
C O M PA R I N G D I F F E R E N T F E AT U R E
A L G O R I T H M S F O R M O N O C U L A R

V I S UA L O D O M E T RY A N D S E N S O R
F U S I O N T E C H N I Q U E S I N R O V E R

N AV I G AT I O N

Z U Z A N N A F I L I P E C K A

thesis submitted in partial fulfillment

of the requirements for the degree of

bachelor of science in cognitive science & artificial intelligence

department of

cognitive science & artificial intelligence

school of humanities and digital sciences

tilburg university



student number

2051164

committee

dr. Sharon Ong
dr. Giacomo Spigler

location

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

date

July 12, 2023

word count

7199

acknowledgments

I want to deeply thank my supervisor dr. Sharon Ong for her support
and guidance throughout this thesis process.



C O M PA R I N G D I F F E R E N T F E AT U R E
A L G O R I T H M S F O R M O N O C U L A R

V I S UA L O D O M E T RY A N D S E N S O R
F U S I O N T E C H N I Q U E S I N R O V E R

N AV I G AT I O N

zuzanna filipecka

Abstract

This thesis addresses the need for accurate self-localization meth-
ods in the rapidly growing field of space exploration and robotics.
Monocular visual odometry, a technique underpinned by feature de-
tection and description algorithms, is explored as a vital solution for
navigation. As the initial step in visual odometry, feature detection
and description enable the system to track unique points across multi-
ple frames, thus modeling the robot’s path. The robustness of various
feature extractors - BRISK, ORB, and A-KAZE - in the visual odome-
try process is tested. The Visual Odometry results are then compared
to sensor fusion results incorporating an Inertial Measurement Unit
(IMU) and Wheel Odometry. The results revealed A-KAZE as the
superior algorithm based on our evaluation metrics, outperforming
BRISK and ORB. It is observed that visual odometry alone does not
achieve sufficient performance, however, sensor fusion forms a reli-
able baseline as a self-localization system. The findings suggest the
effectiveness of A-KAZE as a feature extractor and emphasize the
importance of sensor fusion in achieving accurate robot localization.

1 data source , ethics , code , and technology statement

1.1 Source/Code/Ethics/Technology Statement Example

Data Source: Both Long Range Trajectories on Mound Etna Dataset and
Affine Covariant Features Oxford dataset have been acquired from the
DLR German Aerospace Center, and the University of Oxford respectively,
through an online request. Parts of the code have been adapted and reused
from Work on this thesis did not involve collecting data from human
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2 introduction 2

participants or animals. The code Visual Odometry and Image Matching
was adapted as a base from open-source GitHub (Uoip, 2016) repository,
and Google Colab code (Kennerley, 2021). The sources are given in the code
component. The original owner of the data and code used in this thesis
retains ownership of the data and code during and after the completion
of this thesis. However, the institution was informed about the use of
this data for this thesis and potential research publications. To perform
spell-checking and grammar, Grammarly tool has been utilized. No other
typesetting tools or services were used.

2 introduction

2.1 Project definition

This research aims to investigate the accuracy of different feature extraction
and sensor fusion methods in monocular visual odometry using the Moon
Analogue Navigation Dataset on Mount Etna. The term “odometry” con-
cerns the use of data points from motion sensors to estimate the position
of the robot through translation and orientation. For this research, the
visual odometry technique is used. VO is an estimation process of a robot’s
pose using a stream of images coming from one or more cameras that are
fixed to the autonomous object (Scaramuzza & Fraundorfer, 2011). It is
an important technique for navigation, especially in environments where
GPS is unavailable. The study aims to determine the most effective feature
detection and description method among ORB, BRISK and A-KAZE to
provide insights into their accuracy for the planetary rover use case. They
will be assessed by evaluating the localization estimates with the DGPS
positions given in a dataset. In addition to examining visual odometry,
this thesis presents an alternative navigation solution that fuses data from
Inertial Measurement Units (IMU) and wheel odometry sensors, thereby
approximating robot localization. This fusion-based approach presents an
alternate way of localization, fostering a robust comparison with visual
odometry techniques. The findings of this study offer valuable insights into
the most proficient feature detection methods, and facilitate an illustrative
comparison with localization achieved through the fusion of IMU and
wheel odometry. This comprehensive evaluation seeks to pave the way for
enhanced robotic self-localization using computer vision technologies.

2.2 Motivation

During the past few years, there has been a renewed interest in robotic
missions to explore the Moon and Mars, highlighting the need for au-
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tonomous robots due to the limitations of past practices that have been
deemed insufficiently scalable and sustainable for future space exploration
(Nesnas, Fesq, & Volpe, 2021). Such robots perform a series of tasks like
perception, cognition, motion control, and localization. The main objective
for robot navigation is location estimation through external sensors and
cameras (Panigrahi & Bisoy, 2022). For that goal, multiple navigation
methods have been explored, among which visual and inertial methods
were used substantially. As the lunar environment is a GPS-denied area,
traditional navigation methods are unreliable, therefore it is important to
choose a sufficient system. In such circumstances, alternative sources of
self-localization become crucial, and methods such as Visual Odometry
stand out as a promising solution, by localizing the robot through visual
inputs (Huang, 2019).

Moreover, from the scientific perspective, several advantages of robotic
missions on planetary exploration might arise such as opportunities for
research in the areas like astronomy, astrobiology, or life sciences (Craw-
ford et al., 2012). Enabling those objectives to be successful, requires an
improvement of the rover’s localization, as it is a primary step for all other
discoveries. For this type of exploration, there is an aim to achieve the best
accuracy using the least hardware possible and the least computationally
costly software. Therefore, in this paper, Monocular Visual Odometry and
sensor fusion method are explored as the promising low-cost and effective
solution (Z. Lu, Liu, & Lin, 2022). As the software can be computationally
expensive, there are different areas for improvement. One of them is the
first step of visual odometry – feature extraction and description. Different
methods will be compared in terms of their accuracy.

