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Abstract

This thesis aims to investigate the effectiveness of machine learn-
ing methods on anomaly detection for failure prediction using the
system logs of the integrated ICT-system of a hospital: the Electronic
Patient Record (EPR). The findings of this thesis help stakeholders
in hospitals to assess which method is efficient in detecting perfor-
mance problems to avoid failure of an EPR, and help researchers
in academic context to assess which method is efficient in correctly
classifying anomalies using the system logs of an EPR. The Support
Vector Machine (SVM) and Random Forest (RF) are evaluated, as
well as the effect of oversampling on these methods and its one-class
variations. Synthetic Minority Over-sampling Technique (SMOTE)
is used as an oversampling method. Previous studies found that
oversampling and the one-class variations outperform the SVM and
RF on similar anomaly detection problems. This thesis is the first
to evaluate machine learning methods on anomaly detection using
the system logs of an EPR for failure prediction. Additionally, this
thesis is the first to compare the SVM, RF, oversampling of these
models using SMOTE and its one-class variations with each other on
an anomaly detection problem. Contradicting previous studies, this
thesis finds that, generally, oversampling and the one-class variations
did not outperform the SVM and RF. The RF was able to classify
all samples in the data perfectly. However, the SVM was unable to
identify all anomalies, something the SMOTE-SVM was able to do.
The results of this thesis indicate that the RF is the most effective on
anomaly detection using the system logs of an EPR.
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1 data source/code/ethics statement

The dataset used in this thesis was provided by an external source. The
author of this thesis complies to the terms and conditions set by the owner
of this dataset. The original owner of the data used in this thesis retains
ownership of the data during and after the completion of this thesis. The
author of this thesis acknowledges that they do not have any legal claim to
this data.

The code used in this thesis is not publicly available.

2 introduction

2.1 Societal Relevance

Thousands of patients were unable to receive healthcare at Maastricht
University Medical Center+ on September 8 due to an ICT-related failure
(NU.nl, 2022). Luckily emergency care could still be provided, whereas at
the Isala hospital in Zwolle earlier last year emergencies had to be diverted
to other hospitals due to an ICT-related failure (van Veldhuizen, 2022).
ICT failures were the second-most cause of internal hospital crises and
disasters in the last two decades in the Netherlands (Klokman et al., 2021).
According to the Dutch Safety Board (2020), proper and safe patient care is
dependent on ICT. Nearly all hospitals in the Netherlands work with an
integrated ICT-system called the Electronic Patient Record (EPR) (Wilman,
2022). As almost all work processes are executed in the EPR, failures can
lead to disruption of the workflow in a hospital.

According to Hoover (2016), however, the benefits of the EPR outweigh
the drawbacks. These benefits are easy accessibility of information, in-
creased efficiency in workflow and patient care and facilitation of internal
cooperation (King, Patel, Jamoom, & Furukawa, 2014; Priestman et al., 2018;
van der Graaf, 2012). As such, there is much to gain by early detection of
abnormal, or anomalous, behaviour of an EPR. Hospitals have expressed a
need for detecting this anomalous behaviour. When anomalies are detected,
important stakeholders can take fast measures to avoid further escalation.
Summarising, anomaly detection can lead to fast and adequate measures
to avoid failures (Dutch Safety Board, 2020).

2.2 Scientific Relevance

According to Barrows Jr and Clayton (1996) "anomaly detection depends
on unusual behavior or unusual use of system resources (...)". Design and
development of anomaly detection methods can be used for predictive
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and proactive maintenance and are crucial to reduce the chance of un-
expected failure of a system (Fahim & Sillitti, 2019). Anomaly detection
algorithms can be used to monitor system usage logs of an EPR to identify
malfunctions before patients are affected (Sittig, Lakhani, & Singh, 2022).

Anomaly detection algorithms have been applied on several problems
using data from an EPR such as classifying workflows (Boddy, Hurst,
Mackay, & El Rhalibi, 2019; Yeng, Fauzi, & Yang, 2020), cyber-attack de-
tection (McGlade & Scott-Hayward, 2019) and medical decision making
(Kassakian, Yackel, Gorman, & Dorr, 2017; Ray, McEvoy, Aaron, Hickman,
& Wright, 2018). However, there are no studies that use the system logs
of EPRs for failure prediction. This leaves an interesting opportunity for
research.

Anomaly detection problems can be considered as an extreme class
imbalance problem, as anomalies are usually not frequent in the data
(Kong, Kowalczyk, Menzel, & Bäck, 2020). Classifiers like the Support
Vector Machine (SVM) and Random Forest (RF) show robust performance
on several anomaly detection problems (Anton, Kanoor, Fraunholz, &
Schotten, 2018; Brown & Mues, 2012; Luo, Pan, Wang, Ye, & Qian, 2019).

Another way to handle class imbalance is through the Synthetic Minor-
ity Over-sampling Technique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer,
2002). Research on anomaly detection problems shows that the perfor-
mance of the SVM and RF is improved when SMOTE is introduced (Tan et
al., 2019; Wu et al., 2022).

A heavily imbalanced classification problem could also be considered
as a one-class classification problem. One-class algorithms often show
better performance than their binary variants on various anomaly detection
problems (Tsai & Lin, 2021; Xing & Ji, 2018).

As there are no studies on anomaly detection for failure prediction that
use system logs of an EPR, there is an interesting opportunity for research
to see how the SVM and RF would perform on this problem. In addition,
there is an interesting opportunity to see how the introduction of SMOTE
and the one-class variations of these models will affect performance.

2.3 Research Strategy

Based on the gaps identified in scientific literature, the following research
question is established:

To what extent does oversampling or the one-class variations affect
the performance of Support Vector Machine and Random Forest on
anomaly detection using the system logs of an EPR?

The following sub-questions are established to answer this question:
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RQ1 How do the Support Vector Machine and Random Forest perform on anomaly
detection using the system logs of an EPR?

RQ2 How does the introduction of oversampling affect the performance of these
models on this anomaly detection problem?

RQ3 How do the one-class variations of these models perform on this anomaly
detection problem?

There is a possibility that there are anomalies in the dataset that are
not labelled as anomalies, but are actually anomalies. If the models predict
regular actions as anomalies, or false positives, they will be analysed
manually to determine if they are actually anomalies.

2.4 Brief Overview of Main Findings

This study found that oversampling helped the SVM in classifying all
anomalies as such. Generally, however, oversampling and the one-class
variations did not outperform the SVM and RF. The RF classified all
samples in the data correctly.

3 related work

3.1 Anomaly Detection using Electronic Patient Records

The Netherlands was considered an innovator in healthcare automatisation
in the last century, with ICT-systems for hospitals developed at a fast rate.
These systems were designed for separate departments, each department
requiring a different solution (Zwetsloot-Schonk, 2003). This led to the
development of an integrated ICT-system: the Electronic Patient Record
(EPR) (Wilman, 2022). An EPR contains all medical and administrative
information on a patient and can execute tasks related to patient care (Boll,
2006; Michel-Verkerke, Stegwee, & Spil, 2015).

