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Abstract

Since around 2010, papers appeared that advise to use the risk factors
found in the equity market as building blocks for constructing diversified
stock portfolios. Since 2016, several papers investigated and compared two
methodologies for constructing multi-factor portfolios. One is called the
top-down approach which entails combining single-factor portfolios into a
final portfolio. The second is the bottom-up approach and entails selecting
stocks that on average have high exposures towards all factors. Several
papers concluded that the bottom-up approach is superior compared to
the top-down approach on absolute and risk-adjusted basis. Other papers
argue there is no differences between both construction techniques. Most
papers investigate both construction techniques for the U.S. stock market
or for global equities. We contribute to the literature by investigating
both construction techniques for fifteen European stock markets over the
time period July 2004 till December 2022. Our backtesting results seem
to suggest that bottom-up constructed portfolios indeed perform better
when applied in a naive manner due to higher factor exposures. However,
our backtesting results also seem to suggest that there is no performance
difference between both construction techniques when factor exposures
are (on average) matched. The backtesting results suggest that both
construction techniques can be applied to achieve desired factor exposures.
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1 Introduction

Markowitz (1952) laid the foundation of Modern Portfolio Theory which as-
sumes that investors are risk-averse and therefore want to maximize a portfo-
lio’s expected return while minimizing its risk. According to Modern Portfolio
Theory, one could maximize a portfolio’s expected return while minimizing its
risk by properly diversifying over multiple assets. Since around 2010, papers
appeared in which researchers advise to use risk factors as building blocks for
constructing diversified portfolios. These papers argue that risk premiums often
have low or negative correlations which could provide diversification benefits.
Risk premiums have a cyclic nature and sometimes can even become temporarily
negative, but by diversifying over multiple risk factors one could reduce this risk.
For example, Ang (2010) is among the first to recognize that risk factors found
in the equity market could be used as building blocks for constructing diversified
portfolios. Furthermore, Bender et al. (2009), Hjalmarsson (2009), Blitz (2012),
Blitz (2015), Brière and Szafarz (2021), and Bessler et al. (2021) backtest multi-
factor portfolios and report diversification benefits for multi-factor portfolios.

Bender and Wang (2016) state that the increasingly awareness of using risk
factors as building blocks for constructing portfolios raised the question of how
to construct such a multi-factor portfolio most efficiently. According to the
authors, one could generally distinguish two multi-factor portfolio construction
techniques. Bender and Wang (2016) call these construction techniques the top-
down approach and the bottom-up approach. Other papers sometimes use other
terminologies, for example ’mixing’ and ’integrating’, or ’portfolio blending’ and
’signal blending’, but we will follow the terminologies used by Bender and Wang
(2016). The top-down approach consists of two steps. In the first step, one cre-
ates single-factor portfolios for the risk factors of interest. In the second step,
one combines these single-factor portfolios into a multi-factor portfolio by giving
each single-factor portfolio a desired weight. The bottom-up approach entails
constructing a multi-factor portfolio in just one step by selecting a desired num-
ber of stocks that on average have a high exposure towards all risk factors of
interest simultaneously.

According to Ghayur et al. (2018), proponents of the bottom-up approach argue
that the technique is superior to the top-down approach since it excludes stocks
that have favorable exposure to one risk factor but may have unfavorable expo-
sure to one or multiple other risk factors. The risk premium gained by having
favorable characteristics to one risk factor therefore may be cancelled out by
having unfavorable characteristics to one or multiple other risk factors. Clarke
et al. (2016), Bender and Wang (2016), and Fitzgibbons et al. (2017) back-
tested multi-factor portfolios using both construction techniques. The authors
matched portfolios using both construction techniques on a certain risk metric,
such as the tracking error or volatility, and find that the bottom-up constructed
portfolios outperform in terms of absolute and risk-adjusted return.
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Other papers doubt the claims that the bottom-up approach outperform the
top-down approach on risk-adjusted basis. Leippold and Rueegg (2018) back-
tested a lot of top-down and bottom-up constructed portfolios but could not
reject the null hypothesis that bottom-up constructed portfolios have statis-
tically significant higher Sharpe Ratios than top-down constructed portfolios
when applying a multiple hypothesis framework. The authors therefore ar-
gue that the claimed findings favoring the bottom-up approach is a statistical
fluke. Ghayur et al. (2018) and Blitz and Vidojevic (2019) argue that papers
claiming the superiority of bottom-up constructed portfolios do not make fair
comparisons since the tested portfolios are matched on metrics like tracking
error or volatility, but do not account for factor exposures. According to the
authors, the claimed findings of the superior absolute and risk-adjusted returns
for bottom-up constructed portfolios may be simply the results of having higher
factor exposures for bottom-up constructed portfolios. The authors conclude
that when both types of portfolios are matched on factor exposures, there is
no difference between a bottom-up constructed portfolio and a top-down con-
structed portfolio. Chow et al. (2018) and Amenc et al. (2018) are also skeptical
and argue that the findings of superior results of the bottom-up approach are
overstated.

The discussion about the superiority of bottom-up constructed portfolios is
clearly a recent debate. None of the aforementioned papers test both construc-
tion techniques specifically for European stock markets. This paper contributes
to the existing literature by backtesting and comparing unleveraged long-only
portfolios using both construction techniques for fifteen European stock mar-
kets over the time period July 2004 till December 2022. These European stock
markets are: Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, and United
Kingdom. Furthermore, the portfolios will be annually rebalanced at the end
of the month June and we make the assumption of zero transaction costs. The
multi-factor portfolios will be constructed using the risk factors Size, Value,
Profitability, and Investment. Using these four risk factors, it is possible to
make a total of eleven combinations of two, three, and four factors. We will
backtest for all combinations in order to prevent drawing conclusions on just
one or a couple of randomly selected combinations of risk factors.

First, we will backtest portfolios using both construction techniques in a naive
setting. We define ’naive setting’ as simply selecting a specified percentage (we
will also call these percentages ’thresholds’) of top ranking stocks for the fac-
tors of interest in the investment universe and give an equal weight to each
stock. We will do this for thresholds of 10%, 33.33%, and 50%. For clarity,
we will call these bottom-up and top-down constructed portfolios the ’naively
constructed portfolios’ since the portfolios will be constructed by just selecting
the top ranking stocks and giving them an equal weight without taking any fur-
ther considerations into account like matching the portfolio on tracking error,
volatility, or factor exposure or like removing unwanted stocks or whatsoever.
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By backtesting the naively constructed portfolios, we investigate if bottom-up
constructed portfolios perform better than top-down constructed portfolios in
a naive setting.

Furthermore, we also backtest average exposures-matched portfolios for both
construction techniques in order to investigate whether one portfolio construc-
tion technique indeed generates higher risk-adjusted returns than the other.
We apply the framework of Ghayur et al. (2018) to construct these average
exposures-matched portfolios. The authors construct average exposures-matched
portfolios for which they call ’Low level of risk factor exposures’ and a ’High
level of risk factor exposures’. We will make this distinction as well. The ’Low’
levels of average exposures are generated by constructing a bottom-up portfo-
lio that includes the top 50% of the highest ranking stocks in the investment
universe. The ’High’ levels of average exposures are generated by construct-
ing a bottom-up portfolio that includes 25% of the highest ranking stocks in
the investment universe. Consequently, for each bottom-up constructed factor
combination portfolio and both levels of exposure, a top-down portfolio is con-
structed having similar factor exposures for the controlled factors. The threshold
of the single-factor portfolios is set such that the average exposures are (roughly)
matched over time with the corresponding bottom-up constructed portfolio. For
clarity, we will call these portfolios the average exposures-matched portfolios.

Lastly, we also backtest what we call the enhanced constructed portfolios. Blitz
and Vidojevic (2019) backtest top-down constructed portfolios having stocks
with a specified number of unfavorable characteristics removed from its single-
factor portfolios. The authors find that the performance of these portfolios
become more similar to bottom-up portfolios when more stocks having negative
factor exposures are removed. This implies that a portfolio’s performance is the
result of factor exposure and not the result of applying a certain portfolio con-
struction technique. We are interested whether we find similar results. There-
fore, we will also test naively constructed top-down portfolios having stocks
with a specified number of unfavorable characteristics removed. Blitz and Vi-
dojevic (2019) call these ’enhanced strategies’. To make a clear distinction with
the naively constructed portfolios and average exposures-matched portfolios, we
use this terminology as well and therefore refer to these portfolios as the ’en-
hanced constructed portfolios’.

The backtesting results show for all thresholds and all factor combinations out-
performance of naively constructed bottom-up portfolios compared to naively
constructed top-down portfolios in terms of realized factor exposures, annualized
mean excess return, and Sharpe Ratio. The results of the backtested naively
constructed portfolios therefore seem to be in line with the findings that the
bottom-up constructed portfolios outperform top-down constructed portfolios
when applied in a naive setting. For the backtested single-factor portfolios we
can also see that these portfolios have negative exposure towards at least one
factor, in line with the main reason why some favor the bottom-up approach.
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For the backtested average exposures-matched portfolios, we find for none of
the average exposures-matched bottom-up and top-down constructed portfo-
lios that their difference in Sharpe Ratio and Information Ratio is statistically
significant different from zero at 5% significance level. These results seem to
contradict the claims that bottom-up constructed portfolios do outperform top-
down constructed portfolios on risk-adjusted basis when portfolios controlled for
matching factor exposures. Ghayur et al. (2018) and Blitz and Vidojevic (2019)
report similar findings. Furthermore, Clarke et al. (2016) match portfolios on
tracking error and find higher Information Ratios for bottom-up constructed
portfolios than for top-down construction portfolios. We do not actively match
on tracking error, however multiple average exposures-matched portfolios have
similar tracking errors by coincidence. We find that these portfolios do have
similar Information Ratios despite the construction technique applied. And as
noted, we could not reject at 5% significance level one of the tested null hy-
potheses that the difference in Information Ratios are equal to zero. This result
also seems to contradict the findings of the authors. Ghayur et al. (2018) note
that the ability of top-down constructed portfolios achieving high levels of factor
exposures is limited since these portfolios require high concentrations. Initially,
we find results supporting this claim. However, the backtested enhanced port-
folios show this is not necessarily the case.

Blitz and Vidojevic (2019) find that enhanced top-down constructed portfo-
lios match the performance of bottom-up constructed portfolios. The results of
our backtested enhanced top-down constructed portfolios also show a significant
performance increase compared to the naively top-down constructed portfolios.
Enhanced top-down constructed portfolios only containing stocks with two or
more positive factor exposure still lag but approach the performance of naively
bottom-up constructed portfolios. Surprisingly, we find that enhanced portfo-
lios containing only stocks having three or four positive factor exposures even
have higher factor exposures and consequently outperform the naively bottom-
up constructed portfolios.

The backtested results in this paper seem to support the critical views on claims
that the bottom-up approach is superior compared to the top-down approach.
The backtested results seem to suggest that one could achieve similar risk-
adjusted performance when matching on (average) factor exposures. The back-
tested results also seem to suggest that one could construct top-down portfolios
that achieve factor exposures similar to a bottom-up constructed portfolio by ad-
justing the thresholds of the individual single-factor exposures and/or removing
stocks having a specified number of negative factor exposures. The backtested
results therefore seem to suggest that one should focus on constructing portfo-
lios having desired factor exposures rather than on construction technique itself.

The remainder of this paper is organized as follows. Section 2 gives an overview
of the available and relevant literature. Section 3 gives an overview of the data
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we use for this research. Section 4 outlines the methodology that we will follow
to conduct the research. Section 5 gives an overview of and discusses the found
results. Section 6 entails the conclusion.
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2 Literature review

The literature review is structured as follows. First, we give an overview of the
Modern Portfolio Theory and the research to risk factor models. Secondly, we
give an overview of papers advocating the use of risk factors found in the equity
market as building blocks for constructing diversified portfolios. Thirdly, we
give an overview of two multi-factor portfolio construction techniques. Lastly,
we will explain our contribution to the literature.

2.1 Modern Portfolio Theory

Markowitz (1952) laid the foundation of Modern Portfolio Theory which as-
sumes that investors are risk-averse and therefore want to maximize a portfo-
lio’s expected return while minimizing its risk. According to Modern Portfo-
lio Theory, an investor could construct an optimal portfolio by constructing a
mean-variance efficient portfolio by properly diversifying over multiple assets.
The less, or even better negative, correlation between the invested assets, the
better the diversification possibilities.

2.2 Risk factor models

The assumption made by Markowitz (1952) that investors are risk-averse laid
the foundation for the Capital Asset Pricing Model (CAPM-model) which was
independently developed by Sharpe (1964), Lintner (1965), and Mossin (1966).
The CAPM-model is the first risk factor model developed for the stock market
and explains the cross section of average stock and portfolio returns by only
the stock’s or portfolio’s exposure to the risk factor Market Risk. Risk factor
Market Risk is defined as the stocks’s or portfolio’s sensitivity to the value-
weighted market portfolio. In time series this model is expressed as:

Rit −RFt = ai + bi(RMt −RFt) + eit

with the null hypothesis that ai is equal to zero. In this equation, Rit is the
stock’s or portfolio’s return over time period t, RFt is the risk-free rate over
time period t, and RMt is the return of the value-weighted market portfolio
over time period t. Furthermore, bi is the stock’s or portfolio’s exposure to the
risk factor Market Risk, ai is the return unexplained by the risk factor Market
Risk, and eit is the zero-mean residual.

After the introduction of the CAPM-model, multiple papers found that the
CAPM-model is not able to explain the cross-sectional expected returns of port-
folios that are based on certain firm characteristics. For example, Basu (1977)
and Reinganum (1981) are among the first that empirically find that portfolios
based on P/E-ratio have expected returns that could not be explained by the
CAPM-model. Banz (1981) and Reinganum (1981) are among the first to em-
pirically discover that portfolios based on firm size generate returns that could
not be explained by the CAPM-model. Stattman (1980) and Rosenberg et al.
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(1985) find for U.S. stocks that the book-to-market ratio have a positive rela-
tion with average returns. Bhandari (1988) finds a positive relationship between
leverage and average return that could not be explained by the CAPM-model.

Researchers found that extended CAPM-models were able to explain the anoma-
lies, but no model was able to explain all anomalies simultaneously (Hasan et
al., 2015). Fama and French (1993) develop the three-factor model by adding
the Size factor and the Value factor to the CAPM-model. This model is not
only able to explain the identified size and value effects on the cross section of
average returns, but also the identified E/P and leverage effects. The authors
find that the three-factor model explains over 90 percent of the cross section of
average returns of diversified portfolios. The Size factor entails that (a port-
folio consisting of) companies with a low market capitalization provide a risk
premium over (a portfolio consisting of) companies with a high market capital-
ization. The Value factor states that (a portfolio consisting of) relatively cheap
companies (often defined as companies with a high book-to-market ratio) offers
a risk premium over (a portfolio consisting of) relatively expensive companies
(often defined as companies with a low book-to-market ratio). In time series
this model is expressed as:

Rit −RFt = ai + bi(RMt −RFt) + siSMBt + hiHMLt + eit

with the null hypothesis that ai is equal to zero. In this equation, SMBt is the
return of a diversified portfolio consisting of stocks with low market capitaliza-
tion minus the return of a diversified portfolio consisting of stocks with high
market capitalization over time period t and HMLt is the return of a diversi-
fied portfolio consisting of stocks with a high book-to-market value minus the
return of a diversified portfolio consisting of stocks with a low book-to-market
values over time period t. Next to that, si and hi are the stock’s or portfolio’s
exposures to the risk factors Size and Value respectively. Furthermore, ai is the
return unexplained by the risk factors Market Risk, Size, and Value.

