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Abstract

The Covid-19 pandemic presented challenges for insurers and pension funds in
valuing their liabilities due to excess mortality. Existing mortality models do
not take into account these mortality shocks. This thesis aims to incorporate
mortality shocks into a multi-population mortality model. This is achieved
using data on deaths and exposures, obtained from the HMD and the Eurostat
database, on a calibration period from 1900-2021. To capture mortality shocks
in the model, the Li-Lee model is extended with a jump component in the time-
series for the overall mortality trend. The newly developed model yields lower
period and cohort life expectancies compared to the model developed by the
The Royal Dutch Actuarial Association. Kannisto’s closure method is applied
to produce life expectancies for ages above 90. A sensitivity analysis explores
the impact of using a shorter calibration period, excluding old mortality shocks.
This analysis resulted in higher forecasted life expectancies and a narrower
confidence interval for these forecasts compared to the original model.
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1 Introduction

Since the second half of the 20th century, worldwide life expectancy has seen
an increasing trend. Due to for example medical advances, better nutrition
and increasing well-being in societies worldwide mortality rates constantly
declined. In the Netherlands for example, the period life expectancy for a
new born female increased from 72.6 years in 1950 to 83.1 years in 2020
(Statistics Netherlands, 2023). Of course, declining mortality rates are a good
development for the human race. However, this improvement in period life
expectancy challenges demographers, actuaries and life insurers. Uncertainty
about future mortality rates raises risks about the estimation of future life
expctancy. This risk for example appears for annuity providers, whose liabil-
ities are linked to mortality developments. Lee and Carter (1992) were one
of the first to describe mortality rates through dynamic time-series. Their
model describes the evolution of the logarithm of the central death rate. The
logarithm of the central death rate is decomposed in parameters which model
the overall mortality trend, period effects, and age effects. Period effects are
changes, through external factors, that occur at a specific time point and affect
all age groups in a population simultaneously. Period calculations do not take
into account future developments of death probabilities. Cohort effects, on
the other hand, are effects of external factors that are specific to a particular
cohort/generation of people. Cohort calculations take into account the trend
of death probabilities. One drawback of the Lee and Carter model is that the
model does not take into account cohort effects. To optimize the Lee Carter
model, many researchers proposed extensions and alterations to the benchmark
Lee Carter model. For example, Renshaw and Haberman (2006) proposed an
extension to account for cohort effects. An other example of an extension of
the Lee Carter model is that by Li and Lee (2005). Li and Lee extend the
model by adding a term which accounts for a multi-population model. The
model uses data from multiple countries, instead of one. This avoids diverging
mortality forecasts for a specific group. Using data from multiple countries
also enables the model to detect patterns in comparable countries or popula-
tions.
The Royal Dutch Actuarial Association (Koninklijk Actuarieel Genootschap),
also abbreviated to AG, is an actuarial association in the Netherlands. The
AG produces forecasts for death probabilities on bi-yearly basis. AG2022 is
the most recent forecast table about the evolution of survival probabilities and
life expectation in the Netherlands. To model these numbers, the AG makes
use of the Li-Lee model mentioned earlier. The countries observed in this
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multi-population model by the AG are European countries with similar GDP
as the Netherlands.
Of course, mortality modeling is accompanied by risks, which are mitigated
as well as possible. Mitigating all risks of a mortality model is not possible.
Exceptional events could happen, leading to significant changes in mortality
forecasts. The Covid-19 pandemic is an evident example of such an exceptional
event. The Coronavirus took the lives of millions of people globally, leading
to sudden mortality shocks in populations around the world. According to
Statistics Netherlands, the increasing period life expectancy trend suddenly
dropped from 80.5 years in 2019 to 79.7 in 2020 for new born males in the
Netherlands. (Statistics Netherlands, 2023). Due to mortality shocks, fore-
casted death probabilities might become incorrect. This raises problems for
actuaries and life insurers, since the calculations on their liabilities will be in-
accurate. Actuaries worldwide are wondering how to incorporate the Covid-19
mortality shocks in their models. The AG makes use of an extended Li-Lee
model, in which they add an extra component to account for the Covid-19
mortality shock (AG, 2022). The Continuous Mortality Investigations (CMI)
also do research on mortality in the UK. In their mortality model it is decided
to put a weight of 0% on the mortality data in 2020 and 2021, and a weight
of 25% on the mortality data of 2022. All other years get a weight of 100 %
(CMI, 2023).
The Lee Carter mortality model and its extensions mentioned earlier, do not
take into account mortality shocks like Covid-19. In their paper, Lee and
Carter (1992) used outlier detection methods to remove any influence of the
mortality shock from the influenza pandemic in 1918 from their model. Be-
cause the Covid-19 pandemic has proven that mortality shocks are still occur-
ring, and perhaps will occur in the future, mortality models should incorporate
sudden mortality shocks. Existing literature about incorporating mortality
shocks suggest several solutions to this topic including regime switching (Mili-
donis et al., 2011), using extreme value theory (Chen and Cummins, 2010),
or adding jump processes to the model ((Cox et al., 2006), (Chen and Cox,
2009)). Chapter 2 will provide a more in-depth discussion of the existing liter-
ature. Most of the models which include mortality shocks, extend the bench-
mark Lee-Carter model. However, as discussed above, the Lee Carter Model
has some drawbacks. To produce a mortality model which includes shocks, a
different approach is suggested. This thesis therefore focuses on the existing
Li-Lee model used by the AG, and extends it by adding a jump process in line
with Chen and Cox (2009) to account for mortality shocks and the drop in
period life expectation. Data on deaths and exposures of European countries
with similar GDP as the Netherlands is used in the estimation of the force of
mortality, similar to the AG models. This estimation is done using likelihood
maximization functions on the calibration period 1900-2021. An outlier anal-
ysis identifies spikes in the mortality trend during the world wars and during
the Covid-19 pandemic. Because of such spikes, the time-series for the mortal-
ity trend is extended with a jump component. Afterwards, death probabilities
and future period and cohort expectancies are estimated. Kannisto’s closure
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method (Kannisto, 1992) is used to obtain numbers on death probabilities for
ages above 90, as data for high ages is scarce. The obtained estimates for
future life expectancies are lower than the estimates by the AG. A sensitivity
analysis is conducted to assess the impact of a shorter calibration period of
1970-2021. The new results on period and cohort life expectancy forecasts are
slightly higher than before. Also, the confidence intervals for the period and
cohort life expectancies are narrower compared to the same model with longer
calibration period. Future research could build upon what the ideal calibration
period should be. Furthermore, future research could incorporate jump events
in the model differently, for example by using extreme value theory or regime
switching models.
The next chapter provides an in-depth discussion of the existing literature. In
Chapter 3 the data used in the model will be described. Chapter 4 elaborates
on the methodology of the model and its calibration and estimation. In Chap-
ter 5 the results of the model will be presented and a sensitivity analysis is
conducted. Chapter 6 will have the concluding remarks and Chapter 7 will
give recommendations for further research on this topic.
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2 Literature review

As discussed in the introduction, the Lee-Carter model marked an important
milestone in the field of mortality modeling. Lee and Carter (1992) laid the
foundation for later advancements in mortality modeling. This chapter re-
views the literature on the well known Lee Carter Model and its extensions.
Particularly, the extension by Li-Lee and other extensions which focus on in-
corporating mortality shocks into their model.

2.1 Lee-Carter Model
In 1992, Lee and Carter came up with a model in their paper "Modeling and
Forecasting U.S. Mortality" (Lee and Carter, 1992). Lee and Carter model
the logarithm of the central death rate using a set of parameters. These pa-
rameters represent the overall mortality rate, period effects, and age effects,
and can be estimated in an iterative manner using Singular Value Decompo-
sition. Once the parameters are estimated, the future mortality rates can be
forecasted using a random walk with drift. With these forecasted mortality
rates, life expectancy can be calculated. The Lee-Carter model is elaborated
more extensively in Chapter 4.

2.2 Li-Lee Model
Li and Lee (2005) consider an extension of the original Lee Carter model. Li
and Lee found that the Lee Carter model caused problems when modeling two
genders separately. To avoid diverging mortality forecasts for a specific gender,
country, or population, Li and Lee consider an extended model. They model
a country or a population as a part of a group, instead of modeling single
countries or populations. To form these groups, countries or populations with
for example similar socio-economic properties should be considered. Then, to
the original Lee Carter model a set of parameters which account for random
fluctuations and for the long-term trend of the whole group is added. In fact,
the Li-Lee model can be seen as the sum of two Lee-Carter models. Also the
Li-Lee model will be treated more extensively in Chapter 4.
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2.3 Models incorporating mortality shocks
Both Lee and Carter (1992) and Li and Lee (2005) do not take mortality shocks
like Covid-19 into consideration. As mentioned earlier, Lee and Carter used
outlier detection to get rid of the effect on mortality caused by Influenza in
1918. Li and Lee disregarded the problem of mortality shocks as well. On the
other hand, several other papers in the literature expand upon the original Lee
Carter model by incorporating mortality shocks into the model.
Milidonis et al. (2011) extend the Lee Carter model by adding a Markov regime
switching model. When a mortality shock occurs, the model switches to a
high-volatility regime for as long as the duration of the mortality shock. The
different regime states are added into the time series model. Using maximum
likelihood estimation, the transition probabilities between the regime states
are estimated.
Using Extreme Value Theory, Chen and Cummins (2010) try to enhance the
Lee Carter model. First, the same steps as the Lee Carter model are fol-
lowed. To model small variations in the mortality parameter, a random walk
with drift is considered, just like in the Lee Carter model. To this, Chen
and Cummins (2010) add a variable for the mortality improvement. Then
the Peaks-over-Threshold, a method for modeling extreme values, is used. A
threshold is chosen from which onward events are considered extreme. In this
way the model provides a good fit for the central regions and for the tail of
the mortality improvement distribution simultaneously.
Cox et al. (2006) propose a jump process to include mortality shocks into the
Lee Carter model. The proposed jump process adds a permanent jump ef-
fect to the random walk with drift. But, since most mortality shocks like the
1918 influenza pandemic, or the 2004 tsunami do not have permanent shocks,
Chen and Cox (2009) proposed an updated model to add transitory jumps
instead of permanent jumps. The mortality numbers from the Covid-19 pan-
demic indicate a rise in mortality rates during its peak, followed by a return to
normal rates once the pandemic is brought under control. Therefore, a transi-
tory jump effect should be more appropriate for the Covid-19 pandemic as well.

