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The quality of Mean-Variance approximations in continuous time appears relatively understud-
ied. In contrast to the extensively studied single-period or multi-period myopic cases, in a
continuous time setting optimal Mean-Variance policies are found to perform very poorly in
approximating optimal policies under comparable expected utility criteria. This thesis traces
these results to the underlying mechanisms of the Martingale method, which is used to com-
pute optimal pre-commitment policies as the overall optimal policies under the given criteria
in continuous time. Based on theoretical assessment and analysis of the underlying wealth
processes generated, it is argued that under the optimal pre-commitment solution, the Mean-
Variance investor fails to satisfy criteria of Second-Order stochastic dominance, which, in turn,
causes considerable loss in value to expected utility maximizers, whose policies are to be ap-
proximated. Furthermore, it is shown that while costly to the Mean-Variance investor herself,
time-inconsistency of the Mean-Variance criterion is indirectly value-enhancing with respect
to Mean-Variance approximations, as the dynamically consistent Mean-Variance solution ap-
proximates optimal pre-commitment solutions under the respective expected utility criteria
more closely. Analysis of investment patterns and wealth processes generated is provided to
investigate the underlying reasons for the above. Furthermore, the quality of approximation is
quantified in terms of certainty equivalent returns, in order to provide comparable measures of
value.
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1 Introduction

Much has been written on the differences between optimal Mean-Variance and Expected Utility
investment. Continuous time Mean-Variance investment, however, challenges us to once again
start at first principles and reassess the adherence of the Mean-Variance investor to principles
of rational economic decision making. We will see that even under conditions of normality, the
overall optimal Mean-Variance policy differs considerably from the strategy, which would be
chosen under a comparable expected utility criterion, and trace this difference to the Mean-
Variance investor’s failure to adhere to axioms of rationality, as they have been developed within
the Expected Utility framework. Moreover, while generally seen as implying costs1, the adap-
tation of the dynamic Mean-Variance investor’s objective function given the time-inconsistency
of her criterion2 will be shown to improve her ability to approximate optimal Expected Utility
policies. The picture then emerges of an investor, whose optimal policy relative to her own
criterion is starkly rejected by expected utility maximizers and whose ability to serve the latter
is improved by constraints, which are seen as costly from her own perspective. To set the stage
in this introductory section, we will first briefly review the criticism of Mean-Variance invest-
ment from the view of Expected Utility Theory and discuss Mean-Variance investment’s failure
with respect to Stochastic Dominance. We will then identify the relevant gaps in the current
literature with respect to continuous time Mean-Variance investing and argue that normality is
not sufficient to constrain the continuous-time Mean-Variance investor with a view to ensuring
adherence to principles of economic rationality. Finally, the issue of time-inconsistency will
briefly be discussed.

From a theoretical point of view, interest in the differences between Mean-Variance and Ex-
pected Utility investing, as well as the ability of strategies derived within the former to ap-
proximate optimal strategies within the latter paradigm, derives from the normative appeal of
the axioms, on which the Expected Utility framework is built (Machina, 1990). Furthermore,
for wide sets of reasonable utility functions, Expected Utility investing is equivalent to the sat-
isfaction of criteria of First-and Second Order Stochastic Dominance (Hadar & Russel, 1969),
both of which provide rather broad additional criteria for rational economic decision-making
(Hanoch & Levy, 1969). Hence, it seems natural to assess optimal Mean-Variance portfolio
choices against Expected Utility criteria, if economic rationality, as embodied in the underlying
axioms and requirements, is regarded as important.
Mean-Variance investing has been criticised by proponents of Expected Utility analysis for its
failure to reliably yield indifference curves in the (µ,σ2) plane3 (Borch, 1969), which, in turn,
prevents representability within the Expected Utility framework (Machina, 1990) and casts
doubt on the economic rationality of the underlying choices. (Borch, 1969; Machina, 1990;
Lindley & Johnstone, 2013) Existence of indifference curves in the (µ,σ2) is limited to cases
of quadratic utility, normally distributed assets or, similarly, axiomatized derivations of indif-
ference curves based on the presumption that all available choices are fully described in the
eye of the investor by their means and variances. (Johnstone & Lindley, 2013; Baron, 1977).
In the case of normality4 or quadratic utility, expected utility becomes a function of means

1Björk & Murgoci (2010), see blow.
2Basak & Chabakauri (2010), see below.
3Or, that is, of course the (µ,σ)-plane.
4That is, in this case, using the fact that the (single period) Mean-Variance optimization problem is equivalent

to the problem of maximizing expected CARA, that is negative exponential, utility (see Munk, 2017).
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and variances of terminal prortfolio wealth, allowing for the derivation of linear indifference
curves in the (µ,σ2)-plane (Lindley & Johnstone, 2013; Munk, 2017; Baron, 1977). Moreover,
second-order Taylor approximations of expected future utility become exact (Munk, 2017) and
expected utility with n-th order polynomial utility functions is fully described by the first n
moments of the return distribution and derivatives of the utility function, respectively (Hadar
& Russel, 1969). In case of general utility functions, however, the requirement of normality
restricts the use of stochastic portfolio policies and essentially confines the investor to using
linear portfolio weights (Johnstone & Lindley, 2013).
With reference to criteria of Stochastic Dominance, Mean-Variance investing has, furthermore,
been found to violate intuitive criteria of basic economic rationality. On the one hand, vari-
ance, which captures the Mean-Variance investor’s disutility from the risk related to stochastic
prospects, would penalize the investor for risk that is purely to the upside. While no rational
economic agent would reasonably choose a deterministic payment of 2 over a risky prospect of
2 or 4 with equal probability, the Mean-Variance investor’s choice would depend on her indi-
vidual risk-aversion parameter (Levy, 2006; Hanoch & Levy, 1969), thus violating First-Order
stochastic dominance, as any investor with an increasing utility function would unequivocally
have chosen the ’risk’ (Hadar & Russel, 1969; Levy, 1990). Moreover, the Mean-Variance
investor penalizes downside risk equally as she appreciates upside potential5 (Machina & Roth-
schild, 1990). In contrast, risk-averse investors6 would prefer portfolios, which, as seen from
each potential outcome, put a larger probability on smaller downside risk on average, providing
better protection against downside risk in this sense and leading to equivalent characterizations
in terms of Second-Order stochastic dominance (Hadar & Russel, 1969; Levy, 1990; Rothschild
& Stiglitz, 1970; Rothschild & Stiglitz, 1971)7. Building on Hanoch & Levy (1969)8, a Mean-
Variance investor may neglect downside risk protection, as a shift in probability mass to higher
outcomes may at the same time lead to an increase in variance. Let risk X and probability
mass functions p(X) and q(X) be given by:

X 0 50 100
p(X) 0.85 0.02 0.13
q(X) 0.6 0.28 0.12

Risk X under q(X) Second-Order9 stochastically dominates X under p(X), as it offers greater
downside risk protection in the sense discussed above at each possible outcome and is, in this
sense, stochastically larger (Hadar & Russel, 1969). The Mean-Variance investor, however, is
not able to express unequivocal preference for X under q(X), as both its mean and variance,
respectively, are larger under measure q, that is µp = 14 < µq = 26 and σ2

p = 1154 < σ2
q = 1224.

While this shows that Second-Order stochastic dominance is not sufficient for preference under
Mean-Variance objective functions, vice versa preference under Mean-Variance preferences is
neither sufficient for Second-Order Stochastic Dominance (Hanoch & Levy, 1969). Let us
consider an investor in times of turbulent stock-markets with a wealth of 10, who faces the

5Relatedly, variance has more generally been rejected as a reasonable risk-measure based on an axiomatic
approach (see Artzner et al., 1999).

6That is, strict risk-aversion in terms of strict concavity yields a strict preference for certain pay-offs (see
Hadar & Russel, 1969)

7An interesting parallel to these theoretical results are the behavioral results studied through Allais’ paradox
(see Allais, 1990)

8That is, in particular, their ’Examples’ 1 and 2’
9First-Order Stochastic dominance does not hold in this case, as the probability mass is not always greater

to the upside under q (see Hadar & Russel, 1969).
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prospect of having his wealth halved to 5 at a probability of 0.6, or having it doubled with
a probability of 0.4. The investor considers staying fully invested, or selling the position,
investing 8 in a safe bond and 2 in portfolio of deep-out-of-the-money options10, yielding vast
upside potential at very low probability.

X P(X) Y P(Y)
5 0.6 8 0.99
15 0.4 100 0.01

While risky prospect X is preferred to Y under Mean-Variance preferences (µX = 9 > µY =
8.92, while σ2

X = 24 < σ2
Y = 83.79), X does not Second-Order stochastically dominate Y , as X

performs worse in terms of downside risk for realizations between 5 and 8, whereas for realiza-
tions between 5 and 15, Y performs worse. As a result, there are Expected Utility maximizers,
who would prefer Y over X (compare Hadar & Russel, 1969; Hanoch & Levy, 1969), such as a
CRRA Expected Utility investor with u(x) = ln(x), as E[ln(X)] = 2.05 and E[ln(Y )] = 2.1.
If risky prospects are fully described by means and variance, however, Mean-Variance preference-
orderings are equivalent to Second-Order stochastic dominance orderings11 (Hanoch & Levy,
1969). More generally speaking, both First - and Second Order stochastic dominance provide
broad efficiency criteria in that both criteria provide preference orders, ranking portfolios that
are ’stochastically larger’ higher than their inferior alternatives. (Hadar & Russel, 1969)
Thus, it is precisely at the stated objective of reducing the universe of available portfolios
to an ’efficient set’ prior to applying individual preferences and selecting optimal portfolios
(Markovitz, 1952; Sharpe, 1964), where Mean-Variance analysis may fail in practice (Malavesi
et al., 2021).

The latter discussion is also related to concerns from a practical view point concerning the
difference between Mean-Variance and Expected Utility investing. If investment choices bear
relevance for our consumption choices across time and states of the world12, then the value of
a risky prospect should be evaluated according to the individual utility derived from it, respec-
tively (Bernoulli, 1954). Even if different individuals apply the same utility function to evaluate
a given set of risks, their value from a given prospect may differ due to differences in their wealth,
or their remaining portfolio, respectively (ibid). Hence, more objectifiable measures of value,
such as through Mean-Variance objectives, may after all not be more universally acceptable,
due to the inherent dependence of the evaluation of risks on individual circumstances. It is,
thus, reasonable to evaluate in particular investment choices that are fundamentally linked to
consumption choices, such as for example choices with respect to pension savings, according
to Expected Utility criteria (see e.g. Bovenberg et al., 2007; Metselaar et al., 2022)13. At the
same time, Mean-Variance analysis (Markovitz, 1952; Sharpe 1964) has become a fundamental
building block of modern finance, with applications ranging from ex-ante valuation to ex-post

10That is, a ’convexity’ type of trade (see e.g. Figlewski & Freund, 1994). While the appropriateness of
Mean-Variance analysis has particularly been doubted with respect to these trades, however, reality may not
be as clear cut (see Markowitz, 2014).

11Thus, confirming results in the previous paragraph that indifference curves may be derived and (single
period) negative exponential expected utility maximization is equivalent to Mean-Variance optimization (Munk,
2017; Johnstone & Lindley, 2013)

12See for example Cochrane (2001) or Eeckhoudt et al. (2005).
13While the obvious question as to the choice of utility criterion then arises, a strong case can be made that

there are utility functions, which represent preferences with certain generally acceptable characteristics, as for
example argued in Rubinstein, M. (1976), and as also follows from the discussion above and in section 2 below.
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performance evaluation (Cochrane, 2001; Pedersen, 2015). The appeal of Mean-Variance analy-
sis derives not least from its relative simplicity and ease of application (Markovitz, 1952; Sharpe,
1964; Pulley, 1981), at least its standard-formulation in the single-period case, as well as the
smaller burden it places on paramemter estimation both regarding the return distribution and
individual risk-aversion (Markowitz, 2014). The question of the goodness of fit of investment
decisions based on Mean-Variance criteria with respect to preferences of Expected Utility in-
vestors is the question of Mean-Variance approximations. (Levy & Markowitz, 1979)

In an early contribution concerning the assessment of Mean-Variance approximations, Levy &
Markowitz (1979) showed that based on empirical returns, Mean-Variance approximations to
different utility functions performed well in terms of correlations with a respective Expected
Utility criterion. Pulley (1981 & 1983) and Kroll et al. (1984) expand on these results by max-
imizing Expected Utility criteria and their respective mean-variance approximation separately,
to explicitly allow for differences in strategies in response to different optimization criteria
(Kroll et al, 1984). Pulley (1981 & 1983) finds that approximations are close to perfect with
respect to portfolio weights, returns generated and value derived under the Expected Utility
criteria, noting however, that approximations become worse as variance increases. Kroll et al.
(1984) likewise find that the optimal protfolios chosen and value achieved, respectively, under
the Expected Utility criterion are similar between the two strategies. Kroll et al. (1984) also
adduce evidence as to the robustness of results in case of non-normality, using empirical return
data, for which normality is rejected. Pulley (1981 & 1983), in turn, suggests that his empirical
results are robust, using simulations on the basis of log-normal and t-distributions. Markowitz
(1991) provides further reflection. The authors’ results are also further discussed in Pulley
(1985) and Reid & Tew (1986), who furthermore attest to the superiority of certainty equiv-
alents as a measure for comparison of utility across individuals (see also Kallberg & Ziemba,
1979). The limitations of using standard, single-period Mean-Variance optimization to approx-
imate multi-period expected utility optimization have been noted by Harkansson (1971). While
the scope of Mean-Variance analysis has subsequently expanded to analysis in multi-period set-
tings, the assumption of myopic investors was maintained until the arrival of continuous-time
Mean-Variance analysis (Richardson, 1989; Basak & Chabakauri, 2010)14. In a review of the
ensuing debate, Markowitz (2014) further discusses that for reasonably well behaved return
distributions, Mean-Variance approximations tend to perform well, for large risk-aversion, they
may become problematic, even though the author notes that very large risk-aversion and the
absence of a risk-free asset may have to be assumed to generate large differences, and discusses
in how far simulations may complement empirical return distributions in order to test Mean-
Variance approximations. While Markowitz extensively reviews the empirical literature and
discusses the quality of single-period approximations, no reference is made to continuous time
Mean-Variance analysis and respective quality of approximation in continuous time. More re-
cently, Mean-Variance approximations have been challenged by the direct computation of sets
of Second-Order stochastic dominance (SSD) - efficient portfolios. For example, Malavesi et al.
(2021) find that portfolios on the Mean-Variance efficient frontier are partly outperformed by
SSD efficient portfolios in terms of common performance measures such as the Sharpe ratio. As
the authors discuss, the comparison with SSD-efficient portfolios provides a more encompass-
ing test for the relative efficiency of Mean-Variance optimal portfolios and portfolios optimized
under Expected utility criteria, respectively, as rather than picking specific utility functions for
the comparison, as in the approaches discussed above, SSD concerns efficiency criteria for the
entire class of risk-averse, non-satiable investors (ibid). The authors’ results are in line with

14For a discussion and review of the literature, see Basak & Chabakauri, 2010.
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Hodder et al.(2015), who find SSD-efficient portfolios, which slightly outperform Mean-Variance
efficient portfolios according to their Sharpe ratio in out-of-sample analysis.15

Following the advent of solutions to portfolio choice problems in continuous time, the solution
to continuous-time Mean-Variance problems in a complete market setting under the Martin-
gale approach (Pliska, 1986; Cox & Huang, 1989) was first published by Richardson (1989),
with Bajeux-Besnainou & Portait (1998) further deriving and analyzing the ’dynamic efficient
frontier’, whereas solutions under the dynamic programming approach (Merton, 1969; Merton,
1971) and in a more general market setting were derived by Basak & Chabakauri (2010). My-
opic Mean-Variance strategies in a continuous-time setting, in turn, remain an active area of
research to this day (Chen & Zhou, 2022; Balter et al., 2021). The dynamic hedging strategy
with continuous rebalancing opportunities, which form part of the Martingale approach, lead
to an expansion of the set of potential trading strategies, which may lead to efficiency gains
relative to portfolio choices under the static Markowitz (1952) approach (Bajeux-Besnainou &
Portait, 1988). However, the Mean-Variance criterion is plagued by time-inconsistency (Basak
& Chabakauri, 2010; Björk & Murgoci, 2010), so that while theoretically superior, it can-
not generally be said that the commitment required under the Martingale approach is realistic
(Strotz, 1956; Basak & Chabakauri, 2010)16. Hence, analysis of Mean-Variance approximations
should include continuous-time modelling and continuous-time Mean-Variance portfolio choice
problems should be studied under both the Martingale and dynamic programming approaches,
respectively.

The closeness of Mean-Variance approximations in continuous time appears relative understud-
ied, as compared to the static and myopic discrete time case. Bielecki et al. (2005), Zhou & Li
(2000) and Li et al. (2000) all include reference to continuous-time expected utility maximiza-
tion and contrast Mean-Variance portfolio optimization with the latter, however, they do not
provide any further discussion on the issue. Wang et al. (2007) study continuous-time CARA
utility - and Mean-Variance investing within an insurance setting, whereas Basak & Chabakauri
(2010) include a more detailed discussion of the differences between expected CARA utility-
and Mean-Variance portfolio strategies, while also including a brief reference to the respective
value functions in a continuous time dynamic programming setting, without comparing the
two value functions in depth, however. Cvitanic et al. (2008), in turn, briefly touch upon a
comparison of expected CRRA utility and Mean-Variance investing on the basis of a Martin-
gale approach. However, the authors do not include any further discussion on the quality of
Mean-Variance approximations in terms of value achieved for expected utility investors in con-
tinuous time settings. Zhao & Ziemba (2002) essentially ask the reverse question by assessing,
which target expected return should be chosen by expected logarithmic utility investors under
a Martingale approach so that the latter would outperform Mean-Variance investors in terms of
financial wealth achieved. As noted by Chen & Zhou (2022), research has more recently shifted
toward the study of dynamic programming solutions to the Mean-Variance investment problem
in continuous time, and related problems of time-inconsistency. To the author’s best knowledge,
there is to this day no research that covers in-depth analysis of continuous-time Mean-Variance
approximations on the basis of comparable value-criteria such as certainty equivalents.
Furthermore, due to the constraints it implies with respect to the policies that the Mean-

15Simaan (2014) and Lassance (2022) include further reviews of the more recent literature.
16The requirement for commitment should, however, not be seen as restrictive relative to the single-period

setting, as the opportunity to deviate at intermediate rebalancing opportunities (Strotz, 1956) will challenge
the latter solution in the similar way as the solution under the Martingale approach, see discussion below.
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Variance investor may actually be able to follow (Strotz, 1956), the effect of time inconsistency
on Mean-Variance approximations should be studied. Studies concerning optimal dynamic
Mean-Variance portfolio choice in face of the criterion’s time-inconsistency include Basak &
Chabakauri (2010), Björk & Murgoci (2010), Björk et al. (2014) and Björk et al. (2017).
While in particular Basak & Chabakauri (2010) provide in-depth discussion and intuition as to
the effect of time-inconsistency on the optimal dynamic investment policy and value function,
respectively, the effect of time-inconsistency certainty equivalents achievable for the Mean-
Variance investor or the effect on the closeness of Mean-Variance approximations have not yet
been studied.

This thesis will study Mean-Variance approximations in continuous time. As its aim is the study
of fundamental mechanisms, the analysis will be restricted to the setting of Black-Scholes Mar-
kets. From a methodological viewpoint, it borrows heavily from Balter et al. (2021) in its use of
certainty equivalent returns to evaluate trading strategies in continuous time and assess poten-
tial costs and commitment problems due to time-inconsistency. It contributes to the literature
by extending the in-depth analysis of Mean-Variance approximations of CARA and CRRA
utilities to the continuous time setting and by assessing the effect of the time inconsistency
of Mean-Variance optimization on the closeless of approximations. As will be discussed, the
risk-profile reflected in the Mean-Variance investor’s pre-commitment (Strotz, 1956) strategy is
strongly rejected by Expected Utility maximizers. Their disutility from the latter strategy will
be traced to the pre-committed Mean-Variance investor’s failure with respect to Second-Order
Stochastic Dominance, whereas it will be argued that the roots of the latter violation lie in the
mechanics of the Martingale approach. Hence, the Mean-Variance investor’s constrained dy-
namic optimum is preferred by Expected Utility maximizers over the Mean-Variance investor’s
overall optimal strategy in a continuous time setting.

