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Abstract

The monitoring of air quality is of vital importance. With new
local emissions emerging, from wood burning for heating, local mea-
surements are needed. Due to the cost of high-quality sensors, ones
of lesser quality need to be used to create a high-density measure-
ment network. The problem is to ensure the data quality of these
sensors. Calibration works but has drawbacks in the form of money
or impossibilities. A proposed other technique to ensure the proper
use of these low-cost sensors is proposed in this thesis. The research
question: "How well can CNN prediction anomaly detection on pm2.5
low-cost sensor time series data be used instead of calibration that
takes environmental factors into account to find true high emissions?"
is researched. This technique has already been used in other time-
series anomaly detection, but not yet in air quality measurements.
Other environmental features have been successfully modeled with
deep learning techniques. From the literature it has become clear
that a CNN model works well with time-series data. The dataset
used to look at this technique will be the Samen Meten pm2.5 dataset,
consisting of measurements done in different citizen science projects.
Calibrated and uncalibrated data is compared. With the calibrated
data an autoregressive model is used to detect anomalous points.
The uncalibrated data uses a CNN model and anomaly detection.
The results is a F1-score of 0.16 which indicates that the model as
proposed in this paper cannot be used as an alternative way to factor
out environmental influences form the time series.

1 data source/code/ethics statement

Work on this thesis did not involve collecting data from human participants
or animals. The original owner of the data used in this thesis retains
ownership of the data during and after the completion of this thesis. The
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author of this thesis acknowledges that they do not have any legal claim to
this data. The code used in this thesis is publicly available. 1 2

2 introduction

The importance of air quality monitoring is of vital importance in a densely
populated country like the Netherlands. The RIVM monitors the air
quality levels through high quality, accurate sensors around the country.
The air quality is evaluated based on yearly averages from these sensors.
Luchtmeetnet, which reports data collected by the RIVM, reports that the
yearly average pm2.5 level between 2021 and 2023 was 9.78 ug/m3 per
hour. The European council has declared that the average yearly level of
25 ug/m3 per hour is the level under which the air quality is safe. Seeing
this average over the last few years it looks like there are no problems with
the the air quality.

However, in recent years, the Netherlands has seen a rise in wood
burning as residential heating. This results in very localized, short spikes
of emissions, with the small particles that are released being the main
health concern. Research done by (Favez, Cachier, Sciare, Sarda-Estève, &
Martinon, 2009) found that around 20% of aerosols in Paris in the winter
came from residential wood burning. The level of pm2.5 can be as high
as 1000 ug/m3 as found by (Hellén, Hakola, Haaparanta, Pietarila, &
Kauhaniemi, 2008). They also found that these very high and very local
emissions were due to residential wood burning. These high spikes in
pm2.5 concentrations are also concerning regarding health. Therefore,
more insight is needed into these spikes, as the government needs to take
into account these increasing unhealthy sources of emission. The few
sensors that the RIVM uses cannot give information about emissions that
are this local and short term. These high quality sensors would also be too
expensive to create the high-density network needed. Therefore, a different
system of measurement is needed to be able to measure the scope of these
new emissions.

A possible solution would be to use low-cost pm2.5 sensors which
are cheap and easy to install. The RIVM has started the Samen Meten
program to combine these low-cost sensors from different projects into
a national network. As of December 2022 6404 pm2.5 low-cost sensors
were registered, with more being added as they are installed. The main
problem is that these sensors are very sensitive to environmental factors
like humidity, and therefore do not comply with the European standards

1 Code used in thesis: https://github.com/ChristineWilson99/master-thesis-DS-S
2 Datasets: https://drive.google.com/file/d/136LjoKUqWGuvpenA1h0kKNXJb6UJbqFY/view?usp=sharing

https://drive.google.com/file/d/1Gz9EvC00mLKk3He0tSFlzwk2liyDdAla/view?usp=sharing

https://www.luchtmeetnet.nl/rapportages
https://samenmeten.nl
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of accuracy (Bartonova et al., 2019). Therefore, the RIVM is doing research
on how to use these sensors to identify spikes in local air quality. The
RIVM has been trying out calibration methods to take out the variation
in measurements due to environmental factors. The main assumption
used with these calibrations is that the measurements locally do not differ
greatly. Groups of sensors are compared against high quality sensors,
also taking into account the distance to a high-quality sensor. With this
method of calibration, the environmental factors are taken into account
and sudden high data points can be identified as anomalies in the time
series measurements, as done in research by (Chen et al., 2017).

