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Abstract

Recent developments in the field of natural language processing
(Miller, Bernstein, & McDaniel, 2021) and image recognition (Bian-
chini, Verma, & Salisbury, 2021) have increased the feasibility of the
implementation of social robots in society. Touch gesture recognition
is one of the modalities in physical human robot interaction (pHRI)
that still demands improvement. Current recognition accuracy for
touch gesture data on datasets with more than ten different gesture
types is relatively low. For the Corpus of Social Touch (Jung, Poel,
Poppe, & Heylen, 2014), a dataset containing 7805 instances of 14

different touch gestures, accuracy scores do not exceed 64% (Albawi
& Ucan, 2018) (Li, Meng, & Zhang, 2022). Wang et al. (2021) created
the TacAct dataset containing 24000 instances of 12 different touch
gestures. To asses in which manner touch gesture data is processed
and classified most effectively using a larger dataset, touch gesture
data of the TacAct dataset is processed spatially and temporally in
this study. Spatial processing by the extraction of keyframes has
shown to be an effective method to represent touch gesture data. An
accuracy of 81.5% is achieved using a Random Forest classifier, being
relatively low in computational complexity compared to other meth-
ods. The accuracy of this model beats accuracy scores on comparable
datasets with a similar number of gesture types and competes with
the state-of-the-art results on the TacAct dataset. In summary, spatial
processing shows a larger potential compared to temporal process-
ing in classification accuracy compared to computational complexity.
Further research opportunities addressing class distinction of touch
gestures should be exploited to make direct inference on the validity
of a specific approach.
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1 introduction

Recent years have seen major developments for the field of social robotics.
The field of social robotics has emerged only recently, and it refers to the
field in which the robot’s goal is to “engage in an affective or otherwise
helpful interaction” (Sheridan, 2020, p. 7) with another human. Several
modalities in social robotics have seen great improvements in the past
decade. Recent developments in image recognition have increased the pos-
sibilities for the visual modality (Bianchini et al., 2021) and advances in the
field of natural language processing (NLP) have contributed greatly to the
possibilities for the auditory modality (Miller et al., 2021). Consequently,
physical human-robotics interaction (pHRI) is becoming more natural and
implementation of robots in social interaction is becoming increasingly
feasible. One of the modalities in social interaction between humans and
robots that still demands improvement is the touch modality. Social touch
(or: touch gesture, or: tactile emotion) is defined as interpersonal touch
that is used to convey emotional or functional intents (Cascio, Moore, &
McGlone, 2019). Touch gesture recognition presents itself as a prospective
modality for pHRI. Research shows that touch gestures are essential in
communicating emotional and functional intentions (Hertenstein, Holmes,
McCullough, & Keltner, 2009). Furthermore, emotional valence may be
detected more effectively by interacting via social touch compared to other
modalities in pHRI (Horii, Nagai, & Asada, 2018). From a psychological
perspective, several studies have shown the importance of physical touch
for human wellbeing (Lee & Cichy, 2020), (Field, 2010), (Garcini et al.,
2019). Consequentially, as technology continues to become increasingly
intertwined with the daily interactions with our environment, touch ges-
ture recognition could be highly valuable for the field of pHRI. It could
provide opportunities for applications in smart homes (Miller et al., 2021)
serving healthcare, education and other purposes. Although promising,
touch gesture recognition presents itself as a difficult problem in social
robotics. The lack of data due to the difficulty to collect touch data and
the complexity of the data due to its spatiotemporal nature are two of
the reasons why research in this field is not yet as advanced as for other
modalities related to pHRI.

The TacAct dataset (Wang et al., 2021) is a recently published dataset
containing tactile data of twelve different touch gestures. The publication of
this dataset allows for novel research opportunities, as it contains roughly
three times as much data as the Corpus of Social Touch (Jung et al., 2014), a
dataset on which most previous research on touch gesture recognition has
focused. The aim of this research is to explore two different approaches
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to classify touch gestures using the TacAct dataset, and to compare the
results to previous research on the CoST and the TacAct dataset.

