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Abstract

In this thesis, we delve into extending the framework proposed by Huisman
and Kort (2015) and Faninam et al. (2022). Interestingly, they found that in
a monopoly, duopoly, and triopoly the investment quantity and investment
size were equal, independent of how many potential entrants. Considering
exogenous firm order entry and a linear inverse demand function, it is in-
triguing to determine whether this behavior persists when more firms can
enter the market, an arbitrarily large number of firms n. Extending the
number of firms to n, this is found to be the case, meaning that no matter
how many firms can enter the market at a subsequent time, the i-th firm
will always invest the same.

This is a remarkable outcome. Questioning whether this is due to the
linear nature of the inverse demand function, delving into more complex for-
mulas seems intriguing, trying to reveal some more insights into what leads
to this outcome. We start by fixing the investment timing and investigating
how different inverse demand functions influence the investment decisions
of firms in both a monopoly and a duopoly. Here, every convex inverse
demand function displays a similar behavior, whereas the concave inverse
demand function exhibits the complete opposite behavior. Looking at these
results, there seems to be a correlation between the convexity/concavity of
an inverse demand function and the way the duopoly investment size and
monopoly investment size differ. This is, however, for a fixed investment tim-
ing. Taking this investment timing as a decision variable, the result for our
two selected inverse demand functions, one convex and one concave, persists.
So, considering a duopoly we observe that when the inverse demand func-
tion is convex, the duopoly size of the first firm is larger than the monopoly
output, and in the concave the opposite holds. Tweaking some parameters
and observing their effect, some irregularities in the results are discovered.
Our results, however, still seem promising when only taking some probably
more sound values for these parameters.
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1 Introduction

Entering a market is a precarious endeavor. There are a lot of external factors that can,
and will, change an investing decision of a potential entrant. These investments generally
have four characteristics, as discussed by Faninam et al. (2022). These four characteristics
are irreversibility, uncertainty, timing, and size.

Irreversibility refers to the fact that once an investment has been executed, the investor
has limited or no opportunity to reverse the investment, which was already recognized by
Dixit (1993). The uncertain nature of the investor’s future income is another problem when
dealing with these investment decisions. The investor deals at least with some uncertainty,
but more likely with considerable uncertainty. The timing is another issue in these settings.
The investor has an opportunity to invest, but it can postpone its investment if that will
benefit him more. Lastly, the quantity of its investment is also an element to consider. How
much of the product or goods will it produce? These are all elements that need addressing
when undertaking such an investment.

When considering these investment decisions, it is essential information how many firms
can, and possibly will, enter the market. If there is only one entrant, so there aren’t any
competitors for this lone firm, we are dealing with a monopoly. In this setting, this firm
does not need to take into account other decisions of other firms and can solely focus on
itself. This makes the choices for this entrant relatively straightforward. If, however, there
is another firm that is also interested in entering the market, the first firm should take into
account the decisions that the second firm will take, when considering its options.

Huisman and Kort (2015) already showed what will happen in the monopoly and duopoly
setting. Now, Faninam et al. (2022) looked into the effect of an extra potential entrant,
hence dealing with a triopoly. Here, the results were similar to the results of the monopoly
and duopoly case. In these three settings, it was found that the investment decisions are
not influenced by the entrance of an extra firm. Now, the question that arises from these
outcomes is whether or not this result will prevail if more and more firms can enter the
market. This question will be addressed in the upcoming sections.

A drawback of the previously mentioned studies is that they mainly focus on a linear
inverse demand function. This, however, might not be the most comprehensive one. Huisman
and Kort (2015) briefly treated the iso-elastic inverse demand function. It seems that only
in the linear case, the monopolist will invest in the same quantity and at the same time as
the first entrant in the duopoly setting. There are two effects of an extra potential investor.
Firstly, the price will go down, if more firms enter, since the total invested quantity will go
up. Hence, if this was the only relevant consequence of an extra firm, the first entrant would
invest less. Secondly, the first entrant might want to apply a deterrence strategy in order to
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make it less profitable for the new entrant to invest, and will therefore want to invest more.
These two effects cancel out when dealing with a linear inverse demand function. Therefore,
it seems interesting to delve into various other functions, both concave, and convex, and see
what will happen to the investment decisions.

Interestingly, it seems to be the case that all convex functions behave similarly, and all
concave functions do too. In a convex setting, we find that, for our chosen demand functions,
the optimal monopoly investment size is lower than the optimal duopoly investment size for
the first entrant. It is intriguing that in a concave setting, the opposite seems to be true.
Since it was already found that in a linear setting, these two are equal, this appears to be the
tipping point. Also, here various parameter values are tested and the optimal investment
decisions for different values are observed.

In the upcoming sections only exogenous firm order entry is considered. Hence, the order
of firms entering the market is predetermined. It might be interesting to extend this into
endogenous order entry, where the order is unknown, but that is beyond the scope of this
thesis. Another limitation is that in this thesis, only the deterrence strategy is investigated,
not the accommodation strategy. It is assumed that at the start of the investment window,
the price is sufficiently low that no firm will invest immediately. In further research, the
accommodation strategy can be considered, too. Earlier research by Huisman and Kort
(2015) and Faninam et al. (2022) gives promising results, but this will not be researched
here.

There is quite some history in the investigation of real options models. Dixit and Pindyck
(1994) and Trigeorgis (1996) both delved into this. They, however, investigated the optimal
investment timing but they did not consider the optimal investment quantity. The quantity
was assumed to be given, and the optimal investment timing was determined based on this
quantity.

Dixit (1993) did, however, investigate the opportunity to determine both the optimal
investment quantity and timing. This builds on Pindyck (1990) where irreversibility, capacity
choice, and the value of the firm were introduced, and on McDonald and Siegel (1986)
where the value of waiting was introduced. Dixit (1993) restricted to a monopoly case
exclusively. Bar-Ilan and Strange (1999) considered both timing and intensity separately,
but also together, however, they also did not examine competitors. The same is the case
for Dangl (1999) and Décamps et al. (2006). While all the previously mentioned paper
have their own interesting insights into this problem, none of them cover the setting with a
potential new entrant.

There has also been done research on frameworks where there are competitors. For
example, Huisman et al. (2003) conducted research on this, but they only considered the
investment timing for a fixed quantity.
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There is also literature where competition is taken into account, here, however, the
investment size is taken to be given, and the timing is investigated. Grenadier (2000),
Chevalier-Roignant and Trigeorgis (2011), and, Azevedo and Paxson (2014) have done similar
research in the fact that they all investigated the investment timing with competition, but
with the investment size given.

The first literature revolving around entry deterrence and entry accommodation was
conducted by Spence (1977), Dixit (1979), and Dixit (1980), where, e.g., Dixit (1979) did
not prioritize preventing new entries from the outset, and it lets current companies determine
their optimal strategy, considering the potential responses of future entrants. These papers
have been clearly summarized by Tirole (1988).

Yang and Zhou (2007) combine both deterrence and stochastic pricing, taking both entry
and quantity-setting into account. They showed that the expected profit of a new entrant
is affected by the incumbent’s capacity. A higher capacity for the incumbent leads to lower
profit for the new entrant. Yang and Zhou (2007) extends the model of Dangl (1999), where
it was concluded that the optimal installed capacity increases with uncertainty.

The sections below are arranged in the following manner. We start by delving into solely
the linear inverse demand framework, mathematically investigating a monopoly, a duopoly,
a triopoly, and finally an oligopoly. Afterwards, a numerical analysis will be done, looking
at the effects of different standard deviations and visualizing some of the results.

Next, we will diverge away from the linear inverse demand function, looking into a more
general case. First, some mathematical results are computed, after which several inverse
demand functions, as proposed by Balter et al. (2022), are explored. In this section, we will
not consider an oligopoly and only will look into the monopoly and duopoly, hoping to find
some regularities between the functions.

In the last section, we study two inverse demand functions, for which an optimal invest-
ment strategy can be found. The quadratic and the squared-root inverse demand functions
are examined. These two have been chosen since the quadratic function is concave and the
square-root function is convex. After the mathematical computations have been done, a
numerical analysis is executed in order to study these results.
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2 Linear inverse demand function

We consider a framework where firms can decide to undertake an investment to enter the
market. At the start, there are no firms present in the market. We will define the inverse
demand function as

P (t) = X(t)(α−Q(t))

where Q(t) is the total market output at time t, α is the market size and X follows a
geometric Brownian motion which is defined by

dX(t) = µX(t)dt+ σX(t)dz(t)

where z(t) ∼ N (0, 1). µ is the drift rate, dz(t) is the increment of a Wiener process, and
σ > 0 is a constant. Investors face an investment cost which will be defined as δKi, where Ki

is the capacity that the firm decides to invest and δ is a fixed cost per unit of capacity. The
inverse demand function is an explicit function which is referred to by Dixit and Pindyck
(1994) as P = XD(Q). In this case, we have specified D(Q) as α − Q(t). Comparing
it against the inverse demand function adopted by Huisman and Kort (2015), which they
defined as P (t) = X(t)(1 − ηQ(t)), it can be observed that the two functions are fairly
similar. Both are linear in Q(t), however, in our case, we have a fixed maximum capacity α,
instead of using their η.

We will assume that each firm will produce up to capacity, hence, Qi = Ki. From now
on, the invested capacity will be referred to by Qi, because of this assumption. As shown
by Dangl (1999), it is possible to make calculations relaxing this, however, this makes the
computations considerably more difficult. It can be argued that an investor will most likely
always produce up to capacity, as done by Goyal and Netessine (2007), however, there is
also claiming the opposite, e.g., Chicu (2013). Here, we will assume the two are equivalent.

Note that if there are m active firms in the market we have the total output of the market
is equal to Q = Q1 + · · · + Qm. We will also assume that r > µ, otherwise, the value of
the function will tend to infinity, in which case the problem is not coherent. r refers to the
discount rate. Another assumption we make is that the firms are risk-neutral, hence, they
will always try to optimize their expected value.

We will only consider the deterrence strategy. Hence, the value of X(0) is sufficiently
low that the next firm will not invest immediately. In further research, investigating what
will happen in the accommodation case is interesting too, but will not be dealt with here.

Each firm will possess a value function denoted as Vi(X,Q), representing their unique
value based on the investment quantity Qi and investment timing Xi. The subscript i
corresponds to the position of the firm as an entrant in the market. Thus, the value function
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for the first entrant is expressed as V1(X,Q), the second entrant’s value function is denoted
as V2(X,Q), and so on, reflecting the sequential order of entry into the market. Assumed
are homogeneous products, hence, investors are unable to differentiate themselves based on
product quality.

2.1 Monopoly

First, we will consider a monopoly. It is a monopoly in the sense that there is only one
potential investor, who does not have to consider investment decisions of new entrants,
since there aren’t any new entrants. We are interested in two investment choices, namely
the investment timing and investment quantity. Timing refers to a level of the stochastic
process X. When it has reached a particular level, the investor will start its investment.

In a monopoly setting, we can use a similar computation as done by Huisman and Kort
(2015). The expected value of the entrant is defined as follows

V (X) = E

[∫ ∞

t=0

QX (t) (α−Q) exp (−rt)dt− δQ

∣∣∣∣X (0) = X

]
The calculations have been conducted in subsection 6.1.1, resulting in the following decisions:

X∗ =
β + 1

β − 1

(r − µ) δ

α

Q∗ =
α

β + 1
.

(1)

where β is the positive root of the quadratic polynomial 1
2σ

2β2 + (µ− 1
2σ

2)β − r = 0, as
shown by Dixit and Pindyck (1994). There are two separate cases. One is that the standard
deviation of the geometric Brownian motion is zero, so there is no uncertainty in the market,
and one case is where σ > 0.

We find the following solution to β.

β =


r
µ , σ = 0

1
2 − µ

σ2 +

√(
1
2 − µ

σ2

)2
+ 2r

σ2 , σ > 0
(2)

If we compare (1) to the result from Huisman and Kort (2015), it can be noticed that
these are reasonably similar. This is to be expected since they are also applying a linear
inverse demand function in a similar setting.
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2.2 Duopoly

In the duopoly case, two firms can decide on entering the market. We will compute this
backwards, starting with the value for the second entrant, followed by computing the value
for the first entrant.

The value function for the second potential entrant is defined by

V ∗
2 (X2, Q1, Q2) =

X2Q2 (α− (Q1 +Q2))

r − µ
− δQ2

Examining this function, there are 3 non-constants here. A crucial observation is that
Q1 is a given value for the second investor since the second entrant can only invest once the
first entrant already has invested. This is due to the assumed exogenous firm order.

Now, taking the derivative with respect to Q2, and applying value matching and smooth
pasting, which has been computed in subsection 6.1.2, results in these investment decisions,
dependent on Q1,

X∗
2 (Q1) =

β + 1

β − 1
δ
r − µ

α−Q1

Q∗
2 (Q1) =

α−Q1

β + 1

(3)

The value function of the first investor in this duopoly setting is given by

V det
1 (X,Q1) =

Q1 (α−Q1)X

r − µ
− δQ1 −

(
X

X∗
2

)β1 Q1Q
∗
2X

∗
2

r − µ

Inserting (3) into this value function gives us a value function for the first investor only
depending on Q1 and X1. Therefore, again, the derivative with respect to Q1 is computed,
and value matching and smooth pasting are applied. Resulting in the following optimal
investment quantity and timing for the first investor,

X∗
1 =

δ

α
(r − µ)

β + 1

β − 1

Q∗
1 =

α

β + 1

(4)

where the value β is the same as in the monopoly case (2). The performed computations
have been reported in subsection 6.1.2.

Notably, both the investment timing and size for the first entrant in a duopoly correspond
to the investment decisions in a monopoly. This is similar to the result of Huisman and Kort
(2015).
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2.3 Triopoly

Earlier, we assumed only two firms. Now, we will add another one. Similar to the previous
section, we will start off with the last entrant, working our way backwards.

Faninam et al. (2022) already analyzed this, however, for a slightly different inverse
demand function. The function that they considered was P (t) = X(t)(1 − ηQ(t)), which is
identical to the one analyzed by Huisman and Kort (2015).

The value function for the third entrant is defined by

V3 (X,Q3) =
Q3X (α− (Q1 +Q2 +Q3))

r − µ
− δQ3

The optimal investment decisions, as computed in subsection 6.1.3, for the third entrant are

X∗
3 =

β + 1

β − 1

δ (r − µ)

α− (Q1 +Q2)

Q∗
3 =

α− (Q1 +Q2)

β + 1

(5)

Next, the investment decisions for the second entrant will be computed. To this end, the
value function of the second firm is defined by

V2 (X,Q2) =
Q2 (α− (Q1 −Q2))X

r − µ
− δQ2 −

(
X

X∗
3

)β1 Q2Q
∗
3X

∗
3

r − µ

Plugging in the results (5) leads to the following optimal investment quantity and size

X∗
2 =

β + 1

β − 1

δ (r − µ)

α−Q1

Q∗
2 =

α−Q1

β + 1

(6)

Notably, we observe here that the optimal investment quantity and size of the second investor
in a triopoly seems to correspond to the second investor in a duopoly. This is, however, not
the case if the outcome for Q1 is not the same in a triopoly as in a duopoly.

To evaluate the optimal investment in a triopoly, the value function for the first investor
is necessary.

V1 (X,Q1) =
Q1 (α−Q1)X

r − µ
− δQ1 −

(
X

X∗
2

)β1 Q1Q
∗
2X

∗
2

r − µ
−
(
X

X∗
3

)β1 Q1Q
∗
3X

∗
3

r − µ

Inserting our previously found (6) and (5), taking the derivative with respect to Q1 and
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applying value matching and smooth pasting gives us the following

X∗
1 =

β + 1

β − 1

δ (r − µ)

α

Q∗
1 =

α

β + 1

(7)

which corresponds to the decisions of the first investor in a monopoly and duopoly. Hence,
similar to Faninam et al. (2022), we find that the decisions of the first two investors are
not influenced by the introduction of a third potential entrant. Note that all of the above-
mentioned computations are written down in subsection (6.1.3).

2.4 Oligopoly

The results in our previous sections exhibit an interesting pattern. It appears to be the
case that no matter how many potential new entrants are included, the optimal investment
timing and size remain the same. In this section, we will try to prove this.

Let us assume that in this oligopoly, there are n potential entrants. If we observe the
results from the previous sections, an educated guess for the optimal investment decisions
for the i-th entrant, where i ∈ {1, . . . , n}, is

X∗
i =

β + 1

β − 1
δ

r − µ

α−
∑i−1

j=1Qj

Q∗
i =

α−
∑i−1

j=1Qj

β + 1

(8)

In order to prove this, strong induction is utilized. First, the base case i = n will be
proven. n refers to the last entrant of the market. Next, we will take into consideration the
i-th entrant, where 1 ≤ i < n. Here, it is assumed (8) holds for all i < j ≤ n, since strong
induction is used. The proof for this is contained in subsection 6.1.4.

(8) can actually be rewritten into a non-recursive formula. The proof for this is in
subsection 6.1.4 as well. The results are the following.

Q∗
i =

(
β

β + 1

)i−1
α

β + 1

X∗
i =

β + 1

β − 1
δ
r − µ

α

(
β + 1

β

)i−1

As expected, it can noticed that the investment decisions remain the same, independent of
the number of potential entrants. This applies to all investors.
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2.5 Analysis

With the computations in the previous subsections, we notice that no matter how many
potential entrants will enter the market, the first entrant will always make the same decisions,
i.e., it will always invest the same quantity at the same time. This is a very intriguing result.
There are two effects that the first entrant should take into consideration when deviating
from its monopoly strategy to deter potential entrants. The first effect is that it will be less
profitable to invest, due to the entrance of new competitors. New competitors will increase
the total output and, therefore, decrease the price. For this reason, the first entrant will
want to invest less. The second consequence of deviating is that, if the first entrant invests
more, the second investor will invest less, which will drive the price up. Apparently, these
two effects cancel out, which is likely due to the linear nature of the chosen inverse demand
function. This holds true for all entrants, not only for the first. To explore the effect of
linearity of the inverse demand function on the investment decisions, different functions will
be investigated to find regularities. This will be done in the upcoming sections.

