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Abstract

In recent years, deep learning has become the most preferred
option for the procedure of automatic medical image segmentation.
The goal of this thesis is to examine the extent to which deep learning
can be applied to segment lung cancer tumors in PET-CT scans. Of-
ten, data obtained from computed tomography (CT) scans are used
to train a medical image segmentation model. In this thesis, the
effect of the inclusion of positron emission tomography (PET) data
as single input, as well as the incorporation of multimodal PET-CT
input, on model performance was investigated. Additionally, the
performance of two commonly used deep learning architectures, a
Convolutional Neural Network (CNN) and U-Net, were compared.
The main results demonstrated that PET and PET-CT data provided
a beneficial effect on segmentation and detection performance, ob-
taining Dice coefficient and detection rate scores over 60%. The usage
of CT data resulted in a poorer segmentation and detection perfor-
mance, obtaining scores under 30%. Despite these promising results,
some limitations such as overfitting and high false positive rates were
observed. This work extensively compares the effects of CT, PET, and
PET-CT data on segmentation and detection performance on a dataset
that has not been widely explored. Using both PET and CT data as in-
put for a deep learning model, clinicians can more accurately identify
the presence and spread of lung cancer.

1 data source , ethics , code , and technology statement

The data have been acquired from the University Hospital Tübingen and
the University Hospital of the Ludwig Maximilian University through an
online request. The obtained data is anonymised. Work on this thesis
did not involve collecting data from human participants or animals. The
original owner of the data used in this thesis retains ownership of the data
during and after the completion of this thesis. However, the institutions
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were informed about the use of this data for this thesis and potential
research publications.

All the figures in this work belong to the author. The thesis code
can be accessed through the ETZ hospital server. In terms of writing,
the author used assistance with the language of the paper: a thesaurus
(Name: Thesaurus.com, source: https://www.thesaurus.com/) was used
to improve the author’s original content, for paraphrasing. No typesetting
tools or services were used.

2 introduction

2.1 Project Definition

Cancer refers to a collection of more than 100 unique diseases. In cancer
cells, there is an uncontrolled reproduction of malignant cells, which can
invade nearby tissue. Over time, these malignant cells can form clusters
at locations within the body, known as tumors, which fatally affect the
human survival by disrupting important organ processes (Weinberg, 1996).
Lung cancer is the most commonly diagnosed type of cancer worldwide
(Bomanji et al., 2001). Despite considerable increments in survival rate
for most cancer types in the United States, there has only been a modest
increase in survival rate for lung cancer patients (Schabath & Cote, 2019).
This can be attributed to the fact that in the majority of cases, the diagnosis
occurs in a late stage when survival chances are minimal. Effective medical
imaging techniques play a crucial role in the early detection and treatment
of lesions and cancerous tumors (Thapar et al., 2022).

Positron emission tomography (PET) is a functional imaging technique
in which metabolic activity is quantified, making it possible to detect
tumors that display a high metabolic activity (Grossiord et al., 2017). To
do this, in a medical setting, positrons are inserted into a tracer known
as F-fluorodeoxyglucose (F-FDG) (Townsend, 2008), which is injected into
the patient body. Inside the body, the F-FDG tracer decays due to positron
emission: these positrons quickly lose their energy and interact with an
electron, resulting in positron-electron annihilation (Raichle, 1983). This
process causes two annihilation photons to travel in opposite directions
with a relatively high energy. Areas with a high rate of annihilation energy
correspond to areas with high metabolic activity (Raichle, 1983). PET has
the advantage of being highly sensitive and specific to lesions with a high
metabolic activity (Wang et al., 2022).

In computed tomography (CT), X-rays are used to create cross-sectional
images of bones and tissue inside the body (Xi et al., 2020). To accomplish
this, a patient is placed on a table inside a tunnel that spins around the



2 introduction 3

patient’s body and releases X-ray beams. The radiation that is absorbed by
the patient’s body is measured. A CT scan has the advantage of providing
accurate anatomical localization of organs and lesions (Townsend, 2008).

This thesis is done in collaboration with the Elisabeth-TweeSteden Hos-
pital (ETZ) in Tilburg, the Netherlands. To be specific, in this thesis, a
deep learning-based medical image segmentation procedure on full-body
PET-CT scans will be developed to detect and segment lung cancer on PET
and/or CT modalities. The inclusion of both PET and CT modalities, and
specifically the effects of the incorporation of PET data, will be comprehen-
sively examined and investigated. Additionally, two commonly used deep
learning methods in medical image segmentation - U-Net and CNN - will
be deployed and compared. The models developed in this thesis will be
adapted for automatic image segmentation of bone lesions, which will be
incorporated into the ETZ workflow.

2.2 Societal Motivation

The American National Cancer Institute has estimated that the number of
new annual cancer cases will increase from 18 million in 2018 to nearly 30

million in 2040, with the number of deaths increasing from 9.5 million to
16.4 million (Thapar et al., 2022). Globally, lung cancer is the most common
cause of cancer-related death for males and the second most common cause
of cancer-related death for women (Schabath & Cote, 2019). To increase the
survival risk of lung cancer patients, early staging and identification of the
disease is highly important (Bomanji et al., 2001). Hence, deep learning-
based lesion segmentation approaches can be of life-saving importance.
To be specific, deep-learning based approaches offer many benefits in the
detection of lung cancer, such as:

• They can aid clinicians in concentrating on a specific area of the
disease and help select comprehensive information about the disease
for a more precise conclusion (Jha et al., 2020). Moreover, a deep
learning approach with both PET and CT data as model input can
swiftly and efficiently identify the presence and spread of lung cancer
in the thoracic area (Hochhegger et al., 2015)

• Deep learning-based methodologies reduce the issues of intra-reader
and inter-reader variability (Osadebey et al., 2021) by providing
a more consistent diagnosis of cancer and lesions than subjective
judgments of radiologists (Chen et al., 2021)

• An automated deep learning approach can assist in early detection
of lung cancer tumors, increasing the survival rate for lung cancer
patients from 14% to 49% (Kalaivani et al., 2020)
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2.3 Scientific Motivation

Medical image segmentation is the process of pixel-wise labeling of an
image to determine whether a single pixel belongs to a certain target
structure such as an organ or tumor, or should be treated as background
(Jha et al., 2020). This process is highly important in the biomedical
domain, since malignant data should be properly localized (Ronneberger
et al., 2015) in order to quickly determine an effective treatment. PET and
CT play an important role in tumor diagnosis and staging, monitoring of
treatment effectiveness, and radiotherapeutic planning (Saif et al., 2010).
Compared to single modality PET and CT scanners, multimodal PET/CT
scanners have a higher accuracy in detecting diseases such as lung cancer,
melanoma, and lymphoma (Townsend, 2008). Hence, combining PET and
CT as input to a deep learning model can result in a computationally
efficient segmentation procedure that is able to use both the sensitivity of
CT towards a target structure’s anatomical location and the sensitivity of
PET towards a region’s metabolic activity (Wang et al., 2022).