While it is typical to employ sensor fusion by combining Inertial Mea-
surement Unit (IMU) and wheel odometry data, given its advantages such
as providing a metric scale and compensating for visual track losses (Qin,
Li, & Shen, 2018), this thesis adopts a distinctive approach. Instead of fol-
lowing the widespread practice of fusing IMU data with wheel odometry
and visual odometry, the initial emphasis is on evaluating visual odometry
on its own merits. This approach then extends to compare its performance
with the more traditional fusion of IMU and wheel odometry. This shift
in perspective is driven by the identified need for comprehensive research
in feature extraction, matching, and sensor fusion techniques tailored for
planetary rover applications. The primary objective is to identify the most
precise feature detection and motion estimation methodologies for rover
navigation, thereby accelerating advancements in the domain of planetary
exploration by leveraging the power of optimized visual odometry.
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2.3 Research questions and findings

RQ1 What is the best feature algorithm in terms of robustness for image matching
based on the benchmark Oxford dataset and Mount Etna Dataset?

One of the best ways to measure and compare the performance of
feature detectors is through feature matching across image frames. This
process is based on effectiveness in finding the corresponding points of
interest between images. To compare the results from this study, the Oxford
data set is used as ground truth and is compared with the Mount Etna
primary dataset. The matching ability is evaluated based on the base image
and its variations under different conditions such as the introduction of
a random shadow, fog (blur), brightness, and rotation by 180 degrees,
respectively, and between the base image and its subsequent frames.

RQ2 To what extent can Monocular Visual Odometry determine an accurate tra-
jectory estimation in Mount Etna Dataset using different feature extraction
methods?

Visual odometry can help with rover localization in GPS-denied envi-
ronments. The Monocular VO is more efficient in terms of hardware and
costs, thus the idea of the evaluation of this method, even though it might
lead to higher errors (Laîné et al., 2016)). Here, different feature extraction
methods are proposed and evaluated based on their trajectory estimations.

RQ3 To what extent can sensor fusion of Inertial Measurement Unit (IMU)
and Wheel Odometry (WO) perform in terms of the rover’s localization
accuracy?”

The initial phase of the research will yield specific accuracy and error
measurements, demonstrating the deviation of the plotted path from the
original rover traverse as given in the dataset. As localization accuracy is
crucial for planetary rovers operating in extraterrestrial environments, the
aim is to achieve as high precision as possible. Therefore, a comparison
of different measurements, such as IMU and WO sensor fusion, is also
undertaken. This serves as a baseline for subsequent comparison with
visual odometry, similar to the role of the DGPS provided in the dataset.

After comparing A-KAZE, ORB, and BRISK feature extractors, it was
observed that A-KAZE and ORB exhibited comparable robustness in terms
of matching abilities. However, BRISK and ORB showcased similar per-
formance in terms of time efficiency, leading to the conclusion that ORB
is the most fitting choice for this component. When selecting a feature
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detector for Visual Odometry, robust performance is essential, and yet
again, A-KAZE proved superior, with the least degree of error among
the compared methods. Despite these findings, the research posits that
relying solely on Monocular Visual Odometry may not provide an accurate
solution for self-localization of autonomous rovers. Therefore, an addi-
tional comparative analysis of pose estimation efficiency was conducted
on the sensor fusion results, which yielded the best approximation of the
trajectory.

3 related work

3.1 Visual odometry for Rovers

Autonomous mobile robots require precise localization to achieve a proper
working navigation system. There are many variants for calculating the
position of a vehicle such as – wheel odometry, inertial navigation sys-
tems (INS), a global positioning system (GPS), or Visual Odometry (VO)
(Aqel, Marhaban, Saripan, & et al., 2016). VO focuses on estimating the
object’s position by tracking the motion of the unique features between
a sequence of images and can be more accurate than most of the local-
ization techniques having a relative position error between 0.1-2 percent
(Scaramuzza & Fraundorfer, 2011). Those images can be acquired by using
stereo, and monocular cameras, as well as omnidirectional types of them
and RGB-D cameras (Aqel et al., 2016). The Stereo vision was used in
the widely known NASA’s twin Mars Exploration Rovers - Spirit and
Opportunity. It has been one of the most extensive real-life applications
since almost all VO applications are still tested in simulations on Earth.
VO has been described as an efficient tool for cases like vehicle safety,
executing challenging drive approaches, and enabling more autonomous
capabilities. Even though the approach was insightful, stereo-based visual
odometry was not the only component responsible for the long success of
the mission (Chen et al., 2019). On top of that utilizing stereo cameras is
more expensive, needs more calibration activities, and can lead to errors in
the ego-motion estimation process (Kitt et al., 2011). Researchers have also
explored the use of monocular omnidirectional cameras specifically for the
lunar analog environment, because of the need for low computational and
hardware costs (Laîné et al., 2016). In that experiment, feature-based VO
was combined with a template-matching algorithm to serve as the input to
the SLAM technique. Again, the visual odometry component alone had
to be optimized by the SLAM algorithm to achieve a relatively effective
localization system. Therefore, related work suggests that results obtained
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solely from Visual Odometry might not be fully sufficient for a complex
environment such as Mars or Moon.