An EPR continuously gathers data on how well it is performing. These
system logs can be analysed by relevant stakeholders to discover problems
when an EPR is not functioning properly. This a very reactive manner of
dealing with malfunctions, however, which can result in necessary action
to be taken too late. According to Sittig et al. (2022) anomaly detection
algorithms can be used to monitor system usage logs of EPRs to identify
malfunctions before patients are affected.

Anomaly detection has been applied using system logs of EPRs in
several fields. Boddy et al. (2019) use Local Outlier Factor Analysis in
analysing workflows to detect if no records are accessed without legitimate
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access rights. Yeng et al. (2020) use nine different machine learning methods
on the same problem, and found that Logistic Regression and Random
Forest (RF) performed the best. McGlade and Scott-Hayward (2019) test the
K-Nearest Neighbours, Naive Bayes and Support Vector Machine (SVM)
on cyber-attack detection and found that the SVM performed the best.
Kassakian et al. (2017); Ray et al. (2018) use manual and statistical analysis
for anomaly detection in medical decision making.

There are currently no known studies that use anomaly detection
methods for failure prediction using the system logs of an EPR. This leaves
an interesting opportunity for research to test what anomaly detection
models would be appropriate for this problem.

3.2 Supervised Anomaly Detection

As anomalies are often not labelled in the data, anomaly detection prob-
lems usually require unsupervised machine learning techniques (Hastie,
Tibshirani, & Friedman, 2009). However, sometimes anomalies are labelled
in the data and supervised methods can be applied (Görnitz, Kloft, Rieck,
& Brefeld, 2013). Anomaly detection problems can be considered as an
extreme class imbalance problem, as anomalies are usually not frequent in
the data (Kong et al., 2020).

The SVM is commonly applied to imbalanced datasets. This algorithm
was first introduced by Cortes and Vapnik (1995): features are non-linearly
mapped to a high-dimension feature space and through this space a linear
decision boundary is drawn. The authors promise high generalisation.
Q. Fan, Wang, Li, Gao, and Zha (2017) test multiple variations of the
SVM on around thirty different datasets, ranging from little imbalanced
to heavily imbalanced. All variations of the SVM showed a fairly robust
performance, even on heavily imbalanced datasets. However, the authors
found that the SVM does have a tendency to bias towards the negative
class as it treats both classes with equal importance. The authors do not
compare the variations to other machine learning methods.

The RF is another commonly used algorithm applied on imbalanced
datasets. The foundation of this model lies in decision trees: certain rules
partition the data for classification (Myles, Feudale, Liu, Woody, & Brown,
2004). RF was first introduced by Ho (1995) as a solution for the difficulty
of decision trees generalising to unseen data. In an RF, multiple trees are
constructed in randomly selected subspaces of the total feature space. This
idea was further developed by Breiman (2001) into the algorithm that is
commonly used today. Luo et al. (2019) test a Logistic Regression and RF
on multiple imbalanced datasets, and show that RF performs better overall.
Brown and Mues (2012) compares the RF to nine other machine learning
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algorithms on a credit scoring classification problem using several datasets.
The authors find that the RF has a robust performance, even on extremely
imbalanced datasets.

Eltanbouly, Bashendy, AlNaimi, Chkirbene, and Erbad (2020); Omar,
Ngadi, and Jebur (2013) found in their literature search that the SVM ob-
tains good results in different anomaly detection problems when compared
to several machine learning and even deep learning algorithms. However
Omar et al. (2013) argue that proper hyperparameter tuning is necessary
for obtaining good results.

Pachauri and Sharma (2015) compared RF to the J48 and k-Nearest
Neighbour algorithm and found that RF performed the best on anomaly
detection in medical wireless sensor networks. Gulenko, Wallschläger,
Schmidt, Kao, and Liu (2016) compared RF to 12 other machine learning
methods and found that RF performed best in cloud availability anomaly
detection. According to Eltanbouly et al. (2020), however, the RF has
trouble detecting novel anomalies that are not included in the training set.

There are several studies in literature that compare the RF and SVM
on anomaly detection problems using system logs. Al Ali, Svetinovic,
Aung, and Lukman (2017) find that both RF and SVM perform similarly
and highly effective on malware detection when compared to five other
machine learning algorithms, with the RF performing the best. Anton et
al. (2018) compare the SVM, RF, k-Nearest Neighbours and Naive Bayes
on network traffic anomaly detection. The authors find that both the SVM
and RF perform well on this problem, with the SVM outperforming the
RF. Timčenko and Gajin (2018) compare the SVM and RF on a similar
problem. They, however, find that the RF outperforms the SVM. Abraham
et al. (2018) compare the RF, SVM, Naive Bayes, Logistic Regression and
Neural Network on anomaly detection for network intrusion. They find
that SVM and RF perform the best out of all the algorithms, with the RF
showing the best performance. Noh and Basri (2021) compare the SVM
and RF in phishing detection, and find that the RF performs the best.

As the SVM and RF perform well on several anomaly detection prob-
lems using system logs, it would be interesting to see how these supervised
models would perform on anomaly detection for failure prediction using
the system logs of an EPR.

One important risk of using supervised methods is that they cannot
detect anomalies in the data that have not been labelled as such but are
considered anomalies (Aggarwal, 2017; Han, Hu, Huang, Jiang, & Zhao,
2022).
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3.3 Oversampling in Anomaly Detection

One way to handle imbalanced datasets is through oversampling: new sam-
ples are added to the minority class to increase the size of this class (Shelke,
Deshmukh, & Shandilya, 2017). The random oversampling technique is
one of the earliest proposed techniques (Ling & Li, 1998). This technique
duplicates minority samples. An often used oversampling technique is
the Synthetic Minority Over-sampling Technique (SMOTE), developed by
Chawla et al. (2002). Rather than duplicating samples, SMOTE generates
synthetically new instances to provide an algorithm with new informa-
tion. As random oversampling is prone to models overfitting, SMOTE is
a preferred technique among researchers (Sharma, Gosain, & Jain, 2022).
Cervantes, Garcia-Lamont, Rodríguez-Mazahua, and Lopez (2020) propose
SMOTE as a solution to have the SVM perform more accurately due to this
model showing bias to the majority class, treating the minority class as
noise. Alraddadi, Lago-Fernández, and Rodríguez (2021) argue that both
the RF and SVM benefit in accuracy from introducing SMOTE in anomaly
detection problems. According to Fernández, Garcia, Herrera, and Chawla
(2018), however, SMOTE has no benefit if samples in classes largely overlap
each other.

Gosain and Sardana (2017) test the SVM on six different imbalanced
datasets, and show that the performance of the SVM increases on all
datasets with SMOTE. Mathew, Pang, Luo, and Leong (2017) test the SVM
and SMOTE-SVM on around fifty different datasets and find that generally
the SMOTE-SVM performs better. However, on some datasets the SVM
outperforms the SMOTE-SVM. There is no comprehensive literature review
available which compares the SMOTE-RF and RF on different imbalanced
datasets.

