modality through an early fusion approach. Conversely, combining feature
representations for each modality resulted in inferior performance. Similar
trends were observed in the current study, where the combination of
multiple feature sets within a modality into a multimodal model tended to
significantly increase model complexity. Furthermore, the less successful
single feature representations had a detrimental impact on the overall
model performance.

An interesting deviation lies in the fact that early fusion appeared to
perform better in the previous study Van Aken et al., 2023, while late fusion
demonstrated superior performance in the current study. This discrepancy
highlights the nuanced influence of fusion strategies on model outcomes
and underscores the importance of considering contextual factors in multi-
modal analyses. An additional intriguing deviation lies in the performance
of acoustic features. In this study, handcrafted features surpassed the per-
formance of deep learning features, contrary to the findings in Van Aken
et al., 2023 where better performance was observed with deep learning
features. A plausible explanation for this shift could be attributed to the
increased size of the dataset, expanding from 25 pitches in the previous
study to 44 pitches in the current study. The larger dataset may have intro-
duced variations and complexities that impacted the relative performance
of handcrafted and deep learning features, emphasizing the sensitivity of
results to dataset characteristics and scale.

The second study chosen for comparison is that of Jung et al., 2023,
where the focus was on utilizing body expressions to predict investment
outcomes. This study presented intriguing results concerning affective
body expressions, a feature set also employed in the current study. In Jung
et al., 2023, which concentrated on the first four sessions of the dataset, a
GRU model yielded an MAE of 16.9, while the LSTM model produced a
higher MAE of 20. This presents a notable deviation from our findings, as
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in our study, the LSTM model outperformed the GRU model for single
feature representations.

Additionally, an interesting difference arises in the performance ranking
of body expression and acoustic features. In the current study, body
expression features outperformed acoustic features, whereas prior results
from Jung et al., 2023 and Van Aken et al., 2023 indicated that acoustic
features yielded superior results in the first four sessions compared to
body expression features. This discrepancy underscores the variability in
outcomes across studies and emphasizes the need for careful consideration
of contextual factors and dataset characteristics.

6.3 Scientific and societal impact

The outcomes of this study underscore the efficacy of combining different
modalities to enhance investment predictions compared to unimodal model
approaches. Particularly, previously studied unimodal models such as the
affective body expression features, which have historically been examined
in isolation, exhibit improved prediction capabilities when integrated into a
multimodal framework. The insights gained from this study hold potential
for future advancements in the realm of entrepreneurial decision-making.
Practical applications may involve developing tools wherein entrepreneurs
can upload their pitches for analysis and receive feedback in the form of
identified points of improvement to enhance their pitching skills. This
approach aligns with the broader trend of leveraging multimodal analyses
to provide nuanced insights and support decision-making processes.

6.4 Limitations and future directions

In terms of limitations, it is important to acknowledge that the models
in this study were trained on a relatively small dataset consisting of 44

pitches. Furthermore, it is essential to note that the pitches are not based
on real-world scenarios, introducing challenges in interpreting investment
probability, as real-world investment decisions are typically binary (yes
or no), rather than expressed as a percentage. Additionally, previous
studies utilized SHAP (SHapley Additive exPlanations) to establish feature
importance. However, due to the lack of transparency in the gradient
within the Tensorflow package for GRU and LSTM models, implementing
SHAP analysis for these models is currently not feasible. Models that do
not incorporate a time series approach may also overlook the temporal
aspect, which would not be captured in a SHAP analysis of such models.
These limitations should be taken into consideration when interpreting the
results and applying the findings to real-world scenarios.



7 conclusion 31

This study focuses on nonverbal behavior cues, but future research
could explore the integration of non-behavioral cues, such as the demo-
graphics and entrepreneurial traits of both the pitcher and the investors.
These non-behavioral cues may play a crucial role in determining invest-
ment probability, as factors like investor experience in the pitch’s sector
can significantly impact investment decisions. For instance, an inexperi-
enced investor in the pitch’s sector might have a different influence on
investment probability compared to an experienced one. Recognizing and
incorporating non-behavioral cues is essential, as investment probability
is not solely dependent on the pitch’s quality but also on various contex-
tual and individual factors. Exploring these additional dimensions could
provide a more comprehensive understanding of the dynamics involved in
entrepreneurial investment decision-making.

7 conclusion

In this thesis, the prediction of investment likelihood was explored through
the utilization of acoustic and body expression features extracted from
recordings of entrepreneurial pitches. To capture the temporal dynamics
inherent in the videos, deep learning models with Recurrent Neural Net-
works were employed. A multimodal approach was adopted, combining
the acoustic and body expression modalities through both early and late fu-
sion techniques applied to the feature representations. This comprehensive
methodology aimed to leverage the synergies between different modalities
and temporal aspects to enhance the accuracy of investment predictions.

The presented findings reveal promising results in predicting the likeli-
hood of investment for entrepreneurial pitches using acoustic and body
expression features. Satisfactory performance has been achieved on this
dataset through the implementation of a multimodal model, integrating the
best-performing features from each modality using late fusion. Notably, in
the experiments, body expression features generally outperformed acoustic
feature representations. Furthermore, the combination of feature repre-
sentations in unimodal models demonstrated promising results specific to
each modality. Overall, the late fusion approach consistently outperformed
early fusion, highlighting its effectiveness in leveraging the strengths of
each modality for enhanced prediction accuracy.
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appendix a

Table 11: The in-person recorded pitches with consent for each fold.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6
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