As to the structure of the following discussion, section 2 will introduce the financial market
setting, individual utility - and objective functions, as well as parameterizations to obtain com-
parable levels of risk-aversion among all investors. Section 3 will briefly discuss the underlying
optimization problems and derive optimal policies, respectively. Second 4 will study these poli-
cies in greater depth as to their risk-profile over time and the certainty equivalent returns that
may be derived. Section 5 will conclude.
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2 The Model Setting

2.1 The Financial Market

Investors are assumed to face Black-Scholes financial markets (Black & Scholes, 1973). That
is, let W (t), 0 ≤ t ≤ T be a standard Brownian Motion on a probability space (Ω, F,P) and
(Ft) the filtration generated by the Brownian motion. The financial market consists of a single
risky asset, the stock S, and a single risk-free asset, the bond B. The value of the stock is
assumed to follow a Geometric Brownian Motion, whereas the value of the bond is assumed
to grow exponentially at the deterministic short rate r. Thus, in differential form, asset prices
follow the two processes

dSt = µStdt+ σStdWt (1)

and
dBt = rBtdt, (2)

respectively. The assets are traded continuously and in frictionless markets. Unless explicitly
stated otherwise, there are no short-selling constraints and investors may hold potentially un-
limited long-or short positions in either asset. As a result, investors may also borrow and lend
unlimited amounts at the fixed short rate r.

Within the given market, the investors’ general optimization problem is to maximize expected
utility - or value 17, respectively, from future financial wealth at the fixed terminal time point
T by choosing an optimal portfolio based on the financial assets in the market. The strategies
available to the agents are given by adapted processes πS,B

t and θS,Bt , respectively, whereas

πS,B
t denotes the fractions of financial wealth invested in the respective asset at time t, and

θS,Bt the absolute exposure in terms of amounts invested. We assume that there is no other
source of income besides total accumulated financial wealth Xt and there is no intermediate
consumption reducing financial wealth at any intermediate time point. Hence, it holds that
θSt + θBt = Xt and πS

t + πB
t = 1, for all t ∈ [0, T ]. The resulting wealth dynamics are given by

dXt = Xt(π
B
t dBt + πS

t dSt) (3)

and
dXt = θBt dBt + θSt dSt, (4)

respectively. Imposing θBt = Xt − θSt in (3) and πB
t = 1− πS

t in (4), renaming the relative and
absolute exposure to the stock πt and θt, respectively, and plugging in the asset price dynamics
given in (1) and (2), we obtain the wealth dynamics

dXt = Xt(r + πt(µ− r)dt+ πtσdWt) (5)

and
dXt = Xtrdt+ θt(µ− r)dt+ θtσdWt. (6)

17The outcome relative to the Mean-Variance criterion is described as ’value’, whereas we refer to the ’utility’
of the CARA - and CRRA investor, respectively (see below).
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There are three investors in the market with different utility - and objective 18 functions and,
relatedly, different risk-attitudes, respectively. They will be referred to as CARA-, CRRA - and
Mean-Variance investors below. The CARA investor prefers constant absolute exposure to the
risky asset in terms of amounts invested, irrespective of her current wealth level. (Pratt, 1964,
Merton, 1969) Her preferences are represented by the negative exponential utility function19

uCA(x) = − 1

α
e−αx , with α > 0. (7)

However, as utility functions are only defined up to positive affine transformations and the
preferences reflected in utility functions are preserved by such transformations (see e.g. Mas-
Colell et al., 1995), the same risk preferences are encoded by

uCA(x) = −e−αx , with α > 0. (8)

For computational convenience, we will make use of both forms of CARA-utility below. The
CRRA investor, in turn, prefers constant exposure to proportional risk within her portfolio
and, thus, constant investment fractions, irrespective of current wealth. (Pratt, 1964, Merton,
1969) Her underlying utility function is given by

uCR(x) =
x1−γ

1− γ
, with γ > 1.20 (9)

Finally, Mean-Variance preferences with respect to future - and as yet stochastic - wealth XT

are represented by the following objective function:

MV (XT ) = E[XT ]−
δ

2
Var[XT ]. (10)

Our evaluation of the closeness of Mean-Variance approximations of expected utility invest-
ment, as well as the cost of time-inconsistency, is based on a comparison of the certainty
equivalent, which the three investors would derive from each others’ strategies, and analysis of
the fundamental drivers behind differences in these certainty equivalents.

18The Mean-Variance objective function is not a utility function and does not have Expected Utility property
(see e.g. Mas-Colell et al., 1995). Hence, we will refer to the Mean-Variance ’objective’ or ’value’ function rather
than a utility function, as for the CARA and CRRA investors.

19We follow the convention to denote ’Bernoulli utility functions’ over deterministic wealth x by u(x), whereas
Ut(XT ) denote Von-Neumann - Morgenstern utility functions, that is the expectation conditional on information
at time t over possible realizations of XT of the utility of terminal wealth u(XT ) (for terminology see Mas-Colell
et al., 1995).

20As is commonly known (see e.g. Munk, 2017), it can be shown by use of L’Hôpital’s rule that uCR = ln(x)
for γ = 1. For L’Hôpital’s rule to be applicable, the above utility function would have to be defined as

uCR(x) = x1−γ−1
1−γ

, which, in terms of utility functions is equivalent to the formulation chosen here. However,

as we will always assume that γ > 1, the form given above is used for simplicity.
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2.2 Parameterizations to obtain comparable levels of risk aversion

Individuals, whose utility functions differ by more than just affine transformations, generally
differ as to their degree of risk-aversion (Pratt, 1964), which affects their choice between and
evaluation of risky prospects. (Bernoulli, 1954) Thus, to allow for meaningful comparisons
of certainty equivalents from a given risky prospect across investors, utility - and objective
functions first have to be parameterized such that the implied degree of risk-aversion becomes
comparable with respect to a given exogenous risk. This is complicated by the inter-temporal -
and at times dynamic - nature of the optimization problem considered, as well as the particular
character of the utility - and value functions concerned. This section, thus, motivates the
particular choice of parameterization used in the ensuing analysis. It also discusses why and
where having comparable degrees of risk aversion does not imply the same preferences among
risky prospects or confine the three investors to choosing the same investment strategies.

Risk aversion can be measured in multiple ways. On the one hand, global measures of risk
aversion, such as certainty equivalents, concern the investor’s attitude towards risks at any
scale, given the current level of wealth. Certainty equivalents represent the certain pay-off,
CE, which would make the individual indifferent between receiving the given fixed amount
and holding a proposed risk Z̃, respectively. (Eeckhoudt et al., 2005) To calculate certainty
equivalents, the (future) risky prospect is evaluated by the investor at decision time t (Pratt,
1964), given reference-wealth level at any time tR ≤ t, XtR

21. With this flexible definition of
reference-wealth levels, the certainty equivalent can, thus, be computed via22

u(XtR + CEt) = Et


u

XtR + Z̃t,T


23, (11)

with Z̃t,T being the risk, which materializes at future time T , as seen conditional on information
at decision time t. If tR < t, there appears to be some tension between the choice of reference
level and the assumption that decisions are taken based on the information set at time t, as
current wealth is part of the information set. At least within the given set of utility functions,
this tension cannot be resolved. However, the thought experiment of adding a risky prospect
to a given wealth level (Bernoulli, 1954) may equally be performed with reference to previous
wealth levels. The effect of the choice of reference wealth level will further be discussed below.
On the other hand, Pratt (1964) showed that global measures such as the certainty equivalent
may locally be approximated by what became known as the Arrow-Pratt measure of (absolute)
risk aversion (Eeckhoudt et al., 2005),

21Usually, the reference wealth level is given by current wealth at decision time t. However, as explained below,
due to the character of the utility - and value functions discussed and the given purpose of parameterization,
this more flexible understanding of ’reference’ wealth level is used.

22The risks this thesis is concerned with are endogenous risks, whereas the endogeneity results from the fact
that the size of the risk within the investment portfolio may be controlled by the exposure to the risky asset,
as chosen by the investor. As argued by Briys et al. (1989), for endogenous risks the definition of certainty
equivalents should be refined to reflect the fact that optimally chosen strategies may change once the expectation
is taken over the stochastic state variables in the course of calculating the certainty equivalent. In a sense, then,
the certainty equivalent is the ’optimal’ certainty equivalent achievable by the investor. For the present purposes,
however, this consideration is not relevant. In order to determine parameterizations of the utility- and value
functions, which would lead to comparable levels of risk-aversion among the three investors, it is sufficient to
consider exogenous risks.

23The neglect for wealth Xt −XtR in this formula is an inevitable consequence of the reference wealth level
chosen and a noted shortcoming of the resulting parameterization. Both will further be discussed below.
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rt(XtR) = −u
′′
(XtR)

u′(XtR)
.24 (12)

Pratt’s (1964) derivations, adapted to the present context, are given in appendix A11.

As shown by Pratt (1964), knowledge of the local risk aversion measure for all wealth levels is
equivalent to knowledge of the certainty equivalents of any risk at any wealth level, as well as
knowledge of the individual’s utility function. (Pratt, 1964) This is also evident from another
result due to Pratt (1964), which implies that knowledge of local risk aversion at all levels
encodes knowledge of the utility function, that is 25

u =


e−


r. (13)

Thus, if two investors share the same degree of local risk aversion at all wealth levels, then they
apply the same utility function to the evaluation of future wealth. It is, thus, also logical that
their certainty equivalents from any given risky prospect will be equal in this case.

Ideally, one would, thus, equate local - or global risk-aversion measures for the three investors
across all wealth levels to obtain the desired parameterization. However, this is not possible
within our setting. Neither is it possible to find closed form solutions for the risk-aversion
parameters of all three objective functions to equate global measures for a given initial wealth
level. We, thus equate local measures for CARA - and CRRA investors and global measures
for CARA - and Mean-Variance investors.
The thought experiment of adding a random prospect to a given reference wealth level at
decision time t (Bernoulli, 1954) is based on preference relations reflected in the following
expected utility - and value functions, indexed to decision time t,

UCA
t (XT ) = Et


−e−α(XtR+Z̃t,T )


, UCR

t (XT ) = Et


(XtR + Z̃t,T )

1−γ

1− γ



and

MVt(XT ) = Et[(XtR + Z̃t,T )]−
δ

2
Vart[(XtR + Z̃t,T )].

(14)

Equating the CARA - and CRRA investors’ Arrow-Pratt measures of (absolute) risk aversion
(Pratt, 1964), we obtain

−u
′′CA(XtR)

u′CA(XtR)
= −−α2e−αXtR

αe−αXtR
= −u

′′CR(XtR)

u′CR(XtR)
= −

−γ(1− γ)X−γ−1
tR

(1− γ)X−γ
tR

⇐⇒ α =
γ

XtR
.

(15)

24Risk aversion is measured at decision time t and for the given reference wealth level. As tR ≤ t, Bernoulli
utility functions are used for the local approximation around known wealth levels. The sub-script in rt could,
thus, equally be omitted, but is kept here to underline that the evaluation takes place at time t.

25This notation, used by Pratt (1964), may not satisfy the mathematical purist, but it is mainly intended as
a rough sketch of the underlying idea.
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Thus, for the CARA - and CRRA investors to share the same aversion with respect to invested
amounts in a risky prospect across reference wealth levels, the CARA investor’s risk-aversion
parameter α would need to vary inversely with reference wealth level XtR . However, this would
contravene the character of her preferences. Indeed, as can be seen from (13), any agent with
absolute risk aversion equal to γ

x is automatically a CRRA investor, as

u(x) =


e−F (x)dx , with F (x) =


−γ

x
dx,

so that

u(x) =


e−γ log(x)dx =


x−γdx =

x1−γ

1− γ
.

(16)

In this case, however, the investor would have constant aversion to proportional risk rather than
to fixed absolute exposure to the risky asset (Eeckhoudt et al., 2005, Pratt, 1964). Hence, if the
CRRA investor’s preferences are taken as such, implying that γ is constant, then the CARA
investor’s absolute risk aversion cannot be constant, if we impose at the same time that the two
investors’ degrees of risk aversion are to be equal across (reference) wealth levels. Therefore, we
parameterize the utility - and value functions so as to obtain comparable levels of risk aversion
for the particular wealth level assumed at the beginning of the investment horizon, that is X0,
and assess the effect of choosing a different reference wealth level for robustness below.

As for the Mean-Variance - and CARA investors, we first determine the certainty equivalents
of a given single-period, exogenous, normally distributed risk, which we shall also call XT

26.
We impose again that the certainty equivalents must be equal for both investors and determine
the risk-aversion coefficients α and δ accordingly. Thus, following the definition given in (11),
we obtain for the Mean-Variance investor, that

Et[XtR + CEMV ]− δ

2
Vart[XtR + CEMV ] = Et


Et[XtR + Z̃t,T ]−

δ

2
Vart[XtR + Z̃t,T ]



⇐⇒ XtR + CEMV = XtR + Et


Z̃t,T


− δ

2
Vart


Z̃t,T



⇐⇒ CEMV = Et[Z̃t,T ]−
δ

2
Vart[Z̃t,T ].

(17)

The certainty equivalent from risk Z̃t,T - and, consequently from XT - is, thus, independent
of reference wealth level, XtR , which underlines the strong connection between Mean-Variance
preferences and CARA-utility in the single-period context (see e.g. Munk, 2017). For the
CARA investor, in turn, the certainty equivalent may be determined via

26The choice is motivated by the fact that for additive risk within our market setting, terminal wealth under
the resulting wealth process before any particular portfolio strategy is applied is normally distributed, as seen
below in appendix A7.
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− exp

−α


XtR + CECA


= Et


− exp


−α


XtR + Z̃t,T



= − exp


−αEt


XtR + Z̃t,T


+

α2

2
Vart


XtR + Z̃t,T



= − exp


−αXtR − αEt


Z̃t,T


+

α2

2
Vart


Z̃t,T



⇐⇒ CECA = Et[Z̃t,T ]−
α

2
Vart[Z̃t,T ],

(18)

whereas the last equality follows from merely taking logarithms on both sides and simplifying.
Again, as expected from investors with constant absolute risk aversion, the certainty equiv-
alent of the risky prospect does not depend on reference wealth level XtR . It, thus, follows
immediately from the results in (17) and (18) that

CEMV = CECA ⇐⇒ α = δ. (19)

Moreover, from (15) and (19), δ = γ
XtR

, in order to obtain comparable levels of risk-aversion

between CRRA - and Mean-Variance investors. Similar to the comparison between CRRA
- and CARA investors, we will set δ = γ

X0
. While allowing for time-varying risk-aversion

coefficient δ would lead to interesting additional source of time-inconsistency (Björk et al.,
2014), we abstract from this issue in favor of maintaining constant absolute risk aversion as a
characteristic feature of Mean-Variance preferences, as shown above.

Thus, we hold the reference wealth level fixed at the given initial wealth level X0 = X̄0 and
equate local measures of risk aversion between CARA-and CRRA investors, and global mea-
sures between CARA - and Mean-Variance investors, respectively. There are a number of
shortcomings with respect to the proposed procedure. First, given the dynamic and stochastic
context assumed, wealth levels are bound to vary over time, so that the risk-aversion measures
of CRRA - and CARA-investors (and, hence, also the risk-aversion measures between CRRA
and Mean-Variance investors) will diverge over time. In particular, if Xt > X0 (Xt < X0),
then given the parameterization α = δ = γ

X0
, CARA-and Mean-Variance investors will be more

(less) risk-averse than CRRA investors at the current actual wealth level. Second, given that
Brownian shocks have unbounded support, the risks under consideration are large risks. The
Arrow-Pratt measure at a single given reference wealth level is only a local approximation to
risk aversion measures for large risks, however. (Eeckhoudt et al., 2005, Pratt, 1964) Thus,
within the current context, the investors’ actual risk aversion may differ already at the begin-
ning of the investment horizon. This ’size-effect’ may be remedied by numerically determining
parameters of the utility functions such that certainty equivalents of single-period exogenous
risks are the same across all three investors. However, given the remaining challenges concerning
the intended parameterization, it is unclear whether this would lead to a significant improve-
ment with respect to the intended parameterization. Finally, as discussed in footnote (6), the
definition of certainty equivalents should be adapted to reflect the endogeneity of risks, in par-
ticular given the dynamic context of the present analysis. However, given the intended goal of
evaluating one investor’s strategy according to another investor’s preferences, it is unclear how
certainty equivalents should be adapted in this particular case. Moreover, as investors treat
each others’ proposed strategies as exogenous risks, it is also reasonable to use single-period
exogenous risks for the paramterization as discussed.
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Besides the three shortcomings discussed in the previous paragraph, there is another challenge
to the suggested parameterization, which, however, is inherently linked to the underlying op-
timization problem. As Bajeux-Besnainou & Portait (1998) point out, the ’Mean-Variance
Dynamic Efficient Frontier’ (ibid) includes portfolios that are beyond the single-period efficient
frontier, essentially because the use of the Martingale Method (Cox & Huang, 1989) together
with continuous rebalancing opportunities opens up trades of risk that would not be accessi-
ble to standard single-period optimization problems. This is intuitive, because the Martingale
Method first determines an optimal terminal wealth profile across states of the world, for which
it then provides a perfect hedge within a given complete market setting to determine the optimal
investment strategy 27 (ibid), thus dispensing with the restriction to linear portfolio weights,
which is regularly imposed in single-period Mean-Variance optimization problems (Johnstone
& Lindley, 2013; Baron, 1977). As a result, however, terminal wealth under the Martingale
Method may not be normally distributed28. However, normality of all possible portfolios - and,
hence, wealth processes - is one of the few special cases, where Mean-Variance optimization
does generally not violate basic axioms of rational decision making under uncertainty, as for-
malized by Von-Neumann & Morgenstern within the expected utility framework, or connected
criteria of Stochastic Dominance. (Johnstone & Lindley, 2013; Hannoch & Levy, 1969). As is
known from different contexts29, caution should then be used in measuring risk-aversion using
certainty equivalents, which relies on Von-Neumann & Morgenstern’s axioms being satisfied
(Mas-Colell et al., 1995). Furthermore, equations (17), (18) and (19) show that the condition
α = δ only guarantees equality of certainty equivalents between CARA and Mean-Variance
investors under the assumption of normally distributed risky prospects. For the wealth process
resulting from the Mean-Variance pre-commitment solution30, this assumption does not hold,
even in the given Black-Scholes market setting. While it is beyond the scope of this thesis to
fully explore these issues, there may, thus, be certain limitations with respect to the intended
parameterization of utility functions, especially when the latter are used as optimization criteria
within the context of the Martingale Method.

Finally, the above limitations also imply that there is no circularity in the use of certainty
equivalents to obtain a comparable measure of ’value’ across investors (see e.g. Balter et
al., 2021) after risk-aversion parameters have been determined to obtain comparable levels
of risk-aversion based on certainty equivalents in the first place. Parameterization based on
given single-period exogenous risks allows for considerable space for the optimal choices across
investors and investment strategies to differ, as also evidenced in sections 3 and 4.

27To be discussed in greater detail in section 3.
28See the results for the Mean-Variance pre-commitment strategy discussed below and derived in appendices

A5 and A6
29See for example the case of state-dependent preferences (Yaari, 1969; Karni, 1990; Polemarchakis, 1990).

Here, marginal rates of substitution between states are state-dependent and, thus, do not rely solely on ratios
of probabilities, as would be assumed within the Von-Neumann-Mrogenstern expected utility framework (Mas-
Colell et al., 1995; Arrow, 1996), hence, leading to a requirement for an extended expected utility framework
and the respective adjustments of certainty equivalents (Mas-Colell et al., 1995)

30See below in section 3
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3 The Optimization Problem

3.1 Four Optimization Strategies

This section discusses four optimization strategies available to the investors, which differ as
to how information in (Ft) is incorporated into rebalancing decisions, given the continuous
rebalancing opportunities in the market. Differences in this respect lead to static, myopic,
consistent planning - and precommitment strategies (Strotz, 1956). First, the optimization
problems behind each of these strategies will be discussed. Then, the respective strategies will
be derived under the assumption of CRRA - and CARA utilities, as well as Mean-Variance
preferences, respectively.

3.1.1 Consistent-planning strategies

The term ’consistent planning’ strategies was first coined by Strotz and refers to strategies
in which the investor takes into account her future self’s optimal decisions in determining an
optimal decision today (Strotz, 1956). Thus, the term refers to strategies as they would emerge
from dynamic programming approaches, in which today’s strategy’s effect on the optimum
achievable at future instances is consciously modelled at each rebalancing time (see e.g. Björk,
2020). Given the Black-Scholes market setting, wealth serves as a Markovian state variable
on the basis of which the agent applies backward induction to solve for the optimal dynamic
strategy (see e.g. Munk, 2017). With a feedback control law ut = g(Xt, t) (Björk, 2020),
whereas ut is either given by θt = θ(t,Xt) or πt = π(t,Xt), respectively, the investor solves the
following program:

max
{us}T

s=0

E [V (XT )]
31 (20)

subject to wealth dynamics

dXu
t = µu(t,Xu

t )dt+ σu(t,Xu
t )dWt (21)

and initial condition
X0 = X̄0. (22)

Wealth dynamics in (21) are deliberately chosen to be generic to accommodate wealth dynamics
as specified by (5) and (6), respectively, as well as different strategies chosen by the investors.

