TILBURG ;%?fg_’ UNIVERSITY

\\"‘l‘:-"_.ll'_

Evaluating Different AI Models to Detect
Polyhouses in Satellite Images

by

Arjun Gupta (SNR: 2017474)

A thesis submitted in partial fulfillment of the requirements for the degree of
Master in Business Analytics and Operations Research

Tilburg School of Economics and Management
Tilburg University

Supervised by: Martijn Schoot Uiterkamp

Date: August 16, 2023

Abstract

In this paper, we present a comparative study evaluating three convolutional
neural network (CNN) models for detecting polyhouse coverage in the Indian
state of Telangana. The ability to accurately map the extent of polyhouse
coverage holds significant value for the United Nations Development Pro-
gramme (UNDP), as it aids in formulating informed agricultural planning
strategies. The three CNN models examined in our study include YOLO
(YOLO version 5), YOLO-NAS, and Faster R-CNN, each renowned for its
prowess in object detection tasks. We assess the suitability of these models
for detecting polyhouses, with a particular emphasis on getting the num-
ber and coordinates of the polyhouses present. Our findings reveal that the
YOLO model outperforms its counterparts in identifying and quantifying the
number of polyhouses. Its remarkable performance in this regard enhances its
practical utility for the UNDP’s long-term agricultural planning initiatives.
However, we do highlight some concerns regarding the models’ generalization
capabilities, particularly when the model is used on a new data set which de-
viates from the one that was used for training. This suggests that one has to
exercise caution when applying the model to new states that were not part
of the training data, as polyhouses might look significantly different which
has proven to be extremely important to the performance of the model.

Contents

1 Introduction

2 Literature review

2.1
2.2
2.3
24
2.5

Polyhouse farming L.
Agricultural planning
Sattelite imageryo
Telangana
Detection

3 Model selection

3.1
3.2

3.3

3.4

3.5

Neural networks
Convolutional neural networks
3.2.1 Object detection
One-step estimators
3.3.1 YOLO
3.3.2 YOLO-NAS
Two-step estimators
3.4.1 Faster RCNN
Comparison

4 Methodology

4.1

4.2
4.3
4.4
4.5

Data Collection
4.1.1 Positive Examples
4.1.2 Negative Examples
4.1.3 Ranga Reddy images
Data augmentation
Train-test splito
Modellingo
Model Tuning
4.5.1 Batches and Epochs 000
4.5.2 Confidence Level

10
11
11
12
13
13
16
17
17
18

4.6 Performance measures
4.6.1 Precision
46.2 Recall
4.6.3 Flscore
4.6.4 Mean average precision

4.7 Model Evaluation

5 Results

5.1 YOLO s
5.1.1 Dataset 1-3
5.1.2 Dataset 4-5
5.1.3 Summary

5.2 YOLO-NAS
52.1 Dataset 1-3
5.2.2 Dataset 4-5o
5.2.3 Summary

5.3 Faster-RCNN
53.1 Dataset 1-3
5.3.2 Dataset 4-5
5.3.3 Summary

54 Comparison

5.5 Mapping

5.6 Limitations

6 Discussion and Conclusion

6.1 Conclusion

6.2 Other applications
6.2.1 Size of polyhouses L.
6.2.2 Exact Location of polyhouses
6.2.3 Detecting other objects

6.3 Recommendations tothe UNDP

6.4 Furtherresearch

7 Appendix

Chapter 1

Introduction

In a world where man and climate are more at odds with each other than
ever before, polyhouses present a way to protect crops and therefore the food
chain from ever-changing weather conditions. Polyhouses are plastic or poly-
thene structures that enable controlled growth of plants. Therefore, interest
and investment in polyhouse farming has increased substantially over the
last decades and continues to do so. Polyhouse farming is already an inte-
gral part of the food chain and as such it is important to monitor polyhouse
coverage to inform long-term planning and interventions in the agriculture
sector. In this study we will focus on getting the coverage of the polyhouses,
by getting their number and location, in Telangana state of India, a region
where agriculture is very much the backbone of the economy and where gov-
ernment reports already deem living and coping with the impacts of climate
change ”essential for our survival”. This information can then be used by
UNDP and local governments to target interventions where there are not
enough polyhouses or for other structural reforms. Also, it can serve as a
starting point for further studies into the effectiveness of polyhouses and to
plan future deployment of polyhouses. This way our research will help the
region of Telangana in their efforts to deal with the consequences of climate
change and ensure the food security of the people. Therefore, our research
question is: What is the best machine learning model to detect the location
and quantity of polyhouses in the state of Telangana using satellite imagery?

We will examine the distribution of polyhouses across the region using
satellite imagery. We are going to train a few state of the art machine
learning models to detect polyhouses in these satellite images. Insights from
individual images will then be aggregated into a comprehensive overview of
coverage of polyhouses across the whole state. Specifically, we will compare
three convolutional neural network architectures to see how they perform.

That means that the contribution of our research is twofold, leading to better
knowledge about the coverage of polyhouses in Telangana and comparing the
performance of three highly advanced models for the task of object detection.
As with any data-related project, the availability and quality of the data
will be an important factor in our research. There are some open sources
where one can retrieve satellite imaging data with varying degrees of quality
and coverage, though it remains to be seen how many of them contain data
that is useful for this research. It has to be noted that the models that
we compile are limited to the range of photos that we can label as training
data, meaning that results will not necessarily translate seamlessly to other
geographical regions. In this research we are first going to have the models
predict the so-called 'bounding boxes’ of the polyhouses, indicating where
in an image the model thinks it has detected a polyhouse. After assessing
the accuracy of these predicted bounding boxes, we will use the model that
provides high accuracy and low overfitting to get the number of polyhouses
and their coordinates in a distict of Telangana called Ranga Reddy. Note
that in this research, we are primarily interested in getting these right and
not so much in the size of the polyhouses. Also, as we are using satellite
imaging it is important to consider that we will only model the presence and
location of polyhouses. The quality of the polyhouse, what crops are grown
inside and any other qualitative aspects will not be part of the model and
therefore of the mapping exercise. The rest of this thesis will be structured
as follows: In chapter 2 we will discuss literature relevant to our topic and
what our research adds to the existing body of literature. After that, in
chapter 3 we will describe the process of choosing which models to use, going
into detail about how the models that we choose relate to the specific task
at hand. Chapter 4 discusses how we implemented the models that we are
using to model the satellite images as well as any other relevant methodology
and chapter 5 summarizes and visualizes the results of the research. Finally,
in chapter 6, we will discuss the findings from the results and potential areas
for future research.

Chapter 2

Literature review

Before going into detail about our methodological approach, it is important
to assess the research that has already been done and the methods and data
that are already available. In this section we will conduct a literature review
of various themes that are relevant to our research question. First, in section
2.1 we will examine research that has gone into polyhouse cultivation, ex-
amining its pros and cons. Next, in section 2.2 we will assess research about
long-term agricultural planning, as this is the eventual use of our mapping
exercise. After that we will look at studies related to the use of satellite
imagery in section 2.3. Next, in section 2.4 we will have a look at the litera-
ture specific to the geographical region where we assess polyhouse coverage
to get a better idea of the context. Finally, section 2.5 discusses the concept
of detection of objects in images and how we will approach this challenge in
our research.

2.1 Polyhouse farming

As discussed, in this research we will examine polyhouse coverage in the In-
dian state of Telangana. As in many other parts of the world, polyhouse
cultivation has grown very fast in Telangana to provide a more efficient and
robust alternative to open-field farming. The use of polyhouses is part of a
wider trend of using more technological advances in the agriculture sector,
that was discussed in more detail by Mirabella and Brischetto 2010. As poly-
houses enable farmers to control certain conditions under which their crops
grow, they can have various beneficial effects. One of the many advantages
of polyhouses, as mentioned by Murthy et al. 2009, is that the crops in a
polyhouse are protected against both abiotic stresses such as pests, diseases

and weeds and also biotic factors such as temperature and humidity thus,
enhancing the quality and productivity of the crops. This helps farmers
to grow crops irrespective of the season. A comparative study by Sharma,
Gaur, Singh, et al. 2007 shows that use of polyhouses helps crops grow faster
and Kumar, Chauhan, and Grover 2016 show that using polyhouses to grow
tomatoes in India can contribute significantly to crop yield. Additionally, new
techniques are being developed continuously to make the advantages of using
polyhouses even bigger. For instance, according to Jonnala and Satrasupalli
2013, the temperature inside a polyhouse can be maintained by minimum
hardware and human effort by using LM35 sensor and a polyhouse cooling
fan, which sets up the threshold temperature automatically to increase the
crop yield. Another such technology is the so called Zighee technology, as
mentioned by Jonnala and Sathyanarayana 2015, which optimizes the vitals
for a crop growth such as light intensity, soil moisture and humidity percent-
age using sensor data. In addition to gaining popularity, these technologies
are also getting upgraded, for instance,Mirabella and Brischetto 2010 discuss
Zigbee technology becoming wireless, which is making the polyhouses a pick
for farmers. One factor to consider when discussing the merits of polyhouse
farming is economic viability. Murthy et al. 2009 find that size of a poly-
house can range from 1000m? to 10,000m? and so does cost, depending on
the specific type of polyhouse.

2.2 Agricultural planning

As polyhouse cultivation is an important addition to farming in Telangana,
UNDP wants to map coverage of polyhouses across the state as a tool to assist
in strategic planning. Using satellite imagery can be a vital part of long-term
agricultural planning, as outlined by Balcik, Senel, and Goksel 2020. There
are various advantages to having a long-term strategy with respect to farm-
ing. For example, as explained by Smith and McDonald 1998, identification
of sustainable agricultural practices is important at the planning stage to
avoid unnecessary ill uses of land such as deforestation for cultivation, struc-
tural reforms on unused land, polluting land and soil quality with irrigation
and so forth. Other consideration where long-term planning is involved are
using technology to reduce dependency on chemicals (Reganold, Papendick,
and Parr 1990), farmland allocation (Boyabatli, Nasiry, and Zhou 2019) and
various others (De Wrachien 2003). Especially as farming has found its way
from being an exclusively rural practice into the cities, planning becomes
ever more important. Urban agriculture planning can have several benefits,

starting from making the area greener, healthier supplies thus making the
people healthier, and other such social and economic benefits as pointed out
by Lovell 2010. A case study, comparing different time periods of planning
in advance by Vermeulen et al. 2013, explains evaluation of uncertainty can
help in decision making. Moreover, focusing on the geographical area of in-
terest, that is India, Raja et al. 1997 quantified, using models, that through
proper planning there was an increase of about 54% revenue per hectare due
to proper planning. Another factor accelerating the need for a more long
term outlook on farming is climate change. In their paper Agovino et al.
2019 proved the bidirectional relationship between agriculture practices and
climate change, for instance, agricultural activities release gasses in the atmo-
sphere, making temperature go higher and thus affecting the yields. Hence,
there is a need adapt practices to make agriculture more resilient to climate
changes as discussed by Howden et al. 2007.