2.4 The AG2022 Model
The Royal Dutch Actuarial Association (AG) uses its own model for forecasting
survival probabilities of the Dutch population. The model behind the most
recent forecast table, AG2022, has a few adaptions from earlier models used by
the AG. To estimate mortality rates and project them into the future, the AG
makes use of the Li-Lee model as a basis (AG, 2022). For data until 2020 (pre-
Covid), the standard Li-Lee model is used. In the introduction it is mentioned
that the Dutch population is considered as part of a group of populations.
This group consists of Austria, Belgium, Denmark, Germany, Finland, France,
Iceland, Ireland, Luxembourg, the Netherlands, Norway, United Kingdom,
Sweden and Switzerland. These countries have in common that the value
of their Gross Domestic Product (GDP) is above the European average and
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that the countries are located in North- and West-Europe. GDP is used as
a measure because wealth has a positive correlation with life expectancy. In
this way the AG may possibly find any common patterns in a larger group
of populations. To incorporate the excess mortality due to Covid-19 into the
model, the AG makes use of an extension inspired by the Lee-Carter model. To
the Li-Lee model a component is added which models the mortality deviation
from 2020 onward. This component is only added for ages above 55, since
Covid-19 had negligible impact on mortality rates for ages below 55. The
extension due to Covid-19 is a transitory one, since the added component has
a half-life duration of one year, so the effect of Covid-19 is slowly disappearing
in the model.
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3 Data

Mortality models are essential due to the fact that mortality levels continuously
are changing over the years. Mortality rates are in a declining trend, and
therefore the (period) life expectancy is in an upward trend as depicted in
Figure 3.1 (HMD, 2023). Consequently, modeling mortality becomes crucial to
provide insurers and pension funds with accurate data and forecasts, enabling
them to assess and value their liabilities effectively.

Figure 3.1: The evolution of period life expectancy in the Netherlands for
females and males in 1900-2021. Source: HMD (2023)

The increasing period life expectancy in the Netherlands from 1900 onward ex-
hibits a few downward spikes, these spikes represent mortality shocks. Specif-
ically, these shocks are the Influenza pandemic in 1918, the second world
war in 1940-1945 (especially for males), strengthened by the Dutch famine
of 1944–1945, and of course the Covid-19 Pandemic in 2020 and 2021. Such
shocks, like the one observed due to the Covid-19 pandemic (see Figure 3.2),
underscore the importance of incorporating these shocks into a mortality model.
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Figure 3.2: Excess deaths in the Netherlands during the Covid-19 pandemic.
The graphs represent the number of deaths per week in 2020 and 2021 com-
pared to the average deaths per week in 2015-2019. Source: STMF (2023)

As previously mentioned in the introduction and in Chapter 2, the model
considered in this thesis builds upon the Li-Lee Model. In this model, data
for multiple countries with similar socio-economic properties is considered, in
this case, similar GDP is considered. I choose to use the same countries as
the AG uses for their mortality model, excluding the UK. The new multi-
population model therefore considers data during the time period 1900-2021
from Austria, Belgium, Denmark, Finland, France, Germany, Iceland, Ireland,
Luxembourg, Norway, The Netherlands, Sweden and Switzerland. The data
that is used in the model are the observed deaths and exposures from these
countries. Unfortunately, from the countries Germany1, Austria, Ireland and
Luxembourg limited data between 1900 and 1960 is observable. Data from
these countries are consecutively added whenever the data becomes available.
Also, for the Belgium data there is a gap in the data from 1914 to 1918.
Figure 3.3 depicts the countries in the data-set and the starting year of the
data availability.

1Until 1990 East-Germany and West-Germany were distinct countries. The number
of deaths and the exposure from only West-Germany were used before 1990. From 1990
onwards, the number of deaths and exposures of East-Germany and West-Germany are
aggregated

9



Figure 3.3: Visualization of the European countries used in the data-set for
this thesis. The colors indicate the starting year of the data availability

As a benchmark I choose to define the set of all countries depicted in Figure
3.3 calibrated over the period T = {1900, . . . , 2021}. A sensitivity analysis
will be conducted in Chapter 5 to assess whether a shorter calibration period,
T̃ = {1970, . . . , 2021}, has a major influence on the results.
It is important to note that, beyond the Netherlands, the other countries ex-
perienced excess mortality as well due to the Covid-19 pandemic. See Figure
3.4 to visualize the excess mortality for some of these countries (HMD, 2023).
Similar graphs for the remaining countries can be found in Appendix A. In
addition, these countries follow roughly similar trends of life expectancy as ob-
served in Figure 3.1 in The Netherlands. See Figure 3.5 to visualize the trends
in period life expectancy for some of the countries in the data-set. Again, Ap-
pendix A contains similar graphs for the remaining countries in the data-set.
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Figure 3.4: Excess deaths in Austria, Belgium, Denmark, Germany, Sweden,
and France during the Covid-19 pandemic. The graphs represent the number
of deaths per week in 2020 and 2021 compared to the average deaths per week
in 2016-2019. Source: STMF (2023)
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Figure 3.5: The evolution of male and female period life expectancy in Austria,
Belgium, Denmark, Germany, Sweden, and France for different time periods.
Source: HMD (2023)
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To create estimates and forecasts for the model, data on deaths and exposures
are required. For every country (i), age (x) and year (t), deaths and expo-
sures from the data are denoted by Di

x,t and Ei
x,t respectively. Here, i ∈ I =

{Austria, Belgium, Denmark, Germany, F inland, France, Iceland,
Ireland, Luxembourg, Norway, the Netherlands, Sweden, Switzerland},
x ∈ X = {0, . . . , 90}, and t ∈ T = {1900, . . . , 2021}
The data set is obtained from the Human Mortality Database (HMD), and
supplemented with data from the Eurostat database (EUROS, 2023) for the
years and countries where information is not available in the HMD. Appendix
A provides a table for the data sources. It is verified that the definitions and
data from the Eurostat database align with the definitions and data from the
HMD, as the data for overlapping years is identical.
The data only includes ages up to 90 due to the lack of data for ages above 90.
Mortality rates for higher ages are modeled using a technique introduced by
Kannisto (1992). A more detailed explanation of Kannisto’s closure method
will be provided in Chapter 4.
Fortunately, data on deaths is directly observable in both the HMD and Euro-
stat database. However, data on exposures in period format is not observed in
the Eurostat database. To find the (period) exposures, first two other quanti-
ties are needed:

• P i
x,t: The population on January 1st with age between x and x + 1 in

year t. This is simply the population size.

• Ci
x,t: The number of deaths in year t, who would have been between x

and x+1 years old on December 31st in year t. This is the cohort number
of deaths.

To convert these quantities into the exposures in period format, which are
required for the model, the Methods Protocol established by the HMD’s is
consulted (Wilmoth et al., 2007).
For x > 0:

Ei
x,t = 1

2

(
P i

x,t + P i
x,t+1

)
+ 1

6

(1
2Ci

x,t − 1
2Ci

x+1,t

)
, (3.1)

and for x = 0:

Ei
0,t = 1

2

(
P i

0,t + P i
0,t+1

)
+ 1

6

(
Ci

0,t − 1
2Ci

1,t

)
. (3.2)
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4 Methods

In this chapter, the Lee-Carter model, the Li-Lee model, and the AG2022
model are discussed in more detail and a new model, incorporating mortality
shocks, is introduced. The Li-Lee model is an extension of the Lee-Carter
model, and the newly introduced model is built upon the framework established
by the Li-Lee model. The goal of this thesis is to propose a model which takes
into account mortality shocks and can be used to model and forecast mortality
in times of a pandemic. For this, a mathematical model is necessary which
provides death probabilities.
The main interest is mi

x,t, the central death rate, and is defined as

mi
x,t =

Di
x,t

Ei
x,t

, (4.1)

where Di
x,t is the number of deaths in population i, for age x, at time t and

Ei
x,t is the exposure in population i, for age x, at time t, and is thoroughly

discussed in Chapter 3.
If it is assumed that the force of mortality (µi

x,t) is constant during a certain
year for a certain age, it can be concluded that the central death rate is equal
to the force of mortality.