Fama and French (1993) state that the three-factor model fails to explain much
of the variation in average returns linked to the profitability of companies and
their investments. Haugen and Baker (1996) and Cohen et al. (2002) find, when
controlling for book-to-market value, a positive relation between the profitabil-
ity of firms and average returns. Fairfield et al. (2002), Richardson and Sloan
(2003), and Titman et al. (2004) find a negative relation between invested capital
and average stock returns. Fama and French (2006) derive from the dividend
discounting model, developed by Miller and Modigliani (1961), the following
equation:

Mt

Bt
=

∑∞
τ=1 E[Yt+τ − dBt+τ ]/(1 + r)τ

Bt

In this equation, Mt denotes the market capitalization at time t, Bt is the total
book equity at time t, Yt+τ is the total equity earnings for time period t + τ ,
dBt+τ = Bt+τ −Bt+τ−1 denotes the change in total book equity for time period
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t + τ , and r denotes the stock’s expected return over a time period τ . This
equation suggests that a stock’s expected return is related to the company’s
current book-to-market value, expected profitability, and expected investments.
To be more specific, the equation suggests a positive relationship between a
company’s total equity earnings and the company’s expected stock return, a
negative relationship between a company’s total book equity growth and the
company’s expected stock return, and a positive relationship between a com-
pany’s book-to-market ratio and the company’s expected stock return. The
authors observe the suggested relation but fail to empirically find a significant
negative relationship between stock returns and expected investment. Aharoni
et al. (2013) argue that the failure in the empirical work of Fama and French
(2006) is due to using per-share level variables instead of firm level variables.
The authors claim per-share level variables are not reliable due to share issuance
or repurchase and therefore firm level variables should be used. The authors get
similar empirical findings of Fama and French (2006) when using per-share level
variables, but do find the significant negative relation between stock returns
and expected investment when using firm level variables. Novy-Marx (2013)
criticizes the usage of current earnings as proxy for future profitability as used
by Fama and French (2006). Novy-Marx (2013) states that current earnings can
give a false representation of a firm’s profitability. Highly profitably firms could
have low current earnings since investments (like research and development, hu-
man capital development, and advertising) are treated as expenses resulting in
low(er) current earnings. The author therefore argues that the gross profits is
the best accounting measure for profitability. The author uses the gross profits-
to-assets ratio as proxy for future profitability and finds it has strong predictive
power for the average stock returns.

Using the findings of Aharoni et al. (2013) and Novy-Marx (2013), Fama and
French (2015) propose a five-factor model by adding the risk factors Profitabil-
ity and Investment to their three-factor model. The resulting five-factor model
therefore consists of the five risk factors Market Risk, Size, Value, Profitabil-
ity, and Investment. The Profitability factor entails that (a portfolio consisting
of) companies with robust profitability outperforms (a portfolio consisting of)
companies with a weak profitability. The authors define companies with robust
profitability as companies having high values for operating profitability minus
interest expense divided by its book equity, and subsequently companies with
weak profitability as companies having low values for the operating profitabil-
ity minus interest expense divided by its book equity. The Investment factor
entails that (a portfolio consisting of) companies with conservative investment
policy outperforms (a portfolio consisting of) companies with an aggressive in-
vestment policy. A company with conservative investment policy barely invests
(often measured as low total asset growth) while a company with an aggressive
investment policy invests a lot (often measured as high total asset growth). In
time series this model is expressed as:

Rit−RFt = ai+bi(RMt−RFt)+siSMBt+hiHMLt+riRMWt+ciCMAt+eit
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with the null hypothesis that ai is equal to zero. In this equation, RMWt is the
return of a diversified portfolio consisting of companies with robust profitability
minus the return of a diversified portfolio consisting of companies with a weak
profitability over time period t. CMAt is the return of a diversified portfolio
consisting of companies with a conservative investment policy minus the return
of a diversified portfolio consisting of companies with an aggressive investment
policy over time period t. Furthermore, ri and ci are the stock’s or portfolio’s
exposure to the risk factors Profitability and Investment respectively. Further-
more, ai is the return unexplained by the risk factors Market Risk, Size, Value,
Profitability, and Investment.

2.3 Risk factors in equity market as diversification build-
ing blocks

In line with Modern Portfolio Theory, it is common practice to diversify across
multiple (uncorrelated) assets, asset classes, company sectors and geographical
regions in order to reduce a portfolio’s risk. However, since around 2010 papers
appeared in which it was recognized that the risk factors could also be used as
building blocks for constructing diversified investment portfolios. Ghayur et al.
(2018) state that risk premiums have a cyclic nature and sometimes can even
become temporarily negative. The authors also state that risk factors often
have low or negative correlations which could provide diversification benefits.
Ang (2010) is among the first to recognize that the risk factors could also be
used to diversify. Bender et al. (2009) compare over the time period May 1995
till September 2009 a multi-factor portfolio with a portfolio having 60 percent
invested in equities and 40 percent in bonds. For both portfolios the authors
use global ETF’s. The authors find for both portfolios similar annualized excess
returns but an almost 3.5 times lower annualized volatility for the multi-factor
portfolio. The authors therefore suggest that combining risk factors could be
more attractive than traditional asset allocations. Asness et al. (2013) find
across eight diverse markets and asset classes consistent risk premiums for risk
factors value and momentum. They also find a negative correlation between
the Value and Momentum factors, which holds across all markets and asset
classes. Due to the negative correlation, the authors recognize its potential
for constructing a diversified portfolio using the Value and Momentum factors.
The authors find for all considered markets and asset-classes for the time period
1970’s till July 2011 that a diversified long-short strategy having an equal weight
on the Value and Momentum factors provided substantial diversification bene-
fits. Hjalmarsson (2009) extends this approach by also considering the following
characteristics: short-term reversals, long-term reversals, cashflow-price ratio,
earnings-price ratio, and size. The author finds for the U.S. market over the
time period 1951 till 2008 that a characteristic-based strategy having an equal
weight on each of the seven single-characteristic long-short portfolios almost
always had a higher Sharpe ratio than all single-characteristic long-short port-
folio strategies or the long-short momentum-value characteristic-based portfolio
as noted by Asness et al. (2013). Blitz (2012) also advises to use risk factors
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as building block to diversify a portfolio. The author tests for the U.S. mar-
ket over the time period July 1963 until December 2009 a long-only portfolio
that is equally weighted in the risk factors Market Risk, Value, Momentum, and
Low-Volatility and find that it improved the performance compared to a market
portfolio. Ilmanen and Kizer (2012) also advocate using factor diversification
over asset-class diversification. The authors compare a factor diversification
strategy with an asset-class diversification strategy over the time period 1973-
2010. The authors find that a long-short multi-factor portfolio invested in the
U.S. market and diversified over factors Value, Momentum, Carry, and Trend
achieved a Sharpe ratio of 1.44, while a portfolio that is diversified over U.S.
and global asset-classes only achieved a Sharpe ratio of 0.48. Blitz (2015) re-
peats the strategy tested by Blitz (2012) for the U.S. market and finds that it
also outperformed the market over the time period 2010-2014. Blitz (2015) also
tests multi-factor portfolios using the risk factors Profitability and Investment
proposed by Fama and French (2015). The author tests multi-factor portfolios
that are equally weighted in the risk factors Value, Momentum, Low-Volatility,
Operating Profitability, and Investment for U.S. stocks over the time period
July 1963 till December 2014 but do not find performance improvement or
deterioration. Brière and Szafarz (2021) compare multi-factor portfolios with
passive sector investing for the U.S. stock market over the time period 1963 till
2014. The multi-factor portfolios use the risk factors Size, Value, Profitability,
Investment, and Momentum as building blocks. The authors find that diversi-
fication over risk factors, when short-selling is unrestricted, outperforms sector
diversification. Without short-selling, factor diversification only performs better
than sector diversification during bull periods but underperforms during bear
periods. Bessler et al. (2021) extend the research of Brière and Szafarz (2021)
by applying various portfolio optimization approaches on the factor diversified
portfolios and the sector diversified portfolios. Bessler et al. (2021) use ETF’s
to backtest the portfolios in the U.S. stock market. For the time period May
2007 till November 2020, the authors find that for longer investment horizons
the factor portfolios delivered better performances. They also find that dur-
ing ’normal’ time the factor diversified portfolios clearly outperforms the sector
diversified portfolios, but during bear periods the sector diversified portfolios
offers better diversification.

2.4 Construction techniques for multi-factor portfolios

Due to increased popularity of multi-factor investing, the question raised how
to construct such a multi-factor portfolio in a most efficient way (Bender &
Wang, 2016). Bender and Wang (2016) distinguish two multi-factor portfolio
construction techniques which they call the top-down approach and the bottom-
up approach. The top-down approach is done by first constructing multiple
single-factor portfolios and then combining these single-factor portfolios into
one portfolio. The bottom-up approach entails that the investor creates a port-
folio consisting of a certain number of individual stocks that on average have a
high exposure to the risk factors of interest. Several other names are used for
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both techniques in other papers. The top-down approach is for example in other
papers also called the mixing approach or the portfolio blending approach. The
bottom-up approach is for example in other papers also called the integrating
approach or the signal blending approach. In this paper, we will use the names
given by Bender and Wang (2016).

Ghayur et al. (2018) state that proponents of the bottom-up approach argue
that it achieves better factor exposure than the top-down approach. This be-
cause each single-factor portfolio includes stocks that have favorable character-
istics towards the risk factor of interest, but ignores the fact that they may also
have unfavorable characteristics towards other risk factors. For such stocks, the
risk premium gained by having favorable characteristics on one risk factor may
be cancelled out by having unfavorable characteristics towards one or multiple
other risk factors. Proponents of the top-down approach however argue that
the strategy is more transparent and offers better insight into the performance
contributions.

Several papers investigate whether one method is better than the other. Some
papers claim that the bottom-up approach deliver superior results compared
to top-down constructed portfolios. Bender and Wang (2016) test both multi-
factor portfolio construction techniques using the risk factors Value, Momen-
tum, Quality, and Low Volatility over the time period 1993 till March 2015.
The authors find that the bottom-up constructed portfolio had a 20 percent
higher Information Ratio than the top-down constructed portfolio. Clarke et al.
(2016) test both construction techniques for 1,000 U.S. stocks over the time
period 1968 till 2015 using the risk factors Low Beta, Size, Value, and Mo-
mentum. The authors find that a long-only bottom-up constructed portfolio
achieved about 20 percent higher Sharpe Ratio and Information Ratio com-
pared to a long-only top-down constructed portfolio. Fitzgibbons et al. (2017)
test long-only portfolios using both construction techniques for a universe of
stocks that roughly corresponds to the MSCI World Index-benchmark over the
time period February 1993 till December 2015 using the risk factors Value and
Momentum. The authors find for all levels of tracking error that bottom-up
constructed portfolios have higher Information Ratios than top-down portfolios
when both types of portfolios are matched on tracking error. Only for very
low levels of tracking error (below 1%), the authors find similar performance.
Lester (2019) tests portfolios using a wide range of factor definitions and finds
that the bottom-up approach increasingly outperform the top-down approach
when a large number of low correlated factors are used. The author finds that
a bottom-up portfolio using four orthogonal factors produces twice the factor
exposure and outperformance compared to a top-down portfolio and 40 percent
higher Information Ratio.

Other papers are skeptical about the claims that the bottom-up approach is
superior. Leippold and Rueegg (2018) argue that claims of bottom-up con-
structed portfolios achieving higher risk-adjusted returns compard to top-down
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constructed portfolios are violating the standard finance theories in which one
can only achieve higher returns by taking more risk. The authors are therefore
skeptical about these claims. The authors test long-only portfolios using both
construction techniques for all NYSE, AMEX, and NASDAQ stocks over the
time period June 1963 till December 2016. The portfolios are constructed by
using 26 combinations of the risk factors Value, Profitability, Investment, Mo-
mentum, and Low Volatility. They find that bottom-up approach indeed had
better performance than the top-down approach. However, when applying a
multiple hypothesis framework they could not reject the null hypothesis that
bottom-up constructed portfolios generate statistically significant higher Sharpe
Ratios than top-down constructed portfolios. Chow et al. (2018) test both con-
struction techniques using Value, Momentum, Profitability, Investment, and
Low-Beta. The authors find that the bottom-up approach outperformed the
top-down approach in terms of absolute and risk-adjusted returns. They find
however that the bottom-up approach has a higher concentration in stocks with
the consequence of having higher idiosyncratic active risk and higher estimated
transaction costs than the top-down approach. They argue that the top-down
approach is more transparent, flexible and offers better insight into the perfor-
mance contributions. Therefore, the authors recommend using the top-down
approach. Amenc et al. (2018) argue that, due to possible over-fitting and mul-
tiple testing biases, the backtests of bottom-up approach may be overstated.
Next to that, they argue that the bottom-up approach results in too high con-
centrated portfolios. Therefore, the authors argue that one should be critical
about the claims that the bottom-up approach is superior. Ghayur et al. (2018)
and Blitz and Vidojevic (2019) argue that the papers claiming the superiority
of the bottom-up approach do not make fair comparisons. The authors state
that these papers compare both construction techniques by matching them on
a risk metric such as tracking error or volatility. However, according to the
authors it would only be a fair comparison when the portfolios are matched
on factor exposures. The authors argue that the claimed findings of the su-
perior absolute and risk-adjusted returns for bottom-up constructed portfolios
may be simply the results of having higher factor exposures for bottom-up con-
structed portfolios. According to Blitz and Vidojevic (2019), claiming that
the bottom-up approach is better on risk-adjusted basis compared to the top-
down approach would suggest that there is some sort of ’bottom-up premium’
(the authors call it ’integration premium’ since they use other terminology for
the construction techniques) i.e. one could earn higher risk-adjusted returns
by applying the bottom-up approach without taking more risk. Ghayur et al.
(2018) compare long-only top-down and bottom-up constructed portfolios that
are matched on average factor exposures. They use the Russell 1000 Index
universe and the Value, Momentum, Quality, and Volatility risk factors. The
authors find for high levels of factor exposures, that bottom-up constructed
portfolios have higher Information Ratios compared to top-down constructed
portfolios while both being average exposures-matched. For low-to-moderate
levels of factor exposure, they find that top-down constructed portfolios often
have higher Information Ratios compared to bottom-up constructed portfolios
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while both being average exposures-matched. However, they also note that these
differences show little significance. The authors state that when factor expo-
sures are (roughly) matched, the superiority of the bottom-up approach could
be challenged. Blitz and Vidojevic (2019) test both portfolio construction ap-
proaches and an in-between approach using stocks traded on NYSE, AMEX, and
NASDAQ exchanges for the time period 1963 till 2017. They consider the risk
factors Size, Value, Profitability, Investment, and Momentum. The in-between
approach is equal to the top-down approach but has stocks with a specified
number of unfavorable characteristics towards other risk factors removed from
the single-factor portfolios. The authors find that the top-down approach is sub-
optimal in obtaining factor exposures. However, the authors argue that it is to
be expected since bottom-up constructed portfolios are more concentrated and
therefore more effective in capturing higher factor exposures and consequently
outperform top-down constructed portfolios. The authors argue that when port-
folios are matched on factor exposures, the applied construction technique does
not matter. They demonstrate this by using the in between approach. They
find that with this approach the portfolios could achieve similar performance
compared to bottom-up constructed portfolios.

