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Abstract

This thesis examines the optimal consumption-investment-insurance strategy for a risk- and
regret-averse investor who is subject to biometric risks affecting her income and life ex-
pectancy. Various behavioral models have been implemented into an optimal asset allo-
cation problem. However, there has been done relatively little research on optimal asset
allocation in combination with regret theory. This thesis aims to analytically assess the opti-
mal consumption-investment-insurance problem for a regret-averse investor with Epstein-Zin
preferences. This thesis contributes to the literature by combining regret theory and Epstein-
Zin preferences. To model regret-averse Epstein-Zin preferences, an alternative multiplicative
regret utility function and a regret-averse normalized aggregator function are proposed. The
agent can invest in a risk-free asset and in a risky asset. To hedge herself against biometric
risks, she can buy continuously-adjustable life-insurance contracts. Closed-form solutions
are derived for an arbitrary value of elasticity of intertemporal substitution (EIS) utilizing a
dynamic optimization approach solving the Hamilton-Jacobi-Bellman (HJB) equation. The
optimal consumption-investment-insurance strategy is determined by first solving an auxil-
iary model for an infinitely regret-averse investor and then substituting the foregone control
processes and wealth into the HJB of the regret-averse investor. The special cases of con-
stant relative risk aversion (CRRA) and unit EIS are highlighted. It will be shown that
the optimal consumption-investment-insurance strategy for a regret-averse investor does not
directly depend on foregone wealth, but only on realized wealth. Additionally, this thesis
will proof that it is optimal for a both risk- and regret-averse agent to invest more into the
risky asset than for a purely risk-averse agent under a weak condition. This observation
could be taken into consideration when assessing fund managers’ risk-taking behavior.

Keywords: Optimal life-cycle investment, regret theory, stochastic differential utility, health
shock risk, health insurance, Hamilton-Jacobi-Bellman equation
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1 Introduction
The main challenge for any institutional as well as private investor is to allocate her wealth
optimally. Optimal portfolio choice has been concerned with determining the optimal in-
vestment strategy to maximize expected utility from consumption and terminal wealth. In
most economical and financial theories, it is assumed that the agents (investors) are rational.
However, in practice, agents do not always behave in a fully rational manner, i.e. they are
bounded by rationality. In other words, investors are affected by their emotions and as a
result, they might invest differently as rationally expected. To model the bounded ratio-
nality of the investors, this thesis incorporates a behavioral model in the optimal portfolio
choice problem. There are various behavioral models, but this thesis focuses on regret the-
ory as independently introduced by Bell (1982), and Loomes and Sugden (1982). Regret
theory is based on investors feeling regret over missing out on a more profitable investment
or not investing at all. Studies conducted by Zeelenberg et al. (1998) and Zeelenberg (1999)
showed that regret is inherently different from other emotions, such as disappointment, since
regret is very persistent and widely experienced by investors. Furthermore, as shown by
Goossens (2022), regret theory explains many stylized facts of the financial literature and
more than most other behavioral theories. Among others, regret theory is able to explain
the risk-free rate puzzle and long-term reversal. This might indicate that regret theory is a
promising behavioral theory to incorporate in the optimal investment problem. To model
the feeling of regret, a multiplicative regret-based utility function (Quiggin, 1994) which
consists of a standard CRRA power-utility term and a multiplicative term that reflects the
disutility from feeling regret (Goossens, 2022) is proposed. This regret-based utility function
can then be utilized in the existing asset allocation theories. The model is further extended
by including Epstein-Zin preferences (Epstein & Zin, 1989). Therefore, a regret-adjusted
stochastic differential utility specification (Duffie & Epstein, 1992) is proposed in this the-
sis. Stochastic differential utility is a continuous-time version of recursive utility (Epstein &
Zin, 1989) and it allows to differentiate between risk aversion and elasticity of intertemporal
substitution. Moreover, the regret-averse investor is subject to biometric risks affecting her
income and life expectancy (Hambel et al., 2022). Closed-form solutions will be derived for
an arbitrary value of the EIS parameter. The special cases of CRRA-regret-utility and unit-
EIS-regret-utility preferences will be highlighted. This thesis is concerned with analytically
investigating the optimal consumption-investment-insurance strategy for an investor with
regret-averse Epstein-Zin preferences who is subject to biometric risks.

This thesis contributes to the literature by being one of the very few papers investigating
the optimal consumption-investment-insurance strategy in combination with regret theory
and Epstein-Zin preferences. Moreover, this thesis adds to the literature by proposing an
alternative multiplicative regret-utility function and a regret-adjusted normalized aggregator
function for the Epstein-Zin preferences. The main findings of this thesis can be summa-
rized as follows. It is found that closed-form solutions can be derived for an arbitrary EIS
parameter value. It will be shown that the optimal investment and insurance strategies only
directly depend on the risk and regret aversion, but not on the EIS parameter. However,
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these optimal control processes do depend on the EIS parameter indirectly via an age- and
state-dependent function. The optimal consumption strategy depends on the risk and regret
aversion parameter, and on the EIS parameter. Furthermore, an important finding is that
a regret-averse agent invests more into the risky asset than a purely risk-averse agent under
the weak condition that the well-known Merton investment fraction satisfies 𝜋 = 𝜆

𝜎𝛾
< 1.

Hence, the aversion to regret drives the agent to invest more into the risky asset.

The results of the model can be of particular interest for e.g. households, pension funds and
fund managers. Barber and Odean (2008) observed that retail investors, i.e. households,
tend to display attention-driven buying behavior. As a result, if many attention-driven in-
vestors buy stocks, then this could temporarily inflate the stock price, leading to lower than
expected subsequent returns. The retail investors might then feel regret about those subse-
quent returns. This can indicate the importance of including regret theory into an optimal
investment problem. In Section 5, the economic relevance of the model for the pension funds
and fund managers is discussed.

In summary, Section 2 reviews the existing literature in the field of dynamic asset allocation
and behavioral finance. Thereafter, Section 3 will describe the mathematical model and de-
rive theoretical results for the dynamic asset allocation problem for a regret-averse investor
living in a Black-Scholes world with Epstein-Zin preferences subject to biometric risks. The
optimal consumption-investment-insurance strategies are determined by a dynamic program-
ming approach. Given the preferences of the investor and the (foregone) wealth dynamics,
the so-called Hamilton-Jacobi-Bellman (HJB) equation corresponding to the dynamic op-
timization problem can be constructed. To determine the optimal control processes of a
regret-averse investor, first the optimal foregone consumption and insurance strategy of an
auxiliary investor are derived. The determined foregone control strategies and the foregone
wealth dynamics are then substituted into the HJB equation of the regret-averse investor.
Based on this two-step approach, closed-form solutions will be derived. Section 4 will show
numerical results obtained from a Monte-Carlo simulation for a benchmark regret-averse
investor subject to mortality risk, i.e. the survival model of Richard (1975). Moreover, a
sensitivity analysis for the benchmark survival model will be performed. Numerical results
will be shown for various EIS parameter values 𝜓, regret aversion parameter values 𝜅, risk
aversion parameter values 𝛾, and time preference rate 𝛿. For each parameter value consid-
ered will the results be discussed. Subsequently, Section 5 summarizes and highlights the
most profound results of the research. At last, modeling choices, limitations of the model,
and possible recommendations for further research are discussed in Section 6.
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2 Literature
One of the leading questions in the financial literature is how to optimally invest over an
agent’s life cycle. For decades, this question has been widely studied both in discrete- and
in continuous-time. Dynamic asset allocation problem, optimal portfolio selection problem,
optimal portfolio choice problem, and optimal life-cycle investment strategy problem all refer
to the same type of problem concerning this question. The discrete-time models have been
studied by Phelps (1962), Samuelson (1969), Hakansson (1970), and Fama (1970), among
others. The first to write an article on optimal portfolio choice in continuous-time was Mer-
ton (1969). In his seminal article, Merton considered a risk-averse agent who maximizes
expected utility from intermediate consumption and terminal wealth. The agent’s utility
preferences were given by the power-utility function 𝑢(𝑥) = 𝑥1−𝛾

1−𝛾 . Merton showed for this
problem (Merton’s portfolio problem) that the optimal investment fraction is the well-known
Merton investment fraction 𝜋 = 𝜆

𝜎𝛾
(Merton, 1969). Since Merton (1969), there have been

various extensions to the original consumption-investment problem.

As Merton assumed constant investment opportunities, a logical extension is to assume
instead a stochastic investment opportunity set. Assuming time-varying investment op-
portunities improves the realism of the model. The optimal investment fraction and its
implications for time-varying investment opportunities has been documented by, e.g. Ocone
and Karatzas (1991), Detemple et al. (2003), Nielsen and Vassalou (2006), and Liu (2007).
Liu (2007) derived the optimal consumption-investment choice for general affine or quadratic
market structures.

Instead of assuming all investment opportunities to be stochastic (depending on some under-
lying dynamics), one could also assume only the interest rate to be stochastic. Closed-form
expressions can be found in case the interest rate dynamics are of an affine form. To the
class of affine interest rate dynamics belong the Vasicek (1977) model, Hull and White (1990)
model, and Cox-Ingersoll-Ross (1985) model. Sørensen (1999) examined the optimal invest-
ment choice for an expected utility maximizing investor with utility from terminal wealth
only. Sørensen (1999) showed that changes in the opportunity set can be hedged by the
zero-coupon bond with maturity at investment horizon. A downside of using affine interest
rate models is their lack of realism. They are insufficient to model the whole Term Structure
of Interest Rates (TSIR). Hence, the Heath-Jarrow-Morton (HJM) (1992) framework has
been proposed. This framework does specify the whole TSIR. Munk and Sørensen (2004)
investigate the optimal portfolio choice problem when the term structure of interest rates
evolves according to the HJM framework.

Predictable asset returns have been one of the leading topics of empirical finance for decades.
Based on the portfolio diversification theorem of Markowitz (1952), independently introduced
Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin (1966) the Capital Asset Pric-
ing Model (CAPM). This particular model intends to describe the returns of a portfolio
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or stock by using the returns of the market as a whole. In 1992, Fama and French built
upon the CAPM by including market capitalization and book-to-market ratio as additional
risk factors. Fama and French (2015) refined their Famam-French 3-factor model further
by additionally including profitability and investment as risk factor parameters. The idea
of predictable asset returns has also been applied in the dynamic asset allocation problem.
Both Kim and Omberg (1996) and Wachter (2002), among others, study the optimal invest-
ment strategy by applying mean-reverting stock returns.

Instead of stochastic interest rates, one could also investigate the affect of stochastic volatility.
Most commonly used, is the tractable Heston (1993) model. In this model, the instanta-
neous volatility follows a Cox-Ingersoll-Ross (1985) process and the stock price depends on
the square root of the instantaneous volatility. Liu and Pan (2003), Kraft (2005), and Liu
(2007) determine closed-form solutions for various specifications of the stochastic volatility
model. Liu and Pan (2003) allow for jumps of predetermined size in the stock price based
on empirically observed stock market crashes. Liu et al. (2003) and Branger et al. (2008)
extended upon Liu and Pan (2003) and considered models where both the stock price as well
as the volatility may include jumps.

Up to now, most models that have been discussed were defined in real terms. However,
inflation itself is uncertain and therefore, this uncertainty can be incorporated into the asset
allocation problem. Optimal asset allocation with inflation risk has been studied by e.g.
Campbell and Viceira (2001), Brennan and Xia (2002), Munk et al. (2004), and Munk and
Sørensen (2007).

Most portfolio choice problems abstract from labor income. Naturally, it is more realistic if
the investor earns labor income. The labor income process can be assumed to be a spanned or
unspanned exogenous labor income, or an endogenous labor income. Closed-form solutions
can be found for all cases, but only under strict assumptions. Cocco et al. (2005), Munk
and Sørensen (2010), and Munk (2017) discuss the results when the investor earns spanned
exogenous labor income. Munk and Sørensen (2010) further discuss the relationship between
stochastic labor income and interest rates. Svensson and Werner (1993), Henderson (2005),
and Christensen et al. (2012) derive closed-form solutions under strict assumptions in case
of unspanned exogenous labor income. Cocco et al. (2005), Koijen et al. (2010), and Munk
and Sørensen (2010) were able to derive numerical results for a more general model with
unspanned income process. Bodie et al. (1992) show results in a setting with endogenous
labor income.

An important extension to the previous models is to incorporate biometric risk into the
model. Previously, it was assumed that the investor lives with certainty for a predetermined
time. However, mortality risk is an important factor for retail investors, insurance com-
panies, and pension funds. Richard (1975) was the first to introduce mortality risk to the
original Merton problem (Merton, 1969). Steffensen and Kraft (2008) extended the idea of
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Richard (1975) by representing the biometric sates of the investor by a general finite-state
Markov chain. Cocco et al. (2005), Cocco and Gomes (2012), Hambel et al. (2017), Hambel
(2020), Hambel et al. (2022), Hambel et al. (2023), and Steffensen and Søe (2023) further
discuss several life-cycle investment problems including biometric risk. A recent survey on
biometric risk in life-cycle investment problems has been written by Gomes (2020).

It has been the standard in optimal portfolio choice problems to consider an agent that max-
imizes expected utility with a Von Neumann-Morgenstern (1947) utility function. However,
expected utility theorem conflicts with social experiments such as the Allais paradox (Allais,
1953). As a result, adaptations of expected utility theory have been proposed. One of the
most well-known alternatives to expected utility theory is prospect theory by Kahneman
and Tversky (1979) and the improved cumulative prospect theory (Tversky & Kahneman,
1992). Prospect theory and cumulative prospect theory aim to explain an agent’s behavior
by introducing the notion of prospects. According to Kahneman and Tversky (1979), all
decisions under uncertainty can be modeled as prospects with different values and probabil-
ities. Prospect theory has been applied in the framework of an optimal consumption and
investment choice problem by e.g. Van Bilsen and Laeven (2020).

Alternatively, Abel (1990) argued that agents form a habit regarding their behavior. Abel
(1990) postulated the habit formation theory which states that an agent always consumes at
least her habit, e.g. a weighted average of past consumption levels. Munk (2008) and Kraft
et al. (2017), among others, discuss the optimal consumption and investment choice for an
investor with habit formation in preferences.

In contrast to defining prospects or a habit, Bell (1985), Loomes and Sugden (1986), and Gul
(1991) challenged expected utility theory by arguing that an agent feels disappointment over
outcomes that are considered worse than the expected outcome. Disappointment theory is
developed around the emotion of disappointment of an agent. The theory states that the
disappointment over the outcome of uncertain events influences the behavior of the agent.
A disappointment-averse agent will behave differently as she experiences disutility from dis-
appointments. Disappointment theory has been incorporated into dynamic asset allocation
problems by e.g. Saltari and Travaglini (2009) and Kontosakos et al. (2018). A result of
optimal portfolio choice with disappointment aversion is that under disappointment aver-
sion, it might be better for an agent not to invest in the risky asset, even when the expected
return is positive as the disutility from the expected disappointment might overshadow the
utility from the expected return (Saltari & Travaglini, 2009).

A more commonly used behavioral model in optimal portfolio choice problems is the so-called
Epstein-Zin preferences model (Epstein & Zin, 1989). In case of the classical power-utility
function, both the risk aversion and the elasticity for intertemporal substitution are given by
the same parameter. Epstein and Zin disentangled the agent’s risk aversion and elasticity for
intertemporal substitution. As a result, expected utility theory with a power-utility function
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is a special case of the recursive utility specification (Epstein & Zin, 1989) (discrete-time)
and stochastic differential utility specification (Duffie & Epstein, 1992) (continuous-time).
The application of Epstein-Zin preferences in life-cycle investment problems has been done
by e.g. Schroder and Skiadas (1999), Cocco et al. (2005), and Bhamra and Uppal (2006).

At last, regret theory has been proposed independently by Bell (1982), and Loomes and
Sugden (1982) to explain an agent’s behavior under uncertainty. An agent might feel re-
gret over her decision when the realized outcome does not exceed the anticipated foregone
outcome. An investor experiences more regret if the realized outcome is much lower than
the anticipated foregone outcome. A similarity between disappointment theory and regret
theory is that they are both based on a negative emotion. Regret can either be included as
an additive term to the utility function (see e.g. Bell (1982), Loomes and Sugden (1982),
and Quiggin (1994)) or as a multiplicative term (see e.g. Quiggin (1994), Goossens (2021),
and Goossens (2022)). Goossens (2022) showed that regret theory is able to explain many
of the stylized facts known in asset pricing literature. Therefore, regret theory is shown to
be a particularly promising behavioral model. The impact of regret aversion on the asset
allocation decisions of an investor has been investigated by e.g. Muermann et al. (2006)
and Blanchett (2023). Braun and Muermann (2004) examined the impact of regret on the
demand for insurance.

For an extensive review on dynamic asset allocation and the models previously discussed is
the reader referred to Munk (2017). This literature review took great inspiration of the work
done by Munk (2017).
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3 Model
In this thesis, an investor living in a world with constant investment opportunities who is not
only risk-averse, but also regret-averse, is considered. The investor is subject to biometric
risks affecting her labor income. The regret-averse investor’s preferences are specified by a
stochastic differential utility specification (Duffie & Epstein, 1992) adapted to include regret
aversion. Closed-form solutions are derived for an arbitrary EIS parameter value 𝜓. The
special cases of CRRA and unit EIS are highlighted.

First, the regret-averse utility specification will be discussed in Section 3.1. Second, the
dynamics of the model will be specified in Section 3.2. Third, Section 3.3 depicts the results
for an arbitrary EIS parameter value. In Section 3.4, the results for the special case of
CRRA-regret-utility preferences will be highlighted and in Section 3.5, the results for the
special case of unit-EIS-regret-utility preferences will be discussed.

3.1 Regret-averse utility specification

Merton (1969) showed in his seminal paper the optimal investment and consumption strategy
for a risk-averse investor living in a Black-Scholes world. Merton considered a power-utility
function 𝑢(𝑥) = 𝑥1−𝛾

1−𝛾 with 𝛾 being the risk aversion parameter. It is well known that the
power-utility function is part of the class of CRRA utility specifications. Since Merton
(1969), the power-utility function has been the leading utility specification for dynamic asset
allocation problems as it allows for tractable models. However, this specification only models
the investor’s risk aversion and it neglects other behavioral aspects of the investor’s choice
set such as the marginal rate of time preference, i.e. Epstein-Zin preferences (Epstein & Zin,
1989), or habit formation in the consumption choice (Abel, 1990). An alternative behavioral
aspect, which was found to be relevant to model an investor’s preferences, is regret aversion.

The feeling of regret is based on a comparison between "what is" and "what might have
been" (Lin et al., 2006). An investor experiences regret when her investments turn out to
be less profitable than the foregone investments. Bell (1982), and independently Loomes
and Sugden (1982) developed regret theory as a behavioral utility specification to model an
agent’s utility while taking regret into account. They originally formalized regret theory as
an additive utility specification of the form

𝑢(𝑥, 𝑦) = 𝑣(𝑥) + 𝑔(𝑣(𝑥) − 𝑣(𝑦)) (1)

with 𝑥 being chosen by the investor and 𝑦 being the foregone alternative. 𝑣(𝑥) is a Bernoulli
utility function over monetary positions with 𝑣′ > 0 and 𝑣′′ < 0, and 𝑔(·) : R+ → R is a
regret function which represents the regret or rejoicing (the positive feeling of having chosen
a better option than the foregone alternative, i.e 𝑥 > 𝑦) an agent experiences. Regret is
modeled over the ex-post realized alternatives (Lin et al., 2006). Braun and Muermann
(2004) modified the original specification by proposing a two-attribute utility function of the
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form
𝑢(𝑤) = 𝑣(𝑤) − 𝑘 · 𝑔(𝑣(𝑤𝑚𝑎𝑥) − 𝑣(𝑤)) (2)

where 𝑣(·) and 𝑔(·) are defined as previously with 𝑔′ > 0, 𝑔′′ > 0, and 𝑔(0) = 0. In this
specification, the investor gets utility over realized wealth 𝑤 and experiences regret when
𝑤𝑚𝑎𝑥 > 𝑤 with 𝑤𝑚𝑎𝑥 being the wealth that the individual could have received by having
made the optimal choice knowing the ex-post realized state of the world.

Quiggin (1994) proposed a different type of regret theory, namely multiplicative regret theory.
The utility function in multiplicative regret theory has the following general functional form

𝑢(𝑥, 𝑦) = 𝑉 (𝑥) · 𝜈(𝑟) (3)

where again 𝑥 is the chosen outcome and 𝑟 is the ex-post best foregone outcome. Goossens
(2021) and Goossens (2022) proposed, based on properties as defined by Gollier (2018),
Gabillon (2020), and Goossens (2021), the following multiplicative regret-utility function

𝑢(𝑥, 𝑟) = 𝑥1−𝛾

1 − 𝛾
· 𝑟𝜅, 𝛾 − 1 ≥ 𝜅 ≥ 1, 𝑥 > 0, and 𝑦 > 0 (4)

where 𝛾 is the risk aversion parameter and 𝜅 the regret aversion parameter. This utility
function 𝑢(𝑥, 𝑟) can be decomposed into the CRRA power-utility function 𝑉 (𝑥) = 𝑥1−𝛾

1−𝛾 and
regret function 𝜈(𝑟) = 𝑟𝜅. It should be noted that this utility specification does not allow for
rejoicing as 𝑟 ≥ 𝑥 ≥ 0 by definition.

Multiplicative regret-utility functions are more tractable than additive regret-utility func-
tions. This is similar to habit formation. A multiplicative habit function is in general more
tractable than an additive habit function. However, the multiplicative utility specification
(4) as proposed by Goossens (2022) does not allow for rejoicing. Rejoicing would be a desired
property in a dynamic asset allocation problem as it is particularly difficult to define the
best foregone alternative. Using the idea of Braun and Muermann (2004), the best fore-
gone alternative will be defined by the consumption/wealth an investor could have had by
investing all her available wealth in the stock market.1 This is under the assumption that
for typical values of 𝜇 and 𝑟 (𝜇 > 𝑟) the stock market outperforms a composite of the stock
market and the money market in the long run. However, the composite might outperform
the maximum investment in the short term and hence, the model should allow for rejoic-
ing. It will be shown that an investor who invests all her available wealth into the stock
market is infinitely regret-averse given her fixed risk aversion level 𝛾. This can be explained
by the fact that an infinitely regret-averse investor fears to feel regret over missing out on
a higher consumption/wealth and therefore invests all her available wealth into the stock
market. The investor’s regret aversion overshadows her risk aversion. Given this definition

1The investor will invest all her financial wealth in absence of any labor income. If the investor earns
labor income, then she will invest her entire total wealth corrected by an amount corresponding to the future
value of her labor income into the risky asset.
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of foregone consumption/wealth, the following CRRA multiplicative regret-utility function
for a regret-averse investor is assumed

𝑢(𝑥, 𝑦) = 𝑥1−𝛾

1 − 𝛾

( 𝑦
𝑥

) 𝜅
, 𝛾 − 1 ≥ 𝜅 ≥ 1, 𝑥 > 0, and 𝑦 > 0 (5)

with 𝛾 being the time-independent risk aversion parameter and 𝜅 the time-independent regret
aversion parameter. In this setting, 𝑥 is either the realized consumption or wealth and 𝑦 is
the foregone consumption or wealth. Gollier (2018) argued that it is essential for modeling
regret that the following conditions are satisfied (Goossens, 2022):

(𝑖) marginal utility of consumption increases as foregone consumption increases

(𝑖𝑖) aversion to the foregone alternative

Goossens (2022) induced these conditions by assuming 𝛾 − 1 ≥ 𝜅 ≥ 1 for the multiplicative
regret-utility function (4). Following Goossens (2022), it is therefore assumed that the risk
and regret parameters should satisfy 𝛾 − 1 ≥ 𝜅 ≥ 1. Diecidue and Somasundaram (2017)
showed in their article that regret theory is in line with their behavioral foundation if the
inequalities are strict, i.e. 𝛾 − 1 > 𝜅 > 1. These inequalities can easily be imposed for the
parameter values of the proposed regret-averse utility function (5). The proposed multiplica-
tive regret-function (5) is in line with the usual multiplicative regret function as described
by Quiggin (1994) and Goossens (2022), but differs as it models regret over the relative frac-
tion between consumption/wealth and foregone consumption/wealth instead directly over
foregone consumption/wealth. This way, the function allows foregone consumption/wealth
to be less or equal than realized consumption/wealth and therefore, it allows for rejoicing
in contrast to ordinary multiplicative regret-utility functions. Moreover, Lin et al. (2006)
found that regret is mainly driven by a loss or gain relative to the reference point (foregone
outcome), rather than by the size of that loss or gain. Hence, modeling regret over the rel-
ative difference between realized and foregone outcome seems to be empirically supported.
Note, for 𝜅 = 0 the model reduces to the regular power-utility function 𝑉 (𝑥) = 𝑥1−𝛾

1−𝛾 . Loomes
and Sugden (1982) and Bell (1982) denoted this function as the choiceless utility function.
It is the utility one would get independently of any choice-related feeling (Gabillon, 2020).
Comparing the choiceless utility function and the proposed regret-utility function (5), the
following cases can be distinguished:

1. 𝑦 > 𝑥 ⇒ 𝑢(𝑥, 𝑦) < 𝑉 (𝑥) as
( 𝑦
𝑥

) 𝜅
> 1 for 𝜅 ≥ 1

The investor experiences regret (disutility) over missing out on the foregone choice and
hence the regret-utility is lower than the choiceless utility.

2. 𝑦 = 𝑥 ⇒ 𝑢(𝑥, 𝑦) = 𝑉 (𝑥) as
( 𝑦
𝑥

) 𝜅
= 1 for 𝜅 ≥ 1

The investor does not experience any regret or rejoicing as the realized choice is equal
to the foregone choice. The regret-utility equals the choiceless utility.

3. 𝑦 < 𝑥 ⇒ 𝑢(𝑥, 𝑦) > 𝑉 (𝑥) as
( 𝑦
𝑥

) 𝜅
< 1 for 𝜅 ≥ 1

The investor experiences rejoicing over choosing the better option compared to the
foregone choice and hence the regret-utility is higher than the choiceless utility.
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The analysis of the proposed regret-utility function is concluded by stating that the regret-
utility function satisfies several desired properties as defined by Goossens (2021). Table 1
shows the desired properties a multiplicative regret-utility function should satisfy according
to Goossens (2021). The multiplicative regret-utility function (5) proposed in this thesis sat-
isfies all properties, except property P2c. Property P2c states that a regret-utility function
should be globally increasing. It can be verified that this property is only satisfied by the
proposed regret-utility function (5) if 𝑦

𝑥
≥ 𝜅

𝛾+𝜅−1 . The property is thus by definition satisfied
in case of regret, i.e. 𝑥 ≤ 𝑦, but it is only satisfied if the relative rejoicing, i.e. 𝑥 > 𝑦,
is bounded from below. As a result, the proposed regret-utility function would satisfy all
desired properties if one would exclude rejoicing. Rejoicing would be excluded if one would
be able to define the stochastic dynamics of maximum wealth in all ex-post realized states
of the world, i.e. a stochastic representation of 𝑤𝑚𝑎𝑥 as specified in equation 2. However,
this is mathematically challenging, if even achievable. Therefore, the assumption about fully
investing into the risky asset to determine foregone wealth dynamics is made.

Furthermore, it should be noted that the derived lower bound approaches 0 for 𝛾 → ∞.
Thus, the proposed regret-utility function satisfies all properties for an infinitely risk-averse
investor, but in that case the investment problems becomes redundant as the agent would
only invest into the risk-free asset.

The verification of the desired properties is given in the Appendix 7.2.

At last, by choosing to model regret over the relative effect between the foregone option and
chosen option, the model becomes insensitive to scaling for the regret part 𝜈(𝑥, 𝑦) =

( 𝑦
𝑥

) 𝜅 of
the regret-utility function. However, the choiceless utility part 𝑉 (𝑥) = 𝑥1−𝛾

1−𝛾 is typically still
sensitive to scaling.
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Table 1: This table shows the desired properties of a multiplicative regret-utility function
𝑢(𝑥, 𝑦) as described by Goossens (2021). The partial derivative with respect of 𝑥 and 𝑦 are
respectively denoted by 𝜕𝑢(𝑥,𝑦)

𝜕𝑥
= 𝑢1(𝑥, 𝑦) and 𝜕𝑢(𝑥,𝑦)

𝜕𝑦
= 𝑢2(𝑥, 𝑦). The second order derivatives

are given by 𝜕2𝑢(𝑥,𝑦)
𝜕𝑥2

= 𝑢11(𝑥, 𝑦), 𝜕2𝑢(𝑥,𝑦)
𝜕𝑦2

= 𝑢22(𝑥, 𝑦), 𝜕2𝑢(𝑥,𝑦)
𝜕𝑥𝑦

= 𝑢12(𝑥, 𝑦), and
𝜕2𝑢(𝑥,𝑦)

𝜕𝑦𝑥
= 𝑢21(𝑥, 𝑦).

Property
P1a: The choiceless utility is increasing 𝜕𝑢(𝑥,𝑥)

𝜕𝑥
= 𝑢1(𝑥, 𝑥) + 𝑢2(𝑥, 𝑥) ≥ 0

P1b: The choiceless utility is concave 𝜕2𝑢(𝑥,𝑥)
𝜕𝑥2

= 𝑢11(𝑥, 𝑥) + 𝑢12(𝑥, 𝑥) + 𝑢21(𝑥, 𝑥) + 𝑢22(𝑥, 𝑥) ≤ 0

P2a: The regret-utility is increasing in 𝑥 𝑢1(𝑥, 𝑦) ≥ 0
P2b: The regret-utility is decreasing in 𝑦 𝑢2(𝑥, 𝑦) ≤ 0
P2c: The regret-utility is globally increasing 𝑢1(𝑥, 𝑦) + 𝑢2(𝑥, 𝑦) ≥ 0

P3: The regret-utility is supermodular 𝑢12(𝑥, 𝑦) = 𝑢21(𝑥, 𝑦) ≥ 0

P4a: The regret-utility exhibits payoff risk aversion 𝑢11(𝑥, 𝑦) ≤ 0
P4b: The regret-utility exhibits regret aversion 𝑢22(𝑥, 𝑦) ≤ 0

The proposed regret-utility function (5) is the utility specification in case of CRRA. To
extend the model further, a regret-averse stochastic differential utility specification will be
considered. Stochastic differential utility (Duffie & Epstein, 1992) is the continuous-time
version of recursive utility as proposed by Epstein and Zin (1989). The utility index 𝑉

𝑐,𝜃
𝑡 at

time 𝑡 for consumption process 𝑐 and portfolio process 𝜃 over the remaining lifetime [𝑡, 𝑇] is
given by (Munk, 2017)

𝑉
𝑐,𝜃
𝑡 = E𝑡

[∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝑉 𝑐,𝜃
𝑠 ) d𝑠 +𝑉 𝑐,𝜃

𝑇

]
(6)

The investor maximizes 𝑉
𝑐,𝜃
𝑡 for any 𝑡 < 𝑇 over all admissible control processes given the

state variables at time 𝑡. Hence, the indirect utility is given by

𝐽𝑡 = sup
(𝑐,𝜃)∈A𝑡

𝑉
𝑐,𝜃
𝑡 (7)

with A𝑡 being the set of all admissible control processes.