3.2 Visual features for monocular odometry application

In Visual Odometry (VO), the feature-based method is described as pre-
processing the extracted features from the images to track or match them.
Since monocular VO doesn’t account for scale estimation and other fac-
tors, attention is brought to the steps involving features. (Scaramuzza &
Fraundorfer, 2011) provide a comprehensive review of ego-motion estima-
tion methods. They discuss three distinct approaches: 2D-to-2D, which
estimates relative pose using 2D features; 3D-to-3D, where the pose is
recovered from 3D features; and 3D-to-2D, which involves re-projecting
3D features between cameras. These methods offer different perspectives
for estimating ego motion based on the type and availability of features
utilized. The performance of feature selection has also a heavy influence
on the results of pose estimation. Two main aspects of its performance are
mentioned, feature detection and outlier removal (Nguyen & Lee, 2019).
Firstly, research on many proposed feature detectors has been conducted,
but among the most common are SIFT, and SURF. Although both have
proven to be successful in many applications, they also have drawbacks,
and their performance can be dependent on the application input. Both
SIFT and SURF have a large computational complexity, while ORB on the
other hand is thought to have the highest speed (Karami, Prasad, & She-
hata, 2017). On top of that, SIFT and SURF are currently patented which
leads many researchers to choose other alternatives. Thus, algorithms
like ORB or BRISK gained popularity in visual odometry research (He,
Zhu, Huang, Ren, & Liu, 2019). For a broad and exhaustive comparison,
A-KAZE feature detectors is also tested. From previous experiments it
has demonstrated the best trade-off between motion estimation accuracy
and computation efficiency, therefore it is also chosen for the compara-
tive framework in this theses (Chien, Chuang, Chen, & Klette, 2016). In
terms of the planetary rover application, a new algorithm was proposed
that dynamically switches between different feature detectors leading to
a great performance in stability and accuracy of feature detection. (Otsu,
Otsuki, Ishigami, & Kubota, 2012). Because in the aforementioned process,
features are detected through matching, they are subjected to a lot of noise.
Outlier rejection is a really important step because wrong matches between
frames can lead to big errors. In odometry research, this issue is most
commonly tackled by RANSAC algorithm (Kitt et al., 2011). Lastly, feature
distribution utilizing the Bucketing technique (Geiger, Ziegler, & Stiller,
2011), the age of the features, meaning how long they are being tracked



4 methods 7

(Cvišić & Petrović, 2015) can also lead to reducing noise in feature selection
and further improve the efficiency of the feature tracking.

3.3 Fusion of Inertial Measurement Unit and Wheel Odometry

Within the literature, several approaches have been identified to fuse sen-
sors and improve navigation results. One such approach is based on the
fusion of inertial measurements from an Inertial Measurement Unit (IMU)
and Wheel Odometry (WO). Several algorithms are available for sensor
fusion, with Extended Kalman Filter being a prevalent base due to its low
computational complexity. For instance, the Multi-State Constraint Kalman
Filter (MSCKF) has been employed to estimate the localization for mobile
robots, offering potential insights for rover applications (Heo, Cha, & Park,
2017). Moreover, the necessity for appropriate feature selection in sensor
fusion has been emphasized, as corrupted or missing data can lead to
significant errors. As such, a feature selection framework for sensor fusion
has been introduced, encompassing two strategies - soft fusion and hard
fusion (Chen et al., 2019).

In autonomous mobile robotics, particularly in space exploration, ac-
curate self-localization is crucial. Visual Odometry (VO), a technique that
estimates an object’s position by tracking unique features across sequential
images, has been employed in rovers like NASA’s Mars Exploration Rovers
- Spirit and Opportunity, showing a potential for accuracy. However, sole
reliance on VO may not be sufficient for complex environments such as
Mars or the Moon. Feature-based methods in VO, which involve prepro-
cessing extracted features for tracking or matching, are key, with detectors
like SIFT, SURF, ORB, BRISK, and A-KAZE showing varying degrees of
success. To optimize performance, noise reduction and proper feature
selection are critical. To enhance results, sensor fusion combining VO with
other sensors, like Inertial Measurement Units (IMUs), has been adopted.
Techniques such as the Extended Kalman Filter, used in Visual Inertial
Odometry (VIO), offer promising results due to their low computational
complexity. Nevertheless, in sensor fusion, accurate feature selection is
imperative to prevent significant errors from corrupted or missing data.

4 methods

The Methods section provides a concise overview of the experimental
procedures. It begins with a comprehensive description of the dataset used,
including any necessary adjustments made for experimental suitability.
Subsequently, the visual odometry approach is detailed, covering key steps
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Figure 1: The figure represents the architecture of the research framework, con-
sisting of three segments. The visual odometry process transforms camera images
into trajectory estimates. Wheel odometry readings, combined with IMU data
in an Extended Kalman Filter, yield sensor fusion trajectory estimation. Finally,
these estimations are compared with DGPS ground truth for analysis.

such as ingesting the left camera sequence, feature detection, tracking,
and pose estimation. The section then discusses alignment techniques and
post-processing methods employed to refine visual odometry results and
enhance accuracy. Furthermore, the integration of sensor fusion techniques
for incorporating IMU and Wheel Odometry data is explored, highlighting
their contributions to robust estimation, as well as their respective temporal
association. The software tools, packages, and evaluation criteria used
for performance assessment are also described. The whole framework is
presented in (Figure 1).

4.1 Dataset description

The dataset used for this study was created by DLR (German Aerospace
Center) at a planetary surface analog test site on Mount Etna, Sicily, Italy.
It is a publicly available dataset and was released in 2017. The dataset
contains the measurements of interest for this paper conducted by the rover
sensors and cameras such as images from the stereo camera, sensor mea-
surements from the Inertial Measurement Unit (IMU), Wheel Odometry
data points, and differential global positioning system (DGPS) data (Vayu-
gundla et al., 2018). For the aim of this research, the visual inputs only
from the left camera are taken to assess the monocular visual odometry. All
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the data is shared in the ROS bag format consisting of grey-scale images. In
addition to that, camera intrinsic and extrinsic parameters were provided
for the output calibration aims. The assumptions for Visual Odometry
consist of substantial illumination in the environment, the dominance of
static scenes over moving objects, enough texture to enable feature tracking
and a great scene overlap between the frames. All of those assumptions
are fulfilled for this project, thus the choice for this dataset.

