n®a
TILBURG ¢ }%%; o UNIVERSITY
I\\:_l

THE EFFECT OF EMBODIMENT ON
ADAPTIVE ROBOT ASSISTED
LANGUAGE LEARNING

ETHEL PRUSS

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF SCIENCE IN COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE

DEPARTMENT OF
COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE
SCHOOL OF HUMANITIES AND DIGITAL SCIENCES
TILBURG UNIVERSITY



STUDENT NUMBER

1991889

COMMITTEE

dr. Maryam Alimardani
dr. Marie Postma

LOCATION

Tilburg University

School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence

Tilburg, The Netherlands

DATE

June 24, 2022

STATEMENT OF CONTRIBUTION

The BCI robot-assisted learning system used for this thesis was devel-
oped in collaboration with Jos Prinsen, Caterina Ceccato, and Anita
Vrins, who all contributed equally to the development of the system
and were involved in the coding of all components. In terms of work
division, Anita and I primarily focused on creating the experiments
including code for randomly generated ROILA word lists for each
condition and participant, matching randomized vocabulary tests with
a graphical user interface (GUI) and interactions with the robot (in-
cluding introductions and teaching the aforementioned randomized
vocabulary in an adaptive manner based on user engagement and a
synchronized GUI which simultaneously displayed the spelling of the
words) and similarly, the adaptive screen condition involving a GUI
with a virtual robot in video form and subtitles. Meanwhile, Jos and
Caterina focused on creating the BCI component that formed the basis
for the adaptive behavior of the robot and creating the adaptive ges-
tures that were used by the robot. The 35 experiments conducted (8
pilots and 27 final experiments) were divided equally between the four
of us with each experiment having at least two researchers present and
lasting approximately 1.5 hours.

ACKNOWLEDGMENTS
I would like to thank my supervisor dr. Maryam Alimardani for all

her guidance and support and Jos Prinsen, Caterina Ceccato, and Anita
Vrins for their collaboration.



THE EFFECT OF EMBODIMENT ON
ADAPTIVE ROBOT ASSISTED
LANGUAGE LEARNING

ETHEL PRUSS

Abstract

Robots are becoming increasingly popular as a teaching aid in lan-
guage learning. For language learning, which relies on inter-personal
interactions and references to the physical world, embodiment and
the ability to adapt to the student are both important factors. In this
study, adaptive behavior and embodiment were combined in a lan-
guage learning experiment using a social robot as a tutor. An online
passive brain-computer interface (BCI) system based on the the EEG
Engagement Index (associated with attention and task engagement)
was used to detect lapses in attention and prompt adaptive responses
from the robot tutor, which involved additional repetition of con-
tent and iconic gestures to represent content. To isolate the effect
of engagement in such a system, participants completed learning
tasks in two conditions: one where the robot was physically present,
and another where the robot appeared on a screen in video form,
similarly to what an online Zoom class might look like. Despite no
changes in behavior or content, increased learning outcomes were
observed in the embodied condition, confirming that a teacher’s phys-
ical presence is an important factor in learning. In addition to higher
test scores, participants also reported higher engagement and more
positive impressions of the robot in the Embodied condition, which in-
dicates that the subjective learning experience, including impressions
of the tutor, is also affected by embodiment. Additionally, positive
correlation between engagement and test scores was observed in the
Screen condition, however, this was not mirrored in the Embodied
condition, perhaps due to the novelty effect of the robot. Notably,
the EEG Engagement Index recorded during the learning task had
no correlation with subjective engagement measures or test scores in
either condition, which raises some interesting questions for future
research.



1 INTRODUCTION

1 INTRODUCTION

Adaptive learning is an automated and dynamic process which aims to per-
sonalize students’ learning experiences (Kerr, 2016). Meeting the individual
needs of students through personalization is widely believed to improve
learning outcomes (Kerr, 2016). The advance of educational technology
and e-learning have brought more options for adaptive learning to the table
compared to classical classroom settings. Computers, robots and smart
devices have been used for learning applications that automatically adjust
to the user. Adaptations can be targeted at modifying content, learning
paths, feedback or presentation (Martin, Chen, Moore, & Westine, 2020).

Most adaptive learning applications use subjective student feedback
or the student’s prior interactions with the system as a way to monitor
engagement and progress levels, which in turn can be used to determine
content and interventions from the system (Martin et al., 2020; Wang et al.,
2020). A shortcoming of these systems is the reliance on large amounts
of data for making accurate predictions about the user and the cold start
problem, where in the beginning of an interaction with a new user, there
is no data available (Wang et al., 2020). In recent years, an alternative
approach has emerged in the form of brain computer interfaces (BCls),
which detect neural correlates of attention and engagement in order to
monitor users and predict and improve learning outcomes (Yuksel et al.,
2016).

EEG is an affordable and non-invasive option for recording brain activ-
ity and new wireless and dry-use devices make its use possible in a wide
range of settings (Jamil, Belkacem, Ouhbi, & Lakas, 2021). The alpha, beta
and theta frequency bands in the EEG signal have been connected to atten-
tion and task engagement (Coelli et al., 2015; Khedher, Jraidi, & Frasson,
2019; McMahan, Parberry, & Parsons, 2015). For example, in a 2019 study
of student engagement in a VR learning environment, Khedher et al. found
that the level of engagement measured by the EEG Engagement Index
showed a significant positive relationship with student learning outcomes.

In theory, this should allow us to create adaptive learning systems that
adjust their behavior based on the user’s engagement level detected from
their brain activity. For instance, the system could call for attention when
it detects a drop in attention to prevent students from missing information
due to lapses in attention. However, research that tests EEG-based adaptive
learning applications is still very limited, particularly when it comes to
robot assisted learning systems. Intelligent behavior is especially important
when learning systems use robot tutors. The social robots that are often
used in language learning studies mimic human behavior and appearance,
creating an expectation of human-like responses. As such, when the robot
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tutor does not adapt to the student’s struggles with the learning material
as a human teacher would, it can reduce the perceived quality of the
interaction by failing to meet the student’s expectations.