For a risk-averse investor is the so-called normalized aggregator 𝑓 given by

𝑓 (𝑐,𝑉) =


𝛿

1− 1
𝜓

𝑐
1− 1

𝜓 ( [1 − 𝛾]𝑉)1−
1
𝜑 − 𝛿𝜑𝑉 for 𝜓 ≠ 1

𝛿(1 − 𝛾)𝑉 ln(𝑐) − 𝛿𝑉 ln( [1 − 𝛾]𝑉) for 𝜓 = 1
(8)

with 𝜑 =
1−𝛾
1− 1

𝜓

(Munk, 2017). The time preference of the investor is given by 𝛿, the degree of

relative risk aversion by 𝛾 > 1 and the elasticity of intertemporal substitution is character-

ized by 𝜓 > 0. The term 𝑉
𝑐,𝜃

𝑇
is given by 𝑉

𝑐,𝜃

𝑇
= 𝜀

𝑊
1−𝛾
𝑇

1−𝛾 with 𝜀 ≥ 0 and this term represents
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the utility from terminal wealth.

This utility specification is the continuous-time version of the Kreps-Porteus-Epstein-Zin
recursive utility specification (Kreps and Porteus, 1978, and Epstein and Zin, 1989). For the
special case that 𝜓 = 1

𝛾
, then equation (6) collapses to standard CRRA utility

𝑉
𝑐,𝜃
𝑡 = 𝛿

(
E𝑡

[∫ 𝑇

𝑡

e−𝛿(𝑠−𝑡)
1

1 − 𝛾
𝑐
1−𝛾
𝑠 d𝑠 + 1

𝛿
e−𝛿(𝑇−𝑡)

𝜀

1 − 𝛾
𝑊

1−𝛾
𝑇

] )
which is a positive multiple of the time-additive power-utility specification as originally con-
sidered by Merton (1969) (Munk, 2017).

To model both regret aversion and Epstein-Zin preferences, the stochastic differential utility
specification is modified to incorporate regret aversion. First of all, the terminal utility term

𝑉
𝑐,𝜃

𝑇
is now given by 𝑉

𝑐,𝜃

𝑇
= 𝜀

𝑊
1−𝛾
𝑇

1−𝛾

(
�̂�𝑇

𝑊𝑇

) 𝜅
with 𝜀 ≥ 0. Second, an alternative normalized

aggregator function F is considered. The regret-averse normalized aggregator function F is
defined as

F (𝑐, 𝑐,𝑉) =


𝛿

1− 1
𝜓

𝑐
1− 1

𝜓

(
𝑐
𝑐

) 𝜅
𝜑 ( [1 − 𝛾]𝑉)1−

1
𝜑 − 𝛿𝜑𝑉 for 𝜓 ≠ 1

𝛿𝑉 [(1 − 𝛾 − 𝜅) ln(𝑐) + 𝜅 ln(𝑐) − ln( [1 − 𝛾]𝑉)] for 𝜓 = 1
(9)

where again 𝜑 =
1−𝛾
1− 1

𝜓

. In line with Epstein and Zin (1989) and Duffie and Epstein (1992)

denotes 𝛿 the time preference parameter, 𝛾 the relative risk aversion parameter, 𝜓 > 0 the
EIS parameter, and 𝜅 the regret aversion parameter. The risk and regret aversion parameters
should satisfy following condition: 𝛾 − 1 ≥ 𝜅 ≥ 1. This condition is the same as introduced
in equation (5). The limiting case 𝜓 = 1 is derived using the rule of l’Hopitâl. The proof can
be found in the Appendix 7.1.

The regret-averse normalized aggregator function F is constructed in such a way that it
resembles the properties of the risk-averse normalized aggregator function 𝑓 (8) and that it
captures regret aversion. For the special case of CRRA, i.e. 𝜓 = 1

𝛾
, it holds that F is given

by

F (𝑐, 𝑐,𝑉) = 𝛿

1 − 𝛾
𝑐1−𝛾

(
𝑐

𝑐

) 𝜅
− 𝛿𝑉

This special case yields that 𝑉 𝑐,𝜃
𝑡 reduces to the time-additive regret-utility specification with

regret-utility function (5).

Moreover, note that if 𝜅 = 0, then the regret-averse normalized aggregator function F re-
duces to the Epstein-Zin normalized aggregator function 𝑓 .

This concludes the derivation of the regret-averse utility specification. In the upcoming
sections, the biometric risk model is discussed and the optimal consumption-investment-
insurance strategy for this model will be derived.
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3.2 Investment opportunities and biometric risk model

In this section, the dynamics of the biometric risk model are explained. It is assumed that
the investor lives in a so-called Black-Scholes world, i.e. the investment opportunities are
constant over time. Thus the risk-free rate 𝑟, the expected stock return 𝜇, and stock volatility
𝜎 are all constant over time. As a result, also the market price of risk 𝜆 is constant. The
agent can invest into a stock (index)2 𝑆 and a risk-free money market account 𝑀. The stock
price evolves according to the following stochastic differential equation

d𝑆𝑡 = 𝑆𝑡 [𝜇 d𝑡 + 𝜎 d𝑍𝑡] (10)

where 𝑍 = (𝑍𝑡)𝑡>0 is a standard Brownian motion under the physical probability measure
P. The stock price follows a geometric Brownian motion with the following closed-form
expression

𝑆𝑡 = 𝑆0e(𝜇−
1
2𝜎

2)𝑡+𝜎𝑍𝑡

with 𝑆0 being the stock price at time 𝑡 = 0.

The money market account satisfies following stochastic differential equation

d𝑀𝑡 = 𝑀𝑡𝑟 d𝑡 (11)

which has the following closed-form expression

𝑀𝑡 = 𝑀0e
𝑟𝑡

with 𝑀0 being the amount of money in the money market account at time 𝑡 = 0. The agent
receives continuously compounded interest with rate 𝑟 over her money in the money market
account.

Moreover, it is assumed that the investor can experience health shocks which influence her
labor income. For example, the investor can become disabled or even die before terminal
date 𝑇 . As a result, the investor buys health insurance to hedge the possible loss of income
due to a health shock. The extension of mortality risk to the Merton problem was firstly
introduced by Richard (1975). As proposed by Richard (1975), and Steffensen and Kraft
(2008), the investor can buy continuously adjustable short-term insurance contracts. This is
a very strong and rather unrealistic assumption. However, this allows for a complete market
and hence analytical results can be derived.

The biometric state of the investor is modeled by a finite-state Markov chain as was done by
Steffensen and Kraft (2008), and Hambel et al. (2022). A probability space (Ω, F , {F𝑡}𝑡≥0, P)
is considered. The filtration {F𝑡}𝑡≥0 is generated by a discrete state variable 𝐼 = (𝐼𝑡)𝑡≥0 taking

2As only a single stock is considered, one could interpreted this stock as an index of for example the
entire stock market.
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values in a finite set Q = {0, ..., 𝑄} of possible states and starting in state 𝐼0 = 0 at time
𝑡 = 0. The (𝑄 + 1)-dimensional counting process N𝑡 = (N0

𝑡 , ...,N
𝑄
𝑡 )𝑡≥0 is defined by

N
𝑞
𝑡 =

���{𝑠 ∈ (0, 𝑡] |𝐼𝑠− ≠ 𝑞, 𝐼𝑠 = 𝑞}
���, (12)

which counts the number of jumps into state 𝑞. Moreover, it is assumed there exist suffi-
ciently smooth, age3-dependent, deterministic functions ℎ𝑝,𝑞 : R+ → R+, 𝑝, 𝑞 ∈ Q, such that
N𝑞 admits the stochastic intensity process (ℎ𝐼𝑡− ,𝑞 (𝑡))𝑡≥0 for 𝑞 ∈ Q. The state 𝐼𝑡 = 𝑄 is the
absorbing state and corresponds to the investor’s death. The transition intensity from state
𝑝 to state of death 𝑄 is given by ℎ𝑝,𝑄, the so-called hazard rate of death.

As the time of death is uncertain, the time at which the model ends is uncertain as well.
The time when the investor dies or the model ends, whichever occurs first, is given by

𝜏 = inf
𝑡≥0

{N𝑄
𝑡 > 0} ∧ 𝑇 (13)

This framework is in line with the literature (see e.g. Steffensen and Kraft (2008), and Ham-
bel et al. (2022)) and it allows for an optimal control problem for a risk- and regret-averse
investor with unspanned biometric risk and a stochastic planning horizon with an uncertain
time of death.

𝐼 = 0, alive 𝐼 = 1, deadℎ0,1

Figure 1: Illustration of the survival model adapted from Hambel et al. (2022).

𝐼 = 0, healthy 𝐼 = 2, dead

𝐼 = 1, disabled

ℎ0,2

ℎ0,1 ℎ1,2

Figure 2: Illustration of the critical illness model adapted from Hambel et al. (2022).

The conventional model incorporating biometric risk into a consumption-investment-insurance
problem is the so-called survival model as firstly introduced by Richard (1975). The survival
model only includes two biometric states, alive and dead. The agent can transition given an
age-dependent function ℎ

0,1
𝑡 from state 0, alive, to state 1, dead. Note that, as previously

3The words time and age are used interchangeably. However, formally age is given by the sum of time 𝑡

and starting age at time 𝑡 = 0, i.e. 𝑎𝑔𝑒 = 𝑡 + 𝑎𝑔𝑒𝑡=0.
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explained, the state dead is an absorbing terminal state. The state diagram of the survival
model is depicted in Figure 1.

A more involved biometric risk model as studied by Hambel (2020), Hambel et al. (2017)
and Hambel et al. (2022) is the so-called critical illness model. In this elaborated model, the
agent can additionally become critically ill. Mathematically speaking, this means that the
Markov chain can transition from state 0, healthy, to state 1, disabled, with an age-dependent
transition rate ℎ

0,1
𝑡 . However, it is assumed that the agent cannot recover from her critical

illness, i.e. the transition rate ℎ
1,0
𝑡 = 0 for all 𝑡. Moreover, the agent can pass away both in

the healthy state as well as in the disabled state. Thus, the Markov chain can transition to
the state of dead with an age- and state-dependent transition rate ℎ

𝑝,2
𝑡 , 𝑝 ∈ {0, 1}. Again,

the state of dead denotes an absorbing terminal state. Figure 2 illustrates the state diagram
of the critical illness model.

The investor receives an age- and state-dependent income stream 𝑦 = (𝑦𝑡)𝑡≥0 with 𝑦𝑡 ≥ 0
for all 𝑡 ∈ [0, 𝑇]. The retirement age of the investor is predetermined to be 𝑇𝑟 . Before
retirement, the income process is defined by

d𝑦𝑡 = 𝑦𝑡− [𝛼(𝑡, 𝐼𝑡−) d𝑡 + 𝜁 (𝑡, 𝐼𝑡−) d𝑍𝑡] +
∑︁

𝑞:𝑞≠𝐼𝑡−

𝑦𝑡− [𝑃(𝑡, 𝐼𝑡−, 𝑞) − 1] dN𝑞
𝑡 , 𝑡 < 𝑇𝑟 (14)

where 𝛼(𝑡, 𝐼𝑡−) and 𝜁 (𝑡, 𝐼𝑡−) are age- and state-dependent deterministic functions, and
𝑃(𝑡, 𝐼𝑡−, 𝑞) ∈ (0, 1] is the fraction of income that remains after a transition from state 𝑝

to state 𝑞 for all 𝑞 ≠ 𝑄. If the investor dies (changes into state 𝑄), then the fraction of
remaining income is 𝑃(𝑡, 𝐼𝑡−, 𝑄) = 0 for all states 𝐼𝑡− as the investor will not earn any money
from labor after she passed away. The income process (14) closely resembles the income
process as defined by Hambel et al. (2022). However, Hambel et al. (2022) assume that
the labor income is not driven by a Brownian motion 𝑍𝑡 , i.e. 𝜁 (𝑡, 𝐼𝑡−) = 0 for all 𝑡 and
𝐼𝑡− ∈ Q. This assumption is in line with the literature concerning optimal control processes
with insurance contracts. Nevertheless, to show that the model allows the income process to
be driven by the underlying Brownian motion of the stock market, this thesis assumes that
the labor income stream is perfectly correlated with the stock market. This is a very strict
assumption, but it allows for closed-form solutions as the market is complete and the income
stream can be fully hedged. The income stream and stock market are positively (nega-
tively) correlated if 𝜁 > 0 (𝜁 < 0). Note that in case 𝜁 = 0, the income process reduces to the
one considered by Hambel et al. (2022). The numerical results in section 4 are given for 𝜁 = 0.

In retirement, it is assumed that the investor earns a risk-free, but state-dependent fraction
of her income shortly before retirement (Hambel et al., 2022). This fraction is called the
replacement ratio Γ(𝑝) ∈ (0, 1]. Hence, income after retirement is given by

𝑦𝑡 = Γ(𝐼𝑡−)𝑦𝑇𝑟 , 𝑡 ≥ 𝑇𝑟 (15)

Given these dynamics of income, it can be concluded that the labor income stream can be
valued as a financial asset. The income stream can be seen as a dividend stream from some
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trading strategy in the financial asset. The value of the present value of the future labor
income stream at time 𝑡 is referred to as the human wealth 𝐻 (𝑦, 𝑡, 𝑝). Human wealth is
known to be given by

𝐻 (𝑦, 𝑡, 𝑝) = EQ𝑡
[∫ 𝜏

𝑡

e−𝑟 (𝑠−𝑡)𝑦𝑠 d𝑠

]
= 𝑦𝑡𝐹 (𝑡, 𝑝) (16)

where Q denotes the risk-neutral measure. The risk-neutral measure is unique as the market
is complete. The risk-neutral transition intensities are equal to the unit premiums (Hambel
et al., 2022).

To hedge against the biometric risk, the investor is able to buy continuously-adjustable short-
term insurance contracts. These insurance contracts give coverage for an infinitesimal time
interval [𝑡, 𝑡 + 𝑑𝑡] at any point in time 𝑡. If at any point in time, say at time 𝑡𝑞, the investor
suffers from a biometric shock of type 𝑞, i.e. 𝐼𝑡𝑞− ≠ 𝑞 and 𝐼𝑡𝑞 = 𝑞, then the contract pays
out notional 𝜄𝑞𝑡 such that financial wealth is given by 𝑊𝑡𝑞 = 𝑊𝑡𝑞− + 𝜄

𝑞

𝑡𝑞−. Following Hambel
et al. (2022), the investor can buy these contracts at an insurance premium at a rate P 𝑝,𝑞

𝑡 .
This insurance premium is both age- and state-dependent. The insurance premium P 𝑝,𝑞

𝑡 is
proportional to the notional 𝜄𝑞𝑡 . The unit premium for insurance against a transition into
state 𝑞 while being in state 𝑝 at time 𝑡 is given by ℎ̂

𝑝,𝑞
𝑡 =

P 𝑝,𝑞
𝑡

𝜄
𝑞
𝑡

. In line with Hambel et al.
(2017) and Hambel (2020), the unit premium is determined in such a way that the contract
is actuarially fair and includes fees for the insurer, i.e. ℎ̂

𝑝,𝑞
𝑡 = ℎ

𝑝,𝑞
𝑡 (1+𝜙𝜄

𝑡) with 𝜙𝜄
𝑡 ≥ 0. In case

𝜙𝜄
𝑡 = 0, then the unit premium is actuarially fair and otherwise the age-dependent function

𝜙𝜄
𝑡 incorporates all kind of additional fees. Given this specification, the unit premium ℎ̂

𝑝,𝑞
𝑡 is

a non-negative stochastic process satisfying suitable integrability conditions and

ℎ̂
𝑝,𝑞
𝑡 > 0 if and only if ℎ𝑝,𝑞𝑡 > 0.

It should be noted that in general, an admissible strategy does not guarantee positive finan-
cial wealth, i.e. 𝑊𝑡 > 0, but it does guarantee the sum of positive wealth and life insurance
to be positive, i.e. 𝑊𝑡 + 𝜄

𝑄
𝑡 > 0 for all 𝑡 (Hambel et al., 2022).

In conclusion, the agent invests 𝜃𝑡 amount of money into the stock market, she consumes
𝑐𝑡 and buys health insurance with notional 𝜄𝑞𝑡 for all states 𝑞 ≠ 𝑝 at time 𝑡. The remaining
wealth is invested into the money market account. Hence, given the investor is in biometric
state 𝑝 ≠ 𝑄, the investor’s financial wealth evolves according to

d𝑊𝑡 =

[
𝑟𝑊𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡 −

∑︁
𝑞≠𝑝

𝜄
𝑞
𝑡 ℎ̂

𝐼𝑡 ,𝑞
𝑡

]
d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡 (17)

with 𝑊𝑡𝑞 = 𝑊𝑡𝑞− + 𝜄
𝑞

𝑡𝑞−.

The regret-averse biometric risk model cannot be solved directly as foregone consumption
and wealth are unknown to the investor. Hence, the following solution approach is utilized
to determine the optimal control processes of the regret-averse investor.

19



1 Solve the auxiliary model for an auxiliary investor who invests all her available wealth
into the stock market with a choiceless utility function 𝑉 (𝑥) = 𝑥1−𝛾

1−𝛾 with the same risk
aversion parameter 𝛾 as the regret-averse investor. As stated before, this auxiliary
investor can be seen as an infinitely regret-averse investor. This provides a closed-form
solution for the foregone consumption and notional strategy which only depends on
foregone wealth and time.

2 Solve the regret-averse model using the solution to the auxiliary model. The expressions
for optimal foregone consumption, optimal foregone notional, foregone investment, and
the known optimal dynamics of foregone wealth are utilized as the reference level for
the regret-averse investor. This allows the Hamilton-Jacobi-Bellman (HJB) equation
to be set up and solved for optimal investment, consumption and notional strategy.

This concludes the biometric risk model specification. In section 3.3, results for an arbitrary
EIS parameter value 𝜓 will be derived. Based on these results, the optimal consumption-
investment-insurance strategy for the special case of CRRA-regret-utility preferences, 𝜓 = 1

𝛾
,

will be derived in Section 3.4. At last, in section 3.5, results for the limit case of unit EIS,
𝜓 = 1, will be shown.

3.3 Arbitrary-EIS-regret-utility specification

This section discusses the model if the agent’s preferences for elasticity of intertemporal sub-
stitution towards deterministic consumption plans are given by an arbitrary value of 𝜓 > 0.
Closed-form solutions for the optimal consumption-investment-insurance strategy will be de-
rived. This general biometric risk model will be referred to as the arbitrary-EIS-regret model.

3.3.1 Auxiliary model

The auxiliary investor maximizes the utility over intermediate consumption and terminal
wealth (bequest). The utility index 𝐽 (𝑡, �̃� , 𝑦, 𝑝) at time 𝑡 for foregone consumption process
𝑐, portfolio strategy 𝜃, and notional choices �̃�𝑞 over the remaining lifetime [𝑡, 𝜏] with 𝜏 as
defined in equation (13) is given by

𝐽 (𝑡, �̃� , 𝑦, 𝑝) = sup(
𝑐,( �̃�𝑞)𝑄

𝑞=0

)
∈Ã𝑡

E𝑡,�̃� ,𝑦,𝑝

[∫ 𝜏

𝑡

𝑓 (𝑐𝑠, 𝐽𝑠) d𝑠 + J̃𝜏

]
(18)

The investor maximizes 𝐽 (𝑡, �̃� , 𝑦, 𝑝) for any 𝑡 < 𝜏 over all admissible control processes in set
Ã𝑡 given the state variables at time 𝑡.

The normalized aggregator function 𝑓 for an arbitrary EIS parameter value 0 < 𝜓 ≠ 1, as
specified in equation (8), is given by

𝑓 (𝑐, 𝐽) = 𝛿

1 − 1
𝜓

𝑐
1− 1

𝜓 ( [1 − 𝛾]𝐽)1−
1
𝜑 − 𝛿𝜑𝐽 (19)
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As explained previously, it holds that 𝜑 =
1−𝛾
1− 1

𝜓

. Moreover, 𝛿 denotes the time preference

rate of the investor and 𝛾 > 1 the degree of relative risk aversion. The term J̃𝜏 is given by
J̃𝜏 = 𝜀

�̃�
1−𝛾
𝜏

1−𝛾 with 𝜀 ≥ 0. This term represents the bequest motive with 𝜀 being the weight of
the bequest motive.

To model foregone wealth, it is assumed that the investor invests all her available wealth into
the financial asset. This is under the assumption that typically the stock market outperforms
a composite of the money market and stock market in the long run (in case 𝜇 > 𝑟 > 0).
Investors seek compensation for taking risks and hence the returns on risky assets should
outperform the returns on riskless assets in the long run. The auxiliary investor has the same
risk aversion level 𝛾 as the regret-averse investor, but she chooses to invest her total available
wealth4 into the stock market. From the point of view of the auxiliary investor, this can be
seen as a suboptimal investment strategy, but it allows to model foregone consumption and
wealth similar to the maximum ex post consumption and wealth the investor could have had.

The financial wealth dynamics of the auxiliary investor in biometric state 𝑝 ≠ 𝑄 are given
by

d�̃�𝑡 =

[
𝑟�̃�𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡 −

∑︁
𝑞≠𝑝

�̃�
𝑞
𝑡 ℎ̂

𝐼𝑡 ,𝑞
𝑡

]
d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡 (20)

with �̃�𝑡𝑞 = �̃�𝑡𝑞− + �̃�
𝑞

𝑡𝑞− and 𝑐, 𝜃, �̃�𝑞, and �̃� denoting the foregone consumption, investment
amount, notional, and wealth, respectively.

Based on the indirect utility specification (18) and the foregone financial wealth dynamics
(20) is the Hamilton-Jacobi-Bellman equation for an investor in state 𝑝 ≠ 𝑄 given by

0 =L𝑐 + L𝜃 + L �̃� + 𝐽𝑡

+ 𝐽�̃� [(�̃� + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝑦]

+ 𝐽𝑦𝑦𝛼(𝑡, 𝑝) +
1

2
𝐽𝑦𝑦𝑦

2𝜁 (𝑡, 𝑝)2 −
∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 𝐽

(21)

with

L𝑐 = sup
𝑐≥0

{
𝛿

1 − 1
𝜓

𝑐
1− 1

𝜓 ( [1 − 𝛾]𝐽)1−
1
𝜑 − 𝛿𝜑𝐽 − 𝑐𝐽�̃�

}
L𝜃 = 𝐽�̃�𝜃𝜎𝜆 + 1

2
𝐽�̃��̃�𝜃2𝜎2 + 𝐽�̃�𝑦𝜃𝜎𝑦𝜁 (𝑡, 𝑝)

L �̃� = sup
( �̃�𝑞𝑡 )

𝑄

𝑞=0∈R

−𝐽�̃�
∑︁
𝑞≠𝑝

�̃�𝑞 ℎ̂
𝑝,𝑞
𝑡 +

∑︁
𝑞≠𝑝,𝑄

ℎ
𝑝,𝑞
𝑡 𝐽 (𝑡, �̃� + �̃�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞) + ℎ

𝑝,𝑞
𝑡

𝜀

1 − 𝛾
(�̃� + �̃�𝑄)1−𝛾


4Technically she will invest her total wealth minus a correction term for human wealth into the risky

asset. Hence, it is referred to as total available wealth.
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Subscripts of 𝐽 denote partial derivatives with respect to either the state variables or time 𝑡

and the terminal condition 𝐽 (𝑇, �̃�, 𝑦, 𝑝) = 𝜀
1−𝛾�̃�

1−𝛾.

As previously stated, the auxiliary investor does not maximize over all possible investment
strategies, but chooses to invest all her available wealth into the stock market. Following
Munk (2017), it can be conjectured that total wealth should evolve in the same way as
financial wealth excluding labor income. Hence, it is conjectured that the dynamics for total
wealth for the auxiliary investor are given by

d(�̃� + 𝑦𝐹 (𝑡, 𝑝)) = 𝜇(𝑡, 𝑦, 𝑝) d𝑡 +
∑︁
𝑞≠𝑝

𝜈(𝑡, 𝑦, 𝑝, 𝑞) dN𝑞 + 𝜎

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)
d𝑍𝑡

with 𝜇(𝑡, 𝑦, 𝑝) and 𝜈(𝑡, 𝑦, 𝑝, 𝑞) being the drift rate and jump rate of total wealth, respectively,
which can be determined using Itô’s lemma for jump processes. These rates are unimportant
for the derivations and hence they are omitted. Moreover, the investment fraction for the
auxiliary investor without labor income is given by 𝜃

𝑦=0
𝑡 = �̃�𝑡 for all 𝑡 (the superscript 𝑦 = 0

denotes the model excluding labor income). Excluding any labor income, it is known that
financial wealth equals total wealth (𝑦𝐹 (𝑡, 𝑝) = 0 for all 𝑡 and 𝑝). Since it was conjectured
that the auxiliary investor invests all her wealth into the stock market, it can be concluded
that 𝜃

𝑦=0
𝑡 = �̃�𝑡 for all 𝑡. According to Itô’s lemma, the dynamics of financial wealth should

therefore be given by

d�̃� = 𝜇(𝑡, 𝑦, 𝑝) d𝑡 +
∑︁
𝑞≠𝑝

𝜈(𝑡, 𝑦, 𝑝, 𝑞) dN𝑞 +
[
𝜎

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)
− 𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)

]
d𝑍𝑡

with 𝜇(𝑡, 𝑦, 𝑝) and 𝜈(𝑡, 𝑦, 𝑝, 𝑞) denoting the drift rate and jump rate of financial wealth.
Again, these functions can be determined by Itô’s lemma, but are omitted as they are irrel-
evant for the derivation.

Comparing these dynamics for foregone wealth with the one postulated in equation (20), it
can be concluded that 𝜃𝑡 should satisfy

𝜃𝑡 =

(
�̃�𝑡 + 𝑦𝐹 (𝑡, 𝑝)

)
− 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)

𝜎
(22)

The optimal foregone consumption process can be derived by the first-order condition (FOC)
of L𝑐 with respect to 𝑐. The optimal foregone consumption process is given by

𝑐∗ = 𝛿𝜓𝐽
−𝜓
�̃�

( [1 − 𝛾]𝐽)𝜓(1−
1
𝜑
) (23)

The FOC with respect to the foregone notional �̃� yields

𝐽�̃� (𝑡, �̃� + �̃�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞) = 𝐽�̃� (𝑡, �̃� , 𝑦, 𝑝)
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

(24)
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To determine closed-form solutions, the conjecture is made that the indirect utility function
𝐽 (𝑡, �̃� , 𝑦, 𝑝) is of the form

𝐽 (𝑡, �̃� , 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
1 − 𝛾

(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

with the partial derivatives with respect to time 𝑡, foregone wealth �̃� , and income 𝑦 given
in the Appendix 7.3.

Given the conjecture, the optimal foregone notional ( �̃�𝑞)∗ can be determined. The optimal
foregone notional choice for state 𝑞 ≠ 𝑝 is given by

𝐽�̃� (𝑡, �̃� + �̃�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞) = 𝐽�̃� (𝑡, �̃� , 𝑦, 𝑝)
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

⇐⇒ 𝐺 (𝑡, 𝑝)𝛾
(
�̃� + �̃�𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

)−𝛾
= 𝐺 (𝑡, 𝑝)𝛾

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)−𝛾 ˆℎ
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

⇐⇒ �̃� + �̃�𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞) = 𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

) (
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

( �̃�𝑞)∗ =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) (
�̃� + 𝑦𝐹 (𝑡, 𝑝)

) (
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

−
(
�̃� + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

)
(25)

Similarly, given the conjecture, it holds that the optimal foregone consumption process is
given by

𝑐∗(𝑡, �̃� , 𝑦, 𝑝) = 𝛿𝜓𝐺 (𝑡, 𝑝)−𝜓
𝛾

𝜑 (�̃� + 𝑦𝐹 (𝑡, 𝑝)) (26)

Substituting the expressions for optimal foregone consumption 𝑐∗ and notional choice ( �̃�𝑞)∗,
the foregone investment strategy 𝜃, and the conjecture into the HJB equation (21) yields a
lengthy equation (see Appendix 7.4 equation (116)). Combining all terms that depend on
𝐺 (𝑡, 𝑝)𝛾−1(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 and rewriting, yields the following system of ordinary differential
equations (ODE) for the time- and state-dependent function 𝐺 (𝑡, 𝑝)

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
1

𝛾

(
𝜑𝛿 +

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

)
+ 𝛾 − 1

𝛾

(
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝜎𝜆 − 1

2
𝛾𝜎2

)]
𝐺 (𝑡, 𝑝)

+ 𝛿𝜓 (𝛾 − 1)
𝛾(𝜓 − 1) 𝐺 (𝑡, 𝑝)

𝛾𝜓−1
𝛾−1 −

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)

(27)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 . Note that all terms were divided by

𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 which is by definition non-zero as 𝐺 > 0 and
(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)
> 0.
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In the same way, all remaining terms that depend on 𝐺 (𝑡, 𝑝)𝛾
(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)−𝛾
can be com-

bined into an ODE for 𝐹 (𝑡, 𝑝). The purely time- and state-dependent function 𝐹 (𝑡, 𝑝) is
given by

𝜕𝐹

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞) (28)

with boundary condition 𝐹 (𝑡, 𝑄) = 𝐹 (𝑇, 𝑝) = 0. Additionally, note that all terms were di-
vided by 𝑦 > 0.

Moreover, as shown by Hambel et al. (2022), 𝐹 (𝑡, 𝑝) can be separated based on whether the
investor is active in the labor market or retired. This separation yields

𝐹 (𝑡, 𝑝) = 𝐹𝑎 (𝑡, 𝑝)1{𝑡<𝑇𝑟 } (𝑡) + 𝐹𝑟 (𝑡, 𝑝)1{𝑡≥𝑇𝑟 } (𝑡)

with

𝜕𝐹𝑎

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹𝑎 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑎 (𝑡, 𝑞)

and

𝜕𝐹𝑟

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

]
𝐹𝑟 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑟 (𝑡, 𝑞)

with boundary conditions 𝐹𝑟 (𝑡, 𝑄) = 𝐹𝑟 (𝑇, 𝑝) = 𝐹𝑎 (𝑡, 𝑄) = 0 and 𝐹𝑎 (𝑇𝑟 , 𝑝) = Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝).