µi
x+ζ1,t+ζ2 = µi

x,t ∀ i ∈ I, x ∈ X , t ∈ T , and ζ1, ζ2 ∈ [0, 1). (4.2)

i.e. if (4.2) holds, then the MLE estimate of µi
x,t, yields that µ̂i

x,t = mi
x,t

(Melenberg, 2021). Assuming this, the death probabilities can be calculated
by:

qi
x,t = 1 − e−mi

x,t . (4.3)
Future deaths and exposures are, of course, not observable, and therefore the
future central death rate is also not observable. These numbers need to be
modeled. The Lee-Carter model and the Li-Lee model, model the central
death rate directly. With these modeled central death rates, one can produce
for example a forecast table for life expectations, just like the AG does bi-
yearly.
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4.1 Lee-Carter Model
As discussed in Chapter 2, Lee and Carter (1992) proposed a model to forecast
U.S. mortality rates. Lee and Carter model the logarithm of the central death
rate as follows:

log(mx,t) = αx + βxκt + ϵx,t. (4.4)
Note, that in the Lee-Carter model, the superscript i for the population is
omitted. This omission occurs because the Lee-Carter model only makes esti-
mates for one population. αx is an age-dependent constant that represents the
evolution of the mortality trend. κt is a time-varying mortality index, and βx

denotes the age specific sensitivity to changes in κt. ϵx,t represents the error
term and it is assumed that it has zero mean and satisfies homoskedasticity.
The model clearly is overparameterized, hence it is necessary to impose some
normality constraints for identification. Lee and Carter propose:∑

x∈X
βx = 1 and

∑
t∈T

κt = 0. (4.5)

With these constraints, the estimate of αx becomes the average of the logarithm
of the central death rate over time:

α̂x = 1
T

T∑
t=1

log(mx,t). (4.6)

Here, T represents the length of the calibration period.
To solve the model, Lee and Carter suggest a two-step procedure. Since or-
dinary regression methods are not applicable, Lee and Carter make use of
Singular Value Decomposition (SVD) on the matrix of log(mx,t) − α̂x in the
first step. The estimates of βx and κt are obtained in this way. In the second
step, the estimates of αx and βx from the first step are used to obtain new es-
timates for κt. This is done iteratively such that the implied number of deaths
are equal to the observed number of deaths.

Dt =
∑
x∈X

(Nx,te
αx+βxκt). (4.7)

Here, Dt = ∑
x Dx,t are the observed number of deaths at time t for all ages,

and Nx,t is the population of age x at time t.
After fitting the model, mortality projections are obtained using auto-regressive
integrated moving average (ARIMA(p,d,q)) time series on κt. Lee and Carter
use a random walk with drift to model the evolution of κt. This is also known
as an ARIMA(0,1,0) model:

κt = µ + κt−1 + ξt, (4.8)

where µ is the drift term, and ξt is the error term with mean 0 and variance
σ2

ξ . It is assumed that the error term ξt is not correlated and is independent
of ϵx,t from (4.4). Given this procedure, mortality projections can be easily
derived using extrapolation.
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To account for the Influenza mortality shock in 1918, Lee and Carter propose
an intervention model when estimating the evolution of κt:

κt = µ + κt−1 + θ · flu + ξt. (4.9)

Here, flu is a dummy variable for the year 1918, and θ is the coefficient on the
dummy variable which captures the magnitude of the change in κt in 1918.

4.2 Li-Lee Model
Li and Lee (2005) found that the original Lee-Carter model leads to diverging
mortality forecasts. When using the original Lee-Carter model for males and
females separately, they found that the βx in (4.4) and the µ in (4.8) had
significant differences. This would lead to very different mortality forecasts in
the long run for males and females in a specific country. The same divergence
problem occurs when forecasting mortality rates in different provinces of a
country separately. To avoid the problem of diverging mortality forecasts, Li
and Lee suggest that all populations or members of a group should have the
same βx and the same drift term (µ) for κt. It is then a sufficient condition
that all populations or members of a group share the same values for βx and
κt, denoted by Bx and Kt.
Their multi-populations model for modeling and forecasting mortality is as
follows:

log(mi
x,t) = αi

x + BxKt + βi
xκi

t + ϵi
x,t. (4.10)

The normalizations to make the model identifiable are:∑
x∈X

Bx = 1 ,
∑
t∈T

Kt = 0 ,
∑
x∈X

βx = 1 and
∑
t∈T

κt = 0. (4.11)

The parameters Bx and Kt are estimated for the whole group in the same
way as in the original Lee-Carter Model from Chapter 4.1. The Kt is then re-
estimated to fit the average life expectancy of the group. BxKt is the common
factor for every population i in the group. Also in this case, to model the
evolution of Kt, a random walk with drift is used to forecast the common
trend of the group’s future mortality, similar to (4.8):

Kt = µ + Kt−1 + ξt. (4.12)

αi
x is an age-dependent constant that captures the general evolution of the

mortality trend for population i. Considering the constraints of (4.11), the
estimate of αi

x now again becomes the average of the logarithm of the central
death rate over time for population i. This is a similar derivation as (4.6)

α̂i
x = 1

T

T∑
t=1

log(mi
x,t). (4.13)

(αi
x +BxKt) is called the common factor model for population i. Next, SVD is
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applied to the residual matrix of the common factor model log(mi
x,t)−αi

x−BxKt

to obtain estimates for βi
x and κi

t. κi
t is the population specific time-varying

mortality index and βi
x is the age specific sensitivity to changes in κi

t. βi
xκi

t

captures the deviation of population i’s mortality rate variation from to the
common factor’s mortality rate variation.
To obtain mortality projections, Li and Lee propose a first-order autoregressive
model (AR(1)) for the evolution of κi

t:

κi
t = ci

0 + ci
1κ

i
t−1 + σiδi

t, δi
t ∼ N(0, 1). (4.14)

Here, ci
0 and ci

1 are the coefficients and σi is the standard deviation of the
first-order autoregressive model.

4.3 AG2022 Model
The AG makes use of a model based on the Li-Lee model, which is extended
with a factor to add the effect on mortality due to Covid-19
(AG, 2022).

log(mi
x,t) = log(mi,pre−cov

x,t ) + log(oi
x,t). (4.15)

Here, log(mi,pre−cov
x,t ) is the part of the model based on the Li-Lee model, not

incorporating the mortality shock due to Covid-19. It is modeled as:

log(mi,pre−cov
x,t ) = Ax + BxKt + αi

x + βi
xκi

t, (4.16)

where Ax, Bx and Kt are the parameters for the total group of countries (Aus-
tria, Belgium, Denmark, Germany, Finland, France, Iceland, Ireland, Luxem-
bourg, Norway, the Netherlands, United Kingdom, Sweden and Switzerland)
and αi

x, βi
x and κi

t are the parameters for the Dutch population. The pa-
rameters of the Dutch population are modeled as the deviation of the Dutch
population compared to the whole group of populations. The parameters are
based on the quotient of these two factors. The time-series dynamics consist
of a random walk with drift for the total group and a first-order autoregressive
model for the Dutch deviation, similar to the Li-Lee model:

Kt = µ + Kt−1 + ξt (4.17)

κi
t = ci

0 + ci
1κ

i
t−1 + δi

t. (4.18)
To add the effect of the Covid-19 mortality shock, the AG extended their model
by the factor log(oi

x,t) from (4.15). The model behind this factor is inspired by
the Lee Carter model and uses weekly data from 2020 and 2021 to estimate
the model. log(oi

x,t) is fading out slowly in future years, as it has a half-life
duration of one year.
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4.3.1 Kannisto
As mentioned in the previous chapter, the AG makes mortality estimates for
the the age class 91-120 using a method developed by Kannisto (1992). Due to
a lack of data for that specific age group, the AG decided to make use of this
extrapolation technique. In the AG2022 model the Kannisto method applied
is slightly different from the previous models developed by the AG.
First, the parameters Ax, Bx, αi

x, and βi
x are estimated for ages 0 to 90 using

the methods described earlier in this chapter. Afterwards, the parameters Ax,
Bx, αi

x, and βi
x for ages 91-120 are determined using extrapolation techniques

based on a logistic regression developed by Kannisto (1992).
In previous AG models, for example the AG2020 model, not the parameters,
but the estimates of the force of mortality, µi

x,t, are extrapolated
(AG, 2020). The force of mortality for ages 80 up to 90, for a specific population
i, at a certain time t, are extrapolated using a logistic regression. In this way
estimates are obtained for the force of mortality for ages 91 to 120 for that
specific population i at time t.
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4.4 Incorporating mortality shocks into a multi-
population mortality model

In this section, the new model will be introduced. A multi-population mor-
tality model with jumps to account for mortality shocks is modeled. Simply
performing outlier analysis and consequently remove the effect of a mortality
shock should not be the solution. As Chen and Cox (2009) point out, outliers
should not be neglected, because for example mortality securitization and pric-
ing catastrophe risks depends on these outliers. Furthermore, for calculating
solvency capital requirements these outliers are of great importance as well.
The model can be seen as an extension of the Li-Lee model, inspired by the
extension of the Lee-Carter model by Chen and Cox (2009). Since historical
mortality shocks like the 1918 influenza pandemic or the 2004 earthquake and
tsunami in the Indian Ocean, did not have a permanent effect on mortality
rates, a transitory effect is added to the model. This ensures that the effects of
a mortality shock are disappearing over time and will not effect the mortality
rates permanently.
The basis of the model is similar to the AG models before Covid-19. The
logarithm of the force of mortality is modeled as:

log(µg,i
x,t) = Ag

x + Bg
xKg

t + αg,i
x + βg,i

x κg,i
t . (4.19)

Here, the newly introduced parameter g ∈ G = {Male, Female} specifies the
gender. Again, Ag

x, Bg
x and Kg

t are the parameters for the reference group of
European countries I = {Austria, Belgium, Denmark, Germany, F inland,
France, Iceland, Ireland, Luxembourg, Norway, The Netherlands, Sweden,
Switzerland}, for age x at time t.
αg,i

x , βg,i
x and κg,i

t are the parameters for a specific population, in this case that
is the Dutch population, from now on denoted by αg,NL

x , βg,NL
x and κg,NL

t .