2.5 Factor allocation strategies

Asness (2016) notes that it would be very attractive to ’time’ the factors of
interest such that one can give the factors with the highest conditional expected
returns the highest weights in the portfolio and vice versa. However, the author
comes to the conclusion that it is very difficult to predict the premiums of risk
factors and therefore very hard to time factors. The author argues that trying
to time factors is like trying to time the market which is very hard, if not impos-
sible, to do and should therefore be avoided. Therefore, he advises to stick only
to factors that are backed by scientific evidence (and particularly out-of-sample
evidence) and economic theory and of which the investor believes will persist on
the long run. Asness et al. (2017) also conclude that successfully timing factor
exposure is even harder than successfully timing asset class exposure, while the
latter is already hard to do. Dichtl et al. (2019) find that it is possible to time
factors using fundamental and technical time-series predictors, but since it re-
sults in a high turnover it is very hard to profit from it after transaction costs.
Dichtl et al. (2020) investigate various factor-based allocation strategies for con-
structing multi-factor portfolios using global equities. The authors evaluate 17
different strategies over the period from January 2006 to December 2019. They
conclude that the naive equally-weighted strategies cannot be outperformed by
more sophisticated allocation strategies.

2.6 Contribution to literature

Several papers compare the top-down and bottom-up construction techniques
for multi-factor portfolios. Clarke et al. (2016), Leippold and Rueegg (2018),
Ghayur et al. (2018), and Blitz and Vidojevic (2019) test both construction
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techniques for the U.S. market. Fitzgibbons et al. (2017) and test both tech-
niques for global equities.

The discussion about the superiority of bottom-up constructed portfolios is
clearly a recent debate. Clarke et al. (2016), Bender and Wang (2016), and
Fitzgibbons et al. (2017) empirically find that the bottom-up approach outper-
forms the top-down approach on absolute and risk-adjusted basis. Also Lester
(2019) finds that bottom-up constructed portfolios outperform top-down con-
structed portfolios. Amenc et al. (2018) and Chow et al. (2018) do also find
superior performance for the bottom-up approach but are skeptical and argue
that the claimed superiority of bottom-up constructed portfolios is overstated.
Leippold and Rueegg (2018) find using a multiple hypothesis framework that
bottom-up constructed portfolios do not generate statistically significant higher
Sharpe Ratios than top-down constructed portfolios and conclude that the su-
periority of bottom-up constructed portfolios is a statistical fluke. Ghayur et al.
(2018) and Blitz and Vidojevic (2019) argue that the papers claiming the supe-
riority of the bottom-up approach do not make fair comparisons since they do
not compare (average) exposure matched portfolios. After comparing (average)
exposure-matched portfolios, the authors find that both types of portfolios be-
come very similar in performance.

The inconsistent findings of the aforementioned papers show that it is clearly
a debate whether bottom-up constructed portfolios are superior compared to
top-down constructed portfolios or not. Furthermore, none of the aforemen-
tioned papers test both construction techniques specifically for European stock
markets. This paper contributes to the existing literature by investigating for
fifteen European stock markets over the time period July 2004 till December
2022 whether unleveraged long-only multi-factor portfolios constructed using
the bottom-up approach could have achieved higher absolute and risk-adjusted
returns compared to multi-factor portfolios constructed using the top-down ap-
proach.

15



3 Data

As data source for all stock data and fundamental data Thomson Reuters Refini-
tiv Datastream is used. Thomson Reuters Refinitiv Datastream is an extensive
database containing lots of global economic data including global equity data
and global company fundamentals. Stock data and fundamental data of the Eu-
ropean public companies is extracted from the Datastream database by using
the Worldscope lists provided by Datastream. These lists contain per country all
companies included in their database that are or were publicly traded. There-
fore, also public companies that stopped existing or are delisted are included.
Therefore, the obtained data is survivorship-bias free.

Fama and French use sixteen European stock markets in order to construct
their research portfolios with for the European stock market. The research con-
ducted in this paper will be applied on almost the same stock markets. We
use the stock markets of the following countries: Austria, Belgium, Denmark,
Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Norway,
Portugal, Spain, Sweden, and United Kingdom. Furthermore, the Datastream
database is also used to extract the monthly shareholder returns of the DAX-
index, SP Europe 350 -index, STOXX 600 -index. Next to that, the Datastream
database is also used to extract the returns of German government bonds with
a maturity of 1 month and the returns of European government bonds with a
maturity of 1 month. The monthly shareholder returns of the Fama French Eu-
ropean market portfolio are downloaded from the website of Kenneth French1.

For the time period July 2004 till December 2022, the monthly shareholder
returns (with reinvested dividends) and the factor scores are gathered from
Datastream for all public companies in the selected countries. Next to that, for
each month it is determined whether the company has a stock price in order
to determine whether a company was active in that month. The factor scores
are calculated on an annual basis. The factor scores are calculated in the same
fashion as Fama and French (2015) do. For each company, the Size factor score
for year t is calculated as the market value at the end of the month June of
year t. The Value factor score is determined by the book-to-market ratio using
the book value for the fiscal year ending in year t − 1 and the market value at
the end of the month December of year t− 1. The Profitability factor score for
year t is calculated by dividing the annual revenues minus cost of goods sold,
interest expense, and selling, general, and administrative expenses by the book
equity using the accounting data for the fiscal year ending in year t − 1. The
Investment factor score for year t is calculated as the growth of total asset for
the fiscal year ending in t − 1 divided by the total assets for the fiscal year
ending in t−2. For all non-Euro countries, the monthly shareholder returns are
converted to returns in terms of Euros and the Size scores are converted to Euros.

1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
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All public companies having missing values for the stock price, monthly share-
holder returns, or calculated factor scores for the entire time period January
2002 till December 2022 are filtered out. This is for example the case for com-
panies that stopped being publicly traded before January 2002 or for public
companies for which the required accounting data to calculate the factor scores
with is not available for the entire time period January 2002 till December 2022.
Public companies that existed in the time period January 2002 till December
2022 but stopped being publicly traded before December 2022 are not filtered
out in order to prevent the survivorship-bias.

Table 1 presents for each stock market the number of companies available in
our dataset before and after filtering. Table 2 presents the number of stocks
available in our stock universe at each moment of rebalancing.

Table 1: Number of companies per stock market available in our dataset before
and after filtering

Stock market Number of companies Number of companies
before filtering after filtering

Austria 228 76
Belgium 362 98
Denmark 653 198
Finland 347 168
France 2044 396

Germany 1947 842
Greece 470 258
Ireland 189 77
Italy 883 460

Netherlands 502 199
Norway 762 294
Portugal 163 14
Spain 540 134
Sweden 765 715

United Kingdom 6016 2135

Total 15.871 6.064

This table shows per country the number of stocks available in our dataset. The
column ’Number of companies before filtering’ denotes the number of companies
available in our dataset before filtering out companies with missing values for
the entire time period January 2002 till December 2022 for monthly shareholder
returns, stock price, or the factor scores. The column ’Number of companies
after filtering’ contain the number of companies in our dataset after filtering.
These are the companies being used to backtest with.
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Table 2: Number of companies available in the stock universe at each moment
of rebalancing.

Moment of rebalancing Number of stocks in universe
End of June 2004 631 stocks
End of June 2005 633 stocks
End of June 2006 692 stocks
End of June 2007 762 stocks
End of June 2008 796 stocks
End of June 2009 794 stocks
End of June 2010 775 stocks
End of June 2011 782 stocks
End of June 2012 757 stocks
End of June 2013 735 stocks
End of June 2014 763 stocks
End of June 2015 771 stocks
End of June 2016 797 stocks
End of June 2017 793 stocks
End of June 2018 787 stocks
End of June 2019 800 stocks
End of June 2020 811 stocks
End of June 2021 813 stocks
End of June 2022 878 stocks

Average 767 stocks

This table shows the number of stocks in the universe available at each moment
of rebalancing.
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4 Methodology

In this section, the methodology of the research used in this paper is outlined.
This section is structured as follows. First, a general overview of the backtesting
is given. Secondly, the procedure how we construct the multi-factor portfolios
is outlined. Thirdly, we make a selection for the benchmark. Fourthly, we will
give an overview of the metrics we use and how we calculate them. Fifthly, we
outline which metrics we will not use and explain why. In the last part, we give
an overview of the (types of) portfolios we are going to backtest.

4.1 Backtesting

The research in this paper will be done by means of backtesting. A backtest-
ing program written in R will be used to backtest the long-only portfolios over
the time period July 2004 till December 2022. The portfolios will be annually
rebalanced at the end of the month June of year t starting in year 2004. The
rebalancing moments are chosen such that they correspond to the rebalancing
moments of the Fama and French research portfolios. Although we could also
have chosen other rebalancing moments, or multiple rebalancing per year for ex-
ample, we found this most intuitive. Since the factor scores Value, Profitability,
and Investment are calculated using accounting data of the fiscal year ending in
year t − 1, this creates a lag of a minimum of 6 months in order to make sure
that the information used is publicly available at moment of rebalancing.

The time period July 2004 till December 2022 is selected in order to analyse
recent data but also to make sure that all factor scores are measured in Euros
and not in a mix of Euros and local currencies. All countries in the Eurozone
officially switched to the Euro currency on 1st of January 2002. However, the
Investment factor for example is measured as the relative total asset growth
between year t − 1 and t − 2. In order to measure the total asset growth in
terms of Euros and not in terms of a mix of Euros and a local currency, the
starting moment of backtesting is chosen to be the last trading day of June
2004. Furthermore, we only consider unleveraged long-only portfolios and we
make the assumption of zero transaction costs.

4.2 Construction of the long-only multi-factor portfolios

In this paper, the portfolio construction techniques as for example applied in
Leippold and Rueegg (2018) and Ghayur et al. (2018) will be used. Each stock
obtains for each risk factor a score which is based on its corresponding factor
score. Please note that ’factor score’ and ’score’ are different here. According
to Leippold and Rueegg (2018), there are two common methodologies for cal-
culating such a score which they call the rank-based approach and the z-score
approach. The rank-based approach entails using the security’s rank within the
investment universe for the factor of interest in order to derive a score. The
z-score approach involves transforming a security’s factor score into a z-score.
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We will make use of the z-score approach since it will also be used to measure
the factor exposures. This will be further outlined in section 4.4. For year t,
a long-only portfolio using k number of risk factors as building blocks will be
rebalanced according to the following procedure:

1. In the first step, all companies that do not have a stock price for December
of year t − 1 or June of year t are filtered out. Next to that, companies
with missing values for year t− 1 for total assets, revenues, costs of goods
sold, general and administrative expenses or interest expense are left out.
Furthermore, companies with negative book equity for year t − 1 and
missing value for total assets for year t−2 are left out. Φ ∈ Rn×k contains
for all filtered securities i = 1, ..., n the factor scores for the risk factors of
interest f = 1, ..., k. Each column ϕf ∈ Rn of matrix Φ contains for all n
securities the factor score corresponding to factor f .

2. In the second step, for each stock i, the z-score Zf
i is calculated for each

considered factor f using the factor scores of year t. The z-scores are
calculated by applying the following formula:

Zf
i =

ϕf,i − µ(ϕf )

σ(ϕf )

In this equation, function µ(ϕf ) calculates the mean of column ϕf and
function σ(ϕf ) calculates the standard deviation of column ϕf .

The market capitalizations and positive book-to-market ratios are heavily
right skewed and take the form of a log-normal distribution. Therefore,
we use the natural logs of these factor scores to calculate the z-scores with
as also done by for example Blitz and Vidojevic (2019). Furthermore, at
each moment of rebalancing there are companies with extreme unfavorable
values for both the Profitability and Investment factor (companies with
extreme low profitability or companies with extreme high asset growth)
causing the distributions of the profitability and investment factor scores
also being heavily skewed. These outliers therefore result in undesired dis-
torted z-scores for the Profitability and Investment factor since they cause
a high σ(ϕf ) resulting in low z-scores. Since these companies are very
unattractive to invest in, we filter out companies with extreme profitabil-
ity and investment scores using IQR filtering. This results in desirable
z-score distributions.

3. In the third step the rebalanced portfolio is constructed. Let wtd, wbu ∈ Rn

contain the stocks weights for all n stocks in a top-down constructed
portfolio and bottom-up constructed portfolio respectively. Furthermore,
Zf ∈ Rn is a vector containing the z-scores of all securities in the invest-
ment universe for factor f and φ(.) is a function that uses the (composite)
z-score to calculate the stock weights of the single- or multi-factor port-
folio. According to Leippold and Rueegg (2018), weights af and function
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φ(.) could be freely chosen. For long-only and unleveraged top-down con-
structed portfolios however, the values for af and the sum of af should
be greater than or equal to 0 and less than or equal to 1. For bottom-up
constructed portfolios, af is just a factor exposure’s scalar and therefore
any value could be chosen in order to construct portfolios with desired fac-
tor exposures. For the backtested portfolios in this paper, we will specify
function φ(.) in subsection 4.5. As noted in the literature review, multiple
papers advise to apply a naive equally weighted strategy regarding the
factor weights (see for example also Asness (2016), Asness et al. (2017),
Dichtl et al. (2019) and Dichtl et al. (2020)). In this paper, this advise
is followed by giving for both construction techniques an equal weight to
each risk factor i.e. af = 1

k . Depending on the construction technique
applied, the portfolio will be constructed as follows:

(a) Top-down construction technique:
This construction technique involves a two-step procedure:

1. First, for each factor of interest a single-factor portfolio is created
having stock weights wf ∈ Rn:

wf = φ
(
Zf

)
2. Secondly, all single-factor portfolios are combined into one port-

folio by giving each single-factor portfolio a weight af :

wtd =

k∑
f=1

afwf

(b) Bottom-up construction technique:
This construction technique involves a one-step procedure in which
each factor is given a weight af in order to derive for each stock a
composite z-score which will be used to construct a portfolio:

wbu = φ

 k∑
f=1

afZ
f


4.3 Benchmark

The German DAX-index is chosen as benchmark to compare the performance
of the backtested multi-factor portfolios with. Several indices are considered to
serve as benchmark. The benchmark should be a fair representation of the Eu-
ropean stock market. Therefore, the German DAX-index, the SP Europe 350-
index, the SP Europe 350-index, and the Fama French European market port-
folio are considered as potential benchmarks. Since the performance of the
backtested (multi-)factor portfolios will be compared to the performance of an
index that could be passively followed, an index that has a high annualized
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return and annualized Sharpe ratio (using European government bonds with
maturity of 1 month) over the time period July 2004 till December 2022 has
to be be chosen. In table these statistics are summarized for the considered
benchmarks.