In case the transition rates are directional, i.e. ℎ
𝑝,𝑞
𝑡 = 0 for 𝑞 ≤ 𝑝, then 𝐹𝑎 (𝑡, 𝑝), and 𝐹𝑟 (𝑡, 𝑝)

have explicit expressions (Hambel et al., 2022) given by

𝐹𝑟 (𝑡, 𝑝) =
∫ 𝑇

𝑇𝑟

e−
∫ 𝑠

𝑡
(𝑟+∑𝑞>𝑝 ℎ̂

𝑝,𝑞 (𝑢)) d𝑢 (1 +
∑︁
𝑞>𝑝

ℎ̂𝑝,𝑞 (𝑠)𝐹𝑟 (𝑠, 𝑞)) d𝑠

𝐹𝑎 (𝑡, 𝑝) =
∫ 𝑇𝑟

𝑡

e−
∫ 𝑠

𝑡
(𝑟+∑𝑞>𝑝 ℎ̂

𝑝,𝑞 (𝑢)−𝛼(𝑢,𝑝)+𝜁 (𝑢,𝑝)𝜆) d𝑢 (1 +
∑︁
𝑞>𝑝

ℎ̂𝑝,𝑞 (𝑠)𝑝(𝑠, 𝑝, 𝑞)𝐹𝑎 (𝑠, 𝑞)) d𝑠

+ Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝)e−
∫ 𝑇𝑟

𝑡
(𝑟+∑𝑞>𝑝 ℎ̂

𝑝,𝑞 (𝑢)−𝛼(𝑢,𝑝)+𝜁 (𝑢,𝑝)𝜆) d𝑢 .

It can be concluded that the HJB equation is solved by the derived expressions for the optimal
foregone control processes, the conjectured foregone investment strategy, and the time- and
state-dependent functions 𝐺 (𝑡, 𝑝) and 𝐹 (𝑡, 𝑝). Hence, the optimal foregone consumption
process is denoted by

𝑐∗(𝑡, �̃� , 𝑦, 𝑝) = 𝛿𝜓𝐺 (𝑡, 𝑝)−𝜓
𝛾

𝜑

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)
(29)
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Furthermore, the optimal foregone notional choice ( �̃�𝑞)∗ for biometric state 𝑞 is given by

( �̃�𝑞)∗(𝑡, �̃� , 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) (
�̃� + 𝑦𝐹 (𝑡, 𝑝)

) (
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

−
(
�̃� + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

)
(30)

and the foregone investment strategy is given by

𝜃 (𝑡, �̃� , 𝑦, 𝑝) =
(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)
− 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)

𝜎
(31)

The optimal foregone consumption process, optimal notional choice, and foregone investment
strategy will be used to determine the optimal investment strategy, consumption process and
notional choice for the regret-averse investor. These results will be derived in the upcoming
section.

3.3.2 Regret-averse model

The regret-averse investor maximizes utility over intermediate consumption and terminal
wealth. The utility index 𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) at time 𝑡 for consumption process 𝑐, investment
strategy 𝜃, and notional choices 𝜄𝑞 over the remaining lifetime [𝑡, 𝜏] with 𝜏 as defined by
equation (13) is given by

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = sup(
𝑐,𝜃,(𝜄𝑞)𝑄

𝑞=0

)
∈A𝑡

E
𝑡,𝑊,�̂�,𝑦,𝑝

[∫ 𝜏

𝑡

F (𝑐𝑠, 𝑐𝑠, 𝐽𝑠) d𝑠 + J𝜏

]
(32)

The investor maximizes 𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) for any 𝑡 < 𝜏 over all admissible control processes in
set A𝑡 given the state variables and the (optimal) foregone state variables at time 𝑡. Note,
the optimal foregone consumption process 𝑐∗ is denoted by 𝑐, the optimal foregone notional
choice ( �̃�𝑞)∗ by �̂�𝑞, and optimal foregone wealth �̃�∗ by �̂� .

The regret-adjusted aggregator function F for EIS parameter 0 < 𝜓 as specified in equation
(9) is given by

F (𝑐, 𝑐, 𝐽) = 𝛿

1 − 1
𝜓

𝑐
1− 1

𝜓

(
𝑐

𝑐

) 𝜅
𝜑

( [1 − 𝛾]𝐽)1−
1
𝜑 − 𝛿𝜑𝐽 (33)

The bequest motive is given by J𝜏 =
𝜀

1−𝛾𝑊
1−𝛾
𝜏

(
�̂�𝜏

𝑊𝜏

) 𝜅
with 𝜀 ≥ 0. Again, 𝜀 denotes the weight

for the bequest motive. As discussed in Section 3.1, 𝜑 =
1−𝛾
1− 1

𝜓

, 𝛿 > 0 the time preference rate,

𝛾 the relative risk aversion, 𝜅 the regret aversion, and 0 < 𝜓 ≠ 1 the EIS parameter. The
risk and regret aversion parameter should satisfy the condition 𝛾 − 1 ≥ 𝜅 ≥ 1.

It should be noted that the labor income stream of the auxiliary investor and regret-averse
investor are identical. This can be seen from the fact that the underlying investor is the
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same in both cases and labor income is an independent state variable. Neither the choices in
the control processes of the auxiliary investor nor choices of the regret-averse investor affect
the labor income stream. Hence, the dynamics of income and human wealth are identical
in both cases. It will indeed be shown that for the regret-averse investor the time- and
state-dependent function 𝐹 (𝑡, 𝑝) is specified by the same ODE as for the auxiliary investor
(see equation (28)).

Based on the indirect utility equation (32) and wealth dynamics (17), the following Hamilton-
Jacobi-Bellman equation for an investor in biometric state 𝑝 ≠ 𝑄 can be specified

0 =L𝑐 + L𝜃 + L 𝜄 + 𝐽𝑡

+ 𝐽𝑊 [(𝑊 + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝑦]

+ 𝐽
�̂�

[
(�̂� + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝜃𝜎𝜆 + 𝑦 − 𝑐 −

∑︁
𝑝≠𝑞

�̂�𝑞 ℎ̂
𝑝,𝑞
𝑡

]
+ 1

2
𝐽
�̂��̂�

𝜃2𝜎2 + 𝐽𝑦𝑦𝛼(𝑡, 𝑝) +
1

2
𝐽𝑦𝑦𝑦

2𝜁 (𝑡, 𝑝)2

+ 𝐽
�̂�𝑦

𝜃𝜎𝑦𝜁 (𝑡, 𝑝) −
∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 𝐽

(34)

with

L𝑐 = sup
𝑐≥0

{
𝛿

1 − 1
𝜓

𝑐
1− 1

𝜓

(
𝑐

𝑐

) 𝜅
𝜑

( [1 − 𝛾]𝐽)1−
1
𝜑 − 𝛿𝜑𝐽 − 𝑐𝐽𝑊

}
L𝜃 = sup

𝜃∈R

{
𝐽𝑊𝜃𝜎𝜆 + 1

2
𝐽𝑊𝑊𝜃2𝜎2 + 𝐽𝑊𝑦𝜃𝜎𝑦𝜁 (𝑡, 𝑝) + 𝐽

𝑊�̂�
𝜃𝜎2𝜃

}
L 𝜄 = sup

(𝜄𝑞𝑡 )
𝑄

𝑞=0∈R

−𝐽𝑊
∑︁
𝑞≠𝑝

𝜄𝑞 ℎ̂
𝑝,𝑞
𝑡 +

∑︁
𝑞≠𝑝,𝑄

ℎ
𝑝,𝑞
𝑡 𝐽 (𝑡,𝑊 + 𝜄𝑞, �̂� + �̂�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞)

+ℎ𝑝,𝑄𝑡

𝜀

1 − 𝛾

(
𝑊 + 𝜄𝑄

)1−𝛾 (
�̂� + �̂�𝑄

𝑊 + 𝜄𝑄

) 𝜅}
Like in the auxiliary model, subscripts denote the partial derivatives with respect to the state
variables and time 𝑡, and the terminal condition is denoted by
𝐽 (𝑇,𝑊, �̂�, 𝑦, 𝑝) = 𝜀

1−𝛾𝑊
1−𝛾

(
�̂�
𝑊

) 𝜅
.

The optimal control processes can be determined by the respective FOCs. The FOC of L𝑐

with respect to 𝑐 yields the following optimal consumption strategy

𝑐∗ = 𝐽

− 1
1
𝜓
+ 𝜅
𝜑

𝑊

(
1 − 1

𝜓
− 𝜅

𝜑

1 − 1
𝜓

) 1
1
𝜓
+ 𝜅
𝜑

𝛿

1
1
𝜓
+ 𝜅
𝜑 𝑐

𝜅
𝜑

1
𝜓
+ 𝜅
𝜑 ( [1 − 𝛾]𝐽)

1− 1
𝜑

1
𝜓
+ 𝜅
𝜑 (35)
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The FOC of L𝜃 with respect to 𝜃 results in the following optimal investment strategy

𝜃∗ = − 𝐽𝑊𝜆

𝐽𝑊𝑊𝜎
−
𝐽
𝑊�̂�

𝜃

𝐽𝑊𝑊

−
𝐽𝑊𝑦𝑦𝜁 (𝑡, 𝑝)

𝐽𝑊𝑊𝜎
(36)

At last, the optimal notional choice for biometric state 𝑞, given that the investor is in
biometric state 𝑝, can be derived by the FOC of L 𝜄 with respect to 𝜄𝑞. The FOC yields

𝐽𝑊 (𝑡,𝑊 + 𝜄𝑞, �̂� + �̂�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞) = 𝐽𝑊 (𝑡,𝑊, �̂�, 𝑦, 𝑝)
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

To determine closed-form solutions, it is conjectured that the indirect utility function 𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝)
(32) has the following functional form

𝐽

(
𝑡,𝑊, �̂�, 𝑦, 𝑝

)
=
𝐺 (𝑡, 𝑝)𝛾
1 − 𝛾

(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾
(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
The partial derivatives with respect to time 𝑡, wealth 𝑊 , foregone wealth �̂� , and income 𝑦

can be found in the Appendix 7.3.

Given this conjecture and the optimal foregone consumption strategy (29), the optimal
consumption strategy for a regret-averse investor is determined to be

𝑐∗(𝑡,𝑊, 𝑦, 𝑝) = 𝛿𝜓𝐺 (𝑡, 𝑝)
−𝜓2𝛾𝜅
𝜑 (𝜑+𝜅𝜓)𝐺 (𝑡, 𝑝)

−𝛾𝜓
𝜑+𝜅𝜓 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) (37)

Furthermore, the optimal investment amount can be derived by substituting the conjec-
ture together with the foregone investment strategy (31) into equation (36). The optimal
investment strategy is given by

𝜃∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜆 + 𝜅𝜎

𝜎(𝛾 + 𝜅) (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

(38)

Finally, using the conjecture, the optimal notional choice (𝜄𝑞)∗ can be derived(
1 − 𝛾 − 𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑞)𝛾 (𝑊 + 𝜄𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))−𝛾

(
�̂� + �̂�𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)
𝑊 + 𝜄𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

) 𝜅
=(

1 − 𝛾 − 𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝜄𝑞 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + �̂�𝑞 + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝜄𝑞 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅 (
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)
⇐⇒ (𝑊 + 𝜄𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))−𝛾−𝜅 =(

𝐺 (𝑡, 𝑝)
𝐺 (𝑡, 𝑞)

)𝛾
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾−𝜅

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)

�̂� + �̂�𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

) 𝜅 (
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)
⇐⇒ (𝜄𝑞)∗ =

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)

�̂� + �̂�𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

) −𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾+𝜅

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))
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This can be further reduced as the optimal foregone notional �̂�𝑞, as specified in section 3.3.1

in equation (30), yields that �̂� + �̂�𝑞 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞) =

(
𝐺 (𝑡,𝑞)
𝐺 (𝑡,𝑝)

)
(�̂� + 𝑦𝐹 (𝑡, 𝑞))

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

.
Hence, the optimal notional for state 𝑞 is given to be

(𝜄𝑞)∗ =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))

(39)

Substituting the conjecture, the expressions for optimal consumption, notional, and invest-
ment strategy, and the expressions for (optimal) foregone consumption, notional, and in-
vestment strategy into the HJB equation (34) yields a very lengthy equation (see Appendix
7.4 equation (117)). After some tedious calculations, this equation can be decomposed into
three separate ODEs.
First, all terms that consist of 𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂�+𝑦𝐹 (𝑡,𝑝)
𝑊+𝑦𝐹 (𝑡,𝑝)

) 𝜅
can be taken together.

After dividing by 𝑦 · 𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾
(
�̂�+𝑦𝐹 (𝑡,𝑝)
𝑊+𝑦𝐹 (𝑡,𝑝)

) 𝜅
> 0 and rewriting, the following

system of ODEs for the purely time- and state-dependent function 𝐹 (𝑡, 𝑝) is obtained

𝜕𝐹

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝜁 (𝑡, 𝑝)𝜆 − 𝛼(𝑡, 𝑝)

]
𝐹 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞) (40)

with boundary conditions 𝐹 (𝑡, 𝑄) = 𝐹 (𝑇, 𝑝) = 0. Note that this is indeed the same ODE as
for the auxiliary investor as given in section 3.3.1 by equation (28).

Furthermore, all terms that depend on 𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾
(
�̂�+𝑦𝐹 (𝑡,𝑝)
𝑊+𝑦𝐹 (𝑡,𝑝)

) 𝜅
1

�̂�+𝑦𝐹 (𝑡,𝑝) yield
the following system of ODEs

𝜕𝐹

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝜁 (𝑡, 𝑝)𝜆 − 𝛼(𝑡, 𝑝)

]
𝐹 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞) (41)

with again boundary conditions 𝐹 (𝑡, 𝑄) = 𝐹 (𝑇, 𝑝) = 0. It should be noted that all terms
are divided by 𝑦 ·𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂�+𝑦𝐹 (𝑡,𝑝)
𝑊+𝑦𝐹 (𝑡,𝑝)

) 𝜅
1

�̂�+𝑦𝐹 (𝑡,𝑝) > 0. This yields exactly the
same equation as the previous equations (28) and (40). It can thus indeed be concluded that
the ODE for 𝐹 (𝑡, 𝑝) does not change for the regret-averse investor compared to the auxiliary
investor. This is in line with expectation as both investors are the same person, but with
different preferences. Hence, the underlying income process and human wealth should be
the same for both investors.

As seen in section 3.3.1, following Hambel et al. (2022), 𝐹 (𝑡, 𝑝) can be decomposed into

𝐹 (𝑡, 𝑝) = 𝐹𝑎 (𝑡, 𝑝)1{𝑡<𝑇𝑟 } (𝑡) + 𝐹𝑟 (𝑡, 𝑝)1{𝑡≥𝑇𝑟 } (𝑡)
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with

𝜕𝐹𝑎

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹𝑎 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑎 (𝑡, 𝑞)

and

𝜕𝐹𝑟

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

]
𝐹𝑟 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑟 (𝑡, 𝑞)

with boundary conditions 𝐹𝑟 (𝑡, 𝑄) = 𝐹𝑟 (𝑇, 𝑝) = 𝐹𝑎 (𝑡, 𝑄) = 0 and 𝐹𝑎 (𝑇𝑟 , 𝑝) = Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝).

Finally, the system of ODEs for the time- and state-dependent function 𝐺 (𝑡, 𝑝) for the regret-
averse investor can be determined by combining all terms that depend on
𝐺 (𝑡, 𝑝)𝛾−1(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂�+𝑦𝐹 (𝑡,𝑝)
𝑊+𝑦𝐹 (𝑡,𝑝)

) 𝜅
. The function 𝐺 (𝑡, 𝑝) should satisfy following non-

linear ODE

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
1

𝛾

(
𝛿𝜑 +

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

)
+

(
𝛾 − 1

𝛾

) (
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

)
−

(
1 − 𝛾 − 𝜅

𝛾(𝛾 + 𝜅)

) (
𝜆2

2
+ 𝜆𝜎𝜅 + 𝜎2𝜅2

2

)
− 1

2

(
𝜅(𝜅 − 1)

𝛾

)
𝜎2 +

(
𝜅

𝛾

) ©«𝛿𝜓𝐺 (𝑡, 𝑝)−
𝜓𝛾

𝜑 − 𝜆𝜎 +
∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

)
ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾 ª®¬

 𝐺 (𝑡, 𝑝)

−
(
𝛾 + 𝜅

𝛾

) ∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)
𝛾

𝛾+𝜅𝐺 (𝑡, 𝑝)
𝜅

𝛾+𝜅

−
(
𝛿𝜓

𝛾

)
(𝜑 − 1 + 𝛾 + 𝜅)𝐺 (𝑡, 𝑝)

−𝜓2𝜅𝛾
𝜑 (𝜑+𝜅𝜓)𝐺 (𝑡, 𝑝)

𝜑+(𝜅−𝛾)𝜓
𝜑+𝜅𝜓

(42)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

It can be verified that in case 𝜅 = 0 this ODE for 𝐺 (𝑡, 𝑝) reduces to the ODE for 𝐺 (𝑡, 𝑝)
(27), but with the optimal investment strategy instead of the maximum investment strategy.

Purely time- and state-dependent functions for 𝐹 (𝑡, 𝑝) and 𝐺 (𝑡, 𝑝) have been found. From
this it can be concluded that the conjecture was correct. In the remainder of this section,
some remarks on the optimal control processes will be discussed.

First, it can be concluded that a regret-averse investor in biometric state 𝑝 should at time 𝑡

optimally invest 𝜃∗𝑡 amount of money into the stock market with 𝜃∗𝑡 being given by

𝜃∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

(43)
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with 𝐹 (𝑡, 𝑝) being specified by equation (40).

It is thus optimal for the regret-averse investor to invest a constant fraction of her total
wealth into the stock market subtracted by a time- and state-dependent fraction of human
wealth to correct for the dynamics of income. Interestingly, the optimal investment strategy
does not depend on foregone wealth. Moreover, this investment fraction does not depend
on the EIS parameter 𝜓. For every elasticity of intertemporal substitution value, invests
the agent the same amount of money. However, the investment strategy does depend, as
expected, on the risk and regret aversion parameters of the agent.

Comparing 𝜃∗𝑡 to the investment strategy 𝜃𝑡 of the auxiliary investor, it can be seen that
the correction term is the same for both investors. Again, this is in line with expectation
as the income dynamics are for both investors the same. The only difference is the constant
investment fraction. For the auxiliary investor, it was imposed that she would invest all her
total available wealth into the stock market, but the regret-averse investor invests optimally
given her risk and regret aversion parameters. The classical optimal investment strategy for
the Merton problem with spanned exogenous income and no biometric risks (see e.g. Merton
(1969) and Munk (2017)) is given by

𝜃𝑀𝑒𝑟𝑡𝑜𝑛 =
𝜆

𝜎𝛾
(𝑊 + 𝑦𝐹 (𝑡)) − 𝑦𝐹 (𝑡) 𝜁

𝜎

Based on this result and from the auxiliary model, it can easily be verified that the optimal
investment strategy for the Merton problem with spanned exogenous income and biometric
risks is given by

𝜃𝑀𝑒𝑟𝑡𝑜𝑛 =
𝜆

𝜎𝛾
(𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)

𝜎

The regret-averse investor invests a similar, nevertheless, regret-adjusted fraction of total
wealth corresponding to the stock dynamics 𝜆

𝜎
and she invests additionally a fraction 𝜅𝜎

(𝛾+𝜅)𝜎
of total wealth according to her risk aversion.

The regret-averse investment fraction of total wealth is typically larger than the classical
Merton investment fraction. The following theorem states that a regret-averse investor in-
vests a larger amount of money into the stock market than a purely risk-averse investor.

Theorem 3.1 (Regret-averse investment amount exceeds the Merton investment
amount). The difference between the optimal regret-averse investment fraction and Merton
investment fraction is given by

𝜃𝑅𝑒𝑔𝑟𝑒𝑡 − 𝜃𝑀𝑒𝑟𝑡𝑜𝑛 =
𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

−
[
𝜆

𝜎𝛾
(𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)

𝜎

]
=

(
1 − 𝜆

𝜎𝛾

)
𝜅

𝛾 + 𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝)) > 0 if and only if 𝛾 >

𝜆

𝜎
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Theorem 3.1 shows that if and only if the Merton investment fraction 𝜋𝑀𝑒𝑟𝑡𝑜𝑛 = 𝜆
𝜎𝛾

< 1, then
the regret-averse investment amount exceeds the Merton investment amount. In Section
3.5.2, it will be shown that the optimal investment strategy for a regret-averse investor with
unit EIS preferences invests according to the same strategy as a regret-averse investor with
arbitrary EIS preferences. Hence, Theorem 3.1 holds for any general regret-averse investor
with her preferences as given by (9). The proof for Theorem 3.1 can be found in the Ap-
pendix 7.5.

It is clear that for 𝜅 = 0, the regret-averse investment fraction reduces to the classical Merton
investment fraction. Additionally for an infinitely regret-averse investor, i.e. 𝜅 → ∞, with
fixed risk aversion level 𝛾5, it holds that

lim
𝜅→∞

𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 → 1

As a result, it also holds that

lim
𝜅→∞

𝜃∗𝑡 = lim
𝜅→∞

𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

→ 𝑊 + 𝑦𝐹 (𝑡, 𝑝) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

= 𝜃𝑡

This shows, as previously stated (see Section 3.1), that an infinitely regret-averse investor
indeed invests all her total wealth into the stock market only corrected for her human wealth.
It can thus be stated that the auxiliary investor corresponds to an infinitely regret-averse
investor.

Furthermore, it should be noted that for an infinitely risk-averse investor with a fixed regret
aversion level 𝜅, it holds that the investment fraction corresponding to total wealth becomes
zero as expected

lim
𝛾→∞

𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 → 0.

This concludes the analysis of the optimal investment portfolio of a risk- and regret-averse
investor.

Second, the investor should optimally consume 𝑐∗𝑡 according to optimal consumption process

𝑐∗(𝑡,𝑊, 𝑦, 𝑝) = 𝛿𝜓𝐺 (𝑡, 𝑝)
−𝜓2𝛾𝜅
𝜑 (𝜑+𝜅𝜓)𝐺 (𝑡, 𝑝)

−𝛾𝜓
𝜑+𝜅𝜓 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) (44)

with 𝐹 (𝑡, 𝑝) being given by equation (40), 𝐺 (𝑡, 𝑝) by equation (42), and 𝐺 (𝑡, 𝑝) by equation
(27).

The regret-averse investor should thus consume a purely time- and state-dependent frac-
tion of total wealth. This fraction both depends on the time- and state-dependent function

5Note that this case violates the parameter value condition 𝛾 − 1 ≥ 𝜅 ≥ 1. Nevertheless, this condition
can technically be violated if the weaker conditions 𝛾 > 1 and 𝜅 ≥ 1 are satisfied.
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𝐺 (𝑡, 𝑝) as well as on the function 𝐺 (𝑡, 𝑝). Comparing 𝑐∗𝑡 with 𝑐∗𝑡 from equation (26), it
can be seen that the consumption process looks very similar. The regret-averse investor
consumes based on a non-linear combination of 𝐺 (𝑡, 𝑝) and the foregone function 𝐺 (𝑡, 𝑝),
whereas the auxiliary investor consumes purely depending on 𝐺 (𝑡, 𝑝). Like for the optimal
investment strategy, it should be noted that also the optimal consumption choice does not
depend directly on foregone wealth. However, the 𝐺 (𝑡, 𝑝) function is derived for the foregone
wealth process �̃� .

The investor consumes differently depending on her regret aversion parameter 𝜅. If 𝜅 = 0,
then the optimal consumption process for the regret-averse investor reduces to the optimal
foregone consumption process of the auxiliary investor. This is in line with expectations.
Furthermore, given 𝛾 and 𝜓, it holds that the larger 𝜅, the more the agent consumes if she
were the auxiliary investor. This can be seen from the following limits

lim
𝜅→∞

−𝜓2𝛾𝜅

𝜑(𝜑 + 𝜅𝜓) → −𝜓𝛾
𝜑

and lim
𝜅→∞

−𝛾𝜓
𝜑 + 𝜅𝜓

→ 0

An economic interpretation of this result is that the regret aversion towards the foregone
consumption drives her to consume as if she would have had the foregone total wealth. Sim-
ilar to how an infinitely regret-averse agent invests all of her total available wealth into the
risky asset.

The EIS parameter 𝜓 affects the consumption process differently depending on whether
0 < 𝜓 < 1 or 𝜓 > 1. For 0 < 𝜓 < 1, it can be shown that −𝜓2𝛾𝜅

𝜑(𝜑+𝜅𝜓) < 0 and also −𝛾𝜓
𝜑+𝜅𝜓 < 0.

Hence, the functions 𝐺 (𝑡, 𝑝) and 𝐺 (𝑡, 𝑝) are to the power of a negative value. In the auxiliary
model, it also holds for 0 < 𝜓 < 1 that 𝐺 (𝑡, 𝑝) is to the power of a negative value −𝛾𝜓

𝜑
< 0.

Additionally, for 0 < 𝛿 < 1 (𝛿 is typically between (0, 0.15)), it holds that 𝛿𝜓 > 𝛿. However,
for 𝜓 > 1, the results are less unambiguous. It can be shown that 𝜑+𝜅𝜓 < 0 if 1 < 𝜓 <

𝛾+𝜅−1
𝜅

.
Under this condition it holds that −𝜓2𝛾𝜅

𝜑(𝜑+𝜅𝜓) < 0 and −𝛾𝜓
𝜑+𝜅𝜓 > 0. Otherwise, the fractions satisfy

−𝜓2𝛾𝜅

𝜑(𝜑+𝜅𝜓) ≤ 0 and −𝛾𝜓
𝜑+𝜅𝜓 ≤ 0. The effect of 𝜓 is partly mitigated by the effect of 𝜅. This is

in contrast to the results for the auxiliary model, where it was found that 𝐺 (𝑡, 𝑝) is to the
power of a positive value −𝛾𝜓

𝜑
> 0 for 𝜓 > 1.

This concludes the analysis of the optimal consumption strategy for a regret-averse investor.

At last, the investor should buy life-insurance contracts against life shocks with optimal
notional (𝜄𝑞)∗ for all states (𝑞 ≠ 𝑝) ∈ Q with (𝜄𝑞)∗ being specified by

(𝜄𝑞)∗(𝑡,𝑊, 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))

(45)
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again with 𝐹 (𝑡, 𝑝) being given by equation (40), 𝐺 (𝑡, 𝑝) by equation (42), and 𝐺 (𝑡, 𝑝) by
equation (27).

The regret-averse investor should buy life-insurance contracts with optimal notional (𝜄𝑞)∗ for
states (𝑞 ≠ 𝑝) ∈ Q depending on her total wealth, the transition rates ℎ̂𝑝,𝑞 and ℎ𝑝,𝑞, and
the time- and state-dependent functions 𝐺 (𝑡, 𝑝) and 𝐺 (𝑡, 𝑝). The investor might short-sell
her life-insurance contracts, i.e. (𝜄𝑞𝑡 )∗ < 0, in case the total wealth in the new biometric
state exceeds the time- and state-dependent fraction of current total wealth. Comparably to
the previous optimal control processes, the optimal choice of the notional does not directly
depend on foregone wealth �̃� . The optimal notional (𝜄𝑞)∗ is very similar to the optimal fore-
gone notional ( �̃�𝑞)∗ of equation (30). The regret-averse investor decides on the notional, not
only based on a time- and state-dependent fraction of 𝐺 (𝑡,𝑞)

𝐺 (𝑡,𝑝) . but also based on the foregone

fraction 𝐺 (𝑡,𝑞)
𝐺 (𝑡,𝑝) . As expected, the regret-averse investor behaves like the auxiliary investor in

case 𝜅 → ∞. Furthermore, note that for 𝜅 = 0, the agent buys life-insurance contracts with
a similar notional as in the auxiliary model, but the underlying function 𝐺 (𝑡, 𝑝) is different
compared to the auxiliary model. As explained previously, 𝐺 (𝑡, 𝑝) depends on the optimal
investment strategy, whereas 𝐺 (𝑡, 𝑝) depends on a suboptimal investment strategy. Finally,
the optimal insurance strategy for a regret-averse investor does not directly depend on the
EIS parameter 𝜓. However, it should be noted that the underlying functions 𝐺 (𝑡, 𝑝) and
𝐺 (𝑡, 𝑝) depend on 𝜓.

This concludes the analysis of the optimal notional choice for biometric state 𝑞.

In conclusion, the results for this arbitrary-EIS-regret-utility specification with exogenous
income subject to possible biometric shocks can be stated in the following theorem.

Theorem 3.2 (Biometric risk model for a regret-averse investor with
arbitrary-EIS-regret-utility specifications). For a regret-averse investor with arbitrary-
EIS-regret-utility specifications living in a Black-Scholes world with exogenous labor income
and who is subject to biometric shocks, it holds that the financial wealth dynamics of the
investor in biometric state 𝑝 ≠ 𝑄 are given by

d𝑊𝑡 =

[
𝑟𝑊𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡 −

∑︁
𝑞≠𝑝

𝜄
𝑞
𝑡 ℎ̂

𝐼𝑡 ,𝑞
𝑡

]
d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡

with 𝑊𝑡𝑞 = 𝑊𝑡𝑞− + 𝜄
𝑞

𝑡𝑞−.

The value function is given by

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 1

1 − 𝛾
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
where both 𝐹 (𝑡, 𝑝) = 𝐹𝑎 (𝑡, 𝑝)1{𝑡<𝑇𝑟 } (𝑡) +𝐹𝑟 (𝑡, 𝑝)1{𝑡≥𝑇𝑟 } (𝑡) and 𝐺 (𝑡, 𝑝) are satisfying a system
of ordinary differential equations. The function 𝐹 (𝑡, 𝑝) should satisfy the following system
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of ordinary differential equations

𝜕𝐹𝑎

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹𝑎 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑎 (𝑡, 𝑞)

𝜕𝐹𝑟

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

]
𝐹𝑟 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑟 (𝑡, 𝑞)

(46)

with boundary conditions 𝐹𝑟 (𝑡, 𝑄) = 𝐹𝑟 (𝑇, 𝑝) = 𝐹𝑎 (𝑡, 𝑄) = 0 and 𝐹𝑎 (𝑇𝑟 , 𝑝) = Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝).

