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1 Abstract

The utilization of Artificial Intelligence models for the quality assessment of
question-answer pairs in Educational Technologies (EdTech) is an area of re-
search that is rapidly expanding, with the potential to improve the quality of
educational methodologies, particularly when labelled data is scarce. Conse-
quently, evaluation methodologies of the quality assessment of the question-
answer pairs typically require human supervision throughout their pipelines.
This thesis focuses on the use of Generative Pre-trained Transformer 3 (GPT-3)
models for quality assessment of question-answer pairs without human interven-
tion by employing a Semi-Supervised Learning feedback loop. This thesis con-
sists of two parts: first, generating weakly labelled data with two different equa-
tions and creating independent variables by using the relationship between the
context of the question-answer pairs and the question-answer pairs themselves.
Second, creating two different Semi-Supervised Learning Pipelines (SSLPs) for
self-training to evaluate the quality of the question-answer pairs with a limited
amount of data. The results demonstrate that the GPT-3 achieves superior re-
sults without requiring a large amount of training data and outperforms baseline
methods, such as BERT, Random Forest Classifier and Logistic Regression.

2 Ethical Statement

Work on this thesis did not involve collecting data from human participants or
animals. The original owner of the data and code used in this thesis retains
ownership of the data and code during and after the completion of this thesis.
The author of this thesis acknowledges that they do not have any legal claim to
this data or code.

3 Introduction

Educational Technology (EdTech) is a field that has seen a great deal of appli-
cation of data science solutions to improve the user experience. It focuses on
providing online courses and assessing users with quizzes, making it essential
to have high-quality examination resources. There are numerous courses that
require an assessment, all of which need question-answer pairs. However, the
quality of the question-answer pairs is a major concern, as it is not only about
coming up with questions but also ensuring that they assess the right skills and
are sound. Traditionally, this requires a lot of non-automatized human evalua-
tion, which is expensive (Nashaat et al., 2018) and, given the amount of data in
EdTech, can consume a large portion of the budget of many companies dealing
with big data. To save time, money, and human effort, Generative Models are
often used, though they still require some manual labeling in their workflow.
Additionally, due to the lack of labeled data, Generative Models are used for
zero/few/one shot classification to label the data; however, this method is prone
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to overfitting, so new models are trained on top of the existing Generative Mod-
els. These new models are more accurate since they have been exposed to the
problematic data and are less computationally expensive (Smith et al., 2022).
Nevertheless, these strategies for improved predictions still need to be evaluated
by non-automatized human evaluation.

The Generative Pre-trained Transformer 3 (GPT-3) has been demonstrated
to be highly effective in the domain of text data classification (Brown et al.,
2020), making it an ideal choice for the text classification objectives of quality
assessment of question-answer pairs, which is the primary focus of this thesis.
The confidence level of GPT-3 model, as indicated by the conditional proba-
bilities of the outputs when the data is being weakly labelled (See Figure 3),
can be utilized as a threshold for generating binary labels which indicate the
quality of the question-answer pairs. This is advantageous as it allows for the
non-automatized evaluation of the results to be replaced with the confidence
level of the token probabilities of the GPT-3 model. This thesis utilizes two dis-
tinct GPT-3 models, Curie and Davinci, respectively. Davinci yields superior
results in comparison to Curie; however, Curie is faster and more cost-effective
(Shihadeh et al., 2022, Hernandez et al., 2021, Zhong et al., 2022). Additionally,
the automated labeling is essential for the Semi-Supervised Learning Pipelines
(SSLPs), as the weak labels are generated based on the confidence levels prior
to the self-training approach.

The evaluation of question-answer pairs has been explored in literature
through a variety of strategies, from heuristic rule-based evaluation to taxonomy
analysis. However, these strategies have been reliant on human intervention, ei-
ther in the creation of rules for quality measurement or in the assessment of
the classification outputs (Krathwohl, 2002, Smith et al., 2022, Boecking et al.,
2021). This thesis seeks to automate the labeling process without human in-
tervention by utilising two self-training approaches using the Weak Supervised
Learning. (See Figure 5 and 6)

The Weak Supervised Learning for text classification is a type of Machine
Learning technique that utilizes a limited amount of labeled data to train a
model. This technique is a form of Semi-Supervised Learning, which is a combi-
nation of Supervised and Unsupervised Learning. The Weak Supervised Learn-
ing utilizes a small set of labeled data to train a model, and then uses the model
to classify the remaining unlabeled data. This approach is beneficial when la-
beled data is scarce or costly to acquire. Additionally, it can be used to enhance
the accuracy of a model by utilizing a small set of labeled data to fine-tune the
GPT-3 (Nigam et al., 2000).

The primary objective of this thesis is to develop two Semi-Supervised Learn-
ing frameworks for evaluating the quality of question-answer pairs in the EdTech
domain. The aim is to predict the quality of the pairs by retrieving the condi-
tional probabilities of the predictions of GPT-3 as a confidence threshold (i.e.
good or bad) based on on exploring the association between the context of the
question-answer pairs and themselves. To this end, a self-training approach is
employed, where GPT-3, Random Forest Classifier and Logistic Regression are
utilized, with Bidirectional Encoder Representations from Transformers (BERT)
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as a baseline model.
In order to address this primary research query, two subsidiary questions are

investigated: What is the most noteworthy independent variable when assessing
the features generated from the relation between the context of the question-
answer pairs and themselves, such as the Dispersion Score, the Abstractness
Score, the Combined Similarity Score, and the Bloom’s Taxonomy, for Semi-
Supervised Learning to reinforce weakly labeled data for evaluating questions
and answers? To what extent the GPT-3 Curie’s self-training approach, which
utilizes Random Forest Classifier and Logistic Regression, compare to the BERT
model as a baseline in terms of transfer learning?

By answering these questions, it should be possible to create a model that not
only assesses the quality of question-answer pairs without human intervention
but also helps save time and money by using an Semi-Supervised Learning
feedback loop.

In order to achieve the primary objective of this thesis, two distinct SSLPs
are employed. For both of these pipelines, weak labels are generated with the
GPT-3 Curie, do not require human intervention. Both of the SSLPs use the
GPT-3 Curie to weakly label the data and the BERT model is adapted for com-
parison. The first pipeline extracts features, such as the Combined Similarity
Score, the Dispersion Score, the Abstractness Score, and the Bloom’s Taxonomy,
from the relationship between the context of the question-answer pairs. Sub-
sequently, the thesis utilizes the most noteworthy independent variable for the
First SSLP, training both a Random Forest Classifier and Logistic Regression
model independently to enhance weakly labelled data. Moreover, the Bloom’s
Taxonomy is a hierarchical system of educational objectives, ranging from the
most basic cognitive skills to the highest order thinking skills (Krathwohl, 2002).
The Second SSLP involves fine-tuning the GPT-3 Curie with weakly labeled
data, which comprises of the weak labels, the context of the question-answer
pairs and the question-answer pairs themselves. Both of the pipelines utilize a
self-training approach to predict unlabeled data with Semi-Supervised Learning.
Subsequently, the performance of both pipelines is evaluated using out-of-sample
question-answer pairs, with F1 accuracy scores calculated for Equations 6 and
7.