2.3 Sattelite imagery

Therefore, we will assess the coverage of polyhouses in Telangana. In this
study we will use satellite imaging to do so. The use of satellite images
has increased dramatically over recent years, both because of more data be-
coming available and more advanced algorithms being developed to analyse
them. As such, we already have a body of literature with ideas to build on.
Satellite images have various characteristics as mentioned by Jacobsen 2005,
such as the distance between two adjacent pixels measured on the ground,
known as ground sampling distance (which should be generally 0.05mm to
0.lmm) and an image sensor used to capture the image of moving objects
called transfer delay and integration sensor. The popularity of satellite im-
ages have increased due to the inferences they present. Veldsquez et al.
2020 used remote sensing using drone imagery to detect pests in trees. In
this study, the task of human visualisation was performed by using remote
sensing it was concluded that statistically, there was no difference in human
visualisation and via technology integration. Other such studies have been
done by Tellman et al. 2021, to estimate and predict the flood extent and
how many people would be affected by it, Mathieson et al. 2009 to monitor
carbon dioxide movement in Algeria, by Jean et al. 2016 to predict poverty
and by Verpoorter et al. 2014 to build an inventory of lakes and use that
to calculate contributions to the global carbon cycle. All these studies were
done using satellite images. In fact, Sun et al. 2021 did a study in China to
detect greenhouses using satellite images. However, the satellite image data

often needs processing due to wide range of characteristics, such as different
resolutions, scales and presentation(Bonnett and J. Campbell 2002). More-
over, there often exist geometric distortions in a satellite image data, thus
pre processing is needed in the raw data for analysis like object detection,
as explained by Dave, Joshi, and S. Srivastava 2015. This also applies to
polyhouse detection and therefore to this research. It must also be noted
that even after processing, different methods yield different results based on
the scenario we are applying it to and our selection can greatly influence the
results (Asokan et al. 2020).

2.4 Telangana

Although many of the ideas in the previous section definitely help us on
our way, the majority of them are either modelling a slightly different thing
or take place in different geographical settings. In fact, even the mapping
of polyhouses has already been tried in other contexts, for example Hong
et al. 2023. In this study, however, we will have to take into account the
specific context of India and the Telangana state in order to come up with a
solution that best serves UNDP’s needs. Around 60 % of India’s population
is in the agriculture sector, however the share of agriculture has fallen from
the GDP and the gap between the rich and the poor has widened (Kurian
2008). Kadiyala et al. 2014 presented agriculture as a tool to generate income,
reduce malnutrition and improve diets. Heavy use of chemicals in agriculture
has helped India shed a long-standing food deficit. Now it wants to be
more ecologically responsible but worries about if the whole country can be
nourished this way (Yadav et al. 2013). Polyhouses can be a solution to
these problems as they provide a room for organic farming to protect the
crops from biotic and abiotic stresses. Production growth in India in the last
century was due to expansion of irrigated area. The limits of this expansion
have been reached so there’s also a necessity for more sustainable agriculture
(Kerr et al. 1996). Looking at the specific case of Telangana, irrigated area
has increased to increase production but with risks of adverse affects for
groundwater levels and on small farmers (Vakulabharanam 2004). Adimalla
et al. 2020 also explains how the intensity of irrigation poses a serious danger
for the quality of groundwater in Telangana. Polyhouses once again can play
a role here by collecting the rainwater on the plastic roof and storing in for
later irrigation purposes.

2.5 Detection

As stated, the goal of this research is to detect polyhouses in satellite images
of the Telangana region. In general, in object detection we ask the model
to estimate not just the presence of an object, but also its location. This is
usually done through the concept of bounding boxes. Bounding boxes are
a fundamental concept in the field of object recognition, providing a frame-
work for localizing and identifying objects within digital images or videos.
A bounding box is essentially a rectangular region that encloses an object
of interest. It serves as a visual representation of the object’s location and
extent within the image, enabling algorithms to precisely locate and classify
objects. Bounding boxes are typically defined by four parameters: the coor-
dinates of the box’s top-left and bottom-right corners. By extracting these
regions of interest, object recognition algorithms can focus their attention
on specific areas, facilitating tasks such as object detection, tracking, and
segmentation. These bounding boxes that are predicted are then compared
to the true location of the objects in the image to assess the correctness of
the predictions. In our research, the bounding boxes are then the areas in the
image where the models predict the presence of polyhouses. The initial goal
of this modelling exercise will be to get those bounding boxes as accurate
as possible, so as close as possible to the actual locations of the polyhouses.
Once these bounding boxes are as accurate as possible, indicating that the
model has learned to map the features in the images to the relevant objects,
there can be various angles of interest that require different modelling. One
such example is the number of objects that are predicted, see for example
Y. Huang et al. 2023. Another priority can be not the number but the size
of objects, as discussed by Long, Shelhamer, and Darrell 2015. Yet another
example could be the exact location of the objects, something that received a
lot of attention in Chen et al. 2017. In our research, once we get the model to
predict these bounding boxes as accurately as possible we use the predicted
bounding boxes to extract the coordinates and consequently the number of
predicted polyhouses in an image.

Chapter 3

Model selection

In previous sections we have tried to outline some important considerations
when modelling the presence of polyhouses in satellite images from Telan-
gana. We are primarily interested in predicting the coordinates and the
amount of polyhouses which boils down to predicting the bounding boxes
in a satellite image as accurately as possible. The speed of the algorithms
is not a key consideration as the mapping exercise will not be done very
frequently since the polyhouses do not move every day. We will begin this
section by explaining the process of how we got to the models that we use in
this research. We will describe for every step what the considerations were
for choosing a certain (type of) model and how this choice relates to our
specific research. Once we have given motivation for our use of model, we
will discuss the models of choice in more detail.

First, it is important to note that various models have different merits
when it comes to both accuracy and ability to explain its predictions. The
former refers to how well the output of the model matches the phenomenon
that is being modelled and the later to what degree it is clear how the model
maps input to output. In this research, we are not so interested in what pixels
or colours drive the algorithm to predict polyhouse coverage, the important
thing is that the predictions are as accurate as they can be. Therefore, we
will only consider more "black box’ approaches and not use relatively simple
methods such as logistical regression that offer more explainability but gen-
erally do not reach the same levels of predictive accuracy. Before diving into
the models, we would introduce the concept of Neural networks which is the
base of these models and the Convolutional neural networks.

10

3.1 Neural networks

The combination of the importance of predictive accuracy and the type of
data that we will use make neural network an appealing choice of model to
use, as neural networks have become the golden standard in regression and
classification tasks (Alzubaidi et al. 2021). Neural networks have a number
of advantages such as having high processing speed, ability to learn from
examples provided and adapt to change with high accuracy when trained
with large and suitable data, as shown in Bishop 1994. Neural networks
consist of an architecture that are made up of different neurons that represent
underlying features in the data and connections between these neurons. A
lot of research has gone into these architectures and other features of neural
networks to make them learn from large bodies of data even quicker and
more efficiently. Some examples are dropping out some observations from
different networks and averaging out the predictions to avoid overfitting (N.
Srivastava et al. 2014), He et al. 2016 show how to make even deeper neural
networks trainable and transfer learning (Yosinski et al. 2014). Using this
ever expanding toolkit, neural networks have yielded impressive results in a
wide variety of learning tasks, ranging from but not limited to face recognition
(Kasar, Bhattacharyya, and T. Kim 2016), economics (W. Huang et al. 2007)
and clinical medicine (Baxt 1995). As neural networks are able to learn very
quickly with the data provided, they have become the most popular option
to analyze imaging data and hence a fit to our case.

3.2 Convolutional neural networks

Another important feature that might influence model selection is that in
this research we are dealing with image data, specifically satellite images. In
order to quantitatively analyze image data, the general practice is to quan-
tify its color per pixel, usually using so-called red-green-blue notation. This
means that every pixel of every image gives a quantitative score of how the
color of that image is a mix of the three fundamental colors, red, green and
blue. This tends to lead to vast data structures, and although neural net-
works are known to be able to exploit large volumes of data, the size of the
input and the number of parameters to be estimated when taking in this
image data can lead to a number of problems such as overfitting. Therefore
so-called Convolutional neural networks (CNNs) were designed, pioneered by
LeCun et al. 1998 among others. In a CNN, each image is divided into a
number of sub-images that are then summarized and used as an input for the
neural network. This drastically brings down the dimensionality of the prob-

11

lem without throwing away relevant information. The convolutional and the
pooling layers that were alluded to before are important features of convolu-
tional neural networks, as convolutional layers apply a set of filters to detect
features in the image that can be optimized during training. After several
layers of convolution and pooling, the output of the network is typically fed
into a fully connected layer, which functions similarly to the hidden layers
in traditional neural networks. This layer uses the features extracted by the
earlier layers to make a final prediction about the image. The output of this
layer is typically passed through a softmax function to produce a probability
distribution over the different possible classes.

3.2.1 Object detection

As stated, we are not just looking to model a binary indicator for the presence
of polyhouses but we are looking for bounding boxes that also tell us their
location (coordinates in the respective image) and how many. For this reason,
a host of neural network designs, such as ResNET (He et al. 2016), were not
considered that do not give us the bounding boxes that we are looking for and
only output a binary variable if polyhouses are present or not. Our research
corresponds to a computer vision task called object detection, where the
algorithm looks at a digital image (satellite image in our case) and is asked
to distinguish which of a pre-defined set of items is where in the image.
The way neural networks interrogate large bodies of data such as images has
greatly accelerated momentum of object detection technology and has led to
them now being the golden standard when it comes to detecting objects in
images. In general, object detection algorithms can be divided in two groups:
one-stage vs two-stage algorithms. In order to understand this distinction,
we further scrutinize what an object detector actually does. A deep learning
object detection algorithm first extracts relevant features from the pixels that
are given as input and then performs the following tasks:

1. Find a number of objects(polyhouses in our case) in the image, note
that this number can also be zero

2. Classify the objects as one of a pre-determined number of items and
estimates the bounding box of the item

12

3.3 One-step estimators

Two-step estimators do these two steps separately, first proposing object re-
gions using the deep neural network and then classifying the images using
bounding box regression. One-step estimators, on the other hand, skip the
region proposal stage and instead go straight to predicting bounding boxes
over the images. In general, two-step estimators reach higher accuracy but
are slower than one-step estimators. This also applies when detecting poly-
houses, as demonstrated by Li et al. 2020. While this means that one-step
algorithms can even be used to detect images in real time where the extra
computational effort for two-step estimators does not allow for this. This
could be taken as an indication that we should only include two-step esti-
mators, as predictive accuracy is the main focus of the models. However,
although in our research speed is not really an issue, there is mixed evidence
on the respective predictive accuracy of one-step and two-step estimators,
see for example J.-a. Kim, Sung, and Park 2020 or Li et al. 2020. Therefore
we use the most common one-step estimator, the YOLO (You Only Look
Once) algorithm, and compare it to a two-step estimator.

3.3.1 YOLO

The YOLO estimator was introduced by Redmon et al. 2016 and is so named
because the algorithm requires only a single forward propagation through the
algorithm to detect objects, allowing for the algorithm to detect objects in
real time. Aside from its subsequent speed and computational efficiency, the
YOLO algorithm has reached a very high accuracy in a number of tasks and
can predict not just if an object is present in an image but also where in the
image it is. This is important, as the accuracy of the predicted bounding
boxes is the first step in our detection framework, and the step on which
the accuracy of the polyhouse coverage that we predict relies. The YOLO
estimator begins by dividing the input image in a S by S grid cells. The
cell in which the center of each object falls in responsible for its detection.
Each grid cell outputs a given number of bounding boxes, corresponding to
possible objects whose center is in that grid cell, along with a confidence
score reflecting the likelihood that this bounding box actually is an object.
In addition, each bounding box has a prediction to which class the object
belongs. Note that each bounding box comes with only one predicted class
making it difficult to predict when bounding boxes contain multiple items of
different classes. However, as we only predict polyhouses in this research and
therefore have only one class this will not be a limiting factor in our research.