Moreover, the function 𝐺 (𝑡, 𝑝) should satisfy

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
1

𝛾

(
𝛿𝜑 +

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

)
+

(
𝛾 − 1

𝛾

) (
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

)
−

(
1 − 𝛾 − 𝜅

𝛾(𝛾 + 𝜅)

) (
𝜆2

2
+ 𝜆𝜎𝜅 + 𝜎2𝜅2

2

)
− 1

2

(
𝜅(𝜅 − 1)

𝛾

)
𝜎2 +

(
𝜅

𝛾

) ©«𝛿𝜓𝐺 (𝑡, 𝑝)−
𝜓𝛾

𝜑 − 𝜆𝜎 +
∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

)
ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾 ª®¬

 𝐺 (𝑡, 𝑝)

−
(
𝛾 + 𝜅

𝛾

) ∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)
𝛾

𝛾+𝜅𝐺 (𝑡, 𝑝)
𝜅

𝛾+𝜅

−
(
𝛿𝜓

𝛾

)
(𝜑 − 1 + 𝛾 + 𝜅)𝐺 (𝑡, 𝑝)

−𝜓2𝜅𝛾
𝜑 (𝜑+𝜅𝜓)𝐺 (𝑡, 𝑝)

𝜑+(𝜅−𝛾)𝜓
𝜑+𝜅𝜓

(47)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

The optimal consumption-investment-insurance strategy is given by the following expressions

𝑐∗(𝑡,𝑊, 𝑦, 𝑝) = 𝛿𝜓𝐺 (𝑡, 𝑝)
−𝜓2𝛾𝜅
𝜑 (𝜑+𝜅𝜓)𝐺 (𝑡, 𝑝)

−𝛾𝜓
𝜑+𝜅𝜓 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) (48)

𝜃∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊𝑡 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

(49)

(𝜄𝑞)∗(𝑡,𝑊, 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))

(50)

where 𝐺 (𝑡, 𝑝) is determined by the auxiliary model and should satisfy the following system
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of ordinary differential equations

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
1

𝛾

(
𝛿𝜑 +

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

)
+ 𝛾 − 1

𝛾

(
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝜎𝜆 − 1

2
𝛾𝜎2

)]
𝐺 (𝑡, 𝑝)

+ 𝛿𝜓 (𝛾 − 1)
𝛾(𝜓 − 1) 𝐺 (𝑡, 𝑝)

𝛾𝜓−1
𝛾−1 −

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)

(51)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

This concludes the analysis of the optimal consumption-investment-insurance strategy for a
regret-averse investor who is subject to biometric shocks with an arbitrary EIS parameter
value. The sequential sections will first discuss the special case of 𝜓 = 1

𝛾
, i.e. CRRA-

regret-utility specification (Section 3.4), and thereafter the special case of 𝜓 = 1, i.e. the
unit-EIS-regret-utility specification (Section 3.5).

3.4 CRRA-regret-utility specification

This section discusses the special case of 𝜓 = 1
𝛾
< 16. It will be shown that for this specific

value of the EIS parameter the model will reduce to a regret-averse time-additive power-
utility model. This model is referred to as the CRRA-regret model.

3.4.1 Auxiliary model

As stated in Section 3.3.1, it is assumed that the auxiliary investor maximizes the utility over
intermediate consumption and terminal wealth. Since 𝜓 = 1

𝛾
< 1, equation (19) collapses to

𝑓 (𝑐, 𝐽) = 𝛿

1 − 𝛾
𝑐1−𝛾 − 𝛿𝐽 (52)

as 𝜑 = 1. As a result, equation (18) reduces to

𝐽 (𝑡, �̃� , 𝑦, 𝑝) = sup(
𝑐,( �̃�𝑞)𝑄

𝑞=0

)
∈Ã𝑡

𝛿

(
E𝑡,�̃� ,𝑦,𝑝

[∫ 𝜏

𝑡

e−𝛿(𝑠−𝑡)
(
𝑐
1−𝛾
𝑠

1 − 𝛾

)
d𝑠 + 1

𝛿
𝜀e−𝛿(𝜏−𝑡)

(
�̃�

1−𝛾
𝜏

1 − 𝛾

)])
(53)

This is a positive multiple of the classical time-additive power-utility specification (Munk,
2017). To show the most general results possible for the CRRA-regret model, this function
is generalized to

𝐽 (𝑡, �̃� , 𝑦, 𝑝) = sup(
𝑐,( �̃�𝑞)𝑄

𝑞=0

)
∈Ã𝑡

E𝑡,�̃� ,𝑦,𝑝

[∫ 𝜏

𝑡

e−𝛿(𝑠−𝑡)𝑣(𝑐𝑠) d𝑠 + e−𝛿(𝜏−𝑡)𝑣(�̃�𝜏)
]

(54)

6By definition, it holds that 𝛾 > 1 and as a result, 𝜓 = 1
𝛾
< 1.
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where the integral goes from 𝑡 to 𝜏 with 𝜏 being specified by equation (13). The time
preference of the investor is denoted by 𝛿. The utility functions for intermediate consumption
and terminal wealth are given by

𝑣(𝑐) = 𝜚
𝑐1−𝛾

1 − 𝛾
𝑣(�̃�𝜏) = 𝜀

�̃�
1−𝛾
𝜏

1 − 𝛾

The weight of intermediate consumption is given by 𝜚 and the weight of the bequest motive is
given by 𝜀. It should be noted that equation (53) is a special case of equation (54) with 𝜚 = 𝛿.

The HJB equation for the auxiliary investor in biometric state 𝑝 is given by

0 = − 𝛿𝐽 + L𝑐 + L𝜃 + L �̃� + 𝐽𝑡

+ 𝐽�̃� [(�̃� + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝑦]

+ 𝐽𝑦𝑦𝛼(𝑡, 𝑝) +
1

2
𝐽𝑦𝑦𝑦

2𝜁 (𝑡, 𝑝)2 −
∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 𝐽

(55)

with

L𝑐 = sup
𝑐≥0

{
𝜚
𝑐1−𝛾

1 − 𝛾
− 𝑐𝐽�̃�

}
L𝜃 = 𝐽�̃�𝜃𝜎𝜆 + 1

2
𝐽�̃��̃�𝜃2𝜎2 + 𝐽�̃�𝑦𝜃𝜎𝑦𝜁 (𝑡, 𝑝)

L �̃� = sup
( �̃�𝑞𝑡 )

𝑄

𝑞=0∈R

−𝐽�̃�
∑︁
𝑞≠𝑝

�̃�𝑞 ℎ̂
𝑝,𝑞
𝑡 +

∑︁
𝑞≠𝑝,𝑄

ℎ
𝑝,𝑞
𝑡 𝐽 (𝑡, �̃� + �̃�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞) + ℎ

𝑝,𝑞
𝑡

𝜀

1 − 𝛾
(�̃� + �̃�𝑄)1−𝛾


Subscripts of 𝐽 denote partial derivatives with respect to either the state variables or time 𝑡

and the terminal condition is given by 𝐽 (𝑇, �̃�, 𝑦, 𝑝) = 𝜀
1−𝛾�̃�

1−𝛾.

In Section 3.3.1, it was conjectured that the indirect utility function 𝐽 (𝑡, �̃� , 𝑦, 𝑝) has a
solution of the form

𝐽 (𝑡, �̃� , 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
1 − 𝛾

(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

This conjecture does not depend on 𝜓 and hence remains the same. The partial derivatives
can be found in the Appendix 7.3.

Based on the results of Section 3.3.1, the foregone investment strategy and the optimal
foregone consumption process and notional choice can be determined. From equation (31),
it is known that the foregone investment strategy is given by

𝜃 (𝑡, �̃� , 𝑦, 𝑝) =
(
�̃�𝑡 + 𝑦𝐹 (𝑡, 𝑝)

)
− 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)

𝜎
(56)
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Furthermore, from equation (30), it is known that the optimal foregone notional choice is
given by

( �̃�𝑞)∗(𝑡, �̃� , 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) (
�̃� + 𝑦𝐹 (𝑡, 𝑝)

) (
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

−
(
�̃� + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

) (57)

The optimal consumption process can be determined based on the FOC of L𝑐 with respect
to 𝑐. At the optimum, marginal utility from consumption should be equal to marginal utility
from wealth. The envelope condition yields that optimal foregone consumption is given by

𝑐∗ = 𝜚
1
𝛾 𝐽

− 1
𝛾

�̃�
(58)

Substituting in the conjecture yields the optimal foregone consumption strategy

𝑐∗(𝑡, �̃� , 𝑦, 𝑝) = 𝜚
1
𝛾
�̃� + 𝑦𝐹 (𝑡, 𝑝)

𝐺 (𝑡, 𝑝)
(59)

As previously stated, the optimal foregone consumption process is identical to equation (29)
for 𝜓 = 1

𝛾
and 𝜚 = 𝛿.

Substituting the foregone investment strategy, the optimal foregone consumption-insurance
strategy, and the conjecture in the HJB equation (55) yields an ODE from which again the
functions 𝐺 (𝑡, 𝑝) and 𝐹 (𝑡, 𝑝) can be determined. For completeness, the equation is given in
the Appendix 7.4 by equation (116).

The time- and state-dependent function 𝐺 (𝑡, 𝑝) should satisfy the following system of ODEs

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
1

𝛾

(
𝛿 +

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

)
+ 𝛾 − 1

𝛾

(
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝜎𝜆 − 1

2
𝛾𝜎2

)]
𝐺 (𝑡, 𝑝)

− 𝜚
1
𝛾 −

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)

(60)

with boundary condition 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 . As expected, ODE (27) reduces for 𝜚 = 𝛿

and 𝜓 = 1
𝛾

to this ODE.

The purely time- and state-dependent function 𝐹 (𝑡, 𝑝) is given by

𝜕𝐹

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞) (61)
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with boundary condition 𝐹 (𝑡, 𝑄) = 𝐹 (𝑇, 𝑝) = 0.

Moreover, 𝐹 (𝑡, 𝑝) can be separated based on whether the investor is active in the labor
market or retired (Hambel et al., 2022). This separation yields

𝐹 (𝑡, 𝑝) = 𝐹𝑎 (𝑡, 𝑝)1{𝑡<𝑇𝑟 } (𝑡) + 𝐹𝑟 (𝑡, 𝑝)1{𝑡≥𝑇𝑟 } (𝑡)

with

𝜕𝐹𝑎

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹𝑎 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑎 (𝑡, 𝑞)

and

𝜕𝐹𝑟

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

]
𝐹𝑟 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑟 (𝑡, 𝑞)

with boundary conditions 𝐹𝑟 (𝑡, 𝑄) = 𝐹𝑟 (𝑇, 𝑝) = 𝐹𝑎 (𝑡, 𝑄) = 0 and 𝐹𝑎 (𝑇𝑟 , 𝑝) = Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝).

In case the transition rates are directional, i.e. ℎ
𝑝,𝑞
𝑡 = 0 for 𝑞 ≤ 𝑝, then 𝐺 (𝑡, 𝑝), 𝐹𝑎 (𝑡, 𝑝),

and 𝐹𝑟 (𝑡, 𝑝) have explicit expressions given by (Hambel et al., 2022)

𝐺 (𝑡, 𝑝) =
∫ 𝑇

𝑡

e−
∫ 𝑠

𝑡
Δ(𝑢,𝑝) d𝑢 (𝜚

1
𝛾 +

∑︁
𝑞>𝑝

ℎ𝑝,𝑞 (𝑠)
(
ℎ̂𝑝,𝑞 (𝑠)
ℎ𝑝,𝑞 (𝑠)

)1− 1
𝛾

𝐺 (𝑠, 𝑞)) d𝑠 + 𝜀
1
𝛾 e−

∫ 𝑇

𝑡
Δ(𝑢,𝑝) d𝑢

with Δ(𝑡, 𝑝) = 1
𝛾
(𝛿 + ∑

𝑞≠𝑝 ℎ
𝑝,𝑞
𝑡 ) + 𝛾−1

𝛾
(𝑟 + ∑

𝑞≠𝑝 ℎ̂
𝑝,𝑞
𝑡 + 𝜎𝜆 − 1

2𝛾𝜎
2) and

𝐹𝑟 (𝑡, 𝑝) =
∫ 𝑇

𝑇𝑟

e−
∫ 𝑠

𝑡
(𝑟+∑𝑞>𝑝 ℎ̂

𝑝,𝑞 (𝑢)) d𝑢 (1 +
∑︁
𝑞>𝑝

ℎ̂𝑝,𝑞 (𝑠)𝐹𝑟 (𝑠, 𝑞)) d𝑠

𝐹𝑎 (𝑡, 𝑝) =
∫ 𝑇𝑟

𝑡

e−
∫ 𝑠

𝑡
(𝑟+∑𝑞>𝑝 ℎ̂

𝑝,𝑞 (𝑢)−𝛼(𝑢,𝑝)+𝜁 (𝑢,𝑝)𝜆) d𝑢 (1 +
∑︁
𝑞>𝑝

ℎ̂𝑝,𝑞 (𝑠)𝑝(𝑠, 𝑝, 𝑞)𝐹𝑎 (𝑠, 𝑞)) d𝑠

+ Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝)e−
∫ 𝑇𝑟

𝑡
(𝑟+∑𝑞>𝑝 ℎ̂

𝑝,𝑞 (𝑢)−𝛼(𝑢,𝑝)+𝜁 (𝑢,𝑝)𝜆) d𝑢 .

This concludes the results of the auxiliary investor for the general time-additive power-utility
specification. These results will again be utilized in determining the optimal consumption-
investment-insurance strategy for the CRRA-regret-utility specification.

3.4.2 Regret-averse model

The regret-averse investor maximizes her utility from intermediate consumption and terminal
wealth. As described in section 3.1, for the special case of 𝜓 = 1

𝛾
reduces equation (33) to

F (𝑐, 𝑐, 𝐽) = 𝛿

1 − 𝛾
𝑐1−𝛾

(
𝑐

𝑐

) 𝜅
− 𝛿𝐽 (62)
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As a result, the indirect utility function (32) of the regret-averse investor collapses to the
following expression

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = sup(
𝑐,𝜃,(𝜄𝑞)𝑄

𝑞=0

)
∈A𝑡

𝛿

(
E
𝑡,𝑊,�̂�,𝑦,𝑝

[∫ 𝜏

𝑡

e−𝛿(𝑠−𝑡)
𝛿

1 − 𝛾
𝑐
1−𝛾
𝑠

(
𝑐𝑠

𝑐𝑠

) 𝜅
d𝑠 + 1

𝛿
𝜀e−𝛿(𝜏−𝑡)

𝑊
1−𝛾
𝜏

1 − 𝛾

(
�̂�𝜏

𝑊𝜏

) 𝜅])
Similar as in the auxiliary model, this can be seen as a positive multiple of a regret-averse
time-additive power-utility specification. To generalize the results, it is assumed that the
preferences of the investor are captured by the following time-additive expected utility func-
tion

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = sup(
𝑐,𝜃,(𝜄𝑞)𝑄

𝑞=0

)
∈A𝑡

E
𝑡,𝑊,�̂�,𝑦,𝑝

[∫ 𝜏

𝑡

e−𝛿(𝑠−𝑡)𝑢(𝑐𝑠, 𝑐𝑠) d𝑠 + e−𝛿(𝜏−𝑡)𝑢(𝑊𝜏, �̂�𝜏)
]

(63)

where again 𝜏 is given by equation (13). The optimal foregone consumption process, no-
tional choice, and wealth are denoted by 𝑐, �̂�, and �̂� , respectively. The utility functions for
intermediate consumption and terminal wealth are given by

𝑢(𝑐, 𝑐) = 𝜚
𝑐1−𝛾

1 − 𝛾

(
𝑐

𝑐

) 𝜅
𝑢(𝑊𝜏, �̂�𝜏) = 𝜀

𝑊
1−𝛾
𝜏

1 − 𝛾

(
�̂�𝜏

𝑊𝜏

) 𝜅
with 𝜚 ≥ 0 and 𝜀 ≥ 0 being the relative weight of intermediate consumption and the bequest
motive, respectively. Note that these are the regret-averse power-utility functions as spec-
ified in section 3.1 equation (5) with regret measured over the relative difference between
foregone consumption/wealth and realized consumption/wealth.

Based on the indirect utility function (63) and wealth dynamics (17), the following Hamilton-
Jacobi-Bellman equation for an investor in biometric state 𝑝 can be specified

0 = − 𝛿𝐽 + L𝑐 + L𝜃 + L 𝜄 + 𝐽𝑡

+ 𝐽𝑊 [(𝑊 + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝑦]

+ 𝐽
�̂�

[
(�̂� + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝜃𝜎𝜆 + 𝑦 − 𝑐 −

∑︁
𝑝≠𝑞

�̂�𝑞 ℎ̂
𝑝,𝑞
𝑡

]
+ 1

2
𝐽
�̂��̂�

𝜃2𝜎2 + 𝐽𝑦𝑦𝛼(𝑡, 𝑝) +
1

2
𝐽𝑦𝑦𝑦

2𝜁 (𝑡, 𝑝)2

+ 𝐽
�̂�𝑦

𝜃𝜎𝑦𝜁 (𝑡, 𝑝) −
∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 𝐽

(64)
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with

L𝑐 = sup
𝑐≥0

{
𝜚
𝑐1−𝛾

1 − 𝛾

(
𝑐

𝑐

) 𝜅
− 𝑐𝐽𝑊

}
L𝜃 = sup

𝜃∈R

{
𝐽𝑊𝜃𝜎𝜆 + 1

2
𝐽𝑊𝑊𝜃2𝜎2 + 𝐽𝑊𝑦𝜃𝜎𝑦𝜁 (𝑡, 𝑝) + 𝐽

𝑊�̂�
𝜃𝜎2𝜃

}
L 𝜄 = sup

(𝜄𝑞𝑡 )
𝑄

𝑞=0∈R

−𝐽𝑊
∑︁
𝑞≠𝑝

𝜄𝑞 ℎ̂
𝑝,𝑞
𝑡 +

∑︁
𝑞≠𝑝,𝑄

ℎ
𝑝,𝑞
𝑡 𝐽 (𝑡,𝑊 + 𝜄𝑞, �̂� + �̂�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞)

+ℎ𝑝,𝑞𝑡

𝜀

1 − 𝛾
(𝑊 + 𝜄𝑄)1−𝛾

(
�̂� + �̂�𝑄

𝑊 + 𝜄𝑄

) 𝜅}
Like in the auxiliary model, subscripts denote the partial derivatives with respect to the state
variables and time 𝑡 and the terminal condition is specified to be
𝐽 (𝑇,𝑊, �̂�, 𝑦, 𝑝) = 𝜀

1−𝛾𝑊
1−𝛾

(
�̂�
𝑊

) 𝜅
.

In Section 3.3.2, it was conjectured that the indirect utility function is given by the following
functional form

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
1 − 𝛾

(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾
(
�̃� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
Like it was the case for the auxiliary model, this functional form does not depend on 𝜓. For
completeness, the partial derivatives can be found in the Appendix 7.3.

As explained in Section 3.3.1, the optimal investment strategy and the optimal notional
choices do not directly depend on the EIS parameter value 𝜓. Hence, the optimal investment
strategy for an agent with CRRA-regret-utility preferences is identical to the investment
strategy determined by equation (43). Hence, the optimal investment amount for a regret-
averse investor in biometric state 𝑝 at time 𝑡 is given by

𝜃∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

(65)

Furthermore, the optimal insurance strategy for biometric state 𝑞 ≠ 𝑝 for a regret-averse
investor in biometric state 𝑝 at time 𝑡 was determined in equation (45). The optimal invest-
ment strategy was given to be

(𝜄𝑞)∗(𝑡,𝑊, 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))

(66)

The optimal consumption strategy can be determined by the FOC of L𝑐 with respect to
𝑐. The optimal consumption strategy for a regret-averse investor with CRRA-regret-utility

40



preferences at time 𝑡 is given by

𝑐∗ =

(
1 − 𝛾 − 𝜅

1 − 𝛾

) 1
𝛾+𝜅

𝜚
1

𝛾+𝜅 𝐽
−1
𝛾+𝜅
𝑊

𝑐
𝜅

𝛾+𝜅 (67)

Substituting the conjecture and the function for optimal foregone consumption as determined
in equation (59) into equation (67) yields

𝑐∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜚
1
𝛾

𝑊 + 𝑦𝐹 (𝑡, 𝑝)
𝐺 (𝑡, 𝑝)

𝛾

𝛾+𝜅𝐺 (𝑡, 𝑝)
𝜅

𝛾+𝜅
(68)

It should be noted that, similar to the auxiliary model with 𝜚 = 𝛿 and 𝜓 = 1
𝛾
, equation (68)

reduces to equation (44).

The expressions for the optimal consumption, investment and insurance strategies can be
substituted into the HJB equation (64) together with the foregone investment strategy, op-
timal foregone consumption and investment strategies and the conjecture to yield a lengthy
equation. This equation is given for completeness in the Appendix 7.4 equation (117). From
this equation, the time- and state-dependent functions for 𝐺 (𝑡, 𝑝) and 𝐹 (𝑡, 𝑝) can be deter-
mined.

In Section 3.3, it was concluded that the function 𝐹 (𝑡, 𝑝) is the same for the auxiliary in-
vestor as well as for the regret-averse investor. The underlying income process is for both
investors the same, hence the human wealth should be the same as well. Therefore, it is
known that the age- and state-dependent function 𝐹 (𝑡, 𝑝) is given by equation (61).

The age- and state-dependent function 𝐺 (𝑡, 𝑝) should satisfy the following non-linear system
of ODEs

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
1

𝛾

(
𝛿 +

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

)
+

(
𝛾 − 1

𝛾

) (
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

)
−

(
1 − 𝛾 − 𝜅

𝛾(𝛾 + 𝜅)

) (
𝜆2

2
+ 𝜆𝜎𝜅 + 𝜎2𝜅2

2

)
− 1

2

(
𝜅(𝜅 − 1)

𝛾

)
𝜎2 +

(
𝜅

𝛾

) ©«𝜚
1
𝛾𝐺 (𝑡, 𝑝)−1 − 𝜆𝜎 +

∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

)
ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾 ª®¬

 𝐺 (𝑡, 𝑝)

−

(
𝛾 + 𝜅

𝛾

) ©«𝜚
1
𝛾𝐺 (𝑡, 𝑝)−

𝜅
𝛾+𝜅 +

∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)
𝛾

𝛾+𝜅 ª®¬
 𝐺 (𝑡, 𝑝)

𝜅
𝛾+𝜅

(69)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

Hence, purely time- and state-dependent functions 𝐹 (𝑡, 𝑝) and 𝐺 (𝑡, 𝑝) have been found. It
can be concluded that an investor with CRRA-regret-utility preferences invests 𝜃∗𝑡 amount
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of money into the risky asset according to equation (65), buys life-insurance contracts for
biometric state 𝑞 ≠ 𝑝 with notional (𝜄𝑞𝑡 )∗ as given by equation (66), and consumes 𝑐∗𝑡 as
specified by equation (68) at time 𝑡. It can easily be seen that for all these optimal control
processes the functions reduce to the optimal control processes of the auxiliary model for
𝜅 = 0. In absence of regret aversion, all results reduce to purely risk-averse results. This is
in line with the expectation.

To further illustrate the retrieved results for the special case of CRRA-regret-utility prefer-
ences, some graphical representations are shown. The survival model of Richard (1975) (see
Figure 1) has been considered. Hence, the investor is only subject to mortality risk. The
results for the graphs have been retrieved by utilizing a Monte-Carlo simulation for param-
eter values as described in Section 4 Table 2 with 𝜓 = 1

𝛾
and the weight for intermediate

consumption is given by 𝜚 = 𝛿. The reader is referred to Section 4.1 for a more in-depth
explanation of the Monte-Carlo simulation.

Figure 3 illustrates the optimal foregone and realized wealth and control process for a regret-
averse investor with CRRA-regret-utility preferences in the survival model. From Figure 3
(a), it can be seen that on average foregone wealth exceeds realized wealth, as conjectured.
Thus, the investor does experience regret over her investment, as expected. Figure 3 (b)
shows that the foregone consumption process of the regret-averse investor exceeds the real-
ized consumption process on average at an age of approximately 40 years. The realized con-
sumption is slightly higher at the beginning of the life cycle than the foregone consumption
on average. This is due to the difference in underlying age- and state-dependent functions
𝐺 (𝑡, 𝑝) and 𝐺 (𝑡, 𝑝). The realized (foregone) investment fraction 𝜋 is given by the investment
amount 𝜃∗ (𝜃) divided by financial wealth 𝑊 (�̂�). As the optimal investment fraction is very
sensitive to financial wealth values close to zero, Figure 3 (c) shows the trimmed mean of
the investment fraction where the 5% highest and lowest observed 𝜋’s have been trimmed.
This gives a smoother function of the investment fraction. It can be seen that the optimal
regret-averse investment fraction exceeds one in the younger ages and approaches 𝜆+𝜅𝜎

𝜎(𝛾+𝜅) as
the human wealth decreases to zero. At younger ages it is advised to invest more wealth into
the stock market. Figure 3 (d) shows the optimal foregone and realized notional choice for
the biometric state dead. The average foregone notional choice is very negative at older ages
as financial wealth greatly exceeds the time- and state-dependent fraction of total wealth.
Realized optimal notional choice is less negative, but is on average still negative over the
life-cycle showing that agents short-sell their life-insurance contracts to generate more wealth.

As previously described in section 3.1, the CRRA-regret-utility specification satisfies all
desired properties of a multiplicative regret-utility function as described by Goossens (2021)
if the ratio between foregone and realized wealth is at least 𝜅

𝛾+𝜅−1 . Figure 4 shows the 1%-,
median and 99%-quantiles of this ratio retrieved from the Monte-Carlo simulation for the
survival model. It can be seen that the 1%-quantile is above the lower bound 𝜅

𝛾+𝜅−1 = 0.375
for all ages. Hence, the proposed regret-utility function satisfies property 𝑃2𝑐 in almost all
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sample paths. However, it should be noted that in some paths the ratio is smaller than the
lower bound. Thus this property is not guaranteed to be satisfied for all states of the world.

(a) Average foregone and realized financial
wealth for an investor with CRRA-regret-
utility preferences in the survival model.

(b) Average foregone and realized consump-
tion for an investor with CRRA-regret-utility
preferences in the survival model.

(c) Average foregone and realized investment
fraction 𝜋 for an investor with CRRA-regret-
utility preferences in the survival model.

(d) Average foregone and realized life-
insurance contract notional for an investor
with CRRA-regret-utility preferences in the
survival model.

Figure 3: The figure shows the by Monte-Carlo simulation obtained average optimal financial
wealth and control processes for an investor with CRRA-regret-utility preferences who is
only subject to mortality risk and has access to perfect life-insurance contracts in line with
Richard (1975).
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Figure 4: This figure shows the by Monte-Carlo simulation obtained median, the 1%- and
99%-quantile of the ratio between foregone and realized total wealth in the survival model.
The 1%-quantile exceeds the lower bound of property 𝑃2𝑐 as determined in section 3.1.

In conclusion, the results for this special case CRRA-regret-utility specification for an agent
with exogenous income who is subject to biometric risk can be stated in the following theo-
rem.

Theorem 3.3 (Biometric risk model for a regret-averse investor with CRRA-re-
gret-utility specifications). For a regret-averse investor with CRRA-regret-utility speci-
fications living in a Black-Scholes world with exogenous labor income and who is subject to
biometric risks, it holds that the financial wealth dynamics of the investor in biometric state
𝑝 ≠ 𝑄 are given by

d𝑊𝑡 =

[
𝑟𝑊𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡 −

∑︁
𝑞≠𝑝

𝜄
𝑞
𝑡 ℎ̂

𝐼𝑡 ,𝑞
𝑡

]
d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡

with 𝑊𝑡𝑞 = 𝑊𝑡𝑞− + 𝜄
𝑞

𝑡𝑞−.

The value function is given by

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 1

1 − 𝛾
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
where both 𝐹 (𝑡, 𝑝) = 𝐹𝑎 (𝑡, 𝑝)1{𝑡<𝑇𝑟 } (𝑡) +𝐹𝑟 (𝑡, 𝑝)1{𝑡≥𝑇𝑟 } (𝑡) and 𝐺 (𝑡, 𝑝) are satisfying a system
of ordinary differential equations. The function 𝐹 (𝑡, 𝑝) should satisfy the following system
of ordinary differential equations

𝜕𝐹𝑎

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹𝑎 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑎 (𝑡, 𝑞)

𝜕𝐹𝑟

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

]
𝐹𝑟 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑟 (𝑡, 𝑞)

(70)
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with boundary conditions 𝐹𝑟 (𝑡, 𝑄) = 𝐹𝑟 (𝑇, 𝑝) = 𝐹𝑎 (𝑡, 𝑄) = 0 and 𝐹𝑎 (𝑇𝑟 , 𝑝) = Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝).

Moreover, the function 𝐺 (𝑡, 𝑝) should satisfy

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
1

𝛾

(
𝛿 +

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

)
+

(
𝛾 − 1

𝛾

) (
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

)
−

(
1 − 𝛾 − 𝜅

𝛾(𝛾 + 𝜅)

) (
𝜆2

2
+ 𝜆𝜎𝜅 + 𝜎2𝜅2

2

)
− 1

2

(
𝜅(𝜅 − 1)

𝛾

)
𝜎2 +

(
𝜅

𝛾

) ©«𝜚
1
𝛾𝐺 (𝑡, 𝑝)−1 − 𝜆𝜎 +

∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

)
ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾 ª®¬

 𝐺 (𝑡, 𝑝)

−

(
𝛾 + 𝜅

𝛾

) ©«𝜚
1
𝛾𝐺 (𝑡, 𝑝)−

𝜅
𝛾+𝜅 +

∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)
𝛾

𝛾+𝜅 ª®¬
 𝐺 (𝑡, 𝑝)

𝜅
𝛾+𝜅

(71)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

The optimal consumption-investment-insurance strategy is given by the following expressions

𝑐∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜚
1
𝛾

𝑊 + 𝑦𝐹 (𝑡, 𝑝)
𝐺 (𝑡, 𝑝)

𝛾

𝛾+𝜅𝐺 (𝑡, 𝑝)
𝜅

𝛾+𝜅
(72)

𝜃∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊𝑡 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

(73)

(𝜄𝑞)∗(𝑡,𝑊, 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))

(74)

where 𝐺 (𝑡, 𝑝) is determined by the auxiliary model and should satisfy the following system
of ordinary differential equations

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
1

𝛾
(𝛿 +

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 ) + 𝛾 − 1

𝛾
(𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝜎𝜆 − 1

2
𝛾𝜎2)

]
𝐺 (𝑡, 𝑝)

− 𝜚
1
𝛾 −

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)

(75)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

This concludes the analysis of the optimal portfolio, consumption, and notional choices of a
regret-averse investor with CRRA-regret-utility preferences who experiences possible health
shocks affecting her future income process. The following corollary provides the results for a
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restricted model where the regret-averse investor earns spanned exogenous income without
being subject to biometric risks. The utility preferences of the regret-averse investor are
assumed to be given by the CRRA-regret-utility function (5). The model is solved using
the same method of first deriving a closed-form solution to the auxiliary model and then
substituting this solution into the regret-averse model. Results for the classical Merton
portfolio problem with spanned exogenous income (Merton, 1969, and Munk, 2017) for a
regret-averse investor will be shown. The corresponding proof is in the Appendix 7.6.