So far, research that explores the possibility of using BCI as a learning
enhancement has been primarily conducted in virtual learning environ-
ments (Khedher et al., 2019; Rohani & Puthusserypady, 2015). This raises
the question of whether the positive effects that have been found for en-
gagement and learning outcomes would transfer from a virtual tutor to a
physically present robot tutor (Khedher et al., 2019). The human-robot in-
teraction (HRI) studies that have looked into this have found mixed results.
In some instances, the physical presence of a robot tutor only seems to have
an effect on subjective preference, but not learning outcomes or motivation
(Kennedy, Baxter, & Belpaeme, 2015a; Looije, van der Zalm, Neerincx, &
Beun, 2012). On the other hand, Kose et al. (2015) and Kennedy, Baxter, and
Belpaeme (2015b) observed significant improvements in learning outcomes,
motivation and engagement as an effect of physical presence, and in 2012,
Szafir and Mutlu reported very promising improvements in information
recall in the context of a story-telling task that combined an embodied
robot tutor with BCI-based adaptive teaching. In the latter case, the results
have not been replicated for language learning tasks.

The proposed study will add to this body of research by developing a
novel adaptive learning system with an online EEG-based BCI component
to automatically modulate learning based on engagement. The application
will then be evaluated with a language learning task to investigate whether
such a system can improve student learning outcomes. Furthermore, the
study aims to investigate whether engagement modulating interventions
are more effective when given by an embodied agent. To this end, a social
robot will be used as an embodied adaptive tutor in one condition, whereas
the other condition will use an adaptive desktop application with a virtual
robot tutor. This leads to the following research questions and hypotheses:

RQ1 Does embodiment have an effect on learning outcomes in
second language learning with an adaptive robot tutor?

RQz2 Does embodiment have an effect on engagement levels in second
language learning with an adaptive robot tutor?

RQ3 Does embodiment have an effect on the impressions of the
adaptive robot tutor?

2 RELATED WORK

Learning is a social process that involves interaction between teachers, stu-
dents and peers. In recent years, technology has become more integrated
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with learning but as a result, the social aspects of learning are sometimes
neglected when physically and socially interactive environments are re-
placed with screen applications. Social robots can attempt to fill this gap,
particularly when it comes to language learning, which benefits both from
a social context and the ability to perform physical gestures. Several studies
have shown the efficiency of adaptive robot tutors in a language learning
setting (Alimardani, van den Braak, Jouen, Matsunaka, & Hiraki, 2021;
Szafir & Mutlu, 2012; Wit et al., 2018). Robot tutors can fill a multitude
of roles, including motivating and supporting learners (Ahmad, Mubin,
Shahid, & Orlando, 2019; Donnermann, Schaper, & Lugrin, 2021; Jones,
Bull, & Castellano, 2018; Liles, 2018; Ramachandran & Scassellati, 2015),
and adding more dimensions to the content being taught through gestures
and physical presence (Stower & Kappas, 2021; Wit et al., 2018). For in-
stance, Wit et al. (2018) found that iconic gestures performed by a robot
during a vocabulary learning task increased both long term memorization
and student engagement. These studies demonstrate the promise of social
robots as learning aids.

While most human learning is organized in group settings - such as
classrooms and lecture halls - how much we absorb of the information
presented to us and at what pace remains highly individual. A 2021
review of adaptive learning tools that personalize the learner’s experience
found that all but one study in the 66 reviewed reported some form
of benefit to adaptive learning over non-adaptive learning (Alqgahtani,
Kaliappen, & Algahtani, 2021). Despite these benefits, it would not be
imaginable for one teacher to match the learning pace of each student
and the infrastructure needed for adaptive learning can be an obstacle
(Algahtani et al., 2021). However, with the modern advancements of
virtual online learning systems and social robots that can teach, adaptive
learning has become possible at a wider scale than ever before and some
studies already show promising results for adaptive learning enabled
by technology (Sampayo-Vargas, Cope, He, & Byrne, 2013; Yuksel et al,,
2016). For example, Sampayo-Vargas et al. (2013) used a gamified learning
application to teach participants Spanish vocabulary. The game had two
conditions: one where the difficulty was increased incrementally and
another where the difficulty was adaptively changed based on the student’s
interactions with the system. The learning outcomes in the adaptive
condition were significantly better. This indicates that adaptive learning
systems could be a way to optimize learning.

In order to adapt to the student, we first need to understand the
student’s experience. Previous studies have evaluated user engagement
during interactions with a robot tutor using video analysis (Wit et al., 2018)
and post-interaction surveys (Donnermann et al., 2021), which can be useful
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for improving the behavior of the robot in the long term. However, these
methods don’t allow for real time adjustments based on the individual
user’s mental state. A solution for this could be passive BCI, which would
perform online signal analysis to facilitate adaptive teaching. This has not
been explored thoroughly in the context of robot tutors, likely because
measuring the level of difficulty or mastery of content through signal
analysis is not an easy task. There is no single neural correlate for these
concepts, rather, it is likely that they consist of a multitude of factors.
Some of these factors, such as attention and engagement, can be reliably
measured by EEG data and studies indicate that this could be sufficient to
create adaptive robot behavior in a learning setting (Alimardani et al., 2021).
In an educational setting, EEG is the most accessible BCI solution. Modern
state of the art EEG headsets are wireless, comfortable and completely
portable, which makes them viable for personal use, as well as being
increasingly affordable (Jamil et al., 2021) and preliminary studies have
successfully used EEG as a tool to monitor student engagement (Berka et
al., 2007; Khedher et al., 2019).