2.4 Research Questions

Despite the promising abilities of deep learning, it also has its flaws. Some
of the most common issues related to these approaches are limited anno-
tated data, imbalance between foreground and background classes, overfit-
ting, training time, and a vague organ or lesion appearance (Hesamian et
al., 2019). Various possible strategies to overcome these obstacles have been
applied, ranging from very effective to having a negligible effect. In this
thesis, the extent to which deep learning-based tumor segmentation ap-
proaches can be utilized in PET/CT scans will be addressed and answered.
To be exact, the main research question of this work will be:

To what extent can a deep learning-based approach segment
lung cancer tumors in PET-CT scans?

Moreover, both PET and CT imaging do not come without their flaws.
When compared to CT images, PET images have poorer resolution (Fu
et al., 2021). Often, false positives are encountered because of a similar
level of F-FDG accumulation from organs and tumors, meaning that a
high F-FDG acquisition is not exclusive to tumors (Wang et al., 2022). PET
images also suffer from a poor ability to visually represent anatomical
regions compared to CT (Townsend, 2008). PET is more time consuming
than CT and the minimum infrastructure necessary is considerably higher
(Bomanji et al., 2001). Consequently, some hospitals, including ETZ, only
have facilities in place for CT scanners. CT images, on the other hand,
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suffer from a possible issue of irregularities: in COVID-19 patients, for
example, the appearances of different lung lesions in CT images vary a
lot (Chen et al., 2021). Additionally, unlike PET, CT imaging is not able to
detect lesions’ metabolic activity.

Since both modalities have their own strengths an weaknesses, this
thesis proposes a multimodality approach using both PET and CT data.
A multimodality approach using and combining PET and CT imaging
can combine the accurate detection of the activity of a lesion of PET
imaging with the precise anatomical localization of lesions and organs in
CT imaging (Wang et al., 2022). For this reason, since the introduction
of the Hawkeye, the first multimodal PET/CT scanner to be deployed in
a medical setting, in 1999, PET/CT scans have been widely used in the
medical domain (Townsend, 2008). In this thesis, the effect of the inclusion
of PET data on a deep learning model’s performance will be examined. To
be exact, the first subquestion will be:

What is the effect of a multimodality approach incorporating
both PET and CT modalities on model performance compared
to single modality approaches?

Figure 1: Comparison of a PET and CT patch of the same patient scan slice
generated and used in this thesis. Both the benefits and shortcomings of CT and
PET scans can be observed in this figure. Specifically, the figure shows that the CT
patch clearly visualizes the lung region but poorly depicts the metabolic activity
within this region. For the PET patch, the reverse can be observed

Secondly, in medical image segmentation, two commonly applied deep
learning methods are the U-Net model and the CNN model. The CNN
architecture is a powerful architecture which has been applied in many
areas, including image classification, object detection, and scene labeling
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(Gu et al., 2018). In this thesis, the CNN model will serve as the baseline
model. In the U-Net architecture, skip connections enable the model to both
localize target objects and use contextual information, thereby overcoming
the trade-off between localization and use of context (Hesamian et al., 2019).
Due to the fact that models will be trained on both single modality and
multimodal input, using a pre-trained model via transfer learning is not
possible. The second subquestion in this thesis will be:

What is the difference in performance between a CNN and a
U-Net architecture on automatic lung tumor segmentation?

2.5 Summary of Findings

The main findings obtained in this thesis demonstrate that using PET as an
additional input, or even as a single input, results in a remarkably higher
segmentation and detection performance compared to simply using CT
data. The differences in tumor segmentation and detection between the
PET and PET-CT models are minimal. This means that, in the multimodal
PET-CT models, the PET modality is the main driver behind the lung
tumor segmentation while the CT modalitiy has a marginal to negligible
effect. Regarding the performance of the U-Net and CNN models, the
CNN models obtained marginally higher detection rates than the U-Net
models, while the U-Net models obtained slightly higher Dice coefficients
than the CNN models. Some limitations of this work are the high false
positive rates, the occurrence of metastases outside the lung regions, and
the usage of 2D instead of 3D data.

3 related work

In this section, some related work on the application of PET/CT data and
deep learning methodologies using PET and CT data will be discussed.
The first subsection will briefly focus on the application of PET and CT
imaging for lung nodule detection. In the second subsection, deep learning
techniques for the detection of lungs and lung nodules using PET and/or
CT data will be discussed. Then, applications of deep learning techniques
using PET and/or CT data for other detection and segmentation purposes
will be addressed. Lastly, the societal and unique contributions of this
thesis will be briefly mentioned.
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3.1 Application of PET and CT imaging for Lung Cancer

PET and CT have been widely applied in the detection and evaluation of
lung cancer tumors. Verschakelen et al. (2004) evaluated the role of CT
in lung cancer staging: while CT is widely available and it can provide
accurate insights into the presence and spread of lung cancer in the thoracic
area, it performs poorly in determining whether a lung cancer lesion is
benign or malignant. Hence, other modality techniques need be used to
address and combat the limitations of CT in lung cancer detection. PET
imaging, providing information about the metabolic activity within the
lung regions, can be used to more thoroughly differentiate between and
detect benign and malignant lung cancer tumors (Vansteenkiste, 2003).
Visual correlation of PET and CT - finding similar lung cancer locations in
a separate PET and CT scan - is a more powerful technique than simply
using PET or CT without regarding the contributions of the other modality
(De Wever et al., 2007).