There are 53335 images shared which were a visual representation of
the trajectory of around 834m. The timestamps which are later used for
comparison with ground truth were extracted from the ROS bag as well.
Another necessary component for evaluating the results from the dataset is
the ground truth file recorded by the differential GPS model combined with
a reference DGPS station. There was an interruption during the collection
of that data closer to the end of the run, which leads to the discarding of
these entries in this paper. Apart from that, the position of the camera in
the first 4m changes substantially, which would require a great amount of
information regarding camera transformations. Since they are not given,
the beginning of the dataset is also discarded. Because of the primary high
error in trajectory estimation and the need for multiple alignments and
transformations, only the first 10 thousand images and their corresponding
ground truth entries were used for the experiment. Both IMU and wheel
odometry were reported to have two types of information, angular velocity,
and linear acceleration. Wheel odometry used for sensor fusion was given
in the text file representing timestamped twist.

Additionally, to this primary dataset for one of the goals of the paper
five publicly available images were used as a ground truth for image
matching and feature detector performance, as they were thought to have
a great degree of variety of image content. For comparison of feature
detectors’ performance, five photos were also chosen accordingly from the
Mount Etna Dataset based on the variety of the terrain recorded by the
camera.

4.2 Visual odometry

Feature-based Visual odometry was chosen as a primary source of pose
estimation for autonomous robot localization. As mentioned before, the
need to reduce the costs of the hardware led to the exploration of monocu-
lar visual odometry. The primary objective of this part of the project is the
estimation of the pose of the vehicle by examining the shifts that motion
introduces on the images of its onboard cameras. This can be achieved by
connecting the transformations between successive image frames, thus fa-
cilitating the estimation of the current robot pose. Achieving a considerable
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Figure 2: The figure presents the principal components of camera calibration
parameters. It includes the focal length, denoted as (fx, fy), that measures the lens
to image plane distance, and the optical center (cx, cy), specifying the coordinates
where the optical axis intercepts the image plane.

result requires using intrinsic and extrinsic camera parameters. Intrinsic
camera parameters describe the internal geometry and optical properties
which are needed for visual odometry calculation. Among those, there is a
focal length (fx, fy), which represents the distance between the lenses and
the image plane, and the optical center (cx, cy) represents the coordinates
of the principal point, which stands for the intersection of the optical axis
with the image plane, as seen in (Figure 2) (Palmieri, Castaldo, & Marino,
2013).

Lastly, among the intrinsic information, there are distortion coefficients
(k1, k2, k3, p1, p2), which stand for the parameters modeling the radial
and tangential distortions caused by the lenses. Apart from intrinsic
information, there is also a need for incorporating extrinsic parameters.
They, on the other hand, describe the camera’s pose with respect to the
global coordinate system (Vayugundla et al., 2018). Usually, in the case of
stereovision visual odometry applications, they are used to describe the
relative position between cameras, but as for monocular applications, they
are rather used for converting the relative estimates to the absolute pose
for later comparison.

Chosen pipeline consists of a three-stage process. It begins with the de-
tection of unique features within the set of image frames I0:n = {I0, . . . , In}
where n is the number of image frames taken at time k, employing robust
feature extractors like ORB, BRISK, and A-KAZE. In the subsequent step,
the Kanade-Lucas-Tomasi (KLT) Tracker is utilized to monitor the progres-
sion of these identified features across consecutive frames. This operation
is done by minimizing the pixel intensity disparities within the localized
window from one frame to another, tracking 2D feature points in relation
to the preceding image (Lucas & Kanade, 1981). The concluding phase
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involves motion and pose estimation. The full trajectory can be recovered
by concatenating all of the image changes. An Essential Matrix (1), captur-
ing the geometric relationship of the frames, is computed (Nguyen & Lee,
2019).

Tk =

[
Rk,k−1 tk,k−1

0 1

]
(1)

For rejecting outliers and improving the reliability of the matrix, the
Random Sample Consensus (RANSAC) algorithm is used. Following, the
relative camera rotation and translation are recovered by decomposing
the essential matrix into possible vectors and choosing the ones that are
in front of the camera. Finally, this process outputs the relative X, Y,
and Z pose estimation for every pair of images and is written into a
TUM (Technical University of Munich) text file with the corresponding
timestamp of every image. The format of this output file consists of the
following data points: timestamp of the particular image, tx, ty, tz being three
floating-point numbers representing the translation of the pose in the x,
y, and z directions, respectively, and qx, qy, qz, qw, being four numbers
representing the orientation of the pose as a quaternion, which all have a
value of 0 because the orientation was later calculated during the sensor
fusion component.

4.2.1 Feature detection and description

Feature detection and description are the first steps of the visual odometry
pipeline, so they heavily influence the performance of further steps. Feature
detection is an activity that focuses on identifying points of interest in
the presented scene. Feature descriptors, on the other hand, provide a
description of the region around the detected points and, by that, they
enable the features for further comparison. Based on that, further motion is
estimated between the features from two consecutive frames. This action is
also dependent based on the scenery that is being analyzed. In the case of
this research, both the environment where the dataset was taken and future
sceneries for the planetary rover’s application, are thought to be arbitrary
in terms of conditions. Since the terrain is not fully explored, it cannot
be assumed that it is planar, thus the important role of choosing the best
feature detector. Additionally, the changes in the light, scale, and rotation
of the environment pose challenges to the feature detector’s performance.
Under the following conditions of the applications and possible variations
of them, scale-space feature detection algorithms are used.