Computational complexity creates difficulties for spatio-temporal pro-
cessing of touch gesture data, particularly considering the scope of this
study and the instrumental capacity. A spatio-temporal approach to classify
touch gesture data could potentially be the most effective as it combines
spatial as well as temporal information, but it brings high computational
costs. If spatial or temporal processing would independently be sufficient
to process touch gesture data, this could have positive implications for
the field of touch gesture recognition as it would reduce computational
complexity for touch gesture processing. As a result, this study focuses on
classifying touch gestures by exploiting the temporal and the spatial aspect
of the data respectively. The following research question is approached in
this study:

To what extend are the spatial and the temporal aspect of touch gesture
data respectively predictive for touch gesture classification?

Spatial processing is assessed by considering only a single frame per ges-
ture, which is the frame with the highest sum of the pressure values.
Temporal processing is analysed by using different metrics over a num-
ber of frames per gesture, in combination with spatio-temporal feature
extraction. Two classification algorithms are selected based on previous
research in the field and taking into account the scope of this study. The
performance of the two different approaches is evaluated based on ac-
curacy and the performance across classes is considered by evaluating
the f1 scores. Computational complexity is also taken into account in
a qualitative manner. This study should give researchers in the field of
touch gesture recognition more insight in where to lay the focus for data
collection, representation and processing by exploring the predictive value
of the spatial and the temporal aspect of touch gesture data respectively
and comparing the results to the state-of-the art results on the CoST and
the TacAct dataset.

The Random Forest classifier using the raw data from the keyframes as
input outperforms the accuracy scores that are achieved with the temporal
approach with an accuracy of 81.5%. This demonstrates the effectiveness
of spatial processing of touch gesture data. The computational complexity
is relatively low, as no pre-processing technique is applied and only one
frame per gesture is used. Findings point out that the information from
temporal data on the mean and the sum of the pressure values is less
predictive, as accuracy scores do not exceed 60%. This could indicate that
classification accuracy is higher when more importance is given to the
spatial aspect of the data in contrast to the temporal aspect of the data,
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and that this is also beneficial for computational complexity. The accuracy
scores of the spatial approach for touch gesture classifiaction of the TacAct
dataset surpass the state of the art results on the CoST dataset and compete
with the results on the TacAct dataset of the LeNet-5 model of Li et al.
(2022).

In summary, a spatial and a temporal approach to classify a novel larger
data set of touch getures have been explored and compared to each other
and to previous research. The spatial approach appears to be an effective
solution for touch gesture classification as it achieves a relatively high
accuracy with a lower computational complexity compared to a temporal
approach. In addition to this, the classification accuracy of the spatial
approach is relatively high compared to previous research on the CoST
dataset and the state of the art results for the TacAct dataset.

2 related work

2.1 Different types of social touch

Social touch (or: touch gesture, or: tactile emotion) is defined as interper-
sonal touch that is used to convey emotional or functional intents (Cascio
et al., 2019). Research shows that basic emotions such as fear, anger and
disgust, as well as more complex messages such as trust can be communi-
cated through social touch (Hertenstein, Keltner, App, Bulleit, & Jaskolka,
2006). Due to the qualitative nature of social touch, it can be stated that an
infinite number of messages can be communicated through this channel.
Similarly, the way in which a message can be communicated can also
take many different forms. There exists variability along two axes; the
variability in the types of emotions that are being communicated which
influence how the gesture is executed, and the variability across humans in
the way in which the same emotions are communicated through a physical
action. Consequentially, the large variability related to touch gestures
makes it difficult to distinguish and group different types of social touch.
For the field of pHRI, distinguishing as well as grouping touch gestures
based on certain characteristics is a prerequisite for the classification of
touch gestures. While for the TacAct dataset 12 different gesture types are
considered (Li et al., 2022), other researchers take a different approach and
consider a different number of gesture types (e.g. 7 different gesture types
for the HAART dataset (Cang et al., 2015) versus 14 different gesture types
for the CoST dataset (Jung et al., 2014).

Comparing the defined gesture types for the CoST and the TacAct
dataset (table 1), it shows that both authors distinguished individual
categories for the gesture types ’poke’, ’scratch’, ’hit’ and ’squeeze’. In
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Table 1: Overview of the different gesture types for the CoST and the TacAct
dataset respectively.