However, this calibration method has multiple flaws. Firstly, to properly
calibrate the sensors, high-quality sensors are needed nearby. This is not
always the case. A solution to this would be to calibrate the sensors close
to a high-quality sensor for a few weeks and deploy them after calibration.
(Bartonova et al., 2019) makes the point that due to these environmental
factors the calibration does not stay accurate and should be redone periodi-
cally. This would be too time consuming and expensive to implement on a
large scale. Secondly, the assumption that measurements are locally similar
holds less now that citizens are burning more in their homes and creating
very local and short high emissions. Taking a reference station a few kilo-
meters away would be a completely different measurement and would not
represent the local concentration of pm2.5. Therefore, a different method is
needed to take into account the environmental factors that influence these
cheaper sensors, but that does not rely on secondary sensors.

A different method to incorporate the environmental factors that in-
fluence these sensors should be researched. Research has been done into
different methods to incorporate these environmental factors. Different
papers have found that deep learning model show promising result, with
CNN being the best. (Ali, Glass, Parr, Potgieter, & Alam, 2020; Okafor,
Alghorani, & Delaney, 2020; Veiga, Ljunggren, Bach, & Akselsen, 2021)
These techniques have been used on data sets that are neater than the
Samen Meten data set. Using CNN on this data set will explore the uses
of this technique on a more realistic data set. This will show the broader
application of the technique for new air quality projects.

To explore the possibilities of using low-cost pm2.5 sensors to measure
local air quality and emissions the following research question will be
explored in this paper:

How well can CNN prediction anomaly detection on pm2.5 low-
cost sensor time series data be used instead of calibration that takes
environmental factors into account to find true high emissions?
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To test this research question, anomaly detection will be done on
calibrated data and uncalibrated data that has had CNN prediction used to
possibly incorporate the environmental factors. The anomaly detection on
the calibrated data will be used a s the baseline. In Section 3 the theoretical
background to this research question will be further elaborated.

3 related work

In this section the related works to the topic will be explored. The sec-
tion will look at the uses of anomaly detection in relation to time series,
how high emissions and anomalies relate, the environmental factors that
influence the low-cost time series data, data quality improvements done
on low-cost pm2.5 sensors. Lastly, this section will look at the best model
to use for supervised anomaly detection on air quality time series data.

Finding high levels of measurements from sensor measurements is
more commonly known in the literature as anomaly detection in time
series data. (Aggarwal, 2017) describes that anomaly or outlier detection
in time-series looks at the break in temporal continuity of a certain data
point. This means that the data point breaks away from the trend that
the time series follows. Time series have a strong correlation across time
and a sudden deviation from this trend is considered an anomaly. In the
case of pm2.5 data we are looking for abrupt changes is the time series, an
anomaly, those are the sudden high emissions from wood burning. The
temporal continuity of the air quality time series follows environmental
influences. The wood burning is an human action that is not in line with
the gradual fluctuations of these time series. We can find these anomalies
by looking at the context, the measurements preceding the higher data
point and the normal trend of the time-series. A good method for this is
to use autoregressive models (AR), which takes the preceding values and
an error to define a certain data point. (Aggarwal, 2017) The classification
of the data point as an anomaly or not is based on the difference from the
previous data points looked at with a certain threshold.

With the detected anomalies we can gain insight into high emission
point by looking for anomalies. (Hellén et al., 2008) found high concentra-
tion peaks in the average hourly measurements they used and was able to
link these to residential wood burning, that was their origin. They found in
their research that peaks could go up to 1000 ug/m3 and that the average
was only 8 ug/m3. This large difference in levels of pm2.5 make it so
that anomaly detection can be used to find these high emissions. Using
anomaly detection to find high emission points was done by (Chen et al.,
2017) who used a statistical model on a low-cost pm2.5 sensor network
data set to find anomalies, which were taken as the high emission points.
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However, from the literature it also becomes clear that all time-series
from low-cost pm2.5 sensors suffer from the same strong influences of
environmental factors which make the time-series not reliable. (Okafor et
al., 2020) High levels of pm2.5 could be due to humidity as much as actual
emissions. Much research has been done to improve the calibration and
integrate the environmental factors into the calibration of pm2.5 sensors
with both machine learning and deep learning techniques. (Ali et al.,
2020; Okafor et al., 2020; Veiga et al., 2021) In these papers, environmental
factors were identified with different models (feature selection, multiple
linear regression) and calibration, using various deep learning approaches,
was used to remove the influence of the environmental factors from the
time-series. However, these techniques all relied on environmental factors
being measured. no research has been done with air quality data and
incorporating environmental factors without external measurements.