In the self-training phase of the First SSLP, Random Forest Classifier and
Logistic Regression are employed, yielding accuracy results of 64% and 58%
respectively when using Equation 6, and 70% and 62% when using Equation
7. In the Second SSLP, GPT-3 Curie is used, achieving an accuracy of 73%
with Equation 6 and 85% with Equation 7. To evaluate the accuracy of these
pipelines, a fine-tuned BERT model, a deep learning model is developed that
leverages a bidirectional transformer architecture to pre-train contextual repre-
sentations for natural language understanding tasks such as text classification
(Devlin et al., 2018), is employed as a baseline model for classifying the qual-
ity of the question-answer pairs. The BERT model’s accuracy is 73% with the
Equation 6 and 74% with Equation 7. The results demonstrate that GPT-3 out-
performs the baseline model, Random Forest Classifier, and Logistic Regression
on both of the equations, thereby providing an effective solution for assessing
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the quality of question-answer pairs.
The out-of-sample evaluation results indicate that the Random Forest Clas-

sifier and Logistic Regression with Equation 6 achieved a success rate of 60% and
53%, respectively, while the Random Forest Classifier and Logistic Regression
with Equation 7 generated a rate of 65% and 57%, respectively. Subsequently,
the GPT-3 Curie’s accuracy with Equation 6 and Equation 7 amounted to 67%
and 79%, respectively. The BERT model, on the other hand, with the Equation
6 and 7 yielded 65% and 70%, respectively (See Tables 7, 8, 9, and 10).

4 Literature Review

Previous research has sought to address the challenge of effectively classify-
ing text data in the context of question and answer generation. One of the
most advanced tools for this purpose is the Generative Pre-trained Transformer
3 (GPT-3) models. GPT-3, an autoregressive language model, has 175 bil-
lion parameters and can be applied to any task without gradient updates or
fine-tuning, specified solely through text interaction with the model. GPT-3
has demonstrated impressive performance on many Natural Language Process-
ing (NLP) datasets, including translation and question-answering with minimal
data (Brown et al., 2020). GPT-3’s capacity to answer factual questions is typ-
ically approached by using an information retrieval system in combination with
a model that can generate an answer given the question and retrieved text.
This setting, which allows a system to search for and condition on text that
potentially contains the answer, is known as ”open-book” (Brown et al., 2020).

GPT-3 has been evaluated using three datasets: Natural, Web, and Trivia
Questions. The accuracy for Trivia Questions was 64.3%, 68.0%, and 71.2% in
the few/zero/one shot settings, respectively. For Web Questions, the accuracy
was 14.4%, 25.3%, and 41.5% in the few/zero/one shot settings, respectively.
Lastly, the accuracy for Natural Questions was 14.6%, 23.0%, and 29.9% in
the few/zero/one settings, respectively (Brown et al., 2020).This thesis exam-
ines the quality of question-answer pairs with a restricted dataset, necessitating
the utilization of few/zero/one shot learning. The GPT-3 is underpinned by
the Transformer network architecture, which utilises the Attention Mechanism.
The Transformer is a neural network architecture that exclusively relies on the
Attention Mechanisms, eliminating recurrence and convolutions entirely. The
Attention Mechanisms can be described as a mapping of a query and set of
key-value pairs to an output, where the query, keys, values, and output are all
vectors. The output is calculated as a weighted sum of the values, with each
value’s weight being determined by a compatibility function of the query with
the corresponding key. The attention mechanism has been applied successfully
to a variety of tasks, including text classification, summarization and reading
comprehension (Vaswani et al., 2017).

Therefore, this thesis is motivated by the GPT-3, based on the Transform-
ers architecture, which has been demonstrated to surpass state-of-the-art NLP
models in terms of text classification when provided with an accurately for-
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mulated prompt (Brown et al., 2020, Vaswani et al., 2017, Zhou et al., 2022).
Consequently, the GPT-3 is ideal for both the generation of weak labels and
the classification of the Bloom’s Taxonomy questions. This thesis employs two
distinct GPT-3 models, namely Curie and Davinci. Curie is cost-efficient for
fine-tuning and faster processing, while Davinci yields the most optimal results
and is more accurate in predicting outputs than Curie when the tasks are too
complex, albeit at a higher cost. Additionally, Curie is capable of performing
nearly as many tasks as Davinci (Shihadeh et al., 2022, Hernandez et al., 2021,
Zhong et al., 2022). Therefore, Curie is utilized for self-training and weakly la-
beling the unlabeled data, while Davinci is employed for the Bloom’s Taxonomy
Classification in the thesis.

Bloom’s Taxonomy is an important theoretical framework being used in this
thesis. It is an hierarchical structure for assessing people’s ability to learn a
given concept, providing definitions for each of the six major categories in the
cognitive domain: Knowledge, Comprehension, Application, Analysis, Synthe-
sis, and Evaluation (Krathwohl, 2002). Due to the structure and characteristics
of the question-answer pairs utilized in the thesis, Synthesis is not included (see
Figure 2). The categories are arranged from simplest to most complex and from
most concrete to most abstract; moreover, it is assumed that the Taxonomy
represents a cumulative hierarchy, meaning mastery of each simpler category is
necessary before moving on to the next more complex one (Krathwohl, 2002).
The hierarchical structure of Bloom’s Taxonomy allows for the analysis of the
average Combined Similarity, Abstractness, and Dispersion Scores of each tax-
onomy separately. This system of measuring the quality of questions is particu-
larly relevant to this thesis, which focuses on evaluating EdTech question-answer
pairs. Consequently, Bloom’s Taxonomy inspired the use of it as an independent
variable for the First SSLP. Bloom’s Taxonomy is a widely-recognized criterion
for assessing the quality of questions, yet it only evaluates the quality of ques-
tions and not answers. To address this limitation, the hierarchical structure of
Bloom’s Taxonomy has been employed as a tool for predicting questions’ tax-
onomies with the GPT-3 Davinci and feeding them into the GPT-3 Curie for
self-training, which is beneficial for the evaluation of the question-answer pair.

One of the main challenges for this thesis is to adjust the prompt that the
models take as input for one/zero/few shot learning predictions. Few-shot learn-
ing is a task in machine learning where a model must learn from a limited num-
ber of examples, which is often difficult for traditional machine learning models
that require large amounts of data in order to learn. Recent progressions in pre-
trained language models have indicated that they can be utilized for few-shot
learning tasks by fine-tuning the models (Gao et al., 2021). It is an important
leap forward in the domain of machine learning, as it suggests that pre-trained
language models can be used to learn from a limited number of samples, which is
usually a challenging situation for conventional machine learning models. (Gao
et al., 2021) The success of the pre-trained model in the few-shot setting has
inspired this thesis to investigate the potential of fine-tuning the GPT-3 Curie
in a zero-shot setting within the Second SSLP (See Figure 6). In particular,
the efficient utilization of limited data is advantageous to the thesis in terms
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of making the most of the available data resource. It is suggested making pre-
dictions on an existing pre-trained model instead of fine-tuning a blank model
(Gao et al., 2021, and this thesis implements the process of fine-tuning on top
of an existing pre-trained model, GPT-3 Curie.

