n®a
TILBURG ojﬁ% ¢ UNIVERSITY
I\\:_l

EXPLORING THE EFFECTIVENESS
OF BERT USING DIFFERENT
POOLING STRATEGIES ON SVM
FOR NEWS CLASSIFICATION

SERENAY DOGANCA-CETIN

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF SCIENCE IN COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE

DEPARTMENT OF
COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE
SCHOOL OF HUMANITIES AND DIGITAL SCIENCES
TILBURG UNIVERSITY

STUDENT NUMBER

u966915

COMMITTEE

dr. Afra Alishahi
dr. Noortje Venhuizen

LOCATION

Tilburg University

School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence

Tilburg, The Netherlands

DATE

May 19, 2023

ACKNOWLEDGMENTS

The journey of working on this project has been an incredible learning
experience for me. It has been a valuable and interdisciplinary challenge
that has not only enhanced my coding skills, but also deepened my
understanding of data science and research methodologies. Over the
years, | have dedicated myself to studying the field, and this project has
provided me with a profound insight into the techniques and principles
I have been immersed in. Completing this project would not have
been possible without the support and guidance of my supervisor Dr.
Afra Alishahi, my friends, and my family. Their belief in my abilities
has been instrumental in overcoming challenges and reaching this
milestone. I am filled with a sense of accomplishment and appreciation
as I present this thesis. I hope that the findings and insights presented
within these pages contribute to the broader field of Cognitive Science
and Artificial Intelligence.

EXPLORING THE EFFECTIVENESS
OF BERT USING DIFFERENT
POOLING STRATEGIES ON SVM
FOR NEWS CLASSIFICATION

SERENAY DOGANCA-CETIN

Abstract

This study compares the performance of BERT-based approaches
to the traditional TF-IDF method for news categorization task us-
ing the AG News Dataset. While previous studies have separately
explored BERT embeddings and TF-IDF for text classification, we
are directly comparing their performance on an SVM classifier for
news categorization. The findings indicate that BERT embeddings can
achieve competitive performance but are not consistently superior to
TF-IDF representations. Previous studies have primarily focused on
mean pooling or max pooling individually, but this study is extending
this by exploring other pooling strategies. The study explores differ-
ent feature extraction methods and demonstrates that mixed pooling
outperforms the use of [CLS] tokens, and attention pooling may not
consistently capture the most relevant information from embeddings,
suggesting the need for alternative pooling methods. The research
highlights that while BERT captures contextual information, it may
not always be the optimal choice for every problem. TF-IDF represen-
tations, tailored to specific domains and vocabulary, prove effective
for certain tasks and datasets. The study suggests that combining
BERT embeddings with traditional methods, such as incorporating
TF-IDF weights into the BERT attention mechanism, can enhance text
classification and clustering models. Future work should focus on
strategies for combining these techniques, including the exploration
of domain-specific pre-trained BERT models and ensemble methods.
In conclusion, the study highlights the importance of carefully se-
lecting and evaluating text representation methods based on specific
tasks and datasets, and suggests avenues for further improvement in
text analysis models.

1 DATA SOURCE, ETHICS, CODE, AND TECHNOLOGY STATEMENT

1 DATA SOURCE, ETHICS, CODE, AND TECHNOLOGY STATEMENT

The data used in this thesis is sourced from the AG News dataset, which
is publicly available on Kaggle (Anand, n.d.). The owner of the data is the
dataset provider, Aman Anand Rai. The dataset has been obtained from
Kaggle following their terms of use and licensing agreement. All figures
and images in this thesis have been created by the author unless explicitly
mentioned otherwise. There are no figures or images in this thesis that
require external consent.

The code used in this thesis is entirely developed by the author. No
parts of the code have been borrowed or used from another study or
external sources. In the process of writing this thesis, no tools or services
were used to paraphrase the given text, check spelling or grammar, or
typeset the text. The author manually conducted all writing, proofreading,
and typesetting tasks without utilizing any specific tools or services.

2 INTRODUCTION

In recent years, the task of text classification has become increasingly
important due to the vast amount of textual data generated in various
domains. News classification is one such task, where the goal is to classify
news articles into different categories based on their content. Traditional
methods of text classification rely on hand-crafted features such as bag-of-
words or Term Frequency-Inverse Document Frequency (TF-IDF). However,
these methods may not capture the semantics and context of the text.

Recently, pre-trained language models such as Bidirectional Encoder
Representations from Transformers (BERT) have shown promising results
in various Natural Language Processing (NLP) tasks. BERT is a transformer-
based model that learns contextualized embeddings of words in a sentence.
These embeddings capture the contextual information of the words, which
helps in improving the performance of downstream tasks such as text
classification.

In this thesis, we explore the effectiveness of BERT embeddings for
news classification on the AG News dataset. We compare the performance
of Support Vector Machines (SVM) with BERT embeddings and TF-IDF
as text representation methods. Different pooling methods for creating
sentence-level embeddings are compared with the method of using [CLS]
tokens as well. Unlike previous studies, we do not use a pre-trained BERT
classifier but instead use BERT embeddings as text representation.

Our research questions are as follows:

3 RELATED WORK

RQ1 Does using BERT embeddings as a text representation method improve the
performance of SVM classifiers compared to TF-IDF?

RQ2 Which sentence representation as a result of feature extraction methods of
mean-pooling, max-pooling, attention-pooling or mixed-pooling represents
sentences better than [CLS] tokens?

The scientific relevance of this study lies in exploring the effectiveness
of using BERT embeddings as a text representation method for news
classification. The proposed approach has the potential to improve the
performance of text classifiers and can be applied to other NLP tasks as well.
The rest of the thesis is organized as follows: Section 3 gives an overview
of related work, Section 4 outlines the methodology used in the study,
Section 5 presents the findings and analysis, and finally, Section 6 discusses
the implications of the study’s findings and suggests potential avenues
for further research to address the limitations and explore new directions,
and Section 7 provides a comprehensive conclusion and highlights the
implications of the study’s findings. It also offers recommendations for
future research to further expand upon the current work.

The findings of this study reveal that the use of BERT embeddings
as a text representation method in SVM classifiers for news classification
does not consistently outperform TF-IDF. Additionally, the comparison
of different pooling methods for sentence representation demonstrates
that mixed pooling, which combines mean pooling and max pooling,
outperforms the other pooling strategies and the use of [CLS] tokens.