13

Multi-scale Approach

Another important feature of YOLO is its use of a multi-scale approach. This
means that the algorithm looks at the image at multiple scales, allowing it
to detect objects of different sizes. The algorithm uses a pyramid of feature
maps to detect objects at different scales, and then combines these feature
maps to generate a final set of object detections. Although scale in itself is not
a major factor of interest to us, the ability to detect objects of various sizes is
very important. This will allow the model to be more accurate in detecting
the correct number of polyhouses in an image, also if they happen to be of
different sizes which can very well be the case with polyhouses. YOLO also
uses a data augmentation technique called self-adversarial training, which
helps to improve the robustness of the algorithm to different types of noise
and distortion in the input data. The algorithm generates adversarial exam-
ples by perturbing the input data in different ways, and then trains on these
examples to make the network more resilient to these types of distortions.
This is a helpful feature as data for this research is naturally sparse and any
feature that helps the algorithm squeeze the best possible performance from
it is helpful.

Architecture

Broadly speaking, the architecture of the YOLO estimator consists of three
parts:

1. The backbone: in this part, the raw input (the image) is transformed
and aggregated to represent features

2. The neck: in this part, the different features are combined and mixed
to be passed forward to prediction

3. The head: takes the features and uses them to predict boxes and classes

14

,,,

Figure 3.1: Visual representation showing the outline of the architecture of
the YOLO algorithm (source: https://iq.opengenus.org/yolovs/)

The backbone is a network made up of 24 convolutional layers to de-
tect features in the images. 20 of these convolutional layers are typically
pre-trained on a dataset such as imageNet and the backbone is trained at
a lower resolution than the final detection model as that task requires more
granularity. These convolutional layers are followed by an average pooling
and a fully-connected layer. The neck consists of fully connected layers that
take the features from the convolutional layers and output predictions on
bounding boxes and classes of the objects. The head is the final output layer
of the network. The neck uses a linear activation function where the layers
before it use a ReLU (rectified linear unit) activation function. In order to
allow for transfer learning the head can be interchanged with other layers of
the same size in the network.

In order to diversify the features learned by the model and prevent overfit-
ting, YOLO uses both data augmentation and dropout. The dropout layer is
located between the first and second fully connected layer and uses a dropout
rate of 0.5 to discourage them from learning the same thing. This helps as
learning more diverse features means that the detection of polyhouses will
be made more robust. For data augmentation, the YOLO algorithm uses a
technique called 'mosaic data augmentation’. For this, the algorithm takes
four different images from the input, resizes them, and combines them into
a single mosaic image that is then used as extra input for the model.

The speed of the YOLO algorithm as well as the straightforward archi-
tecture that is easy to understand make it a good choice. Also, both the use
of grid cells and the fact that the single pass through the network enables
the network to consider an object in the context of the whole image mean
that the YOLO algorithm does a particularly good job at detecting objects
of various sizes.

15

3.3.2 YOLO-NAS

The YOLO-NAS algorithm is an extension to the standard YOLO algorithm
that was described in the previous section. It shares the same foundational
concept of one-shot object detection with the regular YOLO algorithm but
includes a separate step to optimize the network architecture for the object
detection task at hand. This could be an important addition to the regular
YOLO algorithm as there is not that much data to learn from so any ad-
ditional hyperparameters that could help the model improve would be very
welcome. We do, however, invite some risk of overfitting.

Neural architecture search

In this so-called architecture search step, first a search space is defined. This
space consists of the set of architectural decisions that the algorithm can
make when optimizing the architecture. This search space typically includes
various architectural components, such as layer sizes, types of layers (e.g.,
convolutional, pooling), connectivity patterns, and operations (e.g., skip con-
nections, residual blocks). Once the search space is defined, the algorithm has
to use an exploration algorithm to iterate through the search space looking
for the best architecture configuration. Common choices for the exploration
algorithm are reinforcement learning, Bayesian optimization or an evolution-
ary algorithm. The exploration algorithm begins by suggesting a number of
candidate architectures from the search space, each representing a different
combination from the hyperparameters that are defined in the search space.
Each of these architectures is then trained and evaluated on pre-set training
and validation sets of the data. They are compared based on predictive ac-
curacy, guiding the algorithm towards more promising architectures from the
search space. Note that when needed the algorithm can take into account
other measures as well, such as runtime or memory usage. The algorithm
then starts a new iteration by proposing new candidate architectures based
on the performance of the candidates in the last round. It will then evalu-
ate those new candidates and keep going until a stopping criterion is met.
Once the algorithm has stopped, the best of all the considered candidate
architectures is chosen to be the final architecture. This architecture rep-
resents the optimal configuration of the YOLO-NAS algorithm. With this
architecture, the model is trained on a larger dataset as one would with the
original YOLO architecture. The added flexibility gives the advantage that
the model has more ways to tune itself to predict the bounding boxes of the
polyhouses as accurately as possible. Although it has some added flexibility,
the YOLO-NAS is still rooted in the original YOLO algorithm in a number of

16

ways. As with the original YOLO algorithm, it is a one-shot estimator that
detects objects with a single pass through the network. YOLO-NAS also fol-
lows the general object detection pipeline that is used in YOLO. It involves
preprocessing the input image, passing it through the network architecture,
generating bounding box predictions, applying non-maximum suppression
to remove redundant detections, and outputting the final object detection
results. It also uses the same loss function and training procedure as the
original YOLO algorithm.

By allowing the architecture to adapt, YOLO-NAS can capture object
details more effectively and learn more efficient feature representations, en-
hancing the model’s detection capabilities. Furthermore, YOLO-NAS offers
flexibility and adaptability, as the discovered architecture can be easily ap-
plied to different object detection scenarios and datasets. This adaptability
makes YOLO-NAS a versatile choice that can generalize well across diverse
object detection tasks. However, the extra architecture search step comes
at a computational cost, and the extra flexibility that the model is granted
in finding the optimal architecture configuration can cause the YOLO-NAS
model to suffer from overfitting by tuning the architecture too specifically
to the training data. It is also less commonly used than the original YOLO
algorithm which means that there are less resources available.

3.4 Two-step estimators

The two-step algorithm that we consider is the faster region based CNN (F-
RCNN) algorithm. As its name suggests this is an extension of the earlier
region based CNN. The main feature of this RCNN is that it’s a combination
of algorithms that execute multiple steps in the object detection process.

3.4.1 Faster RCNN

The Faster R-CNN (Region-based Convolutional Neural Network) is a deep
learning-based object detection algorithm that was introduced by Ren et al.
2015. It is a two-stage procedure for detecting objects in an image, which
has proven to be a powerful approach for object detection tasks.

17

First stage

In the first stage of the Faster R-CNN;, the region proposal network (RPN)
generates potential object locations, or regions of interest (Rols), in an image.
The RPN is a fully convolutional network that takes an image as input and
outputs a set of rectangular object proposals, each of which is associated with
a confidence score. The RPN scans the entire image with a set of predefined
anchor boxes at different scales and aspect ratios, and predicts the likelihood
of an object being present in each of these regions. This first stage helps
the algorithm identify all potential polyhouses at an early stage, and is very
tuned to this task as it already looks for rectangular bounding boxes, which
tends to be the shape of polyhouses.

Second stage

In the second stage, the Rols generated by the RPN are processed by a sec-
ond network, typically a Fast R-CNN network (see Girshick 2015), to classify
the objects and refine their locations. This network takes each Rol as input
and applies a sequence of fully connected layers to extract features from it.
The resulting feature vector is then fed into two separate fully connected
layers: one that outputs a softmax distribution over the object classes, and
another that predicts the offset values for the bounding box coordinates of
the object within the Rol. The RPN and Fast R-CNN networks are both
based on CNN architectures and are trained jointly in an end-to-end fashion.

3.5 Comparison

In summary, algorithms like YOLO, YOLO-NAS, and Faster R-CNN of-
fer distinct advantages that make them suitable choices, listed in table 3.1.
YOLO stands out for its simplicity and real-time performance, allowing for
efficient deployment even in non-real-time scenarios. Its single-shot detection
approach and multi-scale feature fusion contribute to accurate detection of
small objects. YOLO-NAS, with its architecture search process, can adapt
and optimize the network specifically for the task at hand, potentially achiev-
ing improved detection performance and generalization. Faster R-CNN, on
the other hand, excels in accurate object localization and high detection ac-
curacy, making it a robust choice for tasks where precision is paramount.
With its widely adopted and extensively researched nature, Faster R-CNN
offers a solid foundation with ample resources available for implementation

18

and further development.

Pro Con
Fast Localization accurac
YOLO Good performance on small objects . . el Y
.)) . Limited flexibility in architecture
Detection of objects of various sizes
Improved performance Increased complexity
YOLO-NAS Generalization Risk of overfitting
Flexibility Limited resources

Accurate localization Slow
Faster R-CNN Complexity

High accuracy Needs lot of data

Table 3.1: Relative weaknesses and strengths of the algorithms

19

Chapter 4

Methodology

Given the problem that we set out to solve and the data available to us to
solve it, there are a number of methodological steps to take. In the last
section we have assessed the available methods in the literature and given
motivation for the ones that we will be using. In this section, we will provide
more detail about these methods and our specific implementation. First we
will describe the steps we took in collecting data. Then we describe the
steps taken for processing and manipulating the data that we have to make
it ready for analysis. After that we will go into more detail about how we
implemented each of the models that we compare. Then we will explain what
we did to assess the quality of the models and how to rate their performance.
This is especially important as we use several different methods and we need
to be able to compare them and assess their relative performance.

4.1 Data Collection

Unfortunately, there is no existing database containing the presence or im-
ages of polyhouses in Telangana so we had to build the database that the
model learns from ourselves. There is a vast range in terms of the quality
of the satellite images available from different sources. It must be noted
that the initial task would be to label the images to train the model on
what is a polyhouse. Hence, we need the images wherein we can detect the
polyhouses first with the naked eye in order to label them. We tried to go
for open sources like Google Earth Engine and the best quality available
there was Sentinel 2 images from Telangana which were not suitable for our
research as labelling was not possible due to poor quality of the images.
Other sources had high quality images such as Planet Labs, but were not
open, thus we decided to go for the google earth data which had far bet-

20

ter quality and polyhouses could be easily labelled. We manually proceeded
with getting the coordinates of the polyhouses by hovering over each part of
Telangana, checking the areas where we could find polyhouses and collecting
the respective coordinates. Then we used the Google Earth Pro software
(https://www.google.com/earth /versions/) to get the images having these
coordinates. These images were of much better quality and gave a decent
idea on where are polyhouses. Also, it must be noted, that it is most likely
better if the quality of the images is higher, giving us more accuracy to label
and hence train the model.

4.1.1 Positive Examples

First of all we manually searched for polyhouses in Telangana, to make sure
we had positive examples to feed the models. In order to increase the size
of the dataset, we looked for polyhouses in the states of Uttrakhand and
Maharashtra also as they had polyhouses that looked similar to the ones
in Telangana. Omnce we found them, we checked the land piece by piece
and collected their coordinates and collected the images as mentioned in the
previous section. We gathered all these images and labelled them using the
Edge Impulse software (https://edgeimpulse.com/) that yielded a text file
with coordinates of all bounding boxes of polyhouses that we found to be
used as input by the model. The images are used by the model as the input
to learn from and the text file with the coordinates of the bounding boxes is
what it maps the images to.