In the context of HRI, embodiment can be seen as the difference between
a physically present robot and a simulated virtual robot (physical presence
and embodiment will be used interchangeably in this thesis). Most studies
that investigate passive BCI for evaluating learning, embodiment has not
been considered - either virtual environments (Khedher et al., 2019) or
visual/auditory tasks with no tutor figure have been used (Soltanlou
et al., 2019; Watanabe et al., 2016). However, several studies show that
embodiment could have an impact on either student experience (Kennedy
et al., 2015a; Looije et al., 2012), learning outcomes, or both (Kennedy
et al., 2015b; Kose et al., 2015) and as such, it is an important factor to
consider in an adaptive learning system, particularly since there is no
conclusive answer on whether the physical presence of a tutor impacts
learning outcomes. In the only existing example of an adaptive BCI
learning system combined with an emobdied tutor, Szafir and Mutlu (2012)
monitored participants” engagement during a storytelling task using an
online measurement of the EEG Engagement Index, which was assumed
to indicate the participants’ level of engagement with the story. When a
drop in engagement was detected, the robot would try to re-engage the
participant by using arm gestures and increased volume. With the help
of these attention-catching cues, participants’ recall of the story increased
43% over the baseline (Szafir & Mutlu, 2012). The results of this study
indicate that an EEG-based adaptive learning systems with an embodied
robot tutor could be successful.

However, despite a number of years passing, the findings of Szafir and
Mutlu have not been replicated and many possible variations have not
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been explored yet (Szafir & Mutlu, 2012). For instance, it is not clear what
proportion of the learning gains in the study could be attributed to the
embodied agent (Szafir & Mutlu, 2012), or whether similar gains would be
observed when a language learning task is used instead of a story recall
task. As such, it would be interesting to see whether the results can be
replicated for a second language vocabulary learning task in an experiment
design that isolates the embodiment factor. Additionally, it remains to be
seen if other adaptive behaviors besides attention signaling are effective in
improving learning outcomes (Szafir & Mutlu, 2012), such as adjusting the
learning content or repeating content as needed. Consequently, the focus
on this study will be on an adaptive learning system that uses the EEG
Engagement Index to assess the user’s task engagement in two conditions:
an embodied condition with a physically present social robot and a screen
condition with a virtual robot agent. This will be tested with a language
task involving learning new vocabulary in a second language. The system
will adapt to the learner’s needs by by repeating the content that it believes
was missed due to a lapse in attention with an added iconic gesture for
additional emphasis.

The EEG Engagement Index, which was also mentioned above in the
context of the Szafir and Mutlu (2012) study, is a promising neural index
based on EEG data in the alpha, beta and theta power bands. It has been
found to correlate with states of attention and vigilance (Pope, Bogart,
& Bartolome, 1995) and has been used in several studies as a way to
approximate task engagement (Alimardani et al., 2021; Khedher et al., 2019;
Szafir & Mutlu, 2012). Although it is not entirely clear which cognitive
process this index most accurately reflects, based on the previous literature
in this field, this study will use it as a measure of task engagement in the
context of a language learning task.

3 METHODS
3.1 Experimental Environment

The adaptive learning system used for the experiment consisted of three
main parts: the BCI system, the adaptive robot tutor and the screen-based
adaptive learning system with a virtual tutor. The schematic overview of
the system can be seen in Figure 1. Condition 1 used a custom adaptive
desktop application and condition 2 will used a social robot with a custom
adaptive behavior program.

A BCI system using the Unicorn Hybrid Black EEG headset developed
by g.tec Medical Engineering GmbH Austria (2019) was used to collect
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Figure 1: The closed online BCI loop for experiment 1 using the screen-based
adaptive learning application, and for experiment 2 using the adaptive robot tutor.

EEG signals from the three frontal channels (Fz, F3, F4) with the electrode
placement seen in Figure 2.

Pre-processing and signal decomposition was then performed to extract
the relevant EEG frequency bands. First, the EEG data went through a 50
Hz notch filter and a 0.5-30 Hz bandpass. To further remove artifacts and
eye blinks, clipping was applied. Next, an infinite impulse response (IIR)
Butterworth Filter block was used to extract the alpha (8-13 Hz) beta (13-30
Hz), and theta (4-8 Hz) power bands (Chiang, Hsiao, & Liu, 2018). The
power in these bands was averaged over the three frontal channels.

At this point, the EEG Engagement Index (E) is calculated by dividing
beta with a sum of alpha and theta, as seen in Equation 1 (Pope et al,,

1995).

B
(a+0)

The EEG Engagement Index can be quite unstable and it is easily influ-
enced by noise, so before using the calculated E value to trigger a response
by the adaptive learning system, it is important to get a smoothed value.
This was achieved by taking an exponentially weighted moving average
(EWMA) and averaging E over 4 seconds. Additionally, E values will differ
for each participant. To account for this, we created a normalized E value
(Equation 2) for each participant using their minimum and maximum E
values (E;i; and Eyuy). The E,j, was obtained during a brief calibration
moment in the beginning of the experiment, where the participant was

EEG Engagement Index = (1)

7
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A. Electrode placement and channels B. Unicorn Hybrid Black EEG headset

Figure 2: A. Electrode placement and B. the Unicorn Hybrid Black EEG headset
used in the experiment (g.tec Medical Engineering GmbH Austria, 2019). The elec-
trodes highlighted in blue (Fz, F3, F4) represent the channels used for calculating
the EEG Engagement Index.