4.4.1 Parameter Calibration
Contrary to the SVD method which is used by Lee and Carter and by Li and
Lee to estimate the parameters, an other approach is selected. Following the
approach by Brouhns et al. (2002), parameters of the model are calibrated
using a Poisson likelihood function. The calibration is done for both males
and females separately. For notational convenience, the superscript g is left
out in the following steps.
First, the parameters for the total European reference group are calibrated.
The estimates of the parameters Ax, Bx, and Kt are determined using a Pois-
son likelihood function. This is possible because of the assumption that the
total deaths in the European reference group, DEU

x,t , follows a Poisson distribu-
tion with mean EEU

x,t µEU
x,t (Brouhns et al., 2002). Here, EU in the superscript

underscores the fact that these are the parameters for the European reference
group. EEU

x,t are the aggregated exposures in the European reference group
for age x at time t, and µEU

x,t = eAx+Bx+Kt is the force of mortality for the
European reference group for age x at time t. Therefore, instead of modeling
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mg
x,t directly like in the Lee Carter model, Dg

x,t|Eg
x,t ∼ Poisson(EEU

x,t µEU
x,t ) is

modeled.
In order to obtain a likelihood function, the exposures EEU

x,t and deaths DEU
x,t for

all countries in I, during t ∈ {1900, . . . 2021}, for all ages x ∈ {0, . . . , 90} are
used. To obtain estimates for the parameters, the following Poisson likelihood
function is maximized:

max
{Ax,Bx,Kt}

∏
x∈{0,...,90}

∏
t∈{1900,...,2021}

(
EEU

x,t µEU
x,t

)DEU
x,t exp

(
−EEU

x,t µEU
x,t

)
DEU

x,t ! . (4.20)

To obtain a unique solution for the estimates of the parameters, the following
constraints are imposed, with a small difference compared to (4.11) from the
Li-Lee model. ∑

t∈{1900,...,2021}
Kt = 0, and

∑
x∈{0,...,90}

B2
x = 1. (4.21)

Once the estimates Âx, B̂x, and K̂t are obtained, they will be used in the fol-
lowing step. The estimate for the central death rate of the European reference
group is now equal to: µ̂EU

x,t = exp(Âx + B̂xK̂t)
Next, the country specific parameters αNL

x , βNL
x and κNL

t are estimated us-
ing a Poisson likelihood maximization again. This time the exposures ENL

x,t

and deaths DNL
x,t for the Netherlands for ages x ∈ {0, . . . , 90} and time t ∈

{1900, . . . , 2021} are used in the function. The following Poisson likelihood
function is maximized:

max
{αx,βx,κt}

∏
x∈{0,...,90}

∏
t∈{1900,...,2021}

(
ENL

x,t µNL
x,t

)DNL
x,t exp

(
−ENL

x,t µNL
x,t

)
DNL

x,t ! , (4.22)

where, µNL
x,t = µ̂EU

x,t exp(αNL
x +βNL

x κNL
t ) = exp(Âx+B̂xK̂t) exp(αNL

x +βNL
x κNL

t ).
The estimates Âx, B̂x, and K̂t were obtained in the previous step.
Also in this step, to avoid identification problems, the following normaliza-
tion constraints are imposed, again with a small difference compared to the
constraints in the Li-Lee model (4.11):∑

t∈{1900,...,2021}
κt = 0, and

∑
x∈{0,...,90}

β2
x = 1. (4.23)

Through this approach, the estimates α̂NL
x , β̂NL

x , and κ̂NL
t are also derived.

4.4.2 Time Dynamics
The next step is to construct the time-series for the parameters Kt and κNL

t ,
and include a jump process to account for mortality shocks.
The difference with the usual Li-Lee model is the fact that a jump component
is included in the time series for the mortality factor Kt. Just like in the Li-
Lee model (4.12), a random walk with drift, also known as an ARIMA(0,1,0)
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model, is used to model the evolution of Kt and to forecast the common trend
of the reference group’s future mortality. However, to this time-series a jump
component is added to account for a mortality shock in the whole European
group, in line with Chen and Cox (2009).
I choose to include the jump component for the whole European group instead
of including the jump only for the Dutch deviation. In the winter of 1944-1945
the Dutch Famine resulted to excess deaths only in the Netherlands. For this
reason, one could choose to only add a jump component for the Dutch devia-
tion. However, due to the globalization of the world, the easy ways to travel
across countries, and due to the fact that the Covid-19 pandemic affected the
whole world, future mortality shocks will affect multiple countries simultane-
ously and will not be limited to impacting just a single country in my opinion.
Before including jumps in the model, an outlier analysis is conducted to iden-
tify whether spikes exist in the mortality index Kt. Note, that this is the
mortality index for the European reference group. After having obtained es-
timates for Kt, the yearly change in Kt is calculated. The Z-Score method
is used to detect outliers within the differenced values for Kt. The Z-Score,
which measures the number of standard deviations an observation is from the
mean, is calculated for each year. A predefined threshold is chosen to deter-
mine which observations qualify as outliers. An outliers is defined as a data
point from which the Z-Score exceeds the specified threshold. The next steps
will elaborate on how to deal with these outliers by including a jump in the
model.
First, the time series model for Kt without jump is introduced.

K̃t = µ + K̃t−1 + σQt, (4.24)
where µ is the constant drift term, σ is the constant error term, and Qt is a
standard normal variable.
Simply adding an extra term for a shock effect to (4.24) will cause the shock
effect to endure forever in all future values of K̃t. Since most causes of mortality
shocks only have a temporary effect, effects of a jump in a previous time-period
should be nullified.
Let Nt represent the indicator of whether a mortality shock occurred in year
t. Nt = 0 in a year with no mortality shock, and Nt = 1 if a mortality shock
occurred in year t. The probability of a shock is p, therefore:

Nt =
1, with probability p

0, with probability 1 − p.
(4.25)

The severity of the shock is measured by Yt. It is assumed that Yt is an identi-
cally independently normally distributed variable with mean m and standard
deviation s. It is also assumed that at most one jump per year can occur.
Note, that Nt and Yt are assumed to be independent of Qt.
The time series for Kt can now be modeled as an ARIMA(0,1,0) model, ex-
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tended by the factor NtYt − Nt−1Yt−1:

Kt = K̃t + NtYt − Nt−1Yt−1

= Kt−1 + µ + σQt + NtYt − Nt−1Yt−1.
(4.26)

Next, κNL
t follows the same time dynamics as in the original Li-Lee model. The

process is a first-order autoregressive model with constant term, also known
as an AR(1) model.

κNL
t = c0 + c1κ

NL
t−1 + σδδt, (4.27)

where c0 and c1 are parameters of the time series, σδ is the error term and δt

is a standard normal variable.

Time-series parameter calibration
To predict future mortality rates and life expectancies, it is essential to project
the time series of Kt and κt into the future. To achieve this, the parameters
in (4.26) and (4.27) must be calibrated.
Let zt = Kt − Kt−1. If Kt has T observations, then zt will have T − 1 obser-
vations. zt a can be modeled as:

zt = µ + σQt + NtYt − Nt−1Yt−1. (4.28)

Maximum likelihood estimation is now utilized to calibrate the parameters. Lin
and Cox (2008) used a continuous-time model to include transitory mortality
shocks into their model. Following their argument that the likelihood of an
extreme mortality event has a very low probability, it is assumed that the
correlation between shocks is negligible, in other words, shocks are assumed to
be independent of each other. Therefore, it is assumed that zt is independent
of all future zt and basic maximum likelihood estimation can be performed.
The distribution of zt depends on whether a jump occurs or not. A jump
event can occur in year t, in year t − 1, in both years or in neither of these
years. Conditioning on the occurrence of a jump event, the distribution can
be described as follows:

Jump event Mean Variance Probability
Nt = 0, Nt−1 = 0 µ σ2 (1 − p)(1 − p)
Nt = 1, Nt−1 = 0 µ + m σ2 + S2 p(1 − p)
Nt = 0, Nt−1 = 1 µ − m σ2 + S2 (1 − p)p
Nt = 1, Nt−1 = 1 µ σ2 + 2S2 p2
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The probability density function of zt, f(zt), is now equal to

f(zt) = f(zt|Nt = 0, Nt−1 = 0)Pr(Nt = 0, Nt−1 = 0)
+ f(zt|Nt = 1, Nt−1 = 0)Pr(Nt = 1, Nt−1 = 0)
+ f(zt|Nt = 0, Nt−1 = 1)Pr(Nt = 0, Nt−1 = 1)
+ f(zt|Nt = 1, Nt−1 = 1)Pr(Nt = 1, Nt−1 = 1)

=
(

1
σ

√
2π

e− 1
2( zt−µ

σ )2
)

(1 − p)(1 − p)

+
 1√

2π ∗ (σ2 + s2)
e− 1

2
(zt−µ−m)2

σ2+s2

 p(1 − p)

+
 1√

2π ∗ (σ2 + s2)
e− 1

2
(zt−µ+m)2

σ2+s2

 (1 − p)p

+
 1√

2π ∗ (σ2 + 2s2)
e− 1

2
(zt−µ)2

σ2+2s2

 p2.

