
T O W H AT E X T E N T C A N A G R A P H
C O N V O L U T I O N A L N E U R A L

N E T W O R K B E U S E D T O P R E D I C T
PA S S E N G E R I N F L O W ?

T E N Z I N R I N C H E N D O R J E E

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university

student number

2061555

committee

ir. Federico Zamberlan
dr. Boris Čule

location

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

date

January 20, 2023

acknowledgments

This thesis has been a long time coming and has definitely put me to the
test. It has been a journey of learning about data science, but even more
so about having to learn myself. It is not without the support, guidance
and enthusiasm of my supervisor Federico Zamberlan that I could have
finished my thesis. His dedication to his students is unmatched, better
supervisors are hard to come by. I would also like to thank my family
for being there for me, especially my parents but also my sisters.

T O W H AT E X T E N T C A N A G R A P H
C O N V O L U T I O N A L N E U R A L

N E T W O R K B E U S E D T O P R E D I C T
PA S S E N G E R I N F L O W ?

tenzin rinchen dorjee

Abstract

As cities grow bigger and denser, the need for sustainable urban
planning has increased with climate change already impacting urban
life. A well-functioning public transport network is fundamental in
a sustainable city, minimising congestion and reducing emissions.
Correctly forecasting public transport demand is thus a socially rele-
vant task. Traditional methods have a hard time addressing both the
spatial and temporal nature of this problem, often dealing with the
two in isolation instead of simultaneously. This paper focuses on the
recent rise of Graph Neural Networks, which are neural networks
adapted to handle graph-like data structures natively. GNNs cur-
rently achieve state-of-the-art performances on various prediction and
classification tasks, among which in the traffic network domain. In
this paper a Graph Convolutional Network (GCN) has been trained
on bus passenger inflow data in Montevideo (Uruguay), spanning a
period of five months with open data published by the bus operating
companies (STM). Comparing the results with the established gra-
dient boosted tree ensemble method XGBoost shows that the GCN
outperforms in almost every metric. GCN performs better in the
short term and drops off only a little when using a bigger prediction
window, whilst the performance of XGBoost decreases a lot more in
the long term. Comparatively GCN also tends to have less extreme
prediction errors.

1 introduction

Cities are growing at a rapid rate, with an increasing world population
concentrating themselves more densely than before (Duranton & Puga,
2014). Consequently, the number of urban road users have risen, whilst
space is limited in the city. At the same time, the world is dealing with

1

1 introduction 2

a severe climate change crisis. Climate change is one of the biggest chal-
lenges to current society, affecting multiple systems in transition such
as ‘energy; land, ocean, coastal and freshwater ecosystems; urban, rural
and infrastructure; and industry and society’ (IPCC, 2022). In the same
report by IPCC a growing realisation is established that these systems are
very much interlinked and must all be tackled when trying to slow down
climate change and when trying to minimise its impact. With these two
important trends in mind, cities are consciously starting to implement
sustainability efforts in their urban planning (Wamsler, Brink, & Rivera,
2013). A common trait of these efforts is the focus on reducing (future)
congestion, as congestion makes for an increase in harmful emissions such
as carbon dioxide whilst also increasing travel times for inhabitants. The
encouragement of a modal shift towards bicycles and public transport
is often central in these plans combatting congestion (Miller, de Barros,
Kattan, & Wirasinghe, 2016).

A well-functioning public transport network is fundamental in a sustain-
able city (Miller et al., 2016). However, a popularly used public transport
network can also become the victim of congestion issues if poorly planned.
As such, poorly planned public transport becomes a waste of public funds,
harming the city’s sustainability efforts and clogging other transport modes
(Miller et al., 2016). In order to plan a public transport network properly,
demand must be forecasted accordingly – stations forecasted to be in high
demand can then be serviced more often. Ensuring a proper demand
forecast for the public transport network is thus socially relevant. The
increase in available data over the past years allows for new planning
instruments to arise and for improvements to existing methods to help
plan a public transport network. This recent increase in data availability is
dubbed as the Digital Revolution (Allam, 2020) and is illustrated by the
countless of sensors embedded in the urban environment such as road
sensors. It gives way for new data-based techniques and provides, along
with pressing challenges for the urban environment, the backdrop for this
research.

Traffic demand forecasting is both a problem of temporal and spatial
nature (Miglani & Kumar, 2019). In particular, predicting demand in traffic
networks is a graph problem. Graphs are a way of representing non-
Euclidean data as a structure that depict existing relationships between
objects as edges between nodes respectively. Unlike traditional machine
learning (ML) methods, graph neural networks (GNNs) are designed to
fully capture the associations a graph structure entails. In short, this is
done by a ‘message passing scheme that propagates information of nodes
to its neighbours’ (Munikoti, Agarwal, Das, Halappanavar, & Natarajan,
2022). However, due to its relatively recent introduction, comparatively not

2 literature review 3

much literature exists on the application of GNNs on traffic flow prediction
for public transport networks.

Current literature about GNN application on bus network data mostly
focuses on Europe and Asia, whilst having significantly less data than four
months’ worth (Han et al., 2019; J. Zhang, Chen, Guo, & Li, 2020). Previous
research on Montevideo’s public transport networks only incorporated
non-ML spatiotemporal analysis (Massobrio & Nesmachnow, 2020), high-
lighting the gap in literature this research aims to fill. The main research
question flows out of the aforementioned gap in literature:

To what extent can a Graph Convolutional Neural Network be used
to predict passenger inflow?

In order to answer this question, the following two sub research questions
are formulated:

RQ1 To what extent are there differences between short term prediction perfor-
mance vs long term prediction performance of Graph Convolutional Neural
Network?

RQ2 How does the prediction performance of a Graph Convolutional Neural
Network compare to a conventional shallow learning model like a gradient
boosted tree ensemble method (XGBoost)?

These questions will be answered using a dataset spanning a 5-month
period, from February 2022 until June 2022. The dataset covers transactional
data of the unified public bus transport system in Montevideo, Uruguay
and is published by the Metropolitan Transportation System (STM) of
Montevideo (Sistema de Transporte Metropolitano, 2022).

2 literature review

2.1 The domain of traffic flow prediction

The issue of predicting passenger inflow on public transport networks can
be seen as a classic time series analysis regression problem (Miglani &
Kumar, 2019). Time series data is a set of data points that are collected
over a period of time. This makes it different from other data, which is
usually a single snapshot of data from a particular moment in time. Public
transport usage is often-times habitual; an employee taking the bus and
train will likely do so every working day at similar, set times depending on
his schedule. These patterns can be discovered when working with time
series data, which can allow for historical lags to have predictive power.