4.1.2 Negative Examples

Next, we repeat the process but this time for images that have no polyhouses
present. It is important for the model to be trained using both images that
contain polyhouses and images that do not. If we only feed it images that
contain polyhouses, the model will overestimate the likelihood of polyhouses
appearing, leading to a bias when we later use this algorithm to assess poly-
house density across the whole state of Telangana. Note that in this final
mapping exercise, the model will also encounter images without any poly-
houses, so it is important that it also learns to recognize this in the training
stage. As it will be infeasible to build a database with many thousands of
images, we try and make sure that the images that we do manually collect
are as informative as possible. Therefore, for the negative examples (im-
ages without polyhouses), we look for images that look similar to polyhouses
but are not, to make sure the model will learn from particularly difficult
examples to recognize. If we were to feed it only negative examples of moun-

21

tains or rainforest (images where it is immediately obvious that there are
no polyhouses), then the model might be inclined to predict the presence of
polyhouses in any case that looks somewhat similar, as it would look more
like the training data of polyhouses than the training data without poly-
houses. However, having the model learn from examples that look somewhat
like polyhouses but are not, such as houses, it will tune its parameter to
learn the more granular specific qualities of a polyhouses, which is what we
are looking for when later applying it across the whole state of Telangana.
We therefore look for buildings that look similar to polyhouses and save the
images in the same manner as before using Google Earth Pro. Note that this
time, we do not need to add any coordinates, as in these examples there are
no correct bounding boxes, as there are not polyhouses in the images.

Feeding the model all the images and the coordinates of the correct bound-
ing boxes, we ensure that it will do as good a job as possible at predicting
the presence of polyhouses with limited data.

4.1.3 Ranga Reddy images

After learning from the labelled data that we use to train and assess the
model, there is a subsequent step where we apply the best model to a new
body of data in Telangana to map the polyhouse coverage in the region. This
data will not be labelled as finding labels for it is one of the outputs of this
research. We will use the district of Ranga Reddy, a district that borders the
capital of Telangana, as the area to map polyhouses. It is well-populated,
meaning there are a lot of buildings to make the task sufficiently complex
for the model, and there is a significant number of polyhouses in the region.
Ranga Reddy has an area of 5,031 square kms. In order to make the marking
of polyhouses visible to us, we need to cut down the image of the full district
into smaller images. Moreover, we take the part of a district which has
some polyhouses to give ourselves a better insight. Thus we collect images
covering about 69 square km area and divide it into 276 images covering
about about 0.25 square kms each and put the images into one folder, which
can be directly fed to the model. To do this, we have used the same software,
Google Earth Pro.

4.2 Data augmentation
We were able to gather only limited data. When dealing with a limited vol-

ume of data one potential solution can be to augment the data by applying
transformations to the existing body of images and feed those transformed

22

images to the model as well as the original. In our research, we will apply var-
ious methods to transform the images. Using many different methods rather
than just one or a few has the advantage that it will not allow the model to
tweak itself especially to capture the different features of one transformation
(for example color), but it has to really be alert for all sorts of features that
might change about the data. Specifically, we transformed the data in the
following ways:

e Flip - the image is flipped over either the horizontal or the vertical axis
to generate a mirror image.

e Rotate - the image is rotated to end up with a different angle of the
same image.

e Shear - involves applying a distortion to an image along a specific axis,
causing a slanting or tilting effect. In the context of images, this can
simulate the effect of viewing an object from a different angle or per-
spective.

e Brightness - the brightness of the image is adjusted to generate the
same image with a different levels of light

e Saturation - the level of saturation is randomly changed, affecting the
vividness of the colours in the image

e Blur - the images are randomly blurred, lowering the focus of the im-
age. This will generally make it more difficult to detect objects but is
nevertheless useful to learn from.

All transformations were done using the roboflow tool (https://roboflow.com/,
Inc. 2023).

4.3 Train-test split

In order to both compile the model and assess performance, the labelled data
that we do have has to be split in a train, a validation and a test set. This
is good practice to make sure we assess model performance over a dataset
that has not been seen by the model in the training process in order not to
artificially inflate performance. The train set is used as input for the model
to learn from and tune its parameters. The validation set is then used to
optimize the hyperparameters of the neural networks. Once a final optimal
model has been established, the performance of that model is evaluated over

23

the test set to allow for comparison between the different models. We use
various ways of splitting the data that is available to us between the train,
validation and test set to assess if and how they affect performance. Note
that from here on out, every such split will be referred to as a ’'dataset’.
Specifically, we will split the data in the following five ways:

1.

Dataset 1: The training and validation sets are the polyhouse images
from Telangana and Uttrakhand. The final models are then tested on
the images from Maharashtra. This way we not only assess the perfor-
mance of the models but also how well they perform when presented
with data from another state than the one where the training data
came from and when the training and test data is not so similar.

. Dataset 2: For the second split, we randomly take 50 images from

the set of buildings that look like polyhouses but are not and, using
various data augmentation techniques, we create 90 new images from
them. Of these 90 new images, 72 are added to the train set and 18 to
the validation set of dataset 1 and thus dataset 2 is created. By adding
the non polyhouse images to the train and validation set we help the
model learn about what is not a polyhouse.

Dataset 3: For the third split, we also randomly take 50 of the images
where polyhouses are present and, using various data augmentation
techniques, create new ones. Note that these images are added on top
of the images that were already added in split 2. This will increase the
size of the dataset.

. Dataset 4: Next, we take the 370 original images that we had before

and instead of taking images from certain states together, we randomly
divide them between the train, validation and test set to compare what
happens if the distribution between the different sets is more similar.

Dataset 5: For the last split, we do the same as in split 4, but this
time we add 437 augmented images that are added to the train and
the validation set, to compare what happens if the size of the dataset
is increased.

In summary, dataset 1 contains only polyhouse images and is tested on a
new area to check the robustness of the model. Dataset 2 contains combined
images of polyhouses and non polyhouses, and dataset 3 is made up by adding
more polyhouse images to dataset 2. In these 3 datasets, we will do polyhouse
and non polyhouse testing separately in order to compare the accuracy in
both the cases. Considering shortage of data, to increase the size of dataset,

24

we combine this data and use it for dataset 4 and 5 and only do a combined
testing of images of which some contain polyhouse and some do not. In table
4.1, we show an overview of the number of images of each of the datasets
under each of the splits.

Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 | Dataset 5
Train 136 208 360 236 586
Validation | 34 52 90 59 146
Test 200 200 200 74 74

Table 4.1: Sizes of the different sets that are used under different splits

4.4 Modelling

All models were programmed in Python. The Faster R-CNN model was
compiled using the TensorFlow library, for the YOLO models we used Py-
Torch. All of them are openly available on GitHub (Ultralytics and Jocher
2023, LLC 2023, Tran 2023) and other sources (Gopani 2020, Techzizou 2022,
Skalski 2023, Rath 2023). We did manually tune some parameters to make
the specific model more connected to our research as will be described in
section 4.5. Also, we have manually transformed the model output to the
output that is presented in this research, as well as plots to understand the
role of the tuned parameters and we extracted the number and location of
polyhouses from the standard output, all with the aim to make the output
more actionable for UNDP.

4.5 Model Tuning

Though the weights, or parameters, of the links between different neurons
are optimized by the model, there are so-called "hyperparameters’ that the
user needs to define when training a neural network. Hyperparameters are
key settings that are specified prior to training a neural network and have a
significant impact on the model’s performance and training time. Note that
these hyperparameters are the reason why having a validation set is useful.
Once the parameters have been estimated, we use another set of data over
which we optimize the hyperparameters in order to avoid overfitting.

25

4.5.1 Batches and Epochs

Two important hyperparameters are batches and epochs. Batch size refers to
the number of training examples used in each iteration of gradient descent.
Epochs refer to the number of times the model is trained on the entire train-
ing dataset. During each epoch, the model iteratively processes all training
examples in the dataset and updates its weights and biases accordingly. In
our research we have tried a number of different values in order to optimize
the performance of the model. In the end, there was no more improvement
after 100 epochs which was thus the optimal number of epochs and the op-
timal batch size was 16 images.

4.5.2 Confidence Level

Other than the previously mentioned hyperparameters that have to do specif-
ically with the neural network structure, important factors to be decided has
to do with the actual output of the models. All of the models output a
number of bounding boxes with a confidence level, between 0 and 1, that
indicates how likely the model thinks it is that there is an object of inter-
est, in this case a polyhouse, in the bounding box. Those bounding boxes
are then turned into a prediction if the predicted confidence level is over a
certain cutoff and discarded if the predicted confidence level is under that
cutoff. This cutoff is an important factor as it determines how sure a model
needs to be for it to make a prediction. If we set the cutoff really low we
will end up with a lot of predicted polyhouses, leading us to probably cap-
ture a lot of the actual polyhouses but also with more buildings that are not
polyhouses. If we set the cutoff to be high, on the other hand, we will make
fewer predictions and be very sure about the predictions that we do make,
but there might be some more situations where polyhouses are not predicted
as the confidence of the corresponding bounding box does not meet the cutoff.

As we are interested in the coverage of polyhouses in general of the whole
state, both systematic overprediction and underprediction are problematic.
Therefore, we try to choose the cutoff confidence value in such a way as to
balance between these and we do so by trying over a few confidence values
and capturing the accuracy over those points and then finally choosing the
best. Note that this optimal cutoff confidence value can be different for each
model, as they might have different optimal balances between positive and
negative predictions. Also, we optimize this cutoff confidence value over the
validation sets to make sure that the performance over the test set is not

26

wrongly inflated.

4.6 Performance measures

After running the various methods that we described earlier in section 3,
we need a way to compare their respective performances to decide which is
better. We will use some very familiar performance measures here, though
we note that in the context of object detection they have a slightly different
interpretation than usual. As the models are outputting not just whether
or not an object was detected but also the bounding boxes, we cannot say
that the detection of an object was either correct or incorrect. Therefore we
make use of the concept of Intersection over Union (IoU, Rezatofighi et al.
2019). Intersection over Union compares the areas of a bounding box of the
prediction of the model, called p and the ground truth where we know that
the object is, . IoU can then be calculated by %, so the overlap between ¢

and p divided by the area that’s part of either ¢, p or both.

area of overl:
](){, _ 1rea O OvVe ll) _

area of union

Figure 4.1: A visual depiction of the concept of Intercept over Union (IoU)
(source: https://towardsdatascience.com/on-object-detection-metrics-with-
worked-example-216f173ed31e)

This IoU can be calculated for every combination of prediction and ground
truth and ranges between 0 and 1 where 0 indicate that there’s no overlap
between the two and 1 indicates perfect overlap. We have to define a value
a that we use as cutoff for when we consider that a prediction is ”correct”.
Anytime a prediction and a ground truth object have an IoU higher than
this a we say that it has made a correct prediction and when it has a lower

27

a we say that the prediction was incorrect. This choice of o has important
implications for the final model that we use. This « basically controls how
close a prediction has to match a true polyhouse for it to be considered cor-
rect. If it is set higher the model will need to be very sure about the location
of a polyhouse for it to be considered correct, if it is lower then the model
will accept a prediction even if it is not exactly correctly located.

To get the best possible predictions for each model, we would allow differ-
ent values for IoU threshold and check at which value are the results high. We
can define for each prediction whether it is correct or incorrect, we consider
the following terms:

e True Positive (TP) - model correctly detects an item
e False Positive (FP) - model detects an item where there is none
e False Negative (FN) - model does not detect an item where there is one

e True Negative (TN) - this refers to the model correctly not detecting an
item. As the model does not explicitly detect regions where there is no
item this metric is not used, but it is mentioned here for completeness.
Using these concepts, we will present the performance measures that
we employ in this study, as outlined in more detail by Carion et al.
2020.