(4.29)

With this probability density function, the parameters µ, σ, m, s, and p can
be estimated by maximizing the logarithm of the likelihood function. The
likelihood function, based on the observations {z1, . . . , zT −1}, is equal to:

L =
T −1∏
t=1

f(zt). (4.30)

The estimates of the parameters are consequently obtained by taking the log-
arithm of (4.30) and maximizing the function:

log L = log
T −1∏
t=1

f(zt) =
T −1∑
t=1

logf(zt)

=
T −1∑
t=1

log
( 1

σ
√

2π
e− 1

2( zt−µ
σ )2

)
(1 − p)(1 − p)

+
 1√

2π ∗ (σ2 + s2)
e− 1

2
(zt−µ−m)2

σ2+s2

 p(1 − p)

+
 1√

2π ∗ (σ2 + s2)
e− 1

2
(zt−µ+m)2

σ2+s2

 (1 − p)p

+
 1√

2π ∗ (σ2 + 2s2)
e− 1

2
(zt−µ)2

σ2+2s2

 p2

.

(4.31)

Next, the parameters c0 and c1 from (4.27) need to be estimated in order to
construct forecasts for the time series and eventually for the central death rates
and death probabilities.
According to Kendall and Ord (1990), autoregressive models, just like the one
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in (4.27) can be estimated using OLS. The lags of the time-series will be used
as independent variables to obtain estimates for c0 and c1.

4.4.3 Closure method of Kannisto
Due to the limited number of observations for mortality for ages above 90,
a different method should be applied to obtain estimates for these numbers.
To obtain estimates for µg,NL

x,t for ages above 90, the Kannisto (1992) method
is applied, following a similar approach as the models developed by the AG.
Kannisto’s method extrapolates the estimates µg,NL

x,t from ages 80-90, to obtain
estimates for µg,NL

x,t for the ages 91-120. This is referred to as the closure of the
mortality table. Using a logistic regression based on the estimates for µg,NL

x,t

for the ages 80-90, the model is extrapolated. The AG2020 and earlier models
from the AG used this method as well. However, in the AG2022 model, while
still applying Kannisto, the method described in 4.3.1 is employed.
The closure of the mortality table is obtained by:

µg,NL
x,t = L

( n∑
k=1

wk(x)L−1
(
µyk

(t)
))

. (4.32)

In this context, L represents the logistic funtion and L−1 denotes the inverse
logistic function,

L(x) = 1
1 + e−x

(4.33)

L−1(x) = − log
(1

x
− 1

)
(4.34)

with regression weights wk(x) equal to:

wk(x) = 1
n

+ (yk − ȳ) (x − ȳ)∑k
j=1 (yj − ȳ)2 = 1

11 + (yk − 85) (x − 85)
110 . (4.35)

Here, yk = 79 + k, for k = {1, . . . , 11}, ȳ = 85, which is the average of the ages
{80, . . . , 90}, and ∑k

j=1 (yj − ȳ)2 = 110 is the squared sum of deviations.

From an econometric point of view the following approach can also be used:
First, use OLS to estimate

L−1(µg,NL
x,t ) = β0 + β1x + ϵ, x ∈ {80, . . . , 90}. (4.36)

Then, use the obtained estimates β̂0 and β̂1 to find the values for L−1(µg,NL
x,t )

for ages x ∈ {91, . . . , 120}.

L−1(µg,NL
y,t ) = β̂0 + β̂1y, y ∈ {91, . . . , 120}. (4.37)

Next, values for µg,NL
y,t for ages y ∈ {91, . . . , 120} can be obtained by:

µg,NL
y,t = L(β̂0 + β̂1y). (4.38)

Substituting the expressions for the OLS estimates β̂0 and β̂1 into (4.38) yields
(4.32)
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5 Results

In this chapter the results of the model introduced in Chapter 4.4 are dis-
cussed. Using the data described in Chapter 3, a multi-population mortality
model incorporating mortality shocks is calibrated and forecasted. The param-
eters are estimated, an outlier analysis is conducted and forecasted mortality
scenarios are created. Furthermore, a sensitivity analysis is conducted on the
model by using a different calibration period for estimating the parameters.
In this chapter the superscript g = {F, M} is re-introduced in the parameters
Ag

x, Bg
x, Kg

t , αg,NL
x , βg,NL

x , and κg,NL
t from (4.19) for distinguishing genders.

5.1 Benchmark model
The first results in this chapter are based on the benchmark model. This
model is calibrated on the countries in I, on the calibration period T =
{1900, . . . , 2021}, for ages X = {0, . . . , 90}.

5.1.1 Parameter estimation
After calibrating the parameters on the given calibration period, as described
in 4.4.1, the estimates Âg

x, B̂g
x, K̂g

t , α̂g,NL
x , β̂g,NL

x , and κ̂g,NL
t from (4.19) are

obtained. Recall that Ag
x depicts the age-specific evolution of the mortality

trend, Bg
x denotes the age specific sensitivity to changes in Kg

t , and Kg
t is the

time-varying mortality index. αg,NL
x , βg,NL

x , and κg,NL
t respectively have the

same definitions, but are the country specific deviations from the European
reference group. In this model, this is the deviation of the Netherlands from
the European reference group. Figure 5.1 depicts the age-dependent parameter
estimations of Âg

x, B̂g
x, α̂g,NL

x , and β̂g,NL
x for both males and females.

Additionally, the estimates of the time-varying parameters K̂g
t and κ̂g,NL

t are
depicted in Figure 5.2.
From the evolution of Ag

x it is visible that it declines rapidly from age 0 to
age 1, meaning that the mortality trend for newborns is a lot higher compared
to individuals reaching the age 1 or higher. Afterwards the mortality trend
gradually increases again, showing that the mortality trend increases with
age, which is a logical inference. The hump around age 20 for males may be
attributed to the risk-taking behavior of young adults, leading to accidental
deaths. This humps is also known as the accident hump, and mostly has
impact on young adult males. From the evolution of Kg

t it is clearly visible
that mortality is in a declining trend over the years. This aligns with the fact
that from 1900 onwards, life expectancy is in an increasing trend. The upward
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spikes denote the first World War in combination with the Influenza pandemic,
and the second World War. Also, a small jump upwards in 2020 occurred due
to the Covid-19 pandemic.

Figure 5.1: Estimation of the age-specific parameters Âx and B̂x for the Euro-
pean reference group and estimation of the age-specific parameters α̂g,NL

x and
β̂g,NL

x for the Dutch deviation for ages 0-90 in years 1900-2021. Note, for ob-
taining a unique solution while estimating the parameters, four normalizations
were introduced: ∑B2

x = 1, ∑ β2
x = 1, ∑Kt = 0 and ∑κt = 0
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Figure 5.2: Estimation of the mortality index K̂g
t for the European reference

group and its Dutch deviation κ̂g
t for ages 0-90 in years 1900-2021. Note, for

obtaining a unique solution while estimating the parameters, four normaliza-
tions were introduced: ∑B2

x = 1, ∑ β2
x = 1, ∑Kt = 0 and ∑

κt = 0. The
graph for κ̂g

t may appear volatile, however, when comparing the y-axis of the
two graphs, the Dutch deviation compared to the European reference group is
not significantly large.

5.1.2 Outlier analysis
By using the method described in Chapter 4.4.2, Z-scores are calculated and
outliers are obtained in the evolution of Kg

t . Differencing is applied to obtain
values for ∆Kg

t for each year. Figure 5.3 and Figure 5.4 depict the observed
outliers for females and males respectively. The threshold for the analysis of
the Z-scores for females is 1.2 standard deviations from the mean. For males
this is 1 standard deviation. Everything above that threshold is considered
an outlier. Most of the values of ∆Kg

t are negative, because the evolution
of Kg

t has a downward trend, as depicted in figure 5.2. The upward spikes
indicate a jump in the mortality index Kg

t , therefore only the upward spikes
are considered as outliers.
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Figure 5.3: Outlier analysis for the European female population’s mortality
index KF

t . Using differencing, ∆KF
t is obtained for each year. The figure

highlights the timing of the outliers with a red cross.