31whereas V stand for ’value’ and covers both utiliy, as for CRRA - and CARA investors, and the value
derived by the mean-variance investor from terminal wealth. The same notation is used for the consistent
planning problem below.
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3.1.2 Optimal pre-commitment strategies

Pre-commitment strategies, in turn, are based on the assumption that the investor can be forced
to adhere to the optimal strategy, as determined at the beginning of the investment horizon, at
any rebalancing opportunity thereafter. (Strotz, 1956) This strategy is routinely32 computed
by use of the Martingale Method (Cox & Huang, 1989), which, in a nutshell, is based on a
two-step procedure. First, the investor chooses the terminal terminal wealth level to maximize
her objective in each state of the world at the end of the investment horizon subject to her
budget constraint, creating a contingent claim to be replicated by financial assets in the market.
By maximizing value in each future state of the world, the chosen terminal wealth profile also
maximizes the expected future value ex ante. In the second step, a dynamic hedging strategy is
determined, which replicates the market consistent value of this optimal terminal wealth profile
at each point in time t such that 0 ≤ t ≤ T on the basis of the financial assets traded in the
market. The dynamic hedge itself then provides the optimal portfolio strategy for the investor
to maximize expected future utilty. (see e.g. Björk, 2020; Cox & Huang, 1989)

The complete financial market assumptions underlying this dynamic hedging approach (see e.g.
Munk, 2017) are satisfied within Black-Scholes financial markets, as assumed. As a result, we
may define the unique stochastic discount factor Mt, as well as the unique Radon-Nikodym
process ξt, respectively, underlying the required valuation and replication steps as follows (see
e.g. Shreve, 2010; Munk, 2017):

dMt = −rMtdt− λMtdWt, M0 = 1

⇐⇒ Mt = exp


−

r +

1

2
λ2


t− λWt


(23)

and

dξt = −λdWt, ξ0 = 1

⇐⇒ ξt = exp


−1

2
λ2t− λWt


,

(24)

whereas λ is the uniquely determined market price of risk, as given by λ = (µ−r)
σ . The agent’s

optimization problem in the first step described above is then given by the static constrained
optimization problem

max
XT

E [V (XT )] (25)

subject to the budget constraint
X̄0 = E [MTXT ] . (26)

The dynamic hedging strategy in the second step, in turn, is dependent on the respective market
consistent value process of optimal terminal wealth and is, thus, specific to the particular
objective function assumed.

32That is, where applicable.
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By construction, where applicable, the martingale method delivers the optimal policy to max-
imize expected future utility - or value, within a given market, as it directly maximizes the
objective function and determines the dynamic hedge to deliver the optimal policy. In contrast,
consistent-planning strategies are constrained by the requirement that Bellman’s principle of
optimality needs to be satisfied (Basak & Chabakauri, 2010; Björk & Murgoci, 2010; Björk,
2020). Once the optimal terminal wealth and the dynamic hedging strategy have been deter-
mined at the initial time point, the investor may throw away the proverbial key and rest assured
that within the given complete market setting, she will arrive at her optimally chosen wealth
level whichever state of the world materializes. (Cox & Huang, 1989; Björk 2020)

The strategy’s operation on autopilot turns into a behavioral constraint, however, where the
underlying optimization problem is time-inconsistent so that the investor may wish to deviate
at future time-points. (Strotz, 1956; Björk & Murgoci, 2010) For various reasons, ranging from
legal to financial and psychological, it appears unrealistic that investors will always be able to
exercise the restraint required to follow pre-commitment strategies. In this case, consistent-
planning strategies need to be revisited, with the objective function being adapted to take into
account the investor’s future self’s incentive to deviate from previous plans (Strotz, 1956; Basak
& Chabakauri, 2010) The resulting solution may be characterized as a constrained optimum,
akin to second-best optima, as are commonly known from incentive theory (see e.g. Laffont
& Martimort, 2002). As Chen & Zhou (2022) point out, ascription of ’dynamic optimality’ to
dynamic programming solutions in face of time-inconsistency is a misnomer to begin with.

3.1.3 Myopic Strategies

The third set of strategies available to the investor is given by myopic strategies. Various
interpretations could be given to the concept of myopia in intertemporal (continuous time)
optimal investment problems. Their common core is, however, that the effect of today’s decision
on tomorrow’s preferences, and hence, the potential wish to deviate tomorrow from a plan
chosen today, is not taken into acccount. Rather, a decision based on today’s preferences is
taken, irrespective of tomorrow’s preferences. (Strotz, 1956)

The precise way, in which this broad definition is operationalized depends on the context in
which myopic strategies are applied. Chen & Zhou (2022) suggest that myopic strategies con-
sist of sequences of optimal pre-commitment strategies, each pursued only over infinitesimally
short periods of time, however, until the next rebalancing opportunity. The strategies are
then derived using a limiting argument. First, a given finite set of rebalancing opportunities
are assumed, at each of which the optimal pre-commitment strategy for the entire remaining
time-horizon is determined, whereas this strategy is ultimately only pursued until the next
rebalancing opportunity. Hence, the myopic strategy takes the form of a simple (in the sense
of step33 -) function applied to continuous-time asset price processes to form a wealth process.
Subsequently, the authors let the time between rebalancing opportunities go to zero and derive
the limiting wealth process. The myopic strategy, in turn, is the strategy that gives rise to
the limiting wealth process. This definition is rather general and applicable within settings, in
which the optimal pre-commitment solution is stochastic. (Chen & Zhou, 2022)

This underlying understanding of myopic strategies as pre-and re-commitment strategies agrees

33See Shreve, 2010.
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with the understanding of the concept in Balter et al. (2021). The latter contribution derives
myopic strategies for the case of time-consistent pre-commitment solutions so that future selves’
optimal (p)re-commitment strategies agree with former selves’ strategies provided for those
later time-points. Thus, the resulting myopic strategies are deterministic and at most time-
dependent, so that no limiting argument as in Chen & Zhou (2022) is required. Moreover,
the authors prove that myopic strategies may be derived via auxiliary constant investment
strategies, which facilitates the solution of the problem.

We follow Chen & Zhou (2022) to derive optimal myopic strategies for Mean-Variance investors
via the proposed limiting argument. However, we re-derive the result, given that the specifi-
cation of mean-variance pre-commitment strategies in this thesis differs from that in Chen &
Zhou. In turn, we follow Balter et al.’s (2021) results for myopic strategies of CRRA investors
within the Black-Scholes setting, while we follow the authors’ solution method but provide
full derivations for the case of CARA-utility, given the difference in character between the
pre-commitment solutions of these two investors.

3.1.4 Static Strategies

Finally, the simplest among the four strategies discussed in this thesis is a static, buy-and-
hold strategy. In this case, the investor determines the optimal investment strategy based on
information at time zero and refrains from rebalancing along the investment - horizon. The value
derived from static investment strategies provides a benchmark, against which the other three
strategies may be evaluated. On the one hand, the strategy appears very simple as rebalancing
opportunities are being ignored, even though behavioral constraints may seem no less pressing
than in the context of optimal pre-commitment solutions. In terms of performance, in turn,
the static strategy would be generally be expected to be - potentially highly - sub-optimal, as
the investor refrains from reacting to new information, not even in pre-determined ways. As
compared to the optimal pre-commitment strategy, one would expect static strategies to deliver
significantly lower ’value’ to the investor, as buy-and-hold strategies are in a sense akin to static
hedges of the present value of optimal future wealth, whereas optimal pre-commitment hedges
are based on dynamic hedges of the present value of optimal future wealth. (see the discussion
of pre-commitment strategies and the Martingale Method in section 3.1.2 and appendices A1-
A6.) Hence, if any given strategy performs worse than a static investment strategy, then this
is indicative of a (very) high value to commitment in the particular case.

3.2 Optimal Strategies

Given the four optimization strategies discussed in the previous section, we now introduce the
resultant optimal investment policies for each of the three investors.
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3.2.1 CRRA investors

The distinguishing characteristic of the CRRA utility is that the investor generally prefers
exposure to risk in constant proportion to overall financial wealth (Pratt, 1964). Her consistent-
planning strategy is given by the well-known Merton-fraction (Merton, 1969), that is

πCR,DC
t =

(µ− r)

γσ2
. (27)

The investor’s preference for a constant fraction of total wealth to be invested in the risky asset
translates into an optimal value function34, which is itself CRRA (see Merton, 1969), so that
relative risk-aversion at any point in time with respect to the risky prospect resulting from the
dynamic trading strategy is constant. The investor solves for the optimal strategy by backward
induction, knowing that future risk-preferences will be independent from wealth at that point
in time and that investment opportunities within Black-Scholes markets are constant. Hence,
there is no need to hedge for the latter, or to take into account the effect of today’s decisions on
tomorrow’s preferences. Thus, given the desired constant fraction invested in the risky asset at
each future time point, the investor’s optimal choice is to choose the desired constant fraction
today as well. Moreover, the lack of inter-temporal linkages between investment choices at
intermediate time-points also suggests that the relative underperformance of static strategies
may not be very large.

It, thus, also follows immediately that the CRRA investor’s optimization problem in the given
setting is time-consistent. As a result, the dynamic programming solution attains the overall
optimal pre-commitment solution (Merton 1969 & 1971; Cox & Huang, 1989), which is derived
in appendix A1 and given by

πCR,PC
t =

(µ− r)

γσ2
. (28)

The hedging strategy delivering a constant relative exposure at end of the investment horizon
is to hold the given fraction at each intermediate time point as well.

Given that the optimal pre-commitment solution is to hold a constant fraction, irrespective
of the realization of wealth at intermediate time points, the investor chooses the same pre-
commitment policy when she re-commits at any time t ∈ [0, T ]. Hence, as also shown by Balter
et al. (2021), her optimal myopic strategy is, likewise, given by the Merton-fraction, so that

πCR,MY
t =

(µ− r)

γσ2
. (29)

Finally, if the investor chooses a static strategy, her best choice today is to choose the fraction,
which she hopes will prevail at the end of the investment horizon, even though due to intervening
stochasticity of returns, the realization will ultimately differ from the intended fraction with
probability one. With the time subscript reflecting the fact that the investment fraction will,

34By which we mean the value function of the dynamic optimization problem at the optimal strategy (see
Bjrk, 2020)
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thus, ex-ante only be known for time t = 0, the static buy-and-hold strategy is derived in
appendix A9 and given by

πCR,ST
0 =

(µ− r)

γσ2
. (30)

Finally, constant investment fractions, as provided for the pre-commitment, dynamically con-
sistent and myopic strategies do not imply passivity, but require active rebalancing at each
intervening opportunity. Moreover, given CRRA preferences and continuous trading, the im-
plied wealth process will not turn negative even in absence of borrowing - or short selling
constraints. As wealth approaches zero from above, the desired constant fraction implies that
the investment in the stock in terms of amounts invested will automatically approach zero as
well, thus reducing the impact of future stochastic shocks on wealth and mitigating the danger
of wealth turning negative after further negative shocks to the stock price.

3.2.2 CARA investors

The CARA investor generally desires constant amounts invested in the risky asset, irrespective
of overall financial wealth (Merton, 1969; Pratt, 1964). Her consistent-planning strategy is
generally known (Merton, 1971; Basak & Chabakauri, 2010) to be given by

θCA,DC
t =

(µ− r)

ασ2
e−r(T−t). (31)

The CARA investor earns a continuously compounded fixed return r on her exposure to the
risk-free asset and additionally a stochastic excess return on her exposure to the risky asset. As
a result, the risk-free rate may be seen as a baseline- expected growth rate of the exposure to
any asset, to which a stochastic excess return is added for the risky asset. Given that all assets,
thus, share this given baseline growth rate, it is reasonable to invest less in a risky asset today
if a given exposure to the risky asset is desired at the future point in time. This is reflected
in the discount term e−r(T−t). Similarly, we could imagine future wealth being discounted to
the point in time when a rebalancing decision is taken so that the optimal exposure is decided
concerning present-discounted future wealth in order to account for the time value of money
(see also footnote 9 in Basak & Chabakauri (2010) and Merton (1971)). The optimal value
function of the dynamic optimization problem is of CARA-type as well (see Merton, 1969),
so that at each time the investor prefers constant absolute exposure to the risk resulting from
the dynamic investment prospect. The investor solves the optimization problem by backward
induction, knowing that future optimal decisions will be independent of intermediate wealth
levels and that investment opportunities are constant. Thus, there is again little intertemporal
linkage between optimal choices at various time-points to exploit to achieve an optimal dynamic
strategy, which, thus, takes the given deterministic, time-varying form.

CARA utility maximization is known to be time-consistent (Merton, 1971, Cox & Huang, 1989).
As is also derived in appendix A3, the optimal pre-commitment strategy is, hence, given by

θCA,PC
t =

(µ− r)

ασ2
e−r(T−t). (32)
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It seems intuitive for the CARA investor, who desires a constant absolute exposure to the risky
asset within her terminal portfolio, to invest the given constant amount discounted by the risk-
free rate at each time-point, merely rebalancing where and in so far as stochastic returns move
the present exposure away from the desired discounted exposure. However, for both the CRRA
- and CARA investor, the given strategy may also directly be derived from the hedging strategy
in the second step of the Martingale Method. This will be discussed below after outlining the
pre-commitment strategy for the Mean-Variance investor, as this also underlines why the Mean-
Variance investor’s hedging efforts lead to a stochatic pre-commitment strategy, whereas these
efforts yield deterministic strategies for the CARA - and CRRA investors.

The investor’s optimal myopic strategy, in turn, is derived according to the method proposed
by Balter et al. (2021). As shown in appendix A11, the policy is given by

θCA,MY
t =

(µ− r)

ασ2
e−r(T−t). (33)

Given the time-consistency of the problem, it is again intuitive that the myopic-, pre-commitment
- and consistent planning solutions coincide.

Finally, the investor’s optimal static strategy, as derived in appendix A8 is given by

θCA,ST
0 =

2(µ− r)

ασ2(erT + 1)
, (34)

which can be seen as a weighted average over optimal pre-commitment policies. This is intuitive,
as the investor now aims at achieving the desired terminal absolute exposure while refraining
from rebalancing at intermediate time points. Hence, her best strategy in this case is to choose
a weighted average of the pre-commitment strategies, which would otherwise have been choses
if rebalancing opportunities had been used. As above, the strategy carries time subscript 0, as
the given absolute exposure will only hold at the initial time point, due to the stochasticity of
returns.

Unless short-selling and borrowing constraints are put in place, there is a non-zero probability
that wealth will turn negative. As wealth approaches zero from above, the CARA - investor
still desires the given deterministic, time-varying exposure to the risky asset, implying that she
would eventually borrow at the risk-free rate in order to keep the exposure to the risky asset
at the desired level. Hence, the likelihood of wealth turning negative increase when current
wealth is lower. This is also related to the main criticism against CARA-utility, which is that
absolute risk aversion and, hence, the preferences with respect to gambles in absolute terms do
not change as the current wealth level varies (Eeckhoudt et al., 2005).

3.2.3 Mean-Variance investors

It follows from equation (17) that with constant δ and the additive risk as represented by the
wealth process in (6), the certainty equivalent and, thus, the degree of absolute risk aversion of
the Mean-Variance investor, are constant, just as in the case of single-period exogenous risks
discussed in section 2. To illustrate, plugging the solution for XT from (6), as derived in (92)
in appendix A7, into the Mean-Variance objective function, as given in (10), yields
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so that by (17), the certainty equivalent is given by
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(36)

as Xt is a known constant at time t. Thus, the the Mean-Variance investor shares the CARA
investor’s constant absolute risk aversion. Moreover, they would be expected to exhibit the
same preferences with respect to normally distributed, single period, exogenous risks, as their
certainty equivalents are the same in this case, subject to α = δ. However, this does not
necessarily carry over to the dynamic context, where differences in choice behavior re-emerge
due to differences in the investors’ utility - and objective functions.

The consistent-planning strategy for the Mean-variance investor is derived in appendix A7 and
is given by

θMV,DC
t =

(µ− r)

δσ2
e−r(T−t). (37)

Thus, the time-consistent Mean-Variance investor, who takes into account her incentive to devi-
ate over time, chooses the same policy as the optimal dynamically consistent or pre-committed
CARA-investor. Whereas Basak & Chabakauri (2010) explain the presence of the time-discount
factor in this case by the increase in the variance of wealth with the investment horizon, the
discount factor may also be explained by reference to CARA-utility. As the Mean-Variance
investor solves her dynamic optimization problem by backward induction and knows that her
future selves have constant absolute risk aversion, irrespective of future wealth levels, she es-
sentially chooses the dynamic CARA-investor’s strategy, as discussed in the previous section,
and with the same interpretation given to the discount factor as above.35

35Another important connection between the dynamically consistent CARA - and Mean-Variance investor
is that under normally distributed terminal wealth and non-stochastic (linear) portfolio weights, the optimal
mean-variance portfolios satisfy Second-Order stochastic dominance and can, in principle, be computed by use
of negative exponential utility (Johnstone & Lindley, 2013). Given the strategy and the resulting terminal
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The Mean-Variance investor’s pre-commitment strategy differs from her consistent-planning
strategy, due to the time-inconsistency of the underlying optimization problem and the result-
ing need to adapt the dynamic programming problem, which causes divergence between the
obtained constrained optimum and the overall optimum as given by the pre-commitment solu-
tion (Basak & Chabakauri, 2010, Björk & Murgoci, 2010, Björk et al, 2014). Moreover, there
is reason to believe that in contrast to her consistent planning solution, the Mean-Variance in-
vestor’s pre-commitment solution does not satisfy the requirements of Second-Order stochastic
dominance, which causes further divergence between the two solutions, as will be discussed in
section 4. The investor’s optimal pre-commitment policy, as derived in appendix A5 is given
by

θMV,PC
t =

1

δ

(µ− r)

σ2
e−r(T−t)+λ2(T−t)+rtMt. (38)

In contrast to the CARA - and CRRA investors’ pre-commitment strategies, the Mean-Variance
investor’s pre-commitment strategy is stochastic. While the literature appears to draw on the
underlying objective function over terminal wealth for intuition, further insights may also be
gained from looking at the underlying hedging argument.
The literature includes various representations of the pre-commitment solution for the Mean-
Variance investment problem, as well as various choices as to the formulation of the under-
lying optimization problem (Richardson, 1989; Bajeux-Besnainou & Portait, 1998; Basak &
Chabakauri, 2010; Chen & Zhou, 2022). The difference in representation of the result, how-
ever, is largely due to the choice as to whether the investor’s problem is formulated in terms
of discounted wealth or not (Richardson, 1989). The result as presented here in (38) agrees
with the pre-commitment solution stated (without derivation) in Basak & Chabakauri (2010).
In spite of the diversity in representations, the emerging underlying mechanisms governing the
Mean-Variance investor’s optimal pre-commitment solutions, as proposed in the literature, are
the same: The investor chooses a portfolio on the dynamic Mean-Variance frontier (Bajeux-
Besnainou, 1998), balancing the mean and variance of terminal wealth36, respectively, on the
basis of her risk-aversion, as represented by δ. A negative shock to the value of the stock at
time t ∈ [0, T ] reduces current wealth and, as seen in (93) in appendix A7, furthermore reduces
expected future wealth conditional on current wealth. To offset this drop in expected future
wealth, the investor increases exposure to the stock in order to increase the share of current
wealth that would benefit from the risk-premium and, thus, aims at raising expected future
wealth. (Basak & Chabakauri, 2010) It is, however, not fully clear how the investor balances
target means and variances at such intermediate time points according to the interpretations

wealth, as derived in appendix A7, there is no reason to assume that this result, which is generally stated for
the single-period case would not carry over the the dynamic programming case. This will further be discussed
in section 4.

36Possibly, this framing of the problem is the reason for a lack of reflection on issues of Stochastic Dominance
in connection with the pre-commitment solution in the literature. Johnstone & Lindley (2013) discuss the
representability of the optimal Mean-Variance choice in the (µ,σ) plane, which holds under certain conditions.
As will be discussed in section 4, however, these conditions do not appear to be satisfied when using the
Martingale Method, as evidenced by the resulting stochastic strategy and non-normally distributed wealth
process (see section 4). This does not imply, of course, that the optimal strategies, as derived in the literature,
would be incorrect. However, it implies that the juxtaposition of pre-commitment solutions and dynamically
consistent solutions is of particular interest not only because of issues of time-inconsistency, but also because of
the former’s problematic relationship to Stochastic Dominance.
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in the liteature. In any case, according to the mechanics of the Martingale Method, concern
for target expected return and variance would have to be intermediated by the current value
process of the optimal terminal wealth profile, as derived in (82) in appendix A5. The depri-
oritization of variance reduction in favor of raising expected returns would be consistent with
failure to meet criteria of Second-Order Stochastic Dominance (Hadar & Russel, 1969; Levy,
1990; Machina & Rothschild, 1990; Johnstone & Lindley, 2013, Hanoch & Levy, 1969), as will
be discussed further in section 4.