4.6.1 Precision

Precision assesses what fraction of the total number of predictions that the
model makes actually detect an item. It can therefore be calculated by
TPZJFP 75+ This means that a high precision indicates that out of the times
that the model indicates that there is a polyhouse, it is likely that there
actually is one and that the model has a low probability of falsely predicting
that there’s a polyhouse. Precision is of particular interest when we want to
be very sure of the correctness of any prediction we make before taking action.
Note that precision will typically improve when the confidence threshold is
set higher, as that will cause the models to make less predictions and only

keep the ones it is really sure about.

4.6.2 Recall

Recall assesses what fraction of ground truths are recovered by the model.

It can therefore be calculated by TPTJF%. This means that a high recall

28

indicates that out of the times that there is a polyhouse, a lot of the time
the model will be able to find it. Recall is of particular importance when we
want to be very sure that we will detect all objects of interest. Note that
recall will typically improve when the confidence threshold is set lower, as
that will cause the model to make more predictions, making it more likely
that actual objects of interest will be predicted.

4.6.3 F1 score

A model is considered good when it has both high precision and high re-
call. Precision can be artificially inflated by making a very low number of
predictions, and recall by making a very high number of predictions. It is
therefore important to consider both to make sure that the model recovers
as many of the true items in the images as possible, but as little other things
as possible. In order to allow for a trade-off between precision and recall, we
also consider the so-called f1 score. The traditional f1 score is the harmonic

mean of precision and recall. It can therefore be calculated by % =
precisionsrecall. g traditional f1-score assigns the same weight to precision
precision+recall

and recall, implying that predicting an item where there is none is exactly as
bad as not predicting an item where there is one. There is also an adjusted
f1-score, weighting the two to give one more relative importance than the
other. In our research, however, we do not consider one worse than the other
as they both contribute the same to the error in our mapping exercise for
the coverage of polyhouses. As such, we will use the traditional fl-score

4.6.4 Mean average precision

Another way of coming up with a trade-off between recall and precision is the
so-called mean average precision (mAP). For each of the earlier performance
measures a cutoff values for the IoU is set and based on that the predictions
are classified as FP, TP or FN. Based on that, the respective performance
measures are calculated. When calculating the mAP, on the other hand,
we deliberately vary this cutoff point to come up with a set of different val-
ues for the corresponding precision and recall. Note that as we increase the
cutoff value, therefore requiring more certainty before predicting an object,
precision will generally go up (as the higher scrutiny for predicting an object
will lead to less predictions and less false positives) and recall will generally
go down (as the higher scrutiny for predicting an object will lead to less
predictions and more false negatives). Plotting these values of precision (or
interpolated precision to avoid inconsistencies) and recall against each other,

29

one obtains a graph.

The final mAP score is then the average precision across all values of
recall, or the area under the curve in the graph. The 'mean average’ in the
name, which might seem excessive, refers to the fact that first one takes the
average of precision across values of recall and then one takes the mean of
these average precisions across different classes. However, we will only be
predicting one class and therefore our average precision and mean average
precision are the same.

4.7 Model Evaluation

Our goal is to get the model that gives the best bounding box using which
we can get the number and coordinates of the polyhouses in the state of
Telangana. Thus, this evaluation is three folds. First, to get the parameters
in which the model works the best, then compare the three models we chose
with their tuned parameters and finally use the model with the best perfor-
mance to get the number and coordinates of the polyhouses in Ranga Reddy
district.

Initially, we need to have an evaluation over different hyperparameters of
each model and assign the IoU and confidence level thresholds to the model
that gives us the highest performance. With performance we mean the F1
score, since that gives a balance between the percentage of polyhouses cor-
rectly identified and the percentage of polyhouses identified. Also, while
tuning we need to make sure the optimal level of epochs and batch sizes has
been chosen.

Next, we will compare how the three models performs when presented
with the different train-test splits and their respective best threshold for IoU
and confidence to get the model that works the best for our scenario. This
would tell us what kind of model and data suits our scenarios the best.

Finally, we will use the chosen model to map the coverage of polyhouses
across the Ranga Reddy district of Telangana. Thereafter, we will use the
above mentioned performance measures: Precision, Recall and F1 score to
calculate the performance of the chosen model in this case. This would be a
rough representation of its performance in Telangana. However, it must be
noted, this cannot tell the exact accuracy of the model in Telangana, for that,
the model should be applied to the full state. For the ease of UNDP and
their usage, we will output an excel file which tells the number of polyhouses
and their coordinates per image and the images would have bounding boxes

30

marked over what model thinks is a polyhouse.

It must be noted that first we get the model with highest bounding box
accuracy and then use that to get the number of polyhouses and their co-
ordinates. Thus, there can be models or techniques that directly give the
number or coordinates with a higher accuracy but our research involves get-
ting the bounding boxes first and then go for the coverage of polyhouses.
The advantage of our approach is that we can use this bounding box data
for multiple purposes such as getting the size of the polyhouses, delineate
these from other buildings, identifying what are not polyhouses and other
such tasks.

31

Chapter 5

Results

In this chapter we will discuss a summary of the most important results. As
mentioned before, our evaluation is three folds. In section 5.1, 5.2 and 5.3
we explain the performance of the YOLO, YOLO NAS and Faster RCNN
models respectively and their inter comparison. In section 5.4 we choose the
best model and in section 5.5 we apply this best model to get the number
of polyhouses and their coordinates over the Ranga Reddy district of Telan-
gana. Finally, we will discuss some relevant limitations in section 5.6.

However, before diving into the results it is very important to note the
metrics relevance for certain cases. For datasets 1, 2 and 3 for all the 3 mod-
els, we do testing on polyhouse images and non polyhouse images separately
as mentioned before. In non polyhouse testing case, precission is always 0 as
there are no true positives with respect to polyhouse detection, and thus is
the F1 score. Therefore, these metrics would not be regarded for datasets 1,
2 and 3 for non polyhouse testing within and across the models and are taken
as 0. Moreover, recall is also not mathematically defined for these cases as
there are no false negatives. But for comparison across different datasets and
models, we will take recall as the percentage of incorrect predictions out of
the total images and subtract it from 100%. For instance, if there are 100
non polyhouse images and model predicts 20 polyhouses, then the "recall”
will be 80%.

5.1 YOLO

In figures 7.1, 7.2, 7.3, 7.4 and 7.5 in the appendix, we see how the YOLO
algorithm performs for different values of the confidence and IoU cutoff hy-
perparameters. Although the pattern might be difficult to interpret, the most
important conclusion is probably that if we look at the y-axis the differences

32

in F'1 score when changing these values is extremely small. It is encouraging
that the model seems to be robust and not very prone to changes in these
cutoff values, and in the case of dataset 5 we even see no effect whatsoever.

5.1.1 Dataset 1-3

The results for the first three datasets can be found in the appendix in table
7.1, 7.2 and 7.3. When looking at the results over the first dataset, we see
that the model does very well at detecting polyhouses in the training set and
almost perfectly in the validation set. When we focus on performance in the
test set, so the images from a different area, the performance is much worse.
The model only detects about one fifth of all actual polyhouses correctly and
predicts many polyhouses that are not there. It seems, therefore, that even
though the model is tuned to accurately predict the data that it was fed
to learn from, these findings do not generalize well to the new data, a clear
case of overfitting. Moreover, not providing non polyhouse images has not
allowed the model to learn on what is not a polyhouse, that is why in about
90% of the predictions model says there is a polyhouse, but there is not.

When looking at the second dataset, we see that it appears that the added
images of the objects that look like polyhouses have affected the model. The
performance over train and validation set are still very good, but we see that
over the test set the model hardly predicts any polyhouses. This is the case
both for images where there are polyhouses and where there are none. This
suggests that from the transformed images of objects that look like poly-
houses, the model has learned to be very selective in its decisions, labelling
something as not a polyhouse when in doubt as it has learned form deceptive
examples that even when something looks like a polyhouse it might not be
one.

When looking at the third dataset, we see that performance get much bet-
ter for the majority of performance measures that we consider. Performance
over the train and validation set gets a little bit worse, probably reflecting
the increased diversity in those sets. However, over the test set the model
performs much better, almost as good as over the training and validation set.
This highlights the importance of the similarity of data between the training,
validation and the test set for the performance of the YOLO algorithm.

33

5.1.2 Dataset 4-5

The results of dataset 4 and 5 can be found in the appendix in table 7.4 and
7.5. Looking at datasets 4 and 5, we see the same pattern as we did for dataset
3. The mixing of images between the training, validation and test set means
that the model is very adept at detecting polyhouses in all of them. We also
see a good balance between precision and recall, indicating that the model
neither under- nor overpredicts systematically. What is interesting is that
the results between dataset 4 and 5 are extremely similar. That suggests that
when the images are already randomly mixed between the train, validation
and test set, and there are no systematic differences anymore, the impact of
adding transformed images is limited for the YOLO algorithm.

5.1.3 Summary

In general, we find that the YOLO model is able to do a good job at detecting
polyhouses in images for most values of confidence and IoU cutoffs, but it
is extremely sensitive to the degree of similarity between the test and the
train set. When they are similar, either by adding augmented images to the
train and validation set or by randomly mixing the images between all sets,
it performs very well with almost 90% over all performance measures. This
suggests that if we are confident that the images that we want to map are
similar to the images that were used to train the model, the YOLO algorithm
is an excellent choice. It is good to be aware, though, that performance will
get worse fast if the level of similarity decreases.

5.2 YOLO-NAS

In the appendix in figures 7.6, 7.7, 7.8, 7.9 and 7.10, we see the F1 score when
we use different confidence and IoU cutoffs for the YOLO-NAS model. In this
case, we see somewhat bigger differences between different settings than we
did for the YOLO models. Specifically, we see that as the confidence cutoff
increases, the F'1 score goes up, suggesting that the model might overpredict
if the cutoff is not set sufficiently high. The [oU threshold seemed to have
much less influence over results.

5.2.1 Dataset 1-3

The results for the first three datasets can be found in the appendix in table
7.6, 7.7 and 7.8. Looking at the first dataset, we see that the in-sample per-
formance over the train and validation set are again very good, indicating

34

that the model does manage to map the given input to the output. How-
ever, the performance over the test set is significantly worse, showing that
the difference in distribution between the data that was fed to the model
and the new data that was used to test it caused the model real difficulties,
indicating at least some degree of overfitting. The model has identified really
less polyhouses compared to the regular YOLO algorithm. Thus,the accu-
racy of polyhouses detection has fallen but the model also did not make too
many false predictions of polyhouses in non polyhouse images like the YOLO
algorithm. Interestingly, the YOLO-NAS model does seem to systematically
predict less polyhouses than the ordinary YOLO model, suggesting that the
extra freedom in setting the hyperparameters has had a regularizing effect
on the model.

When looking at the second dataset, we see that the performance over
non-polyhouses has gotten better, though not as much as we saw for the
regular YOLO model. Again, this makes sense as we have added augmented
images of the non-polyhouses to the train and validation set. We see that
the model again systematically underpredicts, though for this datasaet that
was more to be expected as we explained before. The fact that results im-
prove so much after adding some transformations indicates that perhaps the
transformations and their original versions in the test set are very similar,
possibly making it too easy for the model. In any case, the results of the
first and second dataset combined, both for YOLO and YOLO-NAS, indicate
that the similarity in distribution between the train/validation and the test
set is very important with regards to the performance of the model. This
suggests that if we were to use this model, it would be wise to use it on data
that is similar to the data that was fed to the model in order to train it.

When looking at dataset 3, the results for both polyhouses and non-
polyhouses in the test set are excellent, again underlining the importance of
the similarity between the images and their augmented versions. This shows
that when we can be sure that the distribution of the train/validation and
the test data is similar this model can be expected to perform very well at
detecting polyhouses.