CoST TacAct

grab pull
hit squeeze
massage push
pat hold
pinch grasp
poke poke
press static drag
rub strongly hit
scratch soft slide
slap scratch
squeeze soft hit
stroke sliding drag
tap
tickle

addition to this, both considered some form of grabbing, ’grabbing’ vs.
’grasping’. Other than this, both studies consider relatively different types
of gestures. These two studies show that there is little conformity with
regards to defining different gesture types in the field of touch gesture
recognition. The variability in defining classes should be taken into account
when evaluating and comparing research in the field of touch gesture
recognition.

2.2 Classifying social touch

To implement touch gesture recognition in social robots, it is necessary for
computers to be able to classify touch gestures. In order to apply a machine
learning approach for this classification problem, data must be collected.
Different methods have been used to collect touch gesture data, such as
tactile sensors (Jung, Poel, Poppe, & Heylen, 2016), (Altun & MacLean,
2015), wearable devices (Blumrosen, Sakuma, Rice, & Knickerbocker, 2020)
and touch screen (Ghosh, Hiware, Ganguly, Mitra, & De, 2019). In 2015,
Cang et al. published the HAART dataset, containing touch data on 7

different gestures. Using the Random Forest algorithm, 90% accuracy
was achieved. Jung et al. (2014) created the Corpus of Social Touch, a
dataset containing 7805 instances of 14 different touch gestures using a
tactile sensor. This dataset enabled researchers to analyze touch gesture
data with more gestures and improved the state of the art in the field of
touch recognition. In table 2, an overview is presented of the existing
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classification models for the CoST dataset. The accuracy varies from 42%
(Altun & MacLean, 2015) to 64% (Albawi & Ucan, 2018) and shows a
great variety in the number of features extracted (e.g. 273 by Ta, Johal,
Portaz, Castelli, and Vaufreydaz (2015) compared to none by Albawi and
Ucan (2018)) and the applied classification method. Contrasting methods,
such as machine learning models with complex feature techniques (Ta
et al., 2015) and deep learning models without preprocessing (Albawi &
Ucan, 2018), are both able to achieve accuracy scores slightly above 60%.
For the HAART dataset, generalizability showed to be insufficient due
to the few different gestures, while for the CoST dataset accuracy scores
are relatively low (table 2). To provide researchers in the field with a
larger dataset and a sufficient number of gesture types, Wang and Chen
created the TacAct dataset. This dataset consists of 24000 instances of 12

different touch gestures, containing roughly three times as much data as the
CoST dataset. Up to this point, the only research that has been published
using the TacAct dataset is presented by the authors of the dataset. The
Convolutional Neural Network (CNN) named LeNet-5 including an input
layer, three convolutional layers, two pooling layers, a fully connected layer
and an output layer proved most effective (Wang et al., 2021). The highest
accuracy of 95.46% was achieved by using a frame length of 80 frames,
although this model brought high computational costs.

3 method

3.1 Dataset description

The TacAct dataset (Wang & Chen, 2021) contains tactile data on twelve
different touch gestures, namely pull, squeeze, push, hold, grasp, poke,
static drag, strong hit, soft slide, scratch, soft tap, and sliding drag (table 1).
The dataset is balanced, meaning that frequencies are evenly distributed
for all classes. The data was collected using a pressure sensor on a robotic
arm. The data was recorded on a 32 by 32 tactile sensor grid at 100 Hz.
50 participants were represented in the dataset and for each gesture type
the action was repeated 40 times, resulting in 480 actions per participant
and a total of 24.000 actions. Each gesture recording includes a variable
number of frames and frames are captured only when a threshold is met to
indicate that the action has started. The data are spatiotemporal, meaning
that the data relate to both space and time. The dataset also includes
extracted keyframes for all gesture recordings, representing the frame with
the maximum total pressure value.
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Table 2: Chronological comparison of existing classification methods applied on
CoST dataset. Adapted from (Li et al., 2022) and (Albawi & Ucan, 2018).