Corollary 3.1 (Merton portfolio problem with spanned exogenous labor income
for a CRRA regret-averse investor). The regret-averse investor earns exogenous labor
income without biometric risk. The labor income dynamics are specified by the following
stochastic differential equation

d𝑦𝑡 = 𝑦𝑡 [𝛼 d𝑡 + 𝜁 d𝑍𝑡]

The labor income process follows a geometric Brownian motion (GBM) with the same un-
derlying Brownian motion as the stock market. Hence, the market is complete.

The financial wealth dynamics of the investor are given by

d𝑊𝑡 = [𝑟𝑊𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡] d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡

The value function of the Merton problem with exogenous labor income for a CRRA regret-
averse investor is given by

𝐽 (𝑡,𝑊, �̂�, 𝑦) = 1

1 − 𝛾
𝑔(𝑡)𝛾 (𝑊 + 𝐻 (𝑡, 𝑦))1−𝛾

(
�̂� + 𝐻 (𝑡, 𝑦)
𝑊 + 𝐻 (𝑡, 𝑦)

) 𝜅
where 𝑔(𝑡) is a purely time-dependent function satisfying the following ODE

𝑔′(𝑡) = [𝐴 + 𝐵(𝑡)] 𝑔(𝑡) − 𝐶 (𝑡)𝑔(𝑡)
𝜅

𝛾+𝜅 (76)

with terminal condition 𝑔(𝑇) = 𝜀
1
𝛾 and 𝐴, 𝐵(𝑡), and 𝐶 (𝑡) as given by the following expressions

𝐴 =
1

𝛾(𝛾 + 𝜅)

{
𝛿(𝛾 + 𝜅) + 𝑟 (𝛾 − 1) (𝛾 + 𝜅) − 𝜅(𝛾 + 𝜅)𝜎𝜆 − 1

2
𝜅(𝜅 − 1) (𝛾 + 𝜅)𝜎2

− (1 − 𝛾 − 𝜅)
(
1

2
𝜆2 + 1

2
𝜅2𝜎2 + 𝜅𝜎𝜆

)}
𝐵(𝑡) =

(
𝜅

𝛾

)
𝜚

1
𝛾 𝑔(𝑡)−1

𝐶 (𝑡) =
(
𝛾 + 𝜅

𝛾

)
𝜚

1
𝛾 𝑔(𝑡)

−𝜅
𝛾+𝜅

with 𝑔(𝑡), determined from the auxiliary model, being given by

𝑔(𝑡) = 𝜚
1
𝛾
1 − e−𝐴(𝑇−𝑡)

𝐴
+ 𝜀

1
𝛾 e−𝐴(𝑇−𝑡) (77)
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with 𝐴 =
𝛿+𝑟 (𝛾−1)+𝜎𝜆(𝛾−1)+ 1

2𝜎
2𝛾(1−𝛾)

𝛾
.

Equation (76) is solved by the following time-dependent function 𝑔(𝑡)

𝑔(𝑡) =
[

𝛾

𝛾 + 𝜅
e

𝛾

𝛾+𝜅
∫ 𝑡

0
(𝐴+𝐵(𝑠)) d𝑠

∫ 𝑇

𝑡

e−
𝛾

𝛾+𝜅
∫ 𝑠

0
(𝐴+𝐵(𝑢)) d𝑢

𝐶 (𝑠) d𝑠 + e−
𝛾

𝛾+𝜅
∫ 𝑇

𝑡
(𝐴+𝐵(𝑠)) d𝑠

𝜀
1

𝛾+𝜅
2

] 𝛾+𝜅
𝛾

(78)

The human wealth function 𝐻 (𝑡, 𝑦) satisfies following PDE
𝜕𝐻

𝜕𝑡
(𝑡, 𝑦) + (𝛼 − 𝜁𝜆)𝑦𝐻𝑦 (𝑡, 𝑦) +

1

2
𝜁2𝑦2𝐻𝑦𝑦 (𝑡, 𝑦) − 𝑟𝐻 (𝑡, 𝑦) + 𝑦 = 0 (79)

The optimal consumption and investment strategy for the CRRA regret-averse investor are
given by

𝑐∗(𝑡,𝑊, 𝑦) = 𝜚
1
𝛾 (𝑊 + 𝐻 (𝑡, 𝑦))
𝑔(𝑡)

𝛾

𝛾+𝜅 𝑔(𝑡)
𝜅

𝛾+𝜅
(80)

𝜃∗(𝑡,𝑊, 𝑦) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝐻 (𝑡, 𝑦)) (81)

The proof is shown in the Appendix 7.6.

The results for the Merton portfolio problem with exogenous income for a regret-averse in-
vestor are very similar to the results for the Merton problem with biometric risk (see Theorem
3.3). The optimal investment strategy and consumption choice are in both models given by
almost identical formulas with the only difference being the underlying ODEs. In case of
possible biometric shocks, these ODEs depend on both time and state, whereas for spanned
exogenous income these only depend on time as the biometric state is the same for all 𝑡. It
should be noted that, as expected, the biometric risk model reduces to the exogenous labor
model if only a single biometric state is considered. Indeed, the ODE of the then purely
time-dependent function 𝐺 (𝑡) reduces to the same ODE as for the time-dependent function
𝑔(𝑡).

In case the investor does not earn any labor income (i.e. 𝑦𝑡 = 0 for all 𝑡), then the model re-
sembles the classical Merton problem for a regret-averse investor. The derivation and results
of this model are omitted as these can be easily retrieved by fixing 𝑦 = 0. The results for
the classical Merton problem for a CRRA-regret-utility investor yield the same relationship
between with and without exogenous income as in case of a classical power-utility investor
(see e.g. Munk (2017)). However, it should be noted that in contrary to the model without
labor income, the financial wealth 𝑊 can turn negative, but total wealth 𝑊 +𝐻 (𝑡, 𝑦) remains
strictly positive. At younger ages, it is advised to invest more into the stock market than
at older ages as the human wealth is larger at an earlier age. This can turn investments
negative, i.e. it is advised to borrow money and invest into the stock market.

This concludes the analysis for the CRRA regret-averse utility specification. In the next
section, results for the unit-EIS regret-averse utility specification will be shown.
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3.5 Unit-EIS-regret-utility specification

In this section, it is assumed that the preferences for the elasticity of intertemporal substitu-
tion (EIS) of the investor are given by the unit value, i.e. 𝜓 = 1. The regret-aversion-adjusted
normalized aggregator function F (9) is given by the limiting case. This model specification
is referred to as the unit-EIS-regret-utility specification. Note that the results shown for this
unit-EIS-regret model could also have been derived by taking the limit of the results shown
in Section 3.3. Hence, the unit-EIS-regret model is a special case of the arbitrary-EIS-regret
model.

3.5.1 Auxiliary model

The auxiliary investor maximizes the utility over intermediate consumption and terminal
wealth. The utility index 𝐽 (𝑡, �̃� , 𝑦, 𝑝) at time 𝑡 for foregone consumption process 𝑐, invest-
ment strategy 𝜃, and notional choices �̃�𝑞 over the remaining lifetime [𝑡, 𝜏] with 𝜏 as defined
in equation (13) is given by

𝐽 (𝑡, �̃� , 𝑦, 𝑝) = sup(
𝑐,( �̃�𝑞)𝑄

𝑞=0

)
∈Ã𝑡

E𝑡,�̃� ,𝑦,𝑝

[∫ 𝜏

𝑡

𝑓 (𝑐𝑠, 𝐽𝑠) d𝑠 + J̃𝜏

]
(82)

The investor maximizes 𝐽 for any 𝑡 < 𝜏 over all admissible control processes in set Ã𝑡 given
the state variables at time 𝑡.

The normalized aggregator function 𝑓 for unit-EIS as specified in equation (8) is given by

𝑓 (𝑐, 𝐽) = 𝛿(1 − 𝛾)𝐽 ln(𝑐) − 𝛿𝐽 ln( [1 − 𝛾]𝐽) (83)

As explained previously, the time preference of the investor is denoted by 𝛿, and the degree
of relative risk aversion by 𝛾 > 1. The term J̃𝜏 is given by J̃𝜏 = 𝜀

�̃�
1−𝛾
𝜏

1−𝛾 with 𝜀 ≥ 0. This
term represents the utility from terminal wealth.

Based on the indirect utility specification (82) and the foregone financial wealth dynamics
(20) is the Hamilton-Jacobi-Bellman equation for an investor in state 𝑝 ≠ 𝑄 given by

0 =L𝑐 + L𝜃 + L �̃� + 𝐽𝑡

+ 𝐽�̃� [(�̃� + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝑦]

+ 𝐽𝑦𝑦𝛼(𝑡, 𝑝) +
1

2
𝐽𝑦𝑦𝑦

2𝜁 (𝑡, 𝑝)2 −
∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 𝐽

(84)
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with

L𝑐 = sup
𝑐≥0

{
𝛿(1 − 𝛾)𝐽 ln(𝑐) − 𝛿𝐽 ln( [1 − 𝛾]𝐽) − 𝑐𝐽�̃�

}
L𝜃 = 𝐽�̃�𝜃𝜎𝜆 + 1

2
𝐽�̃��̃�𝜃2𝜎2 + 𝐽�̃�𝑦𝜃𝜎𝑦𝜁 (𝑡, 𝑝)

L �̃� = sup
( �̃�𝑞𝑡 )

𝑄

𝑞=0∈R

−𝐽�̃�
∑︁
𝑞≠𝑝

�̃�𝑞 ℎ̂
𝑝,𝑞
𝑡 +

∑︁
𝑞≠𝑝,𝑄

ℎ
𝑝,𝑞
𝑡 𝐽 (𝑡, �̃� + �̃�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞) + ℎ

𝑝,𝑄
𝑡

𝜀

1 − 𝛾

(
�̃� + �̃�𝑄

)1−𝛾
Subscripts of 𝐽 denote partial derivatives with respect to either the state variables or time 𝑡

and the terminal condition 𝐽 (𝑇, �̃�, 𝑦, 𝑝) = 𝜀
1−𝛾�̃�

1−𝛾.

Comparing L𝜃 and L �̃� with the expressions for L𝜃 and L �̃� in Section 3.3.1, it is clear that
the foregone investment strategy and optimal foregone notional choice do not change as the
underlying optimization problems are the same. However, the foregone consumption process
does change compared to the arbitrary-EIS-regret-utility specification.

Like in Section 3.3.1 and in Section 3.4.1, the conjecture is made that the indirect utility
function 𝐽 (𝑡, �̃� , 𝑦, 𝑝) has the following functional form

𝐽 (𝑡, �̃� , 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
1 − 𝛾

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)1−𝛾
The partial derivatives can again be seen in the Appendix 7.3.

The investor invests 𝜃𝑡 amount of wealth into the stock market at time 𝑡 based on the same
assumption as in Section 3.3.1. The foregone investment amount for the auxiliary investor
is thus given by

𝜃𝑡 =

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)
− 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)

𝜎
(85)

Additionally, the optimal foregone notional choice remains the same for this model specifi-
cation and was determined in equation (30) to be

( �̃�𝑞)∗ = 𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

(�̃� + 𝑦𝐹 (𝑡, 𝑝))
(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (�̃� + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)) (86)

The optimal foregone consumption choice for the auxiliary investor can be derived from the
FOC of L𝑐 with respect to 𝑐. The optimal foregone consumption choice is given by

𝑐∗ =
𝛿(1 − 𝛾)𝐽

𝐽�̃�

(87)

Substituting the expression of 𝑐 into L𝑐 yields

L𝑐 = 𝛿(1 − 𝛾)𝐽 [ln(𝛿) + ln( [1 − 𝛾]𝐽) − ln(𝐽�̃� ) − 1] − 𝛿𝐽 ln( [1 − 𝛾]𝐽)
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From the conjecture, it follows that L𝑐 can be written as

L𝑐 = 𝛿[ln(𝛿) − 1]𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 − 𝛿
𝛾

1 − 𝛾
ln(𝐺 (𝑡, 𝑝))𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

This expression is the only adaption for the unit-EIS-regret-utility biometric risk model
compared to the arbitrary-EIS-regret-utility biometric risk model of Section 3.3.1. The
expression L𝑐 for optimal foregone consumption 𝑐∗ was given in Section 3.3.1 by

L𝑐 =
𝛿𝜓

𝜓 − 1
𝐺 (𝑡, 𝑝)𝛾−1𝐺 (𝑡, 𝑝)

𝛾𝜓−1
𝛾−1 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 − 𝛿𝜑

1 − 𝛾
𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

The optimal foregone control processes and the conjectures for the foregone investment
amount and the indirect utility function can be substituted into the HJB equation (84). For
completeness, this lengthy equation is given in the Appendix 7.4 by equation (116).

Note that as L𝑐 only depends on 𝐺 (𝑡, 𝑝)𝛾−1(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾, it can be concluded that the
function 𝐹 (𝑡, 𝑝) does not change compared to the arbitrary-EIS-regret-utility specification.
Hence, it is known that the function 𝐹 (𝑡, 𝑝) should satisfy following ODE

𝜕𝐹

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞) (88)

with boundary condition 𝐹 (𝑡, 𝑄) = 𝐹 (𝑇, 𝑝) = 0.

Moreover, 𝐹 (𝑡, 𝑝) can again be separated based on whether the investor is active in the labor
market or retired (Hambel et al., 2022). This separation yields

𝐹 (𝑡, 𝑝) = 𝐹𝑎 (𝑡, 𝑝)1{𝑡<𝑇𝑟 } (𝑡) + 𝐹𝑟 (𝑡, 𝑝)1{𝑡≥𝑇𝑟 } (𝑡)

with

𝜕𝐹𝑎

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹𝑎 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑎 (𝑡, 𝑞)

𝜕𝐹𝑟

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

]
𝐹𝑟 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑟 (𝑡, 𝑞)

with boundary conditions 𝐹𝑟 (𝑡, 𝑄) = 𝐹𝑟 (𝑇, 𝑝) = 𝐹𝑎 (𝑡, 𝑄) = 0 and 𝐹𝑎 (𝑇𝑟 , 𝑝) = Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝).

It is in line with expectation that the ODE for human wealth does not change compared to
the arbitrary-EIS-regret-utility specification as the underlying income process remains the
same for both specifications. The investor’s preferences do not affect the income process and
hence do not affect human wealth.
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The time- and state-dependent function 𝐺 (𝑡, 𝑝) should satisfy the following non-linear ODE

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
𝛿(𝛾 − 1)

𝛾
[ln(𝛿) − 1] + 𝛿 ln(𝐺 (𝑡, 𝑝)) + 1

𝛾

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

+ 𝛾 − 1

𝛾

(
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝜎𝜆 − 1

2
𝛾𝜎2

)]
𝐺 (𝑡, 𝑝) −

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)

(89)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

In conclusion, the optimal foregone consumption process is determined to be given by

𝑐∗(𝑡, �̃� , 𝑦, 𝑝) = 𝛿

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)
(90)

The investor consumes a predetermined fraction of her total wealth as given by her time
preference rate 𝛿.

The optimal foregone notional choice is given by

( �̃�𝑞)∗(𝑡, �̃� , 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) (
�̃� + 𝑦𝐹 (𝑡, 𝑝)

) (
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

−
(
�̃� + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

)
(91)

This concludes the derivations of the foregone consumption, notional choice and wealth. In
the next section, the optimal investment strategy, consumption process and notional choice
for a regret-averse investor with unit-EIS preference who is subject to health risks will be
determined.

3.5.2 Regret-averse model

The regret-averse investor maximizes utility over intermediate consumption and terminal
wealth. The utility index 𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) at time 𝑡 for consumption process 𝑐, investment
amount 𝜃 and notional choices 𝜄𝑞 over the remaining lifetime [𝑡, 𝜏] with 𝜏 as defined by
equation (13) is given by

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = sup(
𝑐,𝜃,(𝜄𝑞)𝑄

𝑞=0

)
∈A𝑡

E
𝑡,𝑊,�̂�,𝑦,𝑝

[∫ 𝜏

𝑡

F (𝑐𝑠, 𝑐𝑠, 𝐽𝑠) d𝑠 + J𝜏

]
(92)

The investor maximizes 𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) for any 𝑡 < 𝜏 over all admissible control processes in
the set A𝑡 given the state variables and the optimal foregone state variables at time 𝑡.

The regret-aversion-adjusted aggregator function F for unit-EIS as specified in equation (9)
is given by

F (𝑐, 𝑐, 𝐽) = 𝛿𝐽 [(1 − 𝛾 − 𝜅) ln(𝑐) + 𝜅 ln(𝑐) − ln( [1 − 𝛾]𝐽)] (93)

51



The term J𝜏 is assumed to be given by J𝜏 =
𝜀

1−𝛾𝑊
1−𝛾
𝜏

(
�̂�𝜏

𝑊𝜏

) 𝜅
with again 𝜀 ≥ 0.

Given the indirect utility function (92) and the wealth dynamics (17), the following HJB
equation for an investor in biometric state 𝑝 ≠ 𝑄 can be constructed

0 =L𝑐 + L𝜃 + L 𝜄 + 𝐽𝑡

+ 𝐽𝑊 [(𝑊 + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝑦]

+ 𝐽
�̂�

[
(�̂� + 𝑦𝐹 (𝑡, 𝑝))𝑟 − 𝑦𝐹 (𝑡, 𝑝)𝑟 + 𝜃𝜎𝜆 + 𝑦 − 𝑐 −

∑︁
𝑝≠𝑞

�̂�𝑞 ℎ̂
𝑝,𝑞
𝑡

]
+ 1

2
𝐽
�̂��̂�

𝜃2𝜎2 + 𝐽𝑦𝑦𝛼(𝑡, 𝑝) +
1

2
𝐽𝑦𝑦𝑦

2𝜁 (𝑡, 𝑝)2

+ 𝐽
�̂�𝑦

𝜃𝜎𝑦𝜁 (𝑡, 𝑝) −
∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 𝐽

(94)

with

L𝑐 = sup
𝑐≥0

{F (𝑐, 𝑐, 𝐽) − 𝑐𝐽𝑊 }

L𝜃 = sup
𝜃∈R

{
𝐽𝑊𝜃𝜎𝜆 + 1

2
𝐽𝑊𝑊𝜃2𝜎2 + 𝐽𝑊𝑦𝜃𝜎𝑦𝜁 (𝑡, 𝑝) + 𝐽

𝑊�̂�
𝜃𝜎2𝜃

}
L 𝜄 = sup

(𝜄𝑞𝑡 )
𝑄

𝑞=0∈R

−𝐽𝑊
∑︁
𝑞≠𝑝

𝜄𝑞 ℎ̂
𝑝,𝑞
𝑡 +

∑︁
𝑞≠𝑝,𝑄

ℎ
𝑝,𝑞
𝑡 𝐽 (𝑡,𝑊 + 𝜄𝑞, �̂� + �̂�𝑞, 𝑦𝑃(𝑡, 𝑝, 𝑞), 𝑞)

+ℎ𝑝,𝑞𝑡

𝜀

1 − 𝛾
(𝑊 + 𝜄𝑄)1−𝛾

(
�̂� + �̂�𝑄

𝑊 + 𝜄𝑄

) 𝜅}
As it was assumed in this model that 𝜓 = 1, the expression for L𝑐 is, by equation (9), given
by

L𝑐 = sup
𝑐≥0

{𝛿𝐽 [(1 − 𝛾 − 𝜅) ln(𝑐) + 𝜅 ln(𝑐) − ln( [1 − 𝛾]𝐽)] − 𝑐𝐽𝑊 }

Like in the auxiliary model, subscripts denote the partial derivatives with respect to the state
variables and time 𝑡 and the terminal condition is denoted by
𝐽 (𝑇,𝑊, �̂�, 𝑦, 𝑝) = 𝜀

1−𝛾𝑊
1−𝛾

(
�̂�
𝑊

) 𝜅
.

Like in Section 3.5.1 for the auxiliary model, it can be seen that the optimization functions
L𝜃 and L 𝜄 do not change compared to the ones specified in Section 3.3.2. Hence, the optimal
investment strategy and notional choice are identical to the ones derived in Section 3.3.2.
Furthermore, in line with Section 3.3.2, it will be conjectured that the indirect utility function
𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) has the following functional form

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
1 − 𝛾

(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾
(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
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Again, the partial derivatives are shown in the Appendix 7.3. As the conjecture for the
functional form of the indirect utility function is the same as in Section 3.3.2, it can thus
be concluded that the optimal solutions for 𝜃 and 𝜄𝑞 should be the same given that the
conjecture is correct.

The optimal investment amount for a regret-averse investor was determined to be

𝜃∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊𝑡 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

(95)

The investor should buy life-insurance contracts against life shocks with optimal notional
(𝜄𝑞)∗ for all states (𝑞 ≠ 𝑝) ∈ Q with (𝜄𝑞)∗ being specified by

(𝜄𝑞)∗(𝑡,𝑊, 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))

(96)

The optimal consumption process can be derived using the FOC of L𝑐 with respect to 𝑐.
The FOC yields

𝑐∗(𝑡,𝑊, 𝑦, 𝑝) = 𝛿(1 − 𝛾 − 𝜅)𝐽
𝐽𝑊

(97)

Substituting the found optimal expression for 𝑐 into L𝑐 yields

L𝑐 = 𝛿(1 − 𝛾 − 𝜅)𝐽 [ln(𝛿) + ln( [1 − 𝛾 − 𝜅]𝐽) − ln(𝐽𝑊 ) − 1] + 𝛿𝐽𝜅 ln(𝑐) − 𝛿𝐽 ln( [1 − 𝛾]𝐽)

Compared to the HJB equation in Section 3.3.2, only the terms including the consumption
process 𝑐 and the foregone consumption process 𝑐 change. All other terms remain the same
as it was already stated that the optimal (foregone) notional choice and optimal (foregone)
investment strategy are identical in both settings. Based on this result and the conjecture,
the terms depending on 𝑐 and 𝑐 can be rewritten to

L𝑐 − 𝑐𝐽
�̂�
=

[
𝛿[ln(𝛿) − 1] − 𝛿

𝛾

1 − 𝛾
ln(𝐺 (𝑡, 𝑝))

]
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
For comparison, this equation is given for the arbitrary-EIS-regret-utility specification of
Section 3.3.2 by

L𝑐 − 𝑐𝐽
�̂�
=

[
𝛿𝜓

1 − 𝛾
(𝜑 − 1 + 𝛾 + 𝜅)𝐺 (𝑡, 𝑝)

−𝜓2𝜅𝛾
𝜑 (𝜑+𝜅𝜓)𝐺 (𝑡, 𝑝)

𝜑+(𝜅−𝛾)𝜓
𝜑+𝜅𝜓 − 𝛿𝜑

1 − 𝛾
𝐺 (𝑡, 𝑝)

− 𝜅

1 − 𝛾
𝛿𝜓𝐺 (𝑡, 𝑝)

−𝜓𝛾
𝜑 𝐺 (𝑡, 𝑝)

]
𝐺 (𝑡, 𝑝)𝛾−1(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
The optimal control processes, (optimal) foregone control processes, and the conjecture can
be substituted into the HJB equation (94). Again, for completeness, this lengthy equation
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is given in the Appendix 7.4 equation (117).

As the expression only depends on 𝐺 (𝑡, 𝑝)𝛾−1(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾
(
�̂�+𝑦𝐹 (𝑡,𝑝)
𝑊+𝑦𝐹 (𝑡,𝑝)

) 𝜅
, it can be con-

cluded that the time- and state-dependent function 𝐹 (𝑡, 𝑝) remains the same as in Section
3.3.2. Hence, the function 𝐹 (𝑡, 𝑝) should satisfy the following system of ODEs

𝜕𝐹

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝜁 (𝑡, 𝑝)𝜆 − 𝛼(𝑡, 𝑝)

]
𝐹 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞) (98)

with again boundary conditions 𝐹 (𝑡, 𝑄) = 𝐹 (𝑇, 𝑝) = 0. Moreover, it was shown that 𝐹 (𝑡, 𝑝)
can be decomposed into

𝐹 (𝑡, 𝑝) = 𝐹𝑎 (𝑡, 𝑝)1{𝑡<𝑇𝑟 } (𝑡) + 𝐹𝑟 (𝑡, 𝑝)1{𝑡≥𝑇𝑟 } (𝑡)

with

𝜕𝐹𝑎

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹𝑎 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑎 (𝑡, 𝑞)

and

𝜕𝐹𝑟

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

]
𝐹𝑟 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑟 (𝑡, 𝑞)

with boundary conditions 𝐹𝑟 (𝑡, 𝑄) = 𝐹𝑟 (𝑇, 𝑝) = 𝐹𝑎 (𝑡, 𝑄) = 0 and 𝐹𝑎 (𝑇𝑟 , 𝑝) = Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝).

The function 𝐺 (𝑡, 𝑝) should satisfy following non-linear system of ODEs

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
𝛿 ln(𝐺 (𝑡, 𝑝)) + 1

𝛾

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 +

(
𝛾 − 1

𝛾

) (
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝛿[ln(𝛿) − 1]

)
−

(
1 − 𝛾 − 𝜅

𝛾(𝛾 + 𝜅)

) (
𝜆2

2
+ 𝜆𝜎𝜅 + 𝜎2𝜅2

2

)
− 1

2

(
𝜅(𝜅 − 1)

𝛾

)
𝜎2

+
(
𝜅

𝛾

) ©«
∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

)
ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

− 𝜆𝜎
ª®¬
 𝐺 (𝑡, 𝑝)

−

(
𝛾 + 𝜅

𝛾

) ∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)
𝛾

𝛾+𝜅

 𝐺 (𝑡, 𝑝)
𝜅

𝛾+𝜅

(99)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 and 𝐺 (𝑡, 𝑝) as specified by equation (89).
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In conclusion, it has been shown that there exist time- and state-dependent functions 𝐹 (𝑡, 𝑝)
and 𝐺 (𝑡, 𝑝). Based on this result, it can be concluded that the optimal consumption process
for a regret-averse investor with unit elasticity of intertemporal substitution who is subject
to biometric risk is given by

𝑐∗(𝑡,𝑊, 𝑦, 𝑝) = 𝛿(𝑊 + 𝑦𝐹 (𝑡, 𝑝)) (100)

The investor should thus consume a predetermined fraction of her total wealth depending on
her time preference rate 𝛿. Thus the optimal consumption process for a risk- and regret-averse
investor is the same as the optimal consumption process for a purely risk-averse investor with
unit-EIS preferences (see for example Munk (2017)). It can thus be concluded that the regret
aversion does not affect the consumption strategy of the agent if the agent’s elasticity of in-
tertemporal substitution towards deterministic consumption plans is given by the unit value.

The optimal notional choice (𝜄𝑞)∗ for all states (𝑞 ≠ 𝑝) ∈ Q was derived to be

(𝜄𝑞)∗(𝑡,𝑊, 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))

(101)

The insurance strategy is the same as for the arbitrary-EIS preferences, but the underlying
𝐺 (𝑡, 𝑝) and 𝐺 (𝑡, 𝑝) functions are different. The investor should buy life-insurance contracts
with notional 𝜄𝑞 for all 𝑞 ≠ 𝑝 based on a age- and state-dependent fraction of total wealth.

At last, the optimal investment strategy was found to be

𝜃∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

(102)

As a result, the investor should invest a constant fraction of her total wealth and a time-
and state-dependent fraction of her human wealth into the stock market. This investment
strategy is identical to the investment strategy derived in Section 3.3.2 as it is only depen-
dent on the human wealth function 𝐹 (𝑡, 𝑝) and not on 𝐺 (𝑡, 𝑝) or 𝐺 (𝑡, 𝑝). As it was stated
that the human wealth function is not affected by the EIS parameter 𝜓, it can be concluded
that the optimal investment strategies are indeed identical.

Like in Section 3.4.2, to further illustrate the retrieved results, some graphs are depicted.
Again, the survival model of Richard (1975) (see Figure 1) is considered and the results are
obtained from a Monte-Carlo simulation with the parameter values as stated in Table 2 with
𝜓 = 1. Further details on the Monte-Carlo simulation are given in Section 4.1.

Figure 5 depicts the optimal financial wealth and control processes of a regret-averse investor
with unit-EIS preferences who is subject to mortality risk. Similar to the case with CRRA-
regret-utility specification, it holds true that on average the foregone financial wealth exceeds
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the realized financial wealth. Realized consumption very slightly increases until an age of
approximately 75 years and then it starts to decrease. This can be explained from the
fact that the regret-averse investor consumes a constant fraction of total wealth based on
her time preference parameter 𝛿 and until an age of 75 years is the mortality risk rather
small. The results for the investment fraction and notional choice are very similar as for
the CRRA-regret-utility specification (see Figure 3). As expected, the optimal regret-averse
investment fraction approaches the same value as for the CRRA-regret-utility specification
and the foregone investment fraction approaches one, as expected. The notional choice is
on average negative over the life-cycle. Thus, again investors choose to short-sell their life-
insurance to generate additional wealth. The average foregone and realized notional choices
are decreasing up to an age of approximately 75 years and 70 years, respectively.
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(a) Average foregone and realized financial
wealth for an investor with unit-EIS-regret-
utility preferences in the survival model.

(b) Average foregone and realized consump-
tion for an investor with unit-EIS-regret-
utility preferences in the survival model.

(c) Average foregone and realized invest-
ment fraction 𝜋 for an investor with unit-
EIS-regret-utility preferences in the survival
model.

(d) Average foregone and realized life-
insurance contract notional for an investor
with unit-EIS-regret-utility preferences in
the survival model.

Figure 5: The figure shows the by Monte-Carlo simulation obtained average optimal financial
wealth and control processes for an investor with unit-EIS-regret-utility preferences who is
only subject to mortality risk and has access to perfect life-insurance contracts in line with
Richard (1975).

This concludes the derivation of the optimal consumption-investment-insurance strategy for
a regret-averse investor with unit-EIS. The results for this specification can be concluded
into the following theorem.