Calculating E  Normalizing E (using participant’s Emin and Emax)

Raw EEG Data (F3, FZ, F4) Alpha, Beta, Theta power bands

xxxxx

theta] - »]
RaWEEG EEG alphaf—»a
& beta|  »|

uoP

Sending Enorm to the robot/PC

Figure 3: The Simulink model used for signal processing

instructed to look at the robot and rest. The E,,;» was extracted with a cali-
bration task performed by NAO, which was a short n-back style memory
game.

E _ (E - Emin)
o (Emux - Emin)

Finally, the resulting normalized E value was used to check whether
an adaptive intervention is needed. If the value fell below a specified
threshold (0.55), indicating low engagement or a lapse in attention from
the participant, a signal was sent via the User Datagram Protocol (UDP)
to the PC or robot, which then triggered an adaptive additional repetition
of the last word and an iconic gesture to accompany the word. The entire
signal processing process was done using Simulink, including the Signal
Processing Toolbox, and the Unicorn Hybrid Black Simulink API developed
by g.tec (g.tec Medical Engineering GmbH Austria, 2019). The simulink
model we developed can be seen in Figure 3.

(2)
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3.2 Experimental Procedure

30 participants were recruited for this experiment from the SONA Human
Subject Pool system. Participants were required to be proficient in English,
have normal or corrected vision and no history of migraines or seizures.
All of the participants who proceeded with the experiment signed an
informed consent form confirming this and agreeing to the conditions of
the experiment as well as the data storage protocol (after being sufficiently
informed beforehand). One participant opted not to sign the consent form
and was subsequently not included in the study. Another two participants
were unable to come to the experiment, leaving 27 participants (N = 27).
All participants were Tilburg University students and were awarded 1.5
Human Subject Pool credits for their participation. Participants’” ages
ranged from 18 to 29 (M = 21, SD = 3) with 11 of the participants reporting
their gender as female and 16 as male. All but 3 participants reported no
prior experience with ROILA (Robot Interaction Language) and 15 had
no prior experience with robots, whereas 12 participants reported having
some experience with robots. The amount of languages the participants
spoke ranged from 1 to 4 with a median of 3.

For the experiment, a within-subject design was used, where each
participant completed both conditions with a separate but comparable
set of words in ROILA (Robot Interaction Language). The experiment
protocol can be seen in the diagram in Figure 4. Participants were first
given an introduction form and the opportunity to ask questions, after
which they were asked to sign an informed consent form and fill in a
background questionnaire. At this point, the robot would be brought out
to interact with the participant and introduce them to the experiment as
well as the concept of EEG. Meanwhile, the EEG headset would be fitted on
the participant by one of the researchers. After the EEG signal in the three
frontal electrodes was confirmed to be of good quality, two calibration tasks
were given to record the minimum and maximum EEG Engagement Index
value. With the system calibrated, the participants would then complete
3 conditions in random order, two of which are included in this study:
the Embodied and Screen condition. In each condition, the participants
completed a learning task where they were introduced to second language
vocabulary in ROILA with a randomly chosen set of 15 words that did
not overlap between conditions. Each word was repeated 3 times with
an additional repetition and gesture as an adaptation only if the EEG
Engagement Index dropped. Finally, a post-test vocabulary quiz and two
questionnaires (assessing engagement and robot impressions) were given
after each condition. The experiment lasted approximately 1.5 hours in
total with built in breaks between conditions.
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ROILA was chosen due to the very low chance of participants hav-
ing any familiarity with the language. As such, we can assume that any
knowledge demonstrated by the participants at the end of the experiment
will be as a result of the interventions. ROILA is not a natural language
and does not resemble any natural languages - the language was artifi-
cially constructed with two goals in mind: making the vocabulary easily
distinguishable for robots and simple for humans to learn (Designed Intel-
ligence Group, n.d.; Mubin, 2011). The words used in this experiment were
an adapted version of ROILA, where the words remain in their original
form, but some of the meanings in English are changed. This was done to
include more words that have easily identifiable iconic gestures that can be
performed by the robot as an adaptive learning aid.

-

Embodied
or Screen
[ [
l ROILA
Background For 15 words: vocabulary
questionnaire test
2X repetiton
I of word with |
e meaning by User
questionnaire robot ISR
| questionnaire
I If E drops l
EEG cap and y System
introduction | usability
by robot Yes questionnaire
|
I Additional I
Calibration iti
e repetition + Godspeed
gesture by e ——-—
Emin/Emax robot questionnaire

Figure 4: A diagrammatic view of the experimental protocol and the two condi-
tions, where condition 1 uses a virtual on-screen robot tutor and condition 2 uses
an embodied robot tutor. The differences between the conditions are highlighted
in bold. E stands for the EEG Engagement Index, which is used to detect lapses
in attention.

3.3 Embodied Condition

The NAO 6 robot running NAOqi 2.8.7 was used as the robot tutor in the
Embodied condition (and recordings of the robot were used to create the
Screen condition). For the Embodied condition ( Figure 5), a combination
of the Python API (Python 2.7.18) and Choreographer software for NAO

10
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(Gelin, 2017) was used to program the robot’s behavior, which consisted
of vocalising the ROILA words and their meanings and performing iconic

gestures with an extra repetition when adaptive behavior was triggered.

The words were also displayed on a screen in front of the participant

simultaneously, so the participant could also see the spelling of the words.

During the experiment, NAO was placed in front of the participant on a
table parallel to the laptop. The robot could not be in directly the same line
as the laptop due to limited space and problems with the laptop blocking
gestures from the participant’s field of vision or physically obstructing the
robot’s movement. However, we ensured that the participants could still
see both the screen and the robot tutor without having to move their heads,
as this would interfere with EEG data collection.

Figure 5: The Embodied condition, where A is a picture of a regular repetition
(repeated twice) and B is a picture of an adaptive repetition with an iconic gesture
(added as an additional third repetition if the engagement index drops)

3.4 Screen Condition

For the screen condition (Figure 6), a learning application with a virtual
tutor was developed using Python 3.19. This application emulates a Zoom
call, where NAO is present in video and audio form - the behavior is
otherwise identical to the Embodied condition. When an adaptive response
is triggered, recordings of animated iconic gestures performed by NAO
are displayed in place of the live animations.

