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Abstract

This thesis aims to find a satisfactory cost-of-carry model that can explain the futures
basis for the largest two cryptocurrencies, Bitcoin and Ethereum. Empirical evidence shows
Bitcoin and Ethereum expressing a substantial and volatile futures basis, reaching values
greater than 10% with a maturity of a maximum of six months. It is investigated in this
thesis if a model exists that can explain this volatile futures basis. In order to do so, cost-
of-carry models from investment assets and commodities are tested on Bitcoin and Ethereum
futures data. The testing procedure is the two-step Engle-Granger test used to establish a
cointegrating relationship between actual futures prices and predicted futures prices according
to the models. It is found that the cost-of-carry model for investment assets has a cointegrating
parameter magnitudes too large to explain the observed futures basis. Under the cost-of-
carry model for commodities, all this unexplained futures basis has to be explained by a
parameter defined as the net convenience yield. It is concluded that it is unrealistic that
the net convenience yield can explain a futures basis greater than 10%. These results imply
that the cryptocurrency market is inefficient, and arbitrage opportunities exist. Schmeling
et al. (2022) perform similar research to this thesis, and conclude that there is too little
capital in the form arbitrageurs to restore efficiency in the futures market. This thesis builds
on this conclusion, and shows that arbitrageurs experience high opportunity costs in the
form of a profitable alternative: cash-and-carry trades on perpetual futures. Arguments
are given to motivate that this opportunity cost in combination with other factors leads to
perpetual futures directly influencing quarterly futures. To test this hypothesis, a new cost-of-
carry model is proposed, with the perpetual futures funding rate as a native crypto risk-free
rate proxy. This proxy is modeled using an ARIMA(p, d, q) model. The proposed model
performs significantly better in terms of cointegration, resulting in a cointegration parameter
substantially closer to 1. This results in a higher explanation of the Bitcoin and Ethereum
futures basis under this new model.
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1 Introduction

The introduction of Bitcoin by Nakamoto (2008) as the first decentralized peer-to-peer digital
currency has initiated the interest in a new disruptive type of technology, called blockchain tech-
nology. A blockchain is a distributed ledger of transactions on a decentralized computer network.
The ledger is public and can be verified independently by the computers that make up the net-
work, without being reliant on a single entity. The decentralized and open-source characteristics
of blockchain technology allow everyone who is technically capable to create a new blockchain or
build upon an existing one. Cryptocurrencies are digital currencies that reside on a blockchain.
White (2015) defines cryptocurrencies as transferable digital assets, secured by cryptography. Due
to the increasing popularity of blockchain technology and cryptocurrencies, there are now more
than 13000 cryptocurrencies in existence (Coingecko 1). As cryptocurrencies have become well
known, its market has seen explosive growth over the last decade, growing to an asset class with a
market capitalization of almost 3 trillion dollars at its peak at the end of 2021 (Coingecko). The
cryptocurrency market is characterized by high volatility, leading to fast price increases as well as
decreases, being infamous for its bubble-like behavior. Enoksen et al. (2020) conclude that cryp-
tocurrencies have experienced multiple bubble periods, especially in the periods 2017 and 2018.
This bubble-like behavior has attracted a large amount of speculative capital, as well as fuelling
the desire to hedge against these enormous price fluctuations by parties such as miners, which are
entities responsible for securing the network and issuing new Bitcoin in the process. The inflow
of speculative capital and the demand for hedging has led to a rapidly growing futures market of
cryptocurrencies.