This thesis proposes the use of token probabilities of GPT-3 Curie as a con-
fidence metric for labelling data, particularly in the context of Semi-Supervised
Learning with weak labelling. Weak labelling is a method of training a model
using only partially labelled data, which is often employed when there is an insuf-
ficient amount of labelled data to train a model using traditional methods. This
approach has been demonstrated to be effective in various settings, such as text
classification (Meng et al., 2018, Chapelle et al., 2009). Semi-Supervised Learn-
ing is often utilised when there is a limited dataset, particularly with regard to
the number of labelled samples (Meng et al., 2018, Chapelle et al., 2009). Con-
sequently, this thesis is motivated by the potential of Semi-Supervised Learning
to efficiently evaluate small datasets due to the scarcity of labelled data.

In order to compare the GPT-3’s performance with a state-of-the-art lan-
guage model, the BERT model is utilized. BERT model BERT is a language
model which utilises Transformers with encoder layers and self-attention heads.
It differentiates itself from other standard language models by having a bidi-
rectional Transformer architecture. To overcome the unidirectional constraint,
they employed a Masked Language Model (MLM) (Devlin et al., 2018). The
objective of the MLM is to randomly mask some of the tokens from the input
and predict the original vocabulary id of the masked word-based solely on its
context. This objective enables the depiction to fuse the left and right context,
thus allowing for the pre-training of a deep bidirectional Transformer. In addi-
tion to the masked language model, the ”next sentence prediction” task is also
used to jointly pre-train text-pair representations (Devlin et al., 2018). It is a
state-of-the-art tool for gathering the most semantically similar sentence and
word-based comparison with the question. Furthermore, it is particularly useful
for feeding large texts, such as question-answer pairs, which are the inputs of
this thesis. BERT models do not require labelled data to match semantically
similar scores due to its bidirectional encoder representations. Consequently,
the lack of labelled data available for this thesis aligns with the BERT design
in this regard.

Additionally, machine learning models have been successfully managed with
weak supervision, as the large amount of data can cause bottlenecks in the
training phase (Boecking et al., 2021). A framework, Interactive Weak Supervi-
sion, that receives user feedback to propose heuristic solutions, is developed and
demonstrated that even with a small amount of intervention from user feedback,
it is possible to achieve competitive results without accessing ground truth la-
bels. The weak labels are created under human supervision and fed into an
Artificial Neural Network (ANN) model (Boecking et al., 2021). What inspired
this thesis is the fact that they fed the supervised labels into the ANN model
for reinforcement. Although GPT-3 is a highly advanced generative AI model,
it is evident from the weak labels it produces that it needs to be self-trained,
as in the Second SSLP (See Figure 6). A heuristic rule-based prompt has been
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proceeded and used a set of rules previously created by humans (Boecking et
al., 2021). This thesis, on the other hand, does not take a heuristic approach,
neither for the independent variable extraction in the First SSLP nor for the
GPT-3 Curie’s self-training in the Second SSLP.

In addition, A survey-like approach is employed to prompt creation for spam
classification (Smith et al., 2022). Subject Matter Experts (SME) formulated
questions that were posed to pre-trained language models, with the expectation
of receiving yes or no answers. The results were then evaluated heuristically; if
the model responded affirmatively to the query of whether the text requested
an action, it was flagged as spam (Smith et al., 2022). Subsequently, labeled
data was fed into an ANN and used to predict the unlabeled data. SME then
reviewed the predicted models in a feedback loop. This approach is similar to
that of this thesis in terms of utilizing large language models with prompts and
creating a feedback loop to improve predictions. However, this thesis’s proba-
bilistic filtering approach and heuristic approach of the previous research differ.
Moreover, SME have been necessitated to make the final decision (Smith et al.,
2022), whereas this thesis focuses on the capacity of Generative Models for fi-
nal predictions. This thesis seeks to employ a strategy for quality assessment
through prompt with GPT-3, which is inspired by the text classification using
prompt addressed by the previous literature. However, a heuristic approach
is employed to address the challenge, with the outputs being evaluated by hu-
man experts and the results being adjusted according to predetermined criteria
(Smith et al., 2022). In contrast, this thesis does not take an external heuristic
approach, both for the independent variable extraction in the First SSLP (See
Figure 5) and for the self-training of the GPT-3 Curie in the Second SSLP (See
Figure 6).

5 Data

The main input for evaluation is quizzes which are consisted of a question,
and multiple choice answers. The quizzes are generated with zero-shot learn-
ing approach by using GPT-3 Davinci. The prompt consists of the description
of the generation task, sample input and output format, and a context that
retrieved from video transcripts of Skillsoft courses. Skillsoft is a software com-
pany that provides online learning solutions to businesses and organizations
(Skillsoft, 2022).

After feeding the prompt with given context, the GPT-3 model generates
quizzes for evaluation. Subsequently, there can be multiple true and false an-
swers in one quiz, and the unlabeled data contains 1446 different quizzes from
992 different video transcripts and each quizzes contains 5 to 9 different question-
answer pairs. In order to apply the methodologies, the thesis separate each
question,good and bad answers and extract their logarithmic probabilities indi-
vidually.

The GPT-3 models utilise logarithmic probabilities to determine which words
to complete a sentence with. Logarithmic probabilities are a method of statis-
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Figure 1: Sample of Question-Answer Pairs, Xi

Context:

Informative context about vaccines.

Question:

Which of the following statements is an example of an informed judgment

about the value of vaccines?

Correct Answer:

Vaccines are beneficial because they prevent diseases that can cause serious

harm or death to individuals and populations.

Incorrect Answers:

— Vaccines are harmful because they introduce foreign substances into the

body that can cause allergic reactions or autoimmune disorders.

— Vaccines are unnecessary because natural immunity is stronger and more

reliable than artificial immunity.

— Vaccines are controversial because they are based on unproven theories

and lack sufficient evidence of safety and effectiveness.

tically estimating the likelihood of a specific word being selected (Brown et al.,
2020). The intricate description of the logarithmic probabilities is presented in
Section 6.2.

Due to the scarcity of labeled data, this thesis proposes a weakly labeled
dataset to initiate self-training. To address this challenge, this thesis leverages
generated question-answer pairs from the GPT-3 Davinci for initial weak label-
ing. There are 130 different generated quizzes, each containing 3 to 5 different
question-answer pairs, for a total of 634. Subsequently, these question-answer
pairs are evaluated with the GPT-3 Curie to retrieve their logarithmic proba-
bilities using the following formula:

probi, Yi, tokenYi = GPT3(Xi) (1)

where probi ∈ Rn is the corresponding logarithmic probabilities of n tokens,
Yi is a textual binary output, tokenYi is the token list of the Yi and the input
of the formula containsXi. It is the question-answer pairs and their related
context (See Figure 1). The context is the transcripts which are used when the
question-answer pairs are generated using the GPT-3 Davinci.