Regarding anomaly detection problems using system logs, most litera-
ture was found applying SMOTE on network intrusion detection problems
using security logging. Alfrhan, Alhusain, and Khan (2020) found that
the SVM has a high performance, but achieves perfect performance when
SMOTE is introduced. Pajouh, Dastghaibyfard, and Hashemi (2017) use
SMOTE before testing SVM and RF. However, they do not compare results
of the oversampled dataset to the regular dataset. Tan et al. (2019) show
that the performance of RF increases when SMOTE is introduced. Tesfahun
and Bhaskari (2013) compare the RF with SMOTE-RF on five different in-
trusion detection datasets, but found that on only one set SMOTE-RF
performance improved. On the other datasets, the performance stayed the
same.

When considering earlier research measuring the effect of SMOTE on
the SVM and RF, the results differ. However, as SMOTE causes increase
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in performance on several anomaly detection problems using system logs,
this method is worth considering for the established problem in this study.

3.4 One-Class Methods in Anomaly Detection

According to Tsai and Lin (2021), a heavily imbalanced two-class classi-
fication problem is similar to a one-class classification problem. Rather
than using binary classification algorithms as described in Section 3.2,
one-class classification algorithms can be applied to this problem (Xing
& Ji, 2018). These methods assume that all samples in the data belong to
one class. When new samples are introduced they are given an anomaly
score that indicates how far they deviate from the normal data. According
to Bellinger, Sharma, and Japkowicz (2012) the performance of one-class
classifiers is robust as imbalance increases in the dataset, whereas per-
formance of binary classifiers is not robust if imbalance increases. The
One-Class Support Vector Machine (OCSVM) is the unsupervised version
of the SVM, specifically designed by Schölkopf, Platt, Shawe-Taylor, Smola,
and Williamson (2001) as an extension the SVM in case of unlabelled data.
The Isolation Forest (IF) is the unsupervised version of RF and was de-
signed by Liu, Ting, and Zhou (2008). Using a forest-like structure like the
RF, the IF isolates anomalies.

One-class classification methods are generally designed for anomaly
detection problems (Japkowicz, Myers, Gluck, et al., 1995). These are
unsupervised methods, but can be turned into supervised ones when
labels are known. One major disadvantage of using these as supervised
methods, as mentioned in section 3.2, is that it removes the ability of the
models to detect anomalies in the data that have not been labelled as such
but are considered anomalies.

As OCSVM and IF are generally used for unlabelled data, there is
not much research available that compares these algorithms to its binary
variant. Tsai and Lin (2021) found that the IF and OCSVM are especially
effective on heavily imbalanced datasets. On less imbalanced datasets, the
SMOTE-RF and SMOTE-SVM perform better. However, the authors do not
compare the results to a regular SVM and RF.

No comprehensive literature survey could be found that compares the
SVM and OCSVM on imbalanced datasets or anomaly detection problems.
Liu et al. (2008) compares the IF to the RF, Local Outlier Factor and a
distance-based method called ORCA on twelve different anomaly detection
datasets. The authors find that IF outperforms the other methods on ten
datasets with high performance, with ORCA showing better performance
on the other two.



4 methods 9

Regarding anomaly detection, Hejazi and Singh (2013) compare the
OCSVM to the SMOTE-SVM and SVM on an imbalanced credit card fraud
detection, and found that the OCSVM performed the best. S. Fan, Liu,
and Chen (2017) compares the IF, OCSVM, RF and SVM on anomaly
detection for bankruptcy prediction. They find that the one-class variations
outperform the binary classifiers, with IF showing the best performance.

No literature studies have been found that compare SVM and RF
to its one-class classification variations on anomaly detection problems
using system logs. This study will be the first attempt to do so. As the
OCSVM and IF outperform its binary variants on several anomaly detection
problems, it would be interesting to consider them.

This study will also be the first to compare the SVM, RF, SMOTE-SVM,
SMOTE-RF, OCSVM and IF together.

4 methods

4.1 Support Vector Machine

The distance between the soft margins is affected by regularisation hyper-
parameter C. A larger value of C will lead to a smaller margin, whereas a
smaller value will lead to a larger margin. One concern of having a small
margin is overfitting: the SVM will capture all the variance, or unique
features, in the training data but will not generalise to the test data (Hsu,
Chang, Lin, et al., 2003).

A kernel function maps all samples in a higher dimension. If the data
is linearly separable, a linear kernel function can be used. In case of a
nonlinear separable dataset, the dataset needs to be transformed using
different kernel functions (Suthaharan, 2016). A detailed description of
these kernel functions can be found in Appendix A (page 31). All non-
linear kernel functions use the value of hyperparameter gamma: the larger
its value, the more linear the decision boundary will be.

4.2 Random Forest

Breiman (2001) provides the following definition: "A random forest is a
classifier consisting of a collection of tree-structured classifiers {h(x, θ_k ), k
= 1, . . .} where the {θ_k } are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input
x". The most popular class is decided through a simple majority vote.

According to Probst, Wright, and Boulesteix (2019) the default parame-
ters of the RF usually provide good results. However, the authors argue
that if misclassification comes at high cost it is worth it to tune the hy-
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perparameters to see if performance increases. The first hyperparameter
is the number of trees in the forest: more trees usually results in better
performance (Probst & Boulesteix, 2017). The second is the maximum
depth of each tree. The third is the maximum amount of features used by
each tree: including more features may lead to better performance (Shreyas,
Akshata, Mahanand, Shagun, & Abhishek, 2016).

4.3 SMOTE

A new, synthetic, minority sample is created using Equation 1:

pi = xi + rand(0, 1) ∗ (mi − xi) (1)

For each minority sample, xi, the difference to its k nearest neigh-
bours of minority samples is calculated, with mi being a random nearest
neighbour of k (Chawla et al., 2002; Wang, Dai, Shen, & Xuan, 2021). The
difference between xi and mi is then multiplied by a random number,
uniformly distributed between 0 and 1. This is then added to the minority
sample. This will lead to a new, synthetic, sample along the line segment
of two minority samples.

4.4 One-Class Support Vector Machine

The goal of the OCSVM is to map all samples to feature space ϕ (Schölkopf
et al., 2001). This is done through using a kernel function, k, as shown in
Equation 2

k(x, y) = (ϕ(x) · ϕ(y)) (2)

A function, f, gives all training samples the value of +1 in the feature
space. Training samples are mapped corresponding to k, and then sepa-
rated from the origin space using a hyperplane with a maximum margin.
For each new sample x, f (x) will determine which side of the hyperplane
this sample will fall on. +1 indicates a regular sample, -1 indicates an
anomaly.