The futures market of cryptocurrencies differs significantly from those of more established asset
classes. The markets of cryptocurrencies are never closed, not even during the weekend. Most
volume on cryptocurrency futures takes place on native cryptocurrency exchanges, often operating
offshore and unregulated. There are regulated ventures where institutional investors can trade on
cryptocurrency futures, but these are limited with most notably only the Chicago Merchantile
Exchange (CME) offering Bitcoin and Ethereum futures. Another noteworthy difference between
the futures market of cryptocurrencies and larger asset classes is the high degree of retail investors
active in the cryptocurrency futures market. These investors are classified as particularly active.
Lammer et al. (2019) report investors in cryptocurrencies logging into their brokerage accounts 9
times per month, compared to other markets where the average tends to be 2 times. In addition to
being more active, the degree of risk-tolerance of these retail investors is considered to be greater
than observed in other markets. Grobys and Junttila (2020) find a high degree of lottery-demand,
where investors are drawn to the high volatility in the cryptocurrency market. The potential of
high returns due to this volatility is perceived to be attractive, whilst empirical evidence suggests
this results in losses more often than gains. The characteristics of the cryptocurrency futures
market fit well with this high-risk tolerance, as the markets are never closed and a high degree of
leverage can be used on cryptocurrency futures. As a result of a high presence of retail investors
and a high degree of excessive speculation, an inefficient market structure in cryptocurrency futures
is observed. The observed futures basis over the last three years has exceeded 10% for futures
with a maturity of only a few months. This empirical observation leads to the question whether
these futures are efficiently priced, or that the cryptocurrency market is found to be inefficient.

The literature regarding fair pricing of futures for market such as stocks, bonds, currencies or
commodities is extensive and dates back several decades. The work of Cox et al. (1981), Jarrow
and Oldfield (1981), French (1983) and Cornell and French (1983) regarding the conditions of a
no-arbitrage futures price has led to a general class of models used for no-arbitrage futures pricing
being developed, called cost-of-carry models. These models assume that in a frictionless market,
the futures price should be the spot price with any carry costs incorporated. The existence of carry
costs is due to the deferred payment property of futures contract, a futures contract bought at time
t does not have any payment until time T , whilst for spot assets, payment is due immediately.

1Retrieved from https://www.coingecko.com on November 2nd 2021
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This means that from time t to T capital could be invested at the risk-free rate, making it a
so-called carry cost. The exact formulation of the cost-of-carry model are asset-class specific and
depends on the carrying variables. In this thesis, widely accepted cost-of-carry models for stocks,
bonds, currencies and commodities are discussed.

The testing procedure of cost-of-carry models described by Heany (2001) is akin to testing the
market efficiency. This follows from the fact that under the cost-of-carry model there exists
a unique no-arbitrage price for a futures contract, given the spot price and the carry factors.
Damodaran (2004) tabulates possible profitable arbitrage opportunities originating from a self-
financing portfolio if the cost-of-carry models do not hold. In an efficient market, it is therefore
expected that an equilibrium around this no-arbitrage price is established. This does not mean
that the no-arbitrage price will always hold, Maslyuk and Smyth (2009) describe that short-
term deviations may occur, but in an efficient market arbitrageurs will restore equilibrium due
to arbitrage opportunities being possible. The testing procedure of these cost-of-carry models
therefore comes down to testing for a long-run equilibrium. Similar research as performed in this
thesis, such as Quan (1992), Heany (2001), Asche and Guttormsen (2002) and Wu et al. (2021),
describe testing for cointegration to be applicable in this type of research. Cointegration is a
relatively new concept in econometrics, with the work of Engle and Granger (1987) setting the
stage in the literature for research of this particular topic. The motivation behind cointegration
lies in the problems that arise when performing statistical analysis on non stationary data. It is
well-known in the literature that prices of financial assets consist of a stochastic trend and may
therefore be non stationary. As a result, spurious regressions may occur. Testing for cointegration
ensures that the regression analysis is valid, and it can be tested whether a long-run equilibrium
exists.

Despite extensive research regarding fair futures pricing in other markets, little research has been
done on this topic for the cryptocurrency market, and most research dates back only a few years,
such as Corelli (2018), Lian et al. (2019), Kapar and Olmo (2019), Hu et al. (2020), Wu et al.
(2021), Schmeling et al. (2022), and He et al. (2023). This thesis aims to contribute to this rapidly
developing field of literature. Specifically, it aims to find a model that can explain the futures
basis observed for Bitcoin and Ethereum. This will be done by first testing traditional models on
the market data, and later developing a new model. The practical implications of this thesis are
mainly a more robust understanding of the cryptocurrency futures market both for researchers and
investors. The futures market of cryptocurrencies may not yet be fully understood by researchers
wishing to model futures prices. This thesis aims to provide a new benchmark model where
future research can elaborate on. The application of this thesis from an investor point of view
is a better understanding of the dynamics of the Bitcoin and Ethereum futures market. The
extensive explanation of the risks imposed by Coin-M futures, an analysis of historical futures
basis, and establishing the connection between perpetual and quarterly futures contribute to a
greater understanding of the cryptocurrency futures market. This will hopefully contribute to
an industry-standard cost-of-carry model, that will improve the efficiency of the cryptocurrency
futures market.