6 Methodology

The initial step in this process is the prompt creation for one/zero/few shot
learning. Subsequently, independent variables such as Bloom’s Taxonomy La-
bel, Combined Similarity Score, Dispersion Score, and Abstractness Score are
established. Two SSLPs for Generative Models are then set up to binary clas-
sify the quality of question-answer pairs. The First SSLP (See Figure 5) utilizes
independent variables for a self-training approach, while the Second SSLP (See
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Figure 6) uses a fine-tuned GPT-3 Curie for self-training. This study employs
a one/zero/few shot learning approach and a key factor in this strategy is the
preparation of an appropriate prompt for the GPT-3 Davinci and Curie. Af-
ter retrieving the question-answer pairs and their contexts, they are fed to two
different SSLPs.

The First SSLP starts with three steps. Firstly, independent variables,
namely the Abstractness Score, the Dispersion Score, and the Combined Sim-
ilarity Score, are created from the relation between the question-answer pairs
and their contexts. This step is essential for the First SSLP, as it feeds the
Random Forest Classifier and Logistic Regression. Secondly, the Bloom’s Tax-
onomy of the input question is classified by using the GPT-3 Davinci. Thirdly,
the question-answer pairs are labeled with the GPT-3 Curie based on its token
probabilities of predictions. After these steps are completed, another dataset is
created consisting of the newly created features and weakly labeled dependent
variables. Subsequently, unlabeled data from Skillsoft is retrieved and a self-
training operation is initiated. During the training, the Random Forest Classifer
and Logistic Regression predict and evaluate the unlabeled data in a loop (see
Figure 5).

The Second SSLP begins with two steps. Firstly, weakly labeled dependent
variables are created using the same technique as the First SSLP. Secondly,
instead of creating independent variables for self-training, transfer learning of
the GPT-3 Curie is initiated. In this step, question-answer pairs and their
contexts are fed into a JSON file to send an API request to OpenAI servers.
The servers then return the fine-tuned model with an identifier, allowing access
to and utilization of the fine-tuned GPT-3 Curie for prediction. Following these
steps, as with the First SSLP, unlabeled data from Skillsoft is retrieved and
the fine-tuned GPT-3 Curie is re-trained in a loop until the unlabeled data is
labeled (see Figure 6). Further subsections explain the creation of independent
and dependent variables, and classification algorithms in detail.
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6.1 Creating Independent Variables

6.1.1 Bloom’s Taxonomy Labels

Figure 2: Bloom’s Taxonomy

One of the features of this thesis is the classi-
fication of questions based on Bloom’s Taxon-
omy (See Figure 2). For the First SSLP (See
Figure 5), another approach similar to For-
mula 1 is employed to classify the Bloom’s
Taxonomy of the input question. In this
case, Yi in the Formula 2, is a textual output
with five labels: Understand, Apply, Analyze,
Evaluate, and Remember. Bloom’s Taxon-
omy is a classification system used to describe
the different levels of thinking and learning
that are involved in the educational process
(Anderson and Krathwohl, 2001). The la-
bels of Understand, Apply, Analyze, Evalu-
ate, and Remember are the five levels of the
taxonomy. Understanding involves the abil-
ity to comprehend the meaning of a concept

or idea. Applying involves the ability to use the concept or idea in a new situ-
ation. Analyzing involves breaking down a concept or idea into its component
parts and examining the relationships between them. Evaluating involves mak-
ing judgments based on criteria and standards. Finally, Remembering involves
the ability to recall information. Together, these five levels of thinking and
learning provide a framework for educators to use when designing instruction
and assessing student learning (Anderson and Krathwohl, 2001). Furthermore,
the prompt used for Formula 1 has been modified to taxonomy classification,
rather than assessing the quality of the question-answer pairs.

This study employs a one/zero/few shot learning approach to classify Bloom’s
Taxonomy. A key factor in this approach is the preparation of an appropriate
prompt for the GPT-3 Davinci. This prompt is a string description which
contained the definitions of Bloom’s Taxonomy and its levels, sample context,
questions, and the taxonomy level of the question. For classification, contexts
and questions to be classified are fed to the prompt dynamically, with the out-
come predicted by the Bloom’s Taxonomy level of the input question. GPT-3
Davinci is chosen for this task due to its ability to handle the more complex
prompt for classification of the Bloom’s Taxonomy compared to GPT-3 Curie’s
prompt for creating weakly labels. The equation for classifying the Bloom’s
Taxonomy using the GPT-3 model is as follows:

Yi = TaxonomyClassifierGPT3(Xi) (2)

Let Y i denote the Bloom’s Taxonomy of the input Question, which com-
prises Understand, Apply, Analyze, Evaluate, and Remember. X i is the prompt
that contains the context related to the question-answer pair, as well as the
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question-answer pair itself. The TaxonomyClassifierGPT3 function is used
to feed the prompt to the GPT-3 Davinci, which then predicts the Bloom’s
Taxonomy of the given question. Finally, GPT-3 Davinci predicts around 49%
of questions that are classified as “Remember”, 16% of questions classified as
“Understand”, less than 1% of questions classified as “Apply” and ”Analyze”,
and 23% of questions classified as “Evaluate” to be used in the First SSLP (See
Figure 5).

6.1.2 Combined Similarity Score: Semantic Similarity and Word-
Based Similarity Scores

The other feature that is employed for weak supervised learning is the combi-
nation of semantic similarity and word-based similarity scoring. The inputs for
these methods are questions and contexts of the questions. As it is explained in
the section 4, this method utilises BERT model for semantic similarity match-
ing between the context and the question. Subsequently, the lack of labelled
data available for this thesis aligns with the BERT design in this regard. The
combined score is calculated as follows:

CSij =
SimilarityScore(ContextSentencej , Questioni)

(1 + FuzzyScore(ContextSentencej , Questioni))
(3)

The Combined Similarity Score is evaluated by comparing each sentence
of the context (ContextSentencej) with the input question (Questioni) using
the BERT model. The most semantically similar pairs are retrieved with the
Similarity Score function, and then the same pairs are compared with the Fuzzy
Score function and summed with one to determine if the most semantically
similar sentences are also word-wise similar. The two scores are then divided to
obtain the Combined Similarity Score, CSij . This score is intended to penalise
questions that are almost exactly replicated in the text, as this may lead students
to memorise the sequence rather than actually learn it.

6.1.3 Dispersion Score

The thesis focuses on another feature, which is calculating the entropy among
the top N semantically similar sentences. After retrieving the sentences, their
scores are collected and the entropy are calculated based on the similarity scores.
This approach is developed to comprehend the dispersion of the sentences within
the input text. The formula for this feature is as follows:

DispersionScorei = −
N∑
j=1

(pj ∗ log(pj)) (4)

The Dispersion Score of a given questioni(DispersionScorei) is calculated
by performing matrix multiplication between pj and the logarithm of pj , and
then taking the negative of the result. This score is based on the scores of the N
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most semantically similar sentences of the given contexti of the question-answer
pairs and the questioni.