On top of that, scale is an important subject in terms of estimating
a pose of an autonomous vehicle from visual input. When executing
stereovision odometry, there is a specific baseline based on intrinsic camera
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parameters used as a reference to recover the scale of the ego-motion (Aqel
et al., 2016). In the monocular VO case, there is no such baseline, thus the
detectors, which can take scale changes into account, are thought to be a
better approach. Two of the most common scale-space feature detectors
SIFT and SURF were excluded from this study due to their licensing.

Therefore, firstly ORB (Oriented FAST and Rotated BRIEF) is used,
as it is a great alternative to previously mentioned algorithms proposed
by (Rublee, Rabaud, Konolige, & Bradski, 2011). This algorithm is based
on the key point detector FAST and BRIEF descriptors. After the FAST
method identifies the potential key points, ORB uses the Harris corner
measure to select the best ones. Later, it calculates a center of gravity for
the point area and creates a vector from the point to this center, which
is describing its orientation. The main weakness of this approach is the
lack of rotational invariance in its descriptor. To overcome this problem,
the algorithm computes a rotation matrix using previously computed
orientation point (Karami et al., 2017). Secondly, BRISK (Binary Robust
Invariant Scalable Keypoints) is utilized. It detects features both on the
image plane and on the scale space. To accomplish this, BRISK uses a
combination of image scale filters resulting in scale-invariant results. It
samples pixel pairs around the point of interest. Long-distance pairs help
with finding the orientation and rotation of the point. Short-distance pairs
are compared later creating a binary description based on the brightness of
pixels (Leutenegger, Chli, & Siegwart, 2011). Lastly, the Accelerated-KAZE
(AKAZE) is chosen because of its scale-invariance (Chien et al., 2016). It
uses Fast Explicit Diffusion to create non-linear spaces. Feature detection is
done by the Hessian Matrix detector. Additionally, the feature description
part is executed by the Modified Local Difference Binary algorithm. The
choice for these three algorithms underlies the objectives of this paper. They
are thought to be reliable for variations in scale, rotation, and condition
changes, providing a robust representation of an image.

4.2.2 Feature matching, tracking, and pose estimation

After the points of interest are detected from the image, the feature motion
analysis can be conducted using two commonly used approaches – feature
tracking and feature matching (Scaramuzza & Fraundorfer, 2011). The goal
of the first approach is to find some correspondences between features in
different images. Therefore, it is used to answer the first research question
regarding how efficient and robust different algorithms are for finding
those corresponding interest points. Both for ground truth and images
from the Mount Etna dataset, key points are extracted and described using
ORB, BRISK, and A-KAZE and later they are matched by the Brute-Force
(BF) Method in OpenCV. It simply compares the descriptor of one feature
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in the first part with all the other descriptors from the image that it is
being compared with and chooses the best one with the smallest distance
(Hamming distance) (Dong, Fan, Ma, & Ji, 2021). After that step, various
evaluation steps are performed, specifically the matching abilities which
are calculated by dividing the amount of the sorted matched points in the
previous frame by the number of features in the current frame. Feature
tracking, on the other hand, comes into play when working with continuous
visual data. In this project, as visual odometry is based on the sequence
of images, this method is preferred. The commonly used Lukas-Kanade
method is chosen for tracking the key points. By assuming that the pixel
intensities of features remain constant over time, the KLT Tracker calculates
the optical flow, and from that the rover pose is estimated.

4.3 Temporal association and scale alignment for Monocular VO

Lastly, in order to enable the valid comparison of the Visual Odometry esti-
mation with the reference trajectory the post-processing steps are applied.
There was a need for temporal and scale alignment (Vayugundla et al.,
2018). As previously mentioned, while using Monocular Visual Odometry,
it is not possible to estimate the scale and the distance between the objects
in the observed scene. Since the camera provides 2D image measurements,
it lacks the possibility to obtain depth information, therefore the scale of
the estimated motion is ambiguous (Aqel et al., 2016). Another obstacle
that had to be taken care of was the different frequencies at which the
DGPS (10Hz) and Visual Odometry (14Hz) were given. Thus to overcome
this problem, performing a temporal association for the entries that don’t
differ by more than 0.02(s), was necessary.

4.4 Sensor fusion of IMU and wheel odometry

For comparison with the VO results, the wheel odometry is combined with
an Inertial Measurement Unit system. The readings of angular rates and
linear accelerations were taken together and fused within the Extended
Kalman Filter (EKF) utilizing the robot_localization package. The EKF
works based on updating an initial estimate of the entity’s state based on
the available sensors. This process is based on two main steps. Firstly, the
prediction step is used to project the state estimate and error covariance that
represents the uncertainty in the prediction. Consequently, the update step
computes the non-linear functions and flattens them to obtain an estimation.
Those two steps are continuously interleaved leading to refinement of the
estimation. In this application, the output of the EKF sensor fusion outputs
a 6DOF trajectory estimation. Linear accelerations and angular velocities
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are able to produce information about the robot’s translation motion with
X, Y, and Z estimates and rotational motion (roll, pitch, and yaw). The
rotational yaw can be estimated by tracking the wheel rotation rates. In the
end, for the sensor fusion component, in the same manner, as for Visual
Odometry, the temporal association was performed, since the differences
in the frequencies of the provided entries were substantial. Lastly, to make
sure that the sensor entries are fused in the same reference frame, wheel
odometry was transformed from its frame to the IMU frame since it was
used as the base link in the provided dataset.

4.5 Evaluation criteria

The primary objective of this project is to point out the most efficient
detection and sensor fusion methods utilizing monocular visual odometry
for autonomous rover navigation. The feature algorithms can be used for
several goals such as feature detection, description, matching, and tracking.