The above-mentioned research into data quality improvement using
calibration was not done with the specific goal of this project in mind.
Because the goal for this project is to be able to use the low-cost pm2.5
sensors to detect local high emissions, environmental factors can also be
taken into account when identifying anomalies. (Ali et al., 2020) identifies
humidity as being the largest correction needed for pm2.5 sensors. With
a high humidity there are more water droplets in the air, that the sensors
identify as particles in the air, making the measurement higher than the
true value of fine particles in the air. This results in the measured time
series being made up of a measurement of air particles, an added value
to the measurement for humidity, and a smaller extra variance for other
environmental factors. These dependencies can be measured separately as
with the calibration method (Watne et al., 2021), but can also be modeled.

In the field of air quality no research has been done yet on using deep
learning techniques to take environmental factors into account without
the use of additional measurements, as mentioned above. However in
other fields it has. An example is (Jin et al., 2021) who looked at the
possibilities of using deep learning (Long Short-term Memory) to predict
environmental factors. They concluded that with deep learning techniques
the fluctuation of environmental factors could be accurately modeled.
This worked better than machine learning models as the features were
identified and learned by the model itself. As environmental factors
fluctuate in predictable patterns, deep learning can learn their fluctuations.
A technique to take environmental (or other variance) into account when
doing anomaly detection on time series is to use supervised prediction to
learn the temporal continuity of the time-series and find the abnormal data
points. (Aggarwal, 2017)
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The latest research into this technique has therefore been with the
use of deep learning to model the time series and predict the following
data point of a sequence. The predicted value is then compared to the
actual measurement and, depending on the distance between these, the
measurement is classified as either an anomaly or not. (Munir, Siddiqui,
Dengel, & Ahmed, 2018) and (Gao et al., 2020), both use a CNN as the deep
learning algorithm. Their choice of a CNN model comes from the benefits
that the CNN gives. CNN has the ability to train on smaller data sets and
has great generalization capabilities. In the overview paper of (Jácome-
Galarza, Realpe-Robalino, Paillacho-Corredores, & Benavides-Maldonado,
2022), who compares different models for time series prediction, CNN also
comes out as a very good deep learning model for this application. The
difference between the papers is that (Munir et al., 2018) uses prediction
to do the anomaly detection while (Gao et al., 2020) uses decomposition.
The DeepAnt of (Munir et al., 2018) is slightly better with F1-scores of 0.87,
compared to the 0.693 that (Gao et al., 2020) manages. These papers do not
try their models on air-quality data. Which leaves a gap to be explored in
this paper.

To conclude this section, in the scientific work done so far anomaly
detection has not yet been used to find anomalies in pm2.5 data. The
combination of anomaly detection, incorporating environmental factors
into the model and low-cost pm2.5 sensors has also not been explored. This
method will be used in this thesis and will be explained in more details in
the following section.

4 method

This section will cover the methods used in the thesis. It will start with a
general overview of the used methods and will continue with explaining
the different used methods in detail. The methods covered will be the data
selection and preprocessing done on the data set, as well as details about
the data set itself. Further methods detailed will be the autoregressive
model, the anomaly detection and the CNN model. This section will end
with the evaluation metrics used.

To test the research question mentioned in Section 2 two data sets will
be needed. A data set with uncalibrated data, the raw measurements, and
a second data set where those measurements have been calibrated to take
out the influence of the environmental factors altering the measurements.
To take the environmental factors into account without using calibration,
a CNN model will be used on the uncalibrated data. From this model
the predicted values will be used to classify the actual measurements as
either anomalous or expected. To compare the usefulness of this technique
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Figure 1: Flowchart data process.

compared to the calibration method, anomaly detection will also be done
on the calibrated data set. This will create the baseline. On the calibrated
data set a statistical prediction model, autoregression, will be used to create
predicted values. By comparing these predicted values to the calibrated
measurements the anomalous points will be classified. These sets of
detected anomalies are compared to examine the capabilities of the CNN
model as a substitute for calibration. Figure 1 shows the workflow of the
thesis. In the Subsections below the mentioned methods are explained in
further detail.