Annualized mean Annualized
excess return Sharpe Ratio

DAX 7.34% 0.45%
SP Europe 350 6.48% 0.47%
STOXX 600 6.61% 0.47%

FF market portfolio 5.63% 0.41%

Table 3: Comparison of European stock indices over the time period July 2004
till December 2022.

The table shows that the SP Europe 350-index and the STOXX 600-index
have the highest annualized Sharpe ratio. The DAX-index however has by far
the highest annualized return and just a slightly lower annualized Sharpe ratio
than the SP Europe 350-index and STOXX 600-index. Since the DAX-index
has the highest annualized return and not a too poor annualized Sharpe ratio
compared to the other indices, DAX-index is chosen to serve as benchmark.

Since the DAX-index is chosen as benchmark, it would be a good choice to
use German government bonds with a maturity of one month as proxy for the
European monthly risk-free rate. However, over the time period June 2004 till
October 2010 there is no data available for these bonds. Over the time period
November 2010 till December 2022 the correlation between the German gov-
ernment bonds with a maturity of one month and European government bonds
with maturity of one month was 99.9%. Due to this high correlation, we choose
to use European government bonds with maturity of one month as proxy for
the German bonds with maturity of one month and therefore as proxy for the
risk-free rate.

4.4 Used metrics

We are mainly interested in comparing the performance of portfolios in terms
of absolute returns and risk-adjusted returns. Therefore, the key performance
statistics in this paper are the ex-post annualized mean excess return, annualized
excess volatility, and the Sharpe Ratio. Furthermore, we assess portfolios by
considering the average number of companies and the realized average factor
exposures. We also utilize the active return, active risk, and Information Ratio
but in lesser extent. Please note that we write the metrics in population form
but in fact we calculate the metrics using the backtested sample data.
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4.4.1 Annualized mean excess return

In this paper, we define the excess return as a portfolio’s return in excess to
the risk-free rate. Since this paper investigates the performance of multi-factor
portfolios relative to the benchmark, the mean of the active return is an impor-
tant metric to assess whether a strategy on average outperforms a benchmark
in terms of absolute returns. The mean active return is defined as:

Mean excess return = E [Rp −Rf ]

In this equation, Rp denotes the annualized returns of a backtested portfolio
and Rf denotes the annualized risk-free rates.

4.4.2 Annualized excess risk

We define excess risk as the volatility of a portfolio’s excess return. It is a
measure for the amount of risk taken by a portfolio. The excess risk is defined
as:

Excess risk = σ (Rp −Rf )

In this equation, Rp denotes the returns of a backtested portfolio and Rf denotes
the risk-free rates.

4.4.3 Annualized Sharpe Ratio

The Sharpe ratio is a widely used metric to analyse the past performance of a
portfolio. It is a measure of how much return a portfolio has generated in excess
to the risk free rate per unit of risk taken in excess to the risk free rate. Sharpe
(1994) defines the ex post Sharpe ratio as follows:

Sharpe ratio =
Annualized mean excess return

Annualized excess risk
=

E [Rp −Rf ]

σ (Rp −Rf )

The annualized Sharpe Ratio will be used in this paper because it enables to
compare the risk-adjusted returns of the backtested portfolios compared to the
risk-free rate.

4.4.4 Annualized mean active return

The active return is a portfolio’s return in excess to a benchmark’s return.
The mean of the active return is an metric used to assess whether a strategy
on average outperforms a benchmark in terms of absolute returns. The mean
active return is defined as:

Active return = E [Rp −Rb]

In this equation, Rp denotes the returns of the backtested portfolios and Rb

denotes the returns of the benchmark.
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4.4.5 Annualized active risk

Active risk, also known as the tracking error, is the standard deviation of the
returns of a portfolio in excess to the benchmark returns. The active risk there-
fore is a measure for riskiness of a portfolio compared to a benchmark. The
active risk is defined as:

Active return = σ (Rp −Rb)

In this equation, Rp denotes the returns of the backtested portfolios and Rb

denotes the returns of the benchmark.

4.4.6 Annualized Information Ratio

The Information Ratio is a measure for much return a portfolio has generated in
excess to a benchmark per unit of excess risk taken compared to the benchmark.
The Information Ratio is calculated by dividing the mean active return over the
active risk:

Information ratio =
Active return

Active risk
=

E [Rp −Rb]

σ (Rp −Rb)

In this equation, Rp denotes the returns of the backtested portfolios and Rb

denotes the returns of the benchmark.

4.4.7 Mean factor exposures

Multi-factor portfolios aim to have above-average exposure towards the risk fac-
tors of interest. Therefore, it is necessary to know the (mean) factor exposures
of a portfolio in order to get a sense of how successful a portfolio is in captur-
ing factor exposures. According to Ghayur et al. (2018) a portfolio’s exposure
towards a factor can be measured by the weighted z-scores or by the active risk
contribution. The authors state that both methodologies can also be used to
construct a multi-factor portfolio. According to them, the first method is a
more direct and easier to implement approach and therefore they use the first
method. This methodology is therefore also used in this paper. Ghayur et al.
(2018) calculate the exposure of a portfolio to a risk factor f at time t, consist-

ing of n stocks with each stock i having a weight wi and having a z-score Zf
i for

risk factor f , as follows:

Portfolio’s exposure at time t to risk factor f =

n∑
i=1

wiZ
f
i

The portfolio’s mean exposure towards a risk factor is calculated by taking the
average exposure to the risk factor at all T moments of rebalancing:

Portfolio’s average exposure to risk factor f =
1

T

T∑
t=1

n∑
i=1

wt,iZ
f
t,i
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4.4.8 Average number of companies in portfolio

In this paper, the average number of companies in a portfolio is defined as the
average number of companies included in the portfolio at time of rebalancing.
In this paper, this metrics is not especially used to analyse a portfolio’s perfor-
mance but merely to give a sense of how diversified a backtested portfolio is in
comparison to other backtested portfolios.

However, it could give a sense of the amount of risk taken. The more (un-
correlated) companies included in a portfolio, the less risky a portfolio is in
general. The risk of a portfolio could be dissected into the exposure to compa-
nies’ idiosyncratic risks and exposure to systematic risks. When more (uncor-
related) companies are included into a portfolio, the portfolio’s exposure to the
idiosyncratic risk of individual companies is reduced and therefore the overall
portfolio’s risk is reduced. Therefore, assuming the companies are uncorrelated
the number of companies included in the backtested portfolio gives a sense of
the riskiness of the portfolio.

Next to that, it gives a sense of a portfolio’s ability to capture factor expo-
sures. Ghayur et al. (2018) and Blitz and Vidojevic (2019) state that higher
factor exposures could only be more effectively achieved when having more con-
centrated portfolios. Therefore, the mean number of companies in a portfolio
also gives a sense of the portfolio’s ability to achieve higher factor exposures.

4.5 Unused metrics

Other often used metrics to assess a portfolio’s performance are for example the
arithmic mean of returns, geometric mean of returns, volatility, Treynor Ratio,
skewness of returns, kurtosis of returns, and Value at Risk (VaR) of returns.
These metrics will not be used in this paper.

The arithmic and geometric mean of returns do say something about a port-
folio’s absolute return and a portfolio’s volatility does say something about a
portfolio’s absolute risk. Although these metrics could be used to compare port-
folio performances, we will utilize the mean excess return and excess risk since
we also use the Sharpe Ratio. Therefore, it does not add a lot of value by also
using the arithmic mean, geometric mean, and volatility as well.

The Treynor Ratio is defined as a portfolio’s active risk divided by its expo-
sure towards the risk factor Market Risk. Although it could give a sense of how
much factor exposure a portfolio has beyond it’s exposure to Market Risk, it
does not seem to add much value for this paper since it is not a precise measure
for how much exposure a portfolio has towards other factors than the Market
Risk. Since we will also measure the portfolio’s explicit factor exposures, it is
not necessary to include this ratio.
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Furthermore, the metrics skewness, kurtosis and VaR are generally used to as-
sess a portfolio’s risk of suffering exceptional (negative) returns. In this paper,
we are only interested in comparing portfolio’s exposure towards risk factors,
the mean excess return, and the mean risk-adjusted return.

4.6 Portfolios to be backtested

4.6.1 Considered factors

This paper follows the advice given by Asness (2016) to stick only to a few risk
factors of which the investor believes will generate persistent and robust returns
on the long term when constructing multi-factor portfolios. Cochrane (2011)
notes that hundreds of potential risk factors have been reported in the literature
over the last decades. However, a lot of these claimed findings are likely the
result of data mining and therefore be false (Harvey et al., 2016). Therefore,
in this paper only factors that has been broadly acknowledged by the academic
literature will be used. To that end, the following factors will be used: Size,
Value, Profitability and Investment. The risk factors Momentum, identified
by Jegadeesh and Titman (1993), and Low-Volatility, identified by Haugen and
Heins (1972), were considered as well but we decided to not include these factors.

To prevent drawing conclusions based on findings that are simply the result
of combining a certain combination of factors, this paper will backtest portfo-
lios constructed using all possible combinations of 2, 3 and 4 risk factors using
the risk factors Size (’S’), Value (’V’), Profitability (’P’) and Investment (’I’).
Using 2 factors, it is possible to construct 6 combinations. For 3 factors it is
possible to construct 4 combinations and for 4 factors it is possible to construct
1 portfolio. Therefore, it is possible to construct in total 11 possible factor com-
binations. This leads to the following set of possible factor combinations that
will be backtested:

C = {SV, SP, SI, V P, V I, PI, SV P, SV I, SPI, V PI, SV PI}

To clarify, a portfolio using the factor combination ’SV’ only controls for the
risk factor Size and Value. The factor Profitability and Investment are left
uncontrolled.

4.6.2 Naively constructed multi-factor portfolios

First, non-factor exposure matched multi-factor portfolios will be backtested in
order to get a sense of how both construction techniques perform when applied
in a naive setting. Blitz and Vidojevic (2019) test portfolios based on selecting
the top 10%, 20%, 33.33%, or 50% (we will call these numbers also ’thresholds’)
highest ranking stocks for the factors of interest in the investment universe. In
line with their methodology, in this paper three portfolios will be backtested
that invest in the top 50% (’50% portfolio’), the top tercile (’33.33% portfolio’),
and the top decile (’10% portfolio’) ranking stocks of the investment universe
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in order to be able to investigate the effect across several thresholds. These
thresholds are chosen such that the differences in thresholds are approximately
as large as possible. The number of testing just three thresholds is arbitrarily
chosen. Furthermore, testing for three different thresholds serves as a robust-
ness check in order to prevent drawing conclusions based on the results of just
one threshold.

After selected the stocks, these will subsequently be given an equal weight.
According to Blitz and Vidojevic (2019) it is also common practice to give the
selected stocks a value weight. However, the main implication is that it gives
a negative tilt towards the Size factor and therefore reducing returns. This
has also been found in backtests we performed for this paper. Therefore, only
equally-weighted portfolios will be considered.

For clarity, we will call these portfolios the ’naively constructed portfolios’ since
the portfolios will be constructed by just selecting the top ranking stocks and
giving them an equal weight without taking any further considerations into ac-
count like matching the portfolio on tracking error, volatility, or factor exposure
or like removing unwanted stocks or whatsoever.

To this end, for both strategies φ(.) is set such that the top 50%, 33.33%, and
10% ranking stocks are given an equal-weight and the other stocks in the invest-
ment universe are given a weight of zero. Since we will backtest portfolios for 2
portfolio construction techniques, 3 thresholds and for 11 factor combinations,
a total of 66 naively constructed multi-factor portfolios will be backtested.

4.6.3 Average exposures-matched portfolios

According to Ghayur et al. (2018) and Blitz and Vidojevic (2019), a fair com-
parison between the top-down approach and the bottom-up approach could only
be made when the factor exposures are (roughly) similar to each other. To that
end, in this paper also average exposures-matched portfolios will be backtested.
To construct average exposures-matched portfolios, the framework proposed by
Ghayur et al. (2018) will be used. The authors suggest that one could construct
average exposures-matched top-down portfolios by varying the thresholds of the
single-factor portfolios used to construct the top-down portfolio. The authors
argue that one could achieve average exposures-matched portfolios by either
matching the exposures at time of rebalancing or by matching the average ex-
posures over time. The authors use the latter approach, which will also be used
in this paper. The authors also tested portfolios matching at time of rebalancing
but found the portfolios had similar performance.

For each factor combination, we construct bottom-up portfolios and top-down
portfolios that (roughly) have the same mean factor exposures over time for the
factors used to build up the portfolio. Ghayur et al. (2018) construct average
exposures-matched portfolios for which they call ’Low level of risk factor expo-
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sures’ and a ’High level of risk factor exposures’. In this paper, this distinction
will be made as well. The ’Low’ levels of average exposures are generated by
constructing a bottom-up portfolio that includes the top 50% of the stocks. The
’High’ levels of average exposures are generated by constructing a bottom-up
portfolio that includes 25% of the stocks. For both average exposure levels,
a top-down portfolio using the same factor combinations is constructed. The
single-factor portfolios will have equal weight in the top-down portfolio. The
average exposures of the top-down constructed portfolios are matched with the
average exposures of the bottom-up portfolio by varying the thresholds for each
of the considered single-factor portfolios individually.

It is important to note that the average factor exposures of the portfolios are
only controlled for the considered factor combinations. The exposures to the
other factors remain uncontrolled. For example, for SV-portfolios are only con-
structed using the risk factor Size and Value while (the exposures to) the risk
factors Profitability and Investment remain uncontrolled. The VPI-portfolios
for example are controlled for the risk factors Value, Profitability, and Invest-
ment while leaving (the exposures to) uncontrolled.