To separate the data from its origin space, the following quadratic
program is used:

min
w,ξ,ρ

1
2
∥w∥2 +

1
vℓ

n

∑
i=1

ξi − ρ (3)
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subject to : (w · ϕ(xi)) ≥ ρ − ξi, ξi ≥ 0 (4)

Where w is a normal weight vector, ρ is a bias parameter and ξi is a
nonzero slack variable that allows some anomalies to lie on the wrong
side on the hyperplane. ||w|| is used to maximise the margin. The cost
of misclassification is controlled by v: this regularisation parameter is the
upper bound on the fraction of margin errors and the lower bound of
the fraction of support vectors. ξi is penalised in the objective function,
however, so the decision function becomes as follows:

f (x) = sgn((w · ϕ(x)) – ρ) (5)

Using multipliers αi and βi ≥ 0, a Lagrangian function is formulated
as seen in Equation 6

L(w, ξ, ϕ, α, β) =
1
2
∥w∥2 +

1
vℓ

n

∑
i=1

ξi − ρ −
n

∑
i=1

αi((w · ϕ(xi))− ρ + ξi)−
n

∑
i=1

βiξi

(6)

The derivatives of variables w, ξ, ρ are minimised using Equation 6.
This allows for the creation of a dual problem in which all variables have
low dimensions. The xi that has a corresponding αi > 0 will be used as a
support vector. The addition of support vectors changes decision function
5 into a kernel expansion:

f (x) = sgn(
n

∑
i=1

αik(xi, x)− ρ (7)

Where ρ is defined as follows:

ρ = w · ϕ(xi)) = ∑
j

αjk(xj, xi) (8)

And multipliers α as follows:

n

∑
i=1

αi =0 ≤ αi ≤
1

vn
(9)

Summarising Equation 7 maps all samples to the feature space. Positive
samples are considered regular samples, negative samples are considered
anomalies.



5 experimental setup 12

4.5 Isolation Forest

Similar to a regular decision tree, samples are partitioned recursively until
all samples are isolated. Liu et al. (2008) found that the partitioning path
of trees is noticeably shorter for anomalies as there are fewer instances
of these in the data. Additionally, anomalies have distinguishable feature
values and are therefore more likely to be separated early. Therefore, when
a forest of these trees collectively produce short path lengths for some
particular samples, it is very likely that these instances are anomalies.

Liu et al. (2008) give the following definition for an Isolation Tree (IT):
"Let T be a node of an isolation tree. T is either an external-node with no
child, or an internal-node with one test and exactly two daughter nodes
(Tl ,Tr ). A test consists of an attribute q and a split value p such that the
test q < p divides data points into Tl and Tr".

An anomaly score is calculated from each IT using path length h(x),
where x is a sample from the dataset. The average path length of an IT is
calculated using Equation 10.

c(n) = 2H(n − 1)− (2(n − 1)/n) (10)

Where n is the number of external nodes, c(n) is the average of h(x)
given n. The anomaly score, s, of x is calculated using Equation 11. This
equation outputs a value between 0 and 1.

s(x, n) = 2 − E(h(x))
c(n)

(11)

Where E(h(x)) is the average of h(x) from a collection of ITs. If E(h(x)) is
(close to) 0 this indicates a short average path length, meaning the anomaly
score will be (close to) 1 and vice versa. If the anomaly score is 0.5, the
entire sample does not have a distinct anomaly.

There are two hyperparameters that can be tuned for the IF: the number
of trees, similar as for the RF described in Section 4.2, and the sub-sampling
size. According to Liu et al. (2008) sub-samples make the cluster of normal
training samples smaller, thus making it easier to identify anomalies.

5 experimental setup

Figure 1 illustrates the research methodology using a flowchart. The follow-
ing subsections provide in-depth information on the data preprocessing,
used methods and evaluation metrics. Appendix B (page 32) provides a
summary of the coding environment, including all used libraries.
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Figure 1: Flowchart illustrating the research methodology used in this thesis.

5.1 Dataset Description

Systems logs of one day in September were retrieved from an EPR from
one of the largest hospitals in the Netherlands. These system logs contain
information about actions users have performed in this EPR. The data
consists of 601,861 actions: 587,943 are regular workflow actions and
13,918, or 2.3%, are anomalies. The dataset is thus heavily imbalanced.
Anomalies are labelled as such based on four features, as seen in Table
1. If a feature value of an action is larger than the threshold, this action
is considered anomalous. An anomaly can have larger values than the
threshold on multiple features.

Table 1: The four features used in the dataset. Table contains the name of the
features, a description of the features and the threshold set to determine if a
sample is anomalous.

Feature Name Feature Description Threshold

Total time The time in seconds it took for an entire action to execute 15

Query time The time in seconds it took for the queries within an action to execute 6

Query count Total number of queries executed in an action 2,000

Query row count Total number of rows the queries retrieved from the database 20,000

5.2 Data Preprocessing

No values were missing in the dataset. The dataset contains two class labels:
action, indicating a regular action and detail, indicating an anomalous
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action that is causing performance problems. These labels are binarised as
most machine learning methods require numerical values for classification
(Dahouda & Joe, 2021). Regular actions are given the value of 0, anomalies
the value of 1.

The dataset was split into three different subsets for the implementation
of the methods: a training set consisting of 70% of the data, a validation set
consisting of 15%, and a test set consisting of the remaining 15%. Because
the dataset is imbalanced, stratified sampling is implemented to ensure
that the relative class frequencies are preserved in each set (Bennett &
Carvalho, 2010). All samples are shuffled in each set. The random state
was set to 196, ensuring reproducible data splits. The data is standardised
using the corresponding means and variances of all features to ensure
faster training times of the SVM and OCSVM (Ben-Hur, Ong, Sonnenburg,
Schölkopf, & Rätsch, 2008).

SMOTE was only applied to the training set to ensure the validation
and test stay independent. The random state was set to 196, to ensure each
sample will be the same if reproduced. The application of SMOTE results
in a balanced training set of 823,118 samples, consisting 50% out of regular
actions and 50% out of anomalies.

The one-class variations, OCSVM and IF, only use regular actions for
training. Anomalies are thus removed from the training set for these
models, but are included in the validation and test set for hyperparameter
tuning and evaluation. Regular actions are given the value of 1 and
anomalies the value of -1 to allow for evaluation,

5.3 Exploratory Data Analysis

Table 2: Descriptive statistics for regular actions, rounded at two decimals. Time
in seconds.

Condition

Total Time Query Time Query Count Query Row Count

Mean 0.98 0.27 103.00 736.67

Std 1.46 0.64 226.74 1932.58

Min 0.00 0.00 0.00 0.00

Median 0.35 0.03 10.00 23.00

Max 15.00 6.00 2000.00 19995.00

Exploratory data analysis was performed only on the training set,
consisting of 421,439 actions, to ensure the validation and test set stay
independent and no information is inferred from them. Out of these
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Table 3: Descriptive statistics for anomalies, rounded at two decimals. Time in
seconds.

Condition

Total Time Query Time Query Count Query Row Count

Mean 11.92 8.13 1770.02 18822.56

Std 19.60 15.51 1952.75 39985.83

Min 0.56 0.00 0.00 0.00

Median 8.96 5.57 1671.00 6564.00

Max 1081.97 612.66 85878.00 2434774.00

actions 9,743 are anomalies, or 2.3%. This means that stratification of the
labels worked as intended.