5.2.2 Dataset 4-5

The results for dataset 4 and 5 can be found in full in the appendix in table
7.9 and 7.10. The results over the fourth dataset show that without using
augmented images but simply mixing all available images before distributing
them over the train, validation and test set also yields excellent results. The
results are just a little bit worse then for dataset 3, which might be because
in dataset 4 we test on combined polyhouse and non polyhouse scenario

35

which is a more realistic scenario. Interestingly, the results over dataset
5 are again similar to those over dataset 4, indicating that when they're
randomly distributed the augmented images do not really help the model
to predict better. Also, over dataset 4 and 5 the model no longer seems to
systematically underpredict nor overpredict.

5.2.3 Summary

All in all, the YOLO-NAS algorithm performs well, but is very dependent
on how similar the train and test data are. However, we see that this de-
pendence is probably just a little bit less than it was for the YOLO model,
suggesting that the model has used its extra flexibility to be more prudent
in its predictions when predicting something that looks new. This does seem
dependent on the choice of the confidence cutoff parameter.

5.3 Faster-RCNN

As we saw before that the confidence and IoU cutoff do not really affect the
results, we set the cutoffs at their optimal value for Faster R-CNN to see if
it can match the YOLO models’ performance.

5.3.1 Dataset 1-3

The results for dataset one to three can be found in tables 7.11, 7.12 and
7.13 in the appendix. For the faster R-CNN model, we also see that for the
first dataset the model performs very well on the train set and very poor
on the test set. It does, however, perform a bit worse on the validation set,
indicating potential overfitting. Also we note that it does not seem very shy
in predicting polyhouses in new images that it has not seen yet, overpredict-
ing heavily on the images with polyhouses and predicting a relatively large
number of polyhouses from images where there were none.

In the second dataset, the model does not seem to predict less polyhouses
in the test set, even though it has learned from a lot of extra examples that
seem deceptively like polyhouses but are not, information that the model is
given to learn from. This is interesting and markedly different from what we
saw for the YOLO models. Also interestingly, the model seems to underpre-
dict the train and validation set. In the third dataset the performance over
the test set where there were polyhouses gets really good, but it still predicts
a lot of polyhouses when there are none.

36

5.3.2 Dataset 4-5

Table 7.14 and 7.15 in the appendix show the results for dataset four and
five. Curiously, for dataset 4 and 5 the Faster R-CNN model systematically
underpredicts over the test set. It also does so over the validation set, where
performance does pick up in dataset 5 but is still not at the levels of the
YOLO and the YOLO NAS. Another interesting feature is that between
dataset 4 and 5, the results over the training set get significantly worse,
suggesting that for the Faster R-CNN model adding the augmented images
actually seemed to confuse the model.

5.3.3 Summary

In summary, the conclusion we can draw from the Faster R-CNN model is
that there are several downsides to its performance. We have seen it both
under and over predict depending on the configuration of the dataset and we
have seen both situations where it does not do very well on the training set,
indicating it has trouble mapping input to output, and over the validation
and test sets, indicating that the model might be prone to some overfitting
in certain situations.

5.4 Comparison

When comparing the three models, the first conclusion is that the Faster R-
CNN model is probably not the best choice. Although all three models have
their caveats, we see the Faster R-CNN model make an array of different
types of errors that make it difficult to know how to interpret its predictions.
We also find that over the whole, its performance in terms of all of our per-
formance measures is not on the same level as the YOLO and the YOLO
NAS, especially when the data in the train and test set are similar. That
being said, the performance of both the YOLO and the YOLO NAS seem
very dependent on this. When the train and test set are different, the YOLO
models perform very poorly and have a very hard time detecting any poly-
houses. The regular YOLO algorithm finds a few more than the YOLO-NAS
algorithm, but also comes up with more wrong predictions. As the level of
similarity increases, the performance of both models goes up spectacularly.
This effect is stronger for the regular YOLO model, probably because less
regularization goes on here. In summary, we prefer the regular YOLO model,
as its performance over datasets where the train and test set are similar is
simply better than YOLO-NAS. Additionally it detects about 90% of the
polyhouses in the images that were provided to it when the size of dataset

37

increases and is balanced for polyhouses and other buildings. Moreover, sim-
ilarity of images is not a problem for us to create as our goal is to map the
coverage of polyhouses in the Telangana state only.

5.5 Mapping

In the previous section, we saw that YOLO performed better than the rest
and showed a decently high accuracy. Thus we choose the YOLO model
for the mapping exercise. This mapping involves, as mentioned before, get-
ting the number of polyhouses and the coordinates of the image where the
polyhouses are according to the YOLO model and then calculating the per-
formance metrics. We applied the yolo model to the images from the Ranga
Reddy district and received the images that have polyhouses marked in them
(if any). Each image contains the number of polyhouses detected and an ex-
cel file which tells us the coordinates and number of the polyhouse in each
image and the total number of polyhouses in the area. The following are 4
examples of the excel output and corresponding images:

image Name Number of Polyhouses | Coordinates

split_10_1.jpg 1 (152, 224)

split_10_11.jpg 0

split_15_9.jpg 4 (21, 48), (196, 177), (123, 150), (75, 137)
split_11_6.jpg.jpg | 2 (195, 256), (100, 234)

polyhouse O.

o

P s

Figure 5.1: image mnamed 7split_10_1.jpg” on the left and
7split_10_11.jpg” (right)

38

polyﬁouse 0.7

p% houisg 0.9
polyhouse
l

@ F;;,‘;ﬁg;@h%ﬁs

Figure 5.2: image named ”split_15_9.jpg” (left) and ”split_11_6.jpg” (right)

In the chosen region there were 164 polyhouses in total. YOLO model
gave 172 bounding boxes, where 7 polyhouses were identified less(false nega-
tive) and model provided 15 extra polyhouses where there were there wasn’t
one (false positives), thus achieved a precision of 90.85%, recall of 95.73%
and F1 score of 93.23%. This is in line with the score that we expect of
the model when it is tested on data that looks similar to the data that it
was trained on. This is encouraging, as it shows that when applied to new
data from Telangana the model can be able to perform as it does in the best
examples that we have considered before.

5.6 Limitations

In this chapter, we have compared the methods that we selected for the ob-
ject detection task and chosen a method that has our preference. Although
we believe that the method that we chose has a good performance, there are
some caveats to it, most obviously how the data that was used to train the
model has been collected and how similar the new task is that the model is
going to be used for. However, we have not been able to find a model that
credibly resolves these issues, so we encourage anyone using these models
to be very aware of them. In practical terms, we recommend that anyone
wanting to use our models to map polyhouse presence in a certain area first
gathers a body of images from that area that are labelled for the presence of
polyhouses. Training the model on this subsample of the area of interest is
the easiest way to ensure that the data that the model is trained on is similar
to the data that the model will then be applied to. Another limitation is that
the images were labelled individually and represents random splits of the full
surface of a state. That means that it is theoretically possible that a single
polyhouse is split across two different images, recognized as a polyhouse in

39

both and therefore counted twice. In this research we have taken manually
identifying steps to eradicate this while data collection, and this is a step
that could be taken in the future to fine tune the model.

Another limitation has to do with the volume of available data. As there
is currently no labelled dataset of polyhouses freely available online that we
can use to train the model, we had to manually engineer one. Though we
think the results show this was a worthwhile exercise, having a large dataset
ready would have obviously been better as the volume of the data that we
used was naturally limited. Also the quality of the data is a concern. As we
want to train a model to learn to detect polyhouses in the images we feed
it, it is essential that the quality of the images permits the polyhouses to be
clearly distinguished. In an earlier pass, we tried to use sentinel 2 data which
clearly was not of sufficient quality (10m spatial resolution) for our models
to work. For the results presented in section 5, we used Google Earth data,
which seems to work much better because of higher quality satellite images
(1m spatial resolution). For anyone using these models to detect polyhouses
in a new context, it is therefore of utmost importance to feed the model high-
quality images, as we have seen that the degree to which the models that we
presented here learn from images of bad quality is very limited. There are
two exceptions when the YOLO-NAS model might be preferred. If the train-
ing and the test are very different the performance of YOLO-NAS suffers a
bit less than the ordinary YOLO algorithm and as such when one suspects
that this might be the case the YOLO-NAS algorithm might be preferred.
However, one has to take into account that in this situation also the YOLO-
NAS algorithm performs worse than otherwise so its results have to be taken
with care and it is still highly advisable to find more similar data to feed
the model. The other scenario is when the cost of incorrectly predicting
the absence or presence of a polyhouse is different. In some scenarios, we
see that the regular YOLO algorithm predicts substantially more polyhouses
than the YOLO-NAS algorithm. If for some specific reason one is looking
for an algorithm that predicts only when it’s very sure and does not want to
risk ending up with a lot of predictions where there are no actual polyhouses,
then in some situations the YOLO-NAS algorithm might be preferred.

40

Chapter 6

Discussion and Conclusion

In this section we will go into some more detail about the meaning of the
results and what they implicate for the research question and practical appli-
cations of our research. We begin in section 6.1 with a conclusion summariz-
ing the main takeaways of this research. In section 6.2, we will discuss other
possible angles to approach object recognition than the one that we employed
in our research and in which cases these might be more suitable. Then, in
section 6.3 we discuss some practical recommendations for UNDP when us-
ing this research and in section 6.4 we discuss some interesting avenues for
further research.

6.1 Conclusion

We have assessed three different models to detect polyhouse coverage in the
Indian state of Telangana. Being able to map the coverage of polyhouses in
this area would be useful for UNDP as it would help with long-term agri-
cultural planning. Specifically, we have compared three convolutional neural
networks: YOLO, YOLO-NAS and Faster R-CNN. We believe that of the
models we tested, the YOLO model is the best one to detect polyhouses.
It does a pretty good job at distinguishing specifically the number of poly-
houses that there are, which is an important focus for this research. However,
there are some concerns about the ability of each of the models to deal with
data that is not sufficiently similar to the data that it was trained on. That
is, the results show evidence that when this data is not sufficiently similar,
model performance suffers considerably. This should definitely be taken into
account when applying the model we presented, and we hope that further
research will shed more light on the relationship between data similarity and
model performance.

41

6.2 Other applications

In this section we will briefly outline what other choices could be made that
have not been applied in this research but that could easily be examined
using the same type of models, in order to make our models applicable to
other areas.

6.2.1 Size of polyhouses

In our research we have chosen to focus primarily on the amount of poly-
houses in any given image. One could also, however, want to consider the
size of the predicted polyhouses. In this case, it would be better to set a
higher IoU threshold, indicating that the bounding boxes need to be a closer
match for the prediction to be considered correct. This way, the required
overlap for a prediction to be counted as such has to be higher, meaning the
model favours predictions that have more area in common with an actual
polyhouse and is therefore close to the true size. Also, when looking at size
one could use different performance measures than the ones we have used
in this research as the ones we have used do not particularly focus on the
size of the polyhouses. One could, for example, calculate the performance
measure that we already use but weight them by the size of the actual poly-
house when averaging to be sure to favour models that do particularly well at
larger items. That means that in order to calculate each performance mea-
sure, prediction of bigger polyhouses will count heavier towards the average
measure that is reported, for example counting polyhouses with a size above
a certain threshold twice. One could also make the IoU threshold dependent
on the size of the object to reflect the relative importance of small and large
items. These extra performance measures could then be used to set hyper-
parameters and compare models in such a way that the model will be more
specifically geared towards correctly predicting the size of polyhouses.

6.2.2 Exact Location of polyhouses

Another closely related priority could be not just to take the coordinates of
the polyhouses in the respective image as a priority, but rather about their
coordinates on the map of Telangana (or any other corresponding region).
In this case one can use the exact models presented, but additionally convert
the coordinates in the image to the coordinates of the corresponding other
regions by using the gdal or tifffile libraries from python.