The first research question is posed to explore their efficiency in terms
of the ability to find key points and match them against two image frames.
Thus, for image matching abilities evaluation of ORB, A-KAZE, and BRISK
a ground truth Oxford dataset is used. Five primary images from the
Oxford dataset (Bikes, Boat, Graffiti, Cars, and Ubc) sequences are taken, as
well as five manually chosen photos from the primary dataset representing
various conditions. As for the rover navigation application, the trade-off
between efficiency and computational and time cost is the most important,
it is a leading factor for evaluating the best algorithm. To achieve a
reliable and robust evaluation process, the image sequences are subjected
to analysis under different evaluation criteria such as processing time,
computational cost, and matching capability measured in percentage. All
mentioned criteria are measured under different conditions, the primarily
given condition, rotation (by 180 degrees), brightness, blur, and random
shadow. The evaluation of the algorithms is based on their robustness
to different changes in conditions. However, their performance is also
dependent on the parameters that they are being subjected to. Each
corresponding parameter is shown in (Table 3). To reliably compare the
methods, the feature detection and description are done on different values
for given parameters.

However, in real-life applications, like visual odometry, feature tracking
is also crucial to be performed effectively. Therefore, ORB, A-KAZE, and
BRISK are also evaluated on the run over the sequence of images that
monocular visual odometry is calculated based on as well, being around
ten thousand images. To answer the second research question, the relative
pose estimation must be compared with the absolute pose from the DGPS
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(Differential global positioning system), which is already provided in
the dataset in the text file format. Before the evaluation can be done,
there is a need for temporal alignment and scale alignment, which can be
executed directly using Evaluation Visual Odometry (EVO) package. For
the temporal alignment, the reference ground truth trajectory is aligned
with the estimated trajectory by the maximum difference of 0.02(s) in
their provided timestamps. Further, scale alignment is performed using
(Umeyama, 1991) with scale correction. The accuracy is evaluated based
on the Absolute Pose Error (APE) which directly quantifies the deviation
between two poses: a reference pose Pref,i and an estimated pose Pest,i at
timestamp i. The APE at timestamp i, denoted as Ei, is calculated as the
relative pose between the estimated pose and the reference pose as shown
in notation (2).

Ei = Pest,i ⊖ Pref,i = P−1
ref,i · Pest,i ∈ SE(3) (2)

Here, ⊖ stands for the inverse compositional operator, which computes
the relative pose by taking the inverse of the reference pose and then
composing it with the estimated pose. This relative pose provides a
measure of the absolute error between the estimated and reference poses
at a specific timestamp i (F. Lu & Milios, 1997).

4.6 Software and packages

This project was executed on MacOS Big Sur 11.7.4. The main programming
language is Python (version 3.9). Visual Studio Code was used as the main
interpreter. Additionally, because of the more compatible framework for
the sensor fusion component, VirtualBox 7.0.8 was used to create a virtual
machine with Ubuntu 18.04 system and Robot Operating System 1 (Noetic
version). For that component catkin workspace was created to handle
the sensor fusion. A manually created source package was used together
with the open-sourced robot_localization package (Moore & Stouch, 2014)
which is designed specifically for sensor fusion. All of those elements were
put in the catkin workspace where sensor fusion was recorded. Inside the
manually created source package, there are respective subsection packages:
etna_interface used to manage launch files, configurations, and visual tools
such as Rviz (allows for the real-time visualization of the components of
the robotic system) and Rqt (graphical interface framework which allows
for implementing visual tools). Following, there is also an etna_translator
package which takes the IMU and Wheel Odometry data as published
by the Rosbag and formats them to topics that are further ingested with
the sensor fusion engine. The main packages that were utilized exten-
sively were: OpenCV, NumPy, seaborn, matplotlib, SciPy and scikit-learn.
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For both Visual Odometry and sensor fusion evaluation an open-source
package was chosen called EVO (Evaluation Visual Odometry).

5 results

In this section results for three previously chosen feature detector-descriptor
algorithms are reported. Firstly, their performance in terms of feature
matching is described. Following, trajectory estimation results are pre-
sented for different parameters and algorithms, compared between each
other and against the sensor fusion component estimation.

5.1 Performance comparison for feature matching and tracking

All of the feature algorithms have several advantages and disadvantages
under different conditions. Therefore, there is a need for a thorough evalu-
ation of them. Firstly, exploring feature-matching abilities was evaluated
under the computational time criterion. In order for those results to be
comparable, all the detector’s parameters were set such that they detected
approximately 300 features. The results are presented as an average time
in seconds over 5 different, manually chosen images. As shown in (Table
1) ORB and BRISK, in this case, performed similarly achieving the best
results of 0.0144 (s) for ground truth and 0.0196 (s) for the Mount Etna
data set, respectively. A-KAZE for both datasets performed worse than the
other methods.

Algorithm Ground truth Mount Etna

ORB 0.0144 0.0247

BRISK 0.0161 0.0196
A-KAZE 0.0764 0.1253

Table 1: Average computational time (s) of 5 images for different algorithms for
300 features

A second evaluation criterion that reliably indicates the precision of
the algorithms is the average percentage of matched points across the frames,
also referred to as repeatability. In the feature detection manner, this term
signifies the consistency of a feature detector in identifying the same
features under varying conditions. These conditions can span distinct
viewpoints, scales, lighting conditions, and so forth. Specifically in this
experiment, features were matched between the initial image and images
subjected to four different environmental manipulations, namely random
shadow, random fog (signifying blur), brightness alteration, and rotation.
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These conditions were selected based on their potential occurrence in a
planetary environment.