Descriptive statistics for the regular actions in the training set can be
inferred from Table 2. The maximum values of the features do not pass the
thresholds as described in Section 5.1. The minimum value of total time
is 0, which is rare but possible: an action could complete instantaneously.
Regarding the features concerning queries, it is possible that an action is
only using CPU resources and is not retrieving anything from a database.
From the median and mean can be inferred that all features generally
have low values. The standard deviation suggests that there is not much
variability around the time features, more so for the count features.

Table 3 contains descriptive statistics for anomalous actions in the
training set. The minimum values are zero, with the exception of total
time which has the minimum value of around half a second. The mean
and median indicate that overall values are larger when compared to the
descriptive statistics of regular actions. The standard deviation indicates
that there is a reasonable amount of variability in the data for all features.

Figure 2 plots all features in the dataset against one another. From this
plot can be inferred that the features duration and total query duration
have a strong correlation for anomalous actions: if duration increases, total
query duration increases and contrariwise. Other features do not seem
to have a clear correlation between them. From this figure can also be
inferred that regular actions concentrate around smaller feature values,
while anomalous actions take larger values.

The application of SMOTE on the training set resulted in 823,118 ac-
tions in the dataset, a 50% split of actions and anomalies. Based on the
descriptive statistics (found in Appendix C, page 33) can be inferred that
the distribution of the anomalies differs very little from the dataset used
for the SVM, RF and its one-class variations.
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Figure 2: Pairplot visualising the relationship between the four features in the
data. A subset of 10,000 random samples were taken from the training set to
guarantee legibility of the plot. The diagonal plots the Kernel Density Estimates
of the features, corresponding to the density function of each feature.

5.4 Hyperparameter settings

For each method, a grid search function is defined which tests all hyper-
parameter combinations on the validation data (Yu & Zhu, 2020). The
hyperparameter combination with the highest F1 score will be used on the
test data. The F1 score of each combination for each model can be found in
Appendix D (page 34).

5.4.1 Support Vector Machine

All four kernel methods of the SVM will be tested. These are the linear,
Radial Basis Function, polynomial and sigmoid function. The value of
C and gamma need to be tuned as well. As there is no similar research
available, common used values of these hyperparameters will be tested on
the validation set (Hsu et al., 2003). These are the gamma values of 0.1,
0.01, 0.001 and C values of 0.1, 1, 10 and 100.
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The final model uses a C value of 100, gamma value of 0.1 and Radial
Basis Function as the kernel function.

5.4.2 Random Forest

Two hyperparameters are tuned, using the research by Shreyas et al. (2016)
as a baseline. The number of trees is increased in steps of 100, starting at
100 and ending at 500. The default value of maximum features used is set
to two, this number is usually increased in steps of two. As there are four
features in the dataset, the values of two and four were tested. Maximum
depth will not be tuned for this model, as there are only four features in
the dataset: the tree will expand until its nodes are pure.

The final model uses 200 trees and all four features.

5.4.3 One-Class Support Vector Machine

The same hyperparameters will be tested for the OCSVM as for the SVM,
explained in Section 5.4.1. Instead of C, hyperparameter v as explained
in Section 4.4 will be tuned. There is no common strategy for tuning the
value of v, but its value has to be between 0 and 1. The work by Eude and
Chang (2018) is followed and the value is increased in a step size of 0.02,
starting at 0.01 and ending at 0.09.

The final model uses a v value of 0.01, gamma value of 0.001 and Radial
Basis Function as the kernel function.

5.4.4 Isolation Forest

The number of trees will be increased similarly as done for the RF, described
in Section 5.4.2. The creators of the model argue that 256 is the minimum
number of samples needed to accurately inform the model. This number is
increased through the power of two until the maximum number of samples
in the training set is reached. According to the authors, sub-samples make
the cluster of normal training samples smaller, thus making it easier to
identify anomalies. However, the defined grid-search found that using all
samples caused the best performance.

The final model therefore uses all samples in the dataset, paired with
100 trees.

5.5 Evaluation Method

Recall will be used as a performance metric (Powers, 2011). Recall is
the fraction of positives that are correctly classified: it measures what
proportion of true anomalies was identified as such. Precision will be used
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as a metric as well. The precision is the fraction of true positives divided
by the total number of positive prediction: it measures what proportion of
identified anomalies are true anomalies.

The F1 score, the harmonic mean between precision and recall, will
be used to assess the overall performance of each model (Powers, 2011).
Confusion matrices are also generated for each model, these will give
insight on how the models confuse both classes (Susmaga, 2004).

6 results

6.1 Performance of Each Model

In this section, classification performance of all models on the test dataset
will be described. Table 4 contains the evaluation scores of all models. The
recall scores of every model were (near-)perfect. The SMOTE variations
of the SVM and RF did not outperform the SVM and RF. The IF achieved
a perfect recall score like the RF. The precision scores of the OCSVM and
IF are lower than the other models, resulting in a lower F1 score for these
models. The IF was the worst performing model overall based on precision
and F1 score. Based on recall, the OCSVM is the worst performing model.
The RF was the best performing model, achieving a perfect score on all
evaluation metrics.

The confusion matrices of the models (see Figure 3 up to and including
Figure 8) show that the SMOTE-SVM, OCSVM and IF sometimes pre-
dicted regular actions as anomalies, or false positives, explaining the lower
precision scores and F1 scores of these models.

Table 4: Performance of all models on the test data using the evaluation metrics
of precision, recall and F1 score. Rounded at three decimals. SMOTE = Synthetic
Minority Over-sampling Technique. Highest scores in bold.

Models Precision Recall F1 Score

Support Vector Machine 0.995 0.989 0.992

Random Forest 1.000 1.000 1.000
SMOTE-Support Vector Machine 0.889 1.000 0.941

SMOTE-Random Forest 0.999 0.999 0.999

One-Class Support Vector Machine 0.779 0.989 0.872

Isolation Forest 0.362 1.000 0.531
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Figure 3: Confusion matrix of the
Support Vector Machine.

Figure 4: Confusion matrix of the
Random Forest.

Figure 5: Confusion matrix of the
Synthetic Minority Over-Sampling
Method-Support Vector Machine.

Figure 6: Confusion matrix of the
Synthetic Minority Over-Sampling
Method-Random Forest.

Figure 7: Confusion matrix of the
One Class-Support Vector Machine.

Figure 8: Confusion matrix of the
Isolation Forest.

6.2 False Positives Detected by Each Model

Each model, with exception of the RF, classified false positives in the
dataset (see Appendix E, page 36). Based on manual analysis and the
thresholds set as described in Section 5.1, it was concluded that none of
the false positives were actually anomalies. For the SVM, SMOTE-SVM
and SMOTE-RF the false positives were very close to at least one of the
thresholds. The OCSVM and IF classified some false positives that had a
feature value close to one of the thresholds, but also classified some false
positives that were not as close.
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7 discussion

This study aims to determine whether oversampling or the one-class
variations affect the performance of the SVM and RF on anomaly detection
using the systems logs of an EPR. It measures performance using the
evaluation metrics precision, recall and F1 score.