4.1 Data set

To explore this research question, the data set of pm2.5 sensors from
the Samen Meten project has been used. The data set consists of 6404

low-cost sensors that measure fine particles in the air that are smaller
than 2.5 micrometer. Measurements are recorded on an hourly basis for
each sensor. For most sensors this raw data is then calibrated to create a
second calibrated measurement. The calibration is done using reference
measurements from high-quality air quality sensors that are relatively
close by. Since not every low-quality sensor is near a high-quality sensor,
calibration can not always be done. Sometimes the reference sensors
also stop working or are decommissioned, which creates large gaps in
the calibrated data available. Some inconsistencies in the calibration are
also present, as not all calibrated measurements are different from the
uncalibrated measurements. This would not be strange if not for some
sensors, all the calibrated data is the same as the uncalibrated data. A
second point to make is that the documentation on the data set does not
divulge the exact calibration done on the measurements.
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Metadata that is recorded with the measurements (in ug/m3) and
calibrated measurement (ug/m3) includes the sensor ID, the date and
time, the location, type of sensor and observed property. This data set was
collected via API. When using the API, the filter used was the observed
property, which was set to pm2.5. In the interest of time, as the API was
quite slow, the data set is limited to the 1700 most recent sensors. For this
thesis the only data that will be used and looked at in the models will be
the measurements, the sensor and datetime features.

4.2 Data Selection

After collecting the data sets via API a few preprocessing steps were used
to get usable data sets for the models. The first steps were to select all
the sensors in the data sets that had enough measurements to be used
in the models and to filter for the sensors that had both uncalibrated
and calibrated data. The data sets had to be collected separately via API
and since not all sensors have calibrated data this reduced the number of
usable sensors. Since the API collected the most recent 1700 sensors, not
all sensors had long time series. Another factor was that not all sensors
recorded measurements from the first instance in the database completely
until the use of the API. Some sensors have been disconnected before the
use of the API or for other reasons were not recording measurements
anymore. This has made the lengths of the time series differ greatly. Only
sensor that had more than 672 measurements (a month of measurements)
have been included in the final data set. With a month of measurements
the sequence is large enough to be used in both models. These filters
resulted in two data sets with 860 sensors that have both uncalibrated and
calibrated measurements and have enough measurements to include in the
models.

4.3 Exploratory Data Analysis

Table 1 shows the statistics of the resulting datasets. The discrepancy in
the number of measurements, with the calibrated dataset having more,
is due to the timing of the use of the API. The API was first used to
download the uncalibrated measurements, three weeks later the API was
used to collect the calibrated data. This resulted in an extra three weeks
of calibrated measurements. When comparing the anomalies detected
between the two models, the extra three weeks of measurements will fall
away as only measurements with anomalies detection in both uncalibrated
and calibrated data will be evaluated. The next statistic shows the amount
of missing values in the two data sets. For the uncalibrated measurements
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Table 1: Statistics data sets calibrated and uncalibrated measurements

Calibrated Uncalibrated
Sensors 860 860

Count total 4559054 4342708

Count NaN 1664644 79

Mean 33.51 32.27

Median 5.81 4.54

Minimum -0.91 -0.91

Maximum 65535.0 65535.0

these are few, but the calibrated data set has many. In the preprocessing
these missing values will be dealt with.

The last four statistics describe the distribution of the measurements.
The minimum and maximum values describe a large range, with both the
minimum and maximum being measuring errors, as both are not realistic
values. A negative amount of particlet possible. 60000 ug/m3 is not a
true value. (Hellén et al., 2008) recorded a highest value of 1000 ug/m3.
When looking at the mean and median we can see that the mean is a
lot higher than the median. For both data sets the difference is about
28 ug/m3. This difference is higher than the what the yearly average
maximum should be. This tells us that the distribution is very skewed.
Figure 2 shows the distribution of measurements for both data sets. The top
two graphs show the cumulative distribution over the whole range. They
show clearly that almost all measurements are far below 1000 ug/m3. To
show the distribution better the bottom two graphs show the distribution
of the measurements under 200 ug/m3. The distributions between the
two data sets look similar, apart from the smaller amount of calibrated
measurements. This is due to the high number of missing values in this
data set. The distributions otherwise seem very similar. The statistics also
lie closely together, with the calibrated measurements being slightly higher.

The amount of measurements also differed greatly between sensors.
The minimum number of measurements was 1 and the largest amount for
the uncalibrated data set was 11861, 17 months worth of measurements.
For the calibrated data there were a few even larger time series due to the
extra weeks of measurements. In Figure 3 the distribution of the amount
of measurements can be seen.

The large disparity in amount of measurements is due to a few factors.
The first is that the sensors selected for the data set were the the 1700

sensors that have been added the most recently. Therefore, not all sensors
have been connected as long and therefore would have less measurements.
Another factor is that some sensors don not stay connected. Some do
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Figure 2: Measurements

Figure 3: Distribution counts of length time series.
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not record measurements past a certain date. Some had been active and
measuring for over a year, with the first measurements starting in 2021.
Other sensors only had measurements of a few days of weeks.