The results for the repeatability in Ground Truth and Mount Etna are
displayed in (Table 2) and (Table 3), respectively. Regarding the shadow
condition, a similar performance was noted across all detectors, with
an achievement range of 82.4% to 82.6% for ground truth and a range
between 73.5-79.4% for Mount Etna. Upon introduction of random shadow
across the image, algorithms adeptly detected features, largely ignoring
the shadowed area, and subsequently yielded favorable results. The fog
condition, simulating possible image blur, presented a greater challenge. A-
KAZE emerged as the top performer under these circumstances, recording
a match rate of 38.7% in the ground truth, but ORB turned out to perform
for Mount Etna yielding 54.8%. However, blur, in general, had a significant
impact, leading to lower overall results across all algorithms, with BRISK
yielding only an 8.3% match rate. The brightness alteration condition,
conversely, did not substantially affect the matching performance. All
algorithms consistently produced results exceeding 83% with BRISK being
the worst option among the algorithms. Finally, in response to a 180-degree
rotation condition, ORB demonstrated a remarkable 100% match accuracy,
distinguishing itself under these specific circumstances. In the end, both
A-KAZE and ORB were significantly similar in overall performance. In the
shadow and brightness condition, even though A-KAZE didn’t achieve the
best performance, it is chosen over BRISK which didn’t detect the features
in the areas of the shadow at all.

Table 2: Algorithm Comparison for the Matched Keypoints Percentage on the
Ground truth

Algorithm
Conditions

Shadow Fog Brightness Rotation

ORB
82.4% 17.7% 92.3% 100%

A-KAZE
82.6% 38.7% 90.6% 97.5%

BRISK
82.5% 8.3% 92.6% 76.6%

(Figure 7) describes the figures representing the best matching percent-
ages for each condition for the ground truth Oxford dataset, and (Figure
12) describes the same condition figures but for the Mount Etna Dataset.



5 results 18

Figure 3: Shadow Condition

Figure 4: Fog Condition

Figure 5: Brightness Condition

Figure 6: Rotation Condition

Figure 7: Best Matching Percentages Visualizations for Each Condition for Oxford
Ground Truth
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Figure 8: Shadow Condition

Figure 9: Fog Condition

Figure 10: Brightness Condition

Figure 11: Rotation Condition

Figure 12: Best Matching Percentages Visualizations for Each Condition for Mount
Etna Dataset
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Table 3: Algorithm Comparison for the Matched Keypoints Percentage on the
Mount Etna dataset

Algorithm
Conditions

Shadow Fog Brightness Rotation

ORB
73.5% 54.8% 84% 100%

A-KAZE
78.4% 46% 88.4% 98.8%

BRISK
79.4% 12.6% 90.8% 82.9%

A supplementary examination for enhancing feature matching effi-
ciency was conducted on ensuing frames. Another objective for monocular
visual odometry, a crucial technique for determining camera movement,
relies on the precise tracking and alignment of features across distinct
images. Consequently, an important aspect of this evaluation process
involves an analysis of the tracking of corresponding features between
successive features. The initial image was compared with a sequence of
29 subsequent images to assess the consistency of feature representation
across these frames. Tests were executed across four separate parameters
for each algorithm, each involving approximately 50, 250, 450, and 650

features. Within this comparative framework demonstrated in (Table 4),
BRISK yielded superior performance, achieving an unmatched success rate
with 50 features. A-KAZE emerged as the runner-up, securing a solid 65.6%
match accuracy. ORB, however, yielded a matching percentage roughly
half that of BRISK. A noticeable trend was found across the algorithms
where the highest matching percentage appeared for the lowest amount of
features of 50.

A noteworthy observation pertains to the consistent, but weak nega-
tive correlation across all algorithms between the number of features and
matching precision. As the feature count escalates, there is a decrease in
the percentages of accurately matched points of interest. This trend under-
scores the potential trade-off between an increased feature representation
and the maintenance of matching accuracy, suggesting an additional explo-
ration in the realm of monocular visual odometry. The results are given
in (Table 5). For all of the algorithms, there is a weak negative correlation
shown by a Pearson correlation coefficient. Although these results are
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Algorithm Parameter Matching %

A-KAZE

thresh = 0.0073 65.6
thresh = 0.0044 51.3
thresh = 0.00335 47.9
thresh = 0.00238 42.4

ORB

nfeatures = 50 49.7
nfeatures = 250 45.4
nfeatures = 450 44.3
nfeatures = 650 43.7

BRISK

threshold = 119 100
threshold = 98 79.6
threshold = 87 61.2
threshold = 76 55

Table 4: Matching percentage for AKAZE, ORB, and BRISK with different param-
eters for Mount Etna datset

persistent for multiple image sequences among the dataset, given p-values
there is no strong evidence to reject the null hypothesis.

Algorithm Pearson Correlation Coefficient P-value
A-KAZE -0.27 0.1637

ORB -0.33 0.2
BRISK -0.24 0.08

Table 5: Pearson correlation coefficients and p-values for AKAZE, ORB, and BRISK
on the Mount Etna dataset

5.2 Trajectory estimation for Monocular Visual Odometry and Sensor Fusion

Feature-based approach for Monocular Visual Odometry alone turned out
to be not effective by itself. The varied structure of the terrain introduced
a lot of noise in terms of feature detection. The only distinctive objects
that were easily tracked were bigger rocks and sometimes holes in the
terrain, but those also led to substantial noise. In the beginning, the visual
odometry pipeline was executed on the raw images taken from the dataset.
Even though they were provided as already rectified, they had a visible
black frame around them. That aspect, introduced a big error for trajectory
estimations because the algorithms were treating the edges of the frame as
corners, and therefore, the image had to be cropped and visual odometry
estimates were provided again.
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Sensor fusion of particularly two sensors, IMU and WO resulted in
approximately better estimation of the trajectory than solely Visual Odom-
etry. One aspect that has to be taken into account in regard to the noise
difference is that this estimation has utilized the Extended Kalman filter,
which is responsible for almost invisible noise in the estimation, by taking
into account uncertainties and noise present in the system and providing
an optimal solution. For this case, scale alignment was not performed, but
rather only the temporal association.