11
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3.5 Vocabulary Test

Additionally, a vocabulary test with a graphical user interface was devel-
oped in the same coding environment. This was used for both conditions
to test learning outcomes. The vocabulary test included a feature to play
an audio recording of the ROILA word pronounced by NAO exactly as it
was heard during the learning task, which was implemented to improve
the participant’s chance of being able to recognize the word in case the
pronounciation and spelling are difficult to match.

E<55

— B —

Let's do that one again!

Jineme means dance
——]

Figure 6: The Screen condition with a virtual robot tutor

3.6  Questionnaires

As mentioned above, after each condition, the participants filled three
standardized questionnaires. The questionnaires are described below:

1. The Godspeed Robot Impressions questionnaire (Bartneck, Kulig,
Croft, & Zoghbi, 2009), used to assess impressions of the robot tu-
tor. The questionnaire is divided into five robot impression scales:
anthropomorphism (6 items), animacy (6 items), likeability (5 items),
perceived intelligence (5 items), perceived safety (3 items).

2. The short-form User Engagement Scale (O’Brien, Cairns, & Hall,
2018), used to assess subjective engagement levels. The User Engage-
ment Scale consists of 12 items divided equally between 4 sub-scales:
focused attention, perceived usability (reverse coded), aesthetic ap-
peal and reward. The sub-scales can be combined into an overall
engagement score by taking a mean of all items.

3. The System Usability Scale (SUS) (Brooke, 1996) to assess how user
friendly the learning system was. SUS consists of 10 items, which are
combined into a single usability score that ranges from o-100 after
the appropriate data processing steps.
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The Godspeed Robot Impressions questionnaire, the short-form User
Engagement Scale questionnaire (O’Brien et al., 2018) to assess subjective
engagement levels and the System Usability Scale questionnaire (Brooke,
1996) to assess how user friendly the learning system was. All three
questionnaires used for this experiment (Godspeed Questionnaire, User
Engagement Scale, System Usability Scale) are validated standardized ques-
tionnaires and yield Likert scale data, where a number of similar questions
can be summed or averaged into a concept score. The questionnaires were
used with all the aforementioned scales and items, no modifications were
made besides replacing placeholders such as "X application" with contex-
tually more relevant terms, in this case "language learning application".
As such, it is assumed that the scale reliability reported by the authors
(Bartneck et al., 2009; Brooke, 1996; O’Brien et al., 2018) will be equivalent
in this study.

3.7 Statistical Tests

The data collected for each participant included:

1. EEG recordings from the three frontal electrodes (F3, Fz, F3) as well
as the EEG Engagement Index, which was calculated from the EEG
data in real time.

2. Scores for each vocabulary quiz, where the percentage of correct
answers was used to assess the effect of the adaptive learning appli-
cation on learning outcomes in the Embodied Condition and in the
screen condition.

3. Likert scale data for three questionnaires: the User Engagement Scale
questionnaire (O’Brien et al., 2018), the Godspeed Robot Impressions
questionnaire (Bartneck et al., 2009) and the System Usability Scale
questionnaire (Brooke, 1996).

In order to explore correlations between engagement and learning
outcomes, Spearman’s correlation coefficient was used to compare com-
binations of the EEG Engagement Index, subjective engagement and vo-
cabulary test scores. Spearman’s Rho was chosen due to it’s suitability for
non-parametric data - some of the data, particularly the EEG Engagement
Index, were not normally distributed.

For the Likert scale data collected from three questionnaires, although
there is some room for debate, the most prominent papers on the topic
assert that parametric tests are more descriptive even for small sample sizes
and non-normally distributed data and because there are no significant
differences in error rates between parametric and non-parametric tests,

13
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analyzing means and using parametric tests is recommended over the
non-parametric approach (Carifio & Perla, 2008; Norman, 2010; Sullivan
& Artino Jr, 2013). Norman (2010) in particular states that for Likert data,
parametric tests can be used regardless of small sample size or non-normal
distribution without causing errors in conclusions. Consequently, the
parametric approach was chosen and one tailed paired samples t-tests were
conducted for each scale to compare the Embodied condition with the
Screen condition.

4 RESULTS
4.1 Hypotheses

H1y The Embodied condition will have increased learning outcomes compared to
the Screen condition.

H1, The Embodied condition will have increased engagement levels compared to
the Screen condition.

H13 Impressions of the robot tutor will be more positive in the Embodied condi-
tion.

4.2 Learning Outcomes

Learning outcomes were measured by vocabulary tests conducted after
each condition. The tests had a possible score range of o0-15 and 27 partici-
pants completed the tests. A Shapiro-Wilk (0.083) confirmed that the test
scores are normally distributed in both conditions. Consequently, a one
tailed paired samples t-test was used to compare the two conditions. The
test showed a significant difference in mean scores between the Embodied
and Screen condition (t = 2.863, df = 26, p = 0.004), with the test scores
being higher in the Embodied condition (M = 10.56, SE = 0.55), compared
to (M = 8.78, SE = 0.60), which supports H1;.

Subsequently, the relationship between subjective engagement and
test performance was analyzed using Spearman’s correlation coefficient
7. Interestingly, the results show a significant correlation between self-
reported engagement and test scores in the Screen condition (R = 0.44,
p = 0.022). However, this does not extend to the Embodied condition,
where no significant effect was found (R = 0.094, p = 0.64). On the other
hand, engagement was higher overall in the embodied condition across all
scores, which could be because of the novelty effect of the robot and may
indicate a different type of engagement that does not benefit learning.