3 RELATED WORK

The study by Barua, Sharif, and Hoque (2021) examines the six popular
machine-learning techniques for Bengali sports news classification utilizing
TF-IDF features. The highest performing algorithm and feature space com-
bination were found to be the SVM with unigram-+bigram-+trigram with a
weighted F1 score of 97.6%. Overall, SVM and NB obtained the best scores
among the many combinations of feature space, and train and test data
division rate. Kanika and Sangeeta (2019) discuss a news categorization
system that uses TF-IDF and two supervised learning approaches, SVM
and k-nearest neighbor (KNN) to categorize news articles from their titles
and descriptions. They found that the use of the TF-IDF method enhanced
both algorithms” efficiency as the SVM accuracy increased from 90% to
95% with the use of TF-IDF, and KNN accuracy increased from 53.33 to
96.66% (best case for k = 5). In the research carried out in 2021, Sunagar et
al. implemented the classification of News Topic using AG’s News Topic
dataset using linear SVM, NB classifier, KNN, Rocchio, bagging, and boost-

3 RELATED WORK

ing. Before classification, tokenization, stop word removal, stemming, and
TF-IDF was applied as pre-processing steps. The SVM had the greatest
accuracy, at 91%, according to the results. These studies expose that in
news categorization SVM performs the best when TF-IDF vectors are used.

TF-IDF has been traditionally employed for data representation. How-
ever, it is unable to take into account a word’s placement or meaning within
a sentence whereas the BERT model generates representations that consider
the context and placement of words in sentences which has enabled its
successful application of text classification. One of its key advantages is
that it can be fine-tuned on specific tasks, such as sentiment analysis or
text classification, by adding a simple classifier layer on top of the pre-
trained model. Despite its impressive performance on these tasks, using
BERT as a classifier model is not always the most time and cost-efficient
approach. This is because fine-tuning a large language model like BERT
can be computationally expensive, requiring powerful GPUs and large
amounts of memory to train effectively. Furthermore, traditional machine
learning models that use feature engineering and word embeddings can
often achieve comparable results with much fewer computational resources
(Gani & Chalaguine, 2022). Therefore, in this study, utilizing BERT embed-
dings with traditional machine learning algorithms is preferred over using
BERT classifier models due to its greater time and cost efficiency.

The paper by Roman, Shahid, Uddin, Hua, and Magsood (2021) ex-
plores the importance of citation intent in scientific publications, using
BERT embeddings to represent text features. The performance of various
machine learning classifiers was evaluated on two datasets, with the linear
SVM achieving the best accuracy, particularly in an unbalanced dataset.
Overall, SVM was found to be effective for text classification on top of
contextual word embeddings. Their study supports our choice of using
SVM classifiers with BERT embeddings as well. Subakti, Murfi, and Hari-
adi (2022) examined the effectiveness of BERT as a text representation in
text clustering after applying various normalization and feature extraction
methods to four different clustering algorithms. When obtaining BERT
embeddings, max pooling and mean pooling feature extraction techniques
were used. Their final results showed that BERT exceeded TF-IDF in 28
out of 36 metrics, with performance varying depending on the feature
extraction method and normalization applied. Also, it was discovered
that the scores in both KM and EFCM models were impacted by feature
extraction and normalization techniques. We are adding more pooling
techniques on top of mean-pooling and max-pooling which were used in
their study, exploring other options in feature extraction.

Yu, Wang, and Jiang (2021) proposed an approach called BERT-BiGRU
to address challenges in text classification such as metaphors, semantic

3 RELATED WORK

diversity, and grammar specificity. It does so by utilizing a BERT model for
word representation in place of the conventional word2vec model, coupled
with a BiGRU model which concurrently extracts text information features
from both directions. The model was tested in Chinese text classification
tasks and achieved outstanding performance; with accuracy, recall and F1
scores all above 90%. Nevertheless, there are some drawbacks, such as
the need for larger computing power and duration for training the BERT
model due to its large number of parameters. The paper by S, Sunagar, Ra-
jarajeswari, and Kanavalli (2022) presents a hybrid model combining Long
short-term memory (LSTM) and Gated recurrent unit (GRU) techniques
to classify a Covid-19 Twitter dataset into 15 categories. The paper com-
pares the performance of pre-trained word embedding techniques, GloVe
and BERT, and finds that the BERT-hybrid model outperforms the GloVe-
hybrid model, indicating contextual representation improves performance.
These studies demonstrate the advantages of using BERT embeddings in
capturing contextual information, handling linguistic complexities, and
improving classification performance.

One study that resulted in a negative outcome for BERT embeddings
is the study done by Vor Der Briick in 2020. In this study, the researchers
analyzed the effectiveness of Bert embeddings in two NLP scenarios and
compared them to Word2Vec embeddings. They used mean pooling and
another approach that averages only over the start tokens that represent the
beginning of a sentence to obtain sentence-level embeddings. As a result,
the performance of Word2Vec embeddings was found to be considerably
better in both scenarios and both sentence embedding methods.

According to Wang and Kuo (2020), different layers of BERT capture
different linguistic properties, which can be leveraged to improve sentence
representations. The authors propose a new sentence embedding method,
called SBERT-WK, which dissects BERT-based word models through ge-
ometric analysis to find better sentence representations without further
training. They evaluate SBERT-WK on various tasks and show that it
achieves state-of-the-art performance. However, they have also found that
the [CLS] token yields similar results in classification tasks. In our study,
different pooling strategies will be utilized to form sentence representations
and it will be discovered if they perform better than using [CLS] token.
According to F. Chen, Datta, Kundu, and Beerel (2022), custom pooling
strategies are ineffective since they only take into account the local context.
They instead suggest a self-attentive pooling technique that can take the
place of common pooling layers like max and average pooling. Multi-head
self-attention, sigmoid activation, and exponential soft-max are the steps
used in this self-attention module. During downsampling, their suggested
approach effectively aggregates interdependence across non-local activa-

4 METHOD

tion patches. The results of the trials demonstrate that, when used with
different Convolutional Neural Network (CNN) architectures, this method
performs better on object categorization and detection tasks than existing
pooling strategies. Even though attention pooling was not used for BERT
embeddings in their study, it offers insights into how well it performs. It
was found by Jawahar and Sagot (2019) that lower layers in BERT tend to
capture phrase-level information and surface features, while intermediate
layers encode a rich hierarchy of linguistic information, starting with syn-
tactic features in the middle and followed by semantic features at the top.
That’s why averaging the values across the first layers using mean pooling
can help preserve the superficial characteristics. However, for upper layers,
which capture more complex semantic and syntactic features, max pooling
is more suitable which selects the most prominent features from these
layers. In light of this information, applying mixed pooling which is the
combination of mean pooling and max pooling on the different layers of
BERT embeddings seems promising.