Theorem 3.4 (Biometric risk model for a regret-averse investor with unit-EIS-re-
gret-utility specifications). For a regret-averse investor with unit-EIS-regret-utility spec-
ifications living in a Black-Scholes world with exogenous labor income and who is subject to
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biometric risk, it holds that the financial wealth dynamics are given by

d𝑊𝑡 =

[
𝑟𝑊𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡 −

∑︁
𝑞≠𝑝

𝜄
𝑞
𝑡 ℎ̂

𝐼𝑡 ,𝑞
𝑡

]
d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡

with 𝑊𝑡𝑞 = 𝑊𝑡𝑞− + 𝜄
𝑞

𝑡𝑞−.

The value function is given by

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 1

1 − 𝛾
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
where both 𝐹 (𝑡, 𝑝) = 𝐹𝑎 (𝑡, 𝑝)1{𝑡<𝑇𝑟 } (𝑡) +𝐹𝑟 (𝑡, 𝑝)1{𝑡≥𝑇𝑟 } (𝑡) and 𝐺 (𝑡, 𝑝) are satisfying a system
of ordinary differential equations. The function 𝐹 (𝑡, 𝑝) should satisfy the following system
of ordinary differential equations

𝜕𝐹𝑎

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 − 𝛼(𝑡, 𝑝) + 𝜁 (𝑡, 𝑝)𝜆

]
𝐹𝑎 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑎 (𝑡, 𝑞)

𝜕𝐹𝑟

𝜕𝑡
(𝑡, 𝑝) =

[
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

]
𝐹𝑟 (𝑡, 𝑝) − 1 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑃(𝑡, 𝑝, 𝑞)𝐹𝑟 (𝑡, 𝑞)

(103)

with boundary conditions 𝐹𝑟 (𝑡, 𝑄) = 𝐹𝑟 (𝑇, 𝑝) = 𝐹𝑎 (𝑡, 𝑄) = 0 and 𝐹𝑎 (𝑇𝑟 , 𝑝) = Γ(𝑝)𝐹𝑟 (𝑇𝑟 , 𝑝).

Moreover, the function 𝐺 (𝑡, 𝑝) should satisfy the following system of non-linear ordinary
differential equations

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
𝛿 ln(𝐺 (𝑡, 𝑝)) + 1

𝛾

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 +

(
𝛾 − 1

𝛾

) (
𝑟 +

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 + 𝛿[ln(𝛿) − 1]

)
−

(
1 − 𝛾 − 𝜅

𝛾(𝛾 + 𝜅)

) (
𝜆2

2
+ 𝜆𝜎𝜅 + 𝜎2𝜅2

2

)
− 1

2

(
𝜅(𝜅 − 1)

𝛾

)
𝜎2

+
(
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(104)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

The optimal consumption-investment-insurance strategy is given by the following expressions

𝑐∗(𝑡,𝑊, 𝑦, 𝑝) = 𝛿(𝑊 + 𝑦𝐹 (𝑡, 𝑝)) (105)
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𝜃∗(𝑡,𝑊, 𝑦, 𝑝) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊𝑡 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

(106)

(𝜄𝑞)∗(𝑡,𝑊, 𝑦, 𝑝) =
(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝛾

𝛾+𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)− 1
𝛾

− (𝑊 + 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞))

(107)

where 𝐺 (𝑡, 𝑝) is determined by the auxiliary model and should satisfy the following system
of ordinary differential equations

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) =

[
𝛿(𝛾 − 1)

𝛾
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𝛾
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𝑡
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𝐺 (𝑡, 𝑞)

(108)

with boundary conditions 𝐺 (𝑡, 𝑄) = 𝐺 (𝑇, 𝑝) = 𝜀
1
𝛾 .

This concludes the analysis of the optimal consumption, portfolio and notional choice of
a regret-averse investor with unit-EIS-regret-utility preferences who is subject to biometric
risk. The following corollary shows the results for the simplified model where the investor
earns spanned exogenous labor income excluding biometric risk (Corollary 3.2). The proof
for Corollary 3.2 is given in the Appendix 7.7.

Corollary 3.2 (Merton portfolio problem with spanned exogenous labor income
for a unit EIS regret-averse investor). The regret-averse investor earns exogenous labor
income without biometric risk. The labor income dynamics are specified by the following
stochastic differential equation

d𝑦𝑡 = 𝑦𝑡 [𝛼 d𝑡 + 𝜁 d𝑍𝑡] (109)

The labor income process follows a geometric Brownian motion (GBM) with the same un-
derlying Brownian motion as the stock market. Therefore, the market is complete.

As a result, the financial wealth dynamics of the investor are given by

d𝑊𝑡 = [𝑟𝑊𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡] d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡

The value function of the Merton problem with exogenous labor income for a unit EIS regret-
averse investor is given by

𝐽 (𝑡,𝑊, �̂�, 𝑦) = 1

1 − 𝛾
𝑔(𝑡)𝛾 (𝑊 + 𝐻 (𝑡, 𝑦))1−𝛾

(
�̂� + 𝐻 (𝑡, 𝑦)
𝑊 + 𝐻 (𝑡, 𝑦)

) 𝜅
59



where 𝑔(𝑡) is a purely time-dependent function satisfying the following ODE

𝑔′(𝑡) = [𝐴 + 𝛿 ln(𝑔(𝑡))]𝑔(𝑡) (110)

with 𝑔(𝑇) = 𝜀
1
𝛾 and 𝐴 as given by the following expression

𝐴 =

[
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− 𝜅

𝛾
𝜎𝜆 − 1

2

(
𝜅(𝜅 − 1)

𝛾

)
𝜎2

]
Equation (110) is solved by the following time-dependent function 𝑔(𝑡)

𝑔(𝑡) = e−
𝐴
𝛿
+ 1

𝛿
e−𝛿 (𝑇−𝑡 ) [ln(𝜀)+𝐴]

𝛿
𝛾 (111)

The human wealth function 𝐻 (𝑡, 𝑦) satisfies following PDE

𝜕𝐻

𝜕𝑡
(𝑡, 𝑦) + (𝛼 − 𝜁𝜆)𝑦𝐻𝑦 (𝑡, 𝑦) +

1

2
𝜁2𝑦2𝐻𝑦𝑦 (𝑡, 𝑦) − 𝑟𝐻 (𝑡, 𝑦) + 𝑦 = 0 (112)

The optimal consumption and investment strategy for the unit-EIS regret-averse investor are
given by

𝑐∗(𝑡,𝑊, 𝑦) = 𝛿(𝑊 + 𝐻 (𝑡, 𝑦)) (113)

𝜃∗(𝑡,𝑊, 𝑦) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝐻 (𝑡, 𝑦)) − 𝐻 (𝑡, 𝑦) 𝜁
𝜎

(114)

The proof for Corollary 3.2 is given in the Appendix 7.7.

A regret-averse investor with unit-EIS preferences and spanned exogenous labor income con-
sumes a predetermined fraction of her total wealth defined by her time preference rate 𝛿. As
expected, the agent invests the same amount of total wealth into the stock market as the
regret-averse CRRA investor. Again, this investment fraction consists of a predetermined
fraction of total wealth given the regret and risk aversion parameters and a correction term
for human wealth.

The results for the Merton problem for a regret-averse investor without labor income are
again omitted, but these results can easily be derived. It can be verified that the results are
identical to the results of Corollary 3.2 with 𝑦 = 0 for all time periods 𝑡. Note that for 𝑦 = 0,
it holds that 𝐻 (𝑡, 𝑦) = 0 for all 𝑡 and hence the correction term for human wealth drops out of
the expression of the investment strategy. Thus, an agent without any labor income invests
only a predetermined, time-independent fraction of financial wealth into the stock market.
The consumption choice remains a given time-independent fraction of financial wealth. At
last, as expected, the results of Theorem 3.4 reduce to the results of Corollary 3.2 if one
assumes only one biometric state.
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This concludes the analytical derivations of the unit-EIS regret-averse biometric risk model.

Closed-form solutions have been retrieved for an arbitrary EIS parameter value 𝜓. The
sequential section will discuss the Monte-Carlo simulation utilized to illustrate the figures of
the previous sections. Furthermore, additional results are shown and a sensitivity analysis
for the parameters of a benchmark survival model will be performed.

61



4 Numerical results
In this section, numerical results for a benchmark survival model are shown. First, the
Monte-Carlo simulation and chosen benchmark parameter values will be discussed. Second,
results for the benchmark survival model will be shown. At last, a sensitivity analysis for
the most prominent parameters is performed.

4.1 Numerical method

The numerical results are based on a Monte-Carlo simulation using 100, 000 sample paths
and where the consumption-investment-insurance strategy is updated 12 times per year, i.e.
once every month. The initial age of all investors is 25 years (𝑡 = 0) and the agents are known
to retire at an age of 65 (𝑇𝑟 = 40). The biometric model considered is the survival model (see
Figure 1) as introduced by Richard (1975). Hence, the agent is only subject to mortality
risk. Stated differently, she might pass away before the terminal date 𝑇 . The model ends
either if the agent has passed away or when the agent is 150 years old (𝑇 = 125). The
terminal date has been chosen in such a way that all agents have died with a exceptionally
high probability before the terminal date. Hence, for every agent, the model will, very likely,
end by an uncertain time of death. Following Hambel et al. (2022), it is assumed that the
hazard rate of death ℎ0,1(𝑡) follows a Gompertz mortality law of the form

ℎ0,1(𝑡) = 1

𝑏
e

𝑎+𝑡−𝑚
𝑏 (115)

where 𝑎 denotes the age of the agent at time 𝑡 = 0, 𝑚 the x-axis displacement parameter,
and 𝑏 the steepness parameter. The parameter values are taken from Hambel et al. (2022).
Hambel et al. (2022) calibrated the model to life tables of Germany as of 2010 and they
retrieved 𝑎 = 25, 𝑚 = 84.56, and 𝑏 = 8.8. The agent can insure herself against the loss of in-
come due to an early death. It is assumed that the unit premium satisfies ℎ̂

0,1
𝑡 = (1+ 𝜙𝜄

𝑡)ℎ
0,1
𝑡 .

For simplicity, it is assumed that 𝜙𝜄
𝑡 is constant over time and the fees for the insurer are

20%, i.e. 𝜙𝜄
𝑡 = 0.2.

Following Hambel et al. (2022), the risk-free rate is assumed to be 𝑟 = 0.01. The expected
stock return is 𝜇 = 0.06 and the stock volatility is given by 𝜎 = 0.2. The investor earns
labor income with a constant expected income growth of 𝛼 = 0.01 and an income volatility
of 𝜁 = 0. The replacement ratio at retirement is determined to be Γ = 0.6. The agent has
a risk aversion parameter of 𝛾 = 4 and a regret aversion parameter of 𝜅 = 1.8. The regret
aversion parameter is based on the empirical results of Bleichrodt et al. (2010). The elastic-
ity of intertemporal substitution is given by 𝜓 = 1.5 following the seminal paper of Bansal
and Yaron (2004). The time preference rate of the agent is assumed to be 𝛿 = 0.03 and the
weight of the bequest motive of the agent is assumed to be 𝜀 = 1.
Table 2 summarizes all parameter values for the benchmark model.
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General parameters
𝛾 Risk aversion parameter 4
𝜅 Regret aversion parameter 1.8
𝜓 Elasticity of intertemporal substitution 1.5
𝛿 Time preference rate 0.03
𝜀 Weight of the bequest motive 1
𝑟 Risk-free rate 0.01
𝜇 Expected stock return 0.06
𝜎 Stock volatility 0.2
𝑊0 Initial financial wealth (in thousands) 20
𝛼 Expected income growth 0.01
𝜁 Income volatility 0
Γ Replacement ratio of the income 0.6
𝑇𝑟 Retirement date 40
𝑇 Terminal date 125
𝑦0 Initial income (in thousands) 2.5
𝑎 Age at 𝑡 = 0 25
𝑚 x-axis displacement 84.56
𝑏 Steepness parameter 8.8
𝜙𝜄 Additional fees of the insurer 0.2

Table 2: Benchmark parameter values.

4.2 Results

Given the model parameters of Table 2, the financial wealth and control processes of the
benchmark model can be simulated. Figure 6 (a) shows the average foregone and realized
financial wealth for the benchmark survival model. Figure 6 (b) depicts the average optimal
foregone and realized consumption process for the benchmark survival model. The (optimal)
foregone and realized investment fraction 𝜋 is depicted in Figure 6 (c). As previously stated,
the investment fraction 𝜋 denotes the relative fraction of amount invested into the risky
asset by financial wealth, i.e. 𝜋 = 𝜃

𝑊
. Note, as it is assumed that 𝜁 (𝑡, 𝑝) = 0, it holds that

the correction term for human wealth (−𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡,𝑝)
𝜎

) equals zero for all time periods 𝑡 and
biometric states 𝑝. The average investment fractions are determined based on a trimmed
mean where the highest and lowest 5% of the 𝜋’s are trimmed. This reduces the noise in
the average of 𝜋 as 𝜋 is very sensitive to financial wealth close to zero. At last, figure 6 (d)
denotes the optimal foregone and realized notional choice for the life-insurance contracts. It
should be noted that although the model ends ultimately at terminal date 𝑇 , the graphs are
shown up to an age of 90 years. At an age of 90 years, approximately 15.7% of the agents
are still alive.
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(a) Average foregone and realized financial
wealth for an investor in the benchmark
model.

(b) Average foregone and realized consump-
tion for an investor in the benchmark model.

(c) Average foregone and realized investment
fraction 𝜋 for an investor in the benchmark
model.

(d) Average foregone and realized life-
insurance contract notional for an investor in
the benchmark model.

Figure 6: The figure shows the by Monte-Carlo simulation obtained average optimal financial
wealth and control processes for an investor in the benchmark model. The investor has access
to actuarially fair priced life-insurance contracts in line with Richard (1975).

As expected, foregone financial wealth exceeds realized financial wealth on average. Both
foregone and realized financial wealth is increasing up to an age of approximately 85 and 80
years, respectively. Thereafter, financial wealth decreases, but it remains on average positive
at an age of 90 years. The foregone financial wealth exceeds realized financial wealth vastly
at an age of 90 years. The dynamics of the average realized consumption over the life-cycle
are very similar to the dynamics of average financial wealth. It increases up to an age of
approximately 78 years and then decreases to below the consumption level at an age of 25
years (𝑡 = 0). Foregone consumption shows the same pattern, but is overall much higher. As
the benchmark EIS parameter 𝜓 = 1.5, it holds that 𝜓 satisfies the condition of 𝜓 <

𝛾+𝜅−1
𝜅
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(see the analysis of the optimal consumption process in Section 3.3.2). Hence, the optimal
consumption process is differently affected by the age- and state-dependent function 𝐺 (𝑡, 𝑝)
as by 𝐺 (𝑡, 𝑝). Therefore, the foregone and realized consumption processes differ even when
foregone total wealth equals realized total wealth, which is obvious the case at an age of 25
years. The average investment fractions are very similar to the average investment fractions
as showed in Section 3.4.2 Figure 3 and Section 3.5.2 Figure 5. This is as expected, as the
investment fractions only depend on total wealth and the functional forms were determined
to be independent of 𝜓. The optimal notional choice is on average negative indicating that
the investors choose to short-sell their life-insurance contracts to generate more wealth. The
optimal realized notional is smaller than for the CRRA- and unit-EIS-regret-utility speci-
fications. The optimal foregone notional choice is more similar compared to the previous
specifications. The optimal realized notional choice decreases on average up to an age of 70
years and the optimal foregone notional choice up to an age of 75 years. The agents opt to
short-sell their life-insurance contracts as their financial wealth greatly exceeds on average
the time- and state-dependent fraction of total wealth resulting in negative notional choices.

This concludes the numerical results for the benchmark model. In the subsequent section, a
sensitivity analysis for the most prominent parameters is carried out.

4.3 Sensitivity analysis

In this section a sensitivity analysis for various parameters is performed. The optimal realized
financial wealth and consumption are compared for different values of a specific parameter,
whereas all other parameter values remain given by Table 2. It is chosen to only show the
results for optimal consumption and financial wealth as the impact of the various parameters
is typically less obvious for consumption and financial wealth. Hence, a visual representation
might give some insights in the effect of the various parameters.

Figure 7 (a) and (b) show the average financial wealth and consumption for a regret-averse
investor with different EIS parameter values. The different values considered are: 𝜓 = 0.25
(CRRA), 𝜓 = 0.5, 𝜓 = 1 (unit EIS), 𝜓 = 1.5 (benchmark model), and 𝜓 = 2. Note that
changing 𝜓 while keeping 𝛾 fixed also changes 𝜑 =

1−𝛾
1− 1

𝜓

. From Figure 7 it can be seen that

the CRRA-model 𝜓 = 0.25 and 𝜓 = 0.5 result in the lowest financial wealth on average.
The results for these two models are very close on average. The highest financial wealth
is achieved with an EIS parameter value of 𝜓 = 2. For 𝜓 > 1, it seems to hold true that
having a higher EIS parameter value increases financial wealth on average. The optimal
consumption process is on average the highest for a 𝜓 = 0.25. The consumption process is
clearly decreasing in 𝜓 for an age older than 40 years. Up to an age of 40 years, the average
consumption for 𝜓 = 0.5 exceeds the average consumption for 𝜓 = 0.25. For 𝜓 = 2, the
consumption process is almost zero for the earlier ages and slightly increases at older ages.
At an age of 90 years, the consumption amount for 𝜓 ≤ 1 is approximately the same, but
lower for 𝜓 = 1.5 and 𝜓 = 2.
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The average financial wealth and consumption over the life-cycle for different values of the
regret aversion parameter 𝜅 are depicted in Figure 8. The results are shown for 𝜅 = 1.1,
𝜅 = 1.5, 𝜅 = 1.8 (benchmark model), 𝜅 = 2.5, and 𝜅 = 2.9. These parameter values satisfy
the necessary condition of 1 < 𝜅 < 𝛾 − 1 = 3 (see section 3.1). Figure 8 (a) shows that
increasing 𝜅 increases average financial wealth. This is especially prominent at an age of
approximately 80 years. The difference in financial wealth is smaller at very young and very
old ages. At an age of 90 years, a higher 𝜅 results in a higher financial wealth on average.
The increase in financial wealth at the middle of the life-cycle could be explained by the fact
that a regret-averse investor is inclined to invest a higher fraction of (total) wealth into the
stock market. Therefore, this could increase the financial wealth on average. Figure 8 (b)
illustrates the corresponding consumption amounts over the life-cycle. Up to an age of 55/60
years results a higher regret aversion parameter in lower consumption. After the age of 60
results a higher regret aversion parameter on average in more consumption. For 𝜅 = 1.1 the
consumption peaks at an age of 78 years whereas for 𝜅 = 2.9 the consumption peaks at an
age of 82 years.

Figure 9 illustrates the effect of the risk aversion parameter 𝛾 on the average financial wealth
and consumption over the life-cycle. Similar as for the analysis of 𝜓 is 𝜑 adjusted accordingly
for the various risk aversion parameters 𝛾. The risk aversion values considered are 𝛾 = 3,
𝛾 = 4 (benchmark model), 𝛾 = 6, 𝛾 = 8, and 𝛾 = 10. In line with the sensitivity analysis of
the regret aversion parameter 𝜅, satisfy these risk aversion values the necessary condition of
1 < 𝜅 = 1.8 < 𝛾 − 1. From Figure 9 (a) it can be seen that a higher risk aversion parameter
decreases financial wealth on average. A higher risk aversion level decreases the amount
invested into the stock market. Hence, financial wealth is on average lower for a higher risk
aversion. The amount consumed over the life-cycle varies with the risk aversion parameter
𝛾 as can be seen in Figure 9 (b). For a higher risk aversion parameter (𝛾 = 8 and 𝛾 = 10)
shows the average consumption process a decreasing pattern over the life-cycle, whereas for a
lower risk aversion parameter shows the average consumption process an increasing pattern
up to an age of approximately 78 years and decreasing afterwards. However, at a very early
age (up to an age of 35 years) yields a higher risk aversion level in a higher consumption
compared to a lower risk aversion level. A higher risk aversion parameter not only decreases
investment into the risky asset and average financial wealth, but also decreases consumption
over the life-cycle except for at a very early age.

The final parameter of interest for this sensitivity analysis is the time preference rate pa-
rameter 𝛿. The results are shown in Figure 10. This sensitivity analysis considers a very
small value of 𝛿 = 0.001, 𝛿 = 0.01, the benchmark value of 𝛿 = 0.03, a moderate value of
𝛿 = 0.05 and a high value of 𝛿 = 0.1. From Figure 10 (a), it becomes clear that having a
lower time preference rate yields on average a higher financial wealth. The average financial
wealth for 𝛿 = 0.001 and 𝛿 = 0.01 are almost identical up to an age of 60 years. Thereafter,
the average financial wealth for 𝛿 = 0.01 exceeds the financial wealth for 𝛿 = 0.001. It should
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also be noted that for 𝛿 = 0.1, the average financial wealth turns negative for most of the
life-cycle. From Figure 10 (b) this can be explained by the fact that the agent consumes
a lot in the beginning of the life-cycle as the agent has a very high time preference rate.
This results in negative financial wealth. Note that financial wealth is allowed to be nega-
tive in this model, but total wealth should remain positive. The consumption process for
𝛿 = 0.001 is approximately zero over the entire life-cycle. The time preference rate of the
investor is very low and therefore she chooses to consume only a very little. Moreover, a time
preference rate of 𝛿 = 0.03 yields a slightly higher average consumption at older ages than
𝛿 = 0.05. For 𝛿 = 0.01 and 𝛿 = 0.03 is the consumption process increasing up to an age of
80 years, whereas for 𝛿 = 0.05 and 𝛿 = 0.1 the process is monotonically decreasing on average.

This concludes the sensitivity analysis of the numerical benchmark model. It is worth noting
that the other parameter values such as e.g. the risk-free rate 𝑟, expected stock return 𝜇, and
expected income growth 𝛼 also play a crucial role in the optimal wealth and consumption-
investment-insurance strategy. However, the effect of these parameter values are not studied
in this thesis.

(a) Average financial wealth for various val-
ues of 𝜓.

(b) Average consumption for various values
of 𝜓.

Figure 7: This figure shows the optimal financial wealth and consumption process for different
values of the EIS parameter 𝜓. The values considered are 𝜓 = 0.25 (CRRA), 𝜓 = 0.5, 𝜓 = 1

(unit EIS), 𝜓 = 1.5 (benchmark model) and 𝜓 = 2. Note that 𝜑 =
1−𝛾
1− 1

𝜓

is adjusted accordingly.
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(a) Average financial wealth for various val-
ues of 𝜅.

(b) Average consumption for various values
of 𝜅.

Figure 8: This figure shows the optimal financial wealth and consumption process for different
values of the regret aversion parameter 𝜅. The values considered are 𝜅 = 1.1, 𝜅 = 1.5, 𝜅 = 1.8
(benchmark model), 𝜅 = 2.5, and 𝜅 = 2.9.

(a) Average financial wealth for various val-
ues of 𝛾.

(b) Average consumption for various values
of 𝛾.

Figure 9: This figure shows the optimal financial wealth and consumption process for different
values of the risk aversion parameter 𝛾. The values considered are 𝛾 = 3, 𝛾 = 4 (benchmark
model), 𝛾 = 6, 𝛾 = 8, and 𝛾 = 10. Note that 𝜑 =

1−𝛾
1−𝜓 is adjusted accordingly.
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(a) Average financial wealth for various val-
ues of 𝛿.

(b) Average consumption for various values
of 𝛿.

Figure 10: This figure shows the optimal financial wealth and consumption process for
different values of the time preference rate 𝛿. The values considered are 𝛿 = 0.001, 𝛿 = 0.01,
𝛿 = 0.03 (benchmark model), 𝛿 = 0.05, and 𝛿 = 0.1.

69



5 Conclusion
This section summarizes and highlights the most profound findings of the previous sections.

This thesis incorporated a behavioral model into the optimal consumption-investment-insurance
problem. The behavioral model considered in this thesis is a regret-adjusted Epstein-Zin
preferences model. Goossens (2022) showed that regret theory can explain various stylized
facts of the financial literature. Moreover, Zeelenberg (1999), and Zeelenberg et al. (1998)
showed that regret is inherently different from other emotions as it is widely experienced
among investors and very persistent. As a result, regret could affect investors decision mak-
ing and could therefore be of importance in a dynamic asset allocation problem. Epstein-Zin
preferences are utilized to distinguish between risk aversion and elasticity of intertemporal
substitution.

In Section 3.1, an alternative multiplicative regret-utility function based on the regret-utility
function of Goossens (2022) is proposed. This proposed regret-utility function allows for
both regret as well as rejoicing, i.e. positive regret. The regret-utility function consists
multiplicatively of a CRRA power-utility part and a regret part. The regret part models
regret over the relative difference between the realized outcome and the foregone outcome.
It is shown that the proposed regret-utility function satisfies all desired properties as stated
by Goossens (2021) of a multiplicative regret-utility function if the ratio between foregone
and realized wealth is bounded from below, i.e. �̂�

𝑊
≥ 𝜅

𝛾+𝜅−1 . It was numerically shown by a
Monte-Carlo simulation that this condition is at least in 99% of the sample paths satisfied.

To further extend the model, a regret-averse differential utility specification was proposed.
It was shown that the proposed regret-averse normalized aggregator function reduces to the
normalized aggregator function as proposed by Duffie and Epstein (1992) for regret aversion
parameter 𝜅 = 0. Two special cases can be distinguished based on the differential utility
specification. Either the EIS parameter 𝜓 equals 𝜓 = 1

𝛾
(CRRA) or 𝜓 = 1 (unit EIS). For

the first parameterization, the utility preferences are given by the regret-utility function
proposed previously. The second parameterization is a limiting case of the regret-averse
differential utility specification.

This thesis thus considered a regret-averse investor with Epstein-Zin preferences. In line
with Hambel et al. (2022), it is moreover assumed that the investor is subject to biometric
risks. The investor has access to a perfect life-insurance market where she is able to buy
continuously-adjustable life-insurance contracts to insure herself against a possible loss of
income due to a biometric shock. This model builds upon the work of Hambel et al. (2022)
as they assumed a purely risk-averse investor with a power-utility function. The investment
opportunities and the biometric model specification were discussed in Section 3.2.

In Section 3.3, the optimal consumption-investment-insurance strategy for investor with an
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arbitrary-EIS-regret-utility specification is derived. First the optimal consumption-insurance
strategy for an auxiliary investor who invests her total available wealth into the risky asset
are derived. These optimal control strategies are then substituted into the regret-averse
model to determine the optimal control strategies for the regret-averse investor. It was
shown that the optimal control strategies do not depend on foregone wealth, only on re-
alized wealth. The optimal consumption strategy depends non-linearly on the underlying
ODE of the regret-averse model and the underlying ODE of the auxiliary model. The op-
timal investment amount was determined to be a constant fraction of total wealth and a
correction term for human wealth. It was proven that the amount invested into the stock
market by a regret-averse investor exceeds the amount invested by a purely risk-averse in-
vestor under the condition that the Merton investment fraction of the purely risk-averse
investor does not exceed one. This condition is typically satisfied. Hence, it is optimal
for a regret-averse investor to invest more into the risky asset to mitigate the possibility
of missing out on returns in the long run. At last, the optimal insurance strategy also
depends non-linearly on the underlying time- and state-dependent ODEs. Section 3.4 high-
lights the results in case of 𝜓 = 1

𝛾
. For this special case, the model reduces to a regret-averse

time-additive power-utility specification. Moreover, a closed-form solution for the Merton
portfolio problem with spanned exogenous income and CRRA-regret-utility preferences has
been shown. Section 3.5 described the optimal consumption-investment-insurance strategy
for an investor with a unit-EIS-regret-utility specification. In line with the results of classi-
cal Epstein-Zin preferences are the optimal investment and insurance strategies unchanged
compared to the optimal investment and insurance strategies for the arbitrary-EIS-regret-
utility specification (Munk, 2017). It should be noted nonetheless that the underlying ODEs
are different. The consumption strategy is in this case a constant fraction of total wealth
depending on the investor’s time preference rate. This consumption strategy is the same
as for a purely risk-averse investor. Hence, the regret aversion parameter does not affect
the consumption strategy in case of unit EIS. Similar as for the CRRA-regret-utility spec-
ification, a closed-form solution for the Merton portfolio problem with spanned exogenous
income and unit-EIS-regret-utility preferences has been shown.

Section 4 illustrated numerical results for a benchmark model retrieved by utilizing a Monte-
Carlo simulation. As expected, foregone financial wealth exceeded realized financial wealth
on average. The average optimal consumption process was found to be increasing up to
an age of approximately 78 years. The investment fractions decreased over the life-cycle.
Thus, it is advised to invest more than a 100% of financial wealth into the stock market at a
younger age and then invest less at an older age. The optimal notional choice was retrieved
to be on average negative indicating that the agents short-sell their life-insurance contracts
to generate more wealth. For completeness, a sensitivity analysis was performed. Results
for various values of the EIS parameter 𝜓, the regret aversion parameter 𝜅, the risk aversion
parameter 𝛾, and the time preference rate 𝛿 were discussed.