42

6.2.3 Detecting other objects

Moreover, the applicability of our models extends beyond the domain of
polyhouse detection, encompassing diverse agricultural and infrastructural
scenarios. By adjusting the input data, the same convolutional neural net-
works can be repurposed to identify a wide range of objects, thereby aiding
various agricultural planning initiatives. To achieve this, our data collection
methodology, detailed in section 4.1, can be adapted for different objects or
regions. One would have to follow the same steps, but instead of looking for
polyhouses any other object could be selected. With the model trained on
altered data, it becomes proficient in recognizing agricultural infrastructure
or relevant features using the same framework. Furthermore, fine-tuning the
algorithm to distinguish between object categories entails expanding the data
to encompass not only bounding boxes but also object types. This way, the
model will learn not just the location but also the type of each object. While
minimal hyperparameter adjustments are necessary, a larger dataset would
be imperative. This prospective application may require more data acqui-
sition efforts or automated datasets, but the model’s ability to differentiate
between diverse object categories underscores its versatility and utility.

6.3 Recommendations to the UNDP

The initial goal of this research was to provide UNDP with a tool that can
be used to map the coverage of polyhouses in the state of Telangana, India.
We have compared three models that, for various reasons, seemed good can-
didates for this object detection task. Although we have seen some concerns
around the data, we feel that the YOLO model that we considered to be
the best of the three does a good job at detecting polyhouses. The main
takeaway for UNDP that has been reiterated at various points in this report,
is the importance of training the model on data that looks similar to the
data where polyhouses are to be detected. It is therefore not advised to use
the existing model with all its parameters that are trained on the data that
we had so far and blindly apply it to a new context, as it is a real danger
that polyhouses look different in different geographical areas and the model
will not do a good job. If UNDP decides it wants to move forward its efforts
to map polyhouse coverage this way then we highly advice it to invest some
effort in setting up a structural way to collect data on polyhouse coverage
in areas of interest, that can then be used to train the model which will
subsequently predict the rest of the state.

43

6.4 Further research

Although we have exposed some important limitations of the methods that
should be taken into account, further research is still required to shed more
light on their exact workings. Specifically, we have only used five configu-
rations of the train, validation and test data. The results clearly indicate
that some setups yield very bad results and some of them very good ones,
but it is probably in between the two extremes where we can gather more
meaningful insights. From our results it is clear that some scenario’s are
very difficult for all models and others are relatively easy for all models, but
the situations where performance went up or down were similar for all three
models. It would be interesting to think of more setups of the data that
could be used to not just tell when the models perform well or poorly but
also where performance of the respective models will differ more.

Additionally, we have already given some indications as to what type of
detection one could also be interested in, aside from what we have done in
our research. All of them rely in principle on the model having to predict
accurate bounding boxes, but it would be interesting to see how subsequent
priorities and steps to be taken accordingly affect the results. Finally, the
models to be used and context to use them, both in terms of which objects
to detect and where to detect them, are almost infinite. We have only ex-
amined a very limited part of India using only the polyhouse images that we
could find, but off course the question of how to plan the agricultural future
of India is far from complete there and is probably a topic that will need to
go through many more iterations of thinking. Distinguishing polyhouses by
type or by performance, predicting not just where polyhouses are now but
where they could potentially be added and doing so for a geographical space
far beyond what we have looked at all seem like potential avenues that could
help organizations plan for the future more effectively. It is our hope that
our research will have given a first impulse to show what is possible, but that
it will be only the beginning of a far more comprehensive body of work to
ensure the food security of the people of India for years to come.

44

Chapter 7

Appendix

Results
YOLO

F1 score

3.3.34 35 .36 37 4.3 .44 45 46 4.7 53.54.55.56 .57 .6.3.6.4.6.5.66.6.7.7.3.7.4.75.76.7.7
Confidence/loU Threshold

Figure 7.1: Performance of YOLO over dataset 1 with different confidence
and IoU cutoffs

45

100

0.96

0.94 M

0.88

F1 score

3.3 .34 35 36 3.7 43 44 45 46 47 53 .54.55.56 57 63 .64.65.66.6.7.73.74.75.76 7.7
confidenceflou Threshold

Figure 7.2: Performance of YOLO over dataset 2 with different confidence
and IoU cutoffs

F1 score

.33 .34 35 .36 .3.7 43 .44 .45 4.6 4.7 .53.54 .55 .56 .57 .63 .64 .6.5.6.6.6.7.73.74.7.5.7.6.7.7
Confidence/loU Threshold

Figure 7.3: Performance of YOLO over dataset 3 with different confidence
and [oU cutoffs

F1 score

0.92 W

.33 34 35 36 3.7 43 44 .45 46 4.7 535455356 .57 6.3 .64 .65.6.6.6.7.73.74.75.7.6 .7.7
Confidence/lou Threshold

Figure 7.4: Performance of YOLO over dataset 4 with different confidence
and IoU cutoffs

46

F1 score

.33 .34 35 .36 37 43 44 45 46 47 .53 545556 .57 .63.64.65.66.67.73.74.75.7.6.7.7
Confidence/loU Threshold

Figure 7.5: Performance of YOLO over dataset 5 with different confidence

and IoU cutoffs

MAP F1 score | Precision | Recall | Images | True | Pred
Training 0.992 0.9855 0.983 0.988 | 153 480 | 482
Validation 0.995 1 1 1 17 44 44
Testing (polyhouses) 0.08925 | 0.14425 | 0.1185 0.1885 | 100 216 | 357
Testing (non-polyhouses) 0 0 0.19 100 0 81
Table 7.1: Results YOLO dataset 1
MAP | F1 score | Precision | Recall | Images | True | Pred
Training 0.995 | 0.998 0.996 1 208 425 | 427
Validation 0.957 | 0.949 0.959 0.939 52 99 97
Testing (polyhouses) 0.084 | 0.0084 0.1665 0.00431 | 100 216 |3
Testing (non-polyhouses) 0 0 0.98 100 0 2
Table 7.2: Results YOLO dataset 2
MAP | F1 score | Precision | Recall | Images | True | Pred
Training 0.995 | 0.997 0.994 1 360 624 | 628
Validation 0.954 | 0.94 0.954 0.93 90 178 | 177
Testing (polyhouses) 0.943 | 0.934 0.948 0.921 | 100 216 | 210
Testing (non-polyhouses) 0 0 0.88 | 100 0 12

Table 7.3: Results YOLO dataset 3

47

MAP | F1 score | Precision | Recall | Images | True | Pred
Training | 0.995 | 0.9965 0.995 0.998 | 236 447 | 448
Validation | 0.952 | 0.9215 0.92 0.923 | 59 112 | 113
Testing 0.942 | 0.917 0.926 0.908 | 74 178 | 175
Table 7.4: Results YOLO dataset 4
MAP | F1 score | Precision | Recall | Images | True | Pred
Training | 0.995 | 0.998 0.998 0.998 | 586 811 | 812
Validation | 0.97 | 0.946 0.95 0.942 | 146 191 | 189
Testing 0.931 | 0.906 0.913 0.899 | 74 178 | 174
Table 7.5: Results YOLO dataset 5
YOLO-NAS

F1 score

3.3 .34 35 36 37 43 44 45 46 47 53 545556 .57 63 64 65.66.6.7.73.74.75.76.7.7

ConfidencefioU Threshold

Figure 7.6: Performance of YOLO-NAS over dataset 1 with different confi-
dence and IoU cutoffs

48

1.00 +

0.90

0.85

F1 score

.33 34 35 36 .37 43 44 45 .46 4753 . 54.5556.57 .63 6.4 65.66.6.7.7.3.74.7.5.7.6.7.7
Confidence/loU Threshold

Figure 7.7: Performance of YOLO-NAS over dataset 2 with different confi-
dence and IoU cutoffs

0.85 4

F1 score

0.80 4

33 .34 35 .36 .37 43 44 .45 46 47 .53 54.55356.57 63 64.65.66.6.7.73.74.75.76.7.7
Confidence/loU Threshold

Figure 7.8: Performance of YOLO-NAS over dataset 3 with different confi-
dence and IoU cutoffs

49

F1 score

33 34 35 36 37 43 44 45 46 4.7 53 54555657 63 646566 .67 .73 .74.75.76 .77
Confidence/loU Threshold

Figure 7.9: Performance of YOLO-NAS over dataset 4 with different confi-
dence and IoU cutoffs

.33 34 35 36 37 43 44 45 .46 .47 535455565763 .64.65.66.6.7.73.74.75.76.7.7
Confidence/loU Threshold

Figure 7.10: Performance of YOLO-NAS over dataset 5 with different confi-
dence and IoU cutoffs

MAP | F1 score | Precision | Recall | Images | True | Pred
Training 0.899 | 0.8514 | 0.9496 0.7717 | 153 480 | 391
Validation 0.9947 | 0.951 0.9062 1 17 44 95
Testing (polyhouses) 0.1135 | 0.0578 0.3164 0.0318 | 100 216 | 22
Testing (non-polyhouses) 0 0 0.53 100 0 47

Table 7.6: Results YOLO-NAS dataset 1

30

MAP | F1 score | Precision | Recall | Images | True | Pred
Training 0.9162 | 0.7972 0.9795 0.6721 | 208 425 | 292
Validation 0.9705 | 0.9444 0.9495 0.9394 | 52 99 98
Testing (polyhouses) 0.2109 | 0.1106 0.6842 0.0602 | 100 216 | 19
Testing (non-polyhouses) 0 0 0.67 100 0 33
Table 7.7: Results YOLO-NAS dataset 2
MAP | F1 score | Precision | Recall | Images | True | Pred
Training 0.8606 | 0.7896 0.9661 0.6676 | 360 624 | 432
Validation 0.9676 | 0.9503 0.9412 0.9596 | 90 178 | 182
Testing (polyhouses) 0.9572 | 0.907 0.8723 0.9444 | 100 216 | 234
Testing (non-polyhouses) 0 0 0.63 100 0 37
Table 7.8: Results YOLO-NAS dataset 3
MAP | F1 score | Precision | Recall | Images | True | Pred
Training | 0.8947 | 0.7988 0.975 0.6766 | 236 447 | 312
Validation | 0.9877 | 0.9569 0.925 0.9911 | 59 112 | 120
Testing 0.9453 | 0.9091 0.9195 0.8989 | 74 178 | 174
Table 7.9: Results YOLO-NAS dataset 4
MAP | F1 score | Precision | Recall | Images | True | Pred
Training | 0.8934 | 0.8474 0.9485 0.7659 | 586 811 | 656
Validation | 0.9703 | 0.9173 0.8798 0.9581 | 146 191 | 208
Testing 0.9606 | 0.9059 0.9016 0.9101 | 74 178 | 180
Table 7.10: Results YOLO-NAS dataset 5
Faster RCNN
MAP | F1 score | Precision | Recall | Images | True | Pred
Training 0.996 | 0.978 1 0.957 | 153 480 | 460
Validation 0.591 | 0.7688 0.945 0.648 | 17 44 31
Testing (polyhouses) 0.0315 | 0.164 0.137 0.203 | 100 216 | 322
Testing (non-polyhouses) 0 0 0.24 100 0 76

Table 7.11: Results Faster R-CNN dataset 1

o1

MAP | F1 score | Precision | Recall | Images | True | Pred

Training 0.996 | 0.981 1 0.962 | 208 425 | 409
Validation 0.621 | 0.7813 0.953 0.662 | 52 99 69
Testing (polyhouses) 0.0512 | 0.267 0.211 0.365 | 100 216 | 374
Testing (non-polyhouses) 0 0 0.31 100 0 69

Table 7.12: Results Faster R-CNN dataset 2

MAP | F1 score | Precision | Recall | Images | True | Pred

Training 0.973 | 0.975 0.99 0.96 360 624 | 605
Validation 0.656 | 0.8066 0.957 0.697 | 90 178 | 130
Testing (polyhouses) 0.968 | 0.9884 1 0.977 | 100 216 | 211
Testing (non-polyhouses) 0 0 0.13 100 0 87

Table 7.13: Results Faster R-CNN dataset 3

MAP | F1 score | Precision | Recall | Images | True | Pred

Training | 0.9934 | 0.998 1 0.996 | 236 447 | 445
Validation | 0.53 0.73 0.886 0.621 | 59 112 |79
Testing 0.6226 | 0.805 0.929 0.71 74 178 | 137

Table 7.14: Results Faster R-CNN dataset 4

MAP | F1 score | Precision | Recall | Images | True | Pred

Training | 0.714 | 0.757 0.774 0.741 | 586 811 | 777
Validation | 0.8249 | 0.9 0.935 0.865 | 146 191 | 177
Testing 0.64 0.81 0.939 0.712 | 74 178 | 135

Table 7.15: Results Faster R-CNN dataset 5

52

Bibliography

Adimalla, Narsimha et al. (2020). “Appraisal of groundwater quality for
drinking and irrigation purposes in Central Telangana, India”. In: Ground-
water for Sustainable Development 10, p. 100334.