The RF was the best performing model, achieving perfect scores on
all metrics. Oversampling, done through SMOTE, achieved a near-perfect
performance for the RF. The one-class variation of the RF, the IF, achieved
perfect recall, meaning it was able to identify all anomalies in the data
as such. However, the IF classified a large amount of regular actions as
anomalies, resulting in a low precision value and thus a lower overall score.

The SVM achieved a high performance overall, but was unable to
identify all anomalies as such. Oversampling did classify all anomalies
correctly, but classified more regular actions as anomalies as well. This
resulted in a lower precision value and a lower performance overall. The
one-class variation of the SVM, the OCSVM, failed to outperform the SVM.

Overall, oversampling and the one-class variations did not outperform
the SVM and RF based on the F1 score. However, SMOTE-SVM was able
to detect all anomalies in the data, something the SVM was unable to do.
The IF was also able to identify all anomalies as such.

7.1 Interpretation of Results

The first sub-question was established to see how well the SVM and RF
would perform on this anomaly detection problem. The SVM performed
well on average, obtaining a near-perfect score for all evaluation metrics.
The SVM has a reputation of performing well on imbalanced data and
different anomaly detection problems (Eltanbouly et al., 2020; Q. Fan et
al., 2017; Omar et al., 2013). However, Omar et al. (2013) argue that proper
hyperparameter tuning is necessary for obtaining good results. This was
established through an extensive grid-search. The RF also has a reputation
of performing well on imbalanced data and several anomaly detection
problems (Brown & Mues, 2012; Gulenko et al., 2016; Luo et al., 2019;
Pachauri & Sharma, 2015). When the SVM and RF are compared on
anomaly detection problems using system logs the general results are that
the RF outperforms the SVM, which is in line with the findings of this
study (Abraham et al., 2018; Al Ali et al., 2017; Noh & Basri, 2021; Timčenko
& Gajin, 2018). An explanation could be that the SVM has a tendency to
bias towards the negative class (Q. Fan et al., 2017).

The second sub-question was established to detect how oversampling,
specifically SMOTE, would affect the performance of the SVM and RF. This
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study found that the SMOTE-SVM had a perfect recall, unlike the SVM,
but generally performed worse than the SVM as it classified more regular
actions as anomalies. According to Cervantes et al. (2020), SMOTE is a
solution when the SVM has a tendency to bias towards the majority class.
This may explain why the SMOTE-SVM had a better recall. Mathew et al.
(2017) found that the regular SVM performs better on some imbalanced
datasets, which is in line with the findings of this study. Regarding anomaly
detection using system logs, Alfrhan et al. (2020) found that SMOTE-SVM
outperformed the SVM, which contradicts the findings of this study. The
SMOTE-RF did not classify each instance perfectly like the RF, but did have
near-perfect scores on all evaluation metrics. Studies using system logs for
anomaly detection found that the SMOTE-RF has a better performance (Tan
et al., 2019), while others find that a regular RF performs better (Tesfahun
& Bhaskari, 2013). Alraddadi et al. (2021) argued that both the SVM and
RF would benefit in performance when introducing SMOTE, but this study
found the opposite to be true when measured in F1 scores. When classes
overlap each other, SMOTE will not increase performance (Fernández et
al., 2018). An explanation could be that there are many regular actions in
the test set that have feature values near the threshold of being anomalous
as defined in Section 5.1, but are not actual anomalies. Through manual
analysis could be inferred that the SMOTE-SVM and SMOTE-RF classified
regular actions as anomalies with values near the threshold.

The third sub-question was established to detect how the one-class
variations of the SVM and RF, OCSVM and IF, would perform on this
problem. The OCSVM failed to outperform the SVM. The IF had a perfect
recall score, like the regular RF, but had a low precision score resulting
in a low F1 score. This contradicts the work by Bellinger et al. (2012),
whom argue that the performance of one-class classifiers are stable with
high imbalance, whereas the performance of binary classifiers decreases.
There were no studies available which test the OCSVM and IF on anomaly
detection problems using system logs, but studies on imbalanced datasets
and other anomaly detection problems found that the OCSVM and IF
outperform its binary variants (S. Fan et al., 2017; Hejazi & Singh, 2013; Liu
et al., 2008). The findings of this study contradict these previous studies.

According to Aggarwal (2017) & Han et al. (2022), one important risk of
using supervised methods is that they cannot detect anomalies in the data
that have not been labelled as such but are considered anomalies. Therefore,
regular actions that were classified as anomalies, or false positives, were
analysed manually guided by the thresholds defined in Section 5.1. Possible
anomalies that were missed could then be identified. However, it was found
that none of the false positives were actual anomalies. All identified false
positives had at least one feature value that was close to its threshold for
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the SVM, SMOTE-SVM and SMOTE-RF. The OCSVM and IF identified
some false positives that had one feature value close to its threshold, but
also some that were not close to a threshold. Interestingly, the RF was
the only model that did not classify any false positives. This could be
because it has trouble detecting novel anomalies that are not included in
the training set, as argued by Eltanbouly et al. (2020).

Summarising, the RF, SMOTE-SVM and IF were the only models able
to identify each anomaly in the data. The RF has proven to be the best
performing model, classifying all samples in the data correctly. Therefore,
the RF is an appropriate choice for anomaly detection to prevent failure
prediction of an EPR. Even though the other models did not detect any
actual anomalies, the RF may not be a good choice if the goal is to identify
anomalies that were not labelled as such in the data.

7.2 Limitations and Recommendations for Future Research

The OCSVM and IF calculate anomaly scores for each sample identified
as anomalies. As such, in this study, all samples with an anomaly score
were classified as anomalies. It was beyond the scope of this study to
consider thresholds for these anomaly scores. When using these models in
an unsupervised manner as these were originally designed to do, one could
disregard samples with a low anomaly score and only focus on anomalies
with a high score. Herein lies an opportunity for future research, which
will likely lessen the amount of false positives generated by the one-class
variations.

As mentioned by Aggarwal (2017); Han et al. (2022), a disadvantage
of using supervised methods for anomaly detection is that they cannot
detect anomalies in the data that have not been labelled as such but are
actually considered anomalies. This thesis used two unsupervised methods
specifically designed for detecting anomalies Japkowicz et al. (1995) as su-
pervised methods. Through a manual analysis of false positives, potential
anomalies that were flagged by each model were reviewed. However, it
turned out that these are not actually considered anomalies as they did not
cross the thresholds discussed in Section 5.1. It is beyond the scope of this
study to add more features to the dataset which could possibly indicate if
an action is anomalous and causes performance problems. Herein lies an
interesting opportunity for future research. If labels are known, the SVM
and SMOTE-SVM would be interesting to consider based on the results
of this study. The SVM cannot be applied if the labels are unknown, but
it provides an opportunity to test unsupervised classifiers to detect these
anomalies. Based on the results of this study, the IF would be a favourable
model to test.
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The reliability of these results is impacted by the clear set of thresholds
used to label an anomaly. Next to making this task less challenging, a
different set of thresholds will lead to a different set of anomalies. For
example, it is possible that the thresholds defined now are not accurate in
the future. This means that the results of this study are biased. Additionally,
it is possible that there are anomalies in the dataset that do not fit these
thresholds but might actually be anomalies. There lies a possibility in
future research to let go of the defined thresholds and use unsupervised
methods to detect anomalies. These methods can continuously define
thresholds based on current data, eliminating bias.