In table (1), the outcomes for the different optimal investment quantities for firms 1, ..., 20
are computed. Since we have proved that the optimal investment does not depend on the
number of firms, this is valid for an arbitrary number of potential entrants.

As we can see, for the first two firms increasing uncertainty leads to higher investment.
If we observe the values for firms that enter the market later than the first two, we can see
that the value actually decreases in σ. There are two effects at play in this situation. On
one hand, larger volatility leads to a larger investment, as observed by Dixit (1993). On the
other hand, there is a reduction in the remaining market size due to the increase in earlier
investments. If the uncertainty becomes larger, the preceding entrants will already have
invested more, and therefore the new entrants will invest less.

Figure (2) is a graph representing the effects of σ. We can see that, for the first two firms,
the optimal investment quantity increases, which was already observed by Dixit (1993), who
found that when σ is larger, investors will take on larger projects. For all following entrants,
the optimal quantity is actually less. If we look at the relative effect of the volatility by
looking in table (1), we can see that the standard deviation has a larger effect on the
investment quantity from firms that enter the market later, relatively speaking.

Now, we will take a look at the optimal investment timing for different entrants. These
are denoted in table (2). Here we can see that X∗

i is increasing in σ, which is similar to the
conclusions by Huisman and Kort (2015), and increases as more firms have already entered.
Here, similar to our observation for the optimal investment quantity, it can be observed that
the effect of the volatility will delay the investment of later entrants more significantly.

Figure (3) shows how the investment timing behaves over each firm for different values
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of σ. This shows the previously mentioned effect of the volatility very clearly. For σ = 0.40,
the function seems to explode when looking at later entrants.

Another interesting thing to analyze is the evolution of the value function for each entrant
and various σ’s. This is denoted in table (3). Notably, the value appears to converge as the
number of entrants approaches infinity. This observation is reasonable, considering that Q∗

i

diminishes to a negligible value as i becomes larger.
Now, it seems interesting to see how the profit for the first entrant evolves over time. We

will denote expected profit at time t as Πn
t . Here, the n represents the number of potential

entrants.
We can define the function for this profit function as follows:

Πn
t̂
= E

[∫ t̂

t=0

Q∗
1X

∗(t)(α−Q∗
1)e

−rtdt− δQ∗
1 −

n∑
k=i+1

∫ t̂

t=T∗
k

Q∗
1X

∗(t)Q∗
ke

−rtdt

∣∣∣∣∣X(0) = X∗

]

At the point of investment, t = 0, we can see that the current profit is equal to −δQ∗
1. This

is because the firm has not made any profit, however, has made the investment.
We need an assumption for the standard deviation, For now, we will set this to σ = 0,

removing all uncertainty. Even though this simplifies the problem drastically, I can give us
a general idea of how the value function behaves. In figure (1), the profit over time of the
first entrant can be observed for various numbers of potential entrants.

Here, we can see that in the monopoly case, i.e., n = 1, we have that the profit follows
a differentiable path. If we observe the function for n = 2, the duopoly, we see that there
is a kink in the graph line. This is because, when the second firm has entered the market,
the price will go down compared to before the investment of the second entrant, due to a
larger total output. There, the value will suddenly increase less steeply. Afterwards, the
line will follow a differentiable path, since there won’t be any new entrants. The market is
now only influenced by the stochastic process, which is not a stochastic process anymore due
to our assumption that σ = 0. Since before the investment of the second entrant, the first
firm will invest its monopoly optimal quantity, the function completely coincides with the
monopoly function, which is the line for n = 1. If we look at n = 3, we see that there are two
kinks, one when the second investor enters the market, and one when the third firm enters
the market. This behavior resumes as more and more firms will enter the market. We can
also see that the value converges as the number of firms approaches infinity. As the number
of firms increases, the kinks are barely observable, due to the size of the investment of the
new entrant. This minuscule investment, in comparison with the size of the first entrant,
influences the price marginally. The investment size of new entrants approaches 0 as n goes
to infinity. The lines in this figure converge to the values denoted in table (3).
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Q∗
1 Q∗

2 Q∗
3 Q∗

4 Q∗
5 Q∗

6 Q∗
7 Q∗

8 Q∗
9 Q∗

10

σ = 0.00 7.5000 4.6875 2.9297 1.8311 1.1444 0.7153 0.4470 0.2794 0.1746 0.1091
σ = 0.05 7.5626 4.7030 2.9246 1.8187 1.1310 0.7033 0.4374 0.2720 0.1691 0.1052
σ = 0.10 7.7258 4.7414 2.9098 1.7858 1.0960 0.6726 0.4128 0.2533 0.1555 0.0954
σ = 0.15 7.9400 4.7878 2.8871 1.7409 1.0498 0.6330 0.3817 0.2302 0.1388 0.0837
σ = 0.20 8.1650 4.8316 2.8591 1.6919 1.0012 0.5925 0.3506 0.2075 0.1228 0.0726
σ = 0.25 8.3785 4.8685 2.8290 1.6438 0.9552 0.5550 0.3225 0.1874 0.1089 0.0633
σ = 0.30 8.5714 4.8980 2.7988 1.5993 0.9139 0.5222 0.2984 0.1705 0.0974 0.0557
σ = 0.35 8.7413 4.9208 2.7701 1.5594 0.8778 0.4942 0.2782 0.1566 0.0882 0.0496
σ = 0.40 8.8889 4.9383 2.7435 1.5242 0.8468 0.4704 0.2613 0.1452 0.0807 0.0448

Q∗
11 Q∗

12 Q∗
13 Q∗

14 Q∗
15 Q∗

16 Q∗
17 Q∗

18 Q∗
19 Q∗

20

σ = 0.00 0.0682 0.0426 0.0266 0.0167 0.0104 0.0065 0.0041 0.0025 0.0016 0.0010
σ = 0.05 0.0654 0.0407 0.0253 0.0157 0.0098 0.0061 0.0038 0.0024 0.0015 0.0009
σ = 0.10 0.0586 0.0359 0.0221 0.0135 0.0083 0.0051 0.0031 0.0019 0.0012 0.0007
σ = 0.15 0.0505 0.0304 0.0183 0.0111 0.0067 0.0040 0.0024 0.0015 0.0009 0.0005
σ = 0.20 0.0430 0.0254 0.0151 0.0089 0.0053 0.0031 0.0018 0.0011 0.0006 0.0004
σ = 0.25 0.0368 0.0214 0.0124 0.0072 0.0042 0.0024 0.0014 0.0008 0.0005 0.0003
σ = 0.30 0.0318 0.0182 0.0104 0.0059 0.0034 0.0019 0.0011 0.0006 0.0004 0.0002
σ = 0.35 0.0279 0.0157 0.0089 0.0050 0.0028 0.0016 0.0009 0.0005 0.0003 0.0002
σ = 0.40 0.0249 0.0138 0.0077 0.0043 0.0024 0.0013 0.0007 0.0004 0.0002 0.0001

Table 1: Optimal investment quantity Q∗
i

r = 0.1, µ = 0.6, α = 20, δ = 0.1

X∗
1 X∗

2 X∗
3 X∗

4 X∗
5 X∗

6 X∗
7 X∗

8 X∗
9 X∗

10

σ = 0.00 0.0008 0.0013 0.0020 0.0033 0.0052 0.0084 0.0134 0.0215 0.0344 0.0550
σ = 0.05 0.0008 0.0013 0.0021 0.0034 0.0055 0.0088 0.0142 0.0228 0.0367 0.0590
σ = 0.10 0.0009 0.0014 0.0023 0.0038 0.0062 0.0101 0.0165 0.0268 0.0437 0.0712
σ = 0.15 0.0010 0.0016 0.0027 0.0044 0.0073 0.0122 0.0202 0.0335 0.0555 0.0921
σ = 0.20 0.0011 0.0018 0.0031 0.0053 0.0089 0.0150 0.0254 0.0429 0.0725 0.1225
σ = 0.25 0.0012 0.0021 0.0037 0.0063 0.0108 0.0186 0.0320 0.0551 0.0949 0.1633
σ = 0.30 0.0014 0.0024 0.0043 0.0075 0.0131 0.0230 0.0402 0.0704 0.1231 0.2155
σ = 0.35 0.0016 0.0028 0.0050 0.0089 0.0158 0.0281 0.0499 0.0887 0.1576 0.2799
σ = 0.40 0.0018 0.0032 0.0058 0.0105 0.0189 0.0340 0.0612 0.1102 0.1984 0.3570

X∗
11 X∗

12 X∗
13 X∗

14 X∗
15 X∗

16 X∗
17 X∗

18 X∗
19 X∗

20

σ = 0.00 0.0880 0.1407 0.2252 0.3603 0.5765 0.9223 1.4757 2.3612 3.7779 6.0446
σ = 0.05 0.0949 0.1526 0.2453 0.3945 0.6344 1.0201 1.6403 2.6378 4.2417 6.8208
σ = 0.10 0.1160 0.1891 0.3081 0.5020 0.8180 1.3328 2.1717 3.5387 5.7660 9.3954
σ = 0.15 0.1528 0.2533 0.4201 0.6967 1.1554 1.9160 3.1775 5.2695 8.7388 14.4923
σ = 0.20 0.2070 0.3498 0.5912 0.9990 1.6882 2.8529 4.8212 8.1473 13.7681 23.2667
σ = 0.25 0.2811 0.4837 0.8324 1.4326 2.4654 4.2429 7.3018 12.5661 21.6256 37.2166
σ = 0.30 0.3771 0.6600 1.1550 2.0213 3.5372 6.1901 10.8327 18.9572 33.1752 58.0565
σ = 0.35 0.4972 0.8832 1.5689 2.7869 4.9507 8.7943 15.6222 27.7513 49.2975 87.5719
σ = 0.40 0.6427 1.1568 2.0823 3.7481 6.7466 12.1440 21.8591 39.3464 70.8235 127.4824

Table 2: Optimal investment timing X∗
i

r = 0.1, µ = 0.6, α = 20, δ = 0.1



n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
σ = 0.00 1.1250 0.6110 0.3762 0.2689 0.2199 0.1975 0.1873 0.1826 0.1804 0.1795
σ = 0.05 1.1733 0.6361 0.3901 0.2775 0.2260 0.2024 0.1916 0.1866 0.1844 0.1833
σ = 0.10 1.3123 0.7081 0.4300 0.3019 0.2429 0.2158 0.2033 0.1975 0.1949 0.1937
σ = 0.15 1.5302 0.8205 0.4913 0.3387 0.2679 0.2350 0.2198 0.2128 0.2095 0.2080
σ = 0.20 1.8165 0.9674 0.5705 0.3850 0.2983 0.2577 0.2388 0.2299 0.2258 0.2239
σ = 0.25 2.1647 1.1452 0.6651 0.4390 0.3325 0.2824 0.2587 0.2476 0.2424 0.2399
σ = 0.30 2.5714 1.3521 0.7739 0.4997 0.3697 0.3081 0.2788 0.2650 0.2584 0.2553
σ = 0.35 3.0352 1.5872 0.8963 0.5667 0.4095 0.3345 0.2987 0.2816 0.2735 0.2696
σ = 0.40 3.5556 1.8502 1.0322 0.6399 0.4518 0.3615 0.3182 0.2975 0.2875 0.2827

n = 11 n = 12 n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 n = 19 n = 20
σ = 0.00 0.1790 0.1788 0.1787 0.1787 0.1787 0.1787 0.1786 0.1786 0.1786 0.1786
σ = 0.05 0.1828 0.1826 0.1825 0.1825 0.1825 0.1825 0.1824 0.1824 0.1824 0.1824
σ = 0.10 0.1931 0.1929 0.1927 0.1927 0.1927 0.1926 0.1926 0.1926 0.1926 0.1926
σ = 0.15 0.2072 0.2069 0.2068 0.2067 0.2067 0.2067 0.2066 0.2066 0.2066 0.2066
σ = 0.20 0.2230 0.2225 0.2223 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222
σ = 0.25 0.2388 0.2382 0.2379 0.2378 0.2378 0.2377 0.2377 0.2377 0.2377 0.2377
σ = 0.30 0.2538 0.2531 0.2528 0.2526 0.2525 0.2525 0.2525 0.2525 0.2525 0.2525
σ = 0.35 0.2677 0.2669 0.2664 0.2662 0.2661 0.2661 0.2661 0.2661 0.2661 0.2661
σ = 0.40 0.2804 0.2793 0.2788 0.2786 0.2784 0.2784 0.2783 0.2783 0.2783 0.2783

Table 3: Value of the first firm for n potential entrants
r = 0.1, µ = 0.6, α = 20, δ = 0.1
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Figure 1: Profit Πn
t̂

over time t
σ = 0, r = 0.1, µ = 0.06, α = 20, δ = 0.1
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i

r = 0.1, µ = 0.06, α = 20, δ = 0.1
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Figure 3: Optimal investment timing X∗
i

r = 0.1, µ = 0.06, α = 20, δ = 0.1
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3 General inverse demand function

So far, we have only considered the case where the price is a function of a geometric Brow-
nian motion times a function that is decreasing and linear in Q, the linear inverse demand
function. We will now evaluate a more general case, where the inverse demand function will
be defined as follows

P = Xh(Q)

Note that we still assume h(Q) to be decreasing, however, now the function is not necessarily
linear. The rest of our assumptions will be as they were in the framework in section 2.

3.1 Monopoly

If we now apply the same calculations as we have done before, we obtain the following for
the value function in the monopoly setting

V (X,Q) =
Qh(Q)X

r − µ
− δQ

Taking the derivative with respect to Q, we obtain

∂V (X,Q)

∂Q
=
h′(Q)XQ

r − µ
+
h(Q)X

r − µ
− δ = 0

We, again, apply value matching and smooth pasting, which gives us the following

0 = −X
β

Qh(Q)

r − µ
+
Qh(Q)X

r − µ
− δQ

(
β − 1

β

)
h(Q)X

r − µ
= δ

X =
β

β − 1

δ(r − µ)

h(Q)
(9)

It is possible to simplify the above-mentioned equations by inserting X. This results in
the following equation

βQh′(Q) + h(Q) = 0 (10)

Computing the formula for Q from this equation, we can easily find X, meaning we have
our optimal investment quantity and investment timing for the monopoly setting.
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3.2 Duopoly

Now, we will derive the optimal investment size and timing in the duopoly case. The value
function for the second firm is defined by

V2(X,Q) =
XQ2h(Q1 +Q2)

r − µ
− δQ2

taking the derivative with respect to Q2 we obtain

∂V2(X,Q)

∂Q2
=
X2h(Q2 +Q2)

r − µ
+
X2Q2h

′(Q1 +Q2)

r − µ
− δ

= X
h(Q1 +Q2) +Q2h

′(Q1 +Q2)

r − µ
− δ

= 0

Applying value matching and smooth pasting

0 =
XQ2h(Q1 +Q2)

r − µ
− X

β

Q2h(Q1 +Q2)

r − µ− δQ2

=
β − 1

β

Xh(Q1 +Q2)

r − µ
− δ

X2 =
β

β − 1

δ(r − µ)

h(Q1 +Q2)
(11)

We can simplify this further by plugging in X2

β

β − 1

δ(r − µ)

h(Q1 +Q2)

h(Q1 +Q2) +Q2h
′(Q1 +Q2)

r − µ
− δ = 0

β

β − 1

h(Q1 +Q2) +Q2h
′(Q1 +Q2)

h(Q1 +Q2)
− 1 = 0

β(h(Q1 +Q2) +Q2h
′(Q1 +Q2)) = (β − 1)h(Q1 +Q2)

βQ2h
′(Q1 +Q2) + h(Q1 +Q2) = 0 (12)

With (11) and (12) we arrive at an obstacle. We are not always able to find an explicit
solution for Q2 for all h(Q). An explicit formula for Q2 is needed for value matching and
smooth pasting.

Therefore, we will examine if the optimal investment timing and size of the first entrant
will deviate from the monopoly case by fixing the investment timing, and then calculating
the optimal investment quantity.
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The value function for the first investor is defined as follows

V1(X,Q) =E

[∫ T∗
2

t=0

Q1X(t)h(Q1)e
−rtdt− δQ1 +

∫ ∞

T∗
2

Q1X(t)h(Q1 +Q2)e
−rtdt

∣∣∣∣∣X(0) = X

]

=E

[ ∫ ∞

t=0

Q1X(t)h(Q1)e
−rtdt−

∫ ∞

t=T∗
2

Q1X(t)h(Q1)e
−rtdt− δQ1

+

∫ ∞

t=T∗
2

Q1X(t)h(Q1 +Q2)e
−rtdt

∣∣∣∣X(0) = X

]
=
Q1h(Q1)X

r − µ
−
(
X

X∗
2

)β
Q1h(Q1)X

∗
2

r − µ
+

(
X

X∗
2

)β
Q1h(Q1 +Q2)X

∗
2

r − µ
− δQ1

=
Q1h(Q1)X

r − µ
−
(
X

X∗
2

)β
Q1X

∗
2

r − µ
(h(Q1)− h(Q1 +Q2))− δQ1

The optimal investment quantity of the first investor will be determined as follows. As
mentioned before, we will fix the optimal investment timing to the monopoly investment
timing, and we will deviate the investment quantity for the first entrant. From there, we can
determine the optimal investment size and timing of the second entrant. The two equations
that will be used for this are (11) and (12).

With the investment choices of the second entrant, we can determine the result for the
value function of the first investor. We then try to find the optimum, and the Q1 at the
optimum is the optimal investment size given X1.