In recent decades, the application of integrated PET/CT imaging has
increased (Hochhegger et al., 2015). PET/CT scanning has the benefit of
providing anatomical information from the CT modality and metabolic
information from the PET modality at the same time using a single device
(Bruzzi & Munden, 2006). Moreover, using PET/CT, lung cancer lesions,
nearby lymph nodes, and distant metastases can be more easily detected
than when using PET or CT as a single modality (Hochhegger et al., 2015),
thereby effectively identifying a lung tumor’s infiltration into nearby and
more distant structures.

3.2 Deep Learning Models Applied to CT and PET for Lung and Lung Nodule
Detection

Fu et al. (2021) introduced a deep learning-based multimodal PET-CT
lung tumor image segmentation approach. Their approach consists of
two components: a multimodal spatial attention module (MSAM) and an
encoder-decoder CNN. The MSAM was used to exploit the high sensitivity
of PET to produce an attention map. The CNN was used to segment and
extract tumors from the CT data, with the CNN focusing on areas that
are more likely to be a tumor based on the attention map produced by
the MSAM. The spatial attention maps generated by the MSAM and the
CNN feature maps are multiplied element-wise to focus on areas with the
strongest spatial attention, producing a final segmentation output. The
main findings demonstrate that the utilization of an MSAM improves the
model performance. Moreover, the PET-CT segmentation proved to be
more successful than using a single modality or a concatenation of PET
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and CT data. The MSAM outperformed other existing attention-based
methods in terms of precision, sensitivity, specificity, and Dice coefficient.

Secondly, Chen et al. (2021) introduced a new deep learning-based
automatic lung lesion segmentation method from COVID-19 CT images.
Patches were extracted to only include relevant information (i.e., Region
of Interest (ROI)) and exclude redundant background information. Then,
seven different data augmentation techniques were applied to reduce
overfitting. Afterwards, a 3D Attention U-Net was developed, which is able
to increase the attention to the target object. A combination loss function
was used, which results in a faster network convergence and a greater Dice
coefficient. The results show that data augmentation resulted in a higher
accuracy in the testing dataset by preserving the main characteristics of the
original data and having a stronger generalization capability. Moreover,
the network with the combination loss function achieved a higher Dice
coefficient than networks trained with binary cross-entropy or dice loss.
Overall, the method proposed in this network outperformed other types of
networks.

Lastly, Osadebey et al. (2021) used a deep learning-based approach
to segment lung regions from CT images based on the traditional three-
stage segmentation approach (i.e., pre-processing, processing, and post-
processing). For the pre-processing stage, a CNN was used to classify
all input images into lung and none-lung regions, aiming at preventing
false positives from occurring too frequently. In the processing stage,
two U-Nets were used to segment lung regions and refine lung contours,
respectively. In the post-processing stage, another CNN was used to filter
out none-lung regions that the first U-Net model segmented as a lung
region. The main advantages of the methodology are that it is fast, simple,
computationally efficient, and that it produces reproducible segmentation
results. The model using the three stage-stage system obtained higher
Dice scores than the model without the CNNs or contrast enhancement.
In future work, explainable AI and intensive evaluation of a radiologist
should be used to further investigate the explainability and efficacy of the
proposed method.

3.3 Deep Learning Models Applied to CT and PET in Other Contexts

Wang et al. (2022) developed a deep learning-based method for automatic
heart and bladder detection and segmentation by using FDG PET/CT data.
Frequently, in tumor detection, there are many false positives because the
level of uptake of fluorodeoxyglucose (FDG) in the heart and bladder is
similar to the accumulation of FDG in tumors (Wang et al., 2022). Hence,
in this study, a deep learning network was created to overcome this burden
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of physiological noise. To be exact, two 3D U-Nets were created, separately
segmenting the heart and the bladder by using the PET and CT data as
multimodal input. The main results demonstrate that this model achieved
Dice coeffcients of 0.96 and 0.95 for heart and bladder segmentation, re-
spectively. Moreover, the methodology managed to greatly resolve the
problem of physiological noise, having fewer false positive instances.

Secondly, Naser et al. (2021) implemented a deep learning model the
purpose of automatic head and neck cancer (HNC) segmentation. They
trained and evaluated both a 2D U-Net model and a 3D U-Net model,
and used multimodal PET/CT images as input for the model to capture
both metabolic activity and anatomical information. The intensities in the
PET/CT images were normalized and data augmentation was performed in
order to prevent overfitting. 5-fold cross validation was used to evaluate the
model. For the 3D model, the mean and median Dice similarity coefficient
(DSC) scores were 0.79 and 0.67, respectively. For the 2D U-Net, these
scores equaled 0.79 and 0.67. The difference between the Dice coefficients
of the 3D and 2D U-Nets were significant. These results demonstrate that,
although further improvement is needed, using 3D data, combined with
multimodal PET/CT input and data augmentation, results in a relatively
strong model performance.

Lastly, Xu et al. (2018) used two deep learning models for full-body
bone lesion detection for multiple myeloma (MM) with PET/CT imaging.
To be specific, two networks, a V-Net and a W-Net, were used to develop
an automatic MM bone lesion detection and segmentation procedure. The
V-Net model used in this work is based on the U-Net architecture, using 3D
convolutions instead of 2D convolutions. V-Net consists of a compression
path in which the volumetric size is decreased and features are extracted,
and a decompression path, in which the feature maps obtained in the
compression path are expanded to produce a final output. In the W-Net,
two V-Nets are cascaded. The first V-Net produces a binary mask for the
skeleton, and the second V-Net utilizes both this binary skeleton mask and
PET and/or CT data as input. The main results demonstrated that a V-Net
trained on multimodal PET-CT data obtained a higher Dice score (69.49%)
than a V-Net trained on CT data (26.37%) or PET data (28.51%). The W-Net
with PET/CT input only slightly outperformed the V-Net with PET/CT
input, obtaining a Dice coefficient of 72.98%. These findings highlight the
promising capabilities of using multimodal PET-CT data as model input
compared to only using PET or CT data.
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3.4 Literature Gaps and Contributions

In this thesis, the contribution of the PET modality on a deep learning-
based lung tumor segmentation procedure will be explored, using a dataset
that has not been widely used. Since the original dataset used in this work
also comprises lymphoma and melanoma patients, the contributions of
PET scans to medical image segmentation can be extended for other lesion
types as well. In previous research on lung cancer segmentation, CT has
mostly been used as model input, or CT and PET data were used to extract
different features in a stacked model architecture. In this thesis, however,
different models will be trained using either CT, PET, or combined PET-CT
data, thereby thoroughly and explicitly investigating the inclusion of PET
data and the exclusion of CT data. Moreover, the current state-of-the-art
model for biomedical image segmentation – U-Net – will be compared to a
CNN model. Thus, the effect of skip connections and concatenation layers
on automatic lung tumor segmentation will be investigated as well.