This thesis is structured as follows. Section 2 introduces the theory of futures prices, and derives
through possible arbitrage opportunities the fair futures price for a simple asset. This is then
extended using a class of cost-of-carry models for different asset classes. Section 3 aims to give
the reader a thorough introduction of the futures market of cryptocurrencies specifically, and ties
the theory given in section 2 to cryptocurrencies. Section 4 provides the theory required for an
understanding of the unit root and cointegration tests used later. Section 5 performs all time
series analysis and develops a new model to price quarterly futures prices in the cryptocurrency
market. Section 6 summarizes all results found in this thesis and proposes recommendations future
research for this particular topic.
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2 Futures Contracts

This section will give an introduction to futures contracts. Futures are a special type of forward
contracts. Therefore, we introduce forward contracts first and then discuss futures contracts.

2.1 Forward Contracts

Before discussing futures contracts, it is important to define what forward contracts are, since a
futures contract is essentially a standardized version of a forward contract. According to Hull
(2014), a forward contract is an agreement to acquire or sell an asset at a specific future time for
a specified price. A forward contract is considered to be very flexible, and is simply an agreement
between two parties to exchange an asset at a specified date for a prespecified price. There are no
restrictions on the contract size or maturity date, as long as both the buyer and seller of a contract
agree on the terms specified in the contract. An important property of a forward contract is that
the cashflow of a forward contract written at time t, with expiration at time T (t < T ), is zero.
Recall that a forward contract at time t is simply an agreement between a buyer and seller upon a
transaction which will take place in the future (the delivery date T), and thus initially no money
changes hands. Buyers or sellers of forward contracts may have different objectives in mind. The
buyer of a forward contract could be a speculator, or a large buyer that wants to minimize price
fluctuations of purchases. This would be the case for an airline, who is a large buyer of fuel.
The price of fuel for air crafts is highly correlated with the price of oil. The airline could buy oil
forwards for next year to minimize price fluctuations on fuel costs in case the spot price of oil rises
next year. The seller of a forward contract could be a producer of a commodity, or a party that
holds a large quantity of the underlying asset. By selling at a predetermined price in the future,
price risk can be minimized. For example, a large Australian wheat farmer who expects to have
a large amount of harvest in December may want to sell a December forward contract and ’lock
in’ a price in the case that the demand of wheat drops in December.

To illustrate forward contracts in more detail, consider the example of the wheat farmer. Suppose
the current wheat spot price is $80. The wheat farmer with harvest in December, 1 year from now,
does not want to be exposed to price fluctuations and enters a forward contract for to sell 1 bushel
of wheat for a price of $80.80 in December. The counter party of the wheat farmer, to be called
party A, bought the contract and has a long position for 1 bushel of wheat. The wheat farmer,
who will be called party B from now on, sold the contract and has a short position of 1 bushel
of wheat. Party A will buy the bushel of wheat at a predetermined price of $80.80 in December
from party B. In other words, the long position of the forward will receive the underlying asset,
and the short position will deliver the underlying asset. The payoff of party A corresponding to
the price in December is visualized in Figure 1.