We will compare the Sharpe Ratios and Information Ratios to determine whether
both construction techniques generate similar risk-adjusted returns when average-
exposure matched. For each pair of average exposures-matched portfolios, we
will test the null hypothesis that the difference between the two Sharpe Ratios
is equal to zero. Furthermore, this will also be done for the Information Ratios.
To be more specific, we will test the following hypothesis:

H0 : ∆ = 0 vs H1 : ∆ ̸= 0

In this equation, ∆ denotes the difference between the true Sharpe Ratios of two
portfolios. For the hypothesis test regarding the Information Ratios, ∆ denotes
the difference between the true Information Ratios. To test this null hypothe-
sis, we will use the method proposed by Ledoit and Wolf (2007). Leippold and
Rueegg (2018) and Ghayur et al. (2018) also use this methodology. Ledoit and
Wolf (2007) argue that Sharpe Ratio testing methodologies proposed by Jobson
and Korkie (1981) and Memmel (2003) are not appropriate in case the returns
are not normally distributed or are serial correlated. According to Ledoit and
Wolf (2007), the former is often the case in financial returns and therefore argue
that these methodologies are not valid. The authors therefore argue that it is
better to use a heteroskedasticity and autocorrelation consistent (HAC) covari-
ance matrix estimator proposed by Andrews (1991) and Andrews and Monahan
(1992). However, the authors also state that the inference is less accurate in
case of having small to moderate sample sizes. They note that many papers
demonstrated that the inference accuracy could be greatly improved when us-
ing studentized bootstrap. Therefore, the authors propose a methodology based
on studentized circular block bootstrapping to generate a two-sided confidence
interval using M-number of bootstrap samples to test the null hypothesis that
the difference between the Sharpe Ratios of two portfolios is equal to zero.
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The authors also provide an algorithm to determine the optimal block size to
generate the bootstrap samples with. Since we have a finite sample size (222
monthly returns for each average exposures-matched portfolio) we decide to
use the algorithm outlined by Ledoit and Wolf (2007) to test whether average
exposures-matched portfolios perform similarly in terms of Sharpe Ratios and
Information Ratios. As noted by the authors, this method could in the same
manner be applied for Information Ratios.

To test the null hypothesis and subsequently calculate the p-values, we will
use the R-function sharpeTesting from the R-package PeerPerformance2 as also
used by Ardia and Boudt (2018). We will apply the settings such that it corre-
sponds to the methodology as outlined in Ledoit and Wolf (2007). Furthermore,
for each hypothesis test we use 5000 circular block bootstrap samples to gen-
erate the confidence intervals with. This number corresponds to the number
of circular block bootstrap samples as used in an example given by Ledoit and
Wolf (2007).

4.6.4 Enhanced constructed multi-factor portfolios

Lastly, we are interested in what will happen to the performance of naively con-
structed top-down portfolios when one would remove from the utilized single-
factor portfolios stocks having a specified number of negative factor exposures.
Blitz and Vidojevic (2019) do this as well and find that it significantly improves
the returns of a top-down constructed portfolio. To be more specific, the au-
thors find that when stocks with more negative exposures are removed from
the single-factor portfolios, the more the factor exposures and consequently the
performance of the top-down constructed portfolios become similar to that of
a bottom-up constructed portfolio. The authors therefore argue that there is
no such thing as a ’bottom-up premium’. In addition to the average exposures-
matched portfolios, we are interested in whether we can find this in our dataset
as well. Blitz and Vidojevic (2019) call the top-down portfolios having stocks
with a specified number of unfavorable characteristics removed ’enhanced strate-
gies’. To make a clear distinction with the naively constructed and average
exposures-matched portfolios, we will use this terminology as well. Therefore,
we call these portfolios the ’enhanced constructed portfolios’ since these are
naively constructed portfolio but having stocks with a certain number of unfa-
vorable characteristics removed and therefore being a bit more advanced.

2The R-codes of this package could be found on https://CRAN.R-
project.org/package=PeerPerformance
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5 Results

In this section, the results of all backtested portfolios will be discussed. First,
the results of the backtested naive multi-factor portfolios will be discussed. In
the second part, the results of the backtested average exposure matched multi-
factor portfolios will be discussed. In the third part, the results of the enhanced
multi-factor portfolios will be discussed.

5.1 Naively constructed multi-factor portfolios

Tables 4 and 5 show the results for the backtested naively constructed port-
folios. The tables show that for all thresholds, the average backtested naively
constructed bottom-up portfolio does have a higher mean excess return and
Sharpe Ratio compared to the average backtested naively constructed top-down
portfolio. The backtesting results suggest that bottom-up constructed portfo-
lios are superior to the top-down constructed portfolios when constructed in a
naive manner. For the average backtested 50% portfolios, the differences in the
performance statistics are not very large for both construction techniques. To
be more specific, the average backtested naively constructed bottom-up port-
folio with a threshold of 50% has a mean excess return of 9.87% and a Sharpe
Ratio of 0.63, while the average backtested naively constructed top-down port-
folio with a threshold of 50% has a mean excess return of 9.31% and a Sharpe
Ratio of 0.60. However, when the thresholds are tightened the performance dif-
ferences between the average backtested naive top-down constructed portfolio
and the average backtested naive bottom-up constructed portfolio increase in
favor for the latter. To be more specific, for the 33.33% threshold, the average
bottom-up portfolio has a mean excess return of 10.88% and a Sharpe Ratio
0.67 and the average top-down portfolio has a mean excess return of 9.71% and
a Sharpe Ratio of 0.62. For the 10% threshold, the average bottom-up portfolio
has a mean excess return of 13.87% and a Sharpe Ratio 0.71 and the average
top-down portfolio has a mean excess return of 11.54% and a Sharpe Ratio of
0.65.

Blitz and Vidojevic (2019) and Leippold and Rueegg (2018) also find that the
bottom-up constructed portfolio outperform top-down constructed portfolios
when applied in a naive manner. According to Blitz and Vidojevic (2019), these
findings are to be expected since for the same factor combinations a naively
constructed bottom-up portfolio contain much fewer companies than a naively
constructed top-down portfolio and are therefore much more concentrated. Ac-
cording to the authors, higher concentrated portfolios are better able to capture
high factor exposures. The results in tables 4 and 5 show that this is indeed
the case and are therefore in line with the authors’ view. The average naively
bottom-up constructed portfolio contains on average 297, 199, and 60 compa-
nies for thresholds 50%, 33.33%, and 10% respectively. The average naively
top-down constructed portfolio however contains on average 488, 378, and 135
companies for thresholds 50%, 33.33%, and 10% respectively. According to
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Ghayur et al. (2018) and Blitz and Vidojevic (2019), the fact that bottom-up
constructed portfolios perform better is therefore a direct consequence of the
fact that they simply have higher factor exposures.
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Table 4: Backtested results of naively constructed bottom-up portfolios

Naively constructed bottom-up equally-weighted top 50% portfolios
Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment

combination return risk Ratio of companies exposure exposure exposure exposure
SV 9.20 15.90 0.58 297.40 0.61 0.58 -0.29 0.14
SP 10.50 15.40 0.68 297.40 0.43 0.04 0.36 -0.02
SI 8.30 15.70 0.52 297.40 0.57 0.30 -0.25 0.51
VP 11.50 15.90 0.72 297.40 0.09 0.40 0.35 0.02
VI 9.30 15.90 0.58 297.40 0.28 0.56 -0.27 0.52
PI 9.70 15.30 0.64 297.40 -0.15 -0.13 0.45 0.41
SVP 11.00 15.90 0.69 297.40 0.51 0.47 0.11 0.06
SVI 8.60 15.80 0.54 297.40 0.53 0.53 -0.30 0.45
SPI 10.00 15.40 0.65 297.40 0.43 0.13 0.17 0.44
VPI 10.70 15.60 0.68 297.40 0.13 0.40 0.18 0.45
SVPI 9.80 15.70 0.62 297.40 0.48 0.47 0.01 0.40

Avg 9.87 15.68 0.63 297.40 0.36 0.34 0.05 0.31

Naively constructed bottom-up equally-weighted top 33.33% portfolios
Factors Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment

combination return risk Ratio of companies exposure exposure exposure exposure
SV 10.50 17.20 0.61 198.50 0.79 0.82 -0.39 0.23
SP 11.90 15.50 0.77 198.50 0.54 0.03 0.56 -0.04
SI 8.50 16.30 0.52 198.50 0.78 0.39 -0.39 0.70
VP 13.00 16.50 0.79 198.50 0.18 0.52 0.49 0.03
VI 10.10 16.70 0.60 198.50 0.41 0.77 -0.38 0.68
PI 10.60 15.60 0.68 198.50 -0.20 -0.22 0.69 0.50
SVP 12.10 16.60 0.73 198.50 0.69 0.65 0.15 0.10
SVI 9.90 16.50 0.60 198.50 0.73 0.72 -0.43 0.61
SPI 10.20 15.50 0.66 198.50 0.56 0.15 0.28 0.56
VPI 11.70 16.30 0.72 198.50 0.21 0.54 0.24 0.59
SVPI 11.20 16.50 0.68 198.50 0.65 0.64 0.01 0.55

Avg 10.88 16.29 0.67 198.50 0.49 0.46 0.08 0.41

Naively constructed bottom-up equally-weighted top 10% portfolios
Factors Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment

combination return risk Ratio of companies exposure exposure exposure exposure
SV 15.20 23.80 0.64 59.80 1.17 1.35 -0.61 0.36
SP 13.20 17.30 0.76 59.80 0.65 -0.11 1.22 -0.09
SI 10.50 18.90 0.56 59.80 1.12 0.44 -0.67 1.20
VP 16.40 17.40 0.95 59.80 0.33 0.71 0.92 0.06
VI 11.40 21.50 0.53 59.80 0.68 1.20 -0.59 1.06
PI 10.80 15.70 0.69 59.80 -0.17 -0.34 1.23 0.75
SVP 19.50 20.60 0.95 59.80 0.99 1.00 0.38 0.17
SVI 13.30 22.30 0.60 59.80 1.10 1.18 -0.65 0.92
SPI 11.60 17.70 0.66 59.80 0.74 0.08 0.71 0.85
VPI 15.10 19.70 0.76 59.80 0.38 0.76 0.53 0.88
SVPI 15.60 21.00 0.74 59.80 0.96 0.99 0.14 0.81

Avg 13.87 19.63 0.71 59.80 0.72 0.66 0.24 0.63

This table shows the results of backtested naively bottom-up constructed portfolios. The upper table shows the results for the
portfolios using a threshold of 50%, the middle table shows the results for the portfolios using a threshold of 33.33%, and the lower
table shows the results for the portfolios using a threshold of 10%. Each table’s last row contain for each column the average value in
bold letters. The column ’Factor combinations’ denotes the specific factors used to construct a portfolio with while leaving the other
factors uncontrolled. The used risk factors are Size (’S’), Value (’V’), Profitability (’P’), and Investment (’I’). For example, a portfolio
using factor combination ’VI’ uses risk factors Value and Investment while a portfolio using the factor combination ’SVP’ use the risk
factors Size, Value, and Profitability. The column ’Mean excess return’ denotes a portfolio’s annualized mean return in excess to the
risk-free rate. The column ’Excess risk’ denotes the annualized volatility of a portfolio’s returns in excess to the risk-free rate. The
column ’Sharpe Ratio’ contains for each portfolio the Sharpe Ratio which is calculated by dividing a portfolio’s mean excess return
by its excess risk. The fifth column denotes the average number of companies a portfolio holds. The sixth, seventh, eighth, and ninth
column denote a portfolio’s average factor exposure towards the risk factors Size, Value, Profitability, and Investment respectively.



Table 5: Backtested results of naively constructed top-down portfolios

Naively constructed top-down equally-weighted 50% single-factor portfolios
Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment

combination return risk Ratio of companies exposure exposure exposure exposure
SV 9.10 15.90 0.57 402.40 0.50 0.50 -0.26 0.13
SP 9.60 15.10 0.63 484.50 0.22 0.00 0.22 0.00
SI 8.20 15.50 0.53 424.80 0.43 0.23 -0.20 0.40
VP 10.40 15.40 0.68 493.90 0.00 0.20 0.21 0.01
VI 9.00 15.70 0.58 421.20 0.21 0.43 -0.21 0.41
PI 9.50 15.20 0.62 467.00 -0.08 -0.07 0.27 0.27
SVP 9.70 15.40 0.63 546.30 0.24 0.24 0.06 0.05
SVI 8.80 15.70 0.56 476.40 0.38 0.39 -0.22 0.31
SPI 9.10 15.20 0.60 535.40 0.19 0.05 0.10 0.22
VPI 9.70 15.40 0.63 544.40 0.04 0.19 0.09 0.23
SVPI 9.30 15.40 0.61 566.20 0.21 0.22 0.00 0.20

Avg 9.31 15.45 0.60 487.50 0.21 0.22 0.01 0.20

Naively constructed top-down equally-weighted 33.33% single-factor portfolios
Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment

combination return risk Ratio of companies exposure exposure exposure exposure
SV 9.90 16.70 0.59 295.40 0.70 0.66 -0.36 0.18
SP 9.80 15.00 0.65 357.80 0.31 -0.04 0.32 0.00
SI 8.20 15.80 0.52 309.70 0.59 0.27 -0.29 0.53
VP 11.20 15.60 0.72 369.80 0.05 0.26 0.30 0.02
VI 9.70 16.30 0.59 310.40 0.33 0.57 -0.30 0.55
PI 9.50 15.00 0.63 347.00 -0.06 -0.13 0.38 0.37
SVP 10.30 15.60 0.66 439.00 0.35 0.29 0.08 0.07
SVI 9.20 16.20 0.57 370.60 0.54 0.50 -0.32 0.42
SPI 9.20 15.10 0.61 432.40 0.28 0.03 0.14 0.30
VPI 10.10 15.50 0.65 444.50 0.10 0.23 0.12 0.31
SVPI 9.70 15.50 0.63 483.50 0.32 0.26 0.01 0.27

Avg 9.71 15.66 0.62 378.19 0.32 0.26 0.01 0.27

Naively constructed top-down equally-weighted 10% single-factor portfolios
Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment

combination return risk Ratio of companies exposure exposure exposure exposure
SV 13.20 21.20 0.62 98.90 1.09 1.05 -0.59 0.33
SP 11.60 16.00 0.72 117.10 0.54 -0.04 0.54 0.07
SI 10.50 18.40 0.57 108.10 0.91 0.36 -0.55 0.90
VP 12.50 17.60 0.71 117.30 0.22 0.42 0.55 0.07
VI 11.50 19.40 0.59 109.20 0.59 0.83 -0.54 0.90
PI 9.80 15.50 0.63 115.90 0.04 -0.26 0.59 0.64
SVP 12.50 17.70 0.70 155.70 0.62 0.48 0.17 0.16
SVI 11.80 19.30 0.61 141.30 0.86 0.74 -0.56 0.71
SPI 10.60 16.00 0.66 162.50 0.50 0.02 0.19 0.54
VPI 11.30 17.00 0.67 164.90 0.28 0.33 0.20 0.53
SVPI 11.60 17.30 0.67 195.20 0.57 0.39 0.00 0.48

Avg 11.54 17.76 0.65 135.10 0.57 0.39 0.00 0.48

This table shows the results of backtested naively top-down constructed portfolios. The upper table shows the results for top-down
constructed portfolios using single-factor portfolios with a threshold of 50%, the middle table shows the results for the top-down
constructed portfolios using single-factor portfolios with a threshold of 33.33%, and the lower table shows the results for top-down
constructed portfolios using single-factor portfolios with a threshold of 10%. Each table’s last row contain for each column the average
value in bold letters. The column ’Factor combinations’ denotes the specific factors used to construct a portfolio with while leaving
the other factors uncontrolled. The used risk factors are Size (’S’), Value (’V’), Profitability (’P’), and Investment (’I’). For example,
a portfolio using factor combination ’VI’ uses risk factors Value and Investment while a portfolio using the factor combination ’SVP’
use the risk factors Size, Value, and Profitability. The column ’Mean excess return’ denotes a portfolio’s annualized mean return
in excess to the risk-free rate. The column ’Excess risk’ denotes the annualized volatility of a portfolio’s returns in excess to the
risk-free rate. The column ’Sharpe Ratio’ contains for each portfolio the Sharpe Ratio which is calculated by dividing a portfolio’s
mean excess return by its excess risk. The fifth column denotes the average number of companies a portfolio holds. The sixth,
seventh, eighth, and ninth column denote a portfolio’s average factor exposure towards the risk factors Size, Value, Profitability, and
Investment respectively.