6.1.4 Abstractness Score

Another feature for weakly supervised learning is the Abstractness Score. The
formula of the Abstractness Score is the following:

ASij =
SimilarityScore(ContextSentencej , Questioni)

1 + 1
5

∑7
n=2 CommonNGramsn(ContextSentencej , Questioni)

(5)

The Abstractness Score(ASij) is calculated by comparing each sentence of
the context (ContextSentencej) with the input question (Question i) and tak-
ing their n-grams. This process is similar to the Combined Similarity Score,
where the Semantic Similarity Score is retrieved with the SimilarityScore func-
tion. The Semantic Similarity Score is a measure of the degree of similarity
between the context and the correct answer(s). The methodology for calcu-
lating the Semantic Similarity Score is analogous to the Combined Similarity
and the Dispersion Scores. Five different n-grams, ranging from two to seven,
of the most semantically similar ContextSentencej and Questioni are taken
with the CommonNGrams function and averaged. Then, the output of the
CommonNGrams function is summed with one in the event that there are no
common n-grams.

Finally, the division of the Semantic Similarity Score and the summed aver-
age score is calculated and set as an independent variable for the model. The
purpose of creating such a feature is to determine if the correct answer is present
in the context directly. Furthermore, this feature is used to ascertain whether
the model created its answers directly from the context or if it generated a cer-
tain abstraction to the answer. Generating answers directly from the context is
not desirable, as it typically does not assess students’ understanding but rather
their memorization ability.

6.2 Creating Weakly Labeled Dependent Variables

In order to initiate a training process, weak labels of question-answer pairs
must be generated and this is accomplished by using logarithmic probabilities
of tokens from Formula 6 or Formula 7.

The GPT-3 Curie calculates the probability of a certain word following a
given sequence of words. It then uses the logarithmic probability of the most
likely word to complete the sentence. The logarithmic probability is calculated
by taking the logarithm of the probability of the word divided by the sum of
the probabilities of all other words. In other words, it is the logarithm of the
probability of the word given the context of the sentence. This allows the model
to determine the most likely word to complete the sentence, even in cases where
there are multiple possible words to choose from (Brown et al., 2020).
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Figure 3: GPT-3 Curie’s Token Probabilty Histogram

The generated question-answer pairs from GPT-3 are retrieved as a dictio-
nary, thus each question, true and false answers must be extracted separately.
After the tokens and token probabilities of each are retrieved and compared
with one another, two different approaches are implemented for retrieving weak
labels. Firstly, the probabilities of each question, correct and false answers are
extracted separately and summed using the following formula, where PtokenYj

is the conditional logarithmic probability of a token in each sentence and tj is
the token.

ConfidenceScore =

n∑
j=1

exp(PtokenYj
(tj |t1, ..., tj−1)) (6)

Subsequently, since most of the correct and incorrect answers are multiple
choice, a Softmax function is employed to normalize them. This ensures that the
sum of correct and incorrect answers is equal to one, respectively. Histograms of
each question and its corresponding correct and incorrect answers (See Figure
3) are then generated and a threshold is assigned for labeling. If the probability
is below the given threshold, it is labeled as weak; otherwise, it is labeled as
strong. Furthermore, labels are retrieved from the evaluation data based on
the probability of each question-answer pair. In this case, each word from the
question-answer pairs is collected and their average probability is calculated.
Consequently, the average probabilities of each question, correct answers, and
incorrect answers are retrieved separately using the following formula, where
PtokenYj

is the conditional logarithmic probability of a token in each sentence
and tj is the token.

ConfidenceScore =
1

n

n∑
j=1

exp(PtokenYj
(tj |t1, ..., tj−1))) (7)

Due to the limited amount of labeled data available, supervised learning
cannot be effectively implemented without the risk of over-fitting. To address
this issue, this thesis proposes the use of self-training learning. Self-training is
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a Semi-Supervised Learning technique that involves training a classifier with a
small set of labeled data, then using the classifier to label unlabeled data. The
most confident unlabeled points, along with their predicted labels, are added
to the training set and the classifier is retrained. This process is then repeated
(Zhu, 2005).

6.3 Classification with Weakly Labeled Data

This thesis investigates two distinct self-training approaches. The first approach
entails predicting weakly labeled question-answer pairs using independent vari-
ables with Random Forest Classifier and Logistic Regression (See Figure 5).
The second approach involves predicting weakly labeled question-answer pairs
with prompt based classification using a fine-tuned Curie based on its token’s
conditional probabilities (See Figure 6).

Moreover GPT-3 Curie is fine-tuned on the evaluation dataset and used to
predict unlabelled data. Three datasets are used for this operation: a train and
test set from the evaluation data, and unlabeled data for the machine and deep
learning models to label with self-training. The train and test data contain weak
labels generated from Curie’s token probabilities.

GPT-3 Curie is first fine-tuned with the train and test data, then the eval-
uation data is predicted and its F1 scores are retrieved. The unlabelled data is
then predicted, resulting in both labels and probabilities of the labels. Labels
with probabilities higher than 90% are fed into the train data and trained again
until there is no more unlabeled data.

In contrast to the First SSLP, which utilises the strategy of creating weak la-
bels with independent variables such as the Abstractness Score, the Dispersion
Score, the Bloom’s Taxonomy, and the Combined Similarity Score, the Sec-
ond SSLP employs Curie’s state-of-the-art word embeddings. For this method,
instead of using the independent variables for predicting unlabelled data (See
Figure 5), the context and the question-answer pairs are fed to GPT-3 as a
prompt and are expected to be input for the self-training pipeline (See Figure
6). Subsequently, in the prompt, classification of the question-answer pairs is
asked whether they are good or bad. Therefore, instead of using scores as inde-
pendent variables, the conditional probability of token, which is generated by
GPT-3, is utilised. According to the histogram (See Figure 3) of the sample
data for evaluation, whenever GPT-3 Curie generates a strong label with 95%
token probability of a good question-answer pair, it is assumed that it is indeed
a good pair. GPT-3 Curie is proficient at retrieving high probability of high
quality questions; however, low probability of high quality questions are also
needed.

In order to accomplish this objective, when GPT-3 Curie is not certain in
classifying question-answer pairs with a confidence score of less than 20% for a
good question-answer pair (See Figure 3), it is assumed to be a negative pair.
This approach utilizes fine-tuning, thus the model is not supplied with extra
independent variables. Ultimately, GPT-3 Curie’s probabilities on predictions
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are analysed. This also reduces the disparity between pre-training and fine-
tuning, making it more functional in few shot scenarios (Gao et al., 2021).

7 Evaluation

In order to evaluate the primary question of the thesis, question-answer pairs
are weakly labeled and the weakly labeled data is split into test and train data,
and fed into both of the SSLPs. The F1 scores of the pipelines are then retrieved
to assess the validity of GPT-3’s confidence threshold based on the association
between the context of the question-answer pairs and themselves. To address
the significant generated independent variable with the relationship of the con-
text of the question-answer pairs and themselves, feature importances of each
independent variable are calculated and evaluated. To investigate the perfor-
mance of GPT-3 Curie’s self-training compared to Random Forest Classifier,
Logistic Regression, and the baseline model, a fine-tuning operation is imple-
mented. Thereafter, the GPT-3 Curie in the Second SSLP is fine-tuned using a
transfer learning approach.