4 methods

Figure 2 depicts the process conducted throughout the research. In this
section, all the steps will be explained and discussed.

4.1 Dataset Description

The dataset used in this thesis comprises 900 patients who were examined
in two medical centers: the University Hospital Tübingen, Germany, and
the University Hospital of the Ludwig Maximilian University (LMU) in
Munich, Germany. The set of patients can be divided into melanoma, lung
cancer, lymphoma, and negative control patients. The CT data, PET data,
and segmentation data are stored as nifti files. A nifti file consists of 2D
images stacked along a third dimension, thereby effectively representing a
3D scan. The full-body PET/CT images were obtained using a Biograph
mCT PET/CT scanner.

For all patients, there is a 3D volume representing the PET volume, a
volume representing the CT volume, and a volume representing a binary
mask (i.e., the segmented data). For all patients, the CT volumes are
resampled - to account for a possible shift in a patient’s physical position -
so that the CT and PET imaging resolution are identical. The slice thickness
used for the CT scans was 3 mm. In total, there were 411 negative control
patients and 489 patients having at least one scan containing lung cancer,
lymphoma, or melanoma. Table 1 shows the exact breakdown of the count
of patients per lesion type.
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Figure 2: Workflow diagram depicting the process conducted. First, only lung
cancer patients were extracted from the dataset. Then, step-wise data preparation
was performed to generate appropriate input patches. The CT, PET, and PET-CT
patches were each used as input for a different CNN and U-Net model, resulting
in six different models. During model training, the models were trained with
binary cross-entropy as a loss function and the Dice coefficient as an evaluation
metric. The detection rate and false positive rate for the validation and test data
were computed after the model training procedure. Negative patches (i.e., patches
exclusively containing healthy tissue) were used to compute the false positive
rates of the models

Patient label No. patients
Negative (Control) 411

Lung cancer 168

Lymphoma 144

Melanoma 177

Table 1: The number of patients with at least one lesion in one of their scans
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4.2 Data Preparation

For the purpose of this research, only patients containing lung cancer were
used for analysis and model training. First, the files containing the PET,
CT, and segmentation data were loaded. Connected component analysis,
using the Python package cc3d, was performed to combine and connect
different, consecutive 2D annotations into one coherent 3D structure. Then,
to label each individual component as a separate lung cancer lesion, the
metrics.regionprops_3D function from the Python package porespy is
used. The centroid x, y, and z coordinates, and the minimum and maximum
x, y, and z coordinates are stored in a separate dataframe.

After extracting and storing the data, min-max normalization was
performed on the CT and PET data. The normalization was performed
on the entire scan. Subsequently, per patient, at most 10 random patches,
having a size of 128x128, were created, using the x, y, and z coordinates
to precisely extract the tumor’s location in the PET, CT, and segmentation
data. Moreover, two requirements needed to be met in order for random
patches to be created for the lesion:

• In order for the model to be trained and improve model convergence,
patches with larger annotation size were required. Hence, annotations
within the patches needed to be at least 1% of the total patch size

• For each patient, only patches will be generated where the minimum
and maximum z coordinates are within the interquartile range of all
lesion z coordinates. By only selecting patches within an acceptable
range, the amount of metastases outside the lung regions will be
reduced. Hence, the interquartile range of the population of lung
cancer z coordinates was used to filter out metastases as much as
possible while largely retaining tumors in the lung area. In Figure 3,
the locations of different tumors - based on 25 lung cancer patients -
are visualized using a body heatmap. The probability distribution of
all lung cancer z coordinates is shown in Figure 4. Figure 5 shows
examples of CT and PET patches of the same patient scan slices
which meet this and the above requirement

Lastly, in order to properly train, validate, and test the deep learning
models, patient-wise splitting was performed to assign each set of patches
per patient to a respective training, validation, and test set. 70% of patches
were assigned to the training set, whereas 15% were reserved for the
validation and test set each. Data augmentation in the form of horizontal
mirroring, vertical mirroring, and both horizontal and vertical mirroring,
was performed on the training set in order for the models to become more
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Figure 3: Body heatmap visualizing the location of tumors in the set of lung
cancer patients. Rigid registration was used to align the bodies and anatomical
structures of different patients. A sample of 25 patients was used to create this
visualization. While not all patients are included, the figure shows that the lung
cancer data comprise both actual lung cancer tumors and metastases outside the
lung region. Reprinted with permission from L. Popper (Popper, 2023)

robust to invariance. This means that, for each patch in the training set,
three additional, augmented patches were created. In total, 5,568 patches
were generated from all the positive scans corresponding to lung cancer
patients. Of these, 3,878 were assigned to the training set. After data
augmentation, the size of the training set increased by a factor of 4 to
15,512. The validation set consisted of 839 patches, whereas the test set
comprised 851 patches.

4.3 Negative patches

Besides positive (i.e., lung cancer) patches, 2,349 negative patches were
generated from the CT, PET, and segmentation data from the negative
control patients. Similarly to the positive patches, only negative patches
within a pre-defined location were extracted in order to exclude none-
lung regions as much as possible. However, instead of only looking at
the range of z-coordinates, the x- and y-coordinates were also taken into
account. To be exact, all lung cancer tumor x-, y-, and z-coordinates from
all lung cancer patients were taken. Consecutively, a negative patch was
only considered to be valid if, for all three dimensions, the minimum and
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Figure 4: Violin plot visualizing the distribution of z coordinates of all lung cancer
tumors. The width represents the frequency of a particular z coordinates, the dots
represent the interquartile range and the vertical line represents the interquartile
range multiplied by 1.5. The white dot in the middle represents the median. The
figure demonstrates that tumors can be found at almost any location along the
longitudinal dimension, highlighting the presence of metastases outside the lung
regions

maximum value were between the 30th and 70th quantile of all three sets
of tumor coordinates.