Another way to interpret Mean-Variance pre-commitment solutions is via the delta-hedge,
which is part of the Martingale Method. This may also provide a more unified framework of
interpretation for optimal CARA-, CRRA - and Mean-Variance pre-commitment strategies.
The optimal terminal wealth levels chosen by the CRRA (47) -, CARA (65) and Mean-Variance
(80) investors are all inversely related to movements in the stochastic discount factor, which is
reasonable, as a low realization of the stochastic discount factor implies a good state of the world,
whereas a high stochastic discount factor reflects a bad state of the world (see e.g. Cochrane,
2005). However, while for the CRRA - and CARA investors optimal terminal wealth levels
are strictly convex functions (for γ > 1) of the stochastic discount factor, the Mean-Variance
investor’s optimal wealth levels react linearly to changes in the state price deflator.
Based on solutions in (47) and (65) together with the stochastic discount factor in (23), the
CRRA investor’s optimal terminal wealth, thus, reacts exponentially to the underlying accu-
mulated Brownian shock, whereas for the CARA investor, this relationship is linear. This is
intuitive in two ways. First, the deterministic fractions for the CRRA investor and amounts
invested for the CARA investor, respectively, imply the given patterns in terminal wealth. If
investment fractions are constant and asset returns accrue exponentially, then terminal wealth
must vary exponentially with the accumulated Brownian shocks. In turn, if present discounted
amounts invested in the stock are constant 37, then at intermediate time points, excess returns
in the stock are deposited in the risk-free asset, whereas after negative shocks to the asset price,
the individual sells the bond and buys the stock to compensate for the fall in risky investment.
As a result, optimal terminal wealth varies linearly with the accumulated Brownian shocks,
as returns are not reinvested in the stock, but deposited in the risk-free asset, which grows at
the same rate as present discounted future wealth. Vice versa, and more closely related to the
mechanics of the delta-hedge underlying the Martingale Method, the given optimal terminal
wealth levels imply the given hedging strategies. The CRRA investor’s optimal terminal wealth
in (47) is of the form cebWT , with constants c, b > 0. With the investor choosing investment
fractions and returns accruing exponentially, it is intuitive that the optimal hedge of this wealth
profile is deterministic, and it follows from the given parameter setting that the fractions of the
hedging portfolio are moreover constant. In turn, the CARA investor’s optimal wealth profile,
which varies linearly with accumulated Brownian shocks, is hedged by a strategy that posts
excess returns on the risky asset in the risk-free, which accrues the same return as present
discounted future wealth, so that the amount invested in the stock grows deterministically at
rate r.
The Mean-Variance investor’s optimal terminal wealth in (80) is given by a function of accu-
mulated Brownian shocks of the form a − ce−bWT , with constants a, b, c > 0. Thus, optimal
terminal wealth varies more with WT at low levels of the sum of Brownian shocks. If we imagine
the Mean-Variance investor at a short time-increment before the terminal time point, then with
constant investment opportunities, the delta of the hedging strategy is, thus, larger, if the sum
of Brownian shocks to date is low. At the same time, a low sum of Brownian shocks to date

37Using the risk-free rate, see discussion in section 3.2.2.
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also implies that the current absolute stock exposure may be low, so that the exposure to the
risky asset must be increases to hedge a given spread of wealth levels across states of the world
in the future. Thus, from the mechanics of the underlying delta-hedge, potentially large swings
in investment fractions may be expected, especially at wealth levels close to zero.

In turn, static investment strategies effectively reduce the investment horizon to one single
period. As within the given market setting, the single-period Mean-Variance optimization
problem is equivalent to the CARA investor’s single period portfolio choice problem (see e.g.
Munk, 2017), the static, buy-and hold strategies of the two investors coincide. Thus, as in (34),
derived in appendix A8 for the CARA investor, the Mean-Variance investor’s static strategy is
given by

θMV,ST
0 =

2(µ− r)

δσ2(erT + 1)
. (39)

Finally, the investor’s myopic strategy is derived in appendix A12, following the procedure
proposed by Chen & Zhou (2022) and specializing to the present setting. The strategy is given
by

θMV,MY
t =

1

δ

(µ− r)

σ2
e−r(T−t)+λ2(T−t). (40)

The resemblance between the myopic and and pre-commitment solutions is due to the latter’s
derivation on the basis of the former, as seen in appendix A12.
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4 Evaluation of strategies based on certainty equivalents

To study Mean-Variance approximations, we now evaluate the Mean-Variance investor’s strate-
gies under CARA - and CRRA utilities. Furthermore, to study the commitment problems
related to time-inconsistency, the Mean-Variance investor’s strategies are also evaluated under
her own objective function. Direct comparisons on the basis of utility38 are not possible, as
utility functions are only defined up to positive monotone transformations (see e.g. Mas-Colell
et al., 1995). Thus, the use of Certainty Equivalents has previously been suggested instead
to compare the value of various portfolio strategies to different investors (Kallberg & Ziemba,
1979; Pulley, 1985) In particular, we follow Balter et al. (2021) in converting the achieved
certainty equivalent into certainty equivalent returns, that is the certain (guaranteed) returns
that would make investors indifferent between receiving this fixed return and holding the risky
prospect, respectively (ibid). On the one hand, we will use the certainty equivalent growth
rate, as in Balter et al. (2021), that is

CEG =
1

T̂
log


CE

X0


, (41)

whereas T̂ will be a variable time of evaluation, not necessarily equal to maturity T , and CE
be understood as the achieved certainty equivalent from time zero to time T̂ . In the case of
CE < X0 it will often be more convenient, and if CE < 0 it will be necessary, to work with
certainty equivalent total gross returns instead, that is

CER =
CE

X0
. (42)

This section starts by comparing investment fractions, amounts invested, as well as the implied
terminal wealth profile and wealth dynamics in order to gain further understanding of the
portfolio strategies through which the investors aim to maximize their respective value criterion.
Next, certainty equivalents and certainty equivalent returns will be computed. Following Balter
et al. (2021), where possible, the sources of sub-optimality for various strategies will be more
closely assessed, with the aim of identifying the effect of over - and underinvestment and
investment scheduling, respectively. The results will also speak to the value - as well as the
difficulty of commitment for the Mean-Variance investor. Finally, it will be shown that time-
inconsistency of the Mean-Variance investor’s objective function is value enhancing when it
comes to approximating the overall optimal CARA and CRRA investment strategy, respectively.

As the investment fractions of various strategies discussed are stochastic, the analysis will be
based on simulations. Investors will be assumed to have initial wealth X0 = 100. Drift and
volatility terms of the stock will be set to µ = 0.08 and σ = 0.2, respectively, whereas the
risk-free rate will be set to r = 0.02. Finally, we will assume the initial values S0 = 10 and
B0 = 1 for the stock and bond, respectively. Given that the stock follows a Geometric Brownian
Motion, it may be simulated without bias by simulating the analytical solution of the respective
price process, freeing up computation time to improve precision. We, hence, set the number
of scenarios to 1 000 000. While the number of trajectories may seem excessive at first, it will

38Here, utility refers to the utility derived by the CARA - and CRRA investors. The ’value’ derived by the
Mean-Variance investor as through her objective function in fact delivers a comparable ’measure of value’, as
the objective function of a risky bet is equal to the certainty equivalent derived by the Mean-Variance investor.
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be discussed below and shown in appendix A13 that a large amount of precision is required
for Monte-Carlo means to be sufficiently close to the true underlying means. The investment
horizon is initially set to T = 10 years and will subsequently be increased to T = 30 to evaluate
certainty equivalent returns in the longer run. Moreover, we discretize using 120 and 360 time-
steps, respectively, which yields monthly rebalancing opportunities. Finally, given the initial
wealth, the risk aversion parameters will be set to γ = 3 and α = δ = γ

X0
= 0.03. Empirical

estimates of the respective risk-aversion parameters vary widely (Elminejad et al., 2022) and
without further adaptations in the given utility functions, the assumed asset-price parameters
could not be justified on basis of the assumed risk-aversion parameter if we also assume that
these utility function are to some degree representative and asset prices are consumption-based
and reflective of these utility functions (Mehra & Prescott, 1985, Cochrane, 2001). Hence,
given the inherent inconsistency therein, we set risk-aversion parameters such that they lead
to reasonable attitudes towards risk within the context of the present discussion. To illustrate,
given X0 = 100 and γ = 3, the CRRA investor would pay a price of 20 for a gamble that would
increase her wealth by one half to 150 or yield zero gain, both with probability 1/2. Moreover,
she would require compensation of 33 to hold the risk of having her wealth halved to 50 or
gaining 50 to reach 150, each with equal probability. Similarly, the CARA investor would pay
16 for the first gamble and would require compensation of 29 to hold the risk from the second
gamble. These results appear broadly reasonable.

4.1 Comparison of risk-profiles

4.2 Average investment fractions and invested amounts

Figures 1 and 2 show the average fractions of financial wealth invested in the stock across
trajectories at each time t ∈ [0, 10], whereas Figure 4 shows the resulting amounts invested in
the risky asset, for each of the strategies considered. Figure 3 shows the median investment
amounts for comparison. The behavior of the myopic, consistently planning and pre-committed
CARA - and CRRA investors follows immediately from the discussions in section 3. For all
except for the static buy-and-hold strategy, the CRRA investor chooses constant investment
fractions, leading to increasing average amounts invested in the stock. For the same strate-
gies, the CARA investor chooses deterministically increasing absolute amounts invested in the
stock. Given that amounts invested in the stock investment increase at rate r and that the
stock earns positive expected excess returns, the chosen amounts invested lead to decreasing
average portfolio fractions invested in the stock over time. For both investors, in turn, the static
investment strategy leads to increasing average fractions - and consequently amounts - invested
in the stock over time, which is again due to the stock’s positive expected excess returns. The
latter invested amounts also increase more aggressively over time than for the consistent plan-
ning, pre-commitment and myopic strategies, again due to expected excess returns on the stock
together with a lack of rebalancing.
The Mean-Variance investor’s static and dynamically consistent strategies coincide with those
of the CARA investor, respectively, as evidenced by both amounts invested and investment
fractions. The Mean-Variance investor’s pre-commitment and myopic strategies, in turn, are
characterized by considerable stochasticity and sudden large changes in portfolio positioning in
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terms of investment fractions, as can be seen in Figures 1 and 2. Overall, the investment frac-
tions and amounts invested in the risky asset according to both strategies follow a downward
trend 39, starting at a slightly leveraged position a little higher than full investment in the risky
asset and falling to roughly the same level as that preferred by the consistently planning Mean
- Variance - and CARA investors at the end of the investment horizon. The latter result is intu-
itive, as the Mean-Variance investor is a CARA investor at heart and wishes to have at least a
similar 40 absolute exposure to the risky asset at the terminal time point as the CARA investor.
Median risky investment fractions in Figure 3 confirm a clear overall downward trend and show
that average fractions are significantly influenced by rare and extreme portfolio re-positioning41.
In spite of finishing at similar investment levels as the pre-committed CARA investor, it follows
from the discussion in section 3 that the pre-committed Mean-Variance investor chooses a fun-
damentally different terminal wealth profile as compared to the pre-committed CARA investor,
which results in significantly different investment strategies prior to the terminal time point.
Direct economic interpretation of (38) would suggest that the downward sloping schedule for
investment in the risky asset is due to the asset’s expected excess return, which incentivizes
the investor to invest large fractions of total wealth in the stock at the beginning of the in-
vestment horizon.42 This effect is larger over longer (remaining) investment horizons. As time
progresses, the Mean-Variance investor reduces exposure to the risky asset over time, hence,
arguably first prioritizing expected excess returns and then increasingly shifting focus to vari-
ance reduction to achieve roughly the same terminal wealth level as the pre-committed CARA
investor. This is similar in spirit to a common theme in the life-cycle investment literature,
which suggests that exposure to the risky asset should be larger the longer the investment
horizon in order to benefit from expected excess returns while being able to cushion negative
shocks by positive returns over time 43 (see e.g. Bovenberg et al., 2007). The downward sloping
schedule for risky investment would also be in line with direct economic interpretation of the
Mean-Variance optimization criterion. Given positive expected excess returns, initial wealth is
(significantly) below target expected wealth, with this gap being - on average - reduced over
time. Hence, it seems intuitive that the Mean-Variance investor would aim at closing this gap
by larger risky investment at the beginning of the investment horizon (Basak & Chabakauri,
2010; Bajeux-Besnainou & Portait, 1998; Richardson, 1989), with this goal being gradually
replaced by greater focus on variance reduction as average financial wealth increases over time.
We would call this a ’forward-looking’ direct economic interpretation, as it reflects a picture of
an investor looking ahead at a given time and comparing her present wealth to target expected
wealth.
As seen particularly clearly in Figure 4, the pre-committed Mean-Variance investor’s risk ap-
petite is considerably higher than her risk-appetite exhibited through her consistent-planning
strategy or the risk-appetite shown in the CARA investor’s pre-commitment or consistent plan-
ning strategies, respectively. This would also be in line with a violation of Second-order stochas-
tic dominance by the pre-committed Mean-Variance investor, in the sense that she would weigh

39Richardson (1989) also finds the respective downward trend, whereas based on his chosen parameter setting,
the Mean-Variance investor even initially uses leverage to further increase stock holdings beyond 100 per cent
of financial wealth. However, the author does not further analyse the mechanisms behind the Mean-Variance
investor’s optimal choice driving this downward trend.

40The ultimately desired exposure might not be equal to that preferred by the CARA investor, as the two
investors’ actual risk aversion may differ due to the discussed imperfections in the parameterization discussed
in section 2.

41See also discussion below.
42See the multiplicative term e

1
2
λ2(T−t), which results from subtraction of the exponents in eλ

2(T−t) and Mt

in (38).
43As discussed above, lifecycle investment tends to be analyzed on the basis of utility functions rather than

Mean-Variance criteria. It is, hence, interesting that a similar theme emerges in both investment problems.
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losses and gains equally, much in contrast to expected utility investors with strictly concave
utility functions, such as CARA investors, whose dis-utility from a given loss outweighs the
utility from an equally-sized gain (see Hadar & Russel, 1969; Hannoch & Levy, 1969; Machina
& Rothschild, 1990). However, in a setting of normally distributed returns on the assets, as
given by the Geometric Brownian Motion for the stock in (1), and normally distributed terminal
wealth prior to application of a particular investment strategy, as given in (92), it is not entirely
clear whether a ’forward looking’ Mean-Variance investor would indeed violate Second-Order
Stochastic Dominance. Let us be more precise and define a ’forward looking’ Mean-Variance
investor as an investor, who maximizes her current value from the mean and variance of fu-
ture wealth via linear - and non-stochastic - portfolio weights. Given normally distributed
asset returns - or wealth processes - such a ’forward looking’ Mean-Variance investor satisfies
Second-Order stochastic dominance (see discussion in Johnstone & Lindley, 2013). The static
and dynamically consistent Mean-Variance optimization problems are ’forward looking’ in this
sense, as evidenced by the respective solutions44 and the resulting terminal wealth processes.45

(see discussion in Johnstone & Lindley, 2013; Hanoch & Levy, 1969) The pre-committed Mean-
Variance investor, in turn, is not. In essence, the Martingale Method is inherently ’backward
looking’, determining an optimal terminal wealth profile first and then hedging it on the basis
of financial assets in the market, which leads to the particular stochastic portfolio strategy
in (38) and the resultant non-normally distributed terminal financial wealth, which, in turn,
prevent her from qualifying as ’forward looking’ in the above sense46. Thus, the pre-committed
Mean-Variance investor may not adhere to Second-Order Stochastic Dominance (see discussion
in Johnstone & Lindley, 2013), in contrast to the consistently planning Mean-Variance investor,
for example.
This suggests that the significant differences between pre-committed CARA - and Mean-
Variance investment, as well as between pre-committed and dynamically consistent Mean-
Variance investment, in Figures 1 to 4, should be explained based on a ’backward-looking’
interpretation of the Mean-Variance pre-commitment strategy47, taking into account the par-
ticular mechanics of the Martingale Method, rather than a direct economic interpretation based
on the strategy or the Mean-Variance objective alone, which appears to be forward-looking in
character.
Given that the dynamically consistent strategies of the CARA - and Mean-Variance investors
coincide, it might be argued that mechanics of the Martingale-Method and the resulting failure
of the Mean-Variance pre-commitment strategy to satisfy Second-Order Stochastic Dominance
are indeed pivotal for the dramatic deviation of the latter strategy from the alternatives avail-
able to the Mean-Variance investor. This does not prevent an interpretation of the respective
value process X∗

t to be hedged, as given in (82), in terms of the current value of the expected
future target value, which, in turn, results from the optimally chosen terminal wealth profile.
The latter interpretation would be in line with Basak & Chabakauri (2010), Bajeux-Besnainou

44See appendices A7 and A8, respectively. Furthermore, the static Mean-Variance strategy, for the very
reason of bering ’forward looking’, can be computed as the static CARA strategy (see Munk, 2017; Johnstone
& Lindley, 2013).

45See also Johnstone & Lindley’s (2013) discussion that the forward-looking Mean-Variance investor’s choices
may be represented in the (µ,σ) plane, implying the existence of indifference curves, which is not necessarily
the case without further conditions in the case of non-normally distributed portfolios (or wealth processes, that
is).

46Neither can stochastic investment decisions reasonably be seen as ’forward looking’ in the general under-
standing of the word, as the strategies are not adapted to the information set at the decision time.

47While the CARA investor’s pre-commitment strategy is, likewise, computed via the Martingale Method, she
applies her utility function to the optimization over terminal wealth levels in the first step, which in turn implies
that her choice over terminal wealth levels should not lead to the same violations of Second-Order Stochastic
Dominance as for the Mean-Variance investor.
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& Portait (1998) and Richardson (1989). But arguably, the underlying mechanisms leading
to the unique character of the Mean-Variance pre-commitment policy may only be seen with
reference to the 2-step procedure according to the Martingale method, focus on the choice of
terminal wealth profiles per se in step 1, the non-normality of terminal wealth, which results
from the greater range of investment strategies available as per this method, and the result-
ing potential violation of Second-Order Stochastic Dominance by the Mean-Variance investor’s
pre-commitment strategy.
Turning to an explanation based on the hedging strategy, as per the Martingale Method, opti-
mal future wealth levels tend to be (significantly) above the initial wealth level due to expected
excess returns. As discussed in section 3, the resulting ’delta’ of the hedging strategy is rela-
tively large, which, in turn, leads to larger stock investment in the hedging portfolio. At the
same time, the variance of the stock over longer time-periods is, likewise, higher, so that large
changes in optimal terminal wealth levels may be hedged by large, but relatively stable stock
investment. As wealth increases on average over time, the ’delta’ of optimal terminal wealth
is reduced, so that optimal risky asset exposure decreases, while becoming more volatile. In
a sense, the Mean-Variance investor first hedges via levels of investment and later hedges via
increasingly large changes in the composition of her hedging portfolio.

Figure 1: Average investment fractions, stock investment, across trajectories. X-axis: time,
Y-axis: investment fraction. Parameters: T=10, m=1 000 000, n=120.

32



Figure 2: Average investment fractions, stock investment, across trajectories, Mean-Variance
pre-commitment strategy excluded. X-axis: time, Y-axis: investment fraction. Parameters:
T=10, m=1 000 000, n=120.

Figure 3: Median investment fractions, stock investment. X-axis: time, Y-axis: investment
fraction. Parameters: T=10, m=1 000 000, n=120.
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Figure 4: Average amounts invested in the stock across trajectories. X-axis: time, Y-axis:
invested amount. Parameters: T=10, m=1 000 000, n=120.

To further analyze the large and sudden adjustments in investment fractions, as per the Mean-
Variance investor’s pre-commitment and myopic strategies, we perform another set of simula-
tions of financial markets with the same parameter setting but using a coarser grid of 10 time
steps, in order to allow for changes in key variables to become more readily visible. Figures
5 and 6 together provide a closer look at the six trajectories, which lead to the most extreme
choices of portfolio weights in pursuit of the pre-commitment strategy. As for the myopic strat-
egy, we confine ourselves to assessing more closely the two trajectories with the largest and
smallest portfolio weight, respectively, in Figure 7, given that extremes are less likely under
that strategy.