2 literature review 4

Additionally, traffic flow prediction is also very much a spatial problem
(Barthélemy, Barrat, & Vespignani, 2007). Traffic flows are inherently spatial
of nature as traffic quite literally flows from one place to another. The flow
is subject to a variety of geographical factors such as the road layout, the
population density and topography: a trip will take longer if there is no
direct road to a destination up in the mountains. Traffic flow data from
places that have similar spatial conditions are likely to have predictive
power for the flow at hand (Lan et al., 2022).

The problem is both spatial and temporal, but these two sides do not
exist in isolation of each other. These two dimensions are at play at the
same time and interact with each other. For example, if an accident occurs
and causes congestion at a main road, the connected side rides are likely
to be more congested too until a large enough period of time has passed
in which the accident has been dealt with. Combining these dimensions
allow for such patterns to be extracted and exploited, where neighbouring
historical lags are of predictive value too. Finding these patterns is key to
an accurate prediction, but with limited domain knowledge it can become
hard for traffic engineers to find spatial and temporal correlations for huge
traffic datasets (Miglani & Kumar, 2019).

Moreover, traffic flow prediction has become increasingly data-driven,
as sensors have become more wide-spread in the physical environment (Ma,
Sheng, Jin, Ma, & Gao, 2018). An example of such traffic sensors are sensors
installed along roads in The Netherlands by the Dutch National Warehouse
(Melnikov, Krzhizhanovskaya, Boukhanovsky, & Sloot, 2015). These sensors
register cars and are capturing continuous data on speed, intensity and
travel time. However, the rise in available data is not just limited to
these sensors that might fit the more traditional idea of capturing data.
Smartphone data, loop detectors, social media sentiment, local weather
forecasts and bus transaction systems are all instances of other ways that
are enabled by the emergence of ‘smart cities’ (Jiang & Luo, 2022). It is this
abundance of data created by the extensive adoption of both conventional
and unconventional data sources that has propelled the data-focused shift
in traffic flow analysis.

2.2 Classic statistical models and shallow learning models

Time series forecasting has traditionally been a topic of interest in the field
of statistics and econometrics. Simple methods (such as seasonal naïve and
simple exponential smoothing) and more intricate methods such as ETS
and ARIMA are well-known and well-researched by now (Hewamalage,
Bergmeir, & Bandara, 2021). This is not without reason, traditional univari-
ate methods have long outperformed other methods at many forecasting

2 literature review 5

competitions. A key advantage of these traditional univariate methods
is that they perform well without the use of a lot of training data, whilst
also requiring less parameters to be set (Bandara, Bergmeir, & Smyl, 2020).
More sophisticated machine learning algorithms find individual time series
often to be too short to be modelled, whereas the simpler, parametric mod-
els are more robust to noise. The more complex, non-parametric model
thus might not have enough data to fit their parameters, whereas the sim-
pler, parametric models can fall back on their corresponding assumptions
(performance relies on how well these assumptions are met). A topical
example where these assumptions on (temporal) dynamics do not hold
well is the case of a traffic flow with irregular fluctuations.

However, classical univariate time series models have some shortcom-
ings too. Each time series is modelled individually, which means no
patterns between time series can be discerned (Hewamalage et al., 2021).
This is far from ideal when it comes to traffic demand forecasting, as
spatially proximate traffic flow tends to be very useful for the predicted
task at hand: neighbouring roads are more likely to be busy too if a road
is experiencing heavy congestion. The models thus only take into account
the temporal dimension. This issue might be mitigated if the individual
time series are long enough for the model to pick up sufficient temporal
patterns, but this is often not the case.

The above-mentioned disadvantage of univariate time models becomes
a serious issue when viewed in the light of the previously-stated increase in
available data streams in the city. Shallow machine learning models do not
face such limitations and are able to train on all time series globally, thus
able to capitalise on the increase in data streams. They are also capable of
dealing with non-linearity in these features describing these time series –
this is valuable as research has shown that when it comes to traffic flow
prediction, traffic characteristics are indeed non-linear (Hewamalage et
al., 2021). This is in contrast to multi-variate models, which are only
capable to describe linear relationships between these often non-linear
spatial characteristics (Jiang & Luo, 2022). Shallow learning entails most
of the machine learning models proposed before 2006 (including shallow
neural networks with only on one hidden layer) (Xu, Zhou, Sekula, &
Ding, 2021). Examples of such models are support vector machines, KNN,
random forest, gradient boosting and hidden Markov models.

2.3 Deep learning models and Graph Neural Networks

More recently, deep learning models are employed to take full advantage
of both the increase in available data streams and the increase in qual-
ity of said data sources. Deep learning models are a branch of machine

2 literature review 6

learning utilising neural networks with multiple hidden layers, simultane-
ously extracting features when training the model (Xu et al., 2021). These
models are also well-equipped to deal with the increase in different data
streams since they too handle high-dimensional data (and the subsequent
non-linearity in said dimensionality). However, unlike shallow learning
models, deep learning models have no trouble extracting correlations in
long, sequential data (such as long time series) (Hewamalage et al., 2021).
A recurrent neural network (RNNs) is a type of deep learning architec-
ture popularly used for demand forecasting. They contain hidden layers
composed of recurrently connected nodes, enabling networks to preserve
sequential information and accumulate knowledge from subsequent time
steps, which is retained through a feedback loop. LSTMs are a type
of RNNs that are more suitable for long-term sequences since it avoids
long-term dependency problems that standard RNNs have (Xu et al., 2021).

A deep learning architecture that is particularly well-suited to the
domain of traffic demand forecasting, is the graph neural network (GNN).
GNNs are neural networks that work with graph structures (Jiang & Luo,
2022). Graphs are a means of capturing a complex system of objects and
their connections, with graph data representing that structure as nodes
and edges. This is especially useful in the traffic flow domain as spatial
information is often hidden in non-Euclidian structures such as a road
traffic network. This is in contrast to regular convolutional neural networks
(CNN), that model the local spatial information by dividing the plane into a
grid and performing a convolutional operation on neighbouring grid cells.
By doing so CNNs are unable to model non-Euclidian topological data
such as subway networks (e.g. a CNN can’t easily process each subway
stop having a different number of neighbours). GNNs achieve state of the
art results and are a novel and exciting field, with Fan et al. (2020) finding
all key traffic forecasting milestones after 2019 to involve GNNs.