4.4 Deep Learning Models

After the data preparation and generation phase, two deep learning models
- a 2D U-Net and a 2D CNN model - were trained. To be exact, each model
was trained on three different kinds of input data:

1. A single modality input exclusively containing the CT data

2. A single modality input only comprising the PET data

3. A multimodal input comprising both the CT data (as the first channel)
and the PET data (as the second channel)

This means that, in total, 6 different models were trained and validated.
In this work, the CNN architecture is identical to the U-Net structure,
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CT image PET image
Comparison of CT and PET

Figure 5: Examples of PET and CT patches of the same patient scan slices
generated in the data preparation phase. The left column depicts CT patches,
the right column visualizes PET patches, and the tumor annotations are depicted
using red contour lines.

with the only difference being the absence of the skip connections and
concatenation layers.

4.5 CNN

Probably one of the best-known deep learning networks, a Convolutional
Neural Network (CNN) is composed of intermediate layers which each
perform a particular action, such as convolution and pooling (Hesamian
et al., 2019). The first layer of a CNN is the input layer, where the inputs
are inserted into the network. The next layers are the convolutional lay-
ers which perform certain operations on the inputs so that features are
extracted. After these layers, non-linear functions are applied by the acti-
vation layers. Lastly, the fully connected layers extract high-level features
(Hesamian et al., 2019). A CNN is based on an Artificial Neural Network
(ANN) (Thapar et al., 2022), and since the introduction of the CNN, various
variants have been introduced, including the 2.5D CNN, 3D CNN, and the
U-Net, which will be discussed below. The CNN architecture used in this
thesis is visualized in Figure 6.
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Visualization of CNN architecture
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Figure 6: Visualization of the CNN architecture used in this thesis. The annotations
on the vertical side of the layer indicate the size of the first and second dimension
of the layer, whereas the annotations on the horizontal side indicate the size of the
third dimension. The down-sampling phase is composed of four blocks, with each
block containing a 2D max-pooling layer, a 2D convolutional layer, a dropout layer,
and another 2D convolutional layer. The upsampling phase is also composed
of four blocks, with each block comprising a 2D transpose convolutional layer,
a 2D convolutional layer, a dropout layer, and a second 2D convolutional layer.
For the multimodal PET-CT model, the only difference is the size (i.e., the third
dimension) of the input layer, which is 2 instead of 1. Visualkeras was used to
create the CNN architecture visualization (Gavrikov, 2020)

4.6 U-Net

First introduced by Ronneberger et al. (2015), the U-Net model has grown
to be one of the most well-known deep learning architectures in medi-
cal image segmentation (Hesamian et al., 2019). The model is derived
from a Fully Convolutional Network (FCN) (Xi et al., 2020), and it is
composed of two main components: a contracting path and an expansive
path (Ronneberger et al., 2015). In the contracting path, also known as the
analysis path (Jha et al., 2020), the input data is repeatedly down-sampled
in each successive layer, thereby capturing context and extracting specific
deep features. In the expansive path, also known as the synthesis path
(Jha et al., 2020), the features extracted in the contracting path are used
to perform the segmentation. Skip connections are used to concatenate
equally sized layers in the contracting and expansive path (Xi et al., 2020).
Since the introduction of the U-Net, various adaptions of the model have
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been introduced, including 3D U-Net and V-Net (Hesamian et al., 2019).
The U-Net architecture used in this thesis is visualized in Figure 7.

Visualization of U-Net architecture
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Figure 7: Visualization of the U-Net architecture used in this thesis. The grey ar-
rows indicate the skip connections which are used to concatenate identically sized
layer in the contracting and expanding phase. The lime-colored areas indicate the
part of the layer which is added to the previous layer by a concatenation layer.
Except for these skip connections and concatenation layers, the U-Net structure is
identical to that of the CNN. Similar to the CNN architecture, for the multimodal
PET-CT input, the only difference is that the input size of the U-Net model is 2

instead of 1. Visualkeras was used to create the U-Net architecture visualization
(Gavrikov, 2020)

4.7 Hyperparameter Tuning

Hyperparameter tuning was performed in a manual way to improve model
performance. The only hyperparameter values that were tuned in this stage
were the dropout rates for each individual dropout layer. The dropout
rates were the same for the U-Net and CNN models.

4.8 Evaluation Metrics

To evaluate the performance of the trained models on the validation and
test set, three different evaluation metrics were used: Dice coefficient,
detection rate, and the false positive rate. During model training, the Dice
coefficient was used as an evaluation metric. The Dice coefficient indicates
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how much overlap there is between the ground truth X and the model’s
prediction Y, as in:

Dice(X) =
2|X ∩ Y|
|X|+ |Y| (1)

After model training and validation, the detection rate and the false
positive rate were computed. The detection rate computes the ratio of -
at least partially - overlapping annotations in the ground truth and the
predictions over all annotated tumor components. A value closer to 1

indicates that a higher percentage of the predictions within the 2D patches
at least partially overlap with an actual annotation. The false positive rate
computes the ratio of all negative patches where at least one pixel was
predicted to be cancerous over all negative patches. Hence, a value of 0

indicates that the model is able to perfectly distinguish healthy tissue from
cancerous tumors, whereas a value of 1 indicates that the model always at
least partly classifies some healthy tissue to be cancerous.

4.9 Model Implementation

The CNN and U-Net were implemented in Python using the Tensorflow

package. An Early Stopping Rate of 50 epochs was used during model
training, and binary cross-entropy was used as a loss function. The sigmoid
function was used as a final activation function, which results in each pixel
being assigned a value between 0 and 1. This value indicates the probability
of a pixel being (part of) a lesion or not. Thresholding was applied to
produce a final set of predictions, with pixels having a value of at least
0.5 being classified as cancerous. Pixels with values lower than 0.5 were
classified as healthy tissue.

5 results

The results obtained in this thesis are stored in Table 2, 3, and 4. In the
following subsections, the results will be discussed more thoroughly.