4.4 Preprocessing

With the data sets explored, the data can be processed to be used in the
models. The first issue is the missing values. For the uncalibrated data
there is not much missing data, only 0,0018% of values are missing. To
solve these missing values, the next valid measurement was imputed. This
could be done due to the small number of missing values and the fact
that we want to detect the anomalies in the time series. When checking
the measurements of the calibrated data many more missing values are
found. For each sensor between 25 to 40% of all calibrated measurements
are missing. Investigating how the missing values are spread out over the
time series reveals that missing values occur mostly in large blocks, see
Figure 4. For certain periods measurements sometimes cannot or are not
calibrated. However, there are also individual missing values, as seen by
the incomplete lines in Figure 4. Since the missing values are dispersed all
over the time series, they need to be filled. Otherwise the autoregressive
model will not work. Taking the rows out is not an option as otherwise
the sequences needed for the autoregressive model cannot be created. The
method used will be to fill in the missing values with the median of a
particular series. As seen from the statistics in Table 1 the mean of the
measurements is very skewed due to high outliers. Therefore, the median
is a better value to use as a ’normal’ value for the distribution. The median
imputation will be done for each sensor, using the median derived from
that particular time series. After the anomaly detection the measurements
that were imputed will not be taken into account in the evaluation.

Further preprocessing was not done. Normalization or scaling would
not be appropriate as it would make the scale more similar to each other
and help in the training for both models. However, the goal of the models is
to detect anomalous points, for which the true scale needs to be kept intact.
Normalization or scaling would hinder this goal. Furthermore, resampling
was also not necessary, as the hourly rate at which the measurements
were done as the hourly rate at which the measurements were done are
sufficient to show the increase in pm2.5 concentration due to residential
wood burning. (Hellén et al., 2008)
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Figure 4: Sensor 4976 time series calibrated measurements.

4.5 Autoregressive Model

The anomaly detection of the calibrated data will be done using an autore-
gressive model. This type of model uses a sequence of the timeseries to
statistically predict the next value. This method is based on the assumption
that measurements preceding and following each other are correlated. To
test this assumption the correlation between the calibrated masurements
will be explored. Figure 5 shows a lag plot showing the correlation between
the sensor measurements. A clear correlation can be seen, which holds the
assumption.

With the relationship between following measurements, the autore-
gressive model uses Equation 1 to determine the next value following the
sequence. The model needs to be trained on the time series of each sensor
and can then predict the last part of the time series. In the data selection
all sensors with less than 672 (four weeks) measurements were filtered
out. Therefore, the last month of observations can be selected as the test
data, on which the anomalies can be detected. Because of the choice of a
whole month, ten sensors were too short to train and could not be used in
the autoregressive model. The final amount of sensors that is used in the
autoregressive model is 850.

Xt =
p

∑
i=1

ai · Xt−i + c + ϵt (1)
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Figure 5: Lag plot of the calibrated data of sensor (ID = 5786).

4.6 Anomaly Detection Calibrated Data

From these prediction values the anomalies can be classified. By comparing
the difference between the prediction and the calibrated measure and
comparing that to a threshold the anomalous points are classified. The
threshold for this classification has been set to 15. The choice for this
threshold was made by looking at the published RIVM data about pm2.5.
With high-quality sensors they measure a yearly average of 9.78 ug/m3

per hour Luchtmeetnet. As mentioned in the introduction this is lower that
the 25 ug/m3 that is the maximum that the hourly average should be. The
difference between these measures will be the threshold used in this paper,
15 ug/m3. A rise of 15 ug/m3 should indicate a rise from a normal level
of pm2.5 to a abnormal, too high amount of pm2.5.

4.7 CNN Model

The main model used will be a convolutional neural network (CNN). A
CNN has mostly been used in applications with images as it specializes in
data that is like a grid. ADD CITATION Therefore, a time-series is also a
viable application as sequences can be seen as one-dimensional grids. As
mentioned in (Munir et al., 2018) a CNN is also good when training with
smaller data sets and is generally good at generalizing the trained model
to new data sets. The model structure that will be used in this thesis is

https://www.luchtmeetnet.nl/rapportages
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Figure 6: CNN model architecture. Modeled after (Munir et al., 2018). Time series
from Samen Meten (CC BY 4.0).

https://samenmeten.nl/projecten/samen-meten-meierijstad
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the same architecture as used in (Munir et al., 2018). Figure 6 shows the
different layers that are used. The used model consists of two convoluted
layers followed by two max pooling layers. Latly, a dense layer creates the
prediction output, a single value.