Finally, this study is the first to test the proposed models on anomaly
detection of performance using the system logs of an EPR. Thus, future
research is needed to establish whether the results of this study are general-
isable. As there were no previous studies available which used the system
logs of an EPR, most studies in the related work section (Section 3) focused
on different areas of anomaly detection using a similar data format. As this
study is also the first to compare the SVM, RF, SMOTE-SVM, SMOTE-RF,
OCSVM and IF together, there lies an interesting possibility in testing if
the results are reproducible in other areas of research. An example could
be network intrusion detection, as Section 3 indicates that this is a common
research area for anomaly detection.

8 conclusion

This thesis aimed to determine whether oversampling or the one-class
variations affect the performance of the SVM and RF on anomaly detection
using the systems logs of an EPR. This study is the first to test machine
learning methods on detecting anomalies for failure prediction using the
system logs of an EPR. This thesis contributes to existing research by being
the first to compare the SVM, RF, SMOTE-SVM, SMOTE-RF, OCSVM and
IF on an anomaly detection problem. Performance was measured using
the evaluation metrics precision, recall and F1 score. The results of this
study find that, contrary to previous studies on anomaly detection, the
SVM and RF outperform the other models on this specific problem. The
RF was able to correctly classify all samples in the data. The SMOTE-SVM
was able to identify all anomalies in the data, however, something the SVM
was unable to. Overall, oversampling and the one-class variations could
not outperform the SVM and RF.

The findings of this thesis help stakeholders in hospitals to assess which
method is efficient in detecting performance problems to avoid failure of
an EPR. Using this information stakeholders can take fast and adequate
measures, ensuring that patients have access to proper, safe and necessary
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care. Failure detection avoids the disruption of the workflow in hospitals,
benefiting the staff of the hospital as well. The findings help researchers in
academic context to assess which method is efficient in correctly classifying
anomalies using the system logs of an EPR.
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appendix a

For linear separable data, the kernel function would be as seen in Equation
12. This function calculates the dot product of two datapoints.

K(xi, xj) = xT
i xj (12)

The most common kernel function is Radial Basis Function, seen in
Equation 13. This function computes the similarity between two datapoints.

K(xi, xj) = exp(−γ||xi − xj||)2, γ > 0 (13)

This function calculates the squared euclidean distance between two sam-
ples.

Another kernel function is the polynomial function, seen in Equation
14.

K(xi, xj) = (γxT
i xj + r)d, γ > 0 (14)

d is the polynomial degree used, r is the independent coefficient term
used in the function.

Another kernel function is the sigmoid function, seen in Equation 15.
This function uses the dot product of the vectors of x and y, and uses an
independent coefficient term.

K(xi, xj) = tanh(γxT
i xj + r) (15)

The output is put through the hyperbolic tangent function.
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appendix b

Python (version 3.8.11) is used as the programming language in this thesis.
The code is written in Jupyter Notebooks (Kluyver et al., 2016). The code
was executed on a personal computer with an Intel Core i5-7300HQ CPU.

Table B1 provides an overview of the used libraries, their version and a
short description.

Table B1: Overview of used libraries, including version, in alphabetical order.

Library Description

Imbalanced-learn (0.6.0)
(Lemaître, Nogueira, &
Aridas, 2017)

Used for applying Synthetic Minority Over-
sampling to the dataset

Numpy (1.20.3) (Oliphant,
2006)

Used for working with arrays.

Pandas (1.3.3) (McKinney,
2011)

Used for processing the dataset

Seaborn (0.11.2) (Bisong,
2019)

Used to visualise the pairplot and confusion
matrices.

Scikit-learn (1.0.0) (Hao &
Ho, 2019)

Used to split the data into train, validation
and test sets. Used to binarise labels and
standardise data. Used for designing and
applying all models on the data. This library
was also used to calculate the recall, precision
and F1 scores and to generate the confusion
matrices.
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appendix c

Table C1: Descriptive statistics for anomalies in the dataset used for SMOTE,
rounded at two decimals. Time in seconds.

Condition

Total Time Query Time Query Count Query Row Count

Mean 11.83 8.09 1756.19 18608.77

Std 17.41 14.65 1758.57 34150.13

Min 0.56 0.00 0.00 0.00

25% 6.83 2.26 539.00 3692.00

50% 8.96 5.55 1676.00 6404.00

75% 10.72 7.16 2210.00 24382.00

Max 1081.97 612.66 85878.00 2434774.00
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appendix d

Table D1: F1 score of each hyperparameter combination of the Support Vector
Machine evaluated on the validation set. Highest F1 score in bold. Note: the linear
kernel function does not use the gamma hyperparameter.

Gamma

0.1 0.01 0.001

C C C

Kernel 0.1 1 10 100 0.1 1 10 100 0.1 1 10 100

Polynomial 0.969 0.982 0.983 0.983 0.828 0.892 0.949 0.969 0.099 0.334 0.501 0.828

Radial Basis Function 0.969 0.983 0.989 0.991 0.908 0.947 0.967 0.978 0.853 0.889 0.915 0.947

Sigmoid 0.068 0.068 0.068 0.068 0.733 0.724 0.723 0.722 0.842 0.870 0.857 0.856

Linear 0.896 0.897 0.897 0.897 0.896 0.897 0.897 0.897 0.896 0.897 0.897 0.897

Table D2: F1 score, rounded at 4 decimals, of each hyperparameter combination
of the Random Forest evaluated on the validation set. Highest F1 score in bold.

Number of Features

Number of Trees 2 4

100 0.9998 0.9998

200 0.9998 1.000
300 0.9998 0.9998

400 0.9998 0.9998

500 0.9998 0.9998

Table D3: F1 score of each hyperparameter combination of the One-Class Support
Vector Machine evaluated on the validation set. Highest F1 score in bold. Note:
the linear kernel function does not use the gamma hyperparameter.

Kernel

Polynomial Radial Basis Function Sigmoid Linear

Gamma Gamma Gamma Gamma

v 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

0.01 0.000 0.000 0.000 0.273 0.276 0.872 0.208 0.060 0.574 0.004 0.004 0.004

0.03 0.000 0.015 0.000 0.252 0.716 0.721 0.126 0.650 0.518 0.026 0.026 0.026

0.05 0.000 0.001 0.000 0.238 0.624 0.630 0.420 0.624 0.036 0.662 0.662 0.662

0.07 0.000 0.000 0.000 0.226 0.565 0.570 0.394 0.333 0.018 0.389 0.389 0.389

0.09 0.007 0.000 0.000 0.473 0.519 0.525 0.346 0.090 0.041 0.122 0.122 0.122
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Table D4: F1 score, rounded at 4 decimals, of each hyperparameter combination
of the Isolation Forest evaluated on the validation set. Highest F1 score in bold.