5.1 Segmentation Results

In Table 2 and 3, the evaluation metric scores for the validation and test
data are depicted, respectively. Based on these results, it can be observed
that for both the 2D U-Net and CNN models, the model purely trained
on CT data obtains a Dice Coefficient and detection rate that differs from
the PET and PET-CT models by at most nearly 40% (for the validation
data). A similar effect can be observed in the test data, although the CT,
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PET, and PET-CT data obtain higher scores for all evaluation metrics. The
multimodal models having both PET and CT data as input obtain slightly
higher scores than the single modality models purely trained on PET data.
However, this difference is demonstrably smaller than the margin between
the single modality CT and multimodality PET-CT models. Moreover, for
the test data, the multimodality U-Net model has a Dice Coefficient 1%
above the Dice Coefficient of the multimodal CNN model. Nonetheless, the
multimodal CNN model performs somewhat better than the multimodal
U-Net model by a narrow margin of 1% as well in terms of detection rate.

Additionally, in Appendix C (page 36), the development of the binary
cross-entropy loss and the Dice coefficient score for both the training
and validation data are plotted for the first 50 epochs for the CNN and
U-Net models. Upon visually inspecting the evolution of the loss and
Dice Coefficient scores over the number of epochs, it can be noticed that
already after 10 epochs, the models start to converge to a constant value.
Furthermore, for the training data, the binary cross-entropy value decreases
over time for all modalities while the loss value actually increases for the
validation data. Regarding the development of the Dice Coefficient, for all
modalities, the training data converge to a higher value than the validation
data. Hence, overfitting occurs, with the validation performance lagging
behind the training performance.

Model Modality Val dice [-] Val detection rate[-]

U-Net
CT 0.22 0.24

PET 0.55 0.55

PET-CT 0.57 0.55

CNN
CT 0.18 0.21

PET 0.56 0.57

PET-CT 0.59 0.58

Table 2: Table depicting the Dice coefficients and detection rates for the validation
data

Model Modality Test dice [-] Test detection rate [-]

U-Net
CT 0.28 0.28

PET 0.66 0.72

PET-CT 0.67 0.73

CNN
CT 0.23 0.27

PET 0.60 0.73

PET-CT 0.66 0.74

Table 3: Table depicting the Dice coefficients and detection rates for the test data
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CT CNN CT Model U-Net CT Model

PET CNN PET Model U-Net PET Model

PET + CT CNN PET-CT Model U-Net PET-CT Model

FP
FN
TP

Figure 8: Example of the segmentation results of the CNN and U-Net models on
the test data. The left column depicts the raw scan, the middle column visualizes
the annotations and the CNN segmentations using an overlay plot, and the right
columns contains an overlay plot of the annotations and U-Net predictions. The CT
scan is depicted in green in the overlay plots for better contrast and an indication
of the tumors’ location. In the overlay plots, the false positive (FP) pixels are
colored red, whereas the false negative (FN) pixels are colored blue and the true
positive (TP) pixels are colored violet. In other words, violet pixels indicate the
overlap between the ground truth and predictions

5.2 Comparison of annotations and predictions inside lung region

Figure 8 depicts the segmentation results of the models trained on CT
data, PET data, and PET and CT data on the first, second, and third row,
respectively, for both the CNN model and the U-Net model. The figure
shows that, for the CT modality, the U-Net model partially detects the
tumor within the lung region, whereas the CNN model predicts an entirely
different area within the lungs - which in reality is healthy tissue - to be
a cancerous tumor. On the other hand, the models trained on PET and
combined PET-CT data appear to perform better in both detecting and
segmenting tumor areas and in distinguishing malignant regions from
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background areas. For more segmentation results within lung regions, see
Appendix A (page 33).

5.3 Comparison of annotations and predictions outside lung region

CT CNN CT Model U-Net CT Model

PET CNN PET Model U-Net PET Model

PET + CT CNN PET-CT Model U-Net PET-CT Model

FP
FN
TP

Figure 9: Example of the segmentation results of the CNN model on a patch
outside the lung region. This figure shows the respective predictions of a CT,
PET, and PET-CT CNN and U-NET models for a metastasis. It demonstrates that,
while the CT models are unable to detect and segment this metastasis (in the
case of the CNN) or only partially able to do this (in the case of the U-Net), the
PET and PET-CT models still perform reasonably well in terms of detection and
segmentation

As previously mentioned, during the pre-processing step, only patches
with minimum and maximum z coordinates within a patient’s interquartile
range of z coordinates were used for training. However, this method did
not prevent metastases to be fully excluded from the training, validation,
and test data. As such, occasionally, patches containing metastases outside
the lung region were included in the train validate and evalutate the models.
An example of such a patch and the corresponding model predictions can
be seen in Figure 9. These visualizations show that, although the models
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trained on CT data perform poorly in detecting and segmenting lesions
outside the lung regions, the models trained on PET and PET-CT data still
are able to detect metastases reasonably well. Further segmentation results
on metastases found outside the lung region can be seen in Appendix B
(page 36).

5.4 False positive rate

Model Modality False positive rate [-]

U-Net
CT 0.50
PET 0.79

PET-CT 0.86

CNN
CT 0.65

PET 0.87

PET-CT 0.80

Table 4: Table depicting the false positive rate scores for the held-out negative test
set. The table shows that the false positive rates for all models are high, with the
single modality PET and multimodal PET-CT models obtaining the highest false
positive rates

Lastly, as an additional evaluation metric, the false positive rate was
computed for all models. In order for this metric to be computed, 2,349

negative patches were generated from the set of negative control patients.
Consequently, a patch was considered to be a false positive if at least one
pixel was predicted to be a tumor. In Table 4, the false positive rates for all
models are stored. Contrary to the Dice coefficient and detection rate, the
models purely trained on CT data obtained the lowest false positive rate
for both the U-Net and CNN architecture. Moreover, with a margin of 15%,
the U-Net CT model has a considerably smaller false positive rate than the
CNN CT model. The false positive rates for the models trained on PET and
PET-CT are remarkably high, exceeding 0.80 in all but one circumstance.
Examples of negative patches and their respective model segmentation
outputs are shown in Figure 10. It can be observed that, while the CT-
trained model accurately segments no pixel (in the CNN architecture) or
almost no pixel (in the U-Net architecture), the single modality PET models
and the multimodality PET-CT models predict peculiarly high amounts of
regions to be malignant where in fact they are healthy tissue.
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CT CNN CT Model U-Net CT Model