In this thesis, a train-test split operation of Scikit-learn (Pedregosa et al.,
2011) is conducted on the 634 question-answer pairs, with the default parameters
used apart from the train and test sizes, which are configured to 70% and 30%
respectively. Additionally, the training data comprises of around 80% good
and 20% bad labels, and the test data containes approximately 75% good and
25% bad labels. As a result of the imbalanced data, F1-score is utilized as the
accuracy metric.

The fine-tuning of GPT-3 Curie is elucidated in the following: two objects
must be inputted into the models, the prompt and the labels. The prompt for
fine-tuning is distinct from the prompts that are utilized for Bloom’s Taxonomy
classification and quality classification of the question-answer pairs. In this
prompt, there is no directive, only the independent variables, similar to fine-
tuning a BERT model. Subsequently, the labels consist of good or bad. Both
of the inputs are collected in JSON format and transmitted via API request to
OpenAI. Subsequently, OpenAI stores the fine-tuned model in their repository
and the models are accessible via their unique identifiers.

In order to assess independent variables, the average scores of Abstractness,
Dispersion, and Combined Similarity are obtained based on the taxonomy la-
bels. This approach facilitates the observation of the efficacy of the scores. For
instance, it is anticipated that a Remember type of question’s Combined Simi-
larity Score is lower than an Understand type of question’s Combined Similarity
Score. Subsequently, the importance of features is compared based on their im-
pact on the quality of the question and the most significant ones are shared.
To achieve this, feature importance based on feature permutation (Pedregosa
et al., 2011) is used for each machine learning algorithm. After retrieving each
feature’s importance (See Figure 4, the most important ones for both Equation
6 and 7 are selected.

After generating the features for the final component of the pipeline, Random
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Forest Classifier and Logistic Regression are employed to classify the question-
answer pairs for deployment using the generated features. During this stage,
the classifiers are evaluated based on F1 accuracy scores. This study focuses
on binary classification, which indicates whether the question-answer pairs are
good or bad.

Furthermore, the BERT model (Devlin et al., 2018) is used as the base model
with transfer learning. To accomplish this, the BERT model is fine-tuned with
the same training data as the self-training models, with question-answer pairs
as independent variables and good/bad labels as dependent variables. Then,
the fine-tuned BERT model is assessed using the same test data as the self-
training models. Finally, all of the self-training models and the BERT model
are benchmarked based on their F1 accuracy scores.

8 Result

In the methodology section, two different weak labeling strategies are discussed.
One of these strategies is the average of logarithmic probabilities, which can
be seen in Figure 3. This See Figure demonstrates a clear saturation between
low confidence and high confidence predictions. Additionally, GPT-3 Davinci
classifies Bloom’s Taxonomy labels with given questions and context (Table 1).
The table indicates that the overall micro F1 accuracy scores for Remember,
Understand, Apply, Analyze, and Evaluate Labels are 64%. It is observed that
Understand type of questions are predicted weakly, as the difference between
Understand and Remember type of questions is quite small. In many use cases,
the difference between the two is that Remember type of question’s words are
mostly in the context. Therefore, the model struggles to differentiate between
the two taxonomies. To examine this further, the Combined Similarity, the
Abstractness, and the Dispersion Scores were separated by their Bloom’s Tax-
onomy labels (Table 2). The average Combined Similarity Scores of the quizzes
are as follows: Remember type of question is 40.9%, Understand type of question
is 66.7%, Analyze type of question is 53.5%, Apply type of question is 64.5%,
and Evaluate type of question is 53.4%. This indicates that word-based similar
sentences with the question of each quiz penalize the score. Consequently, Re-
member type of questions clearly obtain low scores with this formula, since the
question’s words are more present in the text than any other question types.

Table 1: Accuracy Results of Bloom’s Taxonomy Prediction by GPT-3 Davinci

Taxonomy Precision Recall F1-score Support
Remember 0.82 0.85 0.84 312
Understand 0.60 0.38 0.46 104

Apply 0.50 0.80 0.67 57
Analyze 0.42 0.54 0.49 13
Evaluate 0.72 0.76 0.74 148
Overall 0.61 0.66 0.64 634

16



Subsequently, the average Dispersion Scores of the quizzes reflect similar
outcomes to the combined similarity scores. For the Remember, Understand,
Apply, Analyze, and Evaluate type of questions, the average Dispersion Scores
are 86.3%, 90.2%, 90.9%, and 89.4%,85.9% respectively (Table 2). The Dis-
persion score indicates the density of the distribution of the similarity scores
between context’s sentences and questions, and the percentages match with
their Bloom’s Taxonomy labels accordingly. It is logical that the Dispersion
Score would be higher in Remember type of questions since semantic similarity
algorithms are more likely to detect word-based similarity. Additionally, the
average abstractness scores of the quizzes based on their taxonomies indicate
how correctly answers are mentioned in the context. To evaluate students tak-
ing the quiz more accurately, the choices should not be directly in the context
which can lead students to memorize the answers. Therefore, the abstractness
score measures the abstractness of correct answers. The average Abstractness
Scores of the quizzes are 31.7%, 40.2%, 51.5%, 37.8%,and 50.4% for Remember,
Understand, Analyze, Evaluate, and Apply type of questions respectively (Ta-
ble 2). The results indicate that as the taxonomy level increases hierarchically
(Krathwohl, 2002), the values of the scores also increase.

Table 2: Average Abstractness, Combined Similarity, and Dispersion scores of
each Bloom’s Taxonomy Labels

Average Abstractness Average Combined Similarity Average Dispersion
Remember 0.317 0.409 0.863
Understand 0.402 0.667 0.902

Analyze 0.515 0.535 0.894
Apply 0.504 0.645 0.909

Evaluate 0.378 0.534 0.859

To answer the first research sub-question, after analyzing the feature impor-
tance (Pedregosa et al., 2011) of Random Forest Classifier and Logistic Regres-
sion, it was determined that the Combined Similarity Score is the most signifi-
cant feature for the labels generated from Equations 6 and 7. Consequently, the
Combined Similarity Score is found to be the most relevant independent vari-
able to context and question-answer pairs due to its semantic and word-based
similarity scores for the Equation 6. Subsequently, the Bloom’s Taxonomy is
determined to be the most pertinent independent variable in regards to context
and question-answer pairs because of its informative qualities when applied to
the questions at hand.
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(a) Feature Importance of Logistic Regres-
sion with Equation 6

(b) Feature Importance of Random Forest
Classifier with Equation 6

(c) Feature Importance of Logistic Regres-
sion with Equation 7

(d) Feature Importance of Random Forest
Classifier with Equation 7

Figure 4: Feature Importance of Random Forest Classifier and Logistic Regres-
sion with Equation 6 and 7

The accuracy scores of the first SSLP (See Figure 5) are retrieved for two
different data labeling equations. Subsequently, F1 accuracy scores of predict-
ing labels generated with Equation 6 on test data with Random Forest Classi-
fier, Logistic Regression, and BERT are 64.3%, 58.2%, and 72.8%, respectively
(Table 3). Additionally, F1 accuracy scores of predicting labels generated with
Equation 7 on test data with Random Forest Classifier, Logistic Regression, and
BERT are 70.1%, 61.7%, and 73.7%, respectively (Table 4). The second SSLP’s
(See Figure 6) accuracy scores are also retrieved for two different data labeling
equations. F1 accuracy scores of predicting labels generated with Equation 6
on test data with GPT-3 Curie and BERT are 73.7% and 72.8%, respectively
(Table 5). Subsequently, F1 accuracy scores of predicting labels generated with
Equation 7 on test data with GPT-3 Curie and BERT are 85.3% and 73.7%,
respectively (Table 6).