The model works as follows. First, the data is split into a train set
and a test set. This is done by setting a date, two months before the last
measurement, before which all the measurements will be in the training
set and measurements after will be in the test set. From these two sets
small windows are assigned, sequences of the time-series. The windows of
the training data are selected at random from the collection of sensors. The
windows of the test set are assigned in order. The length of the windows
will be 24, a full day of measurements. As this will give a fluctuation
sequence of a full day, showing the changes in humidity, which is the main
influence on the measurements. (Bartonova et al., 2019)

The windows of the training subset will be the input-data for the CNN
model. The prediction should be the measurement directly following the
sequence, see Equation 2.{

x1, x2, x3, x4...xlength
}
→ xlength+1 (2)

The train set is further divided into a train set and a validation set. The
first 80% original training set is the actual training set. The other 20% is
the validation set.

When the model starts to train it uses the training data windows. In
these windows filters of a certain assigned size will look over the sequence
for certain features. An activation function will be used to assign if the
filter has found the feature or not. The output of this activation function
will be used as input for the next layer. In the case of this thesis the ReLu
(Rectified Linear Unit) activation function is used. The choice for this
activation function is to follow the structure in (Munir et al., 2018). A main
reason why it is one of the most used activation functions is its speed.

With the output from the activation function the max pooling layers
are passed through. Here the maximum parameters are filtered out and
kept. It reduces the number of values for the next layer. The last layer is
a fully connected layer, the dense layer, where all features are activated.
Here a matrix multiplication is done using a bias offset. The result will be
a single output, the predicted next value in the time series.

While training the model, the loss function that will be us is MAE
(mean absolute error). This measures how far off the prediction is from
the true value. Based on the MAE of the validation loss function the ideal
number of epochs will be determined. The optimizer that is used in the
model will be SGD (stochastic gradient descent).
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4.8 Anomaly Detection Uncalibrated Data

From the predicted measures as a result of the CNN model, the anomalous
point can be identified. This will be done by taking the difference between
the predicted value and the actual measurement and checking to see if it is
larger than the threshold. As with the anomaly detection on the calibrated
data the threshold will be set at 15 (ug/m3). The same threshold will be
used as both methods use the difference between the predicted measure
and the actual measurements to determine the anomalous points. Therefore
the same threshold needs to be used to make the models comparable.

4.9 Evaluation

The anomaly detection via prediction done on the uncalibrated data will be
compared to the anomaly detection done on the calibrated measurements.
For the anomalies detected on the calibrated data with the autoregressive
model, only the points for which the data was not imputed will be used int
he evaluation. Since the measurements on which anomaly detection have
been done do not completely overlap for the two models, only evaluation
will be done on the points which have had anomaly detection done on
both the calibrated and uncalibrated measurements.

The anomalies detected on the calibrated measurements will be seen
as the true values. Anomalies detected on the calibrated data are the
true positive values, the measurements which are not anomalies are true
negatives.

Precision =
TruePositives

TruePositives + FalsePostives
(3)

Recall =
TruePositives

TruePositives + FalseNegatives
(4)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(5)

To evaluate the prediction anomaly detection method against anomaly
detection on calibrated data, the overall precision, recall and F1-score will
be used. This choice is made because the data set is imbalanced. These
metrics will be determined over the whole resulting data set with detected
anomalies, the subset of measurements which have had anomaly detection
done on both the calibrated and uncalibrated measurements. Most of the
data points will be seen as non-anomalous. Recall, precision and F1-score
will give insight into the amount of overlap the two methods have. If the
recall is high, the prediction method will find many of the same anomalies.
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If the precision is high, we will not have identified many other anomalies.
The F1- score will tell us how well the prediction method fits with the
calibration method. These metrics combined with a confusion matrix will
give an insightful answer to the research question.

5 results

In this section the anomalies from the baseline model, the anomaly de-
tection combined with the autoregressive model will be compared to the
anomalies detected using the CNN model with anomaly detection. The
results will be shown in the form of a confusion matrix, the evaluation
metrics. To gain more insight into the anomalies detected this section will
end with a look at the time series with anomalies detected of a particular
sensor.