This study aims to address the research questions of whether using
BERT embeddings as a text representation method can enhance the perfor-
mance of SVM classifiers compared to TF-IDF and which pooling method
out of mean pooling, max pooling, attention pooling, or mixed pooling,
yields better results than using [CLS] tokens. The AG News dataset is used
to conduct the experiments and evaluate the proposed approaches. By
exploring the effectiveness of BERT embeddings in news classification tasks
and comparing them to TF-IDF, this work fills the research gaps in under-
standing the potential improvements BERT can offer in SVM-based news
classification. Additionally, the investigation of alternative sentence rep-
resentation methods contributes to the existing knowledge by examining
their performance in comparison to using [CLS] tokens. This study stands
out from prior research by not relying on a pre-trained BERT classifier
but leveraging BERT embeddings as text representation while employing
traditional machine learning algorithms, and exploring different pooling
methods. Our first baseline is the score of SVM classifier trained on TE-IDF
vector, and the second baseline is the score of SVM classifier trained on
[CLS] tokens.

4 METHOD
4.1 Software
Python was utilized to create numerous Jupyter notebooks for conducting

experiments. These notebooks consisted of scripts specifically designed to
carry out various tasks such as data extraction, analysis, cleaning, format-

4 METHOD

Class Index Title Description

0 3 Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street's dwindli...

1 3 Carlyle Looks Toward Commercial Aerospace (Reu... Reuters - Private investment firm Carlyle Grou...

2 3 Oil and Economy Cloud Stocks' Outlook (Reuters) Reuters - Soaring crude prices plus worries\ab...

3 3 Irag Halts Oil Exports from Main Southern Pipe... Reuters - Authorities have halted oil export\f...

4 3 Oil prices soar to all-time record, posing new... AFP - Tearaway world oil prices, toppling reco...
119995 1 Pakistan's Musharraf Says Won't Quit as Army C... KARACHI (Reuters) - Pakistani President Perve...
119996 2 Renteria signing a top-shelf deal Red Sox general manager Theo Epstein acknowled...
119997 2 Saban not going to Dolphins yet The Miami Dolphins will put their courtship of...
119998 2 Today's NFL games ~ PITTSBURGH at NY GIANTS Time: 1:30 p.m. Line: ...
119999 2 Nets get Carter from Raptors INDIANAPOLIS -- All-Star Vince Carter was trad...

120000 rows x 3 columns

Figure 1: Illustrative Data Representation

ting, preprocessing, applying machine learning algorithms, and visualizing
the data. To handle the data efficiently, the pandas and NumPy libraries
were employed, enabling the transformation of data into data frames and
multidimensional arrays. During the data cleaning process, the re and
string modules were utilized. To tokenize text data and generate contextu-
alized word embeddings using the bert-base-uncased model, the Hugging
Face Transformers library was employed. For feature extraction, the pre-
trained BERT transformer and TF-IDF was utilized. The torch library
facilitated advanced computations on tensors. The Scikit-learn library
was employed for preprocessing, hyperparameter tuning, classification,
obtaining evaluation metrics, and visualizing confusion matrices.

4.2 Dataset

The dataset that was used in this study is the AG News Dataset which
consists of over a million news articles. ComeToMyHead which is an
academic news search engine and operational since July 2004 has gathered
news articles from over 2000 news sources over the course of more than a
year of operation. The dataset can be downloaded from this link (Anand,
n.d.). AG News dataset is a good choice for a classification for containing
news articles from various sources, its coverage of four categories: World,
Sports, Business, and Sci/Tech, and its large size.

The AG News Dataset was created by selecting the four largest classes
from the initial corpus. There are 1,900 testing samples and 30,000 training
samples in each class, and 7,600 testing samples and 120,000 training
samples overall. In both test and training datasets, the first column is “Class
Id”, the second column is “Title” and the third column is “Description”.
The “Class Id” column consists of numbers from 1 to 4 where 1 represents

7

https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset

4 METHOD

“World”, 2 represents “Sports”, 3 represents “Business” and 4 represents
“Sci/Tech”. The distribution of the data among classes and the average
number of words included in the “Title” and “Description” features are
shown in Table 1.

World Sports Business | Sci&Tech

Number of training | 30000 30000 30000 30000
samples

Number of test sam- | 1900 1900 1900 1900
ples

The average number of | 31 31 31 31

words in the “Descrip-
tion” column

The average number | 7 6 7 7
of words in the “Title”
column

Table 1: Information about the dataset among the classes.

4.3 Preprocessing

The preprocessing step is critical as it can significantly impact the per-
formance of our machine-learning algorithms. By cleaning our text data,
we can improve our classification accuracy and build more robust and
accurate NLP models (Chai, 2022).

The first step in preprocessing our text data involves loading the data
into a pandas DataFrame. We then concatenate the "Description" and
"Title" columns of both the training and test set into a new column named
"Combined". This concatenation allows us to capture more information
from the text data and potentially improve our classification accuracy.

Next, we apply a series of text-cleaning techniques to remove unwanted
characters and elements from our text data. We define a text cleaning
function which uses regular expressions to remove HTML tags and special
characters, such as & and {. Then, it creates a translation table using the
string.punctuation and string.digits modules to remove all punctuation
and digits from the text. Next, it uses regular expressions again to remove
all non-alphabetic characters, such as numbers and special characters, from
the text. Finally, it removes extra whitespace and converts the text to
lowercase. The result is a cleaned version of the original text that contains
only alphabetic characters in lowercase, with no punctuation or digits. We
then apply this function to the "Combined" columns of our training and

4 METHOD

test sets to remove any unwanted text elements. The cleaned data is used
to create both BERT and TF-IDF representations.