Figure 5.4: Outlier analysis for the European male population’s mortality
index KM

t . Using differencing, ∆KM
t is obtained for each year. The figure

highlights the timing of the outliers with a red cross.
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For both females and males, the timing of the most severe outliers align with
the timing of the First World War (1914-1918), the influenza pandemic (1918)
and the Second World War (1939-1945) in the European reference group.
These catastrophic events lead to severe mortality shocks in the European
population. Furthermore, the female population also shows some smaller out-
liers in other years in the first half of the twentieth century.
The Covid-19 pandemic in 2020 is the reason for the first outlier in a period of
more than 70 years without an outlier. For both females and males, the spike
in the mortality trend Kg

t is large enough, given the chosen threshold, to be
considered an outlier.
The results of the outlier analysis indeed show the existence of outliers in the
mortality index Kg

t . This underscores the necessity of incorporating jumps in
mortality models. Consequently, in the next section future scenarios of mor-
tality are generated while including a jump process in the model.

5.1.3 Forecasted mortality scenarios
Recall from Chapter 4.4.2 that:

Kt = Kt−1 + µ + σQt + NtYt − Nt−1Yt−1, (5.1)
where Nt represents the indicator of whether a mortality shock occurred in
year t, and the probability of a shock event is p. The severity of the shock is
measured by Yt. It is assumed that Yt is an identically independently normally
distributed variable with mean m and standard deviation s. µ is the constant
drift term, σ is the constant error term and Qt is a standard normal variable.
Table 5.1 shows the estimates of the parameters for the time-series.

Parameter Female Male
µ -0.237 (0.038) -0.253 (0.034)
σ 0.265 (0.055) 0.308 (0.034)
p 0.183 (0.071) 0.086 (0.026)
m 0.000 (0.787) 0.882 (3.437)
s 0.981 (0.207) 2.426 (1.170)

Table 5.1: Estimated parameters of the time series for Kg
t with the standard

error between brackets, for the calibration period 1900-2021. The estimates
are obtained using the Log-Likelihood maximization described in Chapter 4.

For comparison, Table 5.2 presents the estimates for the parameters in (4.24),
the time-series for the overall mortality trend without a jump component.

Parameter Female Male
µ -0.258 (0.038) -0.226 (0.034)
σ 0.436 (0.128) 1.222 (0.351)

Table 5.2: Estimated parameters of the time series for K̃t = µ + K̃t−1 + σQt,
which is Kg

t without jump component. Standard error between brackets, for
the calibration period 1900-2021.
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Table 5.2 shows higher values for the volatility term σ than in Table 5.1.
Because all the shocks in Kg

t are now incorporated in the volatility term rather
than in the additional jump term, I find higher values for σ, particularly for
males. Moreover, the values for µ slightly differ. The omission of m, the
parameter that measures the mean of the shock, has an effect on this difference.
Both upward and downward shocks are now incorporated in µ, resulting in
different estimates.
Also recall from Chapter 4.4.2 that:

κNL
t = c0 + c1κ

NL
t−1 + σδδt, (5.2)

where c0 and c1 are parameters of the time series, σδ is the error term and δt

is a standard normal variable. The estimates of these parameters are depicted
below in Table 5.3.

Parameter Female Male
c0 -0.004 (0.054) 0.005 (0.059)
c1 0.965 (0.024) 0.908 (0.039)
σ 0.596 (0.083) 0.656 (0.096)

Table 5.3: Estimated parameters of the time series for κg
t with the standard

error between brackets, for the calibration period 1900-2021. The estimates
are obtained using OLS as described in Chapter 4.

Using the estimates from Table 5.1 and Table 5.3, future mortality scenarios
can be simulated. First, the time series for both Kg

t and κg
t can be estimated

for periods after t = 2021. Simulating 100,000 scenarios for the evolution of
Kg

t and κg
t for both genders lead to the plots in Figure 5.5 and Figure 5.6. The

median forecasts and the 90% confidence intervals of the future evolutions of
Kg

t and κg
t are depicted. Furthermore, the estimates from Table 5.2 are used to

depict a confidence interval for the forecasts when shocks are not incorporated.
i.e. when (4.24) is used to model the evolution of Kg

t instead of (4.26).
The future evolutions for KM

t show a wider confidence interval compared to
the the future evolutions for KF

t . The estimates of the parameters presented
in Table 5.1 show larger numbers for σ and s for males compared to females.
This implies that the evolution of the time-series will be more volatile, leading
to a wider confidence interval. For females, the confidence interval of the
model without shocks is slightly smaller compared to the confidence interval
for the model with shocks. However, for males there is a large difference in the
confidence intervals. The reason for this is the difference in σ in Table 5.1 and
Table 5.2. The mortality shocks thus have a large impact on the forecasts.
The confidence interval for the evolution of κF

t and κM
t in Figure 5.6 appear

to be concentrated around 0. This indicates that the future evolution of the
European mortality trend aligns with the Dutch future mortality trend.
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Figure 5.5: time-series for Kt for females (left) and males (right) for ages 0-90
in years 1900-2021. 100,000 simulations of the future evolution are produced
for ages 0-90 in years 2022-2070. The median and the 90% confidence interval
for these simulations are depicted. Furthermore, the confidence interval for
the forecasts of the model without shocks are presented.

Figure 5.6: time-series for κg,NL
t for females (left) and males (right) for ages 0-

90 in years 1900-2021. 100,000 simulations of the future evolution are produced
for ages 0-90 in years 2022-2070. The median and the 90% confidence interval
for these simulations are depicted.
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The evolution of Kg
t gives insights in future mortality trends, but does not give

meaningful numerical values. Mortality tables or death probabilities are more
appropriate to give a more sensible meaning to the numbers. With the obtained
estimates Âg

x, B̂g
x, K̂g

t , α̂g,NL
x , β̂g,NL

x and κ̂g,NL
t for ages x ∈ X = {0, . . . , 90}

in years t ∈ T = {1900, . . . , 2021}, and with the simulated values for K̂g
x and

κ̂g,NL
t for the years {2022, . . . , 2070}, mortality tables for both genders can be

produced.
Based on (4.19), the estimates µ̂g,NL

x,t for ages 0-90 in years 1900-2070 can be
modeled. Then using the method by Kannisto (1992), as described in Chapter
4.4.3, the estimates µ̂g,NL

x,t can be extrapolated for ages 91-120.
Recall that the death probabilities can be calculated by:

qg
x,t = 1 − e−µ̂g,NL

x,t . (5.3)

The obtained estimates µ̂g,NL
x,t for ages 0-120 in years 1900-2070 can now be

translated to death probabilities using (5.3).
Figure 5.7 depicts the calibration qF

x,t for ages x ∈ {20, 40, 60, 80} and Figure
5.8 depicts the corresponding calibration for males (qM

x,t). The figures depict the
fitted values for qg

x,t in t = {1900, . . . , 2021} and the observed mortality rates in
the same time period, obtained from the HMD (2023). Furthermore, the figures
depict the simulated values for qg

x,t in the years t = {2022, . . . , 2070} with a 99
% confidence interval. The red line is a reference line with forecast estimates
of qg

x,t by the AG2022 model (AG, 2022) for the years t = {2022, . . . , 2070}.
Figure 5.7 and Figure 5.8 focus specifically on the period 1970-2070. This is
done because it shows the death probabilities for the recent past and near fu-
ture. The zoomed-out figures, depicting the death probabilities for the period
1900-2070, can be found in appendix A.
The fitted values and the observed values for qg

x,t in all eight graphs seem
to have a downward trend. This aligns with the increasing trend in life ex-
pectancy. For the graphs on female death probabilities, the AG2022 forecast
fits well within the 99 % confidence interval for the forecasts of the multi-
population mortality model with shocks. Except, for a few values at higher
ages around the year 2021, likely influenced by the Covid-19 pandemic, the
estimates of the AG2022 model do not fit within the confidence interval.
In case of the male death probabilities, a clear difference is observed when
comparing the AG2022 model with the multi-population mortality model in-
corporating shocks. The AG2022 model predicts higher death probabilities
for ages 20 and 40, and lower death probabilities for age 60. For age 80, the
AG2022 has a steeper downward slope, this could occur because the AG2022
model adds a big shock for older age groups because of the Covid-19 pandemic.
A reason for these differences could be the different calibration periods between
the the multi-population model incorporating shocks and the AG2022 model.
The multi-population model incorporating shocks covers a more extended cal-
ibration period from 1900 to 2021. Shocks that occurred before 1970 could
have an impact on the death probabilities later on. In contrast, the AG2022
model has a shorter calibration period from 1970 to 2020, potentially leading
to differences in predicted death probabilities. Despite these differences, the
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AG2022 model generally fits within the confidence interval as forecasted by
the multi-population mortality model incorporating shocks.

Figure 5.7: Estimates, observed values, and forecasts for death probabilities
for ages 20, 40, 60, and 80 for Dutch females, zoomed in on 1970-2070. Cal-
ibration period 1900-2021, and projection 2022-2070. The median and the
99% confidence interval obtained from 10,000 simulations are plotted. As a
reference, the AG2022 forecast is added as well.
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Figure 5.8: Estimates, observed values, and forecasts for death probabilities for
ages 20, 40, 60, and 80 for Dutch males, zoomed in on 1970-2070. Calibration
period 1900-2021, and projection 2022-2070. The median and the 99% confi-
dence interval obtained from 10,000 simulations are plotted. As a reference,
the AG2022 forecast is added as well.