Results provided in (Table 6) show different measures calculated based
on APE (Absolute Pose Estimation) both for Visual Odometry for each
detector and the sensor fusion of Inertial Measurement Unit (IMU) and
Wheel Odometry (WO). These results provide the extent of the error of the
already aligned trajectories. The output of the spatial alignment was given
in the format of rotation and translation alignment matrices calculated
from Umeyama’s method (Umeyama, 1991). The scale correction was
given from this method for each algorithm A-KAZE (0.06), ORB (0.69),
and BRISK (0.54), respectively. Already from this, it can be deduced that
the trajectory estimation from the A-KAZE algorithm needed the least
correction. That also led to the same output for all Max, Min, Mean, Std,
and RMSE data points, where A-KAZE had the best results among the
feature detectors. The overall accuracy based on Root Mean Squared Error
(RMSE) is a commonly used measure of the average error between the
estimated and ground truth poses. Their difference for ORB and A-KAZE
wasn’t substantial, but in the autonomous planetary rovers application
and their localization, the accuracy of the estimation is really crucial,
which discredits ORB in this comparison. BRISK performed the worst for
Monocular Visual Odometry. However, sensor fusion estimates based on
IMU and WO entries was found to perform the best out of all the proposed
trajectories. Because of the smoothed noise in the sensor fusion component,
the standard deviation is the smallest. The RMSE was reported as the
lowest with the result of 10.

Table 6: Performance Metrics for Feature Detection Algorithms and Sensor Fusion

Algorithm Max Min Mean Std RMSE

A-KAZE 29.1 1.4 12.5 6.5 14.1
ORB 46.5 1.7 17.7 9.2 19.9
BRISK 70.6 4 34.7 12.3 36.8
IMU + WO 27.5 1.3 8.4 5.5 10

The visual representation of the 2D plots is given in the (Figures 13,
14, 15, 16) where the ground truth is marked as a reference, and the
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color trajectory is the estimated align trajectory. Additionally, the colors
represent the range of error, from minimum, maximum, and mean errors.

Figure 13: 2D Plot for A-KAZE against a reference ground truth

Figure 14: 2D Plot for ORB against a reference ground truth

6 discussion

The primary goal of this project was to find the best feature extractors
techniques for Monocular Visual Odometry and sensor fusion techniques to
accurately self-localize the autonomous entity in the planetary application.
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Figure 15: 2D Plot for BRISK against a reference ground truth

Figure 16: 2D Plot for IMU + WO against a reference ground truth
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In this project, various methods were investigated to optimize the accuracy
of autonomous vehicle pose estimation. To this end, a feature-based
visual odometry approach was implemented. The performance of three
distinct feature detectors A-KAZE, ORB, and BRISK was examined under
a multitude of conditions and evaluation criteria together with the sensor
fusion component as well. Findings from this study are discussed further
in the following order of the research questions.

The aim of the first research question was to point out the best fea-
ture algorithm in feature matching ability between two different image
frames. Even though A-KAZE didn’t perform the best under the time
efficiency criterion, it has sustained the best performance under different
evaluation components, because of its robustness. Therefore, the goal of
future work could focus on evaluating the comparison of the A-KAZE al-
gorithm against other state-of-art methods, since it hasn’t been explored as
widely as ORB, SIFT, or SURF (Karami et al., 2017). Further, the second re-
search question delves deeper into exploring the best feature algorithm for
Monocular Visual Odometry application and trajectory estimation. Here,
the images captured encompassed a rocky and variable environment that
led to non-easily trackable, distinctive objects. Therefore, the algorithms
were detecting a lot of unnecessary features and provided a high error
in motion and pose estimation. Although this framework posed a lot of
obstacles, A-KAZE again turned out to be the most accurate with its tra-
jectory estimation having the least noise among the proposed algorithms.
Hence, the exploration for better-suited outlier rejection techniques and
feature-tracking retention approaches within this context remain open for
future work. Overall, Monocular Visual Odometry, even though it might
lead to smaller costs, alone is not the best method for trajectory estima-
tion in planetary applications, because of the inability to estimate scale
and track important features in the small variation of the type of terrain.
The last research question of this study explores whether commonly used
sensor fusion techniques can accurately provide a pose estimation. Com-
bining IMU and WO measures together and fusing them into the Extended
Kalman Filter led to the best results for the rover localization, with the
lowest degree of error. As other research has shown (Qin et al., 2018),
(Heo et al., 2017), and (Bloesch, Burri, Omari, Hutter, & Siegwart, 2017)
a combination of Visual and Inertial Systems might lead to even better
trajectory approximations, this study also suggests a further exploration of
Visual-Intertial Navigation systems for planetary entities.



7 conclusion 26

7 conclusion

In conclusion, feature-based Monocular Visual Odometry performed on
gray-scale image frame sequences does not yield the expected results.
The grayscale space of the image may be insufficient for this application
due to possible illumination or terrain deformations (He et al., 2019).
However, the sensor fusion component led to a more reliable approach.
Therefore, it is concluded that the combination of Visual and Inertial
components may provide the best accuracy. This study contributes to the
space and computer vision research field by comparing and pointing out
the best feature detector for Monocular VO. It also provides a baseline for
further investigation of the most reliable and accurate self-localization and
navigation systems.
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