Agovino, Massimiliano et al. (2019). “Agriculture, climate change and sus-
tainability: The case of EU-28". In: Ecological Indicators 105, pp. 525—
543.

Alzubaidi, Laith et al. (2021). “Review of deep learning: Concepts, CNN
architectures, challenges, applications, future directions”. In: Journal of
big Data 8, pp. 1-74.

Asokan, Anju et al. (2020). “Image processing techniques for analysis of satel-
lite images for historical maps classification—An overview”. In: Applied
Sciences 10.12, p. 4207.

Balcik, Filiz Bektas, Gizem Senel, and Cigdem Goksel (2020). “Object-based
classification of greenhouses using Sentinel-2 MSI and SPOT-7 images: A
case study from Anamur (Mersin), Turkey”. In: IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 13, pp. 2769—
2777.

Baxt, William G (1995). “Application of artificial neural networks to clinical
medicine”. In: The lancet 346.8983, pp. 1135-1138.

Bishop, Chris M (1994). “Neural networks and their applications”. In: Review
of scientific instruments 65.6, pp. 1803-1832.

Bonnett, Raymond and JB Campbell (2002). Introduction to remote sensing.

Boyabatli, Onur, Javad Nasiry, and Yangfang Zhou (2019). “Crop planning
in sustainable agriculture: Dynamic farmland allocation in the presence
of crop rotation benefits”. In: Management Science 65.5, pp. 2060-2076.

Carion, Nicolas et al. (2020). “End-to-end object detection with transform-
ers”. In: Furopean conference on computer vision. Springer, pp. 213-229.

Chen, Liang-Chieh et al. (2017). “Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected
crfs”. In: IEEFE transactions on pattern analysis and machine intelligence
40.4, pp. 834-848.

33

Dave, Chintan P, Rahul Joshi, and SS Srivastava (2015). “A survey on geo-
metric correction of satellite imagery”. In: International Journal of Com-
puter Applications 116.12.

De Wrachien, Daniele (2003). “Land use planning: a key to sustainable agri-
culture”. In: Conservation agriculture: environment, farmers experiences,
imnovations, socio-economy, policy, pp. 471-483.

Girshick, Ross (2015). “Fast r-cun”. In: Proceedings of the IEEE international
conference on computer vision, pp. 1440-1448.

Gopani, Tarak (2020). Grocery Item Detection using TensorFlow Object De-
tection APl URL: https://tarak-gopani.medium.com/grocery-item-
detection-using-tensorflow-object-detection-api-1581fb5df6d6.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770-778.

Hong, Ruikai et al. (2023). “Multitemporal greenhouse mapping for high-
resolution remote sensing imagery based on an improved YOLOX”. In:
Computers and Electronics in Agriculture 206, p. 1076809.

Howden, S Mark et al. (2007). “Adapting agriculture to climate change”. In:
Proceedings of the national academy of sciences 104.50, pp. 19691-19696.

Huang, Wei et al. (2007). “Neural networks in finance and economics fore-
casting”. In: International Journal of Information Technology € Decision
Making 6.01, pp. 113-140.

Huang, Yongbo et al. (2023). “Remote Sensing Object Counting Through
Regression Ensembles and Learning to Rank”. In: IEEE Transactions on
Geoscience and Remote Sensing.

Inc., Roboflow (2023). Roboflow. URL: https://roboflow.com/.

Jacobsen, Karsten (2005). “High resolution satellite imaging systems-an overview”.
In: Photogrammetrie Fernerkundung Geoinformation 2005.6, p. 487.
Jean, Neal et al. (2016). “Combining satellite imagery and machine learning

to predict poverty”. In: Science 353.6301, pp. 790-794.

Jonnala, Prathiba and GSR Sathyanarayana (2015). “A wireless sensor net-
work for polyhouse cultivation using zighee technology”. In: ARPN Jour-
nal of Engineering and Applied Sciences 10.10.

Jonnala, Prathiba and Sivaji Satrasupalli (2013). “Semi-Automated Poly-
house Cultivation Using LabVIEW”. In: [JCSBI. ORG 20118.

Kadiyala, Suneetha et al. (2014). “Agriculture and nutrition in India: map-
ping evidence to pathways”. In: Annals of the New York academy of sci-
ences 1331.1, pp. 43-56.

Kasar, Manisha M, Debnath Bhattacharyya, and TH Kim (2016). “Face
recognition using neural network: a review”. In: International Journal of
Security and Its Applications 10.3, pp. 81-100.

o4

Kerr, John M et al. (1996). Sustainable development of rainfed agriculture in
India. Tech. rep. International Food Policy Research Institute (IFPRI).

Kim, Jeong-ah, Ju-Yeong Sung, and Se-ho Park (2020). “Comparison of
Faster-RCNN, YOLO, and SSD for real-time vehicle type recognition”.
In: 2020 IEEFE international conference on consumer electronics-Asia
(ICCE-Asia). IEEE, pp. 1-4.

Kumar, Parveen, RS Chauhan, and RK Grover (2016). “Economics analy-
sis of tomato cultivation under poly house and open field conditions in
Haryana, India”. In: Journal of Applied and Natural Science 8.2, pp. 846—
848.

Kurian, NJ (2008). “Inclusive growth in India: Agriculture, poverty and hu-
man development”. In: Social Change 38.2, pp. 340-342.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEFE 86.11, pp. 2278-2324.

Li, Min et al. (2020). “Agricultural greenhouses detection in high-resolution
satellite images based on convolutional neural networks: Comparison of
faster R-CNN, YOLO v3 and SSD”. In: Sensors 20.17, p. 4938.

LLC, Google (2023). tensorflow/models: Models and examples built with Ten-
sorFlow. https://github.com/tensorflow/models.

Long, Jonathan, Evan Shelhamer, and Trevor Darrell (2015). “Fully convolu-
tional networks for semantic segmentation”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3431-3440.

Lovell, Sarah Taylor (2010). “Multifunctional urban agriculture for sustain-
able land use planning in the United States”. In: Sustainability 2.8, pp. 2499—
2522.

Mathieson, Allan et al. (2009). “Satellite imaging to monitor CO2 movement
at Krechba, Algeria”. In: Energy Procedia 1.1, pp. 2201-2209.

Mirabella, Orazio and Michele Brischetto (2010). “A hybrid wired/wireless
networking infrastructure for greenhouse management”. In: IEEFE trans-
actions on instrumentation and measurement 60.2, pp. 398-407.

Murthy, D Sreenivasa et al. (2009). “Economic feasibility of vegetable pro-
duction under polyhouse: A case study of capsicum and tomato”. In:
Journal of horticultural sciences 4.2, pp. 148-152.

Raja, R et al. (1997). “Energy planning and optimization model for rural de-
velopment—A case of sustainable agriculture”. In: International Journal
of Energy Research 21.6, pp. 527-547.

Rath, Sovit (2023). Train YOLO-NAS on Custom Dataset. LearnOpenCV tu-
torial. URL: https://learnopencv.com/train-yolo-nas-on-custom-
dataset/.

95

Redmon, Joseph et al. (2016). “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7T79-788.

Reganold, John P, Robert I Papendick, and James F Parr (1990). “Sustain-
able agriculture”. In: Scientific American 262.6, pp. 112-121.

Ren, Shaoqing et al. (2015). “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks”. In: Advances in neural information
processing systems 28.

Rezatofighi, Hamid et al. (2019). “Generalized intersection over union: A
metric and a loss for bounding box regression”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 658
666.

Sharma, HK, HS Gaur, Balraj Singh, et al. (2007). “Nemic population dy-
namics in hybrid tomato, sweet pepper and hybrid cucumber under poly-
house cultivation”. In: Indian Journal of Nematology 37.2, pp. 161-164.

Skalski, Piotr (2023). YOLO-NAS: How to Train on Custom Dataset. Roboflow
blog post. URL: https://blog.roboflow.com/yolo-nas-how-to-
train-on-custom-dataset/.

Smith, CS and GT McDonald (1998). “Assessing the sustainability of agri-
culture at the planning stage”. In: Journal of environmental management
52.1, pp. 15-37.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural
networks from overfitting”. In: The journal of machine learning research
15.1, pp. 1929-1958.

Sun, Haoran et al. (2021). “Mapping plastic greenhouses with two-temporal
sentinel-2 images and 1d-cnn deep learning”. In: Remote Sensing 13.14,
p. 2820.

Techzizou (2022). Build Android App for Custom Object Detection (TF 2.x).
URL: https://medium. com/geekculture/build-android-app-for-
custom-object-detection-tf-2-x-53904a08cfa2.

Tellman, B et al. (2021). “Satellite imaging reveals increased proportion of
population exposed to floods”. In: Nature 596.7870, pp. 80-86.

Tran, Dat (2023). datitran/raccoon_dataset: Annotated images and annota-
tions for raccoon detection. https://github.com/datitran/raccoon_
dataset.

Ultralytics and Glenn Jocher (2023). ultralytics/yolovs: YOLOvS5 in PyTorch.
https://github.com/ultralytics/yolovb.

Vakulabharanam, Vamsi (2004). “Agricultural growth and irrigation in Telan-

gana: A review of evidence”. In: Fconomic and Political Weekly, pp. 1421—
1426.

56

Veldsquez, David et al. (2020). “A method for detecting coffee leaf rust
through wireless sensor networks, remote sensing, and deep learning: case
study of the caturra variety in Colombia”. In: Applied Sciences 10.2,
p. 697.

Vermeulen, Sonja J et al. (2013). “Addressing uncertainty in adaptation plan-
ning for agriculture”. In: Proceedings of the National Academy of Sciences
110.21, pp. 8357-8362.

Verpoorter, Charles et al. (2014). “A global inventory of lakes based on
high-resolution satellite imagery”. In: Geophysical Research Letters 41.18,
pp. 6396-6402.

Yadav, SK et al. (2013). “A review of organic farming for sustainable agri-
culture in Northern India”. In: International Journal of Agronomy 2013.

Yosinski, Jason et al. (2014). “How transferable are features in deep neural
networks?” In: Advances in neural information processing systems 27.

o7