Having obtained estimates and forecasts for the death probabilities qg
x,t, for

ages 0-120 and years 1900-2070, life expectancies can be computed.
Period life expectancy is calculated by (AG, 2022):

eg,per
x,t = 1

2 +
∞∑

k=0

k∏
s=0

(
1 − qg

x+s,t

)
. (5.4)

Cohort life expectancy is calculated by (AG, 2022):

eg,coh
x,t = 1

2 +
∞∑

k=0

k∏
s=0

(
1 − qg

x+s,t+s

)
. (5.5)

For calculating cohort life expectancies, scenarios of mortality beyond 2070 are
necessary. More specifically, mortality scenarios until 2190 are necessary to
obtain cohort life expectancies for an individual born in 2070. These mortality
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scenarios are obtained using the same method as before. Figure 5.4 depicts the
observed period life expectancy (HMD, 2023), and the model-fitted period life
expectancy for a 0-year old, calibrated on the period 1900-2021 for both females
and males. The graph also depicts the best estimate period life expectancy and
its 95% confidence interval for the period 2022-2070. As a reference, the period
life expectancy as forecasted by the AG2022 model, for the period 2022-2070
is added as well. Figure 5.5 depicts the cohort life expectancy and its 95%
confidence interval for a 0-year old across the years 1970-2070 for both females
and males. The figures depicting period and cohort life expectancies for the
complete time periods from 1900 to 2021 can be found in Appendix A.

Figure 5.9: Observed and fitted period life expectancy for females (left) and
males (right), calibrated on the years 1900-2021 for ages 0-90, closed by Kan-
nisto’s method, zoomed in on 1970-2070. Period life expectancy forecasts and
a 95 % confidence interval for the years 2022-2070 are added as well. The red
reference line is the AG2022 period life expectancy forecast.
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Figure 5.10: Fitted cohort life expectancy and its 95% confidence interval for
females (left) and males(right), calibrated on the years 1900-2021 for ages 0-90,
closed by Kannisto’s method, zoomed in on 1970-2070.

As depicted in Figure 5.9, the multi-population mortality model incorporating
shocks underestimates the period life expectancies in future years, compared
to the AG2022 model. The reason for this could again be that the multi-
population mortality model incorporating shocks covers a more extended cal-
ibration period from 1900 to 2021. Shocks that occurred before 1970 could
have an impact on the period life expectancies. Additionally, in both figures,
the confidence intervals for males are wider than the female confidence inter-
vals. The reason for this could be the more volatile evolution of the time-series
for Kg

t and κg,NL
t for males, leading to more volatile forecasts for period and

cohort life expectancies, and therefore resulting in a wider confidence interval.
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5.2 Sensitivity analysis
The previous section and its results are based on the benchmark model, cali-
brated on the countries in I, on the calibration period T = {1900, . . . , 2021},
for ages X = {0, . . . , 90}. Next, a sensitivity analysis is conducted on a dif-
ferent calibration period. The sensitivity analysis will produce results based
on the same model calibrated on the countries in I, on the calibration period
T̃ = {1970, . . . , 2021}, for ages X = {0, . . . , 90}. The starting year of the
calibration period is now equal to the starting year of the calibration period
from the AG2022 model.

5.2.1 Parameter estimation
The estimates Âg

x, B̂g
x, α̂g,NL

x , and β̂g,NL
x in Figure 5.11 show similar patterns

as in the benchmark model. Figure 5.12 depicts the estimates K̂g
t and κ̂g,NL

t ,
which also show a similar trend as the benchmark, but over a shorter pe-
riod (1970-2021). The difference of course is that the mortality shocks due to
the two world wars and the Influenza pandemic are omitted during this period.
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Figure 5.11: Estimation of the age-specific parameters Âx and B̂x for the Euro-
pean reference group and estimation of the age-specific parameters α̂g,NL

x and
β̂g,NL

x for the Dutch deviation for ages 0-90 in years 1970-2021. Note, for ob-
taining a unique solution while estimating the parameters, four normalizations
were introduced: ∑B2

x = 1, ∑ β2
x = 1, ∑Kt = 0 and ∑κt = 0

Figure 5.12: Estimation of the mortality index K̂g
t for the European reference

group and its Dutch deviation κ̂g
t for ages 0-90 in years 1970-2021. Note, for

obtaining a unique solution while estimating the parameters, four normaliza-
tions were introduced: ∑B2

x = 1, ∑ β2
x = 1, ∑Kt = 0 and ∑

κt = 0. The
graph for κ̂g

t may appear volatile, however, when comparing the y-axis of the
two graphs, the Dutch deviation compared to the European reference group is
not significantly large.
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5.2.2 Forecasted mortality scenarios
The different calibration periods lead to different estimates of the parameters
for the time-series Kg

t and κg,NL
t . Compared to Table 5.1, the estimates for σ

and s are smaller in Table 5.4. The evolution in the projected time-series for
Kt therefore will be less volatile.

Parameter Female Male
µ -0.191 (0.025) -0.224 (0.026)
σ 0.143 (0.020) 0.159 (0.042)
p 0.082 (0.037) 0.064 (0.180)
m 0.485 (0.068) 0.331 (1.118)
s 0.000 (0.104) 0.298 (0.480)

Table 5.4: Estimated parameters of the time series for Kg
t with the standard

error between brackets, for the calibration period 1970-2021. The estimates
are obtained using the Log-Likelihood maximization described in Chapter 4.

Again, similar to Table 5.2, Table 5.5 presents the estimates for the parame-
ters in (4.24), the time-series for the overall mortality trend without a jump
component, now calibrated on 1970-2021.

Parameter Female Male
µ -0.203 (0.025) -0.211 (0.026)
σ 0.168 (0.074) 0.177 (0.089)

Table 5.5: Estimated parameters of the time series for K̃t = µ + K̃t−1 +
σQt, which is Kg

t , without shock. Standard error between brackets, for the
calibration period 1970-2021.

The difference between σ in Table 5.4 and Table 5.5 is small compared to the
difference in σ in the benchmark model. The fact that the mortality shocks
before 1970 are not captured by the model anymore, contributes to this smaller
difference. There still is a small difference in σ, due to the smaller mortality
shocks in the period 1970-2021. These mortality shocks are all incorporated
in the volatility term rather than in the additional jump term. Similar to the
benchmark model, due to the omission of m, the values for µ slightly differ.
Both upward and downward shocks are now incorporated in µ, resulting in
different estimates.
The estimates of the time-series for κg,NL

t in Table 5.6 do not show significant
differences compared to the the estimates of the time-series in Table 5.3 from
the benchmark model.
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Parameter Female Male
c0 0.000 (0.054) 0.001 (0.032)
c1 0.917 (0.024) 0.909 (0.058)
σ 0.349 (0.039) 0.232 (0.043)

Table 5.6: Estimated parameters of the time series for κg
t with the standard

error between brackets, for the calibration period 1970-2021. The estimates
are obtained using OLS as described in Chapter 4.

Next, the forecasts for the time-series Kt and κg,NL
t are depicted in Figure 5.13

and Figure 5.14 respectively.
The 90% confidence intervals in Figure 5.13 are narrower than the correspond-
ing confidence intervals of the benchmark model in Figure 5.5. This is an effect
of the less volatile parameters from the time-series for Kt. The confidence in-
tervals for the model without shocks have similar width as the confidence
intervals for the model with shocks now. A striking difference is the fact that,
for females, the model without shocks leads to a lower forecast for KF

t . Hence,
incorporating shocks has a bigger effect on females than on males.
Again, similar to Figure 5.6, in Figure 5.14, the future evolution of κg,NL

t are
concentrated around 0. This indicates that the future evolution of the Euro-
pean mortality trend aligns with the Dutch future mortality trend.

Figure 5.13: time-series for Kt for females (left) and males (right) for ages 0-90
in years 1970-2021. 100,000 simulations of the future evolution are produced
for ages 0-90 in years 2022-2070. The median and the 90% confidence interval
for these simulations are depicted. Furthermore, the confidence interval for
the forecasts of the model without shocks are presented.
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Figure 5.14: time-series for κg,NL
t for females (left) and males (right) for ages 0-

90 in years 1970-2021. 100,000 simulations of the future evolution are produced
for ages 0-90 in years 2022-2070. The median and the 90% confidence interval
for these simulations are depicted.

Next, new death probabilities are computed, based on the calibration pe-
riod T̃ = {1970, . . . , 2021}. Figure 5.15 and Figure 5.16 depict the death
probabilities qg

x,t for the model calibrated on the years 1970-2021 for ages
x ∈ {20, 40, 60, 80} for females and males respectively. The fitted values
and the observed values are depicted for the period 1970-2021. The forecasted
values with a 99% confidence interval and the reference by the AG2022 are
depicted as well.
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Figure 5.15: Estimates, observed values, and forecasts for death probabilities
for ages 20, 40, 60, and 80 for Dutch females. Calibration period 1970-2021,
and projection 2022-2070. The median and the 99% confidence interval ob-
tained from 10,000 simulations are plotted. As a reference, the AG2022 forecast
is added as well.
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Figure 5.16: Estimates, observed values, and forecasts for death probabilities
for ages 20, 40, 60, and 80 for Dutch males. Calibration period 1970-2021, and
projection 2022-2070. The median and the 99% confidence interval obtained
from 10,000 simulations are plotted. As a reference, the AG2022 forecast is
added as well.