This is, however, the case assuming that it is not possible to find an explicit solution for
Q2. If we assume that it is possible to find an explicit solution for Q2, we can resume our
calculations. What we assume is that there is a feasible, explicit solution to (12) in terms of
Q2. Since the only other decision variable present in this equation is Q1, we know that Q2

is only dependent on Q1. If we were to plug Q2 into (11), we can see that the only decision
variable in this solution for X2 is Q1, hence, X2 only depends on Q1 as well.

The value function for the first investor is defined as

V1(Q,X) =
Q1h(Q1)X1

r − µ
− δQ1 −

(
X1

X2

)β

X2
Q1 (h(Q1 +Q2)− h(Q1))

r − µ

which can be rewritten into

V1(Q,X) =
Q1h(Q1)X1

r − µ
− δQ1 −Xβ

1 g(Q1)
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where

g (Q1) = X1−β
2

Q1 (h(Q1 +Q2)− h(Q1))

r − µ

From this, we can take the derivative of Q1, and apply value matching and smooth pasting,
for which the calculations have been noted in subsection 6.2.2. Taking the results for the
second investor, the following equations are left

βQ2h
′(Q1 +Q2) + h(Q1 +Q2) = 0 (13)

X2 =
β

β − 1

δ(r − µ)

h(Q1 +Q2)
(14)

0 =
(h (Q1) + h′ (Q1)Q1)

r − µ
X1 − δ +Xβ

1

∂

∂Q1
g (Q1) (15)

g (Q1) = X1−β
2

Q1 (h(Q1 +Q2)− h(Q1))

r − µ
(16)

X1 =
βδ(r − µ)

(β − 1)h(Q1)
(17)

Here, there are four decision variables with four equations, hence solvable. The MathWorks,
Inc. (2023) is used to compute the optimal investment decisions for both firms. Again, this
procedure only works when there is an explicit solution for Q2, which is generally not the
case.

3.3 Analysis

As a start, the investment timing for the first investor will be fixed. In this way, it is
possible to compute the optimal investment quantity for most inverse demand functions.
The functions that will be considered are identical to the ones studied in Balter et al.
(2022), except for the iso-elastic demand, which will not be treated here. The reason for
this is that Huisman and Kort (2015) have proven that, using investment costs as δQi, the
first firm will always invest at the start of the investment window. This gives some atypical
results. They solved this by choosing an alternative investment cost, namely δ0 + δ1Qi. We
have opted to exclude this because it has already been analyzed and three other convex
demand functions will be discussed. If the iso-elastic demand function were to be included,
the original framework should be altered without giving us much more insight. Therefore, it
will be disregarded. In table (5), the inverse demand functions, the graph with the outcomes
of the value function for different Q1’s, and how h(Q) behaves are displayed. Here, σ has
been set to 0.

As we can see, in the first row, we have the original h(Q) which is linear and decreasing.
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Here, as concluded before, we have that the investment quantity for the first entrant in
a duopoly coincides with the investment quantity in a monopoly. What is interesting to
observe is that, if h(Q) is convex, the investment quantity for the first entrant is higher in a
duopoly than in a monopoly. On the other hand, if h(Q) is concave, the quantity is lower.
It cannot be concluded that this result holds in general, however, this seems promising.

To interpret this, we should look at the two effects at play. As mentioned before, the
investment size is decreased by the loss in value due to a potential new entrant and, on the
other hand, it is increased because the firm wants to increase the size of the investment in
order to delay the investment of the second investor.

If the function h(Q) is convex, investment by the second investor influences the price less
significantly. The first investor wants to be alone in the market as long as possible and will,
therefore, invest more than it would in a monopoly. The effect of the loss of value has a less
significant impact than the effect of the advantage of delaying the second firm’s investment.

In the setting of a concave h(Q), this works the opposite way. A larger investment reduces
the price more significantly, hence the effect of the incentive to invest less due to the price
reduction is more prevalent than the the incentive to delay the second investment.

As we have stated before, these effects completely balance each other out in the linear
setting.

If we observe table (4), we see that this behavior persists over different values of σ. It
can be observed that the difference between the monopoly and duopoly output actually
amplifies, as σ increases.

Note that the duopoly Q1’s are not necessarily the optimal investment quantity. The
investment timing is fixed to the monopoly timing, however, this might not be true in the
optimum. What we can conclude is that in the specified functions, and with our assumed
parameter values only in the linear demand we have that the investment quantity and timing
are equal in the duopoly and monopoly setting. In all other functions that have been
discussed, the monopoly strategy is not an optimal strategy for the first entrant in a duopoly.

We will investigate this further by looking into two inverse demand functions for which
the optimal investment quantity and timing can be computed. Of the functions that will be
considered, one is convex, and one is concave. In this manner, the effect of the convexity
and concavity of the inverse demand function can be observed.

The functions that will be considered are the quadratic and square-root inverse demand
functions, in sections 4.1 and 4.2, respectively. For both of these, we can compute an
explicit solution for Q2, meaning that we can actually find the optimal investment quantity
and timing for both investors. This will be executed in the following section.
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Linear Exponential
Qmon

1 Qduo
1 Qduo

1 −Qmon
1 Qmon

1 Qduo
1 Qduo

1 −Qmon
1

σ = 0.00 7.5000 7.5000 0.0000 1.3956 1.4524 0.0567
σ = 0.05 7.5626 7.5626 0.0000 1.4268 1.4870 0.0603
σ = 0.10 7.7258 7.7258 0.0000 1.5087 1.5789 0.0701
σ = 0.15 7.9400 7.9400 0.0000 1.6179 1.7027 0.0848
σ = 0.20 8.1650 8.1650 0.0000 1.7341 1.8366 0.1025
σ = 0.25 8.3785 8.3785 0.0000 1.8459 1.9676 0.1217
σ = 0.30 8.5714 8.5714 0.0000 1.9477 2.0892 0.1414
σ = 0.35 8.7413 8.7413 0.0000 2.0381 2.1989 0.1608
σ = 0.40 8.8889 8.8889 0.0000 2.1170 2.2965 0.1795

Algebraic Logarithmic Logit
Qmon

1 Qduo
1 Qduo

1 −Qmon
1 Qmon

1 Qduo
1 Qduo

1 −Qmon
1 Qmon

1 Qduo
1 Qduo

1 −Qmon
1

σ = 0.00 0.1317 0.1372 0.0056 0.5518 0.5440 -0.0078 0.0715 0.0745 0.0031
σ = 0.05 0.1361 0.1422 0.0061 0.5552 0.5472 -0.0080 0.0729 0.0761 0.0032
σ = 0.10 0.1478 0.1555 0.0077 0.5641 0.5555 -0.0086 0.0766 0.0802 0.0036
σ = 0.15 0.1636 0.1737 0.0101 0.5757 0.5662 -0.0094 0.0815 0.0857 0.0042
σ = 0.20 0.1806 0.1937 0.0131 0.5877 0.5774 -0.0104 0.0866 0.0915 0.0049
σ = 0.25 0.1970 0.2135 0.0165 0.5991 0.5878 -0.0114 0.0915 0.0971 0.0057
σ = 0.30 0.2121 0.2322 0.0201 0.6093 0.5970 -0.0123 0.0959 0.1023 0.0064
σ = 0.35 0.2255 0.2493 0.0238 0.6182 0.6050 -0.0132 0.0998 0.1068 0.0071
σ = 0.40 0.2373 0.2646 0.0273 0.6260 0.6120 -0.0140 0.1031 0.1109 0.0077

Table 4: Q∗
1’s for different σ’s, h(Q)’s, and potential entrants.

The constants are the same as in (5)
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Linear demand
h(Q) = α−Q

α = 20

7
.5

Exponential demand
h(Q) = 1− ϕ lnQ

ϕ = 0.5

1
.3

9
5
6

1
.4

5
2
4

Algebraic demand
h(Q) = ζQ−θ − 1
ζ = 1, θ = 0.2

0
.1

3
1
7

0
.1

3
7
2

Logarithmic demand
h(Q) = 1− ξeκQ

ξ = 0.3, κ = 1

0
.5

4
4
0

0
.5

5
1
8

Logit demand
h(Q) = ψ ln ( 1

Q − 1)− 1

ψ = 1.3

0
.0

7
1
5

0
.0

7
4
5

Table 5: Optimal investment quantities for various price functions with σ = 0
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4 Convex vs. Concave

Opposed to what we assumed in the previous section, i.e., the investment timing for the
duopoly was fixed to the monopoly timing, in this section we will consider the case where
the investment timing is a decision variable. We are hoping that the results from the previous
section still hold. Namely, the duopoly output is higher than the monopoly output, while
for the concave setting, the opposite is true.

4.1 Quadratic inverse demand function

In this section, the quadratic inverse demand function will be considered. We will define
this inverse demand function as follows

P = X(α−Q2)

The reason for this is that we are looking for an explicit solution to Q2, which is possible for
this inverse demand function. The other assumptions from the previous sections will still be
in place.

4.1.1 Monopoly

First, we will consider only one potential entrant, the monopoly setting. Using (9) and (10),
we can easily derive the optimal investment decisions of the first, and only, investor. The
computations are noted in subsection 6.3.1.1. The investment decisions are

Q =

√
α

1 + 2β

X =
1 + 2β

β − 1

δ(r − µ)

2α

4.1.2 Duopoly

Next, the duopoly setting will be considered. We will again do this starting by optimizing
the investment decision, assuming Q1 and X1 to be known. Our calculations in the previous
section are again convenient.

h(Q) will be plugged into (13) and (14), which results in the subsequent investment
quantity and timing for the second investor.

Q2 =

√
β2Q2

1 + (2β + 1)α

2β + 1
− β + 1

2β + 1
Q1
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X2 =
β

β − 1

δ(r − µ)

α− (Q1 +Q2)2

The derivation of these investment decisions is reported in subsection 6.3.1.2.
With these two equations, and the previously calculated equations (15) and (17), we

end up with the following set of equations which can be solved to determine the optimal
investment quantity and timing for both the first and second investor.

Q2 =

√
β2Q2

1 + (2β + 1)α

2β + 1
− β + 1

2β + 1
Q1

X2 =
β

β − 1

δ(r − µ)

α− (Q1 +Q2)2

0 =
α− 3Q2

1

r − µ
X1 − δ +Xβ

1

∂

∂Q1
g(Q1)

g(Q1) = X1−β
2

Q1(Q
2
1 − (Q1 +Q2)

2)

r − µ

X1 =
β

β − 1

δ(r − µ)

α−Q2
1

We will not bother ourselves with calculating the mathematical equations. It is clear that it
is possible to take the derivative of g(Q1) with respect to Q1, by first plugging in our results
for Q2 and X2. The MathWorks, Inc. (2023) will take care of the computations, the analysis
is carried out in subsection 4.3.

4.2 Square-root inverse demand function

In this segment, we’ll examine the square-root inverse demand function. This formulation
facilitates an explicit derivation of

P = X(α−
√
Q)

making our task straightforward. Again, the assumptions from the previous sections are still
in place.

4.2.1 Monopoly

Starting with a situation where there’s only a single potential entrant, we delve into the
monopoly framework. Building upon the analytical insights from section 3, the optimal
investment choices for this lone investor can be determined. The calculations behind these

26



investment decisions can be found in 6.3.2.1.

Q =

(
α

1 + 1
2β

)2

X =
2 + β

β − 1

δ(r − µ)

α

4.2.2 Duopoly

Transitioning to a scenario with two potential entrants, we’ll decode the duopoly framework.
We start our analysis by honing in on the optimal investment decisions, assuming Q1 and
X1 to be known. Our previous calculations play a pivotal role here. By integrating h(Q)

into (13) and (14), we derive the following investment quantity and timing for our second
entrant.

Q2 =
2α2 + 2α

√
α2 + (β2 + 2β)Q1 + (2β + 4)Q1

(β + 2)2

X2 =
β

β − 1

δ(r − µ)

α−
√
Q1 +Q2

Melding these derivations with the previously established equations (15) and (17), we are
presented with a comprehensive equation system. This system paves the way for determining
the optimal investment quantity and timing for both investors.

4.3 Analysis

Now, we try to analyze what this section is about, does a convex inverse demand function
function behave differently than a convex alternative? As earlier discussed in subsection 3.3,
when setting the duopoly timing of the first entrant to the monopoly timing, we observed
that the duopoly output was higher when the inverse demand function was convex. The
opposite was found to be true for a concave inverse demand function, namely, that the
monopoly output was higher than the duopoly output for the first entrant. This seems
like an exciting result. That is why now we will analyze the investment timing and size
for the linear, quadratic, and square-root inverse demand functions, where the latter two
are concave and convex, respectively. The linear setting is already extensively discussed in
earlier research and earlier in this thesis.

As already concluded, the linear inverse demand function yields the same investment
quantity and investment timing for the first entrant in both a monopoly and a duopoly.
This result is, again, shown in table (6).

Besides these values that have already been reported, this table displays the results for
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the optimal investment quantity and size of a convex and a concave function. The investment
quantity for the first entrant for a concave function is indeed larger in a monopoly than it
is in a duopoly. Conversely, in a setting where the inverse demand function is a convex
function, the investment quantity is smaller in the monopoly than it is in a duopoly. We
have already seen this in subsection 3.3. Now, however, we also take the investment timing
as a decision as opposed to setting it to the monopoly timing.

This is a compelling result, which would, together with the results in subsection 3.3,
suggest that this behavior is consistent for all convex and concave functions. To show that
this behavior is consistent for all inverse demand functions, there would be a mathematical
proof needed, which is beyond the scope of this thesis. It is, however, promising, especially
taking into consideration that for the linear inverse demand function, the monopoly and
duopoly quantity are equal. This seems like the tipping point, where convex inverse demand
functions fall into one cluster and concave ones into another.

If the function h(Q) exhibits convexity, the impact of the second investor’s investment
on the inverse demand function is relatively minor. The first investor, aiming to maintain a
monopoly in the market for as long as possible, will consequently increase their investment
beyond the usual amount.

Conversely, in the context of a concave h(Q), a larger investment leads to a more substan-
tial reduction in price. Consequently, the incentive to invest less due to the price reduction
outweighs the incentive to delay the second investment. In the linear scenario, these effects
cancel each other out entirely.

Here, the investment timing is also taken as a decision variable, as opposed to our com-
putations in subsection 3.3. As we had hoped, the results from this section persist when
determining the investment timing.

It should be noted that the investment quantity and timing values cannot be compared
directly, as α is held constant at a value of 20 across all three functions. While this may not
reflect real-world scenarios, an examination of the values within each table reveals intriguing
patterns in the reciprocal values.

If we look at the investment timing in the linear setting, we see that the monopoly and
duopoly for the first entrant are equal, as we have seen before. This is different in the concave
and convex setting.

It can be observed that when using a concave inverse demand function, the duopoly
timing is earlier than the monopoly timing. This was to be expected, since looking at (17),
it can be observed that Xduo

1 is increasing in Qduo
1 .

What is important to note here, is that since we are considering exogenous firm entry,
the second entrant will always wait with his investment until the first investor has entered.
Hence, because the second firm cannot preempt, and the investment timing of the first
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entrant’s timing does not influence the second firm, the leading decision variable here is the
investment quantity of the first entrant. A higher investment quantity, results in a later
investment timing.

Because a higher investment quantity automatically results in later investment, the
duopoly investment timing is later than the monopoly timing, since the investment quantity
is higher.

The amplification of the effect is observed to be greater with an increase in volatility, not
only in absolute terms but also in relative terms. This phenomenon is observed in both the
concave and convex settings. To visualize this, let us observe the relative effect of σ on the
duopoly investment quantity. This is done by dividing Qduo

1 by Qmon
1 for the three inverse

demand functions and varying values for σ. This is shown in figure (4).
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Figure 4: Relative effect of σ on Qduo
1

Qmon
1

.
α = 20

As we can see, there is an increase in the divergence of the duopoly quantity comparing
it to the monopoly quantity in σ, however, it is very minor, nearly negligible. This applies
to the inverse demand functions which are quadratic and square-root, concave and convex,
respectively. As we have already seen in our results from 2.2, for the linear inverse demand
function this remains 1 for various values of the standard deviation, since this means that
the duopoly output for the first investor is equal to the investment size when dealing with a
monopoly.
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Next, we will analyze the effect of some parameters on the investment decisions. To
check the effects of the parameters, we need some default values for the parameters. We use
the same values as we have done so far, i.e., α = 20, r = 0.1, µ = 0.06, and δ = 0.1. Lastly,
in the previous sections, we observed the effect of σ. In order to evaluate the effect of the
other parameters, we need to set the default value for σ, too. We will set σ to 0.2.

Starting with observing the effect of α on the investment decisions, the effect of α on the
investment size is linear, as we have shown in subsection 2. This can be observed in figure
(5), too. Of course, the monopoly quantity fully coincides with the duopoly output for the
first entrant. In a duopoly, it appears that the ratio between the investment size of the first
entrant and the investment size of the second entrant remains constant over α.

Now, considering the quadratic inverse demand function, figure (7), we see that, as
concluded before, the monopoly investment quantity and the duopoly investment quantity
of the first firm are not equal, and the difference slightly gets amplified by α. Also, it can be
observed that the investment quantity follows an increasing and concave path. This can be
explained by delving into the inverse demand function. If α is very large, we need less extra
Q to accommodate this. Looking at the duopoly setting, it appears to be the case that the
ratio between the investment size of the first and the second entrant actually decreases.

Lastly, looking at the square-root inverse demand function, figure (9), we see that, again
as we have seen before, the monopoly output and the duopoly output for the first entrant are
not equal. Similar to the quadratic setting, the difference between the two slightly increases
as α increases. Also, where the quadratic inverse demand function follows a concave path,
here, the optimal investment actually follows a convex path. The logic here is similar to the
quadratic setting, however, reversed. Since the effect of investing more decreases the price
less, the investor can increase its investment size more to accommodate this when α becomes
larger.