Number of Trees

Sub-Sample Size 100 200 300 400 500

256 0.249 0.269 0.255 0.246 0.259

512 0.305 0.297 0.292 0.288 0.292

1024 0.347 0.330 0.342 0.337 0.335

2048 0.374 0.363 0.362 0.366 0.369

4096 0.411 0.373 0.387 0.385 0.388

8192 0.388 0.406 0.413 0.407 0.406

16384 0.474 0.451 0.447 0.446 0.441

32768 0.474 0.455 0.460 0.460 0.467

65536 0.500 0.492 0.485 0.488 0.489

131072 0.490 0.508 0.501 0.496 0.498

262144 0.530 0.530 0.520 0.522 0.517

411559 0.539 0.532 0.526 0.524 0.531
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appendix e

Table E1: False positives classified by the Support Vector Machine. Time in
seconds, rounded at three decimals.

Duration Total Query Duration Query Count Total Query Row Count

14.100 5.415 1473 19809

8.374 5.944 1997 3706

8.346 5.995 1986 3694

8.351 5.981 1997 3716

7.684 5.642 1937 7423

8.358 6.000 1997 3728

6.634 5.975 180 261

8.309 5.920 1991 3696

7.842 5.994 773 4361

6.412 5.464 885 18737
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Table E2: First 50 false positives classified by the Synthetic Minority Over-Sampling
Method-Support Vector Machine. Time in seconds, rounded at three decimals.

Duration Total Query Duration Query Count Total Query Row Count

2.291 1.233 92 19623

5.638 1.223 756 19550

11.578 5.244 797 3112

1.557 0.536 257 19686

11.237 5.484 778 2909

8.111 1.960 1113 18838

6.499 2.102 1263 19402

8.216 5.829 1988 3687

2.188 1.601 422 19801

2.477 1.215 89 19660

11.692 5.285 764 2866

10.605 4.980 1967 6804

7.846 5.469 1991 3696

8.121 2.081 1695 18271

6.251 2.975 1955 3638

5.075 1.786 512 19621

4.898 1.093 524 19511

14.842 0.061 31 46

4.036 1.688 1031 19652

3.885 1.087 872 19957

7.791 5.424 1982 3685

4.550 2.245 1295 18705

4.481 3.656 82 18622

10.41 5.415 1473 19809

5.359 1.538 1336 19833

8.601 5.465 1789 3909

4.134 1.225 882 19962

7.890 5.465 1997 3710

7.974 5.627 1991 3696

8.374 5.944 1997 3706

11.478 5.482 798 3152

3.965 1.378 1023 19767

2.164 1.204 82 19680

7.986 5.625 1917 3635

8.017 5.566 1991 3698

7.851 5.482 1988 3687

5.166 2.808 1966 3152

8.346 5.995 1986 3694

4.547 1.642 812 19339

7.840 5.440 1991 3694

4.157 1.470 985 19814

7.288 2.508 1901 17880

6.234 5.846 194 212

6.451 3.745 1760 18979

7.774 5.394 1986 3687

8.049 5.643 1997 3710

1.993 1.485 222 19988

8.196 5.629 1991 3700
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Table E3: False positives classified by the Synthetic Minority Over-Sampling
Method-Random Forest. Time in seconds, rounded at three decimals.

Duration Total Query Duration Query Count Total Query Row Count

10.410 5.415 1473 19809

14.896 1.162 720 3271

8.722 5.891 1013 2404
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Table E4: First 50 false positives classified by the One-Class Support Vector
Machine. Time in seconds, rounded at three decimals.

Duration Total Query Duration Query Count Total Query Row Count

3.375 1.898 1677 6816

7.486 5.546 43 54

9.143 2.515 1880 8949

2.291 1.233 92 19623

3.260 0.461 205 19335

2.908 1.311 62 17975

11.578 5.244 797 3112

1.527 0.91 38 15706

1.557 0.536 257 19686

9.709 4.768 1850 6324

3.620 1.848 1713 2456

11.982 0.021 10 8

11.237 5.484 778 2909

5.807 2.121 1651 6900

8.872 4.369 1245 12589

1.229 0.888 35 15651

0.482 0.132 42 13867

8.111 1.960 1113 18838

13.602 0.057 28 60

6.848 5.428 60 99

2.181 1.241 60 18211

6.499 2.102 1263 19402

8.216 5.829 1988 3687

2.477 1.215 89 19660

6.683 2.305 1935 7309

11.692 5.285 764 2866

2.842 1.370 120 18151

10.605 4.98 1967 6804

1.263 0.928 34 15669

7.846 5.469 1991 3696

0.547 0.146 6 15041

11.29 2.473 1468 5710

3.694 1.778 1836 4495

8.121 2.081 1695 18271

9.121 0.038 16 11

9.024 2.742 1374 11703

6.375 2.399 1572 13757

2.088 1.198 74 18008

2.306 0.000 109 19016

7.692 2.181 1463 14159

3.736 2.700 1694 2966

1.465 1.164 64 17936

6.251 2.975 1955 3638

4.419 2.003 1900 4983

1.151 0.346 61 16006

7.376 3.854 1260 16012

14.842 0.000 31 46

1.522 0.492 329 18725

1.443 1.195 128 18150

8.509 4.265 1924 7001
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Table E5: First 50 false positives classified by the Isolation Forest. Time in seconds,
rounded at three decimals.

Duration Total Query Duration Query Count Total Query Row Count

8.386 1.601 1184 4667

5.412 1.64 1353 15383

3.375 1.898 1677 6816

3.632 1.433 1554 10038

0.979 0.174 173 8050

5.251 3.013 798 10241

2.33 0.964 571 13785

9.997 4.957 681 3064

4.403 1.303 990 4394

9.125 1.491 1086 912

7.486 5.546 43 54

9.143 2.515 1880 8949

2.723 1.074 461 13388

0.955 0.622 470 5502

0.968 0.337 158 8693

2.174 0.996 617 8396

2.291 1.233 92 19623

6.203 0.752 274 7058

7.715 1.121 330 7565

7.588 1.283 648 18813

5.686 1.461 449 7149

7.164 2.558 345 7519

3.26 0.461 205 19335

4.565 2.875 531 3571

2.908 1.311 62 17975

6.792 1.422 830 4007

4.928 3.545 220 3354

3.538 2.882 174 3049

5.638 1.223 756 19550

2.682 1 530 8381

11.578 5.244 797 3112

0.922 0.579 488 5514

7.663 1.354 491 10901

5.201 2.97 1477 2813

6.764 4.366 712 3336

6.071 1.661 764 4361

1.567 0.171 58 10952

3.478 2.674 978 2556

1.557 0.536 257 19686

2.625 1.382 1091 3653

6.984 2.089 1215 7132

4.411 1.497 1393 6362

5.32 3.077 583 4791

9.947 1.033 603 2731

0.966 0.328 139 9227

6.252 1.333 726 8224

9.709 4.768 1850 6324

3.237 1.481 1235 1697

3.62 1.848 1713 2456

11.982 2.01 10 8
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