14
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Condition =#= Embodied Screen

R=0.094, p=0.64

Subjective Engagement
w

Vocabulary Test Score

Figure 7: The subjective engagement rating from questionnaires compared to
vocabulary test scores in both conditions (Embodied vs Screen).

4.3 Engagement

Two measurements of engagement were used: the EEG Engagement Index
calculated from EEG data, which was recorded while participants com-
pleted the language learning tasks, and the short form User Engagemenet
Scale developed by O’Brien et al. (2018), which was given after each condi-
tion. First, we will look at the EEG Engagement Index.

Due to a relatively small sample size (N = 27) and difficulties with
calibration, the EEG Engagement Index was not normally distributed —
this was confirmed by a Shapiro-Wilk test (p < 0.001). Additionally, before
analyzing the EEG Engagement Index data, 5 outliers were removed due
to excessively high normalized E values, which indicated faulty calibration;
expected values after successful calibration would be roughly between
o and 1 but due to a mix of technical difficulties with calibration and
EEG data being disrupted by participants moving excessively, this was not
achieved consistently. Consequently, participants with average normalized
E values significantly higher than 1 (> 1.5) were removed. This left 22
participants (N = 22).

To account for the non-normal distribution, non-parametric tests were
used — specifically, Spearman’s correlation coefficient was used to analyze
the correlations between the EEG Engagement Index, subjective engage-
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ment measured by the User Engagement Scale and test scores for each
condition.

A B

R=-021,p=032 3| R=-0.083,p=069

Normalized EEG Engagement Index

.o/ Condition Embodied Screen

3 ©
Vocabulary Test Score Subjective Engagement

Figure 8: Normalized EEG Engagement Indices compared to vocabulary test
scores (A) and subjective engagement measured by questionnaires (B) between
the Embodied and Screen condition (N = 22). 5 outliers were removed from EEG
Engagement Index data due to faulty calibration).

As seen in Figure 8 A, no significant correlation was found for either
the Screen (p = 0.74, R = —0.071) or Embodied condition (p = 0.32,
R = —0.21) between EEG Engagement Index and test scores. Interest-
ingly, the Embodied condition shows a slight, although non-significant,
negative trend between the engagement index and and test scores, which
goes against the intuition of engagement being positively correlated with
learning outcomes.

Notably, Spearman’s Rho also showed no significant correlation be-
tween the normalized EEG Engagement Index and self-reported overall
engagement based on the User Engagement Scale in either condition (Fig-
ure 8 B) (Screen: p = 0.95, R = 0.014; Embodied: p = 0.69, R = —0.083).
This could indicate either that the EEG Engagement Index was not ac-
curately measuring engagement or that perceived engagement and task
engagement have different neural correlates or that the results were affected
by issues with calibration.

Before moving on to the Engagement Scale, in this section and the ones
below, Likert scale questionnaire data will be reported. As a preface before
this, as discussed in the methods section, a review of best practices on
analyzing Likert scale data (Carifio & Perla, 2008; Norman, 2010; Sullivan
& Artino Jr, 2013) motivated the choice of a parametric statistical test for
all three of the questionnaires used in this study: Engagement Scale, the
Godspeed Robot Impressions Scale and System Usability Scale. All three
questionnaires have been validated (Bartneck et al., 2009; Brooke, 1996;
O’Brien et al., 2018) and designed for internal consistency within the scales
and have the minimum informative amount of items per scale - the specifics
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are discussed in more detail in the Methods section. Further principal
component analysis (PCA) was not advised by the authors (O’Brien et al.,
2018). The questionnaires were not modified from the originals, hence
similar reliability is expected in this study. Because of the within-subject
experiment design, paired samples t-tests were chosen to compare Likert
scale results for every scale between the Embodied and Screen condition,
where the dependent variable was the score per scale and the independent
variable was the condition. The one-tailed parameter was used to test
the hypothesis of the Embodied condition resulting in higher engagement
and more positive impressions of the robot. Only one comparison was
conducted for each scale (Embodied/Screen) and as such, no corrections
were needed to adjust the p value.

A Engagement Score B Sub-scales of Engagement
— TR AREE K AR E2
5
4
1 I
3 -
o
o
O
w
2 -
.
0
Engagement Aesthetic Attention Reward Usability
Condition | | Embodied Screen

Figure 9: A comparison of the short form User Engagement Scale (O’Brien et al.,
2018) results from the Embodied and Screen conditions (N = 27). The overall
engagement score (A) is a mean of the following sub-scales: aesthetic appeal,
focused attention, reward and perceived usability (B).

Figure 9 shows the results of the User Engagement Scale questionnaire
in two panels. Panel A shows the over Engagement score, which is a
mean of the sub-scales in panel B. Both the overall Engagement score and
individual sub-scales have significantly more positive outcomes for the
embodied condition (Table 1), indicating that physical presence increases
student engagement during language learning tasks. The results support
H1,, which states that the condition with the robot tutor leads to higher
student engagement compared to a virtual robot appearing on a screen.
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Table 1: Comparing the User Engagement Questionnaire results between the
two conditions (Embodied /Screen) using one-tailed paired samples t-tests. Each
sub-scale consisted of 3 items.