It appears interesting to delve into the relative effect of α on the investment size. There-
fore, in figure (11) this ratio between Qduo

2 /Qduo
1 is depicted for the three functions.

Interestingly, the ratio between the investment size of the second and first entrant our
completely constant over α, for all functions. This tells us that α does not impact the
investment decisions of the investors relative to each other. The second investor will always
invest the same fraction of the investment of the first entrant. This seems to be the case
because of our choice for the inverse linear demand function. All three functions are linear
in α. We would expect that this behavior would not persist if the relationship between the
inverse linear demand function was not linear in α. This could be researched in later research
but this is not within the scope of this thesis.

Next, we will delve into the effect of the market size on the investment timing. Observing
figures (6), (8), and (10), we see that the investment timing behaves similarly over the various
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inverse demand functions. For smaller values of α, both firms will invest relatively late, while
if α gets larger, the firms will invest earlier. This is due to our assumed inverse demand
function, which is increasing in α. If α is large, the price will be higher earlier on, and it
will be profitable to execute the investment earlier.

Subsequently, we will look at the relative effect of α on the investment timing. What
happens to the ratio of the investment timing of the first and second entrant as α increases?
This is plotted in figure (12). Similar to the results seen for the investment quantity, here
we observe that the ratio is constant over all values of α, as well.

When looking at the effect of the interest rate on the optimal investment quantity and
timing for the various inverse demand functions, we make some notable observations. Note
that µ is fixed to 0.06, hence, when we increase the value of r, the difference between the
interest rate and the drift rate increases. First, we will examine the linear inverse demand
function by looking at figures (13) and (14). We observe that when the interest rate increases,
the optimal investment quantity decreases for all investment quantities. This seems logical
since it will be, relatively speaking, less profitable to make the investment, and the entrants
will invest less. As r increases, the investors will invest later. This can be attributed to the
following. If the interest rate is larger, the inverse demand function needs to be at a higher
level to make the investment profitable. This behavior, for both the investment quantity
and the investment timing, persists for the various inverse demand functions.

There is a troubling result when looking at the effect of the interest rate on the optimal
investment when dealing with a square-root inverse demand function, visualized in figure
(17). Here we see that the investment size of the first entrant actually becomes smaller than
that of the second entrant when the interest rate becomes considerably larger in comparison
to the drift term of the geometric Brownian motion.

From this figure, it is difficult to draw conclusions on what will happen to the optimal
investment size for the first entrant in a monopoly and a duopoly. Therefore, in figure (19)
the ratio between the two is plotted. Here we see that our result from the previous sections,
namely that when the inverse demand function is convex the monopoly output is smaller
than the duopoly output, does not persist over all values of r. Even though the values for
the interest rate are probably not realistic, it does raise questions about the robustness of
the results. Our predicted general result, that the duopoly output for the first entrant is
larger than the monopoly output for a convex inverse demand function, does not seem to
hold in general. In this case, it does not appear to be a significant concern, since this is
only when the interest rate is unreasonably high compared to µ. The main threat is that
it could become a concern when different concave functions behave in this manner for more
realistic parameter values. This should be explored further, but this result is discouraging
for a general conclusion for the behavior of convex and concave inverse demand functions.
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Next, we will look a the effect of µ on the optimal investment decisions. First, we fix
r to 0.1 and note that we, by assumption, have µ < r. Figure (21), (23), and (25) display
the effect of µ on the optimal investment quantity. We see that the quantity increases as µ
increases. We see that, for the square-root inverse demand function, the optimal investment
quantity is larger for the second entrant than for the first when µ is small. Also looking
at the results from the analysis of r, we can conclude that, when we are dealing with the
square-root inverse demand function and the difference between r and µ is large, the optimal
investment quantity for the second entrant is larger than for the first. The question arises
whether this holds for all convex functions or only for the square-root setting. This could
be investigated further, but will not be done here.

Looking at figures (22), (24), and (26), we will now discuss the effect µ on the optimal
investment timing. We observe that for very small values of µ the investment timing actually
decreases, and as µ becomes increasing. This result holds for all three inverse demand
functions.

Looking into the effect of δ on the investment decisions, we have plotted the optimal
investment quantity for the first entrant in a duopoly and a monopoly, and the investment
quantity for the second entrant in a doupoly. For the three inverse demand function this
is displayed in figure (27), (29), and (31) for the linear, quadratic, and square-root inverse
demand function, respectively.

Interestingly, we see that the investment costs do not influence the optimal investment
quantity at all. From this, we can conclude that in our assumptions on the investment
costs, the profits outweigh the costs, and the cost of the investment is not relevant when
determining the investment quantity. It seems interesting what happens when you would
take an investment cost of, e.g., δQ2 or even δQ3. We would expect that when the costs
grow faster in Q, δ would affect the optimal investment quantity. This, however, will not be
discussed in this thesis but does seem interesting to delve into in future research. Making
this adjustment will lead to more difficult mathematical computations, but can give more
insight into the effect of the investment costs for the entrants.

This is only considering the optimal investment quantity. When looking at equation
(17), we see that the cost per quantity is relevant when considering the optimal investment
timing. This equation tells us that the optimal investment timing for the first entrant in a
duopoly setting grows linear in δ. So when δ increases, the investor will delay its investment.
The reason for this is when the investment costs become larger, the discounted cost for this
investment becomes smaller as you delay your investment. This coincides with the figures
(28), (30), and (32). Since there is no preemption, due to our exogenous firm order, the first
investor can calmly wait to pick the optimal investment timing, without the threat of the
second investor entering the market.
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h(Q) = α−Q

Qmon
1 Qduo

1 Qduo
2 Xmon

1 Xduo
1 Xduo

2

σ = 0.00 7.5000 7.5000 4.6875 8.0000e-04 8.0000e-04 1.2800e-03
σ = 0.05 7.5626 7.5626 4.7030 8.2056e-04 8.2056e-04 1.3195e-03
σ = 0.10 7.7258 7.7258 4.7414 8.7944e-04 8.7944e-04 1.4330e-03
σ = 0.15 7.9400 7.9400 4.7878 9.7088e-04 9.7088e-04 1.6101e-03
σ = 0.20 8.1650 8.1650 4.8316 1.0899e-03 1.0899e-03 1.8418e-03
σ = 0.25 8.3785 8.3785 4.8685 1.2335e-03 1.2335e-03 2.1227e-03
σ = 0.30 8.5714 8.5714 4.8980 1.4000e-03 1.4000e-03 2.4500e-03
σ = 0.35 8.7413 8.7413 4.9208 1.5889e-03 1.5889e-03 2.8225e-03
σ = 0.40 8.8889 8.8889 4.9383 1.8000e-03 1.8000e-03 3.2400e-03

h(Q) = α−Q2

Qmon
1 Qduo

1 Qduo
2 Xmon

1 Xduo
1 Xduo

2

σ = 0.00 2.1483 2.0749 1.0149 6.5000e-04 6.3715e-04 9.5666e-04
σ = 0.05 2.1594 2.0850 1.0171 6.6542e-04 6.5199e-04 9.8345e-04
σ = 0.10 2.1881 2.1111 1.0225 7.0958e-04 6.9447e-04 1.0603e-03
σ = 0.15 2.2256 2.1451 1.0292 7.7816e-04 7.6039e-04 1.1798e-03
σ = 0.20 2.2649 2.1806 1.0356 8.6742e-04 8.4611e-04 1.3359e-03
σ = 0.25 2.3020 2.2140 1.0413 9.7509e-04 9.4943e-04 1.5245e-03
σ = 0.30 2.3355 2.2440 1.0459 1.1000e-03 1.0692e-03 1.7437e-03
σ = 0.35 2.3649 2.2703 1.0497 1.2417e-03 1.2050e-03 1.9926e-03
σ = 0.40 2.3905 2.2930 1.0528 1.4000e-03 1.3567e-03 2.2712e-03

h(Q) = α−Q0.5

Qmon
1 Qduo

1 Qduo
2 Xmon

1 Xduo
1 Xduo

2

σ = 0.00 119.0083 123.0176 93.3756 1.1000e-03 1.1225e-03 1.8905e-03
σ = 0.05 120.4549 124.5623 93.8424 1.1308e-03 1.1546e-03 1.9545e-03
σ = 0.10 124.2339 128.6018 95.0002 1.2192e-03 1.2465e-03 2.1389e-03
σ = 0.15 129.2137 133.9342 96.3914 1.3563e-03 1.3894e-03 2.4274e-03
σ = 0.20 134.4653 139.5689 97.6946 1.5348e-03 1.5757e-03 2.8062e-03
σ = 0.25 139.4686 144.9473 98.7815 1.7502e-03 1.8007e-03 3.2666e-03
σ = 0.30 144.0000 149.8268 99.6370 2.0000e-03 2.0620e-03 3.8045e-03
σ = 0.35 147.9984 154.1386 100.2911 2.2833e-03 2.3585e-03 4.4180e-03
σ = 0.40 151.4793 157.8971 100.7842 2.6000e-03 2.6902e-03 5.1067e-03

Table 6: Optimal investment quantity and timing for the linear,
quadratic and square-root inverse demand function.

For all, α = 20
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Figure 5: Optimal investment quantities
h(Q) = α−Q

r = 0.1, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 6: Optimal investment timing
h(Q) = α−Q

r = 0.1, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 7: Optimal investment quantities
h(Q) = α−Q2

r = 0.1, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 8: Optimal investment timing
h(Q) = α−Q2

r = 0.1, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 9: Optimal investment quantities
h(Q) = α−Q0.5

r = 0.1, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 10: Optimal investment timing
h(Q) = α−Q0.5

r = 0.1, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 11: Investment quantity ratio
r = 0.1, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 12: Investment quantity ratio
r = 0.1, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 13: Optimal investment quantities
h(Q) = α−Q

µ = 0.06, α = 20, σ = 0.2, δ = 0.1
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Figure 14: Optimal investment timing
h(Q) = α−Q

µ = 0.06, α = 20, σ = 0.2, δ = 0.1
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Figure 15: Optimal investment quantities
h(Q) = α−Q2

µ = 0.06, α = 20, σ = 0.2, δ = 0.1
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Figure 16: Optimal investment timing
h(Q) = α−Q2

µ = 0.06, α = 20, σ = 0.2, δ = 0.1
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Figure 17: Optimal investment quantities
h(Q) = α−Q0.5

µ = 0.06, α = 20, σ = 0.2, δ = 0.1
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Figure 18: Optimal investment timing
h(Q) = α−Q0.5

µ = 0.06, α = 20, σ = 0.2, δ = 0.1
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Figure 19: Investment quantity ratio
α = 20, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 20: Investment quantity ratio
α = 20, µ = 0.06, σ = 0.2, δ = 0.1
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Figure 21: Optimal investment quantities
h(Q) = α−Q

r = 0.1, α = 20, σ = 0.2, δ = 0.1
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Figure 22: Optimal investment timing
h(Q) = α−Q

r = 0.1, α = 20, σ = 0.2, δ = 0.1
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Figure 23: Optimal investment quantities
h(Q) = α−Q2

r = 0.1, α = 20, σ = 0.2, δ = 0.1
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Figure 24: Optimal investment timing
h(Q) = α−Q2

r = 0.1, α = 20, σ = 0.2, δ = 0.1

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
20

60

100

140

180

Figure 25: Optimal investment quantities
h(Q) = α−Q0.5

r = 0.1, α = 20, σ = 0.2, δ = 0.1
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Figure 26: Optimal investment timing
h(Q) = α−Q0.5

r = 0.1, α = 20, σ = 0.2, δ = 0.1
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Figure 27: Optimal investment quantities
h(Q) = α−Q

r = 0.1, α = 20, σ = 0.2, µ = 0.06
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Figure 28: Optimal investment timing
h(Q) = α−Q

r = 0.1, α = 20, σ = 0.2, µ = 0.06
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Figure 29: Optimal investment quantities
h(Q) = α−Q2

r = 0.1, α = 20, σ = 0.2, µ = 0.06
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Figure 30: Optimal investment timing
h(Q) = α−Q2

r = 0.1, α = 20, σ = 0.2, µ = 0.06
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Figure 31: Optimal investment quantities
h(Q) = α−Q0.5

r = 0.1, α = 20, σ = 0.2, µ = 0.06
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Figure 32: Optimal investment timing
h(Q) = α−Q0.5

r = 0.1, α = 20, σ = 0.2, µ = 0.06
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5 Conclusion

In this thesis, the model proposed by Huisman and Kort (2015) and Faninam et al. (2022)
was looked into and extended. Only considering exogenous firm order and assuming only the
deterrence strategy, it was found that in a monopoly and duopoly case, similar results were
found. The investment quantity and size were found to be exactly equal for the first entrant
in both a monopoly and a duopoly, which was also found by Huisman and Kort (2015).

Next, a triopoly was considered, comparable to Faninam et al. (2022). Here, the same
result was found, i.e., the first entrant will take the same investment decisions in a monopoly,
a duopoly, and a triopoly. This did not come as a surprise, since this was already discovered
by Huisman and Kort (2015) and Faninam et al. (2022).

Nonetheless, it appeared promising that such behavior extends to a greater number of
potential entrants. We have proven that this is actually the case. An entrant will ’ignore’
new entrants and will always invest the same amount at the same time. This is likely due
to the linear nature of the inverse demand function. The reason for this is there are two
effects present when there is a potential new entrant. Firstly, the firm that enters first in
the market will make less since the price will go down due to the increased total output.
On the other hand, if the first firm decides to invest more, it can decrease the quantity that
the next firm will invest and it can delay its investment. In the linear setting, these two
apparently cancel out. Therefore, it seemed interesting to delve into other inverse demand
functions to observe this effect.

Subsequently, this was performed, looking into multiple inverse demand functions. Balter
et al. (2022) already touched on this subject, however, they did not look into the optimal
investment quantity. Here, the duopoly was reconsidered. A problem that arose was that it
was not always possible to construct an explicit solution for the optimal investment quantity
and investment timing. Therefore, in the first part, the optimal investment timing in a
duopoly was fixed to the optimal investment timing in the monopoly setting. This resulted in
some interesting insights. Namely, all convex and concave inverse demand functions behave
similarly. In the convex setting, the optimal duopoly quantity for the first entrant was found
to be higher than the monopoly investment quantity. When dealing with a concave inverse
demand function, it was observed that the opposite was true. This was, however, for a fixed
investment timing.

Looking at these results, deviating the investment timing for various inverse demand
functions seems interesting, mainly focusing on the convexity or concavity of the functions.
Therefore, two functions have been selected for which it is possible to determine both the
optimal investment timing and size. The inverse demand functions chosen for analysis are
those of the quadratic and square-root forms.
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It was proven that indeed we were able to compute an optimal investment quantity for
the entrants in this duopoly setting. It was also observed that the behavior observed earlier
persists. It is too early to conclude that this prevails over all convex and concave functions,
this should be mathematically proven. This thesis does not cover this particular aspect,
however, our results seem promising.

If we, however, start to examine the effect of some of the parameters, we observe some
irregularities. Analyzing the market size and investment costs, α and δ, respectively, we
observe results as we would expect, there are no inconsistencies with our earlier results.
If we alter the values for parameters µ and r, we do find some irregularities. Taking the
difference between the drift term of the geometric Brownian motion and the interest rate too
large, we see that, for our chosen convex inverse linear demand function, the duopoly output
for the first firm is larger than the monopoly output. This contradicts our expectation that
in a convex setting the optimal investment quantity for the first entrant in a duopoly will be
lower than in a monopoly. Even though our results become slightly distorted, this does not
seem like a major issue, since it is probably not realistic to assume these kinds of parameter
values. It is, however, worrying for our general result. It does not completely reject our
results, since for presumably more realistic values, we have not found irregularities, but this
might be a problem for various other inverse demand functions.

There are other limitations to our research. Firstly, only a deterrence strategy has been
examined. Considering the accommodation strategy, looking at the results from Huisman
and Kort (2015) and Faninam et al. (2022), we would expect similar results as we have
found for the deterrence strategy. This could be examined in future research. Besides this,
another drawback of our research is that only exogenous firm order has been dealt with. It
seems interesting what will happen to these results when more than three firms can enter
the market and firms have the possibility to preempt.

For our more general inverse demand function, there is also some interesting future re-
search. As mentioned before, it might be possible to mathematically prove that our result,
that concave and convex functions behave differently, holds in general. For this, some param-
eter assumptions might have to be made, to avoid the difference between µ and r becoming
too large. We have looked into some specific inverse demand functions, but we are not able
to say that the result holds in general. It is promising and delving further into the calcu-
lations might give some more insights. Also, for the general inverse demand function, only
the duopoly has been considered. Extending this model, taking into account more potential
entrants, could give some compelling results.

41



Bibliography
Kuno J.M. Huisman and Peter M. Kort. Strategic capacity investment under uncer-

tainty. The RAND Journal of Economics, 46(2):376–408, 2015. doi: https://doi.org/10.
1111/1756-2171.12089. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/
1756-2171.12089.

Farzan Faninam, Kuno JM. Huisman, and Peter M. Kort. Strategic investment under uncer-
tainty in a triopoly market: Timing and capacity choice. European Journal of Operational
Research, 2022. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2022.12.010. URL
https://www.sciencedirect.com/science/article/pii/S0377221722009377.

Avinash Dixit. Choosing among alternative discrete investment projects under uncertainty.
Economics Letters, 41(3):265–268, 1993. ISSN 0165-1765. doi: https://doi.org/10.1016/
0165-1765(93)90151-2. URL https://www.sciencedirect.com/science/article/pii/
0165176593901512.

Avinash Dixit and Robert Pindyck. Investment under Uncertainty. Princeton University
Press, Princeton, NJ, 1994.