Reference Features Classifier Accuracy (%) SD (%)

(Jung, 2014) 28 Bayesian 53 N/A
SVM1

46 N/A

(Jung et al., 2014) 28 Bayesian 54 12

SVM 53 11

(van Wingerden, Uebbing, Jung, & Poel, 2014) 45 Neural Network 54 15

(Altun & MacLean, 2015) 42 Random Forest 56 13

(Gaus et al., 2015) 5 set Random Forest 59 N/A
Boosting 58 N/A

(Hughes, Farrow, Profita, & Correll, 2015) 7 Deep Autoenc. 56 N/A

(Ta et al., 2015) 273 SVM 61 N/A
Random Forest 61 N/A

(Jung, 2017) 54 Bayesian 57 11

Decision Tree 48 10

SVM 60 11

Neural Network 59 12

(Hughes, Krauthammer, & Correll, 2017) Raw Data CNN 42 11

Raw Data CNN-RNN2
53 N/A

7 Deep Autoenc. 34 N/A

(Albawi & Ucan, 2018) Raw Data CNN 64 12

(Wei, Liu, Wang, & Sun, 2019) 2 set ELM3
61 N/A

CNN 42 N/A
1. Support Vector Machine 2. Recurrent Neural Network 3. Extreme Learning
Machine
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3.2 Classifiers

Previous research shows that out of the existing classification methods for
the CoST dataset, the Convolutional Neural Network (CNN) of Albawi and
Ucan (2018) achieved the highest accuracy (64%) out of all classifiers. In
addition to this, the Random Forest model of Ta et al. (2015) also achieved a
relatively high accuracy of 61%. Hereby, it can be concluded that a Random
Forest algorithm as well as CNN are suitable architectures for this type
of classification problem. While Random Forest is a tree-based classifier,
the CNN is a specific type of artificial neural network. Both algorithms
are of a different type and both are suitable for touch gesture classification.
By taking these two characteristics into account and also considering the
scope of this study, a Random Forest and a multi-layer perceptron (MLP)
algorithm using back-propagation will be used in this study to classify
touch gestures and assess the effectiveness of the different approaches. By
choosing two different classifiers to evaluate the approaches, any induced
bias related to the selected classification algorithm should be avoided as
much as possible.
The parameter grid that is used for optimization for the Random Forest
includes:

• bootstrap: True, False

• max_depth: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None

• max_features: ’auto’ and ’sqrt’

• min_samples_leaf: 1, 2, 4

• min_samples_split: 2, 5, 10

• n_estimators: 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000

For the MLP architecture, the search is performed over the following
parameters:

• hidden_estimators layer_estimatorssizes: 10,20,30, 100, 200

• activation: ’tanh’ and ’relu’

• solver: ’sgd’ and ’adam’

• alpha: 0.0001, 0.05

• learning_estimatorsrate: ’constant’ and ’adaptive’
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3.3 Spatial processing

To evaluate the predictiveness of the spatial aspect of the data, a single
frame per gesture is considered. This frame is referred to as the keyframe
of a gesture and it is selected based on the highest total pressure value.
To process the raw data, the 32x32 two-dimensional pressure grid of the
keyframe is converted to a two-dimensional 1x1024 array. The data are
split into a train (80%) and a test (20%) set, using stratified sampling to
ensure class balance is maintained. Splitting is done user-independently, to
promote generalizability of results. Consequently, both a Random Forest
classifier and a MLP are used to classify the data. The models are optimized
using grid search with cross validation.

3.4 Temporal processing

The importance of the temporal aspect of touch gesture data is assessed by
considering the mean and sum of the pressure values of 20 frames, corre-
sponding to 200 milliseconds. Both the mean and the sum are considered
in this approach as both metrics capture information from the entire set
of data and the use of two different metrics helps to avoid bias related to
the selected metric. A fixed number of 20 frames per gesture is chosen to
analyze the gestures, which is motivated by the trade-off between informa-
tion and computational complexity, as explored in (Wang et al., 2021). The
model of (Wang et al., 2021) with a frame length of 20 proves effective and
achieves an accuracy of approximately 88%, while the slope of the function
of the accuracy compared to the number of frames decreases strongly
after 20 frames. Zero padding is applied to process gestures with frame
sequences of less than 20 frames. Spatiotemporal features are extracted
using the TSFresh library. TSFresh is a Python package that provides
several methods to extract time series features from data (Henderson &
Fulcher, 2021), such as for example the kurtosis, the permutation entropy
or whether there exists duplicates in the time-series data. The data is split
into a train (80%) and test (20%) set. Stratified sampling is applied to
ensure class balance is maintained. Splitting is done user-independently,
to promote generalizability of results. The Random Forest and the MLP
are both optimized using grid search with cross validation.