A GNN model contains ‘a message passing scheme that propagates
feature information of the nodes to its neighbours until a stable equilibrium
is reached’ (Munikoti et al., 2022). Roughly three different types of GNNs
can be discerned: graph convolutional network (GCN), GraphSAGE and
graph attention network (GAT). Graph convolutional networks are similar
to regular CNNs in the way that it uses convolution with shared weights
over the filters. However, for GCNs spectral convolution must first trans-
form the non-Euclidian data structure into the Fourier space. The message
passage scheme is based on the full adjacency matrix for GCNs, which can
be inefficient as it is not generalisable to graphs of different sizes (Munikoti
et al., 2022). GraphSAGE uses spatial convolution as opposed to spectral,
which means that Fourrier transforms are no longer used as it depends on
the properties of k local neighbours. In the case of GraphSAGE, this entails

3 method 7

Figure 1: Methodology pipeline

learning local embeddings of nodes – making it more computationally
efficient compared to GCNs. The last major type is graph attention net-
works, which does not assume the weights of neighbouring nodes to target
nodes to be predetermined (GCN) or identical (GraphSAGE). Instead, GAT
makes use of attention to learn the relative weights between two connected
nodes (Munikoti et al., 2022).

Implementations of such graph neural networks have seen promising
results when it comes to traffic demand forecasting for public transport
networks. J. Zhang et al. have implemented a graph convolutional network
(GCN) combined with a three dimensional convolutional neural network
(3D-CNN) on the Beijing subway system using only five weeks’ worth of
data (2020). They saw their GCN 3D-CNN implementation perform slightly
better than other GNN implementations, whilst GNN implementations as
a whole performed better than other baseline models. Other research has
found positive results for the Shanghai metro network using little over four
weeks of data (Han et al., 2019) Current literature about GNN application
on bus network data mostly focuses on Europe and Asia, whilst having
significantly less data than four months’ worth.

3 method

Firstly, the dataset and the necessary pre-processing will be described.
Secondly, the Graph Convolutional Network model and the XGBoost
model will be described in terms of specification and implementation. The
overall pipeline is visualised in Figure 1).

3 method 8

3.1 Data and pre-processing

The dataset used in this paper is manually constructed from different
datasets published by the Metropolitan Transportation System (STM) of
Montevideo. These datasets cover hourly passenger inflow, bus line
and bus stop data spanning from February 2022 until June 2022 (Sis-
tema de Transporte Metropolitano, 2022). The passenger inflow is calcu-
lated using monthly transaction data (‘viajes.csv’). As STM only charges
fare based on the origin stop, no destination bus stop is recorded. This
is the reason why this research paper only focuses on passenger inflow.
Two shapefiles describe the bus stops (‘v_uptu_paradas.shp’) and bus
tracks (‘v_uptu_lsv.shp’). The first shapefile is used to source the bus
stop coordinates and the second shapefile is used to identify which bus
stops are attended by which bus line. Shapefile is a format for storing
geospatial vector data and is able to describe geometries.

The data sources have been published online by STM in a longer-
running open data initiative by the city of Montevideo (Scrollini, 2014).
Montevideo has an estimated population of over 1.3 million inhabitants,
which is almost 40% of the Uruguayan population (Massobrio & Nesmach-
now, 2020). This is in stark contrast to the geographical size of the city,
covering 0.3% of Uruguay’s surface. This highlights the importance of the
STM, a unified system of multiple private bus companies all servicing Mon-
tevideo (born out of a wish to modernise the city’s public transportation).

These data sources were combined into one graph dataset following the
pre-processing steps of Guzmán López, who constructed a graph dataset
using the same sources. This dataset is included and briefly evaluated in
the Pytorch Geometric Temporal paper (Rozemberczki et al., 2021). Due
to the huge size of the dataset and computing limitations only the eleven
most popular bus lines are taken into consideration, accounting for more
than 25% of the bus trips taken in Montevideo. These eleven bus lines
were: 103, 185, 145, G, 183, 306, 163, 137, 405, 110, 546. These bus lines are
visualised in Figure 2). Some of the relevant and utilised Python modules
are GeoPandas, Shapely and Networkx.

The pre-processing starts by merging all the monthly transaction csv
data into one dataset. The coordinates of bus stops and other geometries
in the shapefiles are subsequently rounded to two decimals to avoid un-
intended behaviour by Shapely later on: when coordinates are defined to
a too high precision, Shapely has trouble performing a union on geome-
tries, returning a ‘non-noded intersection’ intersection error. The resulting
merged dataset consists of trip id, datetime, number of passengers and
bus variant and bus stop. Then all the different variants of bus lines in
the shapefile are compared, and the longest variant is designated as being

3 method 9

Figure 2: Transport network of the eleven most popular bus lines in Montevideo

3 method 10

the de facto bus line track. In other words, sometimes a bus line might
not always travel the full route it could take but instead only service the
most popular bus stops and leave out more remote bus stops instead. This
paper uses the variant that services the most bus stops as it will filter out
the least trip data. The bus stop coordinates are then matched with the bus
line geometries, which at the same time serves as a validator for the given
geometries (all eleven bus lines passed this check). An adjacency matrix
of bus stops is then constructed, which is a file containing the distances
between them. These distances are not the distances measured in a straight
line from bus stop to bus stop, but are instead calculated using the bus line
geometries (and are thus a representation of the route driven). A feature
matrix is also built (using the adjacency matrix and the merged dataset),
aggregating the trip data to a time step of one hour. This feature matrix
consists of a list with a number of passengers checking in at the bus stop
per time step. The adjacency matrix is then used to extract a topology and
build the graph in Networkx, whilst node features are extracted from the
feature matrix.

The resulting graph consists of 722 nodes and 737 edges, representing
the bus stops and trip segments between those bus stops respectively. This
is a relatively sparse network, indicating that most bus stops are visited
by only a few bus lines (if not one). The latter might be a result of only
using a limited subset of the most popular bus lines. The node features are
‘bus_stop’ (containing the bus stop id), ’in_degree’ (the number of edges
connected to the nodes), ’lon’ (the longitude), ’lat’ (the latitude) and ’y’ (list
of the number of passengers getting on per aggregated time step/per hour).
The edge feature is the ‘weight’, which is the distance between nodes (bus
stops). This distance represents the distance of the route travelled, and not
the distance measured in a straight line between bus stops. At this point
the data pre-processing is finished and the graph representation is saved
to a JSON-file, which is available in the repository and can be used for
further research.