5.1 CNN prediction

The CNN model was trained using a window 24 measurements long (a day
of measurements), using two features and a filter of (8,8,8). The learning
rate of the SGD was kept small, 0.01. First the ideal amount of epochs,
based on the MAE loss value of the validation data was researched. In
Figure 7 MAE loss of the training and validation data is shown. From this
figure we can see that the more epochs have been done, the more the model
learns on the training data. However, when evaluating on the validation
data, the graph shows that more epochs do not improve the generalization
capabilities of the model. The validation shows that after six epochs the
model does not improve. The lowest validation loss is at epoch six, but
from three onward are in the lower area. Since the prediction are used to
detect anomalies in the time series, we do not want to overfit the model, as
the outliers will be learned more and more. Therefore, three epochs is the
best choice for this model.

5.2 Anomaly Detection

In 2 the results from the two methods of anomaly detection can be seen.
The autoregressive model detects more anomalies than the method that
uses the CNN model, more than twice as much. About 4% of measures
from the classified data set have been classified as anomalous data point.
Of the unclassified data set only 1,4% is calassified as anomalous data
points.
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Figure 7: Mean absolute error loss for training and validation CNN

Table 2: Anomalies detected, CNN model, autoregressive model.

Anomaly Not anomaly
CNN model 3071 206252

Autoregressive model 8130 201193
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Figure 8: Confusion matrix

To find which anomalies the CNN model method detects compared to
the autoregressive model, a confusion matrix of the anomalies is shown in
Figure 8. Using the CNN model to detect anomalies gives the correct bias
as the data set is imbalanced, detecting little anomalies. However, looking
at the matrix we see that there are 2163 False Positive, 7222 False Negative
and 908 True Positive classifications. The largest group, the True Negative
has a value of 199030 and is compressed in the figure.

5.3 Evaluation metrics

With the anomalies from both models the evaluation metrics can be com-
puted. In Table 3 the scores for the precision, recall and F1-score are
shown. The precision score is low at 0.30. This means that 30% of the
anomalies found with the CNN model were correct, according our baseline
of anomalies detected by the autoregressive model. The recall is lower
at 11%. When comparing the anomalies found by the CNN model to the
autoregressive model, the CNN model only found 11% of the anomalies
found by the autoregressive model. The overall F1-score of 0.16 is quite
low. This indicates that the fit of anomalies detected with the CNN model
on the anomalies detection of the autoregressive model is not good.
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Table 3: Evaluation metrics

Value
Precision 0.30

Recall 0.11

F1-score 0.16

Figure 9: Times series sensor 6551, including anomalies detected.

5.4 Exploration Anomalies Detected

To look more deeply into the difference in what the two anomaly detection
methods are doing Figure 9 shows the time series with calibrated and
uncalibrated data for the sensor 6551. In the figure the anomalies detected
by both methods are also shown. Both anomaly detection show anomalies
that indicate steep slopes. However, both methods also seem to miss some
high local maxima, around the 12th for example. Between the 19th of
October and the 20th we can see many anomalies detected by the CNN
model method. However, there does not seem to be a significant increase
or decrease for the point between the local and global maxima. The same
happens for the autoregressive method around the 16th. Many points
that seem to be sudden steep increases or decreases are also not seen as
anomalous points by either the CNN model or the autoregressive model.
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6 discussion

In this section the results of thesis will be discussed. The main points that
this section will go over will be to reiterate the goal of this thesis. Then
the results will be interpreted to see if the CNN model can compare to the
baseline model. Then different possible improvements on the method are
discussed, with suggestions for further research that can be done on this
topic.

The goal of this thesis was to find an alternative way to find high
emission points in low-cost air quality sensors. The proposed technique
was to use a deep learning model, CNN, to incorporate the environmental
factors, which influence the measurements, into a prediction and use
this to find high emission points. This would help giving insight into
the emissions caused by wood burning stoves. These predictions would
be compared to anomaly detection done on calibrated data to see if the
proposed technique would be a suitable alternative, as calibration already
takes the environmental factors into account.

From the results we have seen that the CNN model method does not
come close to detecting the same anomalies as the autoregressive method.
With a F1-score of 0.16 many different and wrong points were seen as
anomalous. Anomalies were also missed. When looking closer at why
this could be we see that both methods do not do what they were deemed
to be able to do from the literature. We see in Figure 9 that after a local
maxima, both methods keep classifying measurements as anomalies, even
though there is no increase or decrease in the values. For the autoregressive
method (Aggarwal, 2017) states that the breaks in temporal continuity are
classified as anomalies. However, here we see that the predictions are
influenced too much by the local maxima and keep the predictions high for
long after the maxima. Thus, more measurements are seen as anomalies.
The same thing seems to be the case for the CNN model. For the CNN
model a smaller window could possible improve this.