3.5 Evaluation

Evaluation of the two approaches is based on classification accuracy, as
classes are balanced. To break down the accuracy scores and asses per-
formance across classes, f1 scores are evaluated for individual classes for
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the best performing classifier, considering both precision and recall. Com-
putational complexity is also considered and evaluated in a qualitative
manner. The accuracy scores of the two classifiers for the spatial as well as
the temporal approach will be compared to the state of the art results on
the CoST dataset, the TacAct dataset and to each other.

4 results

4.1 Spatial processing

The Random Forest model scored a training accuracy of 1, indicating
a possible risk of over-fitting. Parameter tuning with cross validation
resulted in a test accuracy of 81.5% (table 3). With regards to the number
of estimators, 600 estimators were used for optimal results. The minimum
samples required for a split was set to 5 and 2 minimum samples were
required at a leaf. The maximum depth was set at 70 and no bootstrapping
was applied. The MLP classifier achieved a test accuracy of 76.9%. The
Rectified Linear Unit (ReLu) function was used as activation function, the
optimal learning was found to be 0.0001 and set to constant, the hidden
layer sizes were set to 200 and the Adaptive Moment Estimation (Adam)
algorithm was used for optimization. The Random Forest classifier scored
the lowest F1 scores for the classes ’strong hit’, ’soft hit’ and ’soft slide’
(table 4).

4.2 Temporal processing

Using TsFresh, 372 spatiotemporal features were extracted from the data.
As depicted in table 3, an accuracy of 58.2% was achieved with Random
Forest using the mean pressure value per frame. Parameters were opti-
mized using grid search with cross validation. For optimal results, 600

estimators were used. The minimum number of samples required for each
split was set to 5, 2 minimum samples were required at a leaf, maximum
depth was set at 70 nodes and no bootstrapping was used. For the sum of
the pressure values, Random Forest achieved an accuracy of 58.8%. The
best parameters were: 100 estimators, 5 minimum samples required to split,
1 minimum sample for a leaf, a max depth of 70 and no bootstrapping. For
the MLP architecture, an accuracy of 48.6% was achieved using the mean
of the pressure values for each frame. The ReLu activation function was
found to be optimal out of the search grid. The learning rate was constant
and set to 0.001, hidden layers size was set to 30, and the weights were
optimized using the Adam optimization algorithm for stochastic gradient
decent. Using the sum of the pressure values per frame, an accuracy score



5 discussion 11

Table 3: Overview of the different pipelines used to classify touch gestures of the
TacAct dataset

Data Pre-processing Feature extraction Features Model Accuracy (%)

Keyframe None Raw data 1024 Random Forest 81.5
Keyframe None Raw data 1024 MLP 76.9

20 frames Mean TsFresh 372 Random Forest 58.2
20 frames Mean TsFresh 372 MLP 48.6
20 frames Sum TsFresh 372 Random Forest 58.8
20 frames Sum TsFresh 372 MLP 31.2

Table 4: F1 scores per gesture type for the Random Forest classifier for the spatial
and the temporal approach respectively

Spatial Temporal

Gesture type F1 score F1 score

Pull 0.81 0.37

squeeze 0.86 0. 56

push 0.87 0.55

hold 0.81 0.56

grasp 0.79 0.43

poke 0.87 0.78

static drag 0.82 0.40

strongly hit 0.74 0.92

soft slide 0.77 0.56

scratch 0.86 0.51

soft hit 0.72 0.94

sliding drag 0.86 0.36

of 31.2% was achieved using a MLP architecture. Grid search with cross
validation resulted in ReLu as the activation function, a constant learning
rate of 0.0001, a hidden layer size of 30 and the Adam algorithm for op-
timization. The Random Forest model scored the lowest F1 score for the
gesture types ’pull’ and ’sliding drag’ (table 4).