Figure 1: Payoff of party A as a function of the price of wheat at expiration. Graph made using
Desmos.
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The x-axis shows the spot wheat price at expiration (December), and the y-axis shows the profit
or loss in dollars. If the spot price in December is above $80.80, then party A made a profit
since an agreement was made to buy the bushel of wheat for $80.80. Party B loses an equivalent
amount of money since party B agreed to sell to party A for a price of $80.80. When the contract
matures, party B will either physically deliver the bushel of wheat to party A (physical delivery),
or the profit is transferred to the party that was in profit (cash settlement). As becomes clear
from this example, a forward contract is an agreement between two (physical) parties. Therefore,
forward contracts are traded over-the-counter (OTC). This means forward contracts are not listed
on any exchanges. In order to engage in the desired contract, buyers or sellers have to find a
counter party, since a forward contract requires both a buyer and a seller in order to be written.
Despite the existence of OTC brokers 2, finding a counter party for an OTC contract is generally
considered to be more difficult than using a centralized venture such as an exchange. As a result,
forward contracts are considered to be less liquid than derivatives traded on exchanges, such as
futures, which will be discussed in section 2.2.

2.1.1 Pricing and Valuing Forward Contracts

The forward price is the agreed upon price for which the buyer of a forward contract will buy a
specific quantity of an underlying asset from the seller at a certain date at delivery date T. Let
St denote the spot price of the underlying asset at time t, and FO(t, T ) the time-t forward price
with expiration at time T. We assume that is it not possible to exit a forward contract before
expiration date T. If a buyer (seller) of a forward contract wants to close the position, it is more
common to sell (buy) a forward contract with the same delivery date. Cox et al. (1981) set the
stage for research in fair forward pricing. In their paper, Cox et al. (1981) show that the fair
time-t forward price FO(t, T ) can be derived using arbitrage arguments. Let P (t, T ) be the time
t price of a (zero-coupon) risk-free bond that pays $1 at time T (t < T ). When interest rates are
positive, P (t, T ) < 1 3. We then perform the following investment strategy:

A long position of 1 forward contract FO(t, T ) is taken, at time t, with expiration at time T. We
then subsequently invest FO(t, T )P (t, T ) amount 4 in risk-free bonds at time t,with a price of
P (t, T ) and maturity at time T. If we let π1(t) denote the portfolio value of this strategy at time
t we have:

π1(t) = FO(t, T )P (t, T ) (1)

This investment strategy at time t only requires a payment of FO(t, T )P (t, T ), since taking a long
position in a forward contract at time t has a cash flow of zero. Thus, only the FO(t, T )P (t, T )
amount invested in risk-free bonds has to be paid at time t. At time T, the forward contracts will
have a payoff of FO(t, T ). Note that we have the terminal condition FO(T, T ) = ST , since the
underlying asset will be delivered at time T to the long position of the forward contract. Thus,
the time T payoff of the forward contract is ST − FO(t, T ). This is from the perspective of the
long position. For the perspective of the short position, the payoff will be the exact opposite,
FO(t, T ) − ST . To avoid confusion, we will always consider the position of the long position
unless stated otherwise. For the payoff of the risk-free bonds, we know each bond P (t, T ) pays $1
at time T. Thus the part of the strategy which invested in risk-free bonds has a payoff at time
T of FO(t, T )P (T, T ) = FO(t, T ). Combining the above, the investment strategy proposed by
Cox et al. (1981) of investing FO(t, T )P (t, T ) in risk-free bonds and taking a long position in the

2OTC brokers are entities which try to match buyers and sellers of OTC traded contracts. This makes finding
a counter party of a forward contract easier.

3If P (t, T ) ≥ 1 and interest rates are positive, investors would pay more to hold a bond for (T-t) years than
the face value of $1. Meanwhile, depositing money in a bank account earns a positive return. Therefore, in a
rational market, there would be no demand for this bond until the price P (t, T ) < 1. For negative interest rates,
the scenario P (t, T ) ≥ 1 would be possible, however.

4Suppose the price of 1 forward contract FO(t, T ) is $10. The price of a bond that pays $1 in (T-t) years is 0.9.
We would then invest 10 ∗ 0.9 = $9 in risk-free bonds.
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forward contract FO(t, T ) yields the following portfolio value π1(T ) at time T:

π1(T ) = [ST − FO(t, T )] + FO(t, T ) (2)

= ST (3)

From (1) and (3) we see that a strategy of investing FO(t, T )P (t, T ) at time t yields a payoff of
ST at time T. Now consider the (trivial) investment strategy of buying 1 unit of St at time t. This
has a payment of St at time t, since payment is due immediately. Let π2(T ) denote the portfolio
value of holding 1 unit of St until time T (assuming no payments such as dividends). The portfolio
value of this strategy at time T is given by:

π2(T ) = ST (4)

The second strategy of holding 1 unit of St until time T yields the same time T portfolio value as
the strategy of taking a long position in a forward contract and buying risk free bonds.( i.e. π1(T )
= π2(T )). Table 1 shows the time t and T portfolio values for the strategies discussed earlier.
Since both strategies do not have inflow or outflow between time t and T, both strategies are said
to be self-financing. Schumacher (2020) describes a self-financing strategy as a trading strategy
with no outside deposits or withdrawals:

Strategy π(t) π(T )

1 FO(t, T )P (t, T ) + 0 FO(t, T ) + (ST − FO(t, T )) = St

2 St ST

Table 1: Portfolio values at time t and T of strategy 1 (π1) and strategy 2 (π2), respectively. Note
that the ’+0’ stems from the fact that taking a long position in forward contract at time t has a
deferred payment until time T .

Now suppose that FO(t, T )P (t, T ) < St, or equivalent, π1(t) < π2(t). We know that π1(T ) =
π2(T ). An arbitrageur could make a risk-less profit by selling short 1 unit of St, and performing the
same procedure as strategy 1. At time T, the profit of the arbitrageur would be FO(t, T )P (t, T )−
St > 0, since the portfolio is self-financing (no in- or outflows). In an arbitrage-free market we
must thus have:

π1(t) = π2(t) ⇐⇒ FO(t, T )P (t, T ) = St ⇐⇒ FO(t, T ) =
St

P (t, T )
(5)

Therefore, Cox et al. (1981) state that the time-t forward price is given by: FO(t, T ) = St

P (t,T ) .

The (no-arbitrage) time t forward price is the current spot price St discounted by the return of a
risk-free bond. For positive interest rates, the no-arbitrage forward price will be above the spot
price, and vise versa for negative interest rates. The notation of Cox et al. (1981) using P (t, T ),
is not common practice in literature regarding forward pricing. Most literature such as Cornell
and French (1983), Gibson and Schwartz (1990), and Pinkdyck (2001) express fair forward prices
using the risk-free rate rt,T . However, this is equivalent to using a zero-coupon bonds P (t, T ). If
we assume the zero-coupon bond is continuously compounding and pays $1 at time T, we have:
P (t, T ) = 1 ∗ e−rt,T (T−t) = e−rt,T (T−t). Since we discuss zero-coupon bonds here, and the time
to maturity (T − t) is known, rt,T is the risk-free rate of holding the bond from time t to time
T . According to Cox et al. (1981), the forward price has to be discounted by this risk-free rate.
Mathematically,

FO(t, T ) =
St

P (t, T )
=

St

e−rt,T (T−t)
(6)

= Ste
rt,T (T−t) (7)
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The fair forward price is thus given by FO(t, T ) = Ste
rt,T (T−t), where rt,T can be derived from

a zero-coupon bond. Referring back to the example of 1, the forward price agreed upon by
parties A and B was 80.80, rt,T = 0.01, and the contract written at time t with maturity in 1
year. The spot price St was $80. It can now be verified that this is a fair forward price, since
FO(t, T ) = 80e0.01(T−t) = 80e0.01∗1 = 80.80. This form of forward pricing is the most simple
form, and describes in a perfect efficient and complete market what the forward price should be.
We will see later, however, that certain factors can cause the forward price to deviate from this
no-arbitrage price.