3.2 Defining the Graph Convolutional Network

In order to answer the research question ‘To what extent can a Graph Convo-
lutional Neural Network be used to predict passenger inflow?’, a simple graph
convolutional network is defined. This network consists of a graph con-
volutional layer after which batch normalisation is applied, followed by
another graph convolutional layer and batch normalisation. The network
is then concluded by a linear layer and batch normalisation, another linear
layer and a final linear layer producing the prediction per time step for
the prediction window. All the layers use a rectified linear unit (ReLU)

3 method 11

Table 1: The different specifications used when specifying the models

The number of historical lags used 24, 168, 336

The number of values to be predicted 1, 24, 72, 168

The maximum number of neurons in a convolutional layer 64, 128, 256

activation functions, which allows for the non-linearity in the traffic char-
acteristics it tries to model. The inability to produce negative values is
no problem considering the predicted output cannot be negative as well,
as there is no such thing as a negative passenger inflow (outflow is not
measured).

The GCN model will be tuned using several settings, after which the
scores will be compared. In order to answer the first sub research question
‘To what extent are there differences between short term prediction performance vs
long term prediction performance?’, differently sized training and prediction
windows will be used. These values are shown in Table 1, and every
combination of past and future values will be explored (3 times 4 equals
12 combinations total). Each value represents a number of time steps, with
a time step corresponding to one hour of aggregated data. It is worthy to
note that 24 time steps equal to a window of a day, 72 time steps to three
days, 168 time steps equal to a window of a week and 336 time steps to
two weeks. The depth of the model is defined as mentioned earlier, but the
width of the model depends on the number of parameters in each layer.
Table 1 also shows a list of parameter values which will be explored for
each of the aforementioned 12 combinations as well (resulting in 36 model
specifications). The parameter value corresponds to the number of neurons
used in the first GCN layer (which corresponds to the output width). The
second GCN layer will then reduce the width to half of the previous layer,
after which the linear layers will not change the width of the model until
the final layer (which will change it to the number of prediction targets:
the number of nodes times the length of the prediction window).

The GCN model will thus be explored 36 times (for all the combinations
of different training window, prediction window and model width). This
will be done using an Adam optimiser with a learning rate of 0.001. Each
model specification will be run for 150 epochs or until the last two epochs
average a negative trend in validation score (measured using the value).
In practice this results in most models being trained for around 20 to 25

epochs. A graph depicting a scatter plot of predicted values and actual
values is saved after the model is stopped, along with a graph depicting
the change in training and validation error over the past epochs.

The GCN model will thus be explored 36 times (for all the combinations
of different training window, prediction window and model width). This

3 method 12

will be done using an Adam optimiser with a learning rate of 0.001. Each
model specification will be run for 150 epochs or until the last two epochs
average a negative trend in validation score (measured using the r-squared
value). In practice this results in most models being trained for around
20 to 25 epochs. A graph depicting a scatter plot of predicted values
and actual values is saved after the model is stopped, along with a graph
depicting the change in training and validation error over the past epochs.

It must be noted that before the graph can be fed into a defined graph
convolutional network, the graph is loaded into the PyTorch Geometric
dataloader. Firstly, the graph is read from the JSON-file and converted into
a NetworkX graph. Then the graph nodes are relabeled, as the current
nodes are named after the bus stop names given by STM. These original
names are integers (e.g. bus stop 4756) and can thus cause confusion
when trying to differentiate between label names and calling of ordered
nodes. Secondly, the node and edge features are transformed to arrays,
which are subsequently turned into Tensors. The dataset is then split into
a train, validation and test dataset using 70%, 20% and 10% of the dataset
respectively, after which the different datasets are fed into the Pytorch
Geometric dataloader. The train-validation-test split is done keeping the
temporal order intact, so the oldest 70% of the observations are used as
training data, the next 20% as validation data and the most current 10% as
test data. This split is illustrated in Figure 3.

Figure 3: The train-validation-test split

Until this point the data consisted of hourly aggregates of passenger
inflow (per bus stop). Now every aggregate is turned into a separate time
series, using aggregates of previous time steps as lags. This process is
illustrated in Figure 4.

3.3 Defining the XGBoost model

XGBoost is a gradient boosting algorithm and falls under shallow machine
learning (L. Zhang, Bian, Qu, Tuo, & Wang, 2021). It will be implemented
in part to answer the second sub research question: ‘How does the prediction
performance of a Graph Convolutional Neural Network compare to a conventional
shallow learning model like a gradient boosted tree ensemble method (XGBoost)?’.

3 method 13

Figure 4: The transformed observation per lag, prediction window specification

As an ensemble method it combines several weak classifiers into a strong
classifier, capable of non-linearity. Another benefit of XGBoost is that it
is not likely to overfit and works without the need for a lot of data. It
is chosen as a baseline model for the reasons above, with the ML model
performing well in multiple traffic flow research papers according to a
structural literature review conducted by Razali et al. (2021). The model
will be specified using the combinations of historical lags and length of
prediction windows (see Table 1), which total to 12 combinations. The
XGBoost will use the ‘gpu_hist’ tree method to enable faster training on
the graphical card, doing so using 500 trees. The maximum depth was set
to 5.

Before feeding the data into the XGBoost model, the data must be
transformed from the graph-structure. The data is initially read from
the JSON-file, after which they undergo the same relabelling as in the
GCN-model for the sake of consistency. The data is then reshaped so each
instance contains the past lags as feature data and future values as target
values. This is the same process as in Figure 4. It is worth noting that after
the train-test split, the test set and is the exact same size as for the GCN
(as is the associated time period). A higher number of lags considered or a
higher prediction window does decrease the number of observations in the
test set: the oldest observations in the overall dataset are not included (as
they do not have the appropriate lags) and the most current observations in
the test period are excluded as there are no newer observations to compare
the predicted timesteps to. This means that there is a slightly different
training or test set between every lag-prediction window combination, but
they are exactly the same for the relevant GCN-model and the XGBoost
model. Comparing between-model performance and between-parameter
performance thus does not come with extra caveats other than the usual
limitations.

4 results 14

3.4 Evaluation methods

Three different types of metrics are used to evaluate the performance of
the models (GCN and XGBoost) the Mean Absolute Error (MAE), the Root
Mean Squared Error (RMSE) and the R2-score.