L. Trigeorgis. Real Options: Managerial Flexibility and Strategy in Resource Allocation. MIT
Press, Cambridge, Mass., 1996.

Robert S Pindyck. Irreversibility, uncertainty, and investment. Working Paper 3307, Na-
tional Bureau of Economic Research, March 1990. URL http://www.nber.org/papers/
w3307.

Robert McDonald and Daniel Siegel. The Value of Waiting to Invest*. The Quarterly
Journal of Economics, 101(4):707–727, 11 1986. ISSN 0033-5533. doi: 10.2307/1884175.
URL https://doi.org/10.2307/1884175.

Avner Bar-Ilan and William C. Strange. The timing and intensity of investment.
Journal of Macroeconomics, 21(1):57–77, 1999. ISSN 0164-0704. doi: https://doi.
org/10.1016/S0164-0704(99)00090-7. URL https://www.sciencedirect.com/science/
article/pii/S0164070499000907.

Thomas Dangl. Investment and capacity choice under uncertain demand. European Jour-
nal of Operational Research, 117(3):415–428, 1999. ISSN 0377-2217. doi: https://doi.
org/10.1016/S0377-2217(98)00274-4. URL https://www.sciencedirect.com/science/
article/pii/S0377221798002744.

Jean-Paul Décamps, Thomas Mariotti, and Stéphane Villeneuve. Irreversible investment
in alternative projects. Economic Theory, 28(2):425–448, 2006. ISSN 1432-0479. doi:
10.1007/s00199-005-0629-2. URL https://doi.org/10.1007/s00199-005-0629-2.

K.J.M. Huisman, P.M. Kort, G. Pawlina, and J.J.J. Thijssen. Strategic investment under
uncertainty: Merging real options with game theory. Workingpaper, Microeconomics,
2003. Pagination: 22.

42

https://onlinelibrary.wiley.com/doi/abs/10.1111/1756-2171.12089
https://onlinelibrary.wiley.com/doi/abs/10.1111/1756-2171.12089
https://www.sciencedirect.com/science/article/pii/S0377221722009377
https://www.sciencedirect.com/science/article/pii/0165176593901512
https://www.sciencedirect.com/science/article/pii/0165176593901512
http://www.nber.org/papers/w3307
http://www.nber.org/papers/w3307
https://doi.org/10.2307/1884175
https://www.sciencedirect.com/science/article/pii/S0164070499000907
https://www.sciencedirect.com/science/article/pii/S0164070499000907
https://www.sciencedirect.com/science/article/pii/S0377221798002744
https://www.sciencedirect.com/science/article/pii/S0377221798002744
https://doi.org/10.1007/s00199-005-0629-2


Steven R. Grenadier. Game choices : the intersection of real options and game theory. Risk
Books, 2000. URL https://cir.nii.ac.jp/crid/1130282269058298112.

Benoît Chevalier-Roignant and Lenos Trigeorgis. Competitive strategy: Options and games.
MIT press, 2011.

Alcino Azevedo and Dean Paxson. Developing real option game models. European Journal
of Operational Research, 237(3):909–920, 2014. ISSN 0377-2217. doi: https://doi.org/
10.1016/j.ejor.2014.02.002. URL https://www.sciencedirect.com/science/article/
pii/S0377221714001179.

A Michael Spence. Entry, capacity, investment and oligopolistic pricing. The Bell Journal
of Economics, pages 534–544, 1977.

Avinash Dixit. A model of duopoly suggesting a theory of entry barriers. The Bell Journal
of Economics, pages 20–32, 1979.

Avinash Dixit. The role of investment in entry-deterrence. The economic journal, 90(357):
95–106, 1980.

Jean Tirole. The theory of industrial organization. MIT press, 1988.

Ming Yang and Qi Zhou. Real options analysis for efficiency of entry deterrence with
excess capacity. Systems Engineering - Theory Practice, 27(10):63–70, 2007. ISSN
1874-8651. doi: https://doi.org/10.1016/S1874-8651(08)60061-7. URL https://www.
sciencedirect.com/science/article/pii/S1874865108600617.

Anne G. Balter, Kuno J.M. Huisman, and Peter M. Kort. New insights in capacity in-
vestment under uncertainty. Journal of Economic Dynamics and Control, 144:104499,
2022. ISSN 0165-1889. doi: https://doi.org/10.1016/j.jedc.2022.104499. URL https:
//www.sciencedirect.com/science/article/pii/S0165188922002032.

Manu Goyal and Serguei Netessine. Strategic technology choice and capacity investment
under demand uncertainty. Management Science, 53(2):192–207, 2007. doi: 10.1287/
mnsc.1060.0611. URL https://doi.org/10.1287/mnsc.1060.0611.

Mark Chicu. Dynamic investment and deterrence in the u.s. cement industry.
SSRN Electronic Journal, 2013. doi: 10.2139/ssrn.2589580. URL https://ssrn.
com/abstract=2589580. Available at SSRN: https://ssrn.com/abstract=2589580 or
http://dx.doi.org/10.2139/ssrn.2589580.

The MathWorks, Inc. MATLAB and Symbolic Math Toolbox. The MathWorks, Inc., Natick,
Massachusetts, 2023. Release 2023a.

43

https://cir.nii.ac.jp/crid/1130282269058298112
https://www.sciencedirect.com/science/article/pii/S0377221714001179
https://www.sciencedirect.com/science/article/pii/S0377221714001179
https://www.sciencedirect.com/science/article/pii/S1874865108600617
https://www.sciencedirect.com/science/article/pii/S1874865108600617
https://www.sciencedirect.com/science/article/pii/S0165188922002032
https://www.sciencedirect.com/science/article/pii/S0165188922002032
https://doi.org/10.1287/mnsc.1060.0611
https://ssrn.com/abstract=2589580
https://ssrn.com/abstract=2589580


6 Appendix

6.1 Linear inverse demand function

6.1.1 Monopoly

We want to compute the following maximization problem.

V (X) = E

[∫ ∞

t=0

QX (t) (α−Q) exp (−rt)dt− δQ

∣∣∣∣X (0) = X

]
(18)

First, we maximize with respect to Q. We we get

V (X) = E

[∫ ∞

t=0

QX (t) (α−Q) exp (−rt)dt− δQ

∣∣∣∣X (0) = X

]
=

∫ ∞

t=0

QE [X (t)|X (0) = X] (α−Q) exp (−rt)dt− δQ

(19)

Since X ∼ GBM (µ, σ), we have E [X (t)|X (0) = X] = Xeµt. Therefore

V (X) =

∫ ∞

t=0

QXeµte−rt(α−Q)dt− δQ

=

∫ ∞

t=0

QXe(µ−r)t (α−Q) dt− δQ

= Q (α−Q)X

∫ ∞

t=0

e(µ−r)tdt− δQ

= Q (α−Q)X

[
1

µ− r
e(µ−r)t

]t=∞

t=0

− δQ

= Q (α−Q)X
1

r − µ
− δQ

(20)

Now, taking the derivative with respect to Q

0 = (−Q∗X + (α−Q∗)X)
1

r − µ
− δ

= − 2

r − µ
Q∗X + αX

1

r − µ
− δ

⇒ Q∗ =
1

2
α− 1

2X
δ (r − µ)

=
1

2

(
α− 1

X
δ (r − µ)

) (21)

F (X) is the expected net present value of the cash flow. We have by Huisman and
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Kort (2015) that F (X) = AXβ , where β is the positive root of the quadratic polynomial
1
2σ

2β2 + (µ− 1
2σ

2)β − r = 0.
We apply value matching and smooth pasting

F (X∗) = V (X∗, Q) (22)

∂F (X)

∂X

∣∣∣∣
X=X∗

=
∂V (X,Q)

∂X

∣∣∣∣
X=X∗

(23)

We then have
XQ (α−Q)

r − µ
− δQ = AXβ

⇒ β

X
AXβ =

Q (α−Q)

r − µ

⇒ AXβ =
X

β

Q (α−Q)

r − µ

⇒ XQ (α−Q)

r − µ
− δQ =

X

β

Q (α−Q)

r − µ

⇒
(
1− 1

β

)
XQ (α−Q)

r − µ
= δQ

⇒
(
β − 1

β

)
X =

(r − µ) δ

α−Q

So, then

X∗ =
β

β − 1

(r − µ) δ

α−Q
(24)

Filling these values into (21), we obtain

Q∗ =
1

2

(
α− δ (r − µ)

β
β−1

(r−µ)δ
α−Q

)

Q∗ =
1

2

(
α− β − 1

β
(α−Q∗)

)
2Q∗ = α− β − 1

β
α+

β − 1

β
Q∗(

2β

β
− β − 1

β

)
Q∗ = α

(
β

β
− β − 1

β

)
(
β + 1

β

)
Q∗ =

α

β

Q∗ =
α

β + 1
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X∗ =
β

β − 1

(r − µ) δ

α− α
β+1

=
β

β − 1

(r − µ) δ
αβ+α−α

β+1

=
β

β − 1

(r − µ) δ

β α
β+1

=
β + 1

β − 1

(r − µ) δ

α

6.1.2 Duopoly

We have that Q1 and Q2 are the investment size for the leader and the follower, respectively.
We then have that the value is equal to:

V ∗
2 (X,Q1, Q2) =

XQ2 (α− (Q1 +Q2))

r − µ
− δQ2 (25)

Now, we want to maximize with respect to Q2

∂

∂Q2
V ∗
2 (X,Q1, Q2) =

X (α− (Q1 +Q2))

r − µ
− XQ2

r − µ
− δ

⇒ 0 =
αX −Q1X −Q∗

2X

r − µ
− XQ∗

2

r − µ
− δ

=
−2XQ∗

2 + αX −Q1X

r − µ
− δ

⇓

2XQ∗
2 = (α−Q1)X − (r − µ) δ

Q∗
2 =

1

2
(α−Q1)−

1

2

(r − µ) δ

X
(26)

We have, just as in the monopoly case, that the net present value of the cash flow is of
the form F (X) = AXβ . We, again, use value matching and smooth pasting, from (22) and
(23). Therefore,

A2X
β =

XQ2 (α− (Q1 +Q2))

r − µ
− δQ2

⇒ β

X
A2X

β =
Q2 (α− (Q1 +Q2))

r − µ

⇒ A2X
β =

X

β

Q2 (α− (Q1 +Q2))

r − µ
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Combining these gives the following result

X∗Q2 (α− (Q1 +Q2))

r − µ
− δQ2 =

X∗

β

Q2 (α− (Q1 +Q2))

r − µ(
1− 1

β

)
X∗Q2 (α− (Q1 +Q2))

r − µ
= δQ2

β − 1

β
X∗ =

δ (r − µ)

α− (Q1 +Q2)

X∗ =
β

β − 1

δ (r − µ)

α− (Q1 +Q2)

Now, plugging in Q∗
2 from (26) gives

X∗ =
β

β − 1

δ (r − µ)

α−
(

1
2 (α−Q1)− 1

2
(r−µ)δ

X +Q1

)
=

β

β − 1

δ (r − µ)
1
2 (α−Q1) +

1
2
(r−µ)δ
X∗

1

2
(α−Q1)X

∗ +
1

2
(r − µ) δ =

β

β − 1
δ (r − µ)

1

2
(α−Q1)X

∗ =

(
β

β − 1
−

1
2 (β − 1)

β − 1

)
δ (r − µ)

X∗
2 =

2

α−Q1

( 1
2β + 1

2

β − 1

)
δ (r − µ)

=
β + 1

β − 1
δ
r − µ

α−Q1

(27)

Plugging this back into (26) gives the following value for Q∗
2

Q∗
2 =

1

2
(α−Q1)−

1

2

(r − µ) δ
β+1
β−1δ

r−µ
α−Q1

=
1

2
(α−Q1)−

1

2

β − 1

β + 1
(α−Q1)

=
1

2

(
β + 1

β + 1
− β − 1

β + 1

)
(α−Q1)

Q∗
2 =

α−Q1

β + 1
(28)

It follows that a deterrence strategy occurs whenever the leader chooses a capacity level
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Q1 larger than Q̂1(X) such that

α− Q̂1 =
β + 1

β − 1
δ (r − µ)

1

X

Q̂1 = α− β + 1

β − 1
δ (r − µ)

1

X

Hence, in the complementary case, i.e., Q1 ≤ Q̂1, the follower invests at the same time
as the leader.

The value of the leader is defined as follows,

V1 (X,Q1)

= E

[∫ T∗
2

t=0

Q1X (t) (α−Q1) e
−rtdt− δQ1 +

∫ ∞

t=T∗
2

Q1X (t) (α−Q1 −Q∗
2) e

−rtdt

∣∣∣∣∣X = X (0)

]

= E

[∫ ∞

t=0

Q1X (t) (α−Q1) e
−rtdt− δQ1 −

∫ ∞

t=T∗
2

Q1X (t)Q∗
2e

−rtdt

∣∣∣∣∣X = X (0)

]

=

∫ ∞

t=0

Q1E [X (t)|X = X (0)] (α−Q1) e
−rtdt− δQ1︸ ︷︷ ︸

1

+E

[∫ ∞

t=T∗
2

Q1X (t)Q∗
2e

−rtdt

∣∣∣∣∣X = X (0)

]
︸ ︷︷ ︸

2

We will solve these parts separately, however for both we need the solution to E [X (t) |X = X (0)].
It can be proved that if X ∼ GBM (µ, σ), we have that E [X (t) |X = X (0)] = Xeµt.

First we will take a look at the first part∫ ∞

t=0

Q1E [X (t)|X = X (0)] (α−Q1) e
−rtdt− δQ1

=

∫ ∞

t=0

Q1X (α−Q1) e
(µ−r)tdt− δQ1

= Q1 (α−Q1)X

∫ ∞

t=0

e(µ−r)tdt− δQ1

= Q1 (α−Q1)X

[
1

µ− r
e(µ−r)t

]t=∞

t=0

− δQ1

=
Q1 (α−Q1)X

r − µ
− δQ1

Next, we’ll consider the second part

E

[∫ ∞

t=T∗
2

Q1X (t)Q∗
2 (Q1) e

−rtdt

∣∣∣∣∣X (0) = X

]
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We can prove that if T = inf (t|xt ≥ x∗, x0 = x) then E
[
e−rT

∣∣x0 = x
]
=
(

x
x∗

)β1 , where
xt ∼ GBM (µ, σ), using this we can rewrite,

E

[∫ ∞

t=T∗
2

Q1X (t)Q∗
2 (Q1) e

−rtdt

∣∣∣∣∣X (0) = X

]

= E
[
erT

∗
2

∣∣∣X (0) = X
]
E

[∫ ∞

t=0

Q1X (t)Q∗
2e

−rtdt

∣∣∣∣X (0) = X∗
2

]
=

(
X

X∗
2

)β1 Q1Q
∗
2X

∗
2

r − µ

combining these two results, we obtain the following,

V1 (X,Q1) =
Q1 (α−Q1)X

r − µ
− δQ1 −

(
X

X∗
2

)β1 Q1Q
∗
2X

∗
2

r − µ
(29)

Now, inserting (27) and (28) into (29) gives

V1 (X
∗, Q1)

=
Q1 (α−Q1)X

r − µ
− δQ1 −

(
X
β − 1

β + 1

1

δ

α−Q1

r − µ

)β

∗ Q1 (α−Q1)

(β + 1) (r − µ)

β + 1

β − 1

(r − µ)

α−Q1
δ

=
Q1 (α−Q1)X

r − µ
− δQ1 −

(
X

δ

β − 1

β + 1

(α−Q1)

r − µ

)β
δQ1

β − 1

(30)

Taking the first order condition with respect to Q1 gives the following result

ϕ (X,Q1) =
(α−Q1)X

r − µ
− Q1X

r − µ
− δ − f (X,Q1) (31)

49



where

f (X,Q1)

= −β X (β − 1)

δ (β + 1) (r − µ)

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β−1
δQ1

β − 1
+

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β
δ

β − 1

= −β X (β − 1)

δ (β + 1) (r − µ)

δ (β + 1) (r − µ)

X (β − 1) (α−Q1)

δQ1

β − 1

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β

+

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β
δ

β − 1

=

(
δ

β − 1
− δQ1

(β − 1) (α−Q1)
β

)(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β

=
(α− (β + 1)Q1) δ

(β − 1) (α−Q1)

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β

Inserting this result into (31)

ϕ (X,Q1) =
(α− 2Q1)X

(r − µ)
− δ − δ (α− (β + 1)Q1)

(β − 1) (α−Q1)

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β

= 0 (32)

Before the leader has invested, so when X < X1, the firm holds an option to invest. The
option value is

F1 (X) = A1X
β

We want to apply smooth pasting and value matching to

V1 (X
∗, Q1) =

Q1 (α−Q1)X

r − µ
− δQ1 −

(
X

δ

β − 1

β + 1

(α−Q1)

r − µ

)β
δQ1

β − 1
(33)

First, note that we can extend the product rule further for function fgh,

(fgh)
′
= (fg)

′
h+ fgh′ = f ′gh+ gf ′h+ fgh′

Now, V1 can be rewritten into

Q1 (X) (α−Q1 (X))

r − µ
X − δQ1 (X)−

(
β − 1

δ (β + 1) (r − µ)

)β
δ

β − 1
XβQ1 (X) (α−Q1 (X))

β︸ ︷︷ ︸
If we take the derivative of the last part, we get

βXβ−1Q1 (X) (α−Q1 (X))
β
+Xβ ∂Q1 (X)

∂X
(α−Q1 (X))

β−β ∂Q1 (X)

∂X
XβQ1 (X) (α−Q1 (X))

β−1
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⇒

(
β

X
+

∂Q1(X)
∂X

Q1 (X)
− β

∂Q1(X)
∂X

α−Q1 (X)

)(
XβQ1 (X) (α−Q1 (X))