5.2 Average exposures-matched portfolios

Table 6 presents the results for the backtested average exposures-matched port-
folios and table 8 presents for each pair of backtested average exposures-matched
bottom-up and top-down constructed portfolios the p-values for the hypothesis
test with the null hypothesis that the difference between the Sharpe Ratios of
both portfolios is equal to zero. As mentioned in section 4, the exposures are
only average-matched for the controlled factors. For example, the SI portfolios
are only average exposures-matched for the Size and Investment factors, and
not for the Value and Profitability factors. Although the portfolios are only
matched on the risk factors of the specified risk factor combination, for several
backtested portfolios the exposures towards the uncontrolled risk factors are
roughly similar as well for both construction techniques.

An interesting finding is that for none of the 22 pairs backtested factor combina-
tions and factor exposure levels the null hypothesis is rejected at 5% significance
level. However, two out of the 22 null hypotheses are rejected at 10% signifi-
cance level. The first is the Value-Profitability portfolios at high level of factor
exposures having a p-value of 0.050. The second is the Size-Investment portfo-
lios at high level of factor exposures having a p-value of 0.070. However, when
applying the multiple hypothesis framework proposed by Holm (1979), none of
the null hypotheses are rejected at 10% significance level. According to this
framework, the lowest p-value should be below 0.10/22=0.0045 which is not
the case. In other words, it could not be rejected that the portfolios perform
significantly different to each other on risk-adjusted basis. These backtested
results seem to be in line with findings of recent papers that are skeptical about
claims that the bottom-up approach is superior to the top-down approach on
risk-adjusted basis. Blitz and Vidojevic (2019) find that portfolios constructed
with similar factor exposures, despite being constructed using the bottom-up
approach or the top-down approach, have similar performance. The authors
find portfolios having similar factor exposures achieve similar returns and risk-
adjusted returns despite the portfolio construction technique applied. Leippold
and Rueegg (2018) find that, even for non (average) exposures-matched portfo-
lios, there are no statistical significant differences between the Sharpe Ratios of
bottom-up constructed portfolios and top-down constructed portfolios that use
the same factor combinations when applying a multiple hypothesis framework.
These results contrasts the findings of Clarke et al. (2016), Bender and Wang
(2016), and Fitzgibbons et al. (2017) that bottom-up constructed portfolios do
perform better on absolute and on risk-adjusted basis.

Although none of the backtested average exposures-matched pairs are rejected
at 5% significance level, the table shows that the mean excess returns and excess
risks do differ for both construction techniques. This is most likely explained
by the fact that we match the average factor exposures over time and not at
time of rebalancing like Blitz and Vidojevic (2019) do. Blitz and Vidojevic
(2019) argue that portfolios, despite the construction technique applied, hav-
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ing similar factor exposures do have very similar performances. Ghayur et al.
(2018) also construct their portfolios average exposures-matched. However, the
authors note they also tested also portfolios being factor exposure matched at
time of rebalancing and found similar results. Therefore, it is to be expected
that when the factor exposures are matched at time of rebalancing the excess
return, excess risk, and Sharpe Ratio of both types of portfolios will become
very similar as well. Therefore, I expect that the same conclusions will hold
for portfolios being factor exposure-matched at time of rebalancing instead of
being average exposures-matched.

In table 7, the Information Ratios are displayed for the backtested average
exposures-matched portfolios. Table 8 presents for each pair of backtested aver-
age exposures-matched portfolios the p-values for the hypothesis test with the
null hypothesis that the difference between the Information Ratios is equal to
zero. The table shows that none of the average exposures-matched portfolio
pairs have Information Ratios that are statistically significant different to each
other at both 5% and 10% significance level. This contradicts the findings of
Ghayur et al. (2018). The authors find for two, three and four factor combina-
tions, that for low-to-moderate levels of factor exposures the top-down approach
generates higher Information Ratios than the bottom-up approach, while for
high levels of factor exposures the bottom-up constructed portfolios generate
higher Information Ratios. The results of our backtested average exposures-
matched portfolios are not in line with their findings. Although the authors
also state that the found differences in Information Ratios show little statistical
significance.

The findings of Ghayur et al. (2018) contrasts the finding of Fitzgibbons et
al. (2017). The authors of the latter paper find that bottom-up constructed
portfolios do have higher Information Ratios for all levels of tracking errors.
Only for very low values of tracking error the authors find the bottom-up and
top-down portfolio perform similarly. It is important to note that in this paper
the backtested average exposures-matched portfolios are not actively matched
on tracking error. However, table 7 shows that by accident the bottom-up and
top-down constructed portfolios for factor combinations SPI (low), SV (low), SP
(low), SI (low), VP (low), and PI (low) do in fact have (roughly) similar tracking
errors for both construction techniques. The table also shows that these port-
folios have very similar Information Ratios for both construction techniques. In
matter of fact, none of the differences in Information Ratio are statistically sig-
nificant different from zero. Also interesting, the at low exposure level top-down
constructed portfolio using the factor combination SP has similar tracking error
as the at low exposure level bottom-up constructed portfolio using the factor
combination PI. However, the former portfolio realized an Information Ratio
of 0.11 while the latter portfolio realized an Information Ratio of 0.06. These
findings also contrast the findings of Fitzgibbons et al. (2017) that bottom-up
portfolios with similar tracking errors to top-down portfolios perform better.
The authors only use the Value and Momentum factors to construct their port-
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folios. According to Blitz and Vidojevic (2019), it may be possible that these
performance differences are simply the results of unknowingly having unintended
differences in exposures towards uncontrolled risk factors.

Furthermore, table 6 shows that for both construction techniques similar lev-
els of factor exposures could be achieved. This is in line with the findings of
Ghayur et al. (2018). However, the table also shows that for several factor com-
binations the top-down constructed portfolios require much higher concentrated
(single-factor) portfolios in order to achieve the same factor exposures as the
bottom-up constructed portfolios. This is most often the case for high levels of
average factor exposures. This is the case for seven out of the eleven bactested
average exposures-matched portfolio pairs. To be more specific, this is the case
for the factor combinations SVPI, SVP, SPI, VPI, SP, VP, and PI. Although
similar average factor exposures could be achieved for both portfolio construc-
tion techniques, this would suggest that there is a limit for top-down portfolios
in achieving similar factor exposures to bottom-up constructed portfolios. This
is in line with Ghayur et al. (2018) who notes that, although the factor exposures
could be matched using both construction techniques, the ability for top-down
constructed portfolios to achieve (very) high levels of factor exposures is lim-
ited since it would require high concentrations in the single-factor portfolios.
These findings therefore would suggest that bottom-up constructed portfolios
potentially could achieve higher factor exposures. However, the results of the
backtested enhanced portfolios will show this is not necessarily the case.
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Table 6: Backtested results of average exposures-matched portfolios and their Sharpe Ratios

Factor Exposure Construction Ann. Ann. Sharpe Avg. no. Avg. Avg. Avg. Avg.
combination level technique mean excess Ratio companies Size Value Profitability Investment

excess risk exposure exposure exposure exposure
return

SVPI Low Top-down 10.93 16.99 0.64 242 0.52 0.42 0.01 0.44
SVPI Low Bottom-up 9.80 15.75 0.62 297 0.48 0.47 0.01 0.40
SVPI High Top-down 12.66 19.53 0.65 129 0.66 0.55 -0.04 0.54
SVPI High Bottom-up 11.07 16.34 0.68 208 0.63 0.61 0.01 0.53
SVP Low Top-down 12.02 17.65 0.68 269 0.52 0.48 0.10 0.12
SVP Low Bottom-up 10.97 15.87 0.69 297 0.51 0.47 0.11 0.06
SVP High Top-down 16.01 23.10 0.69 104 0.72 0.68 0.17 0.15
SVP High Bottom-up 12.65 16.99 0.74 179 0.73 0.69 0.16 0.11
SVI Low Top-down 9.15 16.77 0.55 330 0.57 0.56 -0.37 0.54
SVI Low Bottom-up 8.62 15.84 0.54 297 0.53 0.53 -0.30 0.45
SVI High Top-down 11.10 18.72 0.59 172 0.81 0.72 -0.52 0.65
SVI High Bottom-up 10.08 16.83 0.60 179 0.77 0.78 -0.46 0.64
SPI Low Top-down 10.02 15.37 0.65 264 0.43 0.03 0.13 0.44
SPI Low Bottom-up 9.98 15.40 0.65 297 0.43 0.13 0.17 0.44
SPI High Top-down 15.08 20.89 0.72 79 0.65 0.02 0.28 0.61
SPI High Bottom-up 11.11 15.41 0.72 149 0.62 0.16 0.37 0.65
VPI Low Top-down 11.56 17.34 0.67 220 0.27 0.39 0.15 0.46
VPI Low Bottom-up 10.65 15.64 0.68 297 0.13 0.40 0.18 0.45
VPI High Top-down 12.65 19.95 0.63 94 0.38 0.53 0.24 0.54
VPI High Bottom-up 11.70 16.30 0.72 208 0.20 0.52 0.23 0.57
SV Low Top-down 9.57 16.26 0.59 341 0.62 0.59 -0.32 0.16
SV Low Bottom-up 9.16 15.89 0.58 297 0.61 0.58 -0.29 0.14
SV High Top-down 11.38 19.72 0.58 173 0.93 0.96 -0.50 0.27
SV High Bottom-up 10.81 18.31 0.59 149 0.91 0.96 -0.46 0.27
SP Low Top-down 10.97 15.19 0.72 254 0.42 -0.04 0.35 0.03
SP Low Bottom-up 10.50 15.39 0.68 297 0.43 0.04 0.36 -0.02
SP High Top-down 12.56 15.92 0.79 88 0.55 -0.07 0.68 0.06
SP High Bottom-up 12.05 15.45 0.78 149 0.57 -0.01 0.72 -0.07
SI Low Top-down 8.17 15.77 0.52 323 0.57 0.26 -0.27 0.51
SI Low Bottom-up 8.26 15.75 0.52 297 0.57 0.30 -0.25 0.51
SI High Top-down 10.09 17.61 0.57 133 0.86 0.34 -0.51 0.82
SI High Bottom-up 7.75 16.50 0.47 149 0.88 0.43 -0.47 0.83
VP Low Top-down 11.72 16.35 0.72 258 0.13 0.35 0.35 0.04
VP Low Bottom-up 11.50 15.91 0.72 297 0.09 0.40 0.35 0.02
VP High Top-down 12.64 18.39 0.69 74 0.26 0.53 0.60 0.07
VP High Bottom-up 13.80 16.34 0.84 149 0.21 0.58 0.59 0.04
VI Low Top-down 9.51 16.47 0.58 285 0.35 0.60 -0.33 0.58
VI Low Bottom-up 9.27 15.91 0.58 297 0.28 0.56 -0.27 0.52
VI High Top-down 11.27 20.02 0.56 123 0.58 0.88 -0.49 0.81
VI High Bottom-up 10.89 17.71 0.61 149 0.50 0.89 -0.44 0.79
PI Low Top-down 9.66 14.98 0.64 273 -0.04 -0.16 0.43 0.43
PI Low Bottom-up 9.74 15.30 0.64 297 -0.15 -0.13 0.45 0.41
PI High Top-down 11.09 15.74 0.70 89 0.07 -0.29 0.85 0.61
PI High Bottom-up 10.10 15.38 0.66 149 -0.21 -0.28 0.83 0.56

This table shows backtest results for the average exposures-matched portfolios. The column ’Factor combinations’ denotes the specific
factors used to construct a portfolio with while leaving the other factors uncontrolled. The used risk factors are Size (’S’), Value (’V’),
Profitability (’P’), and Investment (’I’). For example, a portfolio using factor combination ’VI’ uses risk factors Value and Investment while
a portfolio using the factor combination ’SVP’ use the risk factors Size, Value, and Profitability. The second column denotes whether
the matched exposure are low or high. The third column denotes the construction technique applied. The column ’Ann. mean excess
return’ denotes a portfolio’s annualized mean return in excess to the risk-free rate. The column ’Ann. excess risk’ denotes the annualized
volatility of a portfolio’s returns in excess to the risk-free rate. The column ’Sharpe Ratio’ contains for each portfolio the Sharpe Ratio
which is calculated by dividing a portfolio’s annualized mean excess return by its annualized excess risk. The seventh column denotes the
average number of companies a portfolio holds. The eighth, ninth, tenth, and eleventh column denote a portfolio’s average factor exposure
towards the risk factors Size, Value, Profitability, and Investment respectively.