MAE = 1/n ∑(i = 1)n |Y ̂i − Yi |

RMSE =
√

1
n ∑n

i=1
(
Yi − Ŷi

)2
=

√
MSE

R2 = 1 − ∑n
i=1(Ŷi−Yi)

2

∑n
i=1(Ȳ−Yi)

2 = 1 − MSE
Var(Y)

MAE measures the average absolute difference between the predicted
values and the actual values. It is in the same unit as the original data (in
our case the number of passengers boarding at a bus stop), so it is easy to
interpret. RMSE is the square root of the mean squared errors (MSE). By
squaring the errors RMSE is more sensitive to outliers than MAE which is
more robust. RMSE is also in the same units as the original data, but the
interpretation is slightly less intuitive than MAE. A lower MAE and RMSE
indicates a better performing model, with a perfect prediction yielding
the minimum score of 0. The R2-score represents the proportion of the
variance in the dependent variable that is predictable from the independent
variable. As such, it is affected by a different scaling of the data. It is also
sensitive to the number of predictor variables, with the R2-score almost
always increasing when adding a predictor variable (at the risk of inflating
the score). A R2-score of 0 indicates that the model does not perform better
than taking the mean of the original data, whereas a higher score indicates
a better model fit (with a maximum R2-score of 1).

4 results

Firstly, the results of the GCN will be compared for all the different specifi-
cations. Secondly, the results of the XGBoost model will be presented.

4.1 Graph Convolutional Network results

The Graph Convolutional Network has been implemented 36 times using
3 different historical lags, 4 different prediction windows and 3 different
parameter settings. This resulted into the following R2-scores, visible in
Table 2. Moreover, Figure 5 shows the different scatter plots of predicted
and actual values for the twelve different time step combinations using

4 results 15

only the best-performing parameter setting. A more comprehensive fig-
ure containing all 36 possible combinations is included in the appendix
(see figure Z, Appendix). The R2-score ranges from 0.330 to 0.816 (the
worst-performing and best-performing combination of parameter, lags and
prediction window respectively), the MAE-score from 2.001 to 3.043 and
the RMSE-score from 4.475 to 7.809.

One of the findings from the results in Table 2 is that the greatest model
width (a maximum 256 neurons in a layer) resulted the majority of the
time in a higher prediction performance. Out of the twelve time-steps
specifications, seven specifications performed the best when using the
highest maximum number of neurons in the convolutional layers. This was
the case when trying to predict a window of a single time step using 24

lags, 168 steps using 168 lags and for a window of 1, 24 and 72 steps using
336 lags. The second-greatest model width (a maximum of 128 neurons in
a layer) was the best-performing for four specifications, and the minimum
width performed the best only once. In general the performance difference
is relatively small as the R2-scores are quite close to each other. Only
sporadically one of the three parameter settings result in a larger R2-score
drop – e.g. predicting a window of 24 time steps using 336 lags and a max
width of 256 neurons results in a score of 0.395 when the other two settings
score 0.598 (64 neurons) and 0.637 (128).

When comparing each time-step specification using its respective best
performing parameter, it becomes clear that there is a diverse range of
prediction scores (Figure 5). The lowest prediction performance with a
R2-score of 0.460 can be found for trying to predict the biggest window
(168) using the most historical lags (336), whilst the highest R2-score (0.812)
is for the smallest window size (1) using the smallest number of historical
lags (24). Two trends seem to appear: i. the smaller the prediction window,
the higher the accuracy and ii. the smaller the number of historical lags
used for training, the higher the accuracy. The only exception to this is the
biggest prediction window using 24 lags, which performs slightly better
than the second biggest window using 24 lags (R2-scores of 0.678 and 0.671

respectively).

4 results 16

Table 2: Evaluation metrics for every Graph Convolutional Neural Network
specification

4
r

e
s

u
l

t
s

1
7

Figure 5: Error plots with corresponding R2, MAE and RMSE-scores for the Graph Convolutional Network with the best-performing
parameter settings

4 results 18

Figure 6: Error plots with corresponding R2, MAE and RMSE-scores for the
XGBoost-model

A visual inspection of the error plots also reveals another finding: the
diagonal curve seems to flatten further along on the x-axis. In other words,
high passenger inflows are often underestimated in the predictions. The
reverse is also true, a lot of smaller values are overestimated, hence the
‘fuller’ plot. However, the indicated flattening of the (initially fuller) curve
shows that there’s an inferred upper boundary to the predictions that
does not exist in practice, resulting in the longer x-axis of true values.
Concludingly, passenger inflow above a certain threshold will always be
underestimated. It must be noted that this is a lot less pronounced for the
plots with the smallest prediction window (1 hour).

When examined closely, the plots in Figure 5 also show vertical white
lines indicating an absence of data (multiple vertical asymptotes). A reason
for this behaviour could be that the output of the GNN model is continuous,
as opposed to the integers it should be (passengers aren’t divisible, so the
predicted inflow can’t have decimals).

4.2 XGBoost results

The XGBoost-model has been implemented 12 times using the same 3 his-
torical lags and 4 prediction windows, resulting in the R2-scores presented
in Table 3. The highest GCN R2-score (of the three different parameters) has
been included for each time step specification for the sake of convenience.
Figure 6 shows the different scatter plots of predicted and actual values
for the twelve different time steps predicted by XGBoost. The R2-score
ranges from -0.474 to 0.563, the MAE-score from 2.456 to 3.379 and the
RMSE-score from 5.392 to 7.638.

5 discussion 19

Table 3: XGBoost evaluation metrics for the different time-step combinations in
comparison to the relevant best-performing GCN-model

When looking at Figure 6 and Table 3 a trend seems to arise, the
smallest prediction window of 1 hour performs the best for each number of
historical lags according to all three evaluation metrics. This is underlined
by the rather stark drop-off in when increasing the prediction window to
a size bigger (24 hours): the R2-scores drop from 0.205 to -0.270, 0.258 to
0.046 and 0.563 to 0.389 (for lags of 24, 168 and 336 respectively). Another
observation is that the more historical lags used, the better the accuracy
score. This holds for all the model specifications except for predicting a
window 168 time steps using 168 lags. The latter does do slightly worse
(as initially expected) than when using 336 lags, but only when evaluated
using MAE and RMSE – the R2-score is actually lower when using 336

lags.

5 discussion

The main focus of this research was to improve the demand forecasting of a
public transport network by exploring the implementation of a Graph Con-
volutional Neural Network. This goal was formulated into the following
main research question:

To what extent can a Graph Convolutional Neural Network be used
to predict passenger inflow?

In order to answer this research question, the following two sub-questions
were devised:

5 discussion 20

RQ1 To what extent are there differences between short term prediction perfor-
mance vs long term prediction performance of a Graph Convolutional Neural
Network?