The size of the data set could be increased. Due to time constraints
a smaller number of sensors were included in the data set than were
available on Samen Meten. With a larger data set, it could be possible that
the model could be trained better and validated and tested on a larger set.
This could result in greater generalization capabilities and better anomaly
detection when used on the test data. The data set was also limited due
to the sensors having measured for no more than 18 months. Because
of the way the API is set up the newest added sensors are collected first.
Creating a bigger data set with more sensors would therefore also have as
a consequence that those sensors would have been active for longer. The
seasonality could therefore possibly be better taken into account in the
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model. However, this would create problems with running the model on
most regular devices. The size of the data set used in this thesis already was
almost 7 GB. Increasing the data set would require specialized equipment
to run the CNN model.

The low F1-score is not a strange outcome for supervised anomaly
detection on time series. Both (Munir et al., 2018) and (Gao et al., 2020)
report for their worst-working models F1-scores between 0.2-0.4. However,
this still makes the F1-score of 0.16 very low and not indicative of a
properly working model. A reason why the CNN model worked worse
in this paper compared to the research done by (Munir et al., 2018) could
be the data set. The influences of environmental factors on the low-cost
pm2.5 sensors could be different per sensor. This has not been revealed
by related works but is an interesting topic to research further. The data
set also showed some inconsistencies in the calibration of the data. Some
sensors had calibrated data that did not differ from the uncalibrated data
at any point. Since the calibration method used was not stated clearly in
the documentation of the data set, it is possible that the calibration was
not up to the standards that was assumed. With these two points in mind,
a different data set could be tested to see if that improves the use. The
differences between the data sets could then be used to examine why the
method used in this paper did not prove sufficient.

This difference per sensor could be explored in a different way as well.
In this paper the method was used to train the CNN model on the complete
collection of measurements, from all sensors. Improvements could possibly
be made by training the CNN model on a single time series. This could
better learn the fluctuations of that particular sensor and the unique way
the environmental factors influence that sensor. This alternative method
could also improve the ability to compare the models. The method used for
the autoregressive model was to train the model for each sensor separately.
This could have led to a greater discrepancy between the anomaly detection
done on the autoregressive model and the anomaly detection done on the
CNN model.

This paper shows that for low-cost pm2.5 sensors more research needs
to be done. Both from the workings and influences of environmental
factors on these sensors. To use these sensors to give more insight into
local wood burning emissions a lot higher precision and recall is necessary.
However, because of limitations in the research done in this paper, the
use of deep learning to extract environmental factors from the time series,
cannot be cast aside either. To possibly use these methods to gain more
insight into these sudden and local emissions due to residential wood
burning a different methodology will be needed. The recommendation
based of this paper for a way to test the uses of the CNN model, would be
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to create an experimental setup. High quality sensors should be used to
find the true anomalous point, the true high emissions. From this labeled
data the evaluation of the models could be done better and more insights
into what the methods miss or do not learn can be seen. In this paper also
see a large discrepancy in the points that were found by the two different
methods. The CNN found points anomalous that were not found by the
autoregressive model. This is another indication that a better baseline is
needed to explore which points are classified as anomalies. With a baseline
with true high emission points more insight can be given in the way the
anomalies are assigned. With these insights improvements can be made to
the model. In this thesis the choice of baseline and impossibilities of the
data set made improvements to the model difficult as the autoregressive
method was also showing strange classification behaviour.

This paper has given a novel insight into the complications that the
use of these low-quality sensors bring and the assumptions that do not
hold due to the workings of these sensors. More research will need to be
done with a different methodological setup and more research will need
to be done regarding the influences of environmental influences on these
particular types of low-cost pm2.5 sensors.

7 conclusion

To conclude this thesis the research question will be examined and possible
future work and improvements summarized.

For the research question: "How well can CNN prediction anomaly
detection on pm2.5 low-cost sensor time series data be used instead of
calibration that takes environmental factors into account to find true high
emissions?" the conclusion is that anomaly detection done with CNN
prediction is not a suitable way to detect high emission concentrations,
as done with the method used in this paper. The F1-score of 0.16 makes
clear that the anomalies found by using the CNN model do not accurately
represent the anomalies detected with the baseline autoregressive model.
Furthermore, the assumptions about the environmental influences on the
low-cost pm2.5 sensors do not hold up in this paper, which indicates
that more research needs to be done on these influences. Because of the
uncertainty with using a anomaly detection method as a baseline further
research should follow an experimental setup where the true anomalies,
high emission points are known. This paper has set up a good pathway
to test the methods that have been explored here for the first time. With
further research it will be possible to definitively conclude if the proposed
CNN method could be a suitable way to incorporate environmental factors
into the pm2.5 measurements.
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