In conclusion, the aim of this thesis was to analytically assess the optimal consumption-
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investment-insurance strategy for a regret-averse investor with Epstein-Zin preferences. This
thesis proposed a behavioral dynamic asset allocation model for a risk- and regret-averse in-
vestor with Epstein-Zin preferences who is subject to biometric risks. The model takes into
account the feeling of regret an investor might have after missing out on higher ex-post fore-
gone investment choice. Yet, the model is tractable and might therefore be a consideration
opposed to the classical CRRA power-utility model. The fact that the model is tractable
could have economic relevance for institutional investors such as pension funds. A pension
fund assumes a general utility function for the underlying agents to optimally invest based
on the preferences of the agents. For practical reasons, it is often desired that the utility
function and model is tractable. The behavioral model proposed in this thesis would provide
the pension funds with an alternative utility function which is still tractable, but also cap-
tures a relevant behavioral aspect of the underlying agents. This could improve the pension
funds investment strategy and decision making. Moreover, an important finding was that
the optimal investment amount into the risky asset is larger for a risk- and regret-averse
investor than for a purely risk-averse investor. This finding could be taken into considera-
tion for fund managers. Fund managers might personally be more affected by the feeling
of regret towards their investments as their income (bonuses) is often performance-based.
Benyelles and Arisoy (2019) find that fund managers who perform worse than their peers
tend to take more risk (invest more into risky assets) in the subsequent period indicating
that fund managers are indeed affected by regret. Even if they achieve large gains, missing
out on even higher gains or being outperformed by peers worsens their performance status.
For fund managers, it might be reasonable to think that relative gains are of much more
importance than absolute gains. From this, it could be concluded that fund managers might
have a higher than average regret aversion. As it was determined in this thesis that regret
aversion increases the amount invested into the risky asset, this observation could explain
the risk-taking behavior of fund managers. In the Introduction 1, it was already discussed
that households might be affected by a feeling of regret. Hence, gaining insights from imple-
menting regret theory into an optimal investment problem is for both institutional as well
as retail investors of economic relevance.
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6 Discussion and recommendations
To derive the closed-form solutions, some strong assumption were made. First of all, it was
assumed, to determine the foregone consumption and wealth, that the auxiliary investor
invests her total available wealth into the risky asset. This assumption allows for an explicit
dynamic foregone wealth process and hence also for an optimal foregone consumption pro-
cess and notional choice. However, this formulation does not resemble the ex-post highest
amount of consumption or wealth an investor could have had at any given point in time. This
issue was also addressed in Section 3.1. Therefore, one might criticize the optimal foregone
processes and foregone wealth dynamics. If one would be able to define foregone consump-
tion/wealth in such a way that it is larger or equal than realized consumption/wealth, almost
surely, then the proposed regret-utility function would satisfy all desired properties of Table
1 as rejoicing would be excluded. Furthermore, it would also allow one to use a different
regret-utility function such as the one proposed by Goossens (2022). Another possibility
would be to implement an additive regret-utility function. In that case one could use for
example the regret-utility function as proposed by Braun and Muermann (2004). For this,
numerical solution methods are most likely required.

Additionally, the proposed regret-utility function is not guaranteed to satisfy all the desired
properties of a multiplicative regret-utility function if the agent can experience rejoicing. It
was shown that based on a Monte-Carlo simulation the lower bound is satisfied in at least
99% of the paths, but there were some sample paths where the lower bound exceeded the
ratio between foregone and realized wealth. Nonetheless, as this was rarely the case, it is
argued that the proposed regret-utility function should behave like a desired multiplicative
regret-utility function. In line with previous critique, this issue could also be circumvented if
foregone consumption/wealth is defined in such a way that it is larger or equal than realized
consumption/wealth for all states of the world and all time periods.

Furthermore, it is assumed in this thesis that the investor is only able to invest into a risk-
free asset and a risky asset with a constant investment opportunity set. One possibility of
extending the model would be to include a bond market to the asset class. This would allow
the investor to invest in the risky asset as well as in bonds to hedge stochastic interest rates.
Instead of stochastic interest rates, the model could also be extended by stochastic volatil-
ity or stochastic market price of risk or a combination of the three. Different asset types
might also be included in the asset selection of the investor. For example, similar to Hambel
(2020), the asset class could be extended by including real estate or by including derivatives.
For households, real estate is a crucial part of their equity and fluctuations might affect
the consumption-investment-insurance strategy significantly. For these proposed model ex-
tensions, closed-form solutions might not be obtainable and hence, one should resort to
numerical solutions.

A different extension to the model would be allowing for state-dependent risk and regret
aversion parameters. Steffensen and Søe (2023) derived closed-form solutions for the opti-
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mal consumption-investment-insurance strategy for a state-dependent risk aversion model.
Similar to their work, one could implement these techniques to allow for state dependence
of the risk and regret aversion parameters in the model. Instead of state-dependent param-
eters, one could also assume time-dependent risk and regret aversion parameters. A state-
and time-dependent regret aversion parameter could be of interest for the analysis of fund
managers. Allowing the regret aversion parameter to increase (decrease) after a bad (good)
state of the world could partly explain the risk-taking behavior of fund managers as Benyelles
and Arisoy (2019) showed that fund managers tend to take on more risk in the subsequent
period if they are outperformed by peers.

At last, the model could numerically be assessed with more realistic assumptions such as
no access to continuously-adjustable life-insurance contracts, and short-selling and borrow-
ing constraints. The assumption of having access to a perfect life-insurance market with
continuously-adjustable life-insurance contracts is rather unrealistic. Hence, a numerical
model relaxing such an assumption improves the real world credibility of the model. It can
be shown that the indirect utility functions considered in this thesis satisfy the homogeneity
property. As a result, one could numerically analyze the more realistic constrained model by
implementing a two-dimensional grid-based finite difference scheme. In a follow up paper,
such a finite difference scheme will be implemented. Inference based on such a model would
be more creditable.
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7 Appendix

7.1 Proof limiting case 𝜓 = 1 of the regret-averse normalized aggre-
gator function

Proof limiting case 𝜓 = 1 of the regret-averse normalized aggregator function. For 𝜓 = 1, it
holds that

F (𝑐, 𝑐,𝑉) = lim
𝜓→1

𝛿𝑐
1− 1

𝜓

(
𝑐
𝑐

) 𝜅
𝜑 ( [1 − 𝛾]𝑉)1−

1
𝜑 − 𝛿(1 − 𝛾)𝑉

1 − 1
𝜓

By rule of l’Hopitâl this equals

= lim
𝜓→1

−𝛿𝑐
𝜅 (1− 1

𝜓
)

1−𝛾 𝑐
1− 1

𝜓
−

𝜅 (1− 1
𝜓
)

1−𝛾 𝑉 [{ln(𝑐) − ln(𝑐)}𝜅 + 𝛾 ln(𝑐) − ln(𝑐) + ln( [1 − 𝛾]𝑉)]

(𝑉 [1 − 𝛾])
1− 1

𝜓

1−𝛾 𝜓2𝜓−2

= 𝛿𝑉 [(1 − 𝛾 − 𝜅) ln(𝑐) + 𝜅 ln(𝑐) − ln( [1 − 𝛾]𝑉)]

□

7.2 Verification of the desired properties of table 1

The multiplicative regret-utility function proposed in Section 3.1 is specified to be

𝑢(𝑥, 𝑦) = 𝑥1−𝛾

1 − 𝛾

( 𝑦
𝑥

) 𝜅
, 𝛾 − 1 ≥ 𝜅 ≥ 1, 𝑥 > 0, and 𝑦 > 0

with 𝛾 being the time-independent risk aversion parameter and 𝜅 the time-independent regret
aversion parameter. Note that both realized and foregone consumption/wealth are strictly
positive.

It will be verified that this regret-utility specification satisfies all desired properties as de-
fined by Goossens (2021) (Table 1) except property P2c. The derivations of the respective
properties are given below:

• P1a: 𝜕𝑢(𝑥,𝑥)
𝜕𝑥

= 𝑥−𝛾 > 0

• P1b: 𝜕2𝑢(𝑥,𝑥)
𝜕𝑥2

= −𝛾𝑥−𝛾 < 0

• P2a: 𝑢1(𝑥, 𝑦) = 1−𝛾−𝜅
1−𝛾 𝑥−𝛾

( 𝑦
𝑥

) 𝜅
> 0

• P2b: 𝑢2(𝑥, 𝑦) = 𝜅
1−𝛾𝑥

1−𝛾 ( 𝑦
𝑥

) 𝜅 1
𝑦
< 0
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• P2c: 𝑢1(𝑥, 𝑦) + 𝑢2(𝑥, 𝑦) = 1−𝛾−𝜅
1−𝛾 𝑥−𝛾

( 𝑦
𝑥

) 𝜅 + 𝜅
1−𝛾𝑥

1−𝛾 ( 𝑦
𝑥

) 𝜅 1
𝑦

=

(
1
𝑥
+ 𝜅

𝛾−1

(
1
𝑥
− 1

𝑦

))
𝑥1−𝛾

( 𝑦
𝑥

) 𝜅
=


≥ 0 if 𝑥 ≤ 𝑦

< 0 if 𝑦

𝑥
< 𝜅

𝛾+𝜅−1
≥ 0 if 𝑦

𝑥
≥ 𝜅

𝛾+𝜅−1

as it holds that
(
1
𝑥
+ 𝜅

𝛾−1

(
1
𝑥
− 1

𝑦

))
≥ 0 ⇐⇒ 𝑦

𝑥
≥ 𝜅

𝛾+𝜅−1 . Note that by definition

𝑥1−𝛾
( 𝑦
𝑥

) 𝜅
> 0.

• P3: 𝑢12(𝑥, 𝑦) = (1−𝛾−𝜅)𝜅
1−𝛾 𝑥−𝛾

( 𝑦
𝑥

) 𝜅 1
𝑦
= 𝑢21(𝑥, 𝑦) > 0

• P4a: 𝑢11(𝑥, 𝑦) = (1−𝛾−𝜅) (−𝛾−𝜅)
1−𝛾 𝑥−𝛾−1

( 𝑦
𝑥

) 𝜅
< 0

• P4b: 𝑢22(𝑥, 𝑦) = 𝜅(𝜅−1)
1−𝛾 𝑥1−𝛾

( 𝑦
𝑥

) 𝜅 1
𝑦2

≤ 0

This concludes the verification of the properties as defined by Goossens (2021) for the pro-
posed multiplicative regret-utility function.

7.3 Conjecture and corresponding partial derivatives

Auxiliary model
It is conjectured that the indirect utility function of the auxiliary model has the following
functional form

𝐽 (𝑡, �̃� , 𝑦, 𝑝) = 1

1 − 𝛾
𝐺 (𝑡, 𝑝)𝛾

(
�̃� + 𝑦𝐹 (𝑡, 𝑝)

)1−𝛾
with the following corresponding derivatives with respect to �̃� , 𝑦 and 𝑡

𝐽�̃� (𝑡, �̃� , 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾

𝐽�̃��̃� (𝑡, �̃� , 𝑦, 𝑝) = −𝛾𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1

𝐽𝑦 (𝑡, �̃� , 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾𝐹 (𝑡, 𝑝)
𝐽𝑦𝑦 (𝑡, �̃� , 𝑦, 𝑝) = −𝛾𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1𝐹 (𝑡, 𝑝)2

𝐽�̃�𝑦 (𝑡, �̃� , 𝑦, 𝑝) = −𝛾𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1𝐹 (𝑡, 𝑝)
𝜕𝐽

𝜕𝑡
(𝑡, �̃� , 𝑦, 𝑝) = 𝛾

1 − 𝛾

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝)𝐺 (𝑡)𝛾−1(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

+ 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾𝑦 𝜕𝐹
𝜕𝑡

(𝑡, 𝑝)

where the subscripts denote the partial derivatives with respect to the state variables and
time.
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Regret-averse model
The conjecture is made that the indirect utility function of the regret-averse model has the
following functional form

𝐽 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 1

1 − 𝛾
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
with the following corresponding derivatives with respect to 𝑊 , �̂� , 𝑦 and 𝑡

𝐽𝑊 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
(
1 − 𝛾 − 𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝐽𝑊𝑊 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾

(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝐽
�̂�
(𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾

(
𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)

𝐽
�̂��̂�

(𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
(
𝜅(𝜅 − 1)
1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

(�̂� + 𝑦𝐹 (𝑡, 𝑝))2

𝐽
𝑊�̂�

(𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)

𝐽𝑦 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
(
1 − 𝛾 − 𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝐹 (𝑡, 𝑝)

+ 𝐺 (𝑡, 𝑝)𝛾
(

𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝐹 (𝑡, 𝑝)

𝐽𝑦𝑦 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝐹 (𝑡, 𝑝)2

+ 2 · 𝐺 (𝑡, 𝑝)𝛾
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝐹 (𝑡, 𝑝)2

+ 𝐺 (𝑡, 𝑝)𝛾
(
𝜅(𝜅 − 1)
1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

(�̂� + 𝑦𝐹 (𝑡, 𝑝))2
𝐹 (𝑡, 𝑝)2

𝐽𝑊𝑦 (𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡)𝛾
(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝐹 (𝑡, 𝑝)

+ 𝐺 (𝑡, 𝑝)𝛾
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝐹 (𝑡, 𝑝)

𝐽
�̂�𝑦

(𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝐺 (𝑡, 𝑝)𝛾
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝐹 (𝑡, 𝑝)

+ 𝐺 (𝑡, 𝑝)𝛾
(
𝜅(𝜅 − 1)
1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

(�̂� + 𝑦𝐹 (𝑡, 𝑝))2
𝐹 (𝑡, 𝑝)
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𝜕𝐽

𝜕𝑡
(𝑡,𝑊, �̂�, 𝑦, 𝑝) = 𝛾

1 − 𝛾
𝐺 (𝑡, 𝑝)𝛾−1 𝜕𝐺

𝜕𝑡
(𝑡, 𝑝) (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
+ 𝐺 (𝑡, 𝑝)𝛾

(
1 − 𝛾 − 𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦
𝜕𝐹

𝜕𝑡
(𝑡, 𝑝)

+ 𝐺 (𝑡, 𝑝)𝛾
(

𝜅

1 − 𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦
𝜕𝐹

𝜕𝑡
(𝑡, 𝑝)

where the subscripts denote the partial derivatives with respect to the state variables and
time.

7.4 ODEs for the regret-utility specifications

This section shows the lengthy ODEs for the various regret-utility specifications considered
in this paper. The ODEs are constructed by substituting the optimal (foregone) control
processes and the conjecture into the respective HJB equations. For the auxiliary model,
the equations only differ in 𝑓 (𝑐, 𝐽) given by equation (8). For the regret-averse models, the
equations only differ in F (𝑐, 𝑐, 𝐽) − 𝑐𝐽

�̂�
with F (𝑐, 𝑐, 𝐽) given by equation (9).

Auxiliary model

0 =


(

𝛿𝜓

𝜓−1𝐺 (𝑡, 𝑝)
𝛾𝜓−1
𝛾−1 − 𝛿𝜑

1−𝛾𝐺 (𝑡, 𝑝)
)
𝐺 (𝑡, 𝑝)𝛾−1(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 for 𝜓 ≠ 1(

𝜚
1
𝛾

𝛾

1−𝛾 − 𝛿
1−𝛾𝐺 (𝑡, 𝑝)

)
𝐺 (𝑡, 𝑝)𝛾−1(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 for 𝜓 = 1

𝛾(
𝛿[ln(𝛿) − 1] − 𝛿

𝛾

1−𝛾 ln(𝐺 (𝑡, 𝑝))
)
𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 for 𝜓 = 1

+ 𝛾

1 − 𝛾

𝜕𝐺

𝜕𝑡
(𝑡, 𝑝)𝐺 (𝑡, 𝑝)𝛾−1(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 + 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾𝑦 𝜕𝐹

𝜕𝑡

+ 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾𝑟 − 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾𝑟𝑦𝐹 (𝑡, 𝑝)
+ 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾𝜎𝜆 − 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾𝜆𝜁 (𝑡, 𝑝)𝑦𝐹 (𝑡, 𝑝)

+ 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾𝑦 − 1

2
𝛾𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾𝜎2 (116)

+ 𝛾

1 − 𝛾

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

𝐺 (𝑡, 𝑞)𝐺 (𝑡, 𝑝)𝛾−1(�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

+
∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 −

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾𝑦𝐹 (𝑡, 𝑝)

+
∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾

− 1

1 − 𝛾

∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))1−𝛾 + 𝐺 (𝑡, 𝑝)𝛾 (�̃� + 𝑦𝐹 (𝑡, 𝑝))−𝛾𝑦𝐹 (𝑡, 𝑝)𝛼(𝑡, 𝑝)
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Regret-averse model

0 =



(
𝛿𝜓

1 − 𝛾
(𝜑 − 1 + 𝛾 + 𝜅)𝐺 (𝑡, 𝑝)

−𝜓2𝜅𝛾
𝜑 (𝜑+𝜅𝜓)𝐺 (𝑡, 𝑝)

𝜑+(𝜅−𝛾)𝜓
𝜑+𝜅𝜓 − 𝛿𝜑

1 − 𝛾
𝐺 (𝑡, 𝑝) for 𝜓 ≠ 1

− 𝜅

1 − 𝛾
𝛿𝜓𝐺 (𝑡, 𝑝)

−𝜓𝛾
𝜑 𝐺 (𝑡, 𝑝)

)
𝐺 (𝑡, 𝑝)𝛾−1(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
(
𝜚

1
𝛾 (𝛾 + 𝜅)
1 − 𝛾

𝐺 (𝑡, 𝑝)
−𝜅
𝛾+𝜅𝐺 (𝑡, 𝑝)

𝜅
𝛾+𝜅 − 𝛿

1 − 𝛾
𝐺 (𝑡, 𝑝) for 𝜓 =

1

𝛾

− 𝜅

1 − 𝛾
𝜚

1
𝛾𝐺 (𝑡, 𝑝)−1𝐺 (𝑡, 𝑝)

)
𝐺 (𝑡, 𝑝)𝛾−1(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
(
𝛿[ln(𝛿) − 1] − 𝛿

𝛾

1 − 𝛾
ln(𝐺 (𝑡, 𝑝))

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
for 𝜓 = 1

+
(
𝛾 + 𝜅

1 − 𝛾

) ∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾 (

𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

) 𝜅
𝛾+𝜅

𝐺 (𝑡, 𝑝)
𝜅

𝛾+𝜅𝐺 (𝑡, 𝑞)
𝛾

𝛾+𝜅

· 𝐺 (𝑡, 𝑝)𝛾−1(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾
(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
+

(
1 − 𝛾 − 𝜅

1 − 𝛾

) ∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
−

(
1 − 𝛾 − 𝜅

1 − 𝛾

) ∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑦𝐹 (𝑡, 𝑝)𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
(117)

+
(
1 − 𝛾 − 𝜅

1 − 𝛾

) ∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
+

(
1 − 𝛾 − 𝜅

1 − 𝛾

) (
𝜆2 + 𝜆𝜎𝜅

𝛾 + 𝜅

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
−

(
1 − 𝛾 − 𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)𝜆

+ 1

2

(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

) (
𝜆 + 𝜎𝜅

𝛾 + 𝜅

)2
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
+ 1

2

(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

−
(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

) (
(𝜆 + 𝜎𝜅)𝜁 (𝑡, 𝑝)

𝛾 + 𝜅

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦𝐹 (𝑡, 𝑝)

+
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

) (
𝜆𝜎 + 𝜎2𝜅

𝛾 + 𝜅

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
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−
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)𝜎

−
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑃)

(
𝜆 + 𝜎𝜅

𝛾 + 𝜅

)
𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)

+
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑃)
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

+
(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

) (
(𝜆 + 𝜎𝜅)𝜁 (𝑡, 𝑝)

𝛾 + 𝜅

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦𝐹 (𝑡, 𝑃)

−
(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

+
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑃)

(
𝜆 + 𝜎𝜅

𝛾 + 𝜅

)
𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)

−
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

+
(

𝛾

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾−1(𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝜕𝐺

𝜕𝑡
(𝑡, 𝑝)

+
(
1 − 𝛾 − 𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦
𝜕𝐹

𝜕𝑡
(𝑡, 𝑝)

+
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦
𝜕𝐹

𝜕𝑡
(𝑡, 𝑝)

+
(
1 − 𝛾 − 𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑟

−
(
1 − 𝛾 − 𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦𝐹 (𝑡, 𝑝)𝑟

+
(
1 − 𝛾 − 𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦

+
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑟

−
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦𝐹 (𝑡, 𝑝)𝑟

+
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝜎𝜆

−
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)𝜆
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+
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦

−
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅 ∑︁
𝑞≠𝑝

(
𝐺 (𝑡, 𝑞)
𝐺 (𝑡, 𝑝)

)
ℎ
𝑝,𝑞
𝑡

(
ℎ̂
𝑝,𝑞
𝑡

ℎ
𝑝,𝑞
𝑡

)1− 1
𝛾

+
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅 ∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡

−
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑦𝐹 (𝑡, 𝑝)

+
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)

∑︁
𝑞≠𝑝

ℎ̂
𝑝,𝑞
𝑡 𝑦𝑃(𝑡, 𝑝, 𝑞)𝐹 (𝑡, 𝑞)

+ 1

2

(
𝜅(𝜅 − 1)
1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝜎2

+ 1

2

(
𝜅(𝜅 − 1)
1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

(�̂� + 𝑦𝐹 (𝑡, 𝑝))2
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

−
(
𝜅(𝜅 − 1)
1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)𝜎

+
(
1 − 𝛾 − 𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦𝐹 (𝑡, 𝑝)𝛼(𝑡, 𝑝)

+
(

𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦𝐹 (𝑡, 𝑝)𝛼(𝑡, 𝑝)

+ 1

2

(
(1 − 𝛾 − 𝜅) (−𝛾 − 𝜅)

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾−1

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

+ 1

2

(
𝜅(𝜅 − 1)
1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

(�̂� + 𝑦𝐹 (𝑡, 𝑝))2
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

+
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

+
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)𝜎

−
(
(1 − 𝛾 − 𝜅)𝜅

1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

+
(
𝜅(𝜅 − 1)
1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑦𝐹 (𝑡, 𝑝)𝜁 (𝑡, 𝑝)𝜎
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−
(
𝜅(𝜅 − 1)
1 − 𝛾

)
𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
1

(�̂� + 𝑦𝐹 (𝑡, 𝑝))2
𝑦2𝐹 (𝑡, 𝑝)2𝜁 (𝑡, 𝑝)2

−
∑︁
𝑞≠𝑝

ℎ
𝑝,𝑞
𝑡 𝐺 (𝑡, 𝑝)𝛾 (𝑊 + 𝑦𝐹 (𝑡, 𝑝))1−𝛾

(
�̂� + 𝑦𝐹 (𝑡, 𝑝)
𝑊 + 𝑦𝐹 (𝑡, 𝑝)

) 𝜅
7.5 Proof of Theorem 3.1

Proof of Theorem 3.1. Then the difference between the optimal regret-averse investment
amount and the Merton investment amount is given by

𝜃𝑅𝑒𝑔𝑟𝑒𝑡 − 𝜃𝑀𝑒𝑟𝑡𝑜𝑛 =
𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)
𝜎

−
[
𝜆

𝜎𝛾
(𝑊 + 𝑦𝐹 (𝑡, 𝑝)) − 𝑦𝐹 (𝑡, 𝑝) 𝜁 (𝑡, 𝑝)

𝜎

]
=

(
𝜆 + 𝜎𝜅

(𝛾 + 𝜅)𝜎 − 𝜆

𝜎𝛾

)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

=
(𝜆 + 𝜎𝜅)𝜎𝛾 − 𝜆𝜎(𝛾 + 𝜅)

𝜎2𝛾(𝛾 + 𝜅)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

=
𝜎2𝜅𝛾 − 𝜆𝜎𝜅 + 𝜆𝜎𝛾 − 𝜆𝜎𝛾

𝜎2𝛾(𝛾 + 𝜅)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

=
𝜎2𝜅𝛾 − 𝜆𝜎𝜅

𝜎2𝛾(𝛾 + 𝜅)
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

=

[
𝜅

𝛾 + 𝜅
− 𝜆

𝜎𝛾

𝜅

𝛾 + 𝜅

]
(𝑊 + 𝑦𝐹 (𝑡, 𝑝))

=

(
1 − 𝜆

𝜎𝛾

)
𝜅

𝛾 + 𝜅
(𝑊 + 𝑦𝐹 (𝑡, 𝑝)) > 0 if and only if 𝛾 >

𝜆

𝜎

as 𝛾 − 1 ≥ 𝜅 ≥ 1 and 𝑊 + 𝑦𝐹 (𝑡, 𝑝) > 0 by definition. □

7.6 Proof of Corollary 3.1

Proof of Corollary 3.1. In this model it is assumed that there is a constant investment op-
portunity set, i.e. the expected rate of return 𝜇 and volatility of the stock 𝜎, interest rate 𝑟,
and market price of risk 𝜆 are constant over time. The regret-averse investor earns spanned
exogenous labor income without biometric risks. The labor income dynamics are specified
as follows

d𝑦𝑡 = 𝑦𝑡 [𝛼 d𝑡 + 𝜁 d𝑍𝑡]
The labor income process follows a geometric Brownian motion with the same underlying
Brownian motion as the stock market. Hence, the market is complete. The labor income
can therefore be valued as a financial asset and it can be seen as a dividend stream from
some trading strategy in the financial asset. The value of the labor income stream at time
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𝑡, human wealth, should be (Munk, 2017)

𝐻 (𝑡, 𝑦) = EQ𝑡,𝑦
[∫ 𝑇

𝑡

e−𝑟 (𝑠−𝑡)𝑦𝑠 d𝑠

]
= E𝑡,𝑦

[∫ 𝑇

𝑡

e−(𝑟−
1
2𝜆

2) (𝑠−𝑡)−𝜆(𝑍𝑠−𝑍𝑡 )𝑦𝑠 d𝑠

]
= 𝑦

{
1

𝑟−𝛼+𝜁𝜆

(
1 − e−(𝑟−𝛼+𝜁𝜆) (𝑇−𝑡)

)
if 𝑟 − 𝛼 + 𝜁𝜆 ≠ 0

(𝑇 − 𝑡) if 𝑟 − 𝛼 + 𝜁𝜆 = 0

= 𝑦𝑀 (𝑡)
Human wealth is given by the product of current labor income and a time-dependent mul-
tiplier 𝑀 (𝑡). The investor can "sell" her future labor income at the financial market to get
𝐻 (𝑡, 𝑦) such that the investor has a total wealth of 𝑊 + 𝐻 (𝑡, 𝑦).

Moreover, the function 𝐻 (𝑡, 𝑦) satisfies, according to the famous Fayman-Kac theorem, the
following PDE

𝜕𝐻

𝜕𝑡
(𝑡, 𝑦) + (𝛼 − 𝜁𝜆)𝑦𝐻𝑦 (𝑡, 𝑦) +

1

2
𝜁2𝑦2𝐻𝑦𝑦 (𝑡, 𝑦) − 𝑟𝐻 (𝑡, 𝑦) + 𝑦 = 0

where 𝐻𝑦 (𝑡, 𝑦) denotes the first-order derivative with respect to 𝑦 and 𝐻𝑦𝑦 (𝑡, 𝑦) denotes the
second-order derivative with respect to 𝑦. From 𝐻 (𝑡, 𝑦) = 𝑦𝑀 (𝑡), it can be easily verified
that 𝐻𝑦 (𝑡, 𝑦) = 𝐻 (𝑡,𝑦)

𝑦
= 𝑀 (𝑡) and 𝐻𝑦𝑦 (𝑡, 𝑦) = 0.

The financial wealth dynamics of the investor are given by

d𝑊𝑡 = [𝑟𝑊𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡] d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡

Auxiliary model
The indirect utility function of the auxiliary investor is the following

𝐽 (𝑡, �̃� , 𝑦) = sup
(𝑐)∈Ã𝑡

E𝑡,�̃� ,𝑦

[∫ 𝑇

𝑡

e−𝛿(𝑠−𝑡)𝑣(𝑐𝑠) d𝑠 + e−𝛿(𝑇−𝑡)𝑣(�̃�𝑇 )
]

where the supremum runs over all admissible consumption strategies and 𝑣(𝑐) = 𝜚 𝑐1−𝛾

1−𝛾 and

𝑣(�̃�𝑇 ) = 𝜀
�̃�

1−𝛾
𝑇

1−𝛾 with 𝜚 ≥ 0 and 𝜀 ≥ 0 denoting the relative preference for intermediate con-
sumption and the bequest motive, respectively.

Based on the indirect utility function and the wealth dynamics, the following HJB equation
can be constructed

𝛿𝐽 =L𝑐 + 𝜕𝐽

𝜕𝑡
+ 𝐽�̃�𝑟�̃� + 𝐽�̃�𝜎𝜆𝜃 + 𝐽�̃� 𝑦

+ 1

2
𝐽�̃��̃�𝜎2𝜃2 + 𝐽𝑦𝑦𝛼 + 1

2
𝐽𝑦𝑦𝑦

2𝜁2 + 𝐽�̃�𝑦𝑦𝜃𝜎𝜁
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with L𝑐 = sup
𝑐≥0

{
𝜚 𝑐1−𝛾

1−𝛾 − 𝑐𝐽�̃�

}
.

The auxiliary investor has a total wealth of �̃� + 𝐻 (𝑡, 𝑦) with financial wealth �̃� and human
wealth 𝐻 (𝑡, 𝑦). Following Munk (2017), the conjecture is made that the investor invests
in such a way that the dynamics of total wealth are similar to the dynamics of (financial)
wealth in case of 𝑦 = 0. By definition of the auxiliary investor, it is known that in a setting
excluding labor income the agent invests all her wealth into the stock market, i.e. 𝜃𝑡 = �̃�𝑡

for all 𝑡. This results in the following dynamics for total wealth

d(�̃�𝑡 + 𝐻 (𝑡, 𝑦)) = 𝜇(𝑡, 𝑦) d𝑡 + 𝜎(�̃�𝑡 + 𝐻 (𝑡, 𝑦)) d𝑍𝑡

with 𝜇(𝑡, 𝑦) being the drift rate of total wealth, but this drift rate is not of any importance
for the derivations. Hence, the functional form is omitted.

Applying Itô’s Lemma to 𝐻 (𝑡, 𝑦) yields that the dynamics of human wealth follow a stochastic
differential equation as given by

d𝐻 (𝑡, 𝑦) =
[
𝜕𝐻

𝜕𝑡
(𝑦, 𝑡) + 𝐻𝑦 (𝑡, 𝑦)𝑦𝛼 + 1

2
𝐻𝑦𝑦 (𝑡, 𝑦)𝑦2𝜁2

]
d𝑡 + 𝐻𝑦 (𝑡, 𝑦)𝑦𝜁 d𝑍𝑡

Hence, the dynamics of financial wealth should be given by

d𝑊 =
[
𝑟𝑊 + 𝜃𝑡𝜎𝜆 − 𝑐𝑡 + 𝑦𝑡

]
d𝑡 + 𝜃𝑡𝜎 d𝑍𝑡

⇐⇒ d𝑊 =𝜇(𝑡, 𝑦) d𝑡 +
[
𝜎(𝑊 + 𝐻 (𝑡, 𝑦)) − 𝐻𝑦 (𝑡, 𝑦)𝑦𝑡𝜁

]
d𝑍𝑡

with 𝜇(𝑡, 𝑦) being the drift rate of financial wealth.

These dynamics of financial wealth are satisfied by an investment strategy 𝜃𝑡 that satisfies

𝜃𝑡𝜎 = 𝜎(𝑊𝑡 + 𝐻 (𝑡, 𝑦)) − 𝐻𝑦 (𝑡, 𝑦)𝑦𝑡𝜁

Thus, the amount invested into the risky asset should be

𝜃𝑡 = 𝑊𝑡 + 𝐻 (𝑡, 𝑦) − 𝐻 (𝑡, 𝑦) 𝜁
𝜎

as 𝐻𝑦 (𝑡, 𝑦) = 𝐻 (𝑡,𝑦)
𝑦

.