β
)

Now, taking the derivative

∂V1 (X
∗, Q1)

∂X
=
Q1 (α−Q1)

r − µ
+
X ∂Q1

∂X (α−Q1)

r − µ
−
X ∂Q1(X)

∂X Q1 (X)

r − µ
− δ

∂Q1 (X)

∂X

−
(
X

δ

β − 1

β + 1

α−Q2 (X)

r − µ

)β
δQ1 (X)

β − 1

(
βQ1 (α−Q1) +X ∂Q1

∂X (α−Q1 (X))− βXQ1
∂Q1

∂X

XQ1 (α−Q1)

) (34)

Because we have (22) and (23), we have

V1 (X
∗, Q1) =

X

β

∂

∂X
V1 (X

∗, Q1)

Using this, (33), and (34),

0 =
Q1 (α−Q1)X

r − µ
− Q1 (α−Q1)X

β (r − µ)
−
X2 ∂Q1

∂X (α− 2Q1)

β (r − µ)
− δQ1 + δ

X

β

∂Q1 (X)

∂X

+

(
X

δ

β − 1

β + 1

(α−Q1)

r − µ

)β
δ

β − 1

1

β

(
X ∂Q1

∂X (α−Q1)− βXQ1
∂Q1

∂X

α−Q1

)

=

(
β − 1

β

)
Q1 (α−Q1)X

r − µ
−
X2 ∂Q1

∂X (α− 2Q1)

β (r − µ)
− δQ1 + δ

X

β

∂Q1 (X)

∂X

+

(
X

δ

β − 1

β + 1

(α−Q1)

r − µ

)β
δ

β − 1

1

β

(
X ∂Q1

∂X (α− (1 + β)Q1)

α−Q1

)

Using equation (32), we can write

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β

=

(
(α− 2Q1)X

r − µ
− δ

)
(β − 1) (α−Q1)

δ (α− (β + 1)Q1)
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Plugging this in,

0 =

(
β − 1

β

)
Q1 (α−Q1)X

r − µ
−
X2 ∂Q1

∂X (α− 2Q1)

β (r − µ)
− δQ1 + δ

X

β

∂Q1 (X)

∂X

+

(
(α− 2Q1)X

r − µ
− δ

)
(β − 1) (α−Q1)

δ (α− (β + 1)Q1)

δ

β − 1

1

β

(
X ∂Q1

∂X (α− (1 + β)Q1)

α−Q1

)

=(β − 1)
Q1 (α−Q1)X

r − µ
−
X2 ∂Q1

∂X (α− 2Q1)

r − µ
− βδQ1 − δX

∂Q1 (X)

∂X

+

(
(α− 2Q1)X

r − µ
− δ

)(
X
∂Q1

∂X

)
=(β − 1)

Q1 (α−Q1)X

r − µ
− βδQ1

So the resulting equation gives

0 = (β − 1)
(α−Q1)X

r − µ
− βδ (35)

Now, to compute the value for X1 and Q1, we combine (32) and (35). First we’ll rewrite
(35):

(α−Q1)X

r − µ
=

βδ

β − 1

⇒ X =
βδ (r − µ)

(β − 1) (α−Q1)

Which subsequently gives us,

0 =
(α− 2Q1)βδ (r − µ)

(r − µ) (β − 1) (α−Q1)
− δ − δ (α− (β + 1)Q1)

(β − 1) (α−Q1)

(
βδ (r − µ) (β − 1) (α−Q1)

(β − 1) (α−Q1) (β + 1) (r − µ) δ

)β

= (α− 2Q1)βδ − δ (β − 1) (α−Q1)−
(

β

β + 1

)β

δ (α− (β + 1)Q1)

= δ (αβ − 2βQ1 − αβ + βQ1 + α−Q1)−
(

β

β + 1

)β

δ (α− (β + 1)Q1)

= δ (α− (β + 1)Q1)−
(

β

β + 1

)β

δ (α− (β + 1)Q1)

⇒ 0 = α− (β + 1)Q1

From there we can conclude that
Q1 =

α

β + 1
(36)
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Inserting this into (35) gives us

βδ = (β − 1)
(α−Q1)X

r − µ

= (β − 1)

(
α− α

β+1

)
X

r − µ

= (β − 1)
β α

β+1X

r − µ

From there we can determine the optimal investment timing in case of a deterrence strategy,

X1 =
δ

α
(r − µ)

β + 1

β − 1
(37)

6.1.3 Triopoly

We have for the third entrant,V

V3 (X,Q3) = E

[∫ ∞

t=0

Q3X (t) (α− (Q1 +Q2 +Q3)) e
−rtdt

∣∣∣∣X (0) = X

]
− δQ3

=

∫ ∞

t=0

Q3E [X (t)|X (0) = X] (α− (Q1 +Q2 +Q3)) e
−rtdt− δQ3

=

∫ ∞

t=0

Q3Xe
µt (α− (Q1 +Q2 +Q3)) e

−rtdt− δQ3

= Q3X (α− (Q1 +Q2 +Q3))

∫ ∞

t=0

et(µ−r)dt− δQ3

= Q3X (α− (Q1 +Q2 +Q3))

[
1

µ− r
et(µ−r)

]t=∞

t=0

=
Q3X (α− (Q1 +Q2 +Q3))

r − µ
− δQ3

V3 (X,Q3) =
Q3X (α− (Q1 +Q2 +Q3))

r − µ
− δQ3 (38)

Now, we want to maximize with respect to Q3

∂

∂Q3
V ∗
3 (X,Q3) =

X (α− (Q1 +Q2 +Q3))

r − µ
− XQ3

r − µ
− δ

⇒ 0 =
X (α− (Q1 +Q2))

r − µ
− 2

XQ3

r − µ
− δ

⇓
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2XQ∗
3 = (α− (Q1 +Q2))X − (r − µ) δ

Q∗
3 =

1

2
(α− (Q1 +Q2))−

1

2

(r − µ) δ

X
(39)

We have, just as in the monopoly case, that the net present value of the cash flow is of
the form F (X) = AXβ . We, again, use value matching and smooth pasting, from (22) and
(23). Therefore,

A3X
β =

XQ3 (α− (Q1 +Q2 +Q3))

r − µ
− δQ3

⇒ β

X
A3X

β =
Q3 (α− (Q1 +Q2 +Q3))

r − µ

⇒ A3X
β =

X

β

Q3 (α− (Q1 +Q2 +Q3))

r − µ

Combining these gives the following result

X∗Q3 (α− (Q1 +Q2 +Q3))

r − µ
− δQ3 =

X∗

β

Q3 (α− (Q1 +Q2 +Q3))

r − µ(
1− 1

β

)
X∗Q3 (α− (Q1 +Q2 +Q3))

r − µ
= δQ3

β − 1

β
X∗ =

δ (r − µ)

α− (Q1 +Q2 +Q3)

X∗ =
β

β − 1

δ (r − µ)

α− (Q1 +Q2 +Q3)

Now, plugging in Q∗
2 from (39) gives

X∗ =
β

β − 1

δ (r − µ)

α−
(

1
2 (α− (Q1 +Q2))− 1

2
(r−µ)δ

X + (Q1 +Q2)
)

=
β

β − 1

δ (r − µ)
1
2 (α− (Q1 +Q2)) +

1
2
(r−µ)δ
X∗

1

2
(α− (Q1 +Q2))X

∗ +
1

2
(r − µ) δ =

β

β − 1
δ (r − µ)

1

2
(α− (Q1 +Q2))X

∗ =

(
β

β − 1
−

1
2 (β − 1)

β − 1

)
δ (r − µ)
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X∗
3 =

2

α− (Q1 +Q2)

( 1
2β + 1

2

β − 1

)
δ (r − µ)

=
β + 1

β − 1
δ

r − µ

α− (Q1 +Q2)

(40)

Plugging this back into (26) gives the following value for Q∗
2

Q∗
3 =

1

2
(α− (Q1 +Q2))−

1

2

(r − µ) δ
β+1
β−1δ

r−µ
α−(Q1+Q2)

=
1

2
(α−Q1)−

1

2

β − 1

β + 1
(α− (Q1 +Q2))

=
1

2

(
β + 1

β + 1
− β − 1

β + 1

)
(α− (Q1 +Q2))

Q∗
3 =

α− (Q1 +Q2)

β + 1
(41)

The value of the second entrant is defined as follows,

V2 (X,Q2)

= E

[∫ T∗
3

t=0

Q2X (t) (α− (Q1 +Q2)) e
−rtdt− δQ2 +

∫ ∞

t=T∗
3

Q2X (t) (α− (Q1 +Q2 +Q3)) e
−rtdt

∣∣∣∣∣X = X (0)

]

= E

[∫ ∞

t=0

Q2X (t) (α− (Q1 +Q2)) e
−rtdt− δQ1 −

∫ ∞

t=T∗
3

Q2X (t)Q∗
3e

−rtdt

∣∣∣∣∣X = X (0)

]

=

∫ ∞

t=0

Q2E [X (t)|X = X (0)] (α− (Q1 +Q2)) e
−rtdt− δQ2︸ ︷︷ ︸

1

+E

[∫ ∞

t=T∗
3

Q2X (t)Q∗
3e

−rtdt

∣∣∣∣∣X = X (0)

]
︸ ︷︷ ︸

2

We will solve these parts separately, however for both we need the solution to E [X (t) |X = X (0)].
It can be proved that if X ∼ GBM (µ, σ), we have that E [X (t) |X = X (0)] = Xeµt.
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First we will take a look at the first part∫ ∞

t=0

Q2E [X (t)|X = X (0)] (α− (Q1 +Q2)) e
−rtdt− δQ1

=

∫ ∞

t=0

Q2X (α− (Q1 +Q2)) e
(µ−r)tdt− δQ2

= Q2 (α− (Q1 +Q2))X

∫ ∞

t=0

e(µ−r)tdt− δQ2

= Q2 (α− (Q1 +Q2))X

[
1

µ− r
e(µ−r)t

]t=∞

t=0

− δQ2

=
Q2 (α− (Q1 +Q2))X

r − µ
− δQ2

Next, we’ll consider the second part

E

[∫ ∞

t=T∗
3

Q2X (t)Q∗
3 (Q2) e

−rtdt

∣∣∣∣∣X (0) = X

]

We can prove that if T = inf (t|xt ≥ x∗, x0 = x) then E
[
e−rT

∣∣x0 = x
]
=
(

x
x∗

)β1 , where
xt ∼ GBM (µ, σ), using this we can rewrite,

E

[∫ ∞

t=T∗
2

Q2X (t)Q∗
3 (Q2) e

−rtdt

∣∣∣∣∣X (0) = X

]

= E
[
erT

∗
3

∣∣∣X (0) = X
]
E

[∫ ∞

t=0

Q2 (t)Q
∗
3e

−rtdt

∣∣∣∣X (0) = X∗
3

]
=

(
X

X∗
3

)β1 Q2Q
∗
3X

∗
3

r − µ

Combining these two results, we obtain the following,

V2 (X,Q2) =
Q2 (α− (Q1 −Q2))X

r − µ
− δQ2 −

(
X

X∗
3

)β1 Q2Q
∗
3X

∗
3

r − µ
(42)
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Now, inserting (40) and (41) into (42) gives

V2 (X
∗, Q2)

=
Q2 (α− (Q1 +Q2))X

r − µ
− δQ2

−
(
X
β − 1

β + 1

1

δ

α− (Q1 +Q2)

r − µ

)β

∗ Q2 (α− (Q1 +Q2))

(β + 1) (r − µ)

β + 1

β − 1

(r − µ)

α− (Q1 +Q2)
δ

=
Q2 (α− (Q1 +Q2))X

r − µ
− δQ2 −

(
X

δ

β − 1

β + 1

(α− (Q1 +Q2))

r − µ

)β
δQ2

β − 1

(43)

Taking the first order condition with respect to Q2 gives the following result

ϕ2 (X,Q2) =
(α− (Q1 +Q2))X

r − µ
− Q2X

r − µ
− δ − f (X,Q2) (44)

where

f (X,Q2)

= −β X (β − 1)

δ (β + 1) (r − µ)

(
X (β − 1) (α− (Q1 +Q2))

δ (β + 1) (r − µ)

)β−1
δQ2

β − 1

+

(
X (β − 1) (α− (Q1 +Q2))

δ (β + 1) (r − µ)

)β
δ

β − 1

= −β X (β − 1)

δ (β + 1) (r − µ)

δ (β + 1) (r − µ)

X (β − 1) (α− (Q1 +Q2))

δQ2

β − 1

(
X (β − 1) (α− (Q1 +Q2))

δ (β + 1) (r − µ)

)β

+

(
X (β − 1) (α− (Q1 +Q2))

δ (β + 1) (r − µ)

)β
δ

β − 1

=

(
δ

β − 1
− δQ2

(β − 1) (α− (Q1 +Q2))
β

)(
X (β − 1) (α− (Q1 +Q2))

δ (β + 1) (r − µ)

)β

=
(α− (Q1 + (β + 1)Q2)) δ

(β − 1) (α− (Q1 +Q2))

(
X (β − 1) (α− (Q1 +Q2))

δ (β + 1) (r − µ)

)β

The option value is
F2 (X) = A2X

β

We want to apply smooth pasting and value matching to

V2 (X
∗, Q2) =

Q2 (α−Q2)X

r − µ
− δQ2 −

(
X

δ

β − 1

β + 1

(α− (Q1 +Q2))

r − µ

)β
δQ2

β − 1
(45)
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First, note that we can extend the product rule further for function fgh,

(fgh)
′
= (fg)

′
h+ fgh′ = f ′gh+ gf ′h+ fgh′

Now, V2 can be rewritten into

V2(X
∗, Q2) =

Q2 (X) (α− (Q1 +Q2) (X))

r − µ
X − δQ2 (X)

−
(

β − 1

δ (β + 1) (r − µ)

)β
δ

β − 1
XβQ2 (X) (α− (Q1 +Q2) (X))

β︸ ︷︷ ︸
If we take the derivative of the last part, we get

βXβ−1Q2 (α− (Q1 +Q2))
β
+Xβ ∂Q2

∂X
(α−Q2)

β − β
∂Q2

∂X
XβQ2 (α− (Q1 +Q2))

β−1

⇒

(
β

X
+

∂Q2

∂X

Q2
− β

∂Q2

∂X

α− (Q1 +Q2)

)(
XβQ2 (α− (Q1 +Q2))

β
)

Now, taking the derivative

∂V2 (X
∗, Q1)

∂X
=
Q2 (α− (Q1 +Q2))

r − µ
+
X ∂Q2

∂X (α− (Q1 +Q2))

r − µ
−
X ∂Q2(X)

∂X Q2 (X)

r − µ
− δ

∂Q2 (X)

∂X

−
(
X

δ

β − 1

β + 1

α− (Q1 +Q2) (X)

r − µ

)β
δQ2 (X)

β − 1

∗

(
βQ2 (α− (Q1 +Q2)) +X ∂Q2

∂X (α− (Q1 +Q2) (X))− βXQ2
∂Q2

∂X

XQ2 (α− (Q1 +Q2))

)
(46)

Because we have (22) and (23), we have

V1 (X
∗, Q1) =

X

β

∂

∂X
V1 (X

∗, Q1)

Using this, (45), and (46),

58



0 =
Q2 (α− (Q1 +Q2))X

r − µ
− Q2 (α− (Q1 +Q2))X

β (r − µ)
−
X2 ∂Q2

∂X (α− (Q1 + 2Q2))

β (r − µ)
− δQ2

+ δ
X

β

∂Q2 (X)

∂X
+

(
X

δ

β − 1

β + 1

(α− (Q1 +Q2))

r − µ

)β
δ

β − 1

1

β

(
X ∂Q2

∂X (α− (Q1 +Q2))− βXQ2
∂Q2

∂X

α− (Q1 +Q2)

)

=

(
β − 1

β

)
Q2 (α− (Q1 +Q2))X

r − µ
−
X2 ∂Q2

∂X (α− (Q1 + 2Q2))

β (r − µ)
− δQ2 + δ

X

β

∂Q2 (X)

∂X

+

(
X

δ

β − 1

β + 1

(α− (Q1 +Q2))

r − µ

)β
δ

β − 1

1

β

(
X ∂Q2

∂X (α− (Q1 + (1 + β)Q2))

α− (Q1 +Q2)

)

Using equation (44), we can write

(
X (β − 1) (α− (Q1 +Q2))

δ (β + 1) (r − µ)

)β

=

(
(α− (Q1 + 2Q2))X

r − µ
− δ

)
(β − 1) (α− (Q1 +Q2))

δ (α− (Q1 + (β + 1)Q2))

Plugging this in,

0 =

(
β − 1

β

)
Q2 (α− (Q1 +Q2))X

r − µ
−
X2 ∂Q2

∂X (α− (Q1 + 2Q2))

β (r − µ)
− δQ2 + δ

X

β

∂Q2 (X)

∂X

+

(
(α− (Q1 + 2Q2))X

r − µ
− δ

)
(β − 1) (α− (Q1 +Q2))

δ (α− (Q1 + (β + 1)Q2))

δ

β − 1

1

β

(
X ∂Q2

∂X (α− (Q1 + (β + 1)Q2))

α− (Q1 +Q2)

)

=(β − 1)
Q2 (α− (Q1 +Q2))X

r − µ
−
X2 ∂Q1

∂X (α− (Q1 + 2Q2))

r − µ
− βδQ2 − δX

∂Q2 (X)

∂X

+

(
(α− (Q1 + 2Q2))X

r − µ
− δ

)(
X
∂Q2

∂X

)
=(β − 1)

Q2 (α− (Q1 +Q2))X

r − µ
− βδQ2

So the resulting equation gives

0 = (β − 1)
(α− (Q1 +Q2))X

r − µ
− βδ (47)