After the cleaning process, the average number of words in data points
belonging to each four classes is shown in Table 2.

World Sports Business | Sci&Tech
The average number of | 37.83 36.36 36.36 36.28
words

Table 2: Information about the dataset among the classes after data cleaning.

4.4 Feature extraction methods

TF-IDF and BERT are two commonly used methods to obtain text repre-
sentations. Both methods aim to transform raw text data into numerical
vectors that can be used as input to machine learning models.

TE-IDF is a statistical method that is widely used in information re-
trieval and text mining. It measures the importance of a word in a docu-
ment relative to the corpus of documents in which it appears. The method
consists of two components: term frequency (TF) and inverse document
frequency (IDF). Term frequency is a measure of how frequently a word
appears in a document, while inverse document frequency measures how
rare the word is across all documents in the corpus. By multiplying these
two factors, we can get a score that reflects the importance of a word in a
document. The TF-IDF scores are then normalized to make them compa-
rable across documents. The resulting vector for a document represents
the importance of each word in that document relative to the rest of the
corpus (Z. Zhang, Lei, Xu, Mao, & Chang, 2019).

BERT, on the other hand, is a neural network-based language model
that uses deep learning techniques to generate dense and context-aware
word embeddings. In this study, the bert-base-uncased model was used
to extract features which is a pre-trained model on the English language
using a masked language modeling (MLM) objective. In the MLM process,
a model randomly selects 15% of the words in a sentence and then predicts
those words after processing the entire sentence (Devlin, Chang, Lee, &
Toutanova, 2019). This model is uncased, which means that it does not
make a difference between lower-case and upper-case letters.

BERT is a bidirectional model, meaning that it can capture the context
of a word based on both it’s preceding and succeeding words in a sentence.
BERT can also handle tasks such as sentence classification, named entity
recognition, and question answering. The resulting embeddings from

4 METHOD 10

BERT are highly informative, as they capture not only the meaning of the
individual words but also the relationship between them in a given context.
Each transformer layer of 12-layer BERT (bert-base-uncased) creates a
contextualized representation of each token by attending to different parts
of the input sentence (Devlin et al., 2019).

For the bert-base-uncased model, the embeddings are created following
the pseudo-code below:

for i in X;.;, do
Tokenize input text with BERT’s tokenizer;
Convert tokens to tensor;
Obtain BERT embeddings using the model;
end for

As a result, we obtain a BaseModelOutputWithPoolingAndCrossAttentions
object for each data point in the input and it has the following attributes:

1. last_hidden_state: A torch.FloatTensor of shape (batch_size, sequence_length,
hidden_size) containing the final hidden states of the last layer of the
transformer for each token in the input sequence.

2. pooler_output: A torch.FloatTensor of shape (batch_size, hidden_size)
containing the final hidden state of the [CLS] token after applying
a linear transformation followed by a tanh activation function. The
weights of this linear transformation are pretrained on the next
sentence prediction task.

3. hidden_states: A tuple containing the hidden states for all layers
(12 for the bert-base-uncased model) of the transformer. The shape
of the hidden states for each layer is (batch_size, sequence_length,
hidden_size).

4. past_key_values: A tuple containing the past key-value states that
can be used for faster decoding. This attribute is only present if the
model is a decoder (has the is_decoder attribute set to True).

5. cross_attentions: A tuple containing the cross-attention weights for
all the cross-attention layers in the transformer. The shape of the
cross-attention weights for each layer is (batch_size, num_heads,
sequence_length, context_sequence_length).

4 METHOD 11

4.5 Feature Extraction - TF-IDF embeddings

For the base case which uses TF-IDF as a text representation method,
we applied TF-IDF vectorization to represent the preprocessed text data
numerically. This technique assigns weights to the terms in the text based
on their frequency in the current document and their rarity across all
documents in the dataset. The fit_transform method fits the vectorizer on
the training data and then transforms it into a matrix of TF-IDF vectors.
The transform method is then used on the test data to transform it into
TF-IDF vectors based on the fitted vectorizer from the training data. The
resulting matrices have the same number of rows as the training and test
data, respectively, and the number of columns is equal to the number of
unique words in the training set which is 91240. The resulting TF-IDF
matrix is a numerical representation of the text data that can be used for
training the machine learning algorithms.

4.6 Feature Extraction - BERT embeddings

After cleaning our text data, we load the BERT model and tokenizer
using the AutoModel and AutoTokenizer functions from the Hugging Face
Transformers library to create BERT embeddings. We define a function
that leverages the BERT model and tokenizer to generate sentence-level
embeddings for each text data point in our dataset. This function tokenizes
the input with the specified settings for adding special tokens, padding,
and maximum length. The maximum length is calculated as 217 which is
the length of the longest data point in the data set. The padding parameter
is set to this maximum length, which means that any sequences that are
shorter than the maximum length will be padded with special tokens to
make them that length. The resulting embeddings belonging to each row in
the dataset have shape (sequence_length, hidden_size) where sequence_length
equals to maximum length which is 217 and hidden_size equals to 768. These
embeddings allow us to represent the text data in a dense and continuous
vector space, which is an essential step for any machine learning algorithm
(Embeddings | Machine Learning Crash Course | Google Developers, 2019),
The embeddings acquired are converted to sentence-level embeddings
because sentence embeddings provide a fixed-size representation of variable-
length sentences, which is required for training machine learning classifiers.
To obtain sentence-level embeddings, it is generally recommended to
use the [CLS] token from BERT’s output (Choi, Kim, Joe, & Gwon, 2021).
The [CLS] token is a special token used in the BERT model and is located
at the beginning of the input sequence. It stands for "classification" and is
used to represent the input sequence as a whole for tasks such as sentence

4 METHOD

classification or sentiment analysis. The [CLS] token is added by the BERT
model during the input preprocessing step and is included in the final
output representations of the model. In the original BERT model, the
[CLS] token is used for next-sentence prediction loss, serving as a sentence
embedding. So, the first approach to obtain sentence-level embeddings in
this study is to use the hidden states of the [CLS] token of the last layer as
inputs to the machine learning algorithms and use it as a base case when
comparing different sentence-level representations.