PET CNN PET Model U-Net PET Model

PET + CT CNN PET-CT Model U-Net PET-CT Model

FP

Figure 10: Example of the segmentation results of the CNN and U-Net models on
a negative patch. The figure shows the predictions of the CT, PET, and PET-CT
CNN and U-Net models on patches that do not contain any lung tumors. It shows
that the CT CNN model correctly does not classify any pixel to be cancerous,
whereas the PET and PET-CT CNN model falsely segment a large area to be a
tumor. In the U-Net CT model, a very small area is incorrectly segmented as a
tumor whereas in the U-Net PET and CT models, large areas are segmented as
cancerous

6 discussion

In this section, the results will be analyzed and discussed. First, an in-
terpretation of the results will be outlined. Secondly, limitations of this
thesis, and how they can be improved in future work, will be discussed.
Lastly, the positive contributions of these results to society will be briefly
mentioned.

6.1 Interpretation of results

The main findings demonstrate that both the CNN and U-Net models
trained on single modality PET data and multimodality PET-CT data
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outperform the models trained on only CT data. This entails that, at least
for this dataset, the PET modality is the main driver behind the lung tumor
segmentation process. In positive patches, the models trained on CT data
often do not segment regions corresponding to lung cancer tumors or
metastases. Moreover, while missing these regions, the CT models may
incorrectly classify random healthy tissue to be a cancerous tumor. The PET
and PET-CT models, on the other hand, frequently correctly segment and
detect these malignant regions. Upon visual inspection, it can regularly be
seen that the correctly segmented regions in the PET and PET-CT patches
correspond to regions with a high metabolic activity in the PET scans.
Accordingly, the PET modality proves to be a strong component in terms of
lung cancer segmentation and detection, whereas the CT modality appears
to have a marginal to negligible effect. Hence, for this dataset, a region’s
metabolic activity proves to be a more important factor than its anatomical
location when it comes to lesion detection and segmentation.

However, the disparity in Dice coefficient and detection rate between
the single modality PET models and the PET-CT models was relatively
minimal. This is in accordance with the results obtained by Fu et al. (2021):
their main findings demonstrate that a model with merely concatenated
PET-CT input places disproportionate emphasis on the PET modality while
almost neglecting the CT modality, resulting in equal performance with a
model trained on PET input alone. On the other hand, the main findings
obtained in this thesis are in stark contrast with the results obtained by
(Xu et al., 2018), whose model trained on PET-CT input outperformed the
models trained on either PET or CT data by more than 40%. Nonetheless,
in their work, 3D models instead of 2D models were used, and the total
amount of available data was smaller than the amount of data used in this
thesis, making it harder to establish the exact cause of the discrepancies
between the different findings.

Additionally, the U-Net model does not perform better than the CNN
architecture in all circumstances. As a matter of fact, for the test data, the
CNN models obtained higher detection rates than the U-Net models, with
the U-Net models obtaining higher Dice coefficients. This means that the
U-Net architecture used in this thesis results in a somewhat better spatial
overlap between ground truth and segmentation mask, while the CNN ar-
chitecture results in a slightly better identification of the target - i.e., tumor
- location. The U-Net architecture is identical to the CNN architecture, with
the only difference being the presence of skip connections and concatena-
tion layers between equally sized layers in the contracting and expanding
path. Hence, the usage of skip connections and concatenation layers to
combine local information with contextual information does not always
provide additional benefits to the models trained in this thesis. This stands
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in contrast to the results of Ronneberger et al. (2015), who introduced the
U-Net architecture and found that it performed significantly better than a
CNN without skip connections.

6.2 Limitations and Future Work

The results obtained in this thesis should be taken with caution, since
this research comes with a number of limitations. In this section, some
limitations of the methodology will be analyzed and discussed.

6.2.1 Representativeness

To begin with, the high difference in performance in terms of both Dice
coefficient and detection rate between the models on the validation and
test data suggest that, given higher metric scores, the test data is more
representative of and comparable to the input data than the validation
data. This might give a skewed impression of the model performing worse
(when inspecting the validation data results) or performing better (upon
inspection of the test data results) than it actually performs in reality.

6.2.2 Metastases

The number of metastases itself proves to be an additional limitation in this
study as well. In order to prevent metastases from occurring in the data,
the patches were restricted to be within a certain range of z-coordinates
for each patient (namely, the interquartile range of z-coordinates). While
reducing the number of lesions outside the lung region, this approach did
not fully prevent metastases from occuring in the train, validation, and test
sets. Consequently, since the lung cancer segmentation models are partially
trained on patches that represent anatomical structures outside the lung
region, the models might be skewed in segmenting structures with certain
characteristics. Particularly, since metastases outside the lung region often
correspond to areas with a high uptake of F-FDG in PET scans, the models
too often improperly consider regions with a high metabolic activity to be
cancerous.

6.2.3 False positives

Thirdly, the high false positive rates for all three modalities suggest that
the models fail to – at least partly – differentiate some healthy tissue from
cancerous tumors in a majority of circumstances. Particularly, the models
trained on PET and PET-CT data fail to distinguish some healthy tissue
from malignant tumors or metastases in more than 80% of all negative
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patches. The high false positive rates for the PET and PET-CT models,
combined with a comparatively low false positive rate for the CT data,
suggest that there is a trade-off between segmentation performance and
the occurrence of false positives: the CT models, being significantly worse
in lesion segmentation and detection, more often correctly do not classify
healthy tissue as being malignant because of their poor ability to segment
cancerous data in a majority of circumstances. The reverse can be said
for the PET and PET-CT models: because of their relatively strong seg-
mentation performance in positive patches, too frequently, these models
incorrectly assume regions with a high metabolic activity in negative data
to be cancerous. The occurrence of a large amount of false positives can be
attributed to the fact that, during the generation of patches, only patches
with an annotation size comprising at least 1% of the total patch size were
generated for model training. These patches comprised 50% of the total
number of patches generated, with the other 50% - having an annotation
size smaller than 1% of the patch size – being discarded. For this reason,
only relatively large tumors were used as input for the models.