RQ2 How does the prediction performance of a Graph Convolutional Neural
Network compare to a conventional shallow learning model like a gradient
boosted tree ensemble method (XGBoost)?

The results of the GCN revealed multiple findings. One of the findings
indicated that a smaller prediction window yielded a better performance,
holding true for every combination of prediction window and historical
lags but one (going from a prediction window of 72 hours to 168 with
24 lags saw a minor performance increase instead). This finding was
consistent for all evaluation metrics except once for MAE, as it slightly
decreased (instead of increasing) going from a prediction window of 1 hour
to 24 hours with 336 lags. In general the trend of increased performance
with a shorter prediction window held up irrespective of the maximum
number of parameters. A second finding is that performance according
to the RMSE and R2-score decreases when considering a larger number
of historical lags. However, the MAE does not show this trend, which
highlights the difference in evaluation metrics. Considering that RMSE
and R2-score punish larger errors, the trend shows that taking into account
a smaller number of historical lags lead to predictions that might not
necessarily be wrong less often, but are likely to be wrong to a smaller
degree. Combining this with MAE-scores sometimes staying the same or
increasing (instead of always decreasing), it is not possible to assert whether
the frequency of errors occurring decreases when taking into account less
lags. However, it is possible to assert that the nature of the errors changes
when changing the number of lags considered. Lastly, the error plots reveal
that higher true values are more likely to be underestimated to such an
extent that the error plotted seem to flatten along the x-axis (the estimated
values do not increase proportionally in true values). Passenger flow above
a certain threshold seems to always be underestimated. This effect seems
more noticeable for long term prediction with the threshold being more
pronounced for a larger prediction window. The aversion to large errors
could be the result of the loss function of the GCN, which aims to minimise
the Mean Squared Error (MSE). MSE is sensitive to larger errors (similar
to RMSE and the R2-score, both of which incorporate MSE) as the errors
are squared before their mean is calculated. Overall, these were the three
main differences observed between long and short term prediction using a
Graph Convolutional Neural Network model.

Comparing the results of the XGBoost model with the GCN revealed
multiple findings as well. First of all, XGBoost has a lower R2-score and a

5 discussion 21

higher MAE and RMSE for every lag-prediction window specification when
compared with the relevant GCN specification (using the best-performing
parameter setting). Secondly, the trend of a larger prediction window
resulting in a worse performance holds true for XGBoost too, seemingly
affecting it even stronger. The drop-off in performance is especially pro-
nounced when moving from a prediction window of 1 hour to 24 hours,
whilst the GCN does not drop off notably more than when moving from
24 to 72 hours or from 72 to 168 hours. Thirdly, XGBoost seems to perform
better when considering more historical lags. This is unlike the GCN,
which saw a change in the nature of errors at most, but not a noticeable
improving trend. It must be remarked that the difference in performance
in MAE-score is nearly always at least 0.6 or higher, which translates to a
difference in error of over a half passenger in hourly inflow. In the scale of
a bus capacity this does not seem that large, perhaps the nature of the error
is more distinctive. Overall, there are multiple differences in the prediction
performances of a GCN model and a XGBoost model, ultimately indicating
that the GCN model is more suitable in predicting passenger inflow for a
public transport network.

The results are relatively in line with current literature that shows GCN
are the current state-of-the-art models and achieve performance as such.
That XGBoost has a harder time predicting is thus expected, however the
extent to which the R2-scores are lower is surprising, since XGBoost is one
of the shallow deep learning methods found to predict well on its own
(Razali et al., 2021). The finding that the inclusion of more historical lags
do not increase GNN performance is in line with literature as well, as
the more distant lags are likely to be less predictive for forecasting with
underlying patterns having changed in the meantime (Bandara et al., 2020).
In addition, literature does show that short-term prediction is harder than
long-term prediction when it comes to traffic forecasting, with literature
also showing similar results for GNNs (Cui et al., 2022).

This current study comes with several limitations and constraints. One
of the limitations is that the only features are the previous time lags
in combination with the spatial information from a network. With IOT
enabling data streams from a variety of sources, a model implemented with
said features would give more practical insight. However, this paper does
reflect the differences between more barebone implementations, which is
also useful. Furthermore, the geospatial error analysis is limited which
might obscure some relationships in the data. Additionally, the dataset has
been limited to only the most popular bus lines to restrict the amount of
computing resources needed. Depending on the underlying differences in
data the prediction performance might increase or decrease, potentially
changing the findings when considering less popular bus lines as well.

6 conclusion 22

Another data limitation this research paper faced was the absence of
outflow data. Outflow data is usually present and has the possibility to
reveal a lot of spatiotemporal patterns in public transport trips, whereas
now the model had to infer from inflow data only.

These limitations also signal potential avenues for future research, such
as comparing model performance using additional features from a wide
range of data sources. Examples are weather data, traffic (GPS) data and
neighbourhood data (exploring the spatial dimension). Future research
could also implement a more rigorous spatial error analysis. Moreover,
they could investigate the effect of different graph neural networks using a
different number and type of network layers such as GraphSAGE.

6 conclusion

In this paper the performance of a Graph Convolutional Neural Network
on predicting the passenger inflow of a bus transport network is explored.
The short and long-term prediction performance is evaluated using various
numbers of historical lags considered, various prediction windows and
different layer widths. A bigger prediction window yielded less accurate
results, whereas considering a bigger number of historical lags did not
reliably increase or decrease the mean absolute error. However, the nature
of the errors did change, with an increase in lags considered resulting in
less large errors. This is accompanied with the inflow of passengers being
structurally more underestimated for higher prediction windows. Further-
more, having the maximum number of parameters in a layer resulted in
the highest performance in seven out of twelve model specifications, but
further research is needed to come to conclusive insight.

The performance of the GCN has also been compared using a gradient
boosted tree ensemble method (XGBoost). The GCN performed better than
the XGBoost for every lag and prediction window combination. XGBoost
saw a larger prediction window result in a worse prediction performance
in an even more pronounced manner. The drop-off in performance was
especially notable when predicting more than 24 hours. However unlike
the GCN, XGBoost saw including more historical lags improve performance
using all metrics.

Concludingly, these findings indicate that a Graph Convolutional Neu-
ral Network is a more than suitable model to predict passenger inflow on
a bus network. It provides an improvement in prediction performance
over the established gradient boosted tree ensemble method XGBoost in
multiple ways. Future research exploring this topic further seems exciting
and salient, both from a scientific and social point of view.