To generate sentence-level embeddings, we divide the data into batches
with a size of 512 to fit into the memory of our machine. Then for each
batch, the BERT embeddings of each input text are computed and one of the
five selected methods is performed to obtain a single sentence embedding.
The size of each embedding is 768, and the number of embeddings is equal
to the number of input texts in the training and test set which are 120.000
and 7600 respectively.

The BERT model used in this study was "bert-base-uncased", which
is a pre-trained model that has been trained on a large corpus of text.
The model was loaded using the PyTorch library and the Hugging Face
Transformers library. Five strategies were used to aggregate the word
embeddings into a sentence-level representation: using the [CLS] token,
mean-pooling, max-pooling, attention-pooling, and mixed-pooling (mean
& max). As a result of the pooling process, we obtain an array with a size
of 768 instead of (217, 768).

The mean, max, and attention poolings are applied to the final hidden
states of the last layer of the transformer. On the other hand, the mixed
pooling method utilizes all the layers in the output.

1. The mean pooling technique takes the average of all the word embed-
dings to obtain a single sentence embedding, except for the padded
tokens. As a result, we obtain a single vector of length 768 that
represents the mean of all 217 vectors. Mean pooling is useful when
we want to capture the overall sentiment or tone of the text data
(Zhao, You, Chang, Zhang, & Hu, 2022).

2. The max pooling technique selects the maximum value from each
dimension (column) of the word embeddings to obtain a single
sentence embedding. As a result, we obtain a single vector of length
768 that represents the maximum of all 217 vectors. Max pooling
is useful when we want to capture the most important information
from the text data (Lehecka, Svec, Ircing, & Smidl, 2020).

3. Attention pooling incorporates attention mechanisms to weigh the
importance of each token when aggregating the embeddings. The

12

4 METHOD

attention pooling technique generates sentence-level embeddings by
giving more attention to important words in the text data (Trinh,
Luong, & Le, 2019). The steps to create sentence-level embeddings
using attention pooling are:

(a) First, we obtain the BERT embeddings for the input sentence.

(b) The attention weights are computed by applying a softmax
activation on the output of the attention layer.

(c) Attention pooling is then performed by element-wise multipli-
cation of the hidden states with the attention weights, followed
by summing along the sequence length dimension.

BERTattention(S) = sum ({hll hy, ... /hn} : {ﬂl, az,..., an})
where:

(1)
hi = BERT(wi), w; €8

a; = softmax(w; - wy), w; €s

4. Different layers of BERT capture different linguistic properties, and
fusing information across layers can result in better sentence repre-
sentations for classification tasks (Wang & Kuo, 2020). The mixed
pooling that was used in this study first obtains the BERT embed-
dings for the input text, and then performs mixed pooling by taking
the average pooling of the first six layers, and max pooling of the
remaining six layers as 0.5 was found to be the most optimum ratio
of mean and max pooling when applying mixed pooling by Li et al.
(2021). Finally, the embeddings from both layers are concatenated
to obtain the final sentence embedding. The embedding size is also
updated from 768 to 1536, as the mixed pooling method generates
embeddings of size 2*768=1536.

BERT mixed (s) = concat (mean_pool ({/7.6}) , max_pool ({It7.,))
where: h; = BERT(w;), w; €s

)

After generating sentence-level embeddings for the training set, we can

use these embeddings to train a machine-learning model to classify our
text data.

4.7 Machine Learning Algorithm

SVMs are a type of machine learning classifier that uses kernel functions to
transform the input data into a higher-dimensional space where it can be

13

4 METHOD

more easily separated by a linear decision boundary, introduced by Cortes
and Vapnik (1995). The kernel trick is used to map the data into a higher-
dimensional space before solving the machine-learning task. The most
popular kernel functions used in SVMs are linear, polynomial, Gaussian
(RBF), and sigmoid. The polynomial kernel creates a non-linear decision
boundary by mapping the original dataset into a higher dimensional space.
The choice of kernel function depends on the nature of the data and
the problem being solved (Hechter, 2004). The SVM training algorithm
generates a model that categorizes new instances into one of two groups,
functioning as a deterministic binary linear classifier. This is accomplished
by undergoing a series of training procedures. SVM operates by identifying
the optimal hyperplane that effectively divides the data into distinct classes.
The selection of the hyperplane is based on maximizing the separation
margin between the two classes. SVM can also be used for multiclass
classification by using a one-vs-rest (OVR) or one-vs-one (OVO) approach
(Saxena, Anamika, Pant, & Tripathi, 2019). SVMs have gained popularity
in data mining, pattern recognition, and machine learning communities
due to their optimal solution, discriminative power, and extraordinary
generalization capability. SVMs have been shown to be superior to other
supervised learning methods and have become one of the most used
classification methods. The decision functions are determined directly from
the training data by maximizing the separation between decision borders
in a high-dimensional space called the feature space. This classification
strategy minimizes classification errors and obtains better generalization
ability (Cervantes, Garcia-Lamont, Rodriguez-Mazahua, & Lopez, 2020).

4.8 Experimental Setup

After obtaining numerical vector representations from BERT and TF-IDF,
they are fed into the SVM classifier. A parameter grid is defined to search
for hyperparameter tuning. The parameter grid contains different values
of 'C’, ’kernel’, and "degree” which can be seen below.

param_grid = {

'C': [0.1, 1, 101,

"kernel’: ['linear’, ’'rbf’, ’'poly’],
"degree’: [2, 3, 4]

}

Due to the computational complexity and memory requirements of the SVM
algorithm, the training data was divided into batches with a size of 1000. The
code then loops through the training data in batches, retrieves each batch’s data,
and performs a grid search using three-fold cross-validation to find the best
hyperparameters for that batch. The best hyperparameters are then added to the
list. After all batches have been processed, the code computes the most common

14

4 METHOD

hyperparameters among all batches and creates a new SVM classifier using those
hyperparameters. Finally, the entire training data is fed into the new classifier,
and the accuracy score and F1 score are computed on the test data. The accuracy
score measures the proportion of correctly classified instances, while the F1-score
is the harmonic mean of the precision and recall. When calculating F1 scores,
macro averaging was used since each class has the same number of samples in
our dataset and macro-averaged F1 score is computed as the arithmetic mean of
all the per-class F1 scores, treating all classes equally (Leung, 2022).