18

Sub-scale Condition M (SE) M Diff. (95% CI) t(df =26) p

Attention gg:;?ied ggggi?; 506(.219 —0)  3.009 003
Usability gzi‘:;fied g;ﬁgig; 432(.135—c0) 2481 01
Aesthetic Sfr‘:eofied ;:;ngg 012(.766 — o)  7.031 < .001
Reward gz‘:’fied ggggi?; 802(511— o)  4.670 < .001
Engagement S(r:r;:é):ied 2232233 688(.506 — o0)  6.467 < .001

4.4 Robot Impressions

Figure 10 shows the results of the Godspeed Robot Impressions Question-
naire, which consists of the following scales: animacy, anthropomorphism,
intelligence, likeability and safety. One tailed paired-samples t-tests were
used to compare the means of each scale between the Embodied and Screen
conditions. The results show that each concept scales have significantly
more positive Likert scores in the Embodied condition (Table 2). The largest
differences in means can be seen for the animacy, anthropomorphism and
likeability impressions. Impressions of intelligence and safety are less
impacted by physical presence but still show a statistically significant dif-
ference. The results support H13, which states that the condition with the
robot tutor physically present in the room will lead to more favorable robot
impressions compared to the virtual robot on a screen. On the other hand,
no significant difference was found for the System Usability Scale rating (p
= 0.278, t(26) = 0.597) between the Embodied (M = 65.83, SE = 3.34) and
Screen condition (M = 64.44, SE = 3.48) and both conditions show average
usability Sauro and Lewis (2016).

Godspeed Robot Impressions questionnaire, where each concept scale
has significantly more positive outcomes for the embodied condition (Table

2).
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A Robot Impressions (Godspeed) B System Usability
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Figure 10: A comparison of the Godspeed Robot Impressions Questionnaire
(Bartneck et al., 2009) results (A) and the System Usability Scale Brooke (1996)
results (B) from the Embodied and Screen conditions (N = 27).

Table 2: Comparing the Godspeed Robot Impressions Questionnaire results
between the two conditions (Embodied/Screen) using one tailed paired samples
t-tests. The scales consist of 3-6 items with an average of 5; a more precise
breakdown can be seen in the Methods section.

Scale Condition M (SE) M Diff. (95% CI) t(df =26) p
Anthropom. Sg:;:ied ii (3) Eig; 363 (.145 —00)  2.843 .004
Animacy Szl:;):ied iiz Eig; 364 (197 —oc0)  3.706 .001
Likeability ggfsfied ;2(3) Eig; 474 (282 — o0)  4.212 .001
Intelligence S?;:fied ; i: Eig; 193 (.018 — o)  1.876 .04
Safety gzr;:eo:ied ;?; E?i; .210 (.025 — o0) 1.935 .03
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5 DISCUSSION

The goal of the study was to assess the effect of embodiment in a robot
assisted language learning setting. Robots are increasingly being used as
tutors, especially for second language learning. The social robots for teach-
ing are often humanoid in their design and mimic intelligent behavior and
as such, it is assumed that students expect a degree of responsive and adap-
tive behavior, for example responding to their inattentiveness. The findings
showed a significant positive effect of embodiment on learning outcomes
(measured by vocabulary test scores). Similarly, all facets of subjective
engagement were significantly higher in the embodied condition, including
focused attention, how rewarding the experience was perceived as and
an overall measure of engagement (using the User Engagement Scale).
Questionnaire results also confirmed that impressions of the robot tutor
are impacted by physical presence, which was confirmed by significantly
higher ratings of anthropomorphism, animacy, intelligence, likeability and
safety.

Regarding the effect of embodiment, participants experiencing higher
subjective engagement and having an overall more positive impression of
the learning experience and the tutor with a robot physically present is
consistent with previous findings by Looije et al. (2012) and (Kennedy et
al., 2015a, 2015b). The literature on the effect of embodiment on learning
outcomes on the other hand was more divided. The findings from this
study are in line with those reported by Kose et al. (2015), who found
that embodiment had a positive effect on learning outcomes. On the other
hand, it contradicts Looije et al. (2012) and Kennedy et al. (2015a) who did
not find a significant effect from embodiment. It seems that benefits to
learning outcomes are highly dependent on the exact experimental setup
and learning task and may also be dependent on the adaptiveness of the
tutor. In this, it seems that second language vocabulary tasks involving
an adaptive robot tutor benefit from physical presence. Perhaps language
tasks that involve iconic gestures to represent meaning (as the one in this
study did) are particularly well suited for an embodied tutor, but further
research is needed to untangle the exact factors that determine the presence
or absence of the embodiment effect.

Additionally, there was some indication that a higher level of engage-
ment can improve learning outcomes: subjective engagement showed a
positive correlation with test scores. However, this effect was only seen in
the Screen condition. The overall subjective engagement level as well as
the test scores were higher throughout the Embodied condition, whereas
the engagement level remained approximately the same across test scores.
It is possible that the novelty effect from interacting with an embodied
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robot was so stimulating that a ceiling effect was reached for subjective
engagement, masking any possible correlation with the test scores. It is
also possible that not all forms of engagement are beneficial for learning
- for instance too much stimulation from interacting with a robot for the
first time might be distracting. The latter would be similar to the findings
of Kennedy et al. (2015b), who found that additional social or adaptive
behavior from a robot could even negatively impact learning outcomes.

Interestingly the EEG Engagement Index did not show the expected cor-
relation with vocabulary test scores or subjective engagement, conflicting
the findings of Szafir and Mutlu (2012). No significant difference was found
in the average normalized engagement values between conditions and there
was also no significant correlation with test scores or self-reported engage-
ment. As subjective engagement did show a correlation with test scores
as well as differences between the two conditions, the lack of effect might
indicate a few different things: the EEG Engagement Index might not be
a good measure of engagement for language learning tasks (although it
had a positive effect on story-based learning in the Szafir and Mutlu (2012)
study), subjective experience of engagement and the more task focused
engagement purportedly measured by the EEG Engagement Index might
be different in terms of neural correlates and different types of engagement
could have different implications for learning outcomes. Importantly, the
results could also be effected by flaws in the experiment itself, particularly
difficulties with calibrating the system to each participant.