5 discussion

The Random Forest model using keyframes achieved the highest accuracy
out of all compared methods. In addition to this, the computational
complexity is relatively low, as only one frame per gesture is considered.
Comparing these results with the LeNet-5 CNN of Wang et al. (2021) that
considered spatio-temporal information from the TacAct dataset, it shows
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that the CNN of Wang et al. (2021) is able to achieve an accuracy of around
88% using 20 frames per gesture and accuracy improved up to 95.46%
using 80 frames. Using keyframes and hereby only considering the spatial
aspect of the data, an accuracy of 81.5% is achieved by using only a single
frame and a Random Forest classifier. By using keyframes, a high accuracy
is achieved with less frames compared to previous research on the TacAct
dataset. In addition to this, the results of the spatial approach surpass the
state of the art results on the CoST dataset. While for the CoST dataset
accuracy scores did not exceed 64%, an accuracy of 81.5% is achieved on
the TacAct dataset. In contrast to most spatio-temporal approaches for
the CoST dataset, this approach only considered spatial information and
did not apply any deep learning techniques. These findings indicate a
positive effect for classification accuracy that can be attributed either to
the spatial approach or to the TacAct dataset. Further research should
investigate whether the spatial approach using keyframes is as effective for
other datasets as it is for the TacAct dataset, and wether techniques that
were used on the CoST dataset perform even better on the TacAct dataset.
Hereby, direct inference can be made on the value of a larger dataset and
the potential of extracting keyframes respectively.

In attempting to assess the predictiveness of the spatial and the tem-
poral aspect of touch gesture data respectively, the two approaches are
compared in this study. However, caution must be taken in this compari-
son for several reasons, as multiple decisions are made in this study that
could influence the results and hereby induce bias in the study. These
decisions mainly include the selection of 20 frames per gesture and the
decision to use TsFresh for spatio-temporal feature extraction. Although
these decisions are based on thorough evaluation, it might be the case that
different decisions could have lead to different results. Further research
should point out the validity of these decisions and the results.

It is unclear to what extend the different characteristics of the TacAct
and the CoST dataset influence the results. As there exists a large vari-
ability in how touch gesture data is recorded, how classes are defined
and how touch gestures are executed, there may exists large differences
between the two datasets. These difference might have consequences that
influence recognition accuracy. Therefore, further research should asses
the generalizability of the results on the TacAct dataset. This should be
taken into account when comparing the results to previous research in the
field.

Classification on the keyframes of the TacAct dataset shows the lowest
f1-score for classes ’strong hit’ and ’soft hit’ for the spatial approach. By
contrast, for the temporal approach these classes show by far the highest f1-
scores (table 4). These are the only two classes in the dataset that are not of
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fixed length and contain substantially less frames. However, classification
on keyframes should not be affected by the number of frames for a gesture,
while the temporal approach could be negatively affected by a shorter time
period. These results are counter intuitive and further research should
point out which aspect of these gesture types results in their deviating
f1-scores compared to other classes.

6 conclusion

For the spatial approach, the optimized Random Forest classifier achieves
an accuracy of 81.5% and the MLP achieves a slightly lower accuracy of
76.9%. The computational complexity is relatively low, as no pre-processing
is applied and only one frame per gesture is used, resulting in 1024 features
using the raw data. Generally, it can be stated that a spatial approach is
an effective technique to classify touch gestures, as it is relatively low in
computational complexity compared to other techniques, and accuracy
scores are relatively high using machine learning models. The Random
Forest classifier shows more effective than the MLP architecture.