Figures 5 to 7 show that the most important determinant for large investment weights (in
absolute terms) is wealth becoming close to zero, which is reasonable, because both strategies
are primarily determined as invested amounts, whereas invested fractions are then obtained
after division by wealth. In all cases, wealth becomes close to zero after a series of negative
Brownian shocks. Furthermore, in all cases, both positive and negative weights lead to large
long positions in the stock, so that negative weights do not signify genuine short positions, but
merely positive invested amounts, which lead to negative fractions after division by negative
wealth. In all cases, there is a correlative short position in the bond, so that the investor borrows
at the risk-free rate to invest in the stock. This is in line with the Mean-Variance investor’s
character as a CARA investor at heart, who wishes to have a constant absolute exposure to the
risky asset, irrespective of current wealth level. (compare Merton, 1969; Pratt, 1964; Eeckhoudt
et al., 2005) As a result, the apparently extreme portfolio weights do not translate into extreme
amounts invested in the stock per se, even though relative to her current wealth, these overall
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moderate levels of stock investment would still seem extreme. As a result, if portfolio constraints
are not a concern and if we are willing to assume that markets would readily lend the investor
20 000 times her current wealth to invest an amount in the stock, which would overall seem
reasonable for a general investor with average financial wealth, then the investor’s behavior
should rather be analyzed according to amounts invested, rather than investment fractions.
We maintain, however, that borrowing without equity is in general difficult, especially if the
intended use is for risky investment. We will, thus, maintain a focus on investment weights, but
keep in mind that these extreme weights translate into overall reasonable amounts invested.
Finally, we note that the Mean-Variance investor’s gamble, that is either to increase expected
returns given low current wealth (Richardson, 1989; Basak & Chabakauri, 2010) or to hedge a
large delta of optimal terminal wealth relative to the hedging protfolio with an outsized risky
position relative to current wealth, pays off in the majority of cases, at least in terms of terminal
wealth on the selected trajectories.
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Figure 5: Large negative weights, M-V (PC) investor. X-axis: time, Y-axis: see plot heading.
Parameters: T=10, m=1 000 000, n=10.
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Figure 6: Large positive weights, M-V (PC) investor. X-axis: time, Y-axis: see plot heading.
Parameters: T=10, m=1 000 000, n=10.
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Figure 7: Large negative and positive weights, M-V (MY) investor. X-axis: time, Y-axis: see
plot heading. Parameters: T=10, m=1 000 000, n=10.

Finally, for robustness, we re-run the original set of simulations, but use the average wealth
level achieved by the CRRA investor as a reference level for parameterization. The CRRA
investor’s wealth level is chosen, as this is exogenous to the choices of the CARA - and Mean-
Variance investors, which are, in turn, influenced by their own level of risk-aversion. The CRRA
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investor’s average wealth level is given by X̄ = 130.3651. As seen in Figure 8, there are no
significant qualitative changes in the results. The investment schedules for the CARA - and
Mean-Variance investors are slightly shifted upwards, whereas the schedules for their static
strategies, as well as the investment pattern of the myopic and pre-committed Mean-Variance
investor, become steeper. Both reflect an overall lower risk-aversion on part of the CARA - and
Mean-Variance investor, as compared to the base-case. As investment patterns remain broadly
unchanged, however, the remainder of the analysis will be performed on the basis of the initial
paramterization.

Figure 8: Average invested amounts across trajectories, reference wealth level X=130.3651.
X-axis: time, Y-axis: amounts invested. Parameter setting: T=10, m=1 000 000, n-120.

4.3 Certainty equivalents, investment fractions and implied wealth
processes

We now assess whether the differences in investment patterns - and amounts lead to differences
in value from the respective risky prospects for the individual investors. Thus, we first discuss
differences in the induced wealth processes, that is in particular means and standard deviations
of terminal wealth and the variability of wealth along the trajectories. We then assess certainty
equivalents from terminal wealth. Having witnessed the large positive and negative investment
fractions chosen by the myopic and pre-committed Mean-Variance investors, we also impose ex-
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post portfolio constraints and assess their impact on certainty equivalents from the respective
strategies.

We see from Figures 9 to 12 that the wealth resulting from the CRRA investor’s myopic, pre-
commitment and consistent planning strategies is slightly more variable across trajectories than
for the respective strategies of the CARA investor. This coincides with a greater variability in
amounts invested in the stock (with the amount invested being deterministic in the case of the
CARA investor).

Figure 9: Invested amounts and wealth processes, CRRA investor. X-axis: time, Y-axis:
invested amounts (left) & wealth (right). Parameters: m=1 000 000, n=120, T=10.

At the same time, wealth stays firmly positive for the CRRA investor at any time, whereas it
eventually turns negative in rare instances for the CARA investor48. Hence, constant invest-
ment fractions provide greater protection against downside risks, whereas constant invested
amounts lead to smaller overall variability of wealth. This is intuitive, because the CRRA
investor scales down risky investment as wealth decreases, whereas the CARA investor does
not increase risky investment past a certain amount - indeed, it does not vary at all - as wealth
increases. For all three investors, static strategies lead to considerably greater variability of
wealth than any other strategies, which is intuitive, because the static investor’s strategy is to
follow the whims of financial markets without changing course along the way.
Finally, as the two strategies coincide, the Mean-Variance investor’s consistent-planning strat-

48The probability of negative realizations of wealth is of course dependent on the initial wealth assumed, so
that the latter probability would be significantly larger if initial wealth was assumed to be considerably lower.
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egy leads to the same amounts invested and wealth profile as the respective CARA strategy. The
Mean-Variance investor’s pre-commitment strategy, in turn, leads to significantly higher down-
side risk with respect to wealth than the respective CARA strategy, while invested amounts
also vary considerably. Apart from a few extreme negative realizations, wealth under the pre-
commitment strategy is considerably less variable for the Mean-Variance investor than for the
CRRA investor, in turn. As will also be seen from the tables below, her terminal wealth is,
however, more variable than for CARA investors under the respective strategy. Thus, as com-
pared to the CRRA investor, the pre-committed Mean-Variance investor appears to adopt the
overall greater focus on variance-reduction of the CARA investor. At the same time, in con-
trast to the CARA investor, she is willing to accept considerably greater downside risk in rare
events for the benefit of a greater upside potential under the pre-commitment strategy. This
seems broadly in line with the violation of Second-Order stochastic dominance discussed above.
Similar reasoning applies to analysis of the Mean-Variance investor’s myopic strategy.

Figure 10: Invested amounts and wealth processes, CARA investor. X-axis: time, Y-axis:
invested amounts (left) & wealth (right). Parameters: m=1 000 000, n=120, T=10.

Tables 1 to 3 below confirm that the pre-commitment strategy is, indeed the overall optimal
strategy for all three investors. Even though comparison is across different risky prospects
resulting from different strategies in this case, the Mean-Variance investor derives a greater
certainty equivalent from her pre-commitment strategy than the CARA - and CRRA investors.
The Mean-Variance investor also takes considerably larger risk under her pre-commitment
strategy than under her consistent-planning strategy. Moreover, under the pre-commitment
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strategy, she achieves her greater certainty equivalent with significantly larger risk and larger
average terminal wealth than the CARA investor. At the same time, under their respective
pre-commitment strategies, the Mean-Variance investor appears to derive greater value than
the CRRA investor, due to greater focus on variance reduction49, as the difference in means of
terminal wealth is relatively small, whereas the difference in standard deviations is larger than
between the CARA - and Mean-Variance investors. Finally, the extreme portfolio re-positioning
in terms of investment fractions, as seen above, is sufficiently rare so that the standard devi-
ation of terminal wealth under the Mean-Variance pre-commitment strategy still stays below
the standard deviation of terminal wealth under the respective strategy of the CRRA investor.

Figure 11: Invested amounts and wealth processes, M-V investor, static and myopic strategies.
X-axis: time, Y-axis: invested amounts (left) & wealth (right). Parameters: m=1 000 000,
n=120, T=10.

49Of course, as an expected utility investor, the CRRA investor does not target variance-reduction per se, but
rather changes in expected utility. Variance-reduction is, thus, not itself a target but an effect. The same holds
for the CARA expected utility investor above.
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Figure 12: Invested amounts and wealth processes, M-V investor, dynamically consistent and
pre-commitment strategies. X-axis: time, Y-axis: invested amounts (left) & wealth (right).
Parameters: m=1 000 000, n=120, T=10.
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µMC (σ/
√
n) ST MY DC PC

M-V investor 167.38 (0.07) 171.12 (0.05) 152.22 (0.03) 171.14 (0.04)
CARA investor 167.38 (0.07) 152.9 (0.03) 152.9 (0.03) 152.9 (0.03)
CRRA investor 172.39 (0.08) 164.95 (0.05) 164.95 (0.05) 164.95 (0.05)

Table 1: Mean of terminal wealth achieved, unconstrained investor. Parameters: m=1 000 000,
n=120, T=10.

σ(XT ) ST MY DC PC

M-V investor 70.51 53.51 31.81 40.84
CARA investor 70.51 31.81 31.81 31.81
CRRA investor 78.32 53.74 53.74 53.74

Table 2: Standard deviation of terminal wealth achieved, unconstrained investor. Parameters:
m=1 000 000, n=120, T=10.

CE(XT ) ST MY DC PC

M-V investor 92.81 128.17 137.04 146.12
CARA investor 134.65 137.15 137.15 137.15
CRRA investor 141.06 141.92 141.92 141.92

Table 3: Certainty equivalents, unconstrained investor. Parameters: m=1 000 000, n=120,
T=10.

4.4 The effect of portfolio constraints on certainty equivalents

As can be seen from Tables 4 to 9, portfolio constraints have a significant effect on the terminal
wealth profile achieved by Mean-Variance under her pre-commitment strategy and a minor
effect under her myopic strategy. As expected, results for the remaining strategies of all three
investors remain unchanged50. We first restrict portfolio weights to π ∈ [−1, 2], which implies
that the investor may at most borrow 100% of her current wealth and invest at most 200% of
her current wealth in the risky asset. Next, we constrain investment weights to π ∈ [0, 1], which
implies that the investor cannot borrow at all and may, thus, at most invest 100% of her current
wealth in the risky asset. As regards the Mean-Variance investor’s pre-commitment strategy,
we see that the first set of portfolio constraints leads to a drop in the certainty equivalent
achievable under Mean-Variance preferences. This drop is due to both a smaller mean terminal
wealth achieved and a larger standard derivation, respectively. Interestingly, subsequent further

50As seen from Figure 25 in Appendix A15, together with Figure 4, toward the end of the investment horizon,
as a small number of wealth trajectories for the CARA investor turn negative, the CARA investor likewise
exhibits large and sudden changes in portfolio weights, akin to the Mean-Variance investor. However, they are
less extreme than for the Mean-Variance investor and only occur on very rare occasions. Thus, even though
portfolio constraints have been imposed on the CARA investor alike in the analysis of Tables 4 to 9, no significant
changes as regards terminal wealth are found for the CARA investor.

44



µMC (σ/
√
n) ST MY DC PC

M-V investor 167.38 (0.07) 171.04 (0.05) 152.22 (0.03) 166.32 (0.04)
CARA investor 167.38 (0.07) 152.22 (0.03) 152.22 (0.03) 152.22 (0.03)
CRRA investor 172.39 (0.08) 164.95 (0.05) 164.95 (0.05) 164.95 (0.05)

Table 4: Mean of terminal wealth achieved, π ∈ [−1, 2]. Parameters: m=1 000 000, n=120,
T=10.

σ(XT ) ST MY DC PC

M-V investor 47.4 53.61 31.81 42.01
CARA investor 70.9 31.81 31.81 31.81
CRRA investor 78.32 53.74 53.74 53.74

Table 5: Standard deviation of terminal wealth achieved, π ∈ [−1, 2]. Parameters: m=1 000
000, n=120, T=10.

CE(XT ) ST MY DC PC

M-V investor 93.1 127.93 137.04 139.85
CARA investor 134.65 137.15 137.15 137.15
CRRA investor 141.06 141.92 141.92 141.92

Table 6: Certainty equivalents, π ∈ [−1, 2]. Parameters: m=1 000 000, n=120, T=10.

portfolio constraints do not lead to a further significant drop in the certainty equivalent for the
Mean-Variance investor under this strategy, which may be due to the dampening effect of the
portfolio constraints on the standard deviation of terminal wealth (see comparison of result in
Tables 5 and 8). The effects on the myopic Mean-Variance investor are comparatively minor
both in terms of means and standard deviations of terminal wealth and certainty equivalents,
respectively. This suggests that ex-post portfolio constraints reduce optimal value achievable
for the Mean-Variance investor in so far as it constrains her ability to take large risky invest-
ments when wealth is close to zero, in order to increase expected wealth to target expected
wealth, or improve the delta hedge with respect to the optimal terminal wealth profile, respec-
tively (see discussion in section 3). While her certainty equivalent from terminal wealth drops
below that of the CRRA investor, the effect of portfolio constraints is not dramatic either,
especially taking into account that the second set of portfolio constraints renders any borrow-
ing impossible. Finally, we note that in both the constrained and the unconstrained cases,
the static CARA - and CRRA strategy performs remarkably well, when comparing the respec-
tive certainty equivalents with the certainty equivalents under the investors’ pre-commitment
strategies. This provides further support for the argument in section 3 that within the Black-
Scholes setting, there is little in terms of inter-temporal linkages to exploit, neither in terms of
investment opportunities, nor in terms of preferences over time, that would yield considerable
advantages to consistent-planning or pre-commitment strategies for those two investors. This is
in contrast to the Mean-Variance investor, who derives considerable gains in terms of certainty
equivalents from the effort of devising dynamically-consistent or pre-commitment strategies.
The reasons behind this result will further be assessed below when analyzing the effects of over
- and underinvestment, and investment scheduling on certainty equivalent returns.
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µMC (σ/
√
n) ST MY DC PC

M-V investor 167.38 (0.07) 170.38 (0.05) 152.22 (0.03) 162.13 (0.04)
CARA investor 167.38 (0.07) 152.22 (0.03) 152.22 (0.03) 152.22 (0.03)
CRRA investor 172.39 (0.08) 164.95 (0.05) 164.95 (0.05) 164.95 (0.05)

Table 7: Mean of terminal wealth achieved, π ∈ [0, 1]. Parameters: m=1 000 000, n=120,
T=10.

σ(XT ) ST MY DC PC

M-V investor 47.4 53.51 31.81 38.62
CARA investor 70.9 31.81 31.81 31.81
CRRA investor 78.32 53.74 53.74 53.74

Table 8: Standard deviation of terminal wealth achieved, π ∈ [0, 1]. Parameters: m=1 000 000,
n=120, T=10.

CE(XT ) ST MY DC PC

M-V investor 93.1 127.44 137.04 139.76
CARA investor 134.65 137.14 137.14 137.14
CRRA investor 141.06 141.92 141.92 141.92

Table 9: Certainty equivalents, π ∈ [0, 1]. Parameters: m=1 000 000, n=120, T=10.

4.5 Certainty equivalent Returns from Mean-Variance Approxima-
tions

Having assessed the certainty equivalents that each investor derives from their own investment
strategies, as well as the wealth dynamics resulting from the underlying risky prospects, we
now assess the quality of Mean-Variance approximations more closely. Thus, we assess the
certainty equivalent returns that the CARA - and CRRA investors may derive from (optimal)
Mean-Variance strategies relative to the certainty equivalent returns that the investors could
derive from their own pre-commitment strategies, respectively. As a further benchmark, we
will also use static CARA - and CRRA strategies, even though, as noted above, the relative
underperformance of static strategies for the CARA - and CRRA investors is not particularly
large, due to the lack of inter-temporal linkages in the given setting. Nevertheless, if the goal
is to approximate optimal expected utility strategies, doubt may be cast on the usefulness of
the optimal pre-commitment Mean-Variance strategy, which may be quite costly in terms of
trading costs, the human resources to devise the strategy, as well as the safeguards necessary
to ensure commitment, if the strategy cannot beat a static expected utility strategy in terms
of certainty-equivalent performance.
We assess certainty equivalent returns over a longer time-horizon of T = 30 years and using
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1 000 000 trajectories, as well as 360 time steps, which yields a similar discretization as be-
fore. However, we constrain analysis to yearly performance measurement in terms of certainty
equivalent returns for computational reasons. Appendix A13 underlines the importance of using
both a large number of trajectories, as well as a ’larger’ number of time steps for discretization,
especially when assessing certainty equivalent returns over a longer time-horizon. Figure 22
shows that with 30 time steps, the theoretically optimal Mean-Variance pre-commitment strat-
egy, would appear to yield lower certainty equivalent total gross returns than the dynamically
consistent strategy. At the same time, the returns appear quite variable at the long end. More-
over, the Mean-Variance pre-commitment strategy would appear to yield a higher certainty
equivalent return for the CRRA investor that her own, theoretically optimal pre-commitment
strategy at the long end. Increasing the number of trajectories (Figure 23), certainty equiva-
lent returns from the Mean-Variance pre-commitment strategy for both investors become much
smoother and less volatile at the long end, the CRRA investor obtains the highest certainty
equivalent return from her own pre-commitment strategy and the Mean-Variance investor’s
pre-commitment strategy appears close to optimal again under her own preferences. Finally,
increasing also the number of time steps in the simulations to 360, the Mean-Variance investor’s
pre-commitment strategy again appears optimal, as seen in Figure 24. For the sake of com-
pleteness, Tables 10 and 11 show the improvements as regards precision. These results suggest
that a relatively fine grid may be required for Mean-Variance pre-commitment strategies, which
obtain the theoretical optimum for the Mean-Variance investor in continuous time, to appear
optimal in a discretized setting. While the literature on discrete time multi-period (dynamic)
mean-variance optimization is beyond the scope of this thesis, within the scope of the present
analysis this suggests that considerable computation power may be required to use continuous-
time Mean-Variance strategies in practice.

Figure 13 shows the underperformance of the pre-commitment Mean-Variance strategy under
CRRA preferences, relative to the CRRA investor’s own pre-commitment and static strategies.
Given the vastly different optimal investment schedules and the relative disregard to downside
risk by the Mean-Variance investor, as discussed in sections (4.2) and (4.3), it is not surprising
that the CRRA investor dislikes the risky prospect proposed by the Mean-Variance investor.
With an investment horizon of T=30 years, the gap in initial optimal investment between the
two investors at the beginning of the investment horizon can be expected to be particularly
large, leading to risks that the CRRA investor is unwilling to bear. The relatively strong
improvement of the Mean-Variance investor’s strategy as portfolio constraints are introduced
(see lines MVPC(-1,2), MVPC(0,1), MVDC(-1,2) and MVDC(0,1), with numbers in brackets
denoting the portfolio constraints discussed in section 4.4) in the eyes of the CRRA investor
bears witness to this. This is again in line with failure on part of the Mean-Variance investor’s
pre-commitment strategy to meet criteria of Second-Order stochastic dominance. Moreover,
the consistently planning Mean-Variance strategy underperforms both the static and the pre-
committed CRRA strategies as well. As discussed in section 3, the dynamically consistent
Mean-Variance policy is itself a ’constrained optimum’ and, hence, yields sub-optimal outcomes,
even for the Mean-Variance investor herself. While the strategy underperforms even relative to
the static CRRA strategy, the Mean-Variance investor’s consistent-planning strategy performs
better in the eyes of the CRRA investor than the pre-committed Mean-Variance strategy. With
reference to section 4.2, the investment schedule of the dynamically consistent Mean-Variance
strategy resembles that of the optimal CRRA pre-commitment strategy more closely. Finally,
as discussed above, the static CRRA strategy does not vastly underperform the investor’s
pre-commitment strategy in terms of certainty-equivalent gross returns.
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Figure 13: CE total gross returns for the CRRA investor from using static, dynamic and pre-
commitment Mean-Variance strategies in terms of CE growth rate. The benchmark is given by
the CRRA pre-commitment solution. Additional benchmark: CRRA investor’s static strategy.
Parameters: T=30, m=1000000,n=360, yearly performance measurement.

Given that all certainty equivalents (and certainty equivalent gross returns) on part of the
CRRA investor remain positive across trajectories, certainty equivalent growth rates may also
be derived. Figure 14 shows the losses in terms of certainty equivalent growth rates for the
CRRA investor from using static CRRA - and constrained pre-commitment and consistent-
planning Mean-Variance strategies, respectively, relative to the optimal pre-commitment CRRA
strategy. Again, we see that the certainty equivalent growth rate lost due to use of the static
CRRA strategy is almost equal to zero, whereas it is close to zero for the dynamically consistent
Mean-Variance strategies under both sets of portfolio constraints51. In turn, losses in terms of
annual certainty equivalent growth rates from using pre-committed Mean-Variance strategies
become significantly larger as portfolio constraint are eased.