This process is repeated for every BERT embedding as a result of different
poolings and TF-IDF vectors. The best hyperparameters for each representation
are available in Table 3.

C degree| kernel
BERT - [CLS] 1 2 linear
BERT - Mean-pooling 1 4 poly
BERT - Max-pooling 1 2 linear
BERT - Attention pooling | 1 4 poly
BERT - Mixed pooling 1 3 poly
TE-IDF 1 2 linear

Table 3: The optimum hyperparameters for SVM classifier using different individ-
ual text representations.

4.9 Evaluation Metrics

Accuracy and F1 score are two common evaluation metrics used in machine
learning and natural language processing tasks to assess the performance of
models. Accuracy is the ratio of correctly predicted instances to the total instances
in the dataset. It is calculated as:

True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
€)

Accuracy is a widely used metric, but it may not be suitable for imbalanced
datasets, where one class significantly outnumbers the other classes (H. Zhang
et al., 2019). F1 score, on the other hand, is the harmonic mean of precision and
recall. Precision is the ratio of True Positives to the sum of True Positives and False
Positives, while recall is the ratio of True Positives to the sum of True Positives
and False Negatives.

Accuracy =

Precision — True Positives @)
" True Positives + False Positives 4

Recall — TruePositives (5)
~ TruePositives + FalseNegatives >

15

5 RESULTS

The F1 score is calculated as follows:

2% (Precision * Recall)

F pu—
' Precision + Recall

(6)

It ranges from o to 1, with 1 being the best possible score. F1 score is
particularly useful when dealing with imbalanced datasets, as it takes both false
positives and false negatives into account, providing a more balanced evaluation
of the model’s performance (Liu, Yao, Zhou, Wang, & Huang, 2023).

5 RESULTS

The accuracy and F1 scores of SVM classifiers trained on different text representa-
tions and the optimum hyperparameters are available in Table 4 and the confusion
matrices can be seen in Figure 2.

Accuracy F1 score
TF-IDF 0.918 0.918
BERT - [CLS] 0.807 0.807
BERT - Mean-pooling 0.781 0.780
BERT - Max-pooling 0.855 0.855
BERT - Attention pooling | 0.780 0.779
BERT - Mixed pooling 0.862 0.862

Table 4: The accuracy and F1 scores of SVM classifiers trained on different
individual text representations.

Based on the results, we can observe the accuracy and F1 scores of SVM
classifiers trained on different word embeddings, namely BERT with different
pooling strategies (BERT - [CLS], BERT - mean-pooling, BERT - max-pooling,
BERT - attention pooling, and BERT - mixed pooling), as well as TF-IDE.

1. TF-IDF (First baseline): The SVM classifier trained on TF-IDF representa-
tions achieves an accuracy of 0.918 and an F1 score of 0.918. The accuracy
score of 0.918 indicates that the SVM classifier performs quite well when
using TF-IDF vectors as features. TF-IDF is a commonly used text represen-
tation method that captures the importance of terms in documents, and the
results suggest that it is effective for this classification task.

2. BERT - [CLS] (Second baseline): The SVM classifier trained on BERT em-
beddings using the [CLS] token achieves an accuracy of 0.807 and an F1
score of 0.807. This approach involves taking the embedding of the [CLS]
token, which represents the entire input sequence, as the fixed-dimensional
representation for classification. The accuracy and F1 scores indicate that
this approach performs reasonably well.

3. BERT - Mean-pooling: The SVM classifier trained on BERT embeddings
using mean-pooling achieves an accuracy of 0.781 and an F1 score of 0.780.

16

5 RESULTS 17

150
1500
1250
1000
750
500

250

1 2 1 2 0 1 2
Predicted label predicted label Predicted label

(d) Max-pooling (e) Attention-pooling (f) Mixed-pooling

Figure 2: Confusion matrices

Mean-pooling involves taking the average of all token embeddings in the
input sequence. Comparing it with the [CLS] token approach, mean-pooling
seems to perform slightly worse in terms of accuracy and F1 score.

4. BERT - Max-pooling: The SVM classifier trained on BERT embeddings
using max-pooling achieves an accuracy of 0.855 and an F1 score of 0.855.
Max-pooling involves taking the maximum value across each dimension
of the token embeddings. This approach performs better than both BERT -
[CLS] and BERT - Mean-pooling in terms of accuracy and F1 score.

5. BERT - Attention pooling: The SVM classifier trained on BERT embeddings
using attention pooling achieves an accuracy of 0.780 and an F1 score of
0.779. Attention pooling involves calculating attention weights for each
token and using them to compute a weighted sum of token embeddings.
It seems to perform similarly to the BERT - Mean-pooling approach but
slightly worse than BERT - [CLS] and BERT - Max-pooling.

6. BERT - Mixed pooling: The SVM classifier trained on BERT embeddings
using mixed pooling achieves an accuracy of 0.862 and an F1 score of
0.862. Mixed pooling combines both mean-pooling and max-pooling by
concatenating the two representations. This approach achieves the highest
accuracy and F1 score among the BERT-based approaches, indicating its
effectiveness.

Overall, based on the provided results, the SVM classifier trained on TF-IDF
vectors outperforms all the BERT-based approaches in terms of accuracy and
F1-score.

6 DISCUSSION

6 DISCUSSION

The goal of this study was to compare the performance of BERT embeddings and
TE-IDF representations in text classification tasks and explore the effect of using
different sentence-level embeddings for BERT. Our findings shed light on the
strengths and limitations of these text representation methods, highlighting the
need for careful consideration when choosing the appropriate method for specific
problems and datasets.

First, we observed that BERT embeddings can provide competitive perfor-
mance in text classification tasks when compared to traditional methods such
as TF-IDE. However, the performance of BERT embeddings is not universally
superior, as evidenced by the results on the AG News, Yahoo! Answers, and R2
datasets (Subakti et al., 2022). In some cases, TF-IDF representations outperformed
BERT embeddings, indicating that the choice of text representation method should
be carefully considered based on the specific problem and dataset at hand.