Results of predicting labels using Equation 6 are more accurate with the
Random Forest Classifier than Logistic Regression in the first SSLP (See Fig-
ure 5), and in certain simulations Logistic Regression fails to label all of the
unlabelled data in the dataset. The reason for this failure is that Logistic Re-
gression, after a few iterations, cannot produce predictions whose probabilities
are greater than 90%. As a result, approximately 20% of the unlabeled data
remains unlabeled with low probability predictions. On the other hand, Ran-
dom Forest Classifier managed to predict 90% of the unlabeled data. For the
labels which are created with Equation 7, the machine learning algorithms fol-
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low a similar pattern. Again, the Random Forest Classifier is able to predict
approximately 80% of the unlabelled data and Logistic Regression is able to
predict approximately 60% of the unlabeled data. To answer the second re-
search sub-question, in the second pipeline (See Figure 6), GPT-3 Curie is able
to predict approximately 80% of the unlabeled data generated with Equation
6. Subsequently, GPT-3 Curie is able to predict approximately 90% of the un-
labeled data generated with Equation 7. Additionally, the F1 accuracy score of
the state-of-the-art BERT model was 73.7%, which is close to that of the First
SSLP (See Figure 5), even though both the BERT model and the Second SSLP
(See Figure 6) employed a similar fine-tuning strategy. The reason for this is
that the BERT model was only fine-tuned once, whereas GPT-3 Curie in the
Second SSLP was kept fine-tuned until there are no unlabeled data left.

When predicting the out-of-sample data, Logistic Regression achieved an
accuracy of 53% while Random Forest Classifier achieved an accuracy of 60%
when using Equation 6. Moreover, when Equation 7 is applied to create labels,
Random Forest Classifier is able to predict the out-of-sample data with an accu-
racy of 65%, and Logistic Regression achieved an accuracy of 57%. Additionally,
GPT-3 Curie is able to predict the out-of-sample data created using Equation
6 with an accuracy of 67%, and 79% when Equation 7 is used. Finally, BERT
model is able to predict the out-of-sample data created using Equations 6 and
7 with accuracies of 65% and 70%, respectively (See Tables 7, 8, 9, and 10).

Table 3: Accuracy Results of First SSLP (See Figure 5) with the Equation 6

Algorithm Precision Recall F1-score
RFC 0.663 0.607 0.643

LOGIT 0.562 0.602 0.582
BERT 0.734 0.712 0.728

Table 4: Accuracy Results of First SSLP (See Figure 5) with the Equation 7

Algorithm Precision Recall F1-score
RFC 0.684 0.732 0.701

LOGIT 0.602 0.643 0.617
BERT 0.753 0.722 0.737

Table 5: Accuracy Results of Second SSLP (See Figure 6) with the Equation 6

Algorithm Precision Recall F1-score
GPT-3 Curie 0.705 0.793 0.737

BERT 0.734 0.712 0.728
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Table 6: Accuracy Results of Second SSLP (See Figure 6) with the Equation 7

Algorithm Precision Recall F1-score
GPT-3 Curie 0.851 0.822 0.853

BERT 0.753 0.722 0.737

Table 7: Out-of-Sample Accuracy Results of First SSLP (See Figure 5) with the
Equation 6

Algorithm Precision Recall F1-score
RFC 0.566 0.582 0.600

LOGIT 0.485 0.511 0.532
BERT 0.639 0.620 0.651

Table 8: Out-of-Sample Accuracy Results of First SSLP (See Figure 5) with the
Equation 7

Algorithm Precision Recall F1-score
RFC 0.639 0.623 0.650

LOGIT 0.603 0.591 0.574
BERT 0.725 0.718 0.702

Table 9: Out-of-Sample Accuracy Results of Second SSLP (See Figure 6) with
the Equation 6

Algorithm Precision Recall F1-score
GPT-3 Curie 0.646 0.634 0.672

BERT 0.639 0.620 0.651

Table 10: Out-of-Sample Accuracy Results of Second SSLP (See Figure 6) with
the Equation 7

Algorithm Precision Recall F1-score
GPT-3 Curie 0.801 0.763 0.793

BERT 0.725 0.718 0.702

9 Discussion

In order to evaluate the effectiveness of question-answer pairs in Edtech, two
distinct SSLPs are suggested. The first approach involves extracting and com-
paring the given question-answer pairs, alongside their contexts, in order to
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acquire features such as the Dispersion Score, the Combined Similarity Score,
the Abstractness Score, and the Bloom’s Taxonomy. The thesis is inspired
by Bloom’s Taxonomy, which is used to measure the quality of the questions
and organise them into a hierarchical structure to optimise the learning process
(Krathwohl, 2002).

After the features have been obtained, they are then fed into the First SSLP
for self-training. Once the training is complete, the independent variables’ im-
portance of both the Random Forest Classifier and the Logistic Regression are
obtained in order to investigate the most pertinent feature to address the first
research sub-question. To answer the question, feature importance analysis re-
vealed that the Combined Similarity Score is the most significant feature of
Random Forest Classifier and Logistic Regression (See Figure 4) for the First
Semi-Supervised Learning with the Equation 6, while the Bloom’s Taxonomy
is the most significant feature of Random Forest Classifier and Logistic Regres-
sion (See Figure 4c and 4d) for the First Semi-Supervised Learning with the
Equation 7.

The second Semi-Supervised Learning relies on the GPT-3 Curie for transfer
learning and fine-tuning, taking into consideration the context of the question-
answer pairs as well as the pairs themselves.

Both self-training approaches treat correct and incorrect answers identically
by design. This decision is made due to the fact that the GPT-3 model used
to generate the question-answer pairs is not specifically instructed to create
distinguishable differences between correct and incorrect answers. As a result,
incorrect answers can be examined explicitly for further analysis.