51Eventually, portfolio constraints also become binding for the dynamically consistent Mean-Variance investor,
as seen in Figure 25 in appendix A14. However, as seen from the results in section 4.4, neither wealth processes
nor certainty equivalents obtained change significantly due to the introduction of portfolio constraints for the
dynamically consistent Mean-Variance investor (or, by extension, for the dynamically consistent CARA investor).
The lack of significant consequences for the consistently - planning Mean-Variance investor is also suggested by
the overlap of the two respective lines in Figure 14.
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Figure 14: Losses in terms of CE growth rates for the CRRA investor from using (constrained)
pre-commitment (PC) and consistent-planning (DC) strategies, measured against the CRRA
pre-commitment strategy as a benchmark. The static CRRA strategy is also included for
further comparison. Parameters: T=30, m=1000000,n=360, yearly performance measurement.

The extent of initial over-investment on part of the pre-committed Mean-Variance investor rel-
ative to the CRRA investor’s preferences is expected to be larger the longer the investment
horizon. Thus, we assess whether the Mean-Variance pre-commitment strategy would fare bet-
ter in the eyes of the CRRA investor if a shorter investment horizon is assumed. However,
Figure 15 suggests that while certainty total equivalent gross returns do not drop to zero right
away as before at intermediate time-points of performance measurement, the patterns of un-
derperformance remain generally unchanged and the Mean-Variance pre-commitment strategy
fares by far the worst in the eye of the CRRA investor.
In summary, the CRRA investor sees optimal pre-committed Mean-Variance investment as a
(burdensome) risk, rather than a (beneficial) investment. As measured in terms of certainty
equivalents, the investor would essentially pay almost her entire initial wealth to avoid having
to carry the risks that come with the Mean-Variance pre-commitment strategy.
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Figure 15: CE total gross returns for the CRRA investor from CRRA pre-commitment strategies
and in comparison to various (constrained) Mean-Variance strategies and the CRRA investor’s
own static strategy. The shortening of the investment horizon does not increase the relative
appeal of the Mean-Variance pre-commitment strategy to the CRRA investor. Parameters:
T=30, m=1000000,n=360, yearly performance measurement.

As for the CARA investor, Figure 16 shows that her Certainty-Equivalent gross returns from
the Mean-Variance pre-commitment strategy, as based on Monte-Carlo simulations of future
wealth levels, wanders off far into negative territory. As shown in appendix A14, however, the
expected utility for the CARA investor is, in this case, not defined. While this prevents further
analysis in this case, it is in itself an interesting result.
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Figure 16: CE total gross returns for CARA investor from Mean-Variance pre-commitment and
dynamically consistent strategies. Parameters: T=30, m=1000000,n=360, yearly performance
measurement.

Next, similar to Balter & Schweizer (2021), we aim to investigate the relative effect of over-
investment and different investment scheduling on the (dis-)utility from the Mean-Variance
pre-commitment strategy relative to CRRA preferences. This is complicated by the fact that
investment weights of the pre-committed Mean-Variance investor are stochastic and by the
degree of volatility in these weights. To nevertheless obtain a rough indication of the relative
effects, we choose the median Mean-Variance pre-commitment investment fractions as a bet-
ter indication of the ’average’ investment fraction chosen. The CRRA investor invests slightly
larger average fractions in the risky asset for investment horizons ranging from one to ten years
than the Mean-Variance investor under the respective pre-commitment strategies, with the
average difference reaching 5.2% at a horizon of T=10 years.52 Thus, we construct a ’raised
Mean-Variance pre-commitment strategy’ (MVPC raised), which shows the same investment
schedule as the original Mean-Variance pre-commitment strategy, but has the same average
investment fraction as the CRRA investor’s strategy. Likewise, we construct a ’reduced CRRA
pre-commitment strategy’, which has the same investment schedule as the CRRA investor’s
optimal pre-commitment strategy, but the same average investment fraction as the Mean-
Variance pre-commitment strategy. Figure 17 shows the performance in terms of certainty
equivalent gross returns of the above strategies for maturities ranging from T=1 to T=10. The

52Figure 3 provides further illustration that the difference in average fractions is indeed quite small.
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graph suggests that the effect of over-investment per se is not pivotal in explaining the CRRA
investor’s disutility from the Mean-Variance pre-commitment strategy. The reduced CRRA
pre-commitment strategy performs almost as well as the investors original pre-commitment
strategy. On the other hand, the raised Mean-Variance pre-commitment strategy performs re-
markably well under CRRA preferences as well, so that the schedule under the latter strategy
does not by itself cause the large loss in value witnessed before. Thus, it is the combination
of over-investment and differences in investment-scheduling related to the Mean-Variance pre-
commitment strategy, which causes the loss in value to the CRRA investor. From the discussion
above, it would follow that the disutility for the CRRA investor is due to the large downside
risks, which the Mean-Variance pre-commitment strategy entails. These risks are in particular
due to the considerable overweight in the risky asset at the beginning of the investment hori-
zon pursuant to this strategy, which, in turn, causes both the positive difference in ’average’
investment weights and investment scheduling.
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Figure 17: Comparison of CE growth rates for CRRA pre-commitment (PC) and Mean-Variance
PC. For heuristic loss decomposition, CRPC reduced denotes a strategy that has the same in-
vestment pattern as the CRRA investor’s pre-commitment strategy, but whose mean investment
fraction is equal to the median investment fraction of the Mean-Variance PC strategy. Vice
versa, the raised Mean-Variance investor’s pre-commitment strategy (MVPC raised) has the
same pattern as the Mean-Variance PC strategy, but the same average investment level as
the CRRA investor’s PC strategy. At the end of the investment horizon, the average CRPC
strategy and median Mean-Variance PC investment level are almost the same. Parameters:
T=1:10, m=1000000,n=120, yearly performance measurement.

4.6 Certainty equivalent Returns for the Mean-Variance investor

Setting again the investment horizon at T = 30 years and measuring performance in terms of
certainty equivalent returns at intermediate time-points, we see in Figure 18 that it is only after
more than 20 years that the Mean-Variance investor’s pre-commitment strategy outperforms
her dynamically consistent (and other) strategies. This points at large problems with respect
to commitment, as up to this point, yearly performance measurement would suggest to the
Mean-Variance investor to abandon her pre-commitment strategy in favor of her consistent-
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planning - or even her static investment strategy. Nevertheless, at the terminal time point, the
pre-commitment strategy leads to almost twice the certainty equivalent total gross return as
compared to the consistent-planning strategy. That is to say, while commitment may be prob-
lematic along the way, there are vast benefits to commitment for the Mean-Variance investor.
The discussed portfolio constraints negate these benefits, however, with the dynamically con-
sistent strategy and static strategies outperforming the constrained pre-commitment strategies
at each point in time over the investment horizon of 30 years.

Figure 18: Certainty equivalent gross returns for Mean-Variance objective function and
from Mean-Variance pre-commitment (PC, portfolio constrains in brackets), consistent-
planning (DC, portfolio constraints in brackets) and static strategies. Parameters: T=30,
m=1000000,n=360, yearly performance measurement.

To better link these results to the simulation results in section 4.3, we re-compute the certainty
equivalent total gross returns from Figure 18 for an investment horizon of T = 10 years. As
shown in Figure 19, with a shorter overall investment horizon, the constrained pre-commitment
strategies still outperform the dynamically consistent strategy at the end of the investment
horizon, confirming simulation results in section 4.3 . Thus, in the eyes of the Mean-Variance
investor, portfolio constraints are particularly costly in the longer term. Figure 19 also shows,
however, that commitment remains both problematic at intermediate time points and beneficial
at the end of the investment horizon, even though the incentive to deviate in terms of the
difference of certainty equivalents total gross returns at intermediate time points is smaller if
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the investment horizon is shorter53.

Figure 19: Re-assessment of the value of commitment in Figure 18 for the Mean-Variance
investor for shorter time horizon. Parameters: T=10, m=1000000,n=120, yearly performance
measurement.

With the exception of the myopic strategy (see Figure 24) in appendix A13, all of the Mean-
Variance investor’s strategies lead to positive certainty equivalents. Thus, Figure 20 shows the
(annual) certainty equivalent growth rates that are derived from the certainty equivalent gross
returns in Figure 19. Thus, we see more clearly that it takes 5 years for the Mean-Variance
pre-commitment strategy to outperform the static or dynamically consistent strategies, respec-
tively, whereas outperformance at the end of the investment horizon is roughly half a percentage
point of certainty equivalent growth rate. It is, thus, questionable whether the Mean-Variance
investor could be tempted to accept the behavioral constraints at intermediate time-points by
the promised ’excess return’ at the end of the investment horizon.
It follows that significant outperformance of the Mean-Variance pre-commitment strategy re-
quires a longer-investment horizon, whereas the incentive to deviate likewise increases as the
investment horizon is extended.

53Figure 26 in Appendix A15 includes also the constrained dynamically consistent Mean-Variance strategies,
which have been omitted in Figure 19 to avoid cluttering.
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Figure 20: Comparison of CE growth rates for the Mean-Variance investor from (constrained)
Mean-Variance pre-commitment (PC), consistent-planning (DC) and static Mean-Variance
strategies.

Finally, we aim to decompose the relative losses in terms of certainty equivalent growth rates
for the Mean-Variance investor from her dynamically consistent strategy relative to her pre-
commitment strategy, similar to the discussion concerning the CRRA investor in section 4.5 .
The pre-committed Mean-Variance investor incurs considerable losses in value if she is forced
to reduce the average investment amount, while retaining the investment schedule of her pre-
commitment strategy. At the same time, her losses from changing the investment pattern to the
schedule under the dynamically consistent strategy, while retaining the average invested amount
at the current level under the pre-commitment strategy, her losses incurred are significantly
smaller. This suggests that the invested amount is crucial to the pre-committed Mean-Variance
investor. The average difference in invested fractions is also slightly larger as compared to the
case of the CRRA investor above, reaching 7.2% at a ten-year investment horizon. At the
same time, the investor also gains significantly in terms of certainty equivalent growth rates
if she changes her investment schedule from the reduced pre-commitment strategy to the DC
strategy, while keeping the average risky investment at the average level under the former
strategy, which, in turn, suggests that re-scheduling alone has a large effect on the certainty
equivalent growth rate as well. Thus, starting off at the pre-commitment solution, the effect of
a re-scheduling is smaller than the effect of reduction of the average investment fraction, which
stands in contrast to results in Figure 17 concerning the CRRA investor. However, in turn,

56



optimal invested amounts remain strongly linked to optimal investment schedules under the
respective optimization problem.

Figure 21: Comparison of CE growth rates for Mean-Variance pre-commitment PC and con-
sistent planning DC strategies. For heuristic loss decomposition PC-DC, DC raised denotes
a strategy that has the same investment pattern as DC, but whose mean investment frac-
tion is equal to the median investment fraction of the PC strategy. Parameters: T=1:10,
m=1000000,n=120, yearly performance measurement.
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5 Conclusion

The quality of Mean-Variance approximations in continuous time and the single period or (my-
opic) multi-period discrete time case differs considerably. While the literature has found that
optimal Mean-Variance investment in the latter case tends to approximate optimal policies
under expected utility criteria quite closely, the optimal continuous time Mean-Variance policy,
as given by the pre-commitment solution, performs very poorly in approximating the optimal
pre-commitment policies under a CRRA expected utility criterion, even in a setting of Gaus-
sian returns. The results presented suggest that CRRA investors could do better by following
a static investment strategy under their own criterion rather than having their financial wealth
invested according to the Mean-Variance pre-commitment policy. The discussion traces these
results back to the mechanics of the Martingale approach as the underlying solution method
for the computation of continuous time pre-commitment policies, and the Mean-Variance in-
vestor’s failure to satisfy criteria of Second-Order stochastic dominance under this approach.
With respect to the latter, it is argued that dynamically consistent investor, much like static
investors, maximize expected utility or value in a forward-looking manner, whereas optimal
investment under the Martingale approach is essentially backward looking from an optimal
terminal wealth profile, which has been computed state-by-state. As a result, the safeguards
for Second-Order stochastic dominance that are in place in the single-period case when maxi-
mizing a mean-variance criterion under Gaussian returns do not apply to the the computation
of optimal pre-commitment solutions under the Martingale approach. The Mean-Variance pre-
commitment solution differs significantly from all strategies of the CARA and CRRA investors,
as well as her own static and dynamically consistent strategies, respectively, in terms of amounts
invested and investment schedule. Moreover, it yields a stochastic strategy, whereas the former
are deterministic and at most time-varying. According to the results presented, the CRRA in-
vestor would essentially be willing to spend almost her entire wealth to insure against having to
hold the risk represented by Mean-Variance pre-commitment strategies. Furthermore, the anal-
ysis suggests that this is due to the considerable downside risk that the pre-committed Mean-
Variance investor is willing to take, which causes large losses in terms of certainty equivalents
for the CRRA investor. This is consistent with the pre-committed Mean-Variance investor’s
failure with respect to Second-Order stochastic dominance. Expected utility and respective cer-
tainty equivalents of the Mean-Variance pre-commitment strategy under CARA utility could
not be computed, as the underlying mean was found not to exist. Furthermore, the costs of
time-inconsistency of the Mean-Variance criterion to the Mean-Variance investor in continuous
time was assessed in terms of certainty equivalent returns. While costly for the Mean-Variance
investor, the criterion’s time-inconsistency turns out to be value enhancing with respect to
Mean-Variance approximations of optimal policies under the CRRA criterion in indirect ways.
This is due to the greater similarity of dynamically consistent Mean-Variance strategies, to
which the Mean-Variance investor may have to revert if commitment becomes impossible, bear
much greater similarity to the strategies chosen by CRRA expected utility maximizers. In
particular, the dynamically consistent Mean-Variance strategy leads to much smaller downside
risk as compared to the Mean-Variance pre-commitment solution. Given the at first unexpect-
edly bad performance of Mean-Variance pre-commitment strategies in approximating CRRA
expected utility strategies in settings of Gaussian returns, interesting further research would
include the study of continuous-time Mean-Variance approximations in alternative financial
market settings. As the present research suggests, however, considerable computing power may
be required especially if longer investment horizons are to be investigated. Moreover, additional
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sources of time-inconsistency54 could be studied as to their effect on the relative performance
of dynamically consistent and optimal pre-commitment Mean-Variance strategies in approx-
imating optimal policies under expected utility criteria. Finally, the potential failure of the
Mean-Variance investor to satisfy criteria of Second-Order stochastic dominance under a Mar-
tingale approach should be more thoroughly studied, especially as to the juxtaposition with
her apparent adherence to these economic efficiency criteria under the dynamic programming
approach.

54See e.g. Björk et al., 2014 and Balter et al., 2021.
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A Appendix

A.1 Optimal pre-commitment strategy, CRRA investor, amounts in-
vested

Following55 derivations in Munk (2017) and Björk (2020) and specializing to the case at hand,
the Lagrangian for the constrained static optimization problem of maximizing (25) subject to
(26) is given by

L = E


X1−γ

T

1− γ


+ ψ (X0 − E [MTXT ]) , (43)

with γ > 1. Optimization is performed by state of the world, that is determining for each
state of the world ω ∈ Ω at time T the optimal value XT (ω). The first-order conditions are,
respectively,

X−γ
T − ψMT = 0 ⇐⇒ XT = ψ− 1

γ M
− 1

γ

T , (44)

and
X0 − E[MTXT ] = 0 ⇐⇒ X0 = E[MTXT ]. (45)

Plugging (44) into (45) and solving for the Lagrangian multiplier ψ yields

X0 = E

MTψ

− 1
γ M

− 1
γ

T


⇐⇒ ψ = X−γ

0


E

M

1− 1
γ

T

γ

. (46)

Plugging (46) back into (44) yields

X∗
T =


X−γ

0


E

M

1− 1
γ

T

γ− 1
γ

M
− 1

γ

T =
X0M

− 1
γ

T

E

M

1− 1
γ

T

 . (47)

The market consistent value of future time T - optimal wealth at any time t ∈ [0, T ] is given
by the process X∗

t as follows, whereas Mt is the state-price deflator process as given in (23):

X∗
t =

1

Mt
Et [MTX

∗
T ] = Et




MT

Mt

X0M
− 1

γ

T

E

M

1− 1
γ

T





 =
M

− 1
γ

t X0

E

M

1− 1
γ

T

Et


MT

Mt

1− 1
γ


. (48)

55The derivations included in this appendix and many of the appendices below build on the existing knowledge
as to the solution of the above problems. This includes in particular textbook treatments of these models as
included in Björk (2020), Cvitanic & Zapatero (2004) and Munk (2017) and Shreve (2010).
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Thus, the process X∗
t is given by a time-dependent function of the stochastic discount factor

Mt, X
∗
t = ft(Mt). Hence, by Ito’s lemma the differential form of the process may be written

as

dX∗
t = ....dt+

∂

∂Mt
X∗

t dMt = ....dt+
1

γ
X∗

t λdWt. (49)

The pay-off X∗
T (ω) is adapted to the filtration F(T ) generated by the Brownian Motion Wt at

time T and is, thus, also spanned by the basic financial assets in our market. Moreover, the
Black-Scholes financial market admits the risk-neutral probability measure Q defined by the
given probability measure P together with the Radon-Nikodym derivative

ξT = exp


−1

2
λ2T − λWT


, (50)

with the respective Radon-Nikodym process, as given by (24) (see e.g. Shreve, 2010).

Measure Q is equivalent to measure P and under this measure, the discounted stock price is a
martingale such that S(t) = EQ

t


e−r(T−t)S(T )


. Moreover, given the particular market setting,

the price of risk λ is determined uniquely by λ = (µ−r)
σ and, hence, so are the Radon-Nikodym

derivative and the Radon-Nikodym process, respectively. As a result, we may use the First -
and Second Fundamental Theorem of Asset Pricing to determine the unique price of any pay-off
to be received at time T and given by a random variable X̃T adapted to FT in either of two
equivalent ways:

X̃t = EQ
t


e−r(T−t)X̃T


= Et


dQ
dP

e−r(T−t)X̃T


= Et


e−r(T−t) ξT

ξt
X̃T


(51)

and

X̃t = Et


MT

Mt
X̃T


= Et


e−r(T−t)− 1

2λ
2(T−t)−λ(WT−Wt)X̃T


= Et


e−r(T−t) ξT

ξt
X̃T


, (52)

respectively, whereas Mt is again the state-price deflator process as given in (23). (See e.g.
Shreve, 2010) Hence, with the value of the optimally chosen pay-off X∗

T at time t, X∗
t , being

determined by (48), it follows from (51) and (52) that under measure Q the process X∗
t is

expected to grow exponentially at constant rate r. Finally, on the basis of Girsanov’s theorem,
we note that under the particular measure Q as defined above, the process

W̃t = Wt + λt (53)

is a Brownian Motion. (see e.g. Shreve, 2010) Thus, from (49) together with (51) - (53) it
follows that

dX∗
t = ...dt+

1

γ
X∗

t λdWt = X∗
t rdt+

1

γ
X∗

t λdW̃t. (54)

Moreover, the differential form of the wealth process dXt resulting from the replicating portfolio,
as chosen by the investor, given in (5) can be re-written as
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dXt = Xtrdt+Xtπt(µ− r)dt+XtπtσdWt

= Xtrdt+Xtπtσ


(µ− r)

σ
dt+ dWt



= Xtrdt+XtπtσdW̃t.

(55)

We could go one step further from here, discount both processes in (54) and (55) with the
risk-free rate and apply the Martingale Representation Theorem to determine the investment
fraction πt such that the wealth process (55) matches process (54) in all states of the world,
subsequently using the equivalence of measures P and Q such that if the processes match in
all states of the world under measure Q then they also match in all states of the world under
measure P. (Shreve, 2010) However, we may also simply note that two processes, which are
driven by the same Brownian Motion, which agree at an initial point in time and which have
the same drift and volatility term, respectively, are equal to each other at each time after the
initial point in time. (Baxter & Rennie, 2012) Due to the budget constraint in optimization
problem (43), the processes described by (54) and (55) are indeed required to have the same
value, X0 = X̄0, at the initial point in time. Moreover, they share the same drift, so that we
may determine the perfect hedge πt by matching volatility terms in (54) and (55). Thus,

π∗
t = π∗ =

ψ

γσ
=

(µ− r)

γσ2
. (56)

Again, by equivalence of measures P and Q, the hedge works perfectly under the physical
probability measure as well, which concludes the argument. In equating volatility terms in (54)
and (55) to obtain (56), we replaced X∗

t by Xt, as for each incremental step forward at any time
t ∈ [0, T ], X∗

t = Xt is ensured by the fact that X0 = X∗
0 = X̄0 and all increments leading up

to time t are matched. We may also note with reference to (54) and (55) that, as is commonly
known, a change in measure is a change in the drift, leaving volatility terms unaffected. (see
e.g. Shreve, 2010) Thus, in future instances, in which the Martingale Method is applied, we
will skip the underlying argument as regards changes in measure and rest assured that within
the given market setting we can transform the given price - and value processes such that they
have the same deterministic drift, before matching volatility terms.