Now, to compute the value for X1 and Q1, we combine (44) and (47). First we’ll rewrite
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(47):

(α− (Q1 +Q2))X

r − µ
=

βδ

β − 1

⇒ X =
βδ (r − µ)

(β − 1) (α− (Q1 +Q2))

Which subsequently gives us,

0 =
(α− (Q1 + 2Q2))βδ (r − µ)

(r − µ) (β − 1) (α− (Q1 +Q2))
− δ

− δ (α− (Q1 + (β + 1)Q2))

(β − 1) (α− (Q1 +Q2))

(
βδ (r − µ) (β − 1) (α− (Q1 +Q2))

(β − 1) (α− (Q1 +Q2)) (β + 1) (r − µ) δ

)β

= (α− (Q1 + 2Q2))βδ − δ (β − 1) (α− (Q1 +Q2))−
(

β

β + 1

)β

δ (α− (Q1 + (β + 1)Q2))

= αβ − βQ1 − 2βQ2 − αβ + βQ1 + βQ2 + α−Q1 −Q2 −
(

β

β + 1

)β

(α− (Q1 + (β + 1)Q2))

= α− (Q1 + (β + 1)Q2)−
(

β

β + 1

)β

(α− (Q1 + (β + 1)Q2))

⇒ 0 = α− (Q1 + (β + 1)Q2)

From there we can conclude that
Q∗

2 =
α−Q1

β + 1
(48)

Inserting this into (47) gives us

X =
(r − µ)βδ

(β − 1)
(
α−Q1 − α−Q1

β+1

)
=

(r − µ)βδ

(β − 1) β
β+1 (α−Q1)

Hence, we have
X∗

2 = (r − µ) δ
β + 1

β − 1

1

α−Q1
(49)

The value of the third entrant is defined as follows,
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V1 (X,Q1)

= E

[∫ T∗
2

t=0

Q1X (t) (α−Q1) e
−rtdt− δQ1 +

∫ T∗
3

t=T∗
2

Q1X (t) (α− (Q1 +Q2)) e
−rtdt

+

∫ ∞

t=T∗
3

Q1X (t) (α− (Q1 +Q2 +Q3)) e
−rt

∣∣∣∣∣X = X (0)

]

= E

[∫ ∞

t=0

Q1X (t) (α−Q1) e
−rtdt− δQ1 −

∫ ∞

t=T∗
2

Q1X (t)Q∗
2e

−rtdt

−
∫ ∞

t=T∗
3

Q1X (t)Q∗
3e

−rtdt

∣∣∣∣∣X (0) = X

]

As we have done before, we can usually compute the expected values and integrals. The
value function will become

V1 (X,Q1) =
Q1 (α−Q1)X

r − µ
− δQ1 −

(
X

X∗
2

)β1 Q1Q
∗
2X

∗
2

r − µ
−
(
X

X∗
3

)β1 Q1Q
∗
3X

∗
3

r − µ
(50)

Now, inserting (40), (41), (48), and (49) into (50) gives

V1 (X,Q1)

=
Q1 (α−Q1)X

r − µ
− δQ1

−
(
X
β − 1

β + 1

1

δ

α−Q1

r − µ

)β

∗ Q1 (α−Q1)

(β + 1) (r − µ)

β + 1

β − 1

(r − µ)

α−Q1
δ

−
(
X
β − 1

β + 1

1

δ

α− (Q1 +Q2)

r − µ

)β

∗ Q1 (α− (Q1 +Q2))

(β + 1) (r − µ)

β + 1

β − 1

(r − µ)

α− (Q1 +Q2)
δ

=
Q1 (α−Q1)X

r − µ
− δQ1 −

(
X
β − 1

β + 1

α−Q1

δ (r − µ)

)β
δQ1

β − 1
−

(
X
β − 1

β + 1

α−Q1 − α−Q1

β+1

δ (r − µ)

)β
δQ1

β − 1

=
Q1 (α−Q1)X

r − µ
− δQ1 −

(
X
β − 1

β + 1

α−Q1

δ (r − µ)

)β
δQ1

β − 1
−

(
X

β − 1

(β + 1)
2

β (α−Q1)

δ (r − µ)

)β
δQ1

β − 1

(51)

Taking the first order condition with respect to Q1 gives the following result

ϕ1 (X,Q1) =
(α−Q1)X

r − µ
− Q1X

r − µ
− δ − f (X,Q1)− g (X,Q1) (52)
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We have computed f (X,Q1) before and from here, g (X,Q1) can be easily derived as well.
So we now have

ϕ1 =
X (α− 2Q1)

r − µ
− δ

− (α− (β + 1)Q1) δ

(β − 1) (α−Q1)

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β

− (α− (β + 1)Q1) δ

(β − 1) (α−Q1)

(
X (β − 1)

(β + 1)
2

β (α−Q1)

δ (r − µ)

)β

= 0

(53)

The option value is
F1 (X) = A1X

β

We want to apply smooth pasting and value matching to

V1 (X,Q1) =
Q1 (α−Q1)X

r − µ
− δQ1

−
(
X
β − 1

β + 1

α−Q1

δ (r − µ)

)β
δQ1

β − 1

−

(
X

β − 1

(β + 1)
2

β (α−Q1)

δ (r − µ)

)β
δQ1

β − 1

(54)

Now, taking the derivative

∂V1 (X,Q1)

∂X

=
Q1 (α−Q1)

r − µ
+
X ∂Q1

∂X (α−Q1)

r − µ
−
X ∂Q1

∂X Q1

r − µ
− δ

∂Q1

∂X

−
(
X

δ

β − 1

β + 1

α−Q1

r − µ

)β
δQ1

β − 1

(
βQ1 (α−Q1) +X ∂Q1

∂X (α−Q1)− βXQ1
∂Q1

∂X

XQ1 (α−Q1)

)

−

(
X

δ

β (β − 1)

(β + 1)
2

α−Q1

r − µ

)β
δQ1

β − 1

(
βQ1 (α−Q1) +X ∂Q1

∂X (α−Q1)− βXQ1
∂Q1

∂X

XQ1 (α−Q1)

)
(55)
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Applying smooth pasting and value matching gives us:

0 =
Q1 (α−Q1)X

r − µ
− 1

β

Q1 (α−Q1)X

(r − µ)
−
X2 ∂Q1

∂X (α− 2Q1)

β (r − µ)
− δQ1 + δ

X

β

∂Q1 (X)

∂X

+

(
X

δ

β − 1

β + 1

(α−Q1)

r − µ

)β
δ

β − 1

1

β

(
X ∂Q1

∂X (α− (β + 1)Q1)

α−Q1

)

+

(
X

δ

β (β − 1)

(β + 1)
2

(α−Q1)

r − µ

)β
δ

β − 1

1

β

(
X ∂Q1

∂X (α− (β + 1)Q1)

α−Q1

)

=

(
β − 1

β

)
Q1 (α−Q1)X

r − µ
−
X2 ∂Q1

∂X (α− 2Q1)

β (r − µ)
− δQ1 + δ

X

β

∂Q1 (X)

∂X

+
X

β

∂Q1

∂X

((
X

δ

β − 1

β + 1

(α−Q1)

r − µ

)β
δ

β − 1

(
(α− (1 + β)Q1)

α−Q1

)

+

(
X

δ

β (β − 1)

(β + 1)
2

(α−Q1)

r − µ

)β
δ

β − 1

(
(α− (1 + β)Q1)

α−Q1

))

Using equation (52), we can write

(α− (β + 1)Q1) δ

(β − 1) (α−Q1)

(
X (β − 1) (α−Q1)

δ (β + 1) (r − µ)

)β

− (α− (β + 1)Q1) δ

(β − 1) (α−Q1)

(
X (β − 1)

(β + 1)
2

β (α−Q1)

δ (r − µ)

)β

=
X (α− 2Q1)

r − µ
− δ

Plugging this in,

0 =
β − 1

β

XQ1 (α−Q1)

r − µ
−
X2 ∂Q1

∂X (α− 2Q1)

β (r − µ)
−δQ1+δ

X

β

∂Q1

∂X
+
X

β

∂Q1

∂X

(
X (α− 2Q1)

r − µ
− δ

)
β − 1

β

XQ1 (α−Q1)

r − µ
= δQ1

⇒ X =
δβ (r − µ)

(β − 1) (r − µ) (α−Q1)
(56)
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Which subsequently gives us,

0 =
(α− 2Q1)βδ (r − µ)

(r − µ) (β − 1) (α−Q1)
− δ

− δ (α− (β + 1)Q1)

(β − 1) (α−Q1)

(
βδ (r − µ) (β − 1) (α−Q1)

(β − 1) (α−Q1) (β + 1) (r − µ) δ

)β

− δ (α− (β + 1)Q1)

(β − 1) (α−Q1)

 βδ (r − µ) (β (β − 1)) (α−Q1)

(β − 1) (α−Q1)
(
(β + 1)

2
)
(r − µ) δ

β

=(α− 2Q1)βδ − δ (β − 1) (α−Q1)−
(

β

β + 1

)β

δ (α− (β + 1)Q1)

−
(

β

β + 1

)2β

δ (α− (β + 1)Q1)

=αβ − 2βQ1 − αβ + βQ1 + α−Q1

−
(

β

β + 1

)β

(α− (β + 1)Q1)−
(

β

β + 1

)2β

(α− (β + 1)Q1)

= α− ((β + 1)Q1)−
(

β

β + 1

)β

(α− (β + 1)Q1)−
(

β

β + 1

)2β

(α− (β + 1)Q1)

⇒ 0 = α− (β + 1)Q1

From there we can conclude that
Q∗

1 =
α

β + 1
(57)

Inserting this into (56) gives us

X =
(r − µ)βδ

(β − 1)
(
α− α

β+1

)
=

(r − µ)βδ

(β − 1) αβ
β+1

Hence, we have
X∗

1 = (r − µ)
β + 1

β − 1

δ

α

6.1.4 Oligopoly

We will prove the statement by strong induction. Firstly, we will prove that the statement
holds for the last entrant n. Next, we will consider firm i, where 1 ≤ i < n, assuming that
the statement holds for all j such that i < j ≤ n.
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For the n-th entrant, we have the following value function

Vn (X,Qn) = E

∫ ∞

t=0

QnX (t)

α−
n∑

j=1

Qj

 e−rtdt

∣∣∣∣∣∣X (0) = X

− δQn

=

∫ ∞

t=0

QnE [X (t)|X (0) = X]

α−
n∑

j=1

Qj

 e−rtdt− δQn

=

∫ ∞

t=0

QnXe
µt

α−
n∑

j=1

Qj

 e−rtdt− δQn

= QnX

α−
n∑

j=1

Qj

∫ ∞

t=0

e(µ−r)tdt− δQn

= QnX

α−
n∑

j=1

Qj

[ 1

µ− r
e(µ−r)t

]t=∞

t=0

− δQn

Vn (X,Qn) =
QnX

(
α−

∑n
j=1Qj

)
r − µ

− δQn (58)

If we now take the derivative of Vn (X,Qn) with respect to Qn we obtain the following,

∂Vn (X,Qn)

∂Qn
=
X
(
α−

∑n
j=1Qj

)
r − µ

− QnX

r − µ
− δ

0 =
X
(
α−

∑n−1
j=1 Qj − 2Qn

)
r − µ

− δ

δ (r − µ) = X

α−
n−1∑
j=1

Qj

− 2QnX

Qn =
1

2

α−
n−1∑
j=1

Qj

− 1

2

δ (r − µ)

X
(59)
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If we again apply smooth pasting and value matching to (58), we obtain

AXβ =
QnX

(
α−

∑n
j=1Qj

)
r − µ

− δQn

β

X
AXβ =

Qn

(
α−

∑n
j=1Qj

)
r − µ

1

β

QnX
(
α−

∑n
j=1Qj

)
r − µ

=
QnX

(
α−

∑n
j=1Qj

)
r − µ

− δQn

δ =
β − 1

β

X
(
α−

∑n
j=1Qj

)
r − µ

X =
β

β − 1

δ (r − µ)

α−
∑n

j=1Qj
(60)

Now, if we insert (59) into (60), we obtain

X =
β

β − 1

δ (r − µ)(
α−

∑n−1
j=1 Qj

)
− 1

2

(
α−

∑n−1
j=1 Qj

)
+ 1

2
δ(r−µ)

X

=
β

β − 1

δ (r − µ)

1
2

(
α−

∑n−1
j=1 Qj

)
+ 1

2
δ(r−µ)

X

⇒ 1

2
X

α−
n−1∑
j=1

Qj

+
1

2
δ (r − µ) =

β

β − 1
δ (r − µ)

X

α−
n−1∑
j=1

Qj

 =
2β − β + 1

β − 1
δ (r − µ)

X∗
n =

β + 1

β − 1
δ

r − µ

α−
∑n−1

j=1 Qj

(61)
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Plugging (61) back into (59) gives us

Q∗
n =

1

2

α−
n−1∑
j=1

Qj

− 1

2

δ (r − µ)
β+1
β−1δ

r−µ

α−
∑n−1

j=1 Qj

=
1

2

α−
n−1∑
j=1

Qj

− 1

2

β − 1

β + 1

α−
n−1∑
j=1

Qj


=

1

2

β + 1− β + 1

β + 1

α−
n−1∑
j=1

Qj


=
α−

∑n−1
j=1 Qj

β + 1

So, both Q∗
n and X∗

n coincide with the equations mentioned before. Therefore, we have
proven that for i = n, the equations holds. So the base case holds.

Now, we will look at i, where 1 ≤ i < n. Since we are using strong induction, we will
assume that the equation holds for all k such that i < k ≤ n. So, for these k, we have

X∗
k =

β + 1

β − 1
δ

r − µ

α−
∑k−1

j=1 Qj

(62)

Q∗
k =

α−
∑k−1

j=1 Qj

β + 1
(63)

The value for the i-th entrant is defined by

Vi (X,Qi) =E

[∫ T∗
i+1

t=0

QiX (t)

(
α−

i∑
k=1

Qj

)
e−rtdt− δQi

+

n−1∑
k=i+1

∫ T∗
k+1

t=T∗
k

QiX (t)

α−
k∑

j=1

Qj

 e−rtdt

+

∫ ∞

t=T∗
n

QiX (t)

α−
n∑

j=1

Qj

 e−rtdt

∣∣∣∣∣X (0) = X

]

=E

[∫ ∞

t=0

QiX (t)

α−
i∑

j=1

Qj

 e−rt − δQi −
n−1∑

k=i+1

∫ ∞

t=T∗
k

QiX (t)Qke
−rtdt

−
∫ ∞

t=T∗
n

QiX (t)Qne
−rtdt

∣∣∣∣∣X (0) = X

]
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Vi (X,Qi) = E

∫ ∞

t=0

QiX (t)

α−
i∑

j=1

Qj

 e−rt − δQi

−
n∑

k=i+1

∫ ∞

t=T∗
k

QiX (t)Qke
−rtdt

∣∣∣∣∣X (0) = X

] (64)

We know, from previous calculations, that

E

[∫ ∞

t=T∗
k

QiX (t)Qke
−rtdt

∣∣∣∣∣X (0) = X

]
=

(
X

X∗
k

)β
QiQ

∗
kX

∗
k

r − µ

We also have calculated before the following

E

∫ ∞

t=0

QiX (t)

α−
i∑

j=1

Qj

 e−rtdt

∣∣∣∣∣∣X (0) = X

 =
QiX

(
α−

∑i
j=1Qj

)
r − µ

Combining these two results, (62), (63) and (64) gives

Vi (X,Qi) =
QiX

(
α−

∑i
j=1Qj

)
r − µ

− δQi

−
n∑

k=i+1

(
X
β − 1

β + 1

α−
∑k−1

j=1 Qj

δ (r − µ)

)β

∗
Qi

(
α−

∑k−1
j=1 Qj

)
(β + 1) (r − µ)

β + 1

β − 1
δ

r − µ

α−
∑k−1

j=1 Qj

=
QiX

(
α−

∑i
j=1Qj

)
r − µ

− δQi

−
n∑

k=i+1

(
X
β − 1

β + 1

α−
∑k−1

j=1 Qj

δ (r − µ)

)β

∗ δQi

β − 1

(65)

We now want to prove that for all values of ℓ ∈ N+,

α−
i+ℓ∑
j=1

Qj = fℓ (β)

α−
i∑

j=1

Qj

 (66)

where fℓ (β) is some function of β.
Base case (ℓ = 0): α−

∑i
j=1Qi = α−

∑i
j=1Qi

Induction step: Assume now the function holds for ℓ, so that α−
∑i+ℓ

j=1Qj = fℓ(β)(α−
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∑i+ℓ
j=1Qj) holds. We will now consider ℓ+ 1.

α−
i+ℓ+1∑
j=1

Qj = α−
i+ℓ∑
j=1

Qj −Qℓ+1

= fℓ (β)

α−
i+ℓ∑
j=1

Qj

−
α−

∑i+ℓ
j=1Qj

β + 1

=
fℓ (β) (β + 1)

(
α−

∑i+ℓ
j=1Qj

)
−
(
α−

∑i+ℓ
j=1Qj

)
β + 1

= fℓ+1 (β)

α−
i+ℓ∑
j=1

Qj


The second step is due to our original assumption (63). Therefore, we have now proven by
induction that (66) holds.