REFERENCES 23

references

Allam, Z. (2020). Data as the New Driving Gears of Urbanization. In Z. Al-
lam (Ed.), Cities and the Digital Revolution: Aligning technology and hu-
manity (pp. 1–29). Cham: Springer International Publishing. Retrieved
2023-01-18, from https://doi.org/10.1007/978-3-030-29800-5_1

doi: 10.1007/978-3-030-29800-5_1

Bandara, K., Bergmeir, C., & Smyl, S. (2020, February). Forecasting across
time series databases using recurrent neural networks on groups of
similar series: A clustering approach. Expert Systems with Applications,
140, 112896. Retrieved 2022-12-04, from https://www.sciencedirect

.com/science/article/pii/S0957417419306128 doi: 10.1016/j

.eswa.2019.112896

Barthélemy, M., Barrat, A., & Vespignani, A. (2007, March). The
role of geography and traffic in the structure of complex net-
works. Advances in Complex Systems, 10(01), 5–28. Retrieved 2022-
12-02, from https://www.worldscientific.com/doi/abs/10.1142/

S021952590700091X (Publisher: World Scientific Publishing Co.)
doi: 10.1142/S021952590700091X

Cui, Y., Zheng, K., Cui, D., Xie, J., Deng, L., Huang, F., & Zhou, X. (2022,
February). METRO: A Generic Graph Neural Network Framework for
Multivariate Time Series Forecasting. Proc. VLDB Endow., 15(2), 224–
236. Retrieved from https://doi.org/10.14778/3489496.3489503

(Publisher: VLDB Endowment) doi: 10.14778/3489496.3489503

Duranton, G., & Puga, D. (2014, January). Chapter 5 - The Growth
of Cities. In P. Aghion & S. N. Durlauf (Eds.), Handbook of Eco-
nomic Growth (Vol. 2, pp. 781–853). Elsevier. Retrieved 2022-09-
30, from https://www.sciencedirect.com/science/article/pii/

B9780444535405000057 doi: 10.1016/B978-0-444-53540-5.00005-7
Fan, X., Xiang, C., Gong, L., He, X., Qu, Y., Amirgholipour, S., . . . He, X.

(2020, December). Deep learning for intelligent traffic sensing and
prediction: recent advances and future challenges. CCF Transactions
on Pervasive Computing and Interaction, 2(4), 240–260. Retrieved 2022-
12-05, from https://doi.org/10.1007/s42486-020-00039-x doi: 10

.1007/s42486-020-00039-x
Han, Y., Wang, S., Ren, Y., Wang, C., Gao, P., & Chen, G. (2019, June).

Predicting Station-Level Short-Term Passenger Flow in a Citywide
Metro Network Using Spatiotemporal Graph Convolutional Neural
Networks. ISPRS International Journal of Geo-Information, 8(6), 243.
Retrieved 2022-09-30, from https://www.mdpi.com/2220-9964/8/6/

243 (Number: 6 Publisher: Multidisciplinary Digital Publishing
Institute) doi: 10.3390/ijgi8060243

https://doi.org/10.1007/978-3-030-29800-5_1
https://www.sciencedirect.com/science/article/pii/S0957417419306128
https://www.sciencedirect.com/science/article/pii/S0957417419306128
https://www.worldscientific.com/doi/abs/10.1142/S021952590700091X
https://www.worldscientific.com/doi/abs/10.1142/S021952590700091X
https://doi.org/10.14778/3489496.3489503
https://www.sciencedirect.com/science/article/pii/B9780444535405000057
https://www.sciencedirect.com/science/article/pii/B9780444535405000057
https://doi.org/10.1007/s42486-020-00039-x
https://www.mdpi.com/2220-9964/8/6/243
https://www.mdpi.com/2220-9964/8/6/243

REFERENCES 24

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021, January). Recur-
rent Neural Networks for Time Series Forecasting: Current status
and future directions. International Journal of Forecasting, 37(1), 388–
427. Retrieved 2022-12-04, from https://www.sciencedirect.com/

science/article/pii/S0169207020300996 doi: 10.1016/j.ijforecast
.2020.06.008

IPCC. (2022). Summary for Policymakers. In H. O. Pörtner et
al. (Eds.), Climate Change 2022: Impacts, Adaptation, and Vul-
nerability. Contribution of Working Group II to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change
(p. In Press). Cambridge, UK: Cambridge University Press.
Retrieved from https://www.ipcc.ch/report/ar6/wg2/downloads/

report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf (Type: Book
Section)

Jiang, W., & Luo, J. (2022, November). Graph neural network for traffic
forecasting: A survey. Expert Systems with Applications, 207, 117921. Re-
trieved 2022-12-02, from https://www.sciencedirect.com/science/

article/pii/S0957417422011654 doi: 10.1016/j.eswa.2022.117921

Lan, S., Ma, Y., Huang, W., Wang, W., Yang, H., & Li, P. (2022, June).
DSTAGNN: Dynamic Spatial-Temporal Aware Graph Neural Net-
work for Traffic Flow Forecasting. In Proceedings of the 39th Inter-
national Conference on Machine Learning (pp. 11906–11917). PMLR.
Retrieved 2022-12-02, from https://proceedings.mlr.press/v162/

lan22a.html (ISSN: 2640-3498)
Ma, D., Sheng, B., Jin, S., Ma, X., & Gao, P. (2018). Short-Term Traffic Flow

Forecasting by Selecting Appropriate Predictions Based on Pattern
Matching. IEEE Access, 6, 75629–75638. (Conference Name: IEEE
Access) doi: 10.1109/ACCESS.2018.2879055

Massobrio, R., & Nesmachnow, S. (2020, January). Urban Mobility Data
Analysis for Public Transportation Systems: A Case Study in Mon-
tevideo, Uruguay. Applied Sciences, 10(16), 5400. Retrieved 2022-09-
29, from https://www.mdpi.com/2076-3417/10/16/5400 (Number:
16 Publisher: Multidisciplinary Digital Publishing Institute) doi:
10.3390/app10165400