6.2.4 Marginal Difference between PET and PET-CT and Overfitting

Additionally, although the multimodal PET-CT models and the single
modality PET models outperform the CT models by a large margin, the
differences in performance between the former two is very marginal, and
can be attributed to chance. Furthermore, overfitting proved to be a
significant problem, since the training data obtained a much lower loss
value and a greater Dice Coefficient for all modalities and both the CNN
and U-Net architecture.

6.2.5 Usage of 2D data

Lastly, in this thesis, 2D patches were provided as input for both the
CNN and U-Net models. This was done because 3D data have a higher
computational cost and consumes more GPU memory. In 2D data, the
contextual and spatial information within the scans is not exploited as
much compared to using 2D data.

6.3 Future Work

In this section, possible solutions to the above mentioned limitations will
be outlined.



6 discussion 27

6.3.1 Representativeness

In order to mitigate the discrepancy between the validation and test sets in
terms of patches’ appearances and more thoroughly investigate the models’
actual performance, different techniques using multiple subsets to evaluate
the segmentation and detection scores such as k-fold cross validation and
leave-one-patient-out (LOPO) cross validation can be applied – as done
by Naser et al. (2021) and Grossiord et al. (2017), respectively. Using
multiple subsets to validate and evaluate the model performance, the
number of unrepresentative data (i.e., the metastases outside the lung
region) might be spread out more evenly across these subsets. This results
in equally representative subsets to evaluate the model, thereby obtaining
a better reflection of model performance. This strategy also eliminates the
discrepancy in evaluation metric scores between different subsets of data
(as is the case between the validation and test data in this work).

6.3.2 Metastases

In order to properly identify and extract lung cancer patches and exclude
metastases outside the lung regions, a more advanced architecture incor-
porating different or multiple models might be used. For example, Xi et
al. (2020) used a cascade U-ResNet which is composed of two individual
U-ResNet models: the first model segmented liver regions within the input
data, and the second model used these segmented liver regions as input to
detect and segment lesions inside the liver. Similarly, a structure in which
the first model extracts the lung regions in all patches and another model
then segments the tumors within these regions can be a better and more
powerful alternative to prevent metastases from occurring.

Furthermore, complementary models can be used to directly segment
and detect lesions or tumors without the need of initial organ segmentation.
For instance, Fu et al. (2021) used one model - a multimodal spatial
attention module (MSAM) - to extract activation maps containing useful
features obtained from the PET data, and used a second model - an encoder-
decoder CNN - to segment lung tumors based on CT data. The outputs of
both models were multiplied elementwise to produce a final segmentation.
Thus, the CT and PET data were used in a complementary manner. These
segmentations proved to be more accurate than segmentations produced
by a merely concatenated PET-CT input, which, similarly to the results
in this thesis, placed disproportionate emphasis on the PET data while
effectively neglecting the CT data. Hence, in future work, instead of simply
providing concatenated PET-CT data as model input, informative features
produced by a model trained on PET data can be used to guide tumor
segmentation in CT scans. In this way, the benefits of both modalities are
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more effectively exploited and no modality is unreasonably prioritized
over the other.

6.3.3 False positives

In this thesis, including extremely small annotations resulted in the models
not being able to segment anything during and after training. However, in
future work, using a larger dataset and adjusting the model parameters,
patches with smaller tumor annotations can be included as well to make
the model more robust to patches with a larger amount of background
pixels.

6.3.4 Marginal Difference between PET and PET-CT and Overfitting

In order to mitigate the problem of overfitting, a larger dataset, containing
more patches, could be used. This could be achieved by performing
more data augmentation techniques, simply extracting more patches per
individual lesion per patient, or both. By using a larger dataset, the effect
of the inclusion of PET data can be more effectively examined, and the
differences between the U-Net and CNN architecture in terms of model
performance can be better established.

6.3.5 Usage of 2D data

Using 3D patches - i.e., a sequence of three neighboring 2D slices, contex-
tual and spatial information might be more effectively explored because of
a more efficient volumetric representation (Hesamian et al., 2019). Hence,
in future work, 3D patches can be used instead of 2D patches to improve
the model’s segmentation and detection performance.

6.4 Contributions to Society

This thesis is a contribution to the existing research investigating the usage
of PET and CT data in a deep learning-based medical image segmentation
procedure. The results demonstrate that the inclusion of PET data greatly
improves a deep learning model’s lung tumor segmentation and detection
performance. Manually annotating an entire sequence of PET and CT scans
is very time consuming, and an effective, automatic image segmentation
procedure is therefore highly important and desirable. This work is the
first investigation into developing a bone lesion segmentation model us-
ing multimodal PET-CT input which can be incorporated into the ETZ
workflow. Using a multimodal deep learning model, the detection and
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segmentation of bone lesions could be improved. This will aid physicians
in saving time and doing other necessary work for patients.

7 conclusion

In this thesis, the main research question revolved around the extent to
which a deep learning-based approach can segment lung cancer tumors in
PET-CT scans. This issue was addressed in two ways: first, the effect of a
multimodality approach incorporating both PET and CT modalities was
compared to single modality approaches using PET and CT only to effi-
ciently compare the incorporation and addition of PET data. Secondly, the
difference in model performance between a CNN and a U-Net architecture
on automatic lung tumor segmentation was investigated. The main find-
ings demonstrate that using PET data as a single modality input or as part
of a multimodal input along with CT data results in a remarkably higher
segmentation performance and detection rate. Visual inspection of the
segmentation results demonstrated that the PET and PET-CT models were
able to correctly segment malignant regions with a high metabolic activity,
even in metastases outside the lung region. The CT models, however, often
failed to detect and segment (part of) a tumor or incorrectly segmented
an entirely different region. However, the differences in segmentation
and detection performance between the single modality PET models and
the multimodal PET-CT models, as well as the differences between CNN
and U-Net, are marginal. Some additional limitations include the high
difference in model performance between the validation and test data, the
inclusion of metastases within the datasets, the high false positive rates,
overfitting, and the usage of 2D data. Additional methods and strategies
should be used in future work to combat these issues.
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appendix a : visualizations of cnn and u-net segmentations

in lung regions
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appendix b : visualizations of cnn and u-net segmentations

outside lung regions
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appendix c : development of binary cross-entropy loss and

dice coefficient during model training
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