One possible explanation for the varying performance is the different nature of
the two methods. BERT is a powerful model that captures contextual information
in text, but it may not always be the best choice for every problem. BERT is
pre-trained on a large corpus from various sources, which is not as specific to
the AG News dataset as the TE-IDF representation. On the other hand, TF-IDF
is calculated directly from the dataset and it focuses on the frequency of words
in documents and their importance across a collection of documents, making it
more tailored to the specific domain and vocabulary used in the news articles.

Additionally, the high dimensionality of BERT embeddings can pose chal-
lenges for clustering or classification tasks. While BERT captures fine-grained
contextual information, its embeddings have a large number of dimensions. This
can lead to difficulties in effectively leveraging the information contained in the
embeddings for certain algorithms or tasks. In contrast, TF-IDF vectors are sparse
and have lower dimensionality, which might make them more suitable for certain
algorithms.

Furthermore, our results indicate that the choice of sentence representation
method within BERT embeddings can also impact performance. Among the
different feature extraction methods, the mixed pooling approach achieved the best
performance, outperforming both the [CLS] token and other pooling strategies.
This suggests that a combination of mean-pooling and max-pooling, capturing
both average and maximum information from the embeddings, can result in more
robust representations for classification tasks. We also observed that attention
pooling performed poorly. Attention pooling is designed to weigh the importance
of different words in a sentence, but it may not always identify the most critical
features for a specific task (Rasmy, Xiang, Xie, Tao, & Zhi, 2021). This highlights
the importance of carefully considering the pooling strategy when using BERT
embeddings and suggests that other pooling approaches, such as mixed pooling,
may be more effective for certain text classification tasks.

It is important to note that our study has some limitations. Firstly, we eval-
uated the performance of BERT embeddings and TF-IDF representations on a
specific dataset, and the results may not generalize to other domains or datasets.
Future studies should consider evaluating these methods on a wider range of
datasets to further validate our findings. Additionally, our study focused on the

18

7 CONCLUSION

performance of SVM classifiers using BERT embeddings and TF-IDF represen-
tations. Other classification algorithms or models may yield different results,
and exploring the performance of BERT embeddings with different classifiers
would provide a more comprehensive analysis. Furthermore, our study did not
consider fine-tuning BERT on the specific task at hand. Investigating the impact
of fine-tuning BERT on text classification could provide valuable insights into the
potential benefits and trade-offs of incorporating task-specific information.

7 CONCLUSION

Regarding the research questions:

1. Does using BERT embeddings as a text representation method improve the
performance of SVM classifiers compared to TF-IDF?

In this study, the SVM classifier trained on TF-IDF representations out-
performs all the BERT-based methods, achieving an accuracy of 0.918.
The BERT-based methods have lower accuracy scores, with mixed pooling
achieving the highest accuracy of 0.862 among them.

2. Which sentence representation as a result of feature extraction methods of
mean-pooling, max-pooling, attention-pooling, or mixed-pooling represents
sentences better than [CLS] tokens?

Based on the results, the mixed pooling method achieves the best per-
formance among the BERT-based methods, with an accuracy of 0.862 and
an F1 score of 0.862. This outperforms the [CLS] token method, which has
an accuracy of 0.807 and an F1 score of 0.807.

In conclusion, our study demonstrates that the performance of BERT is not uni-
versally superior, and TF-IDF representations can outperform BERT embeddings
in certain cases. The choice of text representation method should be carefully
considered based on the specific problem and dataset. Incorporating TF-IDF
weighting into the BERT model has been shown to enhance performance in some
cases (W. Chen et al., 2020), suggesting that combining the strengths of both BERT
embeddings and traditional text representation methods can lead to more robust
and accurate models for text classification and clustering tasks.

In future work, we recommend exploring other strategies for combining BERT
embeddings with traditional text representation methods, such as incorporating
TF-IDF weights into the BERT attention mechanism. Furthermore, investigating
the use of domain-specific pre-trained BERT models and ensemble methods could
potentially lead to further improvements in performance. Future research should
address our limitations as well by considering a wider range of datasets, exploring
different classification algorithms, investigating the impact of fine-tuning, and
utilizing a more comprehensive set of evaluation metrics. By doing so, we can gain
a deeper understanding of the strengths, weaknesses, and optimal use cases of
BERT embeddings and TE-IDF representations in various text-related applications.

19

REFERENCES

REFERENCES

Anand, A. (n.d.). Ag news classification dataset. Retrieved
from https://www.kaggle.com/datasets/amananandrai/
ag-news-classification-dataset

Barua, A., Sharif, O., & Hoque, M. M. (2021). Multi-class sports news
categorization using machine learning techniques: Resource creation
and evaluation. Procedia Computer Science, 193, 112-121. doi: 10.1016/
j-procs.2021.11.002

Cervantes, J., Garcia-Lamont, F., Rodriguez-Mazahua, L., & Lopez, A. (2020,
09). A comprehensive survey on support vector machine classification:
Applications, challenges and trends. Neurocomputing, 408, 189—215.
Retrieved from https://www.sciencedirect.com/science/article/
pii/S0925231220307153 doi: 10.1016/j.neucom.2019.10.118

Chai, C. P. (2022, 06). Comparison of text preprocessing methods. Natural
Language Engineering, 1-45. doi: 10.1017/51351324922000213

Chen, F,, Datta, G., Kundu, S., & Beerel, P. (2022, 12). Self-attentive pooling for
efficient deep learning. Retrieved 2023-05-11, from https://arxiv.org/
pdf/2209.07659.pdf

Chen, W,, Yuan, X., Zhang, S., Wu,]J.,, Zhang, Y., & Wang, Y. (2020).
Ferryman at semeval-2020 task 3: Bert with tfidf-weighting for predicting
the effect of context in word similarity.

Choi, H., Kim, J., Joe, S., & Gwon, Y. (2021, 01). Evaluation of bert and albert
sentence embedding performance on downstream nlp tasks. Retrieved from
https://arxiv.org/pdf/2101.10642.pdf

Cortes, C., & Vapnik, V. (1995, 09). Support-vector networks. Machine
Learning, 20, 273-297. doi: 10.1007/bf00994018

Devlin, J., Chang, M.-W,, Lee, K., & Toutanova, K. (2019, 05). Bert: Pre-
training of deep bidirectional transformers for language understanding.