Table 7: Backtested results of average exposures-matched portfolios and their Information Ratios

Factor Exposure Construction Ann. Ann. Information Avg. no. Avg. Avg. Avg. Avg.
combination level technique active active Ratio companies Size Value Profitability Investment

return risk exposure exposure exposure exposure
SVPI Low Top-down 2.47 24.22 0.10 242 0.52 0.42 0.01 0.44
SVPI Low Bottom-up 1.34 23.38 0.06 297 0.48 0.47 0.01 0.40
SVPI High Top-down 4.19 25.90 0.16 129 0.66 0.55 -0.04 0.54
SVPI High Bottom-up 2.60 23.94 0.11 208 0.63 0.61 0.01 0.53
SVP Low Top-down 3.55 24.70 0.14 269 0.52 0.48 0.10 0.12
SVP Low Bottom-up 2.51 23.38 0.11 297 0.51 0.47 0.11 0.06
SVP High Top-down 7.54 28.46 0.26 104 0.72 0.68 0.17 0.15
SVP High Bottom-up 4.18 24.21 0.17 179 0.73 0.69 0.16 0.11
SVI Low Top-down 0.68 24.11 0.03 330 0.57 0.56 -0.37 0.54
SVI Low Bottom-up 0.16 23.46 0.01 297 0.53 0.53 -0.30 0.45
SVI High Top-down 2.64 25.66 0.10 172 0.81 0.72 -0.52 0.65
SVI High Bottom-up 1.61 24.17 0.07 179 0.77 0.78 -0.46 0.64
SPI Low Top-down 1.56 23.21 0.07 264 0.43 0.03 0.13 0.44
SPI Low Bottom-up 1.51 23.09 0.07 297 0.43 0.13 0.17 0.44
SPI High Top-down 6.61 27.59 0.24 79 0.65 0.02 0.28 0.61
SPI High Bottom-up 2.65 23.38 0.11 149 0.62 0.16 0.37 0.65
VPI Low Top-down 3.10 24.65 0.13 220 0.27 0.39 0.15 0.46
VPI Low Bottom-up 2.18 23.33 0.09 297 0.13 0.40 0.18 0.45
VPI High Top-down 4.18 26.23 0.16 94 0.38 0.53 0.24 0.54
VPI High Bottom-up 3.23 23.78 0.14 208 0.20 0.52 0.23 0.57
SV Low Top-down 1.10 23.63 0.05 341 0.62 0.59 -0.32 0.16
SV Low Bottom-up 0.69 23.32 0.03 297 0.61 0.58 -0.29 0.14
SV High Top-down 2.91 26.21 0.11 173 0.93 0.96 -0.50 0.27
SV High Bottom-up 2.34 25.21 0.09 149 0.91 0.96 -0.46 0.27
SP Low Top-down 2.50 22.92 0.11 254 0.42 -0.04 0.35 0.03
SP Low Bottom-up 2.03 22.87 0.09 297 0.43 0.04 0.36 -0.02
SP High Top-down 4.10 23.66 0.17 88 0.55 -0.07 0.68 0.06
SP High Bottom-up 3.59 23.27 0.15 149 0.57 -0.01 0.72 -0.07
SI Low Top-down -0.29 23.35 -0.01 323 0.57 0.26 -0.27 0.51
SI Low Bottom-up -0.20 23.40 -0.01 297 0.57 0.30 -0.25 0.51
SI High Top-down 1.62 24.81 0.07 133 0.86 0.34 -0.51 0.82
SI High Bottom-up -0.72 23.97 -0.03 149 0.88 0.43 -0.47 0.83
VP Low Top-down 3.25 23.66 0.14 258 0.13 0.35 0.35 0.04
VP Low Bottom-up 3.04 23.41 0.13 297 0.09 0.40 0.35 0.02
VP High Top-down 4.17 25.03 0.17 74 0.26 0.53 0.60 0.07
VP High Bottom-up 5.33 23.71 0.22 149 0.21 0.58 0.59 0.04
VI Low Top-down 1.04 23.97 0.04 285 0.35 0.60 -0.33 0.58
VI Low Bottom-up 0.80 23.59 0.03 297 0.28 0.56 -0.27 0.52
VI High Top-down 2.80 26.75 0.10 123 0.58 0.88 -0.49 0.81
VI High Bottom-up 2.43 24.99 0.10 149 0.50 0.89 -0.44 0.79
PI Low Top-down 1.19 22.95 0.05 273 -0.04 -0.16 0.43 0.43
PI Low Bottom-up 1.27 22.97 0.06 297 -0.15 -0.13 0.45 0.41
PI High Top-down 2.63 24.18 0.11 89 0.07 -0.29 0.85 0.61
PI High Bottom-up 1.64 23.33 0.07 149 -0.21 -0.28 0.83 0.56

This table shows backtest results for the average exposures-matched portfolios. The column ’Factor combinations’ denotes the specific
factors used to construct a portfolio with while leaving the other factors uncontrolled. The used risk factors are Size (’S’), Value (’V’),
Profitability (’P’), and Investment (’I’). For example, a portfolio using factor combination ’VI’ uses risk factors Value and Investment while
a portfolio using the factor combination ’SVP’ use the risk factors Size, Value, and Profitability. The second column denotes whether
the matched exposure are low or high. The third column denotes the construction technique applied. The column ’Ann. active return’
denotes a portfolio’s annualized mean return in excess to the benchmark’s annualized mean return. The column ’Ann. active risk’ denotes
the annualized volatility of a portfolio’s active return. The column ’Information Ratio’ contains for each portfolio the Information Ratio
which is calculated by dividing a portfolio’s active return by its active risk. The seventh column denotes the average number of companies
a portfolio holds. The eighth, ninth, tenth, and eleventh column denote a portfolio’s average factor exposure towards the risk factors Size,
Value, Profitability, and Investment respectively.



Table 8: Results of the hypothesis tests

Sharpe Ratios
Factor Exposure ∆ p-value

combination level
SVPI L 0.02 0.730
SVPI H 0.03 0.758
SVP L 0.01 0.862
SVP H 0.05 0.688
SVI L 0.01 0.996
SVI H 0.01 0.877
SPI L 0.00 0.909
SPI H 0.00 0.853
VPI L 0.01 0.828
VPI H 0.09 0.493
SV L 0.01 0.484
SV H 0.01 0.785
SP L 0.04 0.338
SP H 0.01 0.868
SI L 0.00 0.819
SI H 0.10 0.070
VP L 0.00 0.805
VP H 0.15 0.050
VI L 0.00 0.807
VI H 0.05 0.604
PI L 0.00 0.793
PI H 0.04 0.643

Information Ratios
Factor Exposure ∆ p-value

combination level
SVPI L 0.04 0.218
SVPI H 0.05 0.564
SVP L 0.03 0.484
SVP H 0.09 0.586
SVI L 0.02 0.454
SVI H 0.03 0.375
SPI L 0.00 0.975
SPI H 0.13 0.255
VPI L 0.04 0.505
VPI H 0.02 0.884
SV L 0.02 0.302
SV H 0.02 0.735
SP L 0.02 0.512
SP H 0.02 0.791
SI L 0.00 0.833
SI H 0.10 0.046
VP L 0.01 0.702
VP H 0.05 0.202
VI L 0.01 0.690
VI H 0.00 0.981
PI L 0.01 0.896
PI H 0.04 0.671

The table on the left contains for all backtested average exposures-matched bottom-up and top-
down portfolios the p-values for the hypothesis test with the null hypothesis that the difference
between the Sharpe Ratios of the backtested top-down and bottom-up portfolios is equal to zero
(H0:∆=0). The table on the right shows for the also shows p-values for a similar hypothesis test
but for the Information Ratios. The columns ’Factor combinations’ denote the specific factors used
to construct a portfolio with while leaving the other factors uncontrolled. The used risk factors
are Size (’S’), Value (’V’), Profitability (’P’), and Investment (’I’). For example, a portfolio using
factor combination ’VI’ uses risk factors Value and Investment while a portfolio using the factor
combination ’SVP’ use the risk factors Size, Value, and Profitability. The columns ’∆’ contain the
observed difference in Sharpe Ratios and Information Ratios between the average-exposure matched
top-down and bottom-up constructed portfolio. The columns ’p-value’ contain the p-values for the
hypothesis tests.
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5.3 Enhanced top-down constructed multi-factor portfo-
lios

The backtested results so far have shown that, when applied in a naive manner,
the bottom-up construction technique seems to be superior to the bottom-up
construction technique. This is in line with findings of Clarke et al. (2016), Ben-
der and Wang (2016), Fitzgibbons et al. (2017), Leippold and Rueegg (2018),
and Blitz and Vidojevic (2019). On the other hand, the results also show that
when portfolios are being average exposures-matched the portfolios perform sim-
ilarly in terms of Sharpe Ratio and Information Ratio despite the construction
technique applied. This is in line with findings of Blitz and Vidojevic (2019).
This is also in line with the findings of Leippold and Rueegg (2018) who could
not find evidence that Sharpe Ratios of bottom-up constructed portfolios are
statistically significant different from top-down constructed portfolios. Next, we
will discuss the results of the backtested enhanced top-down portfolios.

Proponents of the bottom-up approach argue that this approach is superior
since it avoids stocks having unfavorable characteristics towards factors and
therefore could achieve higher factor exposures than top-down constructed port-
folios. The results of our backtested naively constructed portfolios seem to be
in line with this statement.

Tables 9, 10, and 11 present the results for the backtested enhanced top-
down constructed portfolios (i.e. naively constructed top-down portfolios having
stocks with a specified number of negative exposures removed). For the 10%
portfolios, there are no backtesting results for single-factor portfolios containing
stocks with only having positive exposure to four factors for the simple reason
that at some moments of rebalancing the constraints are too tight to find any
stocks to construct a portfolio with. The table shows that for each threshold, the
average top-down constructed portfolios combining single-factor portfolios that
contain only stocks having positive exposure towards two or more of the consid-
ered risk factors have just slightly less exposures to the risk factors compared
the average naively constructed bottom-up portfolio. For example, the average
naively constructed bottom-up 50% portfolio has factor exposures of 0.36, 0.34,
0.05, and 0.31 towards the risk factors Size, Value, Profitability, and Investment
respectively. The average enhanced top-down 50% portfolio containing stocks
with two or more positive factor exposures has factor exposures of 0.31, 0.31,
0.02, and 0.30 towards the risk factors Size, Value, Profitability, and Investment
respectively and a Sharpe Ratio of 0.63. Another example is the average naively
constructed bottom-up 10% portfolio that has factor exposures of 0.72, 0.66,
0.24, and 0.63 towards the risk factors Size, Value, Profitability, and Investment
respectively. The average enhanced top-down 10% portfolio containing stocks
with two or more positive factor exposures has factor exposures of 0.66, 0.48,
0.01, and 0.58 towards the risk factors Size, Value, Profitability, and Invest-
ment respectively and a Sharpe Ratio of 0.68. Only in the second example, the
enhanced portfolio has clearly a higher exposure towards the Profitability factor.
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More interestingly, the table also shows that in case only stocks having 3 or 4
positive factor exposures are used, top-down constructed portfolios achieve even
higher factor exposures compared to their bottom-up equivalents. For example,
the average naively constructed bottom-up 50% portfolio has factor exposures of
0.36, 0.34, 0.05, and 0.31 towards the risk factors Size, Value, Profitability, and
Investment respectively and has a Sharpe Ratio of 0.63. The average enhanced
top-down 50% portfolio containing only stocks with three or four positive factor
exposures has factor exposures of 0.55, 0.59, 0.02, and 0.48 towards the risk
factors Size, Value, Profitability, and Investment respectively and has a Sharpe
Ratio of 0.71. Another example is the average naively constructed bottom-up
10% portfolio that has factor exposures of 0.72, 0.66, 0.24, and 0.63 towards the
risk factors Size, Value, Profitability, and Investment respectively and a Sharpe
Ratio of 0.71. The average enhanced top-down 10% portfolio containing stocks
with three or four positive factor exposures has factor exposures of 0.88, 0.82,
0.03, and 0.76 towards the risk factors Size, Value, Profitability, and Investment
respectively and has a similar Sharpe Ratio of 0.70.

The results of the backtested enhanced portfolios seem to suggest that bottom-
up constructed portfolios are not necessarily more effective in capturing high
factor exposures than top-down constructed portfolios. Furthermore, these re-
sults also seem to contradict the statement of Ghayur et al. (2018) that top-down
constructed portfolios are limited in the factor exposures achievable compared
to bottom-up constructed portfolios. These finding is in line with the finding of
Blitz and Vidojevic (2019). The authors find that if one removes stocks with
unfavorable characteristics towards more risk factors from top-down constructed
portfolios, the more and more the portfolios become similar to bottom-up con-
structed portfolios.
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Table 9: Backtested results of enhanced constructed top-down portfolios with threshold of 50%

Top-down equally-weighted 50% single-factor portfolios
Containing stocks having positive exposure to 2 factor or more

Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment
combination return risk Ratio of companies exposure exposure exposure exposure

SV 9.50 16.00 0.59 353.40 0.55 0.55 -0.23 0.21
SP 9.90 15.20 0.65 378.60 0.33 0.14 0.23 0.14
SI 8.40 15.50 0.55 383.10 0.46 0.30 -0.16 0.43
VP 10.80 15.60 0.69 380.90 0.16 0.32 0.21 0.16
VI 9.30 15.80 0.59 372.10 0.29 0.47 -0.18 0.45
PI 9.80 15.20 0.64 362.10 0.07 0.06 0.27 0.38
SVP 10.10 15.50 0.65 413.80 0.35 0.34 0.07 0.17
SVI 9.10 15.70 0.58 406.60 0.43 0.44 -0.19 0.37
SPI 9.40 15.20 0.62 411.00 0.29 0.17 0.11 0.32
VPI 10.00 15.50 0.65 412.90 0.17 0.28 0.10 0.33
SVPI 9.60 15.40 0.62 415.30 0.31 0.31 0.02 0.30

Avg 9.63 15.51 0.62 389.98 0.31 0.31 0.02 0.30

Top-down equally-weighted 50% single-factor portfolios
Containing stocks having positive exposure to 3 or 4 factors

Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment
combination return risk Ratio of companies exposure exposure exposure exposure

SV 11.00 16.20 0.68 195.20 0.66 0.70 -0.17 0.48
SP 11.50 15.50 0.74 196.20 0.53 0.48 0.22 0.39
SI 10.60 16.20 0.65 194.20 0.65 0.64 -0.17 0.58
VP 11.90 15.70 0.76 196.10 0.44 0.54 0.21 0.38
VI 10.90 16.30 0.67 194.00 0.57 0.69 -0.18 0.58
PI 11.50 15.70 0.73 191.00 0.44 0.48 0.21 0.49
SVP 11.40 15.70 0.73 197.40 0.54 0.58 0.09 0.42
SVI 10.80 16.20 0.67 197.20 0.63 0.68 -0.17 0.55
SPI 11.20 15.70 0.71 197.50 0.54 0.53 0.09 0.49
VPI 11.40 15.80 0.72 197.30 0.48 0.57 0.08 0.48
SVPI 11.20 15.80 0.71 197.50 0.55 0.59 0.02 0.48

Avg 11.22 15.89 0.71 195.78 0.55 0.59 0.02 0.48

Top-down equally-weighted 50% single-factor portfolios
Containing stocks having positive exposure to 4 factors

Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment
combination return risk Ratio of companies exposure exposure exposure exposure

SV 15.40 18.80 0.82 30.80 0.66 0.65 0.64 0.60
SP 16.00 18.90 0.85 30.90 0.66 0.65 0.64 0.60
SI 16.00 19.00 0.84 30.80 0.67 0.65 0.65 0.62
VP 15.40 18.80 0.82 30.90 0.65 0.65 0.64 0.60
VI 15.40 18.90 0.82 30.80 0.66 0.66 0.64 0.63
PI 16.00 19.00 0.84 30.90 0.66 0.65 0.65 0.63
SVP 15.60 18.80 0.83 30.90 0.66 0.65 0.64 0.60
SVI 15.60 18.90 0.83 30.80 0.66 0.65 0.64 0.62
SPI 16.00 19.00 0.84 30.90 0.66 0.65 0.65 0.62
VPI 15.60 18.90 0.83 30.90 0.66 0.65 0.64 0.62
SVPI 15.70 18.90 0.83 30.90 0.66 0.65 0.64 0.61

Avg 15.70 18.90 0.83 30.86 0.66 0.65 0.64 0.61

This table shows the results of backtested naively top-down constructed portfolios using single-factor portfolios with a thresholds of 50%.
The upper table shows the results for top-down constructed portfolios containing only stocks with two or more positive factor scores, the
middle table shows the results for the top-down constructed portfolios containing only stocks with three or four positive factor scores, and
the lower table shows the results for top-down constructed portfolios containing only stocks with four positive factor scores. Each table’s
last row contain for each column the average value in bold letters. The column ’Factor combinations’ denotes the specific factors used
to construct a portfolio with. The used risk factors are Size (’S’), Value (’V’), Profitability (’P’), and Investment (’I’). For example, a
portfolio using factor combination ’VI’ uses risk factors Value and Investment while a portfolio using the factor combination ’SVP’ use
the risk factors Size, Value, and Profitability. The column ’Mean excess return’ denotes a portfolio’s annualized mean return in excess to
the risk-free rate. The column ’Excess risk’ denotes the annualized volatility of a portfolio’s returns in excess to the risk-free rate. The
column ’Sharpe Ratio’ contains for each portfolio the Sharpe Ratio which is calculated by dividing a portfolio’s mean excess return by its
excess risk. The fifth column denotes the average number of companies a portfolio holds. The sixth, seventh, eighth, and ninth column
denote a portfolio’s average factor exposure towards the risk factors Size, Value, Profitability, and Investment respectively.