Solving L𝑐 for 𝑐 by its first-order condition yields

𝑐∗ = (𝑣′)−1 (𝐽�̃� )

and hence,
L𝑐 = 𝑣(𝐼𝑣 (𝐽�̃� )) − 𝐼𝑣 (𝐽�̃� )𝐽�̃�

where the inverse of the marginal utility is denoted by 𝐼𝑣 = (𝑣′)−1.
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It is conjectured that the indirect utility function is given by

𝐽 (𝑡, �̃� , 𝑦) = 𝑔(𝑡)𝛾
1 − 𝛾

(
�̃� + 𝐻 (𝑡, 𝑦)

)1−𝛾
The partial derivatives are the same as for the biometric risk model and can be seen in
Appendix 7.3.

Substituting the conjecture into L𝑐 and thereafter in the HJB yields

𝛿

1 − 𝛾
𝑔(𝑡)𝛾 (�̃� + 𝐻 (𝑡, 𝑦))1−𝛾 =𝜚

1
𝛾

𝛾

1 − 𝛾
𝑔𝛾−1(�̃� + 𝐻 (𝑡, 𝑦))1−𝛾

+ 𝛾

1 − 𝛾
𝑔′(𝑡)𝑔(𝑡)𝛾−1(�̃� + 𝐻 (𝑡, 𝑦))1−𝛾

+ 𝑔𝛾 (�̃� + 𝐻 (𝑡, 𝑦))1−𝛾𝑟
+ 𝑔(𝑡)𝛾 (�̃� + 𝐻 (𝑡, 𝑦))1−𝛾𝜎𝜆

− 1

2
𝛾𝑔(𝑡)𝛾 (�̃� + 𝐻 (𝑡, 𝑦))1−𝛾𝜎2

This equation should hold for all �̃� + 𝐻 (𝑡, 𝑦) and all 𝑡 ∈ [0, 𝑇) (Munk, 2017). Hence, the
following first-order differential equation can be identified

𝑔′(𝑡) = 𝐴𝑔(𝑡) − 𝐵

with terminal condition 𝑔(𝑇) = 𝜀
1
𝛾 , and 𝐴 and 𝐵 being constants given by

𝐴 =
𝛿 + 𝑟 (𝛾 − 1) + 𝜎𝜆(𝛾 − 1) + 1

2𝜎
2𝛾(1 − 𝛾)

𝛾

𝐵 = 𝜚
1
𝛾

Here 𝐴 is assumed to be positive. This assumption is in line with the assumption made by
Munk (2017). For reasonable values of 𝛿, 𝑟, 𝜎, 𝜆 and 𝛾 > 2 it holds that
𝛿+𝜇(𝛾−1)

𝛾
> 1

2𝜎
2 and in that case the assumption 𝐴 > 0 is satisfied.

The solution to the first-order ODE is known to be

𝑔(𝑡) = 𝜚
1
𝛾
1 − e−𝐴(𝑇−𝑡)

𝐴
+ 𝜀

1
𝛾 e−𝐴(𝑇−𝑡)

with 𝐴 =
𝛿+𝑟 (𝛾−1)+𝜎𝜆(𝛾−1)+ 1

2𝜎
2𝛾(1−𝛾)

𝛾
.

From this it can be concluded that the optimal foregone consumption choice is given by

𝑐∗(𝑡, �̃� , 𝑦) = 𝜚
1
𝛾
�̃� + 𝐻 (𝑡, 𝑦)

𝑔(𝑡)
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Regret-averse model
The regret-averse investor’s indirect utility is given by

𝐽 (𝑡,𝑊, �̂�, 𝑦) = sup
(𝑐,𝜃)∈A𝑡

E
𝑡,𝑊,�̂�,𝑦

[∫ 𝑇

𝑡

e−𝛿(𝑠−𝑡)𝑢(𝑐𝑠, 𝑐𝑠) d𝑠 + e−𝛿(𝑇−𝑡)𝑢(𝑊𝑇 , �̂�𝑇 )
]

where 𝑢(𝑐) = 𝜚 𝑐1−𝛾

1−𝛾

(
𝑐
𝑐

) 𝜅
and 𝑢(𝑊𝑇 ) = 𝜀

𝑊
1−𝛾
𝑇

1−𝛾

(
�̂�𝑇

𝑊𝑇

) 𝜅
with 𝑐 = 𝑐∗ and �̂� = �̃�∗ being the opti-

mal foregone consumption and wealth as determined by the auxiliary model and 𝜚 ≥ 0 and
𝜀 ≥ 0 denote the relative preference for intermediate consumption and the bequest motive,
respectively.

For the given indirect utility function of the investor and the underlying dynamics for wealth,
labor income, and foregone wealth the associated HJB equation can be constructed

𝛿𝐽 =L𝑐 + L𝜃 + 𝜕𝐽

𝜕𝑡
+ 𝐽𝑊 (𝑟𝑊 + 𝑦)

+ 𝐽
�̂�
(𝑟�̂� + 𝜃𝜎𝜆 + 𝑦 − 𝑐) + 1

2
𝐽
�̂��̂�

𝜃2𝜎2

+ 𝐽𝑦𝑦𝛼 + 1

2
𝐽𝑦𝑦𝑦

2𝜁2 + 𝐽
�̂�𝑦

𝜃𝜎𝑦𝜁

with

L𝑐 = sup
𝑐≥0

{
𝜚
𝑐1−𝛾

1 − 𝛾

(
𝑐

𝑐

) 𝜅
− 𝑐𝐽𝑊

}
and

L𝜃 = sup
𝜃∈R

{𝐽𝑊𝜃𝜎𝜆 + 1

2
𝐽𝑊𝑊𝜃2𝜎2 + 𝐽

𝑊�̂�
𝜃𝜎2𝜃 + 𝐽𝑊𝑦𝜃𝜎𝑦𝜁 }

Note that 𝑐 and 𝜃 are given by the solutions to the auxiliary model as determined previously.

Solving L𝑐 and L𝜃 by their first-order conditions gives the following optimal consumption
choice and investment strategy

𝑐∗ = (𝑢′)−1(𝐽𝑊 )
and

𝜃∗ = − 𝐽𝑊𝜆

𝐽𝑊𝑊𝜎
−
𝐽
𝑊�̂�

𝜃

𝐽𝑊𝑊

−
𝐽𝑊𝑦𝑦𝜁

𝐽𝑊𝑊𝜎

The following conjecture about the functional form of the indirect utility function is made

𝐽 (𝑡,𝑊, �̂�, 𝑦) = 𝑔(𝑡)𝛾
1 − 𝛾

(𝑊 + 𝐻 (𝑡, 𝑦))1−𝛾
(
�̂� + 𝐻 (𝑡, 𝑦)
𝑊 + 𝐻 (𝑡, 𝑦)

) 𝜅
with the corresponding derivatives given in Appendix 7.3 (ignoring biometric state 𝑝).
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Using the conjecture for the indirect utility function, the optimal consumption process can
be determined.

𝑐∗ = (𝑢′)−1(𝐽𝑊 ) =
(

1 − 𝛾

1 − 𝛾 − 𝜅

) 1
−𝛾−𝜅 𝐽

1
−𝛾−𝜅
𝑊

𝑐
𝜅

−𝛾−𝜅
𝜚

1
𝛾+𝜅

=
𝜚

1
𝛾 (𝑊 + 𝐻 (𝑡, 𝑦))
𝑔(𝑡)

𝛾

𝛾+𝜅 𝑔(𝑡)
𝜅

𝛾+𝜅

The optimal investment fraction is given by

𝜃∗ = − 𝐽𝑊𝜆

𝐽𝑊𝑊𝜎
−
𝐽
𝑊�̂�

𝜃

𝐽𝑊𝑊

−
𝐽𝑊𝑦𝑦𝜁

𝐽𝑊𝑊𝜎

= −
𝑔(𝑡)𝛾

(
1−𝛾−𝜅
1−𝛾

)
(𝑊 + 𝐻 (𝑡, 𝑦))−𝛾

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅
𝜆

𝑔(𝑡)𝛾
(
(1−𝛾−𝜅) (−𝛾−𝜅)

1−𝛾

)
(𝑊 + 𝐻 (𝑡, 𝑦))−𝛾−1

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅
𝜎

−
𝑔(𝑡)𝛾

(
(1−𝛾−𝜅)𝜅

1−𝛾

)
(𝑊 + 𝐻 (𝑡, 𝑦))−𝛾

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅
1

�̂�+𝐻 (𝑡,𝑦) 𝜃

𝑔(𝑡)𝛾
(
(1−𝛾−𝜅) (−𝛾−𝜅)

1−𝛾

)
(𝑊 + 𝐻 (𝑡, 𝑦))−𝛾−1

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅
−
𝑔(𝑡)𝛾

(
(1−𝛾−𝜅) (−𝛾−𝜅)

1−𝛾

)
(𝑊 + 𝐻 (𝑡, 𝑦))−𝛾−1

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅
𝐻𝑦 (𝑡, 𝑦)𝑦𝜁

𝑔(𝑡)𝛾
(
(1−𝛾−𝜅) (−𝛾−𝜅)

1−𝛾

)
(𝑊 + 𝐻 (𝑡, 𝑦))−𝛾−1

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅
𝜎

−
𝑔(𝑡)𝛾

(
(1−𝛾−𝜅)𝜅

1−𝛾

)
(𝑊 + 𝐻 (𝑡, 𝑦))−𝛾

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅
1

�̂�+𝐻 (𝑡,𝑦)𝐻𝑦 (𝑡, 𝑦)𝑦𝜁

𝑔(𝑡)𝛾
(
(1−𝛾−𝜅) (−𝛾−𝜅)

1−𝛾

)
(𝑊 + 𝐻 (𝑡, 𝑦))−𝛾−1

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅
𝜎

using that 𝜃 = (�̂� + 𝐻 (𝑡, 𝑦)) − 𝐻 (𝑡, 𝑦) 𝜁
𝜎

and that 𝐻𝑦 (𝑡, 𝑦) =
𝐻 (𝑡,𝑦)

𝑦
this equation can be

simplified into the following

=
1

𝛾 + 𝜅

𝜆

𝜎
(𝑊 + 𝐻 (𝑡, 𝑦)) + 𝜅

𝛾 + 𝜅
(𝑊 + 𝐻 (𝑡, 𝑦)) 1

�̂� + 𝐻 (𝑡, 𝑦)
(�̂� + 𝐻 (𝑡, 𝑦) − 𝐻 (𝑡, 𝑦) 𝜁

𝜎
)

− 𝐻 (𝑡, 𝑦)
𝑦

𝑦
𝜁

𝜎
+ 𝜅

𝛾 + 𝜅
(𝑊 + 𝐻 (𝑡, 𝑦)) 1

�̂� + 𝐻 (𝑡, 𝑦)
𝐻 (𝑡, 𝑦)

𝑦
𝑦
𝜁

𝜎

=
𝜆 + 𝜎𝜅

(𝛾 + 𝜅)𝜎 (𝑊 + 𝐻 (𝑡, 𝑦)) − 𝐻 (𝑡, 𝑦) 𝜁
𝜎

The HJB equation can be solved by filling in the conjecture, all the partial derivatives, the
already known optimal solution for foregone consumption and investment strategy, and the
optimal control processes 𝑐∗ and 𝜃∗. A lot of terms will cancel out and some terms will be
equal to zero as 𝐻 (𝑡, 𝑦) should satisfy the Fayman-Kac PDE as previously denoted.
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The terms that remain yield the following nonlinear first-order differential equation for 𝑔(𝑡)

𝑔′(𝑡) = [𝐴 + 𝐵(𝑡)] 𝑔(𝑡) − 𝐶 (𝑡)𝑔(𝑡)
𝜅

𝛾+𝜅

with terminal condition 𝑔(𝑇) = 𝜀
1
𝛾 and 𝐴, 𝐵(𝑡) and 𝐶 (𝑡) given by the following expressions:

𝐴 =
1

𝛾(𝛾 + 𝜅)

{
𝛿(𝛾 + 𝜅) + 𝑟 (𝛾 − 1) (𝛾 + 𝜅) − 𝜅(𝛾 + 𝜅)𝜎𝜆 − 1

2
𝜅(𝜅 − 1) (𝛾 + 𝜅)𝜎2

− (1 − 𝛾 − 𝜅)
(
1

2
𝜆2 + 1

2
𝜅2𝜎2 + 𝜅𝜎𝜆

)}
𝐵(𝑡) =

(
𝜅

𝛾

)
𝜚

1
𝛾 𝑔(𝑡)−1

𝐶 (𝑡) =
(
𝛾 + 𝜅

𝛾

)
𝜚

1
𝛾 𝑔(𝑡)

−𝜅
𝛾+𝜅

with 𝑔(𝑡) again as given by the auxiliary model.

The solution to this nonlinear differential equation is given by

𝑔(𝑡) =
[

𝛾

𝛾 + 𝜅
e

𝛾

𝛾+𝜅
∫ 𝑡

0
(𝐴+𝐵(𝑠)) d𝑠

∫ 𝑇

𝑡

e−
𝛾

𝛾+𝜅
∫ 𝑠

0
(𝐴+𝐵(𝑢)) d𝑢

𝐶 (𝑠) 𝑑𝑠 + e−
𝛾

𝛾+𝜅
∫ 𝑇

𝑡
(𝐴+𝐵(𝑠)) d𝑠

𝜀
1

𝛾+𝜅

] 𝛾+𝜅
𝛾

with

𝐴 =
1

𝛾(𝛾 + 𝜅)

{
𝛿(𝛾 + 𝜅) + 𝑟 (𝛾 − 1) (𝛾 + 𝜅) − 𝜅(𝛾 + 𝜅)𝜎𝜆 − 1

2
𝜅(𝜅 − 1) (𝛾 + 𝜅)𝜎2

− (1 − 𝛾 − 𝜅)
(
1

2
𝜆2 + 1

2
𝜅2𝜎2 + 𝜅𝜎𝜆

)}
𝐵(𝑡) =

(
𝜅

𝛾

)
𝜚

1
𝛾 𝑔(𝑡)−1

𝐶 (𝑡) =
(
𝛾 + 𝜅

𝛾

)
𝜚

1
𝛾 𝑔(𝑡)

−𝜅
𝛾+𝜅

From the existence of the purely time-dependent function 𝑔(𝑡) it can be concluded that the
conjecture was correct. Hence, the optimal consumption choice is given by

𝑐∗(𝑡,𝑊, 𝑦) = 𝜚
1
𝛾 (𝑊 + 𝐻 (𝑡, 𝑦))
𝑔(𝑡)

𝛾

𝛾+𝜅 𝑔(𝑡)
𝜅

𝛾+𝜅

and the optimal investment strategy is given by

𝜃∗(𝑡,𝑊, 𝑦) = 𝜆 + 𝜅𝜎

(𝛾 + 𝜅)𝜎 (𝑊 + 𝐻 (𝑡, 𝑦)) − 𝐻 (𝑡, 𝑦) 𝜁
𝜎

This concludes the proof of Corollary 3.1. □
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7.7 Proof of Corollary 3.2

Proof of Corollary 3.2. The proof for Corollary 3.2 is very similar as the proof for Corollary
3.1. Therefore parts of the proof are omitted and the reader is referred to the proof of
Corollary 3.1.

In this model it is again assumed that the investor lives in a Black-Scholes world, i.e. the
expected rate of return 𝜇 and volatility of the stock 𝜎, interest rate 𝑟, and market price of
risk 𝜆 are predetermined and constant over time.

The regret-averse investor earns exogenous labor income specified by the following dynamics

𝑑𝑦𝑡 = 𝑦𝑡 [𝛼 𝑑𝑡 + 𝜁 𝑑𝑍𝑡]

Human wealth should satisfy following PDE

𝜕𝐻

𝜕𝑡
(𝑡, 𝑦) + (𝛼 − 𝜁𝜆)𝑦𝐻𝑦 (𝑡, 𝑦) +

1

2
𝜁2𝑦2𝐻𝑦𝑦 (𝑡, 𝑦) − 𝑟𝐻 (𝑡, 𝑦) + 𝑦 = 0

where 𝐻𝑦 (𝑡, 𝑦) denotes the first-order derivative with respect to 𝑦 and 𝐻𝑦𝑦 (𝑡, 𝑦) denotes the
second-order derivative with respect to 𝑦. From 𝐻 (𝑡, 𝑦) = 𝑦𝑀 (𝑡), it can be easily verified
that 𝐻𝑦 (𝑡, 𝑦) = 𝐻 (𝑡,𝑦)

𝑦
= 𝑀 (𝑡) and 𝐻𝑦𝑦 (𝑡, 𝑦) = 0.

The financial wealth dynamics are given by

𝑑𝑊𝑡 = [𝑟𝑊𝑡 + 𝜃𝑡𝜆𝜎 − 𝑐𝑡 + 𝑦𝑡] 𝑑𝑡 + 𝜃𝑡𝜎 𝑑𝑍𝑡

Auxiliary model
The auxiliary investor maximizes the utility over intermediate consumption and terminal
wealth. The utility index 𝐽 (𝑡, �̃� , 𝑦) at time 𝑡 for foregone consumption process 𝑐 over the
remaining lifetime [𝑡, 𝑇] is given by

𝐽 (𝑡, �̃� , 𝑦) = sup
(𝑐)∈Ã𝑡

E𝑡,�̃� ,𝑦

[∫ 𝑇

𝑡

𝑓 (𝑐𝑠, 𝐽) d𝑠 + J̃𝑇

]
The investor maximizes 𝐽 (𝑡, �̃� , 𝑦) for any 𝑡 < 𝑇 over all admissible control processes in set
Ã𝑡 given the state variables at time 𝑡.

The normalized aggregator function 𝑓 for unit EIS as specified in equation (8) is given by

𝑓 (𝑐, 𝐽) = 𝛿(1 − 𝛾)𝐽 ln(𝑐) − 𝛿𝐽 ln( [1 − 𝛾]𝐽)

The time preference of the investor is denoted by 𝛿, and the degree of relative risk aversion
by 𝛾 > 1.

The term J̃𝑇 is given by J̃𝑇 = 𝜀
�̃�

1−𝛾
𝑇

1−𝛾 with 𝜀 ≥ 0. This term represents the utility from
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terminal wealth with 𝜀 being the preference for the bequest motive.

With this specification and the given wealth dynamics, the HJB equation can be formulated
as

0 =L𝑐 − 𝛿𝐽 ln( [1 − 𝛾]𝐽) + 𝜕𝐽

𝜕𝑡
+ 𝐽�̃��̃� (𝑟 + 𝜎𝜆𝜃) + 1

2
𝐽�̃��̃��̃�

2𝜎2𝜃2

+𝐽𝑦𝑦𝛼 + 1

2
𝐽𝑦𝑦𝑦

2𝜁2 + 𝐽�̃�𝑦𝑦𝜃𝜎𝜁

with
L𝑐 = sup

𝑐≥0

{
𝛿(1 − 𝛾)𝐽 ln(𝑐) − 𝑐𝐽�̃�

}
Following the proof of Corollary 3.1, it is given that the auxiliary investor invests 𝜃𝑡 amount
of money into the risky asset with 𝜃𝑡 given by

𝜃𝑡 = 𝑊𝑡 + 𝐻 (𝑡, 𝑦) − 𝐻 (𝑡, 𝑦) 𝜁
𝜎

The optimal foregone consumption is determined by the first-order condition of L𝑐 with
respect to 𝑐. The optimal foregone consumption process is found to be

𝑐∗ =
𝛿(1 − 𝛾)𝐽

𝐽�̃�

The conjecture is made the indirect utility function is given by

𝐽 (𝑡, �̃� , 𝑦) = 𝑔(𝑡)𝛾
1 − 𝛾

(
�̃� + 𝐻 (𝑡, 𝑦)

)1−𝛾
and the corresponding derivatives can again be found in Appendix 7.3.

Substituting the conjecture into the HJB equation and simplifying yields the following ODE
for 𝑔(𝑡)

𝑔′(𝑡) =
[
𝛿(𝛾 − 1)

𝛾
{ln(𝛿) − 1} + 𝛿 ln(𝑔(𝑡)) + 𝑟 (𝛾 − 1)

𝛾
+ 𝜎𝜆

𝛾 − 1

𝛾
+ 1

2
(1 − 𝛾)𝜎2

]
𝑔(𝑡)

with 𝐴 =
𝛿(𝛾−1)

𝛾
{ln(𝛿) − 1} + 𝑟 (𝛾−1)

𝛾
+ 𝜎𝜆

𝛾−1
𝛾

+ 1
2 (𝛾 − 1)𝜎2 and 𝑔(𝑇) = 𝜀

1
𝛾 .

Note that all terms have been divided by 𝛾

1−𝛾𝑔(𝑡)
𝛾−1(�̃� + 𝐻 (𝑡, 𝑦))1−𝛾 > 0.

The non-linear ODE is solved by the following time-dependent function 𝑔(𝑡)

𝑔(𝑡) = e(−𝐴+e
𝛿 (𝑡+𝑐1 ) )/𝛿
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Solving for 𝑔(𝑡) = 𝜀
1
𝛾 gives

e(−𝐴+e
𝛿 (𝑡+𝑐1 ) )/𝛿 = 𝜀

1
𝛾

⇐⇒ (−𝐴 + e𝛿(𝑡+𝑐1))/𝛿 = ln(𝜀
1
𝛾 )

⇐⇒ e𝛿(𝑡+𝑐1) =
𝛿

𝛾
ln(𝜀) + 𝐴

⇐⇒ 𝛿(𝑇 + 𝑐1) = ln( 𝛿
𝛾
ln(𝜀) + 𝐴)

⇐⇒ 𝑐1 =
1

𝛿
ln( 𝛿

𝛾
ln(𝜀) + 𝐴) − 𝑇

Filling the found expression for the constant 𝑐1 into the function for 𝑔(𝑡) and simplifying,
gives a closed-form expression for the time-dependent function 𝑔(𝑡)

𝑔(𝑡) = e−
𝐴
𝛿
+ 1

𝛿
e−𝛿 (𝑇−𝑡 ) [ln(𝜀)+𝐴]

𝛿
𝛾

There exists thus an only time-dependent function 𝑔(𝑡) and hence the conjecture is correct.
As a result, the optimal foregone consumption process is found to be

𝑐∗(𝑡, �̃� , 𝑦) =
𝛿(1 − 𝛾) 1

1−𝛾𝑔(𝑡)
𝛾 (�̃� + 𝐻 (𝑡, 𝑦))1−𝛾

𝑔(𝑡)𝛾 (�̃� + 𝐻 (𝑡, 𝑦))−𝛾
= 𝛿(�̃� + 𝐻 (𝑡, 𝑦))

Regret-averse model
The regret-averse investor maximizes utility over intermediate consumption and terminal
wealth. The utility index 𝐽 (𝑡,𝑊, �̂�, 𝑦) at time 𝑡 for consumption process 𝑐 and investment
process 𝜃 over the remaining lifetime [𝑡, 𝑇]

𝐽 (𝑡,𝑊, �̂�, 𝑦) = sup
(𝑐,𝜃)∈A𝑡

E
𝑡,𝑊,�̂�,𝑦

[∫ 𝑇

𝑡

F (𝑐𝑠, 𝑐𝑠, 𝐽) d𝑠 + J𝑇

]
The investor maximizes 𝐽 (𝑡,𝑊, �̂�, 𝑦) for any 𝑡 < 𝑇 over all admissible control processes in
set A𝑡 given the state variables and the optimal foregone state variables at time 𝑡.

The regret-aversion-adjusted aggregator function F for unit-EIS as specified in equation (9)
is given by

F (𝑐, 𝑐, 𝐽) = 𝛿𝐽 [(1 − 𝛾 − 𝜅) ln(𝑐) + 𝜅 ln(𝑐) − ln( [1 − 𝛾]𝐽)]

The term J𝑇 is assumed to be given by J𝑇 = 𝜀
𝑊

1−𝛾
𝑇

1−𝛾

(
�̂�𝑇

𝑊𝑇

) 𝜅
with 𝜀 ≥ 0 being the preference

for the bequest motive.
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Given the wealth dynamics and the indirect utility specification, the HJB can be written as

0 =L𝑐 + L𝜃 + 𝜕𝐽

𝜕𝑡
− 𝛿𝐽 ln( [1 − 𝛾]𝐽) + 𝛿𝜅𝐽 ln(𝑐) + 𝐽𝑊 (𝑟𝑊 + 𝑦)

+ 𝐽
�̂�
(𝑟�̂� + 𝜃𝜎𝜆 + 𝑦 − 𝑐) + 1

2
𝐽
�̂��̂�

𝜃2𝜎2

+ 𝐽𝑦𝑦𝛼 + 1

2
𝐽𝑦𝑦𝑦

2𝜁2 + 𝐽
�̂�𝑦

𝜃𝜎𝑦𝜁

with

L𝑐 = sup
𝑐≥0

{𝛿𝐽 (1 − 𝛾 − 𝜅) ln(𝑐) − 𝑐𝐽𝑊 }

and

L𝜃 = sup
𝜃∈R

{𝐽𝑊𝜃𝜎𝜆 + 1

2
𝐽𝑊𝑊𝜃2𝜎2 + 𝐽

𝑊�̂�
𝜃𝜎2𝜃 + 𝐽𝑊𝑦𝜃𝜎𝑦𝜁 }.

Note that 𝑐 and 𝜃 are given by the solutions to the auxiliary model as determined previously.

As L𝜃 is the same as in Corollary 3.1, it is known that the optimal investment amount is
given by

𝜃∗(𝑡,𝑊, 𝑦) = 𝜆 + 𝜎𝜅

(𝛾 + 𝜅)𝜎 (𝑊 + 𝐻 (𝑡, 𝑦)) − 𝐻 (𝑡, 𝑦) 𝜁
𝜎

Solving L𝑐 by the first-order conditions yields the following expression for optimal consump-
tion choice

𝑐∗ =
𝛿(1 − 𝛾 − 𝜅)𝐽

𝐽𝑊

In line with the conjecture of the auxiliary model and the regret-averse utility specification,
the following conjecture about the functional form of the indirect utility function is made

𝐽 (𝑡,𝑊, �̂�, 𝑦) = 𝑔(𝑡)𝛾
1 − 𝛾

(𝑊 + 𝐻 (𝑡, 𝑦))1−𝛾
(
�̂� + 𝐻 (𝑡, 𝑦)
𝑊 + 𝐻 (𝑡, 𝑦)

) 𝜅
.

The reader is referred to Appendix 7.3 for the corresponding partial derivatives. The bio-
metric state 𝑝 should then be ignored.

The optimal consumption process is found to be

𝑐∗ =
𝛿(1 − 𝛾 − 𝜅)𝐽

𝐽𝑊

=

𝛿

(
1−𝛾−𝜅
1−𝛾

)
𝑔(𝑡)𝛾 (𝑊 + 𝐻 (𝑡, 𝑦))1−𝛾

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅(
1−𝛾−𝜅
1−𝛾

)
𝑔(𝑡)𝛾 (𝑊 + 𝐻 (𝑡, 𝑦))−𝛾

(
�̂�+𝐻 (𝑡,𝑦)
𝑊+𝐻 (𝑡,𝑦)

) 𝜅 = 𝛿(𝑊 + 𝐻 (𝑡, 𝑦))

98



After substituting the conjecture into the HJB equation and simplifying, the following equa-
tion is derived

0 =

[
𝛿 ln(𝛿) − 𝛿

(
1 − 𝛾 − 𝜅

1 − 𝛾

)
− 𝛿

(
𝛾

1 − 𝛾

)
ln(𝑔(𝑡))

+ 1

2

(
1 − 𝛾 − 𝜅

(1 − 𝛾) (𝛾 + 𝜅)

)
𝜆2 + 1

2

(
(1 − 𝛾 − 𝜅)𝜅2
(1 − 𝛾) (𝛾 + 𝜅)

)
𝜎2 +

(
(1 − 𝛾 − 𝜅)𝜅
(1 − 𝛾) (𝛾 + 𝜅)

)
𝜎𝜆

+ 𝑟 −
(

𝜅

1 − 𝛾

)
𝛿 +

(
𝜅

1 − 𝛾

)
𝜎𝜆 + 1

2

(
𝜅(𝜅 − 1)
1 − 𝛾

)
𝜎2

]
𝑔(𝑡) +

(
𝛾

1 − 𝛾

)
𝑔′(𝑡)

This can be rewritten as a non-linear first-order differential equation of the same form as for
the auxiliary investor.

𝑔′(𝑡) = [𝐴 + 𝛿 ln(𝑔(𝑡))]𝑔(𝑡)
with

𝐴 =

[
𝛿(𝛾 − 1)

𝛾
ln(𝛿) + 𝛿(1 − 𝛾)

𝛾
− 1

2

(
1 − 𝛾 − 𝜅

𝛾(𝛾 + 𝜅)

)
𝜆2 − 1

2

(
(1 − 𝛾 − 𝜅)𝜅2
𝛾(𝛾 + 𝜅)

)
𝜎2

−
(
(1 − 𝛾 − 𝜅)𝜅
𝛾(𝛾 + 𝜅)

)
𝜎𝜆 + 𝑟 (𝛾 − 1)

𝛾
− 𝜅

𝛾
𝜎𝜆 − 1

2

(
𝜅(𝜅 − 1)

𝛾

)
𝜎2

]
From the auxiliary model, it is known that the solution to this nonlinear first-order differential
equation is given by

𝑔(𝑡) = e−
𝐴
𝛿
+ 1

𝛿
e−𝛿 (𝑇−𝑡 ) [ln(𝜀)+𝐴]

𝛿
𝛾

as 𝑔(𝑇) = 𝜀
1
𝛾 . Hence, there exists a purely time-dependent function 𝑔(𝑡).

The optimal consumption choice is given by

𝑐∗(𝑡,𝑊, 𝑦) = 𝛿(𝑊 + 𝐻 (𝑡, 𝑦))

which is a time-independent function only depending on the current total wealth 𝑊 +𝐻 (𝑡, 𝑦).
Thus a regret-averse investor with unit-EIS regret-averse utility specifications and exogenous
labor income consumes a constant fraction of wealth depending on the investor’s time pref-
erence 𝛿.

As previously determined, the optimal investment strategy is given by

𝜃∗(𝑡,𝑊, 𝑦) = 𝜆 + 𝜎𝜅

(𝛾 + 𝜅)𝜎 (𝑊 + 𝐻 (𝑡, 𝑦)) − 𝐻 (𝑡, 𝑦) 𝜁
𝜎

This concludes the derivation of the optimal consumption-investment strategy of a regret-
averse investor with unit-EIS preferences living a Black-Scholes model who earns spanned
exogenous labor income. □
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