Inserting this result into (65) gives the following equation for Vi(X,Qi)

Vi (X,Qi) =
QiX

(
α−

∑i
j=1Qj

)
r − µ

− δQi

−
n∑

k=i+1

(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β

∗ δQi

β − 1

(67)

If we now take the derivative with respect to Qi

ϕi (X,Qi) =
X
(
α−

∑i
j=1Qj

)
r − µ

− QiX

r − µ
− δ −

n∑
k=i+1

g (X,Qi)
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where

g (X,Qi) =

(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β

∗ δ

β − 1

− βX
β − 1

β + 1
fk−i (β)

1

δ (r − µ)

(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β−1

∗ δQi

β − 1

=

(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β

∗ δ

β − 1

− β

α−
∑i

j=1Qj

(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β

∗ δQi

β − 1

=
δ

β − 1

(
α−

∑i
j=1Qj − βQi

α−
∑i

j=1Qj

)(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β

With this result we get

ϕi (X,Qi) =
X
(
α−

∑i
j=1Qj −Qi

)
r − µ

− δ

−
n∑

k=i+1

δ
(
α−

∑i
j=1Qj − βQi

)
(β − 1)

(
α−

∑i
j=1Qj

) (Xβ − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β

= 0

(68)

Applying value matching and smooth pasting,

Vi (X
∗, Qi) =

X

β

∂

∂X
Vi (X

∗, Qi)

We first determine

∂

∂X
Vi (X,Qi) =

Qi

(
α−

∑i
j=1Qj

)
r − µ

+

∂Qi

∂X

(
α−

∑i
j=1Qj

)
X

r − µ
−

∂Qi

∂X QiX

r − µ
− δ

∂Qi

∂X

−
n∑

k=i+1

(
β

X
+

∂Qi

∂X

Qi
− β

∂Qi

∂X

α−
∑i

j=1Qj

)
δQi

β − 1

(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β
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So then we have

0 =
QiX

(
α−

∑i
j=1Qj

)
r − µ

− 1

β

QiX
(
α−

∑i
j=1Qj

)
r − µ

−
X2 ∂Qi

∂X

(
α−

∑i
j=1Qj −Qi

)
β (r − µ)

− δQi + δ
∂Qi

∂X

X

β

+

n∑
k=i+1

(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

)β (
δQi

β − 1

X

β

)
(
α−

∑i
j=1Qj − βQi

)
∂Qi

∂X

Qi

(
α−

∑i
j=1Qj

)


=

(
β − 1

β

) QiX
(
α−

∑i
j=1Qj

)
r − µ

−
X2 ∂Qi

∂X

(
α−

∑i
j=1Qj −Qi

)
β (r − µ)

− δQi + δ
∂Qi

∂X

X

β

+
X

β

∂Qi

∂X

n∑
k=i+1

(
X
β − 1

β + 1
fk−i (β)

α−
∑i

j=iQj

δ (r − µ)

)β
δ

(
α−

∑i
j=1Qj − βQi

)
(β − 1)

(
α−

∑i
j=1Qj

)


Using ϕi we can write

0 =

(
β − 1

β

) QiX
(
α−

∑i
j=1Qj

)
r − µ

−
X2 ∂Qi

∂X

(
α−

∑i
j=1Qj −Qi

)
β (r − µ)

− δQi + δ
∂Qi

∂X

X

β

+
X

β

∂Qi

∂X

X
(
α−

∑i
j=1Qj −Qi

)
r − µ

− δ


⇒
(
β − 1

β

) XQi

(
α−

∑i
j=1Qj

)
δ (r − µ)

= δQi

X =
βδ (r − µ)

(β − 1)
(
α−

∑i
j=1Qj

) (69)
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Plugging this back into ϕi

0 =
βδ (r − µ)

(β − 1)
(
α−

∑i
j=1Qj

)
(
α−

∑i
j=1Qj −Qi

)
r − µ

− δ

−
n∑

k=i+1

δ
(
α−

∑i
j=1Qj − βQi

)
(β − 1)

(
α−

∑i
j=1Qj

)
 βδ (r − µ)

(β − 1)
(
α−

∑i
j=1Qj

) β − 1

β + 1
fk−i (β)

α−
∑i

j=1Qj

δ (r − µ)

β

=β

α−
i∑

j=1

Qj −Qi

− (β − 1)

α−
i∑

j=1

Qj


−

n∑
k=i+1

α−
i∑

j=1

Qj − βQi

( β

β + 1
fk−i (β)

)β

=αβ −
i∑

j=1

βQj − βQi − αβ +

i∑
j=1

βQj + α−
i∑

j=1

Qj

−
n∑

k=i+1

α−
i∑

j=1

Qj − βQi

( β

β + 1
fk−i (β)

)β

=α−
i∑

j=1

Qj − βQi −

α−
i∑

j=1

Qj − βQi

 n∑
k=i+1

(
β

β − 1
fk−i (β)

)β

⇒ α−
i∑

j=1

Qj − βQi = 0

⇒ α−
i−1∑
j=1

Qj − (1 + β)Qi = 0

⇒ Q∗
i =

α−
∑i−1

j=1Qj

β + 1
(70)

If we insert (70) into (69), we get

X =
βδ (r − µ)

(β − 1)

(
α−

∑i−1
j=1Qj −

α−
∑i−1

j=1 Qj

β+1

)
=

βδ (r − µ)

(β − 1)
β(α−

∑i−1
j=1 Qj)

β+1
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X∗
i =

β + 1

β − 1

δ (r − µ)

α−
∑i−1

j=1Qj

(71)

We will now try to prove by induction that the following holds for Q∗
i , based on the recursive

function (70),

Q∗
i = (

β

β + 1
)i−1 α

β + 1
(72)

First, we will observe the base case, so i = 1:

(
β

β + 1
)0

α

β + 1
=

α

β + 1
= Q∗

1

Next, we will assume, by induction, that the statement holds for i, hence we have

Q∗
i =

α−
∑i−1

j=1Qj

β + 1
= (

β

β + 1
)i−1 α

β + 1

Now, we will observe for i+ 1,

Q∗
i+1 =

α−
∑i

j=1Qj

β + 1
=
α−

∑i−1
j=1Qj

β + 1
− Qi

β + 1

= (
β

β + 1
)i−1 α

β + 1
− (

β

β + 1
)i−1 α

(β + 1)2

= (β + 1− 1)(
β

β + 1
)i−1 α

(β + 1)2

= (
β

β + 1
)(

β

β + 1
)i−1 α

β + 1

= (
β

β + 1
)i

α

β + 1

Hence, by induction, we have proven that (72) holds. Combining (71) and (72) gives the
following,

X∗
i =

β + 1

β − 1
δ

r − µ

α−
∑i−1

j=1Qj

=
β + 1

β − 1
δ

r − µ

(β + 1)(
α−

∑i−1
j=1 Qj

β+1 )

=
δ

β − 1

r − µ

( β
β+1 )

i−1 α
β+1

⇒ X∗
i =

β + 1

β − 1
δ
r − µ

α
(
β + 1

β
)i−1 (73)
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6.2 General inverse demand function

In this section, we will consider the following price function

P = Xh(Q)

Here, h(Q) is an unknown function.

6.2.1 Monopoly

The value function in case of a monopoly is as follows

V (X,Q) =
Qh(Q)X

r − µ
− δQ

Firstly, we take the derivative with respect to Q

∂V (X,Q)

∂Q
=
h′(Q)XQ

r − µ
+
Xh(Q)

r − µ
− δ = 0 (74)

Next, the derivative with respect to X is

∂V (X,Q)

∂X
=
Qh(Q)

r − µ

Applying value matching and smooth pasting

0 =
Xh(Q)Q

r − µ
− X

β

Qh(Q)

r − µ
− δQ(

β − 1

β

)
h(Q)X

r − µ
= δ

X =
β

β − 1

δ(r − µ)

h(Q)
(75)

Now, inserting (75) into (74) gives us

β

β − 1

δ(r − µ)

h(Q)

h′(Q)Q+ h(Q)

r − µ
− δ = 0

β

β − 1

h′(Q)Q+ h(Q)

h(Q)
= 1

β (Qh′(Q) + h(Q)) = (β − 1)h(Q)

βQh′(Q) + h(Q) = 0 (76)

74



The equations (76) together with (75) make up the investment decision in the monopoly
case.

6.2.2 Duopoly

We will now consider a duopoly. The value function is defined as

V2(X,Q) =
XQ2h(Q1 +Q2)

r − µ
− δQ2

taking the derivative with respect to Q2 we obtain

∂V2(X,Q)

∂Q2
=
X2h(Q2 +Q2)

r − µ
+
X2Q2h

′(Q1 +Q2)

r − µ
− δ

= X
h(Q1 +Q2) +Q2h

′(Q1 +Q2)

r − µ
− δ

= 0

Applying value matching and smooth pasting

0 =
X2Q2h(Q1 +Q2)

r − µ
− X2

β

Q2h(Q1 +Q2)

r − µ
− δQ2

=
β − 1

β

X2h(Q1 +Q2)

r − µ
− δ

X2 =
β

β − 1

δ(r − µ)

h(Q1 +Q2)
(77)

We can simplify this further by plugging in X2

β

β − 1

δ(r − µ)

h(Q1 +Q2)

h(Q1 +Q2) +Q2h
′(Q1 +Q2)

r − µ
− δ = 0

β

β − 1

h(Q1 +Q2) +Q2h
′(Q1 +Q2)

h(Q1 +Q2)
− 1 = 0

β(h(Q1 +Q2) +Q2h
′(Q1 +Q2)) = (β − 1)h(Q1 +Q2)

βQ2h
′(Q1 +Q2) + h(Q1 +Q2) = 0 (78)

Using (78) and (77), we occasionally are able to find an explicit solution for Q2, which is
actually necessary for us to find the optimal decision for the first entrant.

Let us assume that we have found an explicit formula for Q2 which only depends on Q1.
We then have the following value function for the first entrant
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V1(Q,X) =E

[ ∫ T∗
2

t=0

Q1X(t)h(Q1)e
−rtdt− δQ1

+

∫ ∞

t=T∗
2

Q1X(t)h(Q1 +Q2)e
−rtdt

∣∣∣∣X(0) = X

]
=E

[ ∫ ∞

t=0

Q1X(t)h(Q1)e
−rtdt− δQ1

−
∫ ∞

t=T∗
2

Q1X(t) (h(Q1 +Q2)− h(Q1)) e
−rtdt

∣∣∣∣X(0) = X

]
=
Q1h(Q1)X1

r − µ
− δQ1 −

(
X1

X2

)β

X2
Q1 (h(Q1 +Q2)− h(Q1))

r − µ

Now, by (78), we know that Q2 only depends on Q1. Similarly, since X2 only depends on
Q1 and Q2, which in turn only depends on Q1, we know that X2 only depends on Q1.

Therefore, we will replace the last part of the equation by g(Q1). Hence, we will remain
with the following value function.

V1(Q,X) =
Q1h(Q1)X1

r − µ
− δQ1 −Xβ

1 g(Q1) (79)

where

g (Q1) = X1−β
2

Q1 (h(Q1 +Q2)− h(Q1))

r − µ
(80)

First, we will take the derivative with respect to Q1

∂V1
∂Q1

=
h (Q1)X1

r − µ
+
h′ (Q1)Q1X1

r − µ
− δ +Xβ

1

∂

∂Q1
g (Q1)

=
(h (Q1) + h′ (Q1)Q1)

r − µ
X1 − δ +Xβ

1

∂

∂Q1
g (Q1) = 0

(81)

Next, we will apply value matching and smooth pasting. In order to do that, we will
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need the derivative with respect to X1

∂V

∂X1
=
Q1h (Q1)

r − µ
+

∂Q1

∂X1
h (Q1)X1

r − µ
+

∂Q1

∂X1
h′1 (Q1)Q1X1

r − µ

− δ
∂Q1

∂X1
+ βXβ−1

1 g (Q1) +
∂Q1

∂X1

∂

∂Q1
g (Q1)X

β
1

=
Q1h (Q1)

r − µ
+
∂Q1

∂X1
X1

h (Q1) +Q1h
′ (Q1)

r − µ
− δ

∂Q1

∂X1

+Xβ
1

(
β

X1
g(Q1) +

∂Q1

∂X1

∂

∂Q1
g (Q1)

)
Now, applying it gives us

0 =
Q1h(Q1)X1

r − µ
− X1

β

Q1h(Q1)

r − µ
− X2

1

β

∂Q1

∂X1

h(Q1) +Q1h
′(Q1)

r − µ

− δQ1 + δ
∂Q1

∂X1

X1

β
+Xβ

1 g (Q1)−Xβ
1

(
g (Q1) +

X1

β

∂Q1

∂X1

∂

∂Q1
g (Q1)

) (82)

We can rewrite (81) as

Xβ
1 =

−h(Q1)+h′(Q1)Q1

r−µ X1 + δ
∂

∂Q1
g (Q1)

Inserting this result into (82) yields

0 =

(
β − 1

β

)
Q1h(Q1)X1

r − µ
− X2

1

β

∂Q1

∂X1

h(Q1) +Q1h
′(Q1)

r − µ
− δQ1 + δ

∂Q1

∂X1

X1

β

−

−h(Q1)+h′(Q1)Q1

r−µ X1 + δ
∂

∂Q1
g(Q1)

 X1

β

∂Q1

∂X1

∂

∂Q1
g(Q1)

=
β − 1

β

Q1h(Q1)X1

r − µ
− δQ1

δ =
β − 1

β

h(Q1)Q1

r − µ

X1 =
βδ(r − µ)

(β − 1)h(Q1)
(83)

Inserting (83), (80), (77), and (78) into (81) gives us an equation that only depends on Q1.
Now, we can compute the optimal value for Q1, and using this result, we can compute X1,
X2, and Q2.
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6.3 Convex vs. Concave

6.3.1 Quadratic price inverse demand function

Let’s assume a price function
P = X(α−Q2)

6.3.1.1 Monopoly

From the price function we can deduct that h(Q) = α − Q2. We can now easily compute
the monopoly value by inserting this function into (76). This gives us the following

−2βQ2 + α−Q2 = 0

α = (1 + 2β)Q2

Q =

√
α

1 + 2β
(84)

We will ignore the negative root, since the investment quantity must be positive. Now,
applying this to (75)

X =
β

β − 1

δ(r − µ)

α− α
1+2β

=
β

β − 1

δ(r − µ)
2αβ
1+2β

=
1 + 2β

β − 1

δ(r − µ)

2α

(85)

6.3.1.2 Duopoly

This this end, we first want to compute an equation for Q2 and X2. We can do this by
inserting our function for h(Q) into (78). This results in
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0 = βQ2 (−2 (Q1 +Q2)) + α− (Q1 +Q2)
2

= −2βQ1Q2 − 2βQ2
2 + α−Q2

1 − 2Q1Q2 −Q2
2

= (2β + 1)Q2
2 + (2β + 2)Q1Q2 − α+Q2

1

= Q2
2 +

2β + 2

2β + 1
Q1Q2 −

α−Q2
1

2β + 1

=

(
Q2

2 +
β + 1

2β + 1
Q1

)2

− (β + 1)
2

(2β + 1)2
Q2

1 −
α−Q2

1

2β + 1

=

(
Q2 +

β + 1

2β + 1
Q1

)2

−
(
β2 + 2β + 1

)
Q2

1

(2β + 1)2
− (2β + 1)α− (2β + 1)Q2

1

(2β + 1)2

=

(
Q2 +

β + 1

2β + 1
Q1

)2

− β2Q2
1 + (2β + 1)α

(2β + 1)2

We will again ignore the negative root, since the Q1 and Q2 both must be positive.

Q2 +
β + 1

2β + 1
Q1 =

√
β2Q2

1 + (2β + 1)α

2β + 1

Q2 =

√
β2Q2

1 + (2β + 1)α

2β + 1
− β + 1

2β + 1
Q1 (86)

Now, using (83), (77), (86), (81), and (80), we can compute the optimal value for Q1, and
therefore for all decision variables.

6.3.2 Square-root inverse demand function

Next, we will consider the case where h(Q) = α−
√
Q, hence the price function is as follows

P = X(α−
√
Q)
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6.3.2.1 Monopoly

We can now easily compute the monopoly value by inserting this function into (76). This
gives us the following

βQ

(
−1

2
Q− 1

2

)
+ α−

√
Q = 0

α =

(
1 +

1

2
β

)√
Q

Q =

(
α

1 + 1
2β

)2

(87)

Now, applying this to (75)

X =
β

β − 1

δ(r − µ)

α−
√
Q

=
β

β − 1

δ(r − µ)

α− α
1+ 1

2β

=
β

β − 1

δ(r − µ)
1
2αβ

1+ 1
2β

=
2 + β

β − 1

δ(r − µ)

α

(88)

6.3.2.2 Duopoly

This this end, we first want to compute an equation for Q2 and X2. We can do this by
inserting our function for h(Q) into (78). This results in
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−1

2

βQ2

(Q1 +Q2)
1
2

+ α− (Q1 +Q2)
1
2 = 0

−1

2
βQ2 + α(Q1 +Q2)

1
2 − (Q1 +Q2) = 0

−1

2
β(Q1 +Q2) + α(Q1 +Q2)

1
2 − (Q1 +Q2)

−(
1

2
β + 1)(Q1 +Q2) + α(Q1 +Q2)

1
2 = −1

2
βQ1

(Q1 +Q2)−
α

1
2β + 1

(Q1 +Q2)
1
2 =

1
2βQ1

1
2β + 1

(Q1 +Q2)−
2α

β + 2
(Q1 +Q2)

1
2 =

βQ1

β + 2(√
Q1 +Q2 −

α

β + 2

)2

− α2

(β + 2)2
=

βQ1

β + 2(√
Q1 +Q2 −

α

β + 2

)2

=
α2 + β2Q1 + 2βQ1

(β + 2)2√
Q1 +Q2 −

α

β + 2
=

√
α2 + β2Q1 + 2βQ1

β + 2

Q1 +Q2 =

(√
α2 + (β2 + 2β)Q1 + α

β + 2

)2

Q2 =
2α2 + 2α

√
α2 + (β2 + 2β)Q1 + (2β + 4)Q1

(β + 2)2
(89)

Now, using (83), (77), (89), (81), and (80), we can compute the optimal value for Q1, and
therefore for all decision variables.
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