The new forecasted death probabilities are very close to the reference fore-
casted death probabilities by the AG2022 model. For both females and males,
the AG2022 forecast almost completely fits within the 99% confidence inter-
val. In addition, these confidence intervals are less wide than the confidence
intervals in Figure 5.7 and 5.8 from the benchmark model.
Consequently, Figure 5.17 and Figure 5.18 depict the period and cohort life ex-
pectancy respectively, based on the new calibration period T̃ = {1970, . . . , 2021}.
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Figure 5.17: Observed and fitted period life expectancy for females (left) and
males (right), calibrated on the years 1970-2021 for ages 0-90, closed by Kan-
nisto’s method. Period life expectancy forecasts and a 95% confidence interval
for the years 2022-2070 are added as well. The red reference line is the AG2022
period life expectancy forecast.

Figure 5.18: Fitted cohort life expectancy and its 95% confidence interval for
females (left) and males(right), calibrated on the years 1970-2021 for ages 0-90,
closed by Kannisto’s method.

The best estimate period life expectancy is closer to the AG2022 forecast than
in the benchmark model. Moreover, the confidence intervals are narrower com-
pared to the confidence intervals in the benchmark model, particularly with
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respect to the confidence interval for male period and cohort life expectancies.
A possible explanation for the differences at high ages could be the usage of a
different Kannisto approach by the AG2022 as described in 4.3.1. The Kan-
nisto method used in the model incorporating mortality shocks, as described
in 4.4.3, may have a dampening effect for high ages compared to the AG2022
model.
Lastly, Table 5.7 compares cohort life expectancies at birth between the bench-
mark model, the model from the sensitivity analysis, and the AG2022 model
for the years 2024, 2045, and 2070.

Model Starting year Female Male
Benchmark 2024 90.77 85.95

2045 92.48 87.24
2070 94.01 88.64

Sensitivity 2024 90.72 88.47
2045 92.30 90.41
2070 93.81 92.21

AG2022 2024 92.86 90.15
2045 94.86 92.26
2070 96.83 94.28

Table 5.7: Comparison of the cohort life expectancy at birth between the
benchmark model, the model from the sensitivity analysis, and the AG2022
model for the years 2024, 2045, and 2070.

There is a significant difference between the cohort life expectancies at birth
for males in the benchmark model and the model described in the sensitivity
analysis. By calibrating data from 1970 onwards, instead of from 1900 onwards,
the model yields higher estimates for male cohort life expectancies at birth in
all future years. For females however, only minor differences in these numbers
occur. The reason for this could be the inclusion of the many male deaths
in the world wars when calibrating data from 1900 onwards. This inclusion
could lead to an underestimation of cohort life expectancy. Excluding the
two world wars, by calibrating data from 1970 onwards, results in higher male
cohort life expectancies. However, the model still deviates from the AG2022
forecasts for cohort life expectancies for both genders. This discrepancy arises
because the AG2022 sees Covid-19 as a disappearing trend in mortality, only
affecting period life expectancies, and not including any other jump process. In
contrast, the multi-population model incorporating mortality shocks also takes
mortality jumps from the calibrated years into account. The probability and
distribution of these jumps are simulated forward, causing potential mortality
shocks into the future. This dynamic approach results in lower (cohort) life
expectancies.
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6 Conclusion

This thesis aims to incorporate mortality shocks into a multi-population mor-
tality model. Historic events, such as the first World War, the second World
War, the Influenza pandemic in 1918, but also the very recent Covid-19 pan-
demic, caused mortality shocks globally. Current mortality models, as em-
ployed by actuarial associations like the AG in the Netherlands, used to ignore
these mortality shocks. This oversight leads to wrong forecasts for life ex-
pectancy and poses challenges for pension funds and life insurers in valuing
their liabilities. By investigating the number of European deaths in 2020 and
2021, I find that excess mortality has occurred due to the Covid-19 pandemic.
Many mortality models fail to incorporate these mortality shocks.
In this thesis, Using the Li-Lee model as a basis, similar to the models the AG
employ, jump events are added to account for mortality shocks. The model
is calibrated for ages 0-90 in the calibration period 1900-2021 using data on
deaths and exposures from several (Western) European countries with similar
GDP as the Netherlands. After parameter estimation, time-series models in-
cluding a jump component, are used to produce mortality forecasts.
Additionally, an outlier analysis is conducted to observe any outliers in the
mortality trend of the European reference group. In this outlier analysis, out-
liers during the years of the two world wars, during the Influenza pandemic,
and during the Covid-19 pandemic are identified.
After parameter calibration for the time series, used for forecasting mortality
rates, Kannisto is used for the closure of the mortality table. Having obtained
estimates for the force of mortality for ages 0-120, forecasts can be made for
period and cohort life expectancies. Compared to the AG2022 model, the
multi-population model incorporating shocks projects lower period and cohort
life expectancies. The transitory effect of the Covid-19 pandemic, as modeled
by the AG, without considering the potential for future shocks could be a rea-
son for this.
When altering the calibration period from 1900-2021 to 1970-2021, especially
the male period and cohort life expectancies increase. Omitting the world wars
in the calibration period, during which male mortality rates exceeded female
mortality rates, resulted in these increased life expectancies. The choice of
the calibration period plays a crucial role in capturing the impact of historical
events on mortality trends. Using the calibration period from 1900 onwards,
lead to more pessimistic life expectancies compared to the forecasts modeled
by the AG. This raises the question whether large mortality shocks, such as
the world wars or the influenza pandemic, will occur in the future. While
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hoping for their absence, one can never be completely certain. Therefore, it is
important to be prepared for such occurrences.
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7 Recommendations

Several models incorporating mortality shocks exist, including regime switch-
ing models or models applying extreme value theory. Recommendations for
future research include, instead of adding jumps, using regime switching mod-
els or extreme value theory to model shocks in a multi-population model. The
existing literature focuses mainly on single-population models.
Moreover, the AG2022 model applies a different Kannisto extrapolation method
compared to the one applied in this thesis. Instead of increasing death prob-
abilities for high ages, the observed trend suggest that death probabilities
should be decreasing for high ages. The new Kannisto method, as applied by
the AG2022 model, could be a topic for future research when incorporating
mortality shocks into a multi-population mortality model.
Additionally, future research may include investigating correlation between
mortality shocks. Instead of assuming that mortality shocks are uncorre-
lated, a recommendation is to investigate what would happen with the model
and its forecasts when incorporating correlated mortality shocks into a multi-
population mortality model.
Lastly, altering the calibration period and assessing its impact on the param-
eter estimation and on the death probabilities is a crucial aspect for further
research. Different calibration periods could have different projections for pe-
riod and cohort life expectancies. The impact of the Covid-19 pandemic on
mortality rates and life expectancy remains uncertain due to the lack of data
and the ongoing evolution of the Coronavirus. As time progresses and more
data becomes available, a more comprehensive understanding of the pandemic
can be developed. With this additional information and data, more accurate
forecasts for mortality and life expectancy can be generated.
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A Appendix

Figure A.1: Excess deaths in Iceland, Luxembourg, Norway, Finland, and
Switzerland during the Covid-19 pandemic. The graphs represent the number
of deaths per week in 2020 and 2021 compared to the average deaths per week
in 2016-2019. Source: STMF (2023)
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Figure A.2: The evolution of male and female period life expectancy in Iceland,
Finland, Luxembourg, Norway, Switzerland, and East-Germany for different
time periods. Source: HMD (2023)
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Country 1900-2018 2019 2020 2021
Austria HMD HMD EUROS EUROS
Belgium HMD HMD HMD HMD
Denmark HMD HMD HMD HMD
Finland HMD HMD HMD HMD
France (Metropolitan) HMD HMD HMD HMD
Germany HMD HMD HMD EUROS
Iceland HMD HMD HMD HMD
Ireland HMD HMD HMD EUROS
Luxembourg HMD HMD HMD HMD
Norway HMD HMD HMD HMD
The Netherlands HMD HMD HMD HMD
Sweden HMD HMD HMD HMD
Switzerland HMD HMD HMD HMD

Table A.1: Data sources for each country in each year of the calibration period.
Data from the years 1900-2018 all are obtained from the HMD.
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Figure A.3: Estimates, observed values, and forecasts for death probabilities
for ages 20, 40, 60, and 80 for Dutch females. Calibration period 1900-2021,
and projection 2022-2070. The median and the 99% confidence interval ob-
tained from 10,000 simulations are plotted. As a reference, the AG2022 forecast
is added as well.
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Figure A.4: Estimates, observed values, and forecasts for death probabilities
for ages 20, 40, 60, and 80 for Dutch males. Calibration period 1900-2021, and
projection 2022-2070. The median and the 99% confidence interval obtained
from 10,000 simulations are plotted. As a reference, the AG2022 forecast is
added as well.
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Figure A.5: Observed and fitted period life expectancy for females (left) and
males (right), calibrated on the years 1900-2021 for ages 0-90, closed by Kan-
nisto’s method. Period life expectancy forecasts and a 95% confidence interval
for the years 2022-2070 are added as well. The red reference line is the AG2022
period life expectancy forecast.

Figure A.6: Fitted cohort life expectancy and its 95% confidence interval for
females (left) and males(right), calibrated on the years 1900-2021 for ages 0-90,
closed by Kannisto’s method.
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