The main shortcomings of the study are the questionable performance
of the EEG Engagement Index (E) as a measure of engagement, difficulties
with individual calibration and confounding effect from the novelty of the
robot. Prior to this study, a pilot study was done to assess the adaptive
learning system used in this experiment (Jos Prinsen, 2022). The pilot
experiments generally validated the behavior of the adaptive robot tutoring
system and we observed expected results for E in scenarios such as rest
vs high intensity task or rest vs learning. However, the pilot study also
highlighted the difficulty of calibrating the system to each individual user
and the added complications from the novelty effect when working with
robots.

Brain activity is highly individual and the same value of E can mean
a completely different level of engagement based on the participant, so
normalizing E based on the individual’s peak (Emax) and lowest engage-
ment levels (Emin) is necessary. However, finding the right minimum and
maximum values turned out to be surprisingly challenging. Initially, an
infinite runner game with increasing speed and a simple jump mechanic
(the Dino game by Google Chrome) was used to find the maximum E
value and a resting task was used for the minimum. However, since the
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robot was not yet introduced at this point and the game differed from the
learning task, this turned out to not be ideal. Combined with the novelty
effect, this resulted in lower E values during calibration and then much
higher values once the robot interaction started, which meant the adaptive
behavior was not always triggered at the right times or was triggered
too often. To remedy this, more robot interaction was added prior to
the experiment and the calibration was changed to an n-back style mem-
ory game with the robot for Emax and looking at the robot in a resting
state for Emin. N-back tasks have widely been used to measure working
memory and attention control Kane, Conway, Miura, and Colflesh (2007),
because vocabulary learning tasks likely use similar cognitive functions it
was assumed that brain activity during this calibration task would more
closely mimic the brain activity during the learning tasks. While this did
improve the accuracy of calibration to some extent, calibration still did not
work for everyone: some participants displayed higher engagement related
brain activity during rest and seemed to calm down during the learning
phases, which could be due to nervousness or mind-wandering and some
participants moved excessively during EEG recording despite instructions
to stay still, which lead to noisy data with artificially high E values.

Another concern is distinguishing between desirable levels of high
engagement, such as a focused flow state, and high engagement caused by
frustration or information overload. For some participants, EEG engage-
ment levels were higher during the screen condition, but semi-structured
interviews after the experiment revealed that they felt frustrated and had
trouble focusing and memorizing words while learning from the screen
application, which could indicate that high levels of engagement are not
always positive or beneficial for learning.

What we also learned from the semi-structured interviews is that differ-
ent learning strategies can impact the usefulness of adaptive interventions:
participants who reported that they had a good memorization technique
- for example mnemonics - sometimes found the additional repetitions
and interventions from the robot frustrating as it intervened with their
memorization flow, although in the few cases that this was reported the
participants still scored very highly on the tests regardless of the frustration.
On the other hand, participants who had no specific strategy seemed to
find the adaptive interventions more helpful. For future systems, an initial
calibration for individual preference might make the system more suitable
for all users.

An important avenue for future work is elucidating the connection
between subjective engagement, neural engagement and learning per-
formance. While this study found some correlations between learning
performance and subjective engagement, the same was not true for neural
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engagement (measured by the EEG Engagement Index). In combination
with a lack of correlation between subjective engagement, this raises ques-
tions about whether the EEG Engagement Index is accurate as a measure
of engagement, or whether it measures a different cognitive construct
than what is seen as subjective engagement. In either case, despite highly
positive findings in a previous study using the same index in a story-based
learning task with a NAO robot (Szafir & Mutlu, 2012), in this experiment
the measure was not correlated with language learning performance, which
might indicate that a different neural measure should be used for similar
tasks.

Despite the difficulties, a novel adaptive BCI robot-assisted learning
system was developed and validated, which shows the possibility of inte-
grating BCI into the world of human robot interactions and robot assisted
teaching as a new and improved way to personalize interactions between
robot tutors and students. Additionally, the findings of this study show
that physical presence plays an important role in learning, particularly
language learning. Embodiment or lack thereof in education has seen
drastic changes in recent years, from a complete transfer to online educa-
tion with teaching moving from lecture halls to Zoom, to a gradual return
to normality with some caveats. Although some students and teachers
may have preferred the convenience of staying at home, it does seem that
embodiment benefits the overall learning experience as well as improving
learning outcomes. The results do however raise some interesting questions
about the appropriateness of the EEG Engagement Index as a measure of
engagement for language learning tasks and the practicalities of calibrating
adaptive BCI learning systems for individual users.

6 CONCLUSION

Robot-assisted language learning is a popular new avenue of research.
Previous research had indicated that embodiment could be an important
factor in language learning and similarly, that teaching in a personalized
adaptive manner can improve learning outcomes. The combination of
adaptive behavior and embodiment in robot assisted language learning
had not been studied much previously, although what little research there
was very promising in terms of learning gains. In this study, the embodied
and adaptive factors were combined in a language learning study. A novel
adaptive robot assisted learning system was developed using passive BCI
to module the behavior of the robot tutor such that it would intervene
when low engagement is detected from live EEG data.

To isolate the effect of embodiment in such a setting, the experiment
was conducted both with a virtual robot tutor and an embodied robot
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tutor. Through a combination of EEG data and questionnaires, the study
confirmed that embodiment has a positive effect on engagement, impres-
sions of the robot tutor and most importantly, learning outcomes. These
findings further support the important role of embodiment in learning,
which is especially interesting in a time where screen-based online learn-
ing is gaining in popularity, whether it be due to necessity (due to the
COVID-19 pandemic) or convenience in reduced travel times. Even with
identical content and delivery, physical presence alone can lead to higher
test scores and a more engaged learning experience. On another note, the
findings raise questions about the EEG Engagement Index as a measure of
engagement during learning tasks - further research is needed to assess
what type of tasks if any the index is appropriate for and to unravel the
connection between perceived engagement and its neural correlates.
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