Melnikov, V. R., Krzhizhanovskaya, V. V., Boukhanovsky, A. V., & Sloot,
P. M. A. (2015, January). Data-driven Modeling of Transportation
Systems and Traffic Data Analysis During a Major Power Outage
in the Netherlands. Procedia Computer Science, 66, 336–345. Re-
trieved 2022-12-02, from https://www.sciencedirect.com/science/

article/pii/S1877050915033888 doi: 10.1016/j.procs.2015.11.039

Miglani, A., & Kumar, N. (2019, December). Deep learning models for traf-
fic flow prediction in autonomous vehicles: A review, solutions, and

https://www.sciencedirect.com/science/article/pii/S0169207020300996
https://www.sciencedirect.com/science/article/pii/S0169207020300996
https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf
https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf
https://www.sciencedirect.com/science/article/pii/S0957417422011654
https://www.sciencedirect.com/science/article/pii/S0957417422011654
https://proceedings.mlr.press/v162/lan22a.html
https://proceedings.mlr.press/v162/lan22a.html
https://www.mdpi.com/2076-3417/10/16/5400
https://www.sciencedirect.com/science/article/pii/S1877050915033888
https://www.sciencedirect.com/science/article/pii/S1877050915033888

REFERENCES 25

challenges. Vehicular Communications, 20, 100184. Retrieved 2022-09-
29, from https://www.sciencedirect.com/science/article/pii/

S2214209619302311 doi: 10.1016/j.vehcom.2019.100184

Miller, P., de Barros, A. G., Kattan, L., & Wirasinghe, S. C. (2016, April).
Public transportation and sustainability: A review. KSCE Journal
of Civil Engineering, 20(3), 1076–1083. Retrieved 2022-09-30, from
https://doi.org/10.1007/s12205-016-0705-0 doi: 10.1007/s12205

-016-0705-0
Munikoti, S., Agarwal, D., Das, L., Halappanavar, M., & Natarajan, B. (2022,

June). Challenges and Opportunities in Deep Reinforcement Learning
with Graph Neural Networks: A Comprehensive review of Algorithms and
Applications. arXiv. Retrieved 2022-09-29, from http://arxiv.org/

abs/2206.07922 (arXiv:2206.07922 [cs]) doi: 10.48550/arXiv.2206

.07922

Razali, N. A. M., Shamsaimon, N., Ishak, K. K., Ramli, S., Amran, M. F. M.,
& Sukardi, S. (2021, December). Gap, techniques and evaluation:
traffic flow prediction using machine learning and deep learning.
Journal of Big Data, 8(1), 152. Retrieved 2023-01-06, from https://doi

.org/10.1186/s40537-021-00542-7 doi: 10.1186/s40537-021-00542

-7
Rozemberczki, B., Scherer, P., He, Y., Panagopoulos, G., Riedel, A., Aste-

fanoaei, M., . . . Sarkar, R. (2021). PyTorch Geometric Tempo-
ral: Spatiotemporal Signal Processing with Neural Machine Learn-
ing Models. In Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management (pp. 4564–4573). New
York, NY, USA: Association for Computing Machinery. Retrieved
2022-09-29, from https://doi.org/10.1145/3459637.3482014 doi:
10.1145/3459637.3482014

Scrollini, F. (2014, July). Open cities : the case of Montevideo (Working Paper).
Retrieved 2022-12-02, from https://idl-bnc-idrc.dspacedirect

.org/handle/10625/55362 (Accepted: 2016-01-13T18:26:41Z)
Sistema de Transporte Metropolitano. (2022). Montevideo Bus (STM) Datasets.

Intendencia de Montevideo. Retrieved 2022-09-15, from https://

catalogodatos.gub.uy/dataset?q=stm

Wamsler, C., Brink, E., & Rivera, C. (2013, July). Planning for climate change
in urban areas: from theory to practice. Journal of Cleaner Production,
50, 68–81. Retrieved 2023-01-18, from https://www.sciencedirect

.com/science/article/pii/S095965261200652X doi: 10.1016/j

.jclepro.2012.12.008

Xu, Y., Zhou, Y., Sekula, P., & Ding, L. (2021, May). Machine
learning in construction: From shallow to deep learning. Devel-
opments in the Built Environment, 6, 100045. Retrieved 2022-12-

https://www.sciencedirect.com/science/article/pii/S2214209619302311
https://www.sciencedirect.com/science/article/pii/S2214209619302311
https://doi.org/10.1007/s12205-016-0705-0
http://arxiv.org/abs/2206.07922
http://arxiv.org/abs/2206.07922
https://doi.org/10.1186/s40537-021-00542-7
https://doi.org/10.1186/s40537-021-00542-7
https://doi.org/10.1145/3459637.3482014
https://idl-bnc-idrc.dspacedirect.org/handle/10625/55362
https://idl-bnc-idrc.dspacedirect.org/handle/10625/55362
https://catalogodatos.gub.uy/dataset?q=stm
https://catalogodatos.gub.uy/dataset?q=stm
https://www.sciencedirect.com/science/article/pii/S095965261200652X
https://www.sciencedirect.com/science/article/pii/S095965261200652X

REFERENCES 26

05, from https://www.sciencedirect.com/science/article/pii/

S2666165921000041 doi: 10.1016/j.dibe.2021.100045

Zhang, J., Chen, F., Guo, Y., & Li, X. (2020). Multi-graph con-
volutional network for short-term passenger flow forecast-
ing in urban rail transit. IET Intelligent Transport Systems,
14(10), 1210–1217. Retrieved 2022-09-29, from https://

onlinelibrary.wiley.com/doi/abs/10.1049/iet-its.2019.0873

(_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
its.2019.0873) doi: 10.1049/iet-its.2019.0873

Zhang, L., Bian, W., Qu, W., Tuo, L., & Wang, Y. (2021, April). Time
series forecast of sales volume based on XGBoost. Journal of Physics:
Conference Series, 1873(1), 012067. Retrieved 2022-12-07, from https://

dx.doi.org/10.1088/1742-6596/1873/1/012067 (Publisher: IOP
Publishing) doi: 10.1088/1742-6596/1873/1/012067

appendix a

If you have nothing to append: remove this. You can do a page referral for
these, like: Appendix A (page 26).

https://www.sciencedirect.com/science/article/pii/S2666165921000041
https://www.sciencedirect.com/science/article/pii/S2666165921000041
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-its.2019.0873
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-its.2019.0873
https://dx.doi.org/10.1088/1742-6596/1873/1/012067
https://dx.doi.org/10.1088/1742-6596/1873/1/012067

	Introduction
	Literature Review
	The domain of traffic flow prediction
	Classic statistical models and shallow learning models
	Deep learning models and Graph Neural Networks

	Method
	Data and pre-processing
	Defining the Graph Convolutional Network
	Defining the XGBoost model
	Evaluation methods

	Results
	Graph Convolutional Network results
	XGBoost results

	Discussion
	Conclusion