An approach had been proposed for prompt creation, which entailed the
evaluation of labels by Subject Matter Experts using a heuristic approach (Smith
et al., 2022). Subsequently, the assessed labels were fed into an Artificial Neural
Network to predict a dataset containing unlabeled data. After the predictions,
Subject Matter Experts evaluated the outcomes once more in a feedback loop.
This strategy is advantageous for the prediction of the unlabeled data in the
self-training parts of the SSLP Smith et al., 2022. Despite the benefits, Smith
et al., 2022 necessitated human supervision prior to providing the data to the
deep learning model. The thesis, however, utilizes GPT-3’s token probabilities
of the predictions to weakly label the data, thus eliminating the need for human
involvement.

Furthermore, no non-automatized human evaluation is employed to evaluate
either of the SSLPs during the self-training process. Initially, non-automatized
human evaluation can be used to enhance the evaluation process. Subsequently,
both of the SSLPs can incorporate the feedback from non-automatized human
evaluation to improve their accuracy. Despite GPT-3’s impressive outputs sug-
gesting that the evaluation model requires less supervision than state-of-the-art
language models (Brown et al., 2020), the lack of human supervision remains
a major challenge of this thesis. Crafting an optimal prompt for evaluating
question-answer pairs is difficult, as GPT-3 consists of sequence-to-sequence
transformers (Brown et al., 2020) and even a single white-space can alter the
results. Therefore, the models necessitate a human feedback mechanism to gen-
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erate near optimal results.
In order to address the primary research question, two different SSLPs are

implemented and their performances are evaluated. The F1 scores of the first
SSLP (see Figure 5) with the Equation 6 are presented in Table 3 and 7, while the
F1 scores of the same SSLP with the Equation 7 are presented in Table 4 and 8.
Additionally, the F1 scores of the second SSLP (See Figure 6) with the Equation
6 are presented in Table 5 and 9, and the F1 scores of the same SSLP with the
Equation 7 are presented in Table 6 and 10. As discussed in the literature review,
this thesis is motivated by the ability of GPT-3 to perform zero/one/few shot
learning (Brown et al., 2020). Furthermore, this thesis takes advantage of GPT-
3’s pre-trained nature to facilitate transfer learning (Gao et al., 2021), which is
especially crucial due to the scarcity of labeled data. This thesis utilises pre-
trained models, as demonstrated in Gao et al., 2021, to improve the quality of
one/few/zero shot learning with self-training approaches. GPT-3 (Brown et al.,
2020) and BERT (Devlin et al., 2018) models are one of the primary focuses of
this thesis, and both models have been shown to outperform traditional machine
learning algorithms in few/zero/one shot learning tasks (Gao et al., 2021). To
address the second research sub-question, this thesis leverages pre-trained GPT-
3 Curie and BERT models, utilising transfer learning, in order to evaluate the
quality of question-answer pairs during the self-training process. Consequently,
GPT-3 Curie’s self-training approach, which utilizes Random Forest Classifier
and Logistic Regression, gives better results than the baseline BERT model in
terms of transfer learning.

It is important to consider the preparation of prompts for GPT-3 Curie and
GPT-3 Davinci, which respectively generate weakly labeled data and classify
Bloom’s Taxonomy. Previous research has indicated that the performance of
Large Language Models such as GPT-3 is contingent upon the quality of the
prompt (Zhou et al., 2022). Consequently, it is essential to recognize that,
to attain superior results, the quality of the prompts can be improved either
manually or automatically for further research.

The quality of a question-answer pair can be improved with the implementa-
tion of multiple rules. This approach is not a heuristic strategy that manipulates
the model’s final predictions, but rather a process of prompt engineering for
GPT-3 models in SSLPs. To achieve this, various rules can be extracted from
different teaching resources and prioritized based on their importance. From
the experience of this thesis, GPT-3 usually does not perform well with very
long prompts. Therefore, the rules must be concise and precise, or multiple
prompts must be created with different rules for the models. Both approaches
require evaluation, however, the first approach is more advantageous due to
performance and cost limitations.

10 Conclusion

This thesis presents the evaluation of question-answer pairs using both GPT-3
Curie and traditional machine learning models such as Random Forest Classifier
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and Logistic Regression. To this end, a main research question and two sub-
questions are examined.

Results from self-training through a minimal amount of data have demon-
strated that a fine-tuned GPT-3 model can surpass the performance of tradi-
tional machine learning models such as Random Forest Classifiers and Logistic
Regression, as well as the baseline model BERT, without any human over-
sight. Contrary to what has been reported in prior research, the two distinct
SSLPs do not require any heuristic intervention or human supervision of the
predictions. The two proposed weakly labelling strategies play a critical role in
initiating Semi-Supervised Learning without relying on manual labelling. This
implies that there is no further requirement for human input throughout both
pipelines, thereby conserving time, energy, and resources. GPT-3 Curie can
facilitate the quality assessment of question-answer pairs without human inter-
vention by employing an Semi-Supervised Learning feedback loop with their
tokens’ conditional probabilities. Retrieving the token probabilities can be ac-
complished in two ways: first, by summing the token probabilities of each sen-
tence and fitting them into a Softmax with Equation 6, or by taking the average
of the token probabilities of each sentence with Equation 7. These strategies
indicate the confidence levels of each weak label generated by GPT-3. To deter-
mine the best feature for Semi-Supervised Learning to reinforce weakly labeled
data for assessing questions and answers, feature importance from Scikit-learn
(Pedregosa et al., 2011) using permutation importance function is utilized. Ad-
ditionally, two different Semi-Supervised Learning strategies are employed (see
Equations 6 and 7). Subsequently, according to the feature importance anal-
ysis, the Combined Similarity Score and the Bloom’s Taxonomy are the most
significant independent variables for the First Semi-Supervised Learning with
Equation 6 and 7 for both Random Forest Classifier and Logistic Regression,
respectively. Consequently, the thesis can reduce the time and cost associated
with manual labeling due to its self-training approach. Furthermore, it can
be beneficial for the EdTech industry to more accurately evaluate student per-
formance. As a result, EdTech companies can reallocate their budget towards
more innovative and research-oriented strategies, rather than relying heavily on
non-automatized human evaluation. This thesis can be of great value to schol-
ars who are striving to enhance the quality of text assessment. The results of
this thesis have indicated that two distinct SSLPs have achieved considerable
outcomes. However, certain aspects should be considered for potential future
research. The Combined Similarity Score and The Bloom’s Taxonomy, being
the two of the most significant independent variables, are based on the data that
being worked with. Thus, as more data is added and improvements are made,
the significance of the Combined Similarity Score and the Bloom’s Taxonomy
may vary. Additionally, the evaluation of the results is not conducted by hu-
man labour, which remains a major challenge for the thesis. Furthermore, the
evaluation model does not distinguish between correct and incorrect answers,
as the thesis does not evaluate the correctness of the question-answer pairs. To
overcome this, different prompts or pipelines can be utilized for correct and in-
correct answers respectively. Furthermore, the prompts of GPT-3 Curie, which
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is responsible for creating weakly labeled data and self-training in the Second
SSLP, and GPT-3 Davinci, which is responsible for classifying the Bloom’s Tax-
onomy of the given questions, can be improved to produce better evaluation
results.
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12 Appendix

Figure 5: SSLP and Feature Generation
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Figure 6: Second SSLP and Feature Generation
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