A.2 Optimal pre-commitment strategy, CRRA investor, relative weights

The derivation of the value X∗
t of the optimal pay-off X∗

T in equations (43) to (49) is agnostic as
to whether investment strategies are specified in terms of relative fractions or amounts invested.
If we now propose to use absolute amounts invested to specify the exposure to the risky asset,
the value process of the replicating portfolio is given by dXt = Xtrdt + θt(µ − r)dt + θσdWt.
Again denoting W̃t a Brownian Motion under measure Q it follows from the same reasoning as
in Appendix A1 that

dXt = Xtrdt+ θtσdW̃t = X∗
t rdt+

1

γ
X∗

t λdW̃t = dX∗
t (57)
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and

X0 = X∗
0 , (58)

so that

θ∗t = Xt
λ

γσ
= Xt

(µ− r)

γσ2
. (59)

A.3 Optimal pre-commitment strategy, CARA investor, relative weights

The Lagrangian for the static constrained optimization problem faced by the CARA investor
is given by

L = E

− 1

α
e−αXT


+ ψ (X0 − E[MTXT ]) , (60)

whereas maximizing again by state of the world at time T the first-order conditions are, re-
spectively,

e−αXT − ψMT = 0 ⇐⇒ e−αXT = ψMT , (61)

and

X0 − E[MTXT ] = 0 ⇐⇒ Xo = E[MTXT ]. (62)

From (61), we have that

XT =
− log(ψMT )

α
, (63)

whereas plugging (63) into (62) and solving for ψ yields

αX0 = E [MT (− log(ψMT ))]

= − E [MT log(MT )]− E [MT log(ψ)]

⇐⇒ − E[MT ] log(ψ) = αX0 + E[MT log(MT )]

⇐⇒ ψ = exp


αX0 + E[MT log(MT )]

E[−MT ]


,

(64)

whereas the third equality follows from the fact that the marginal value of a relaxation of the
budget constraint at time t = 0 is known at that time and, hence, its logarithm can be taken
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out of the expectation. Given initial wealth X0, we now set ψ = ψ̄. Therefore, the optimal
terminal wealth is given by

X∗
T =

− log(ψ̄MT )

α
. (65)

From this we derive the value process X∗
t for all t ∈ [0, T ], and its respective differential form

as follows:

X∗
t = − 1

Mt

Et[MT log(ψ̄MT )]

α

= − 1

αMt
Et[MT log(ψ̄)]− 1

αMt
Et[MT log(MT )]

= − log(ψ̄)

αMt
Mte

−r(T−t) − 1

αMt
Et[MT log(MT )],

(66)

whereas the first term in the final expression is time-dependent, but non-stochastic after can-
cellation of Mt in the numerator and denominator. The expectation in the second term is
computed using the Law of the Unconscious Statistician and by integration with respect to
the standard normal density. Given the stochastic discount factor in (23), we may split the
expectation in the second term into two parts:

Et[MT log(MT )] = MtEt


e(−r(T−t)− 1

2λ
2(T−t)−λ(WT−Wt))


log(Mt)− r(T − t)− 1

2
λ2(T − t)



−MtEt


e(−r(T−t)− 1

2λ
2(T−t)−λ(WT−Wt))λ(WT −Wt)



= Mte
−r(T−t)


log(Mt)− r(T − t)− 1

2
λ2(T − t)



−Mte
−r(T−t)− 1

2λ
2(T−t)

 ∞

−∞
e−λ

√
T−tzλ

√
T − tz

1√
2π

e−
−z2

2 dz,

(67)

with z ∼ N (0, 1). Completing the square to compute the integral in the second term, we obtain

 ∞

−∞
e−λ

√
T−tzλ

√
T − tz

1√
2π

e−
−z2

2 dz = e
1
2λ

2(T−t)λ
√
T − t

 ∞

−∞

1√
2π

e−
(z+λ

√
T−t)2

2 z dz

= e
1
2λ

2(T−t)λ
√
T − t

 ∞

−∞

1√
2π

e−
z̃2

2 (z̃ − λ
√
T − t) dz̃

= e
1
2λ

2(T−t)λ
√
T − t

 ∞

−∞

1√
2π

e−
z̃2

2 z̃dz̃

− e
1
2λ

2(T−t)λ2(T − t)

 ∞

−∞

1√
2π

e−
z̃2

2 dz̃

= −e
1
2λ

2(T−t)λ2(T − t),

(68)
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whereas the second equality follows from the change of variable z̃ = z + λ
√
T − t ⇐⇒ z =

z̃ − λ
√
T − t and the final equality from taking the two integrals, which yields the expectation

of a standard normal variable, that is equal to zero, and the integral over the range of the
standard normal density, which is equal to one, respectively. Plugging the result in (68) back
into (67) yields

Et[MT log(MT )] = Mte
−r(T−t)


log(Mt)− r(T − t)− 1

2
λ2(T − t)


+Mte

−r(T−t)λ2(T − t)

= Mte
−r(T−t)


log(Mt)− r(T − t) +

1

2
λ2(T − t)


.

(69)

Plugging (69) back into (66), we obtain

X∗
t = − log(ψ̄)

α
e−r(T−t) − 1

Mt

Et[MT log(ψ̄MT )]

α
=

= − log(ψ̄)

α
e−r(T−t) − 1

α
e−r(T−t)


log(Mt)− r(T − t) +

1

2
λ2(T − t)


.

(70)

Thus, the process X∗
t is a time-dependent function of the stochastic discount factor Mt,

Xt = ft(Mt), so that by Ito’s lemma, its differential form can be written as

dX∗
t = ...dt− 1

α
e−r(T−t) 1

Mt
dMt

= ...dt+
1

α
e−r(T−t) (rdt+ λdWt) = ...dt+

1

α
e−r(T−t)λdWt

(71)

Again, as in Appendix A1, we find the replicating portfolio by re-writing the value process (71)
and the wealth process in (5) using process W̃t as defined in (53), which is a Brownian Motion
under the risk-neutral measure Q defined in Appendix A1, and equating volatility terms, that
is

dX∗
t = X∗

t rdt+
1

α
e−r(T−t)λdW̃t = Xtrdt+XtπtσtdW̃t = dXt,

with
X∗

0 = X0,

so that

π∗
t =

λ

ασtXt
e−r(T−t) =

(µ− r)

ασ2
tXt

e−r(T−t).
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A.4 Optimal pre-commitment strategy, CARA investor, amounts in-
vested

As in the discussion in appendices A1 and A2, and given the results and discussion in appendix
A3, we now replicate wealth process in (71) using the wealth process in (6) and the respective
initial condition:

dX∗
t = X∗

t rdt+
1

γ
e−r(T−t)λdW̃t = Xtrdt+ θtσtdW̃t = dXt,

with
X∗

0 = X0,

so that

θ∗t =
λ

ασt
e−r(T−t) =

(µ− r)

ασ2
t

e−r(T−t).

A.5 Optimal pre-commitment strategy, Mean-Variance investor, amounts
invested

As suggested by Basak & Chabakauri (2012), the optimal pre-commitment portfolio strategy
for the Mean-Variance investor is computed by the following constrained optimization problem

L = E[XT ]−
δ

2
Var[XT ] + ψ (X0 − E[MTXT ]) . (72)

The respective first-order conditions, taken again by state of the world at time T , are given by

1− δXT + δE[XT ]− ψMT = 0 (73)

and

X0 − E[MTXT ] = 0, (74)

respectively. To compute (73), we note that

Var[XT ] = E[(XT − E[XT ])
2] =



ωΩ

(XT (ω)− E[XT ])
2dP(ω), (75)

so that taking the first-order derivative of the variance with respect to XT for each state of
the world separately effectively means that we condition on the state of the world ωΩ in (75)
before taking the derivative with respect to XT . Thus, the first order derivative for all states
of the world ω = ω̄Ω is given by
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d

dXT
Var[XT ]|ω=ω̄Ω= 2XT − 2E[XT ].

From (73), it follows that

XT =
1

δ
(1 + δE[XT ]− ψMT ) . (76)

Noting that both the Lagrangian multiplier and expectation of future optimal wealth are un-
knowns, we first take the expectation on both sides of (76) to solve for ψ to obtain

δE[XT ] = 1 + δE[XT ]− ψe−rT ⇐⇒ ψ = erT . (77)

Plugging back into (76), we obtain

XT =
1

δ


1 + δE[XT ]− erTMT


. (78)

XT must be chosen such that the budget constraint (74) is satisfied, which in this case implies
a condition on the E[XT ]. Plugging (78) into the budget constraint (74) and solving for E[XT ]
yields

X0 = E

MT

1

δ


1 + δE[XT ]− erTMT



= E[MT ]
1

δ
+ E[MT ]E[XT ]−

1

δ
E

M2

T


erT

= e−rT 1

δ
+ e−rTE[XT ]−

1

δ
e−2rT+λ2T+rT

⇐⇒ E[XT ] = X0e
rT − 1

δ
+

1

δ
eλ

2T .

(79)

Plugging (79) back into (78) yields

X∗
T =

1

δ


1 + δ


X0e

rT − 1

δ
+

1

δ
eλ

2T


− erTMT



⇐⇒ X∗
T = X0e

rT +
1

δ
eλ

2T − 1

δ
MT e

rT .

(80)

As before, we next derive the market-consistent value of pay-off X∗
T at any time t ∈ [0, T ]:

X∗
t =

1

Mt
Et[MTXT ] =

1

Mt
Et


MTX0e

rT +
1

δ
eλ

2TMT −M2
T

1

δ
erT



=
1

Mt


Mte

−r(T−t)X0e
rT +

1

δ
eλ

2TMte
−r(T−t) − 1

δ
M2

t e
−2r(T−t)+λ2(T−t)+rT



= e−r(T−t)X0e
rT +

1

δ
eλ

2T e−r(T−t) − 1

δ
Mte

−2r(T−t)+λ2(T−t)+rT ,

(81)
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which is a time-dependent function ofMt. As above, given the differential form for the stochastic
discount factor, dMt = Mt(−rdt− λdWt), the differential of the process X∗

t is again computed
via Ito’s lemma and given by

dX∗
t = dft(Mt) = .....dt+

∂ft(Mt)

∂Mt
MtλdWt

= ....dt+
1

δ
e−2r(T−t)+λ2(T−t)+rTMtλdWt.

(82)

Denoting again W̃t as defined in (53) a Brownian Motion under measure Q as defined above,
we may rewrite processes (82) and (6), respectively, and match them, as before, which yields

dX∗
t = X∗

t rdt+
1

δ
e−2r(T−t)+λ2(T−t)+rTMtλdW̃t = Xtrdt+ θtσdW̃t = dXt, (83)

with
X∗

0 = X0.

Equating volatility terms, we obtain the perfect hedge

θ∗t σ =
1

δ
2e−2r(T−t)+λ2(T−t)+rTMtλ

⇐⇒ θ∗t =
1

δ

(µ− r)

σ2
e−r(T−t)+λ2(T−t)+rtMt,

(84)

which coincides with the result for the pre-commitment solution as stated by Basak & Chabakauri
(2012).

A.6 Optimal pre-commitment strategy, Mean-Variance investor, rel-
ative weights

Following the discussion in appendixes A1 and A2, as well as the results in appendix A5, the
relative investment weights are found by replicating

dX∗
t = X∗

t rdt+
1

δ
e−2r(T−t)+λ2(T−t)+rTMtλdW̃t (85)

by wealth process
dXt = Xtrdt+XtπtσdW̃t, (86)

with
X∗

0 = X0.

Equating volatility terms in (85) and (86), we obtain
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θ∗t =
1

δ

(µ− r)

σ2

Mt

Xt
e−r(T−t)+λ2(T−t)+rt.

A.7 Consistent-planning strategy, Mean-Variance investor

Following Björk’s (2020, 2017) notation, specializing Basak & Chabakauri’s (2012) results to
our current setting and filling in the gaps in the derivation, let θt,Yt

s = g(s, Ys) : R+ × R →
R, s ∈ [t, T ] be a control law, mapping for all time periods s ∈ [t, T ] the realization Ys of the
state variable into an investment strategy in the real numbers. The state variable remains
an unspecified and generic Markovian state variable. The natural state variable within the
Black-Scholes market setting would be given by wealth itself, however, the results in this sec-
tion show that both the value function of the dynamic optimization problem and the optimal
policy θt is independent of current wealth. Based on the model setting, however, it is clear
that the stock price St may serve as a Markovian state variable, as the filtration generated by
St, FS

t is exactly the same as the filtration generated by wealth Xt, FX
t , so that the two are

informationally equivalent.
The superscripts in θt,Yt

s denote that the policy described by the control law is devised based
on observation Yt at time t, whereas through the codomain of the function g any portfolio con-
straints are assumed away. Moreover, where sub - and superscripts are suppressed, θ describes
a variable entering into a function as an argument, without any assumption as to the optimality
of the given investment choice. If only subscripts are suppressed, the θYt,t denotes the control
law as devised at time t ∈ [0, T ] upon observation of state variable Yt, providing the investment
strategy for the entire remaining time horizon. As in previous sections, policy θ is assumed to
denote the investment in the risky asset, the stock, in terms of of amounts invested. Trading is,
moreover, assumed to be continuous in time and frictionless. Furthermore, let J(t, St, Xt, θ) be
the agent’s mean-variance value function 56 at time t from terminal wealth Xθ

T , given invest-
ment policy θ and conditional on the realization of the stock value St and wealth Xt at time t.
Hence,

J(t, St, Xt, θ) = Et


Xθ

T


− δ

2
Vart


Xθ

T


. (87)

The respective (optimal) value function, in turn is given by

V (t,Xt) = sup
θt,Yt

J(t, St, Xt, θ). (88)

To derive the Hamilton-Jacobi-Bellman (HJB) equation, we note that

56That is, we make a distinction between value function and optimal value function here (compare Björk
2020).
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V (t, St, Xt) = Et


Xθt,Yt

T


− δ

2
Vart


Xθt,Yt

T



= Et


Et+τ


Xθt,Yt

T


− δ

2


Et


Vart+τ


Xθt,Yt

T


+Vart


Et+τ


Xθt,Yt

T



= Et


Et+τ


Xθt,Yt

T


− δ

2
Vart+τ


Xθt,Yt

T


− δ

2
Vart


Et+τ


Xθt,Yt

T



= Et


V

t+ τ, St+τ , X

θt,Yt

t+τ


− δ

2
Vart


Et+τ


Xθt,Yt

T


.

(89)

Thus, due to the conditional variance decomposition, there is a second term on the right hand
side of (89), which already suggests that the optimal value function is not the optimum over
expected future value functions. Hence, we spell this out and first show that Bellman’s principle
of optimality does not hold in the present case. To see this, we follow the standard procedure
(Björk, 2020, Basak & Chabakauri, 2012) in assuming a small time increment τ and two optimal
strategies given different starting times at which these strategies are determined, that is θt,Yt

and θt+τ,Yt+τ . We will intuitively show why θt,Yt
s , for s ∈ [t+ τ, T ] is not equal to θ

t+τ,Yt+τ
s , for

s ∈ [t+ τ, T ]. This result follows immediately from (89) and considering that

V (t,Xt, St) = Et


J

t+ τ, St+τ , X

θt,Yt

t+τ , θt,Yt


− δ

2
Vart


Et+τ


Xθt,Yt

T



∕= sup
{θs}t+τ

s=t


Et


J

t+ τ, St+τ , X

θs
t+τ , θ

t+τ,Yt+τ


− δ

2
Vart


Et+τ


Xθt+τ,Yt+τ

T


.

(90)

The inequality is due to the fact that at time t+ τ , when strategy θt+τ,Yt+τ is determined, the
second term after the inequality sign is equal to zero, as the conditional expectation at time
t + τ is in Ft+τ and, hence, known at that time, so that its conditional variance is equal to
zero, whereas the term is not equal to zero and, thus, taken into account by the investor at

time t, when strategy θt,Yt is determined. As a result, θ
t+τ,Yt+τ
s ∕= θ

t+τ,Yt+τ
s , for s ∈ [t+ τ, T ].

Hence, the conditional variance decomposition in (89) leads to an adjustment term, which in
turn leads to time inconsistency in (90). (Basak & Chabakauri, 2012, Björk & Murgoci, 2010,
Strotz, 1956)

Based on the second term on the right hand side of (89) and (90), Basak & Chabakauri (2012)
suggest an adjustment term to take into account the incentive to deviate with respect to the
investment strategy over time. As a result of the investor taking into account her own incentive
to deviate over time, a time-consistent strategy in terms of a constrained dynamic optimum
may be derived by use of dynamic programming. (compare Chen & Zhou, 2022)

Given that Et


Xθt,Yt

T


∈ Ft, Vart


Et


Xθt,Yt

T


= 0 and Covt


Et


Xθt,Yt

T


,Et+τ [X

θt,Yt

T


= 0, so

that we may subtract the conditional expectation within the conditional variance - term in (90).
It is, thus, also innocent to impose the optimal strategy θt,St in this conditional expectation
at time t in this instance and no circularity in the economic argument is introduced when we
ask the economic agent to find the optimal θs, s ∈ [t, t+ τ ], while at the same time imposing in
the adjustment term of equation (90) that an optimal strategy for this time period is already

70



known. Hence, accepting sub-optimality as discussed and setting the optimal (achievable) value
function at time t equal to its (downward) adjusted expected future value in (90), we obtain

V (t, St, Xt) = sup
{θs}t+τ

s=t


Et [V (t+ τ, St+τ , Xt+τ )]−

δ

2
Vart


Et+τ


Xθt+τ,Yt+τ

T


− Et


Xθt,Yt

T


.

(91)

Next, we may solve for XT from the stochastic differential equation in (6). Given

dXt = Xtrdt+ θt(µ− r)dt+ θtσdWt,

we assume the function Yt = f(t,Xt) = e−rtXt and obtain, by Ito’s lemma,

df(t,Xt) = −re−rtXtdt+ e−rtdXt

= −re−rtXtdt+ e−rt (Xtrdt+ θt(µ− r)dt+ θtσdWt)

= e−rtθt(µ− r)dt+ e−rtθtσdWt

⇐⇒ e−rTXT = e−rtXt +

 T

t

e−rsθs(µ− r)ds+

 T

t

e−rsθsσdWs

⇐⇒ XT = er(T−t)Xt +

 T

t

er(T−s)θs(µ− r)ds+

 T

t

er(T−s)θsσdWs,

(92)

so that

Et[X
θ
T ] = er(T−t)Xt + Et

 T

t

er(T−s)θs(µ− r)ds


. (93)

This holds for all t ∈ [0, T ], so that Et+τ [X
θ
T ] = er(T−(t+τ))Xt+τ+Et+τ

 T

t+τ
er(T−s)θs(µ− r)ds


.

Hence, plugging the latter two results into (91) and noting that

V (t+ τ, St+τ , Xt+τ ) = Et+τ


Xθt+τ,Yt+τ

T


− δ

2
Vart+τ


Xθt+τ,Yt+τ

T


, (94)

we obtain

V (t, St, Xt) = sup
{θs}t+τ

s=t

Et


Et+τ


Xθt+τ,Yt+τ

T


− δ

2
Vart+τ


Xθt+τ,Yt+τ

T


(95)

−δ

2
Vart


Xt+τe

(T−(t+τ)) +

 T

t+τ

er(T−s)θt+τ,Yt+τ
s (µ− r)ds−Xte

(T−t) −
 T

t

er(T−s)θt,Yt
s (µ− r)ds


.