Embeddings | machine learning crash course | google developers. (2019). Re-
trieved from https://developers.google.com/machine-learning/
crash-course/embeddings/video-lecture

Gani, R., & Chalaguine, L. (2022, 10). Feature engineering vs bert on twit-
ter data. Retrieved 2023-05-12, from https://arxiv.org/ftp/arxiv/
papers/2210/2210.16168.pdf

Hechter, T. (2004). A comparison of support vector machines and traditional
techniques for statistical regression and classification. 53-59.

Jawahar, G., & Sagot, B. (2019). What does bert learn about the structure of
language? Retrieved 2023-05-09, from https://aclanthology.org/
P19-1356.pdf

Kanika, & Sangeeta. (2019). Applying machine learning algorithms for
news articles categorization: Using svm and knn with tf-idf approach.

20

https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset
https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset
https://www.sciencedirect.com/science/article/pii/S0925231220307153
https://www.sciencedirect.com/science/article/pii/S0925231220307153
https://arxiv.org/pdf/2209.07659.pdf
https://arxiv.org/pdf/2209.07659.pdf
https://arxiv.org/pdf/2101.10642.pdf
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://arxiv.org/ftp/arxiv/papers/2210/2210.16168.pdf
https://arxiv.org/ftp/arxiv/papers/2210/2210.16168.pdf
https://aclanthology.org/P19-1356.pdf
https://aclanthology.org/P19-1356.pdf

REFERENCES

Smart Computational Strategies: Theoretical and Practical Aspects, 95-105.
doi: 10.1007/978-981-13-6295-8 9

Lehetka, J., Svec, J., Ircing, P, & Smidl, L. (2020). Adjusting bert’s pooling
layer for large-scale multi-label text classification. Text, Speech, and
Dialogue, 12284, 214-221. doi: 10.1007/978-3-030-58323-1_23

Leung, K. (2022, 01). Micro, macro weighted averages of f1 score, clearly

explained. Retrieved from https://towardsdatascience.com/
micro-macro-weighted-averages-of-fl-score-clearly-explained
-b603420b292f

Li, J., Zhang, Z., Chen, M., Ma, J., Wang, S., & Xiao, J. (2021, 08). Improving
polyphone disambiguation for mandarin chinese by combining mix-
pooling strategy and window-based attention. Interspeech 2021. doi:
10.21437/interspeech.2021-1232

Liu, J., Yao, J., Zhou, Q., Wang, Z., & Huang, L. (2023, 04). Lstmae-dwsslm:
A unified approach for imbalanced time series data classification.
Applied Intelligence, 1, 3. doi: 10.1007/510489-023-04642-0

Rasmy, L., Xiang, Y., Xie, Z., Tao, C., & Zhi, D. (2021, 05). Med-bert:
pretrained contextualized embeddings on large-scale structured elec-
tronic health records for disease prediction. npj Digital Medicine, 4.
doi: 10.1038/541746-021-00455-y

Roman, M., Shahid, A., Uddin, M. L, Hua, Q., & Magsood, S. (2021, 04).
Exploiting contextual word embedding of authorship and title of
articles for discovering citation intent classification. Complexity, 2021,
1-13. doi: 10.1155/2021/5554874

S, S., Sunagar, P, Rajarajeswari, S., & Kanavalli, A. (2022). Bert-based hybrid
rnn model for multi-class text classification to study the effect of pre-
trained word embeddings. International Journal of Advanced Computer
Science and Applications, 13. doi: 10.14569/ijacsa.2022.0130979

Saxena, A., Anamika, Pant, B., & Tripathi, V. (2019, 12). Text mining
for multiclass research paper categorization. International Journal of
Innovative Technology and Exploring Engineering, 9, 2612-2615. doi:
10.35940/ ijitee.b7240.129219

Subakti, A., Murfi, H., & Hariadi, N. (2022, 02). The performance of bert
as data representation of text clustering. Journal of Big Data, 9. doi:
10.1186/540537-022-00564-9

Sunagar, P, Kanavalli, A., Nayak, S. S., Mahan, S. R., Prasad, S., & Prasad, S.
(2021). News topic classification using machine learning techniques.
Lecture Notes in Electrical Engineering, 733, 461-474. doi: 10.1007/
978-981-33-4909-4_35

Trinh, T., Luong, M.-T., & Le, Q. (2019, 07). Selfie: Self-supervised pretraining
for image embedding.

21

https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f

REFERENCES

Vor Der Briick, T. (2020). Employing bert embeddings for customer segmentation
and translation matching.

Wang, B., & Kuo, C.-C. J. (2020, 06). Sbert-wk: A sentence embedding
method by dissecting bert-based word models. , 14. Retrieved 2023-
05-09, from https://arxiv.org/pdf/2002.06652.pdf

Yu, Q., Wang, Z., & Jiang, K. (2021, 01). Research on text classification
based on bert-bigru model. Journal of Physics: Conference Series, 1746,
012019. doi: 10.1088/1742-6596/1746/1/012019

Zhang, H., Li, Z., Shahriar, H., Tao, L., Bhattacharya, P., & Qian, Y. (2019, 07).
Improving prediction accuracy for logistic regression on imbalanced
datasets. 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC). doi: 10.1109/compsac.2019.00140

Zhang, Z., Lei, Y., Xu, J., Mao, X., & Chang, X. (2019, 09). Tfidf-fl:
Localizing faults using term frequency-inverse document frequency
and deep learning. IEICE Transactions on Information and Systems,
E102.D, 1860-1864. doi: 10.1587/transinf.2018ed18237

Zhao, S., You, E, Chang, W., Zhang, T., & Hu, M. (2022, 02). Augment bert
with average pooling layer for chinese summary generation. Journal
of Intelligent Fuzzy Systems, 42, 1859-1868. doi: 10.3233/jifs-211229

22

https://arxiv.org/pdf/2002.06652.pdf

	Data Source, Ethics, Code, and Technology statement
	Introduction
	Related Work
	Method
	Software
	Dataset
	Preprocessing
	Feature extraction methods
	Feature Extraction - TF-IDF embeddings
	Feature Extraction - BERT embeddings
	Machine Learning Algorithm
	Experimental Setup
	Evaluation Metrics

	Results
	Discussion
	Conclusion