Table 10: Backtested results of enhanced constructed top-down portfolios with threshold of 33.33%

Top-down equally-weighted 33.33% single-factor portfolios
Containing stocks having positive exposure to 2 factor or more

Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment
combination return risk Ratio of companies exposure exposure exposure exposure

SV 10.30 16.80 0.62 265.70 0.74 0.71 -0.34 0.26
SP 10.30 15.10 0.68 281.00 0.44 0.11 0.33 0.17
SI 8.60 15.80 0.54 281.70 0.62 0.34 -0.25 0.57
VP 11.80 15.80 0.75 292.10 0.21 0.37 0.30 0.18
VI 10.10 16.40 0.62 281.60 0.40 0.61 -0.29 0.58
PI 10.00 15.10 0.66 271.10 0.10 0.01 0.38 0.49
SVP 10.80 15.70 0.69 346.90 0.46 0.40 0.10 0.20
SVI 9.70 16.30 0.60 327.40 0.59 0.55 -0.29 0.47
SPI 9.60 15.20 0.64 342.00 0.39 0.16 0.15 0.41
VPI 10.70 15.60 0.68 353.30 0.24 0.33 0.13 0.42
SVPI 10.20 15.60 0.65 377.90 0.42 0.36 0.02 0.38

Avg 10.19 15.76 0.65 310.97 0.42 0.36 0.02 0.38

Top-down equally-weighted 33.33% single-factor portfolios
Containing stocks having positive exposure to 3 or 4 factors

Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment
combination return risk Ratio of companies exposure exposure exposure exposure

SV 12.00 17.30 0.70 156.50 0.83 0.87 -0.28 0.53
SP 12.10 15.50 0.78 149.40 0.65 0.49 0.33 0.43
SI 11.00 17.00 0.64 157.10 0.79 0.69 -0.24 0.71
VP 13.00 15.90 0.81 157.80 0.50 0.63 0.30 0.42
VI 11.90 17.30 0.69 158.20 0.65 0.83 -0.27 0.71
PI 11.90 15.80 0.75 143.20 0.46 0.45 0.34 0.60
SVP 12.40 16.10 0.77 178.20 0.66 0.66 0.11 0.46
SVI 11.60 17.10 0.68 175.20 0.76 0.79 -0.27 0.65
SPI 11.70 15.90 0.73 176.10 0.63 0.55 0.14 0.58
VPI 12.20 16.20 0.76 179.20 0.54 0.64 0.12 0.58
SVPI 12.00 16.30 0.74 187.80 0.65 0.66 0.03 0.57

Avg 11.98 16.40 0.73 165.34 0.65 0.66 0.03 0.57

Top-down equally-weighted 33.33% single-factor portfolios
Containing stocks having positive exposure to 4 factors

Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment
combination return risk Ratio of companies exposure exposure exposure exposure

SV 16.60 21.30 0.78 25.70 0.81 0.80 0.65 0.64
SP 13.70 20.20 0.68 26.00 0.78 0.65 0.82 0.64
SI 16.10 21.00 0.77 25.80 0.81 0.68 0.69 0.75
VP 16.70 20.90 0.80 26.70 0.67 0.77 0.78 0.63
VI 18.90 21.90 0.86 25.40 0.69 0.81 0.65 0.75
PI 16.20 20.70 0.78 25.60 0.67 0.66 0.82 0.74
SVP 15.70 20.60 0.76 28.60 0.76 0.74 0.75 0.64
SVI 17.30 21.30 0.81 28.20 0.77 0.76 0.66 0.71
SPI 15.40 20.50 0.75 28.70 0.75 0.66 0.78 0.71
VPI 17.30 21.00 0.82 28.80 0.68 0.74 0.75 0.71
SVPI 16.40 20.80 0.79 29.70 0.74 0.73 0.73 0.69

Avg 16.39 20.93 0.78 27.20 0.74 0.73 0.73 0.69

This table shows the results of backtested naively top-down constructed portfolios using single-factor portfolios with a thresholds of 33.33%.
The upper table shows the results for top-down constructed portfolios containing only stocks with two or more positive factor scores, the
middle table shows the results for the top-down constructed portfolios containing only stocks with three or four positive factor scores, and
the lower table shows the results for top-down constructed portfolios containing only stocks with four positive factor scores. Each table’s
last row contain for each column the average value in bold letters. The column ’Factor combinations’ denotes the specific factors used to
construct a portfolio with while leaving the other factors uncontrolled. The used risk factors are Size (’S’), Value (’V’), Profitability (’P’),
and Investment (’I’). For example, a portfolio using factor combination ’VI’ uses risk factors Value and Investment while a portfolio using
the factor combination ’SVP’ use the risk factors Size, Value, and Profitability. The column ’Mean excess return’ denotes a portfolio’s
annualized mean return in excess to the risk-free rate. The column ’Excess risk’ denotes the annualized volatility of a portfolio’s returns
in excess to the risk-free rate. The column ’Sharpe Ratio’ contains for each portfolio the Sharpe Ratio which is calculated by dividing
a portfolio’s mean excess return by its excess risk. The fifth column denotes the average number of companies a portfolio holds. The
sixth, seventh, eighth, and ninth column denote a portfolio’s average factor exposure towards the risk factors Size, Value, Profitability,
and Investment respectively.



Table 11: Backtested results of enhanced constructed top-down portfolios with threshold of 10%

Top-down equally-weighted 10% single-factor portfolios
Containing stocks having positive exposure to 2 factor or more

Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment
combination return risk Ratio of companies exposure exposure exposure exposure

SV 13.80 21.50 0.64 93.20 1.11 1.10 -0.57 0.39
SP 12.50 16.10 0.77 93.40 0.67 0.11 0.55 0.25
SI 11.20 18.70 0.60 100.40 0.95 0.44 -0.53 0.94
VP 12.90 17.80 0.73 95.60 0.37 0.53 0.56 0.22
VI 11.80 19.70 0.60 103.50 0.64 0.85 -0.53 0.91
PI 10.40 15.70 0.66 92.10 0.21 -0.13 0.60 0.77
SVP 13.10 17.90 0.73 130.20 0.72 0.58 0.18 0.29
SVI 12.30 19.60 0.63 131.70 0.90 0.80 -0.54 0.75
SPI 11.40 16.20 0.70 134.90 0.61 0.14 0.21 0.66
VPI 11.70 17.20 0.68 139.30 0.41 0.42 0.21 0.64
SVPI 12.20 17.40 0.70 165.80 0.66 0.48 0.01 0.58

Avg 12.12 17.98 0.68 116.37 0.66 0.48 0.01 0.58

Top-down equally-weighted 10% single-factor portfolios
Containing stocks having positive exposure to 3 or 4 factors

Factor Mean excess Excess Sharpe Avg. no. Avg. Size Avg. Value Avg. Profitability Avg. Investment
combination return risk Ratio of companies exposure exposure exposure exposure

SV 15.60 23.70 0.66 62.50 1.17 1.25 -0.53 0.62
SP 14.40 18.20 0.79 51.50 0.94 0.56 0.56 0.47
SI 13.40 22.50 0.60 62.40 1.08 0.79 -0.48 1.05
VP 14.80 18.80 0.79 55.90 0.68 0.85 0.55 0.47
VI 13.90 22.80 0.61 66.10 0.82 1.08 -0.50 1.04
PI 12.60 18.80 0.67 46.70 0.60 0.39 0.60 0.89
SVP 15.00 19.60 0.77 76.10 0.93 0.88 0.19 0.52
SVI 14.30 22.60 0.64 82.10 1.02 1.04 -0.50 0.90
SPI 13.50 19.10 0.71 74.60 0.87 0.58 0.23 0.80
VPI 13.80 19.40 0.71 78.90 0.70 0.77 0.22 0.80
SVPI 14.20 19.80 0.71 93.90 0.88 0.82 0.03 0.76

Avg 14.14 20.48 0.70 68.25 0.88 0.82 0.03 0.76

This table shows the results of backtested naively top-down constructed portfolios using single-factor portfolios with a thresholds of 10%.
The upper table shows the results for top-down constructed portfolios containing only stocks with two or more positive factor scores, the
middle table shows the results for the top-down constructed portfolios containing only stocks with three or four positive factor scores, and
the lower table shows the results for top-down constructed portfolios containing only stocks with four positive factor scores. Each table’s
last row contain for each column the average value in bold letters. The column ’Factor combinations’ denotes the specific factors used to
construct a portfolio with while leaving the other factors uncontrolled. The used risk factors are Size (’S’), Value (’V’), Profitability (’P’),
and Investment (’I’). For example, a portfolio using factor combination ’VI’ uses risk factors Value and Investment while a portfolio using
the factor combination ’SVP’ use the risk factors Size, Value, and Profitability. The column ’Mean excess return’ denotes a portfolio’s
annualized mean return in excess to the risk-free rate. The column ’Excess risk’ denotes the annualized volatility of a portfolio’s returns
in excess to the risk-free rate. The column ’Sharpe Ratio’ contains for each portfolio the Sharpe Ratio which is calculated by dividing
a portfolio’s mean excess return by its excess risk. The fifth column denotes the average number of companies a portfolio holds. The
sixth, seventh, eighth, and ninth column denote a portfolio’s average factor exposure towards the risk factors Size, Value, Profitability,
and Investment respectively.



6 Conclusion

This paper backtests and compares two multi-factor portfolio construction tech-
niques in fifteen European stock markets over the time period July 2004 till De-
cember 2022. This is done by constructing three types of portfolios. First, we
backtested and analyzed naively constructed bottom-up and top-down portfo-
lios. Secondly, we backtested and analyzed average exposures-matched bottom-
up and top-down portfolios. Here, for each factor combination we construct
two bottom-up portfolios using a threshold of 50% and 25%, and construct top-
down portfolios matching the bottom-up portfolios’ average exposures. Thirdly,
we backtested enhanced constructed top-down portfolios (naively constructed
top-down portfolios having stocks with a specified number of negative exposures
removed) and compare these to the naively constructed bottom-up portfolios.

The backtested results seem to support the claims that, when applied in a
naive manner, bottom-up constructed portfolios do outperform top-down con-
structed portfolios on absolute and risk-adjusted basis. According to Blitz and
Vidojevic (2019) this is in line with what could be expected since the bottom-
up constructed portfolios are more concentrated and therefore more effective in
capturing higher factor exposures. However, it should also be noted that Leip-
pold and Rueegg (2018) do no find statistical evidence for the outperformance
of naively constructed bottom-up portfolios.

The results of the backtested average exposures-matched portfolios do not seem
to support the claim that bottom-up portfolios outperform top-down portfo-
lios. We find that none of backtested average exposures-matched top-down
and bottom-up portfolios have a difference in both the Sharpe Ratio and the
Information Ratio that is statistically significant different from zero at a 5%
significance level. This is in line with findings of Ghayur et al. (2018) and Blitz
and Vidojevic (2019) who argue that the bottom-up portfolios do not perform
better than top-down portfolios when the portfolios (on average) have equal fac-
tor exposures. These results are also in line with the aforementioned findings of
Leippold and Rueegg (2018). Blitz and Vidojevic (2019) argues that there does
not seem to exist such a thing as a ’bottom-up premium’. That is, one could not
gain higher risk-adjusted returns than expected by the factor exposures when
applying a bottom-up constructed portfolio. These results seem to support this
claim.

Lastly, we find that enhanced top-down constructed portfolios that only con-
tain stocks having positive exposure towards 3 or 4 risk factors do outperform
the naively constructed bottom-up portfolios. This also implies that bottom-
up constructed portfolios are not necessarily more effective in capturing higher
factor exposures than top-down constructed portfolios. Furthermore, this also
implies that top-down constructed portfolios are not limited in the achievable
factor exposures compared to bottom-up portfolios, as noted by Ghayur et al.
(2018). The backtested results in this paper seem to support this claim.
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The backtesting results imply that in case the investor wants to apply one
of the construction techniques only in a naive manner, the bottom-up approach
seem indeed to be the better choice. But as noted by Blitz and Vidojevic
(2019), that is to be expected since naively constructed bottom-up portfolios
are more concentrated and therefore more effective in achieving higher factor
exposures. The backtesting results also seem to suggest that, in case the in-
vestor wants to construct a portfolio having a desired factor exposure, both
construction techniques could be used. Top-down constructed portfolios could
achieve similar or even better risk exposures compared to naively constructed
bottom-up portfolios by tightening the thresholds of the single-factor portfolio
and/or by removing stocks having unfavorable characteristics towards multi-
ple factors from the single-factor portfolios. Therefore, the backtesting results
seem to suggest that there is no performance difference between both portfolio
construction techniques when matched at desired (average) factor exposures.

6.1 Limitations and suggestions for further research

We used the risk factors of the five-factor model proposed by Fama and French
(2015) to construct multi-factor portfolios with. However, there are more risk
factor found in the stock market like for example Momentum, Low-Volatility,
Quality (closely related to Profitability), and Betting-against-Beta. Further
research could focus on how bottom-up and top-down constructed portfolios
perform compared to each other when portfolios are constructed using other risk
factors. Furthermore, the stocks being used in the backtested portfolios are not
filtered on for example stock price, market capitalization, or liquidity. Therefore,
the backtested portfolios also contain illiquid penny stocks and illiquid micro
cap stocks. Therefore, the backtested portfolios are more of a theoretical nature
than of practical nature. For example, for large funds it is impossible to allocate
an equal weight to micro cap companies while smaller funds may not always
want to invest in illiquid stocks. Further research could investigate whether the
findings in this paper also hold for portfolios containing stocks that are filtered
on for example stock price, market capitalization, or liquidity.
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