As is also noted by Basak & Chabakauri (2012), the optimal policy θt,Yt is independent of
current wealth due to the separability of the objective function (87) in current wealth. This
can be seen by plugging (92) and (93) into (87), as
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J(t, St, Xt, θ) = er(T−t)Xt + Et

 T

t

er(T−s)θs(µ− r)ds



− δ

2
Vart


er(T−t)Xt +

 T

t

er(T−s)θs(µ− r)ds+

 T

t

er(T−s)θsσdWs


,

(96)

whereas given that Xt ∈ Ft, its conditional variance at time t is zero. Hence, we note that
θt,Yy , which maximizes J(t, St, Xt, θ), is independent of Xt. Moreover it then follows that

V (t, St, Xt) = J(t, St, Xt, θ
t,Yt) = er(T−t)Xt + Ṽ (t, St), (97)

for all t ∈ [0, T ]. Using this result for V (t+τ, St+τ , Xt+τ ), we see that the latter is only affected

by θt,Yt

t via er(T−(t+τ))Xt+τ . Moreover, the conditional variance-term in (95) is only affected

by θt,Yt

t via the differential Xt+τe
(T−(t+τ)) −Xte

(T−t), as θt+τ,Yt+τ already reflects the future
optimal strategy, which is in turn independent of future wealth levels, and the term including
θt,Yt is only an artificial term added for computational purposes, which does not affect the
result, as discussed above. Hence, the conditional variance term in (95) is affected by θt,Yt

t only
via the wealth-differential. As is commonly done, we now subtract V (t, St,Wt) from both sides
in (95) and let τ go to zero to obtain,

0 = sup
θt

Et


dṼ (t, St) + d


Xte

r(T−t)


−δ

2
Vart


d

 T

t

er(T−s)θt,Yt
s (µ− r)ds


+ d


Xte

r(T−t)


.

(98)

By Ito’s lemma, we obtain

d(Xte
r(T−t)) = df̃(t,Xt) = −rer(T−t)Xtdt+ er(T−t)(Xtrdt+ θt(µ− r)dt+ θtσdWt)

= er(T−t)θt(µ− r)dt+ er(T−t)θtσdWt

=⇒ Et[d(Xte
r(T−t))] = er(T−t)θt(µ− r)dt

(99)

so that after dropping all terms that do not depend on θt, plugging in results for dXte
r(T−t)

and its expectation from (99) into (98) and taking the conditional variance, we obtain

0 = sup
θt


er(T−t)θt(µ− r)dt− δ

2
e2r(T−t)θ2t σ

2dt


. (100)

From the respective first-order condition it follows that

er(T−t)(µ− r)dt− δe2r(T−t)θtσ
2dt = 0 ⇐⇒ θ∗t =

e−r(T−t)(µ− r)

δσ2
. (101)
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A.8 Static investment strategy, CARA investor

Let the optimization problem for the static exponential utility (CARA) investor be given by

max
θ̄

E

−e−αXT



subject to
dXt = (rXt + θ̄(µ− r))dt+ θ̄tσdWt,

with X0 = X̄o. Choice variable θ̄ is a static, in the sense of buy-and-hold, exposure in terms of
amounts invested in the stock. We first solve for wealth at the terminal time point, XT ,

XT = erT X̄0 +

 T

0

er(T−s)θ̄(µ− r)ds+

 T

0

er(T−s)θ̄σdWs

= erT X̄0 +
(erT − 1)θ̄(µ− r)

r
+

 T

0

er(T−s)θ̄σdWs,

(102)

so that taking the exponential and subsequently the expectation over the resulting log-normal
random variable, we obtain

E[u(X(T )] = −exp


−α


erT X̄0 +

(erT − 1)θ̄(µ− r)

r


+

α2

2

 T

0

e2r(T−s)θ̄2σ2ds



= −exp


−α


erT X̄0 +

(erT − 1)θ̄(µ− r)

r


− α2

4r


θ̄2σ2


1− e2rT


.

(103)

As above, due to the monotone transformation given by the exponential, we maximize the
criterion by minimizing the exponent, which yields the following first-order condition:

FOC : −α

r
(µ− r)


erT − 1


− α2

2r
θ̄σ2


1− e2rT


= 0

Solving for θ̄ yields

θ̄∗ =
2(µ− r)(erT − 1)

ασ2(e2rT − 1)

=
2(µ− r)

ασ2(erT + 1)
.

(104)
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A.9 Static investment strategy, CRRA investor

The CRRA investor’s optimization problem over all static strategies π̄ in terms of relative
fractions over the time horizon [0, T ] is given by

max
π̄

Et


X(T )1−γ

1− γ


(105)

subject to

dXt = Xt(r + π̄t(µ− r))dt+Xtπ̄σdWt,

with X0 = X̄0. Solving for X(T ) using a log-transformation and Ito’s lemma, we obtain

X(T ) = X(0) exp


rT + π̄(µ− r)T − 1

2
π̄2σ2T + π̄σW (T )


.

Plugging the solution back into (105) yields

max
π̄

Et


X(0)1−γ

1− γ
exp


(1− γ)


r + π̄(µ− r)− 1

2
π̄2σ2


T ++π̄σW (T )


,

so that after taking the expectation, we obtain

= max
π̄

X(0)1−γ

1− γ
exp


(1− γ)


r + π̄(µ− r)− 1

2
π̄2σ2


T + (1− γ)2

1

2
π̄2σ2T


.

Again, we maximize the entire criterion by maximizing the exponent, from which, after can-
celling terms, we obtain the following first-order condition and solution, respectively:

FOC : (µ− r)− π̄σ2 + (1− γ)π̄σ2 = 0,

whereas solving for π̄ yields

π̄ =
(µ− r)

γσ2
.

A.10 Derivation Arrow-Pratt measure of absolute risk aversion

For the sake of completeness, this section derives the Arrow-Pratt measure of absolute risk
aversion (Pratt, 1964) for the CRRA investor (for the CARA investor, the derivation is anal-
ogous) in (15), in order to underline the role of and dependence on the reference wealth level
XtR . As in Pratt (1964), let us assume a zero-mean risk Z̃ with known variance σ2 and let
us denote the risk premium π. The Arrow-Pratt measure of absolute risk aversion is based on
the following first - and second-order Taylor expansions (and expectations thereof) of utility of
future wealth around XtR (Pratt, 1964):
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Et


uCR(XtR + Z̃)


≈ Et


uCR(XtR) + u′CR(XtR)Z̃ +

1

2
u′′CR(XtR)Z̃

2



= uCR(XtR) +
1

2
u′′CR(XtR)σ

2

(106)

and

uCR(XtR − π) ≈ uCR(XtR)− u′CR(XtR)π. (107)

Equating (106) and (107), as per the definition of the risk-premium (Pratt, 1964), we obtain

π ≈ −1

2
σ2u

′′CR(XtR)

u′CR(XtR)
, (108)

which underlines that the Arrow-Pratt measure of absolute risk aversion uses a reference level
at the point in time when a decision is taken by the investor in order to approximate the risk
premium by a function of changes of utility as wealth fluctuates around the given reference
level. This also illustrates why there may be sizeable errors in using initial wealth at time
tR = 0 as a reference level in a multi-period (possibly dynamic) investment problem.

A.11 Myopic investment strategies, CARA investor

Schweizer et al.’s (2021) strategy is to derive the optimal precommitment strategy at each time
point t ∈ [0, T ] via the investment strategy that maximizes the investor’s certainty equivalent
at that point in time. The CARA investor’s certainty equivalent is given by

CECA
t = UCA−1

Et


UCA(XT )


. (109)

The utility function for the CARA investor is given by UCA = −e−αXT , so that

UCA = −e−αXT = c ⇐⇒ UCA−1

(c) = − 1

α
ln(−c) = XT . (110)

Moreover, assuming that the CARA investor optimizes over absolute invested amounts and
that the respective wealth dynamics are given by (6), wealth at time T conditional on wealth
at time t being fixed at Xt is given by

XT = er(T−t)Xt +

 T

t

er(T−s)θs(µ− r)ds+

 T

t

er(T−s)θsσdWs. (111)

Hence, it follows from (109) and (110) that
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CECA
t = − 1

α
ln


E


exp


−α


er(T−t)Xt +

 T

t

er(T−s)θs(µ− r)ds+

 T

t

er(T−s)θsσdWs



= − 1

α
ln


exp


−α


er(T−t)Xt +

 T

t

er(T−s)θs(µ− r)ds


+

1

2
α2

 T

t

e2r(T−s)θ2sσ
2ds



= er(T−t)Xt +

 T

t

er(T−s)θs(µ− r)ds− 1

2
α

 T

t

e2r(T−s)θ2sσ
2ds.

(112)

As in Schweizer et al.’s argument concerning CRRA investors, we may now use the fact that
CARA investors’ optimal precommitment strategy is time-dependent but deterministic to sim-
plify the maximization of the certainty equivalent CCA

t in the following way. Defining

ms = er(T−s)θs (113)

and plugging back into (112), we obtain

CECA
t = er(T−t)Xt +

 T

t

ms(µ− r)ds− 1

2
α

 T

t

m2
sσ

2ds. (114)

Maximizing (114) over {ms}Ts=t, we note that the certaint equivalent is maximized if
 T

t
m2

sds

is minimized for any κ such that
 T

t
msds = κ. The latter constrained optimization problem,

min
{ms}T

s=t

 T

t

m2
sds (115)

s.t.

 T

t

msds = κ, (116)

yields ms = κ
(T−t) , which is, hence, constant, as in Schweizer et al. (2021). As a results we

may set ms = m̄ when maximizing (114) over {ms}Ts=t, so that

max
m̄

CECA
t = max

m̄


er(T−t)Xt + m̄(T − t)(µ− r)− 1

2
αm̄2σ2(T − t)


, (117)

from which it follows after taking the first order condition and solving for m̄ that

m̄ =
(µ− r)

ασ2
. (118)

From (113) it then follows that θs = e−r(T−s) (µ−r)
ασ2 , for all s ∈ [t, T ].
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A.12 Myopic investment strategy, Mean-Variance investor

Similar to the constrained optimization problem for the Mean-Variance investor under the
pre-commitment strategy, the myopic Mean-Variance investor solves the following constrained
optimization problem at each point in time t ∈ [0, T ]:

max
XT


Et[XT ]−

δ

2
Vart[XT ]


(119)

subject to the budget constraint

1

Mt
Et[MTXT ] = Xt. (120)

The Lagrangian for the maximization problem is given by

L = Et[XT ]−
δ

2
Vart[XT ] + ψ


Xt −

1

Mt
Et[MTXT ]


, (121)

whereas the respective first-order conditions, taken by state of the world, are

1− δXT + δEt[XT ]− ψ
MT

Mt
= 0 (122)

and

Xt −
1

Mt
Et[MTXT ] = 0, (123)

respectively. To compute (122), we note that

Vart[XT ] = Et


(XT − Et[XT ])

2

=



ω∈Ω:Xt=X̃t

(XT (ω)− Et[XT ])
2
dP(ω), (124)

so that taking the first-order derivative of the variance with respect to XT for each state of
the world separately effectively means that we condition on the state of the world ωΩ in (124)
before taking the derivative. Thus, the first order derivative conditional on state of the world
ω̄Ω is given by

d

dXT
Vart[XT ]|ω=ω̄Ω= 2XT − 2Et[XT ].

From (122), it follows that

XT =
1

δ


1 + δEt[XT ]− ψ

MT

Mt


. (125)
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The optimal value for XT by state of the world is yet to be determined, so that its expectation is
still unknown, as is the value of the Lagrangian multiplier ψ. Thus, we first take the conditional
expectation on both sides of (125) to solve for ψ to obtain

δEt[XT ] = 1 + δEt[XT ]− ψe−r(T−t) ⇐⇒ ψ = er(T−t). (126)

Plugging back into (125), we obtain

XT =
1

δ


1 + δEt[XT ]− er(T−t)MT

Mt


. (127)

XT must be chosen such that the budget constraint (123) is satisfied. This also implies a
condition on Et[XT ], which depends on the optimal choice of XT by state of the world and the
known distribution P, so that we may determine E[XT ] as implied by the optimal choice for
terminal wealth by plugging (127) into the budget constraint (123) and solving for E[XT ]:

Xt =
1

Mt
Et


MT

1

δ


1 + δEt[XT ]− er(T−t)MT

Mt



=
1

δ
Et


MT

Mt


+ Et


MT

Mt


Et[XT ]−

1

δ
Et


M2

T

M2
t


er(T−t)

= e−r(T−t) 1

δ
+ e−r(T−t)Et[XT ]−

1

δ
e−2r(T−t)+λ2(T−t)+r(T−t)

⇐⇒ Et[XT ] = Xte
r(T−t) − 1

δ
+

1

δ
eλ

2(T−t),

(128)

whereas the third equality follows from

Et


M2

T

M2
t


= Et


e(−2r(T−t)−λ2(T−t)−2λ(WT−Wt))


= e−2r(T−t)+λ2(T−t)

and

Et


MT

Mt


= Et


e−r(T−t)− 1

2λ
2(T−t)−λ(WT−Wt)


= e−r(T−t).

Plugging (128) back into (127) yields

XT =
1

δ


1 + δ


X0e

r(T−t) − 1

δ
+

1

δ
eλ

2(T−t)


− er(T−t)MT

Mt



⇐⇒ X∗
T = Xte

r(T−t) +
1

δ
eλ

2(T−t) − 1

δ
er(T−t)MT

Mt
.

(129)

To compute the prefect hedge, which will ultimately yield the optimal investment strategy
for the investor standing at decision time t, we first derive the market consistent value of the
optimal terminal wealth XT at any time tR ∈ [t, T ]:
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X∗
tR =

1

MtR
EtR [MTX

∗
T ]

=
1

MtR
EtR


MTXte

r(T−t) +
1

δ
eλ

2(T−t)MT − MT

Mt

2 1

δ
er(T−t)



=
1

MtR


MtRe

−r(T−tR)Xte
r(T−t) +

1

δ
eλ

2(T−t)MtRe
−r(T−tR) − 1

δMt
M2

tRe
−2r(T−tR)+λ2(T−tR)+r(T−t)



= e−r(tR−t)Xt +
1

δ
eλ

2(T−t)e−r(T−tR) − 1

δ

MtR

Mt
e−r(T−tR)+λ2(T−tR)+r(tR−t)

= ft(MtR).

(130)

Given the differential form for the stochastic discount factor, dMt = Mt(−rdt − λdWt) for
any time t, the differential of the process XtR at time tR ∈ [t, T ] following the strategy as
determined at time t is given by

dX∗
tR = dft(MtR) = .....dt+

∂ft(MtR)

∂Mt

MtR

Mt
λdWtR

= ....dt+
1

δ
e−r(T−tR)+λ2(T−tR)+r(tR−t)MtR

Mt
λdWtR

(131)

Rewriting, as above, processes (131) and (6) using W̃t, a Brownian Motion under measure Q,
we note that, as above, both processes show the same drift term, so that the perfect hedge may
be computed by equating the volatility terms of the differential form of the processes in (131)
and (6), respectively (See discussion in Appendix A1). Hence, we obtain

θ∗tRσ =
1

δ
e−r(T−tR)+λ2(T−tR)+r(tR−t)MtR

Mt
λθtRσ

⇐⇒ θ∗tR =
1

δ

(µ− r)

σ2
e−r(T−tR)+λ2(T−tR)+r(tR−t)MtR

Mt
.

(132)

For the sake of completeness, the derivation of relative investment weights follows the same
steps as in appendices A2, A4 and A6, hence, we merely state the result here, referring for
derivations to the appendices above:

π∗
tR =

1

δ

(µ− r)

σ2

MtR

MtXtR
e−r(T−tR)+λ2(T−tR)+r(tR−t). (133)

Let us assume that strategy in (132) is applied over a short time-interval, that is for all tR ∈
[t, t+ τ ]. If the length of the interval, τ , goes to zero, then tR → t, so that the solution for θt
as in (132), however for all t ∈ [0, T ], becomes

θ∗t =
1

δ

(µ− r)

σ2
e−r(T−t)+λ2(T−t). (134)
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A.13 Certainty equivalent total gross returns and growth rates

Figure 22: CE total gross returns, T=30, n=30, m=10000
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Figure 23: CE total gross returns, T=30, n=30, m= 1000000. Computed Certainty Equivalent
of pre-commitment Mean-Variance strategy drops to minus infinity, whereas the underlying
mean is not defined (see discussion in main body of the text).
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Figure 24: CE total gross returns. Parameters: T=30, n=360, m= 1000000, yearly performance
measurement

µMC (σ/
√
n) ST MY DC PC

M-V investor 507.27 (0.6) 647.4 (0.35) 272.33 (0.05) 647.8 (0.13)
CARA investor 505.27 (0.6) 272.33 (0.05) 272.33 (0.05) 272.33 (0.05)
CRRA investor 668.9 (0.84) 448.17 (0.27) 448.17 (0.27) 448.17 (0.27)

Table 10: Monte Carlo Mean of wealth at T=30, with m=1000000, n=360

µMC (σ/
√
n) ST MY DC PC

M-V investor 511.16 (5.78) 655.23 (3.53) 273.1 (0.55) 649.69 (1.65)
CARA investor 511.16 (6.78) 273.1 (0.55) 273.1 (0.55) 273.1 (0.55)
CRRA investor 646.38 (8.16) 451.23 (2.66) 451.23 (2.66) 451.23 (2.66)

Table 11: Monte Carlo Mean of wealth at T=30, with m=10000, n=360
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A.14 Proof Divergence Expected CARA Utility from MV-PC strat-
egy

As seen from time t, terminal wealth XT is given by

XT = er(T−t)Xt +

 T

t

er(T−s)θs(µ− r)ds+

 T

t

er(T−s)θsσdWs. (135)

with

θ∗s =
1

δ

(µ− r)

σ2
Mse

−r(T−s)+λ2(T−s)+rs (136)

and

Ms = exp


−rs− 1

2
λ2s− λWs


. (137)

The question is whether Et[exp(−αXT )] exists. From (135) and (136), at any time t wealth
after one time increment is normally distributed, as θ∗s is an adapted process and Ws and
dWs are independent. However, the distribution of wealth after more than one time-increment
is not normal (and neither log-normal). Hence, we cannot use any results directly based on
knowledge of the normal or log-normal distributions to check whether Et[exp(−αXT )] exists.
Thus, we need to evaluate the expectation based on the joint distribution of the Brownian
increments that lead up to wealth XT . Hence, if we denote Π = {t0, tt, ..., tn} a partition
of T , (Wt0 ,Wt1 , ...,Wtn) the vector of the values of the standard Brownian motion at each
time point ti, ∆Wtj = Wtj+1

− Wtj for j = 0, 1, ..., n − 1 the Brownian increments with

∆Wtj = zj

∆tj , with zj ∼ N (0, 1) for all j = 0, ..., n− 1 and z = (z0

√
∆t0, ..., zn−1


∆tn−1),

and Σ = diag(∆t0 , ...,∆tn−1
) the Variance-Covarianve matrix of the Brownian increments, then

the integral underlying the expectation above exists if


· · ·

 ∞

−∞
exp



−α lim
Π→0

n−1

j=0

exp


−λ

j−1

i=0

zi

∆ti


− α lim

Π→0

n−1

j=0

exp


−λ

j−1

i=0

zi

∆ti


zj

∆tj





× Σ− 1
2

√
2π

exp

zTΣ−1z


dz1dz2....dzn−1

(138)

exists (that is, abstracting from constants or deterministic functions of time). However, sums of
normal random variables are normally distributed and products of log-normal random variables
are log-normally distributed. Moreover, the potential problem locations are at zi → ±∞, so
we also abstract from the Variance of the Brownian increments ∆t. Thus, the above integral
exists if the following integral exists

 ∞

−∞
exp (−α exp(−λx)− α exp(−λx)x) exp


−x2

2


dx (139)

The problem location is at limx→−∞, hence, we split up the integral and focus on the integral

 0

−∞
exp (−α exp(−λx)− α exp(−λx)x) exp


−x2

2


dx (140)
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, which after a simple change of variable (z=-x) is equal to

 ∞

0

exp (−α exp(λz) + α exp(λz)z) exp


−z2

2


dx. (141)

We now show that the integrand is infinite at the upper limit and bounded from below by test
function f(z)=z, the integral of which is infinite. First, we rewrite the integrand as

exp (−α exp(λz) + α exp(λz)z) exp


−z2

2


=

exp (α exp (λz) z)

exp (α exp (λz)) exp

z2

2



=
exp (α exp (λz))

z

exp (α exp (λz)) exp

z2

2



=
exp (α exp (λz))

z−1

exp

z2

2



=
exp (α exp (λz))

z−2

exp


z2

2



exp(α exp(λz))

.

(142)

The denominator goes to zero as z → ∞, so that there is a number k ∈ R s.t.
exp


z2

2



exp(α exp(λz)) ≤ 1,

for z ≥ k. Moreover, for z ≥ 3, the numerator goes to infinity and is larger than z (for α,λ > 0).
Thus, for l = max{3, k}, the integral in (141) is bounded from below by

 ∞

l

zdz, (143)

which diverges to ∞.
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A.15 Further graphs for comparison

Figure 25: Investment fractions (stock) investment, CARA investor. Parameters: T=10, m=1
000 000, n=120.
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Figure 26: CE total gross return for Mean-Variance investors and from various (constrained)
Mean-Variance strategies, including myopic strategy. Parameters: T=10, m=1000000,n=360,
yearly performance measurement.
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