The accuracy scores for the temporal approach are lower compared to
the accuracy scores for the spatial approach. The Random Forest classifier
achieves an accuracy of 58.2% considering only the temporal aspect of the
data using the mean of the pressure values, and a comparable accuracy
of 58.8% using the sum of the pressure values. For the MLP, accuracy
scores were also lower for the temporal approach compared to the spatial
approach. Moreover, while for the temporal approach only 372 features
are extracted, extensive pre-processing is applied to extract the spatio-
temporal features from the frames, which is a process that is relatively high
in computational complexity. By this, it can be concluded that considering
a computational acceptable number of frames and the mean or sum as a
metric, the temporal approach is outperformed by the spatial approach
and the spatial characteristics show a higher predictive value. By only
considering a spatial approach, accuracy scores are relatively high for the
TacAct dataset, indicating that a spatial approach to touch gesture data
by extracting keyframes is an effective technique when computation is
constrained. Further research should point out to what extend the spatial
approach of using keyframes is also effective on comparable datasets and
hereby evaluate to what extend the results of this study are generalizable.

It is difficult to conclude this research with a definitive answer to the
extend to which the spatial and temporal aspect of touch gesture data
are respectively predictive for touch gesture classification. Findings have
shown that for the TacAct dataset, the spatial aspect is predictive up to
a classification accuracy of 81.5% using a Random Forest classifier. The
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temporal approach showed that gestures can be classified by focusing on
the temporal aspect of a gesture, but only up to an accuracy of 58.2%
using the mean and 58.8% using the sum with a Random Forest classifier.
However, it should be taken into account that the temporal approach
required more processing steps and more decisions, by which bias could
be induced in the approach and which could have influenced the results.
Generally, findings point out that the spatial aspect is more predictive for
touch gesture recognition on the TacAct dataset compared to the temporal
approach, as a higher accuracy is achieved with less pre-processing and by
using less information from the gestures. To what extend these findings
are generalizable, is up for discussion. Comparing the results of the
spatial approach to other approaches for the TacAct dataset, shows that
the spatial approach is indeed effective compared to the spatio-temporal
approach of (Li et al., 2022). Comparable accuracy scores are achieved
using a considerably lower number of frames and a machine learning
model. Based on accuracy, results are also valuable compared to the CoST
dataset. However, due to the lack of conformity in the definition of touch
gestures, it is difficult to draw a conclusion on the effectiveness of the
spatial approach using keyframes on touch gesture recognition in general.

7 limitations and future directions

For the field of pHRI and particularly for touch gesture recognition, it
will be highly valuable to further investigate all dimensions along which
humans interpret social gestures. In this research, the focus was centered
on the physical aspect of touch gestures expressed in pressure values over
time. However, the visual modality could also contribute to the interpre-
tation of touch gestures in the form of facial expression or eye gaze. In
addition to this, the auditory modality could intensify or change the mean-
ing of a touch gesture in the form of shouting for example. By breaking
down social interaction into different modalities, a bottom-up approach
is taken and all components can be analyzed respectively. However, in
distinguishing different gesture types, their meaning is essential and the
physical channel is often not the only channel by which meaning is commu-
nicated. Integration of the different modalities that play a role in conveying
meaning in touch gesture interactions could result in more concrete and
wholesome definitions of touch gesture categories (even along a continuous
spectrum instead of constrained by discrete categories). As a consequence,
touch gesture data sets can be labeled in such a way that class definitions
become more universal and data sets become more compatible. This could
boost research in the field of touch gesture recognition as it improves
generalizability of results. In addition to its potential for the definition
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of touch gesture classes, the possibility to use information of different
modalities to classify touch gestures could greatly benefit the classification
accuracy as more information can be considered.

Exploring all the dimensions along which meaning of social gestures is
communicated and integrating this information, could have great potential
to advance the field of touch gesture recognition. More universal classes of
touch gestures and a spectrum on which these categories can be plotted,
along with the possibility to consider multidimensional information can
improve the ability for social robots to recognize touch gestures and conse-
quently enhance the interaction between humans and robots. Conclusively,
this can result in a more desirable implementation of social robots in society.
Besides the lack of a universal approach to the definition of touch gesture
classes, the fact that a spatio-temporal approach could not be considered
in this research due to instrumental constrains is limiting for this study. A
potential research direction would be to explore a spatio-temporal and a
spatial approach respectively and compare the two.
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