Now that an expression for the fair forward price is derived, the value of a forward contract
is discussed. Confusion often arises between the price and value of a forward contract. Let s ∈
{t, t+1, ..., T}. The value of a forward contract at time s, written at time t, with expiration at time
T is given by V O(s, t, T )5. Intuitively, the value of a forward contract can be described as the profit
(loss) of the forward contract at any period in time. To start, there are two important boundary
conditions for the value of a forward contract. Assume a forward contract is written at time t with
expiration at time T . Any forward contract written at time t must satisfy V O(t, t, T ) = 0. This
condition is related to the fair forward price FO(t, T ), where it was assumed that a forward price
is chosen such that no arbitrage opportunities are possible. This condition also seems intuitive,
since when two (rational) parties agree upon a forward contract, the transaction would not take
place if V O(t, t, T ) ̸= 0. Both parties have to agree upon a price, and if V O(t, t, T ) ̸= 0, then either
the buyer or seller is initiating the contract at a sub-optimal price. Therefore, it should hold that
V O(t, t, T ) = 0. Another boundary condition is V O(T, t, T ) = ST − FO(t, T ). At time t (when
the contract is written), the buyer and seller of a forward contract agreed upon a price FO(t, T ).
At time T , this payment is due and the buyer receives the underlying asset ST for and pays a price
of FO(t, T ). Therefore, the value of the forward contract at time T V O(T, t, T ) = ST −FO(t, T ).
Note that this is from the perspective of the buyer (person who has a long position). For the
seller (person who has a short position), the value at time T of the forward contract would be
V O(T, t, T ) = FO(t, T ) − ST . To avoid confusion regarding the meaning of V O(T, t, T ), we will
look at V O(T, t, T ) from the perspective of the buyer. The seller of a forward contract is assumed
to have a position of -1 forward contracts such that −V O(T, t, T ) = −1 ∗ (ST − FO(t, T ) =
FO(t, T ) − ST . Referring back to the example above, the forward price agreed upon by parties
A and B was $80.80 at time t. So, V O(T, t, T ) = ST − 80.80 for party A (the buyer). For party
B (the seller), the value of the contract at time T is −V O(T, t, T ) = 80.80 − ST . If the price at
time T is $100, V O(T, t, T ) = 100− 80.8 = 19.2. Party B has sold one forward contract, and thus
’holds’ −1 forward contract, with a loss of −1 ∗ V O(T, t, T ) = −19.2.

Now that boundary conditions are discussed, we generalize this to a time s setting to determine
V O(s, t, T ), where s ∈ {t, t + 1, ..., T}. Note that this implies that it is attempted to value a
forward contract that has already been written at time t. Recall that a forward contract can not
be closed early. So in order to determine the value of a forward contract at time s (which has
already been written at time t), a new forward contract is used.

Time Action Price

t Buy forward FO(t, T )
s Sell forward FO(s, T )
T Receive ST ST

T Deliver ST ST

Table 2: Trading strategy visualized where a trader buys a forward contract at time t (with
expiration at time T), and sells a forward contract at time s (also with expiration at time T)

Table 2 shows a trading strategy of first buying a forward contract at time t with expiration at time

5The notation V O(s, t, T ) might seem odd, however, later we will denote the value of a futures contract as well.
Since we have FO(t, T ) for the price of a forward contract, V O(s, t, T ) is used to remain consistent.
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T, and then selling a similar contract at time s. From time t onwards, the exposure of the trader
to the underlying asset is zero, since at time T we can use the received ST from the long position
to deliver the ST for the short position. Therefore, V O(s, t, T ) = FO(s, T ) − FO(t, T ). This is
under the assumption that a counter party is willing to buy the forward contract from the trader
at the fair forward price FO(s, T ) at time s. If so, the trader is always able to artificially close
the forward position and thus realize the value of V O(s, t, T ) = FO(s, T ) − FO(t, T ). Making it
more concrete, consider the example of the wheat forward contract again. Suppose s = t+1, such
that time to maturity is 11 months. The spot price of wheat Ss = 90. Assume the 1-year interest
rate is still 1%. Party A has bought the forward contract for $80 and wants to realize his profit.
The fair forward price at time s = t+ 1 with maturity at T is: FO(t+ 1, T ) = 90e0.01

11
12 = 90.82.

Constructing a similar table as 2, we get:

Time Action Price

t Buy forward 80.80
s Sell forward 90.82
T Receive ST ST

T Deliver ST ST

Table 3: Table 2 specified to our example

From table 3, we see that the value of the forward contract at time t is V O(s, t, T ) = FO(s, T )−
FO(t, T ) = 90.82− 80.80 = 10.02.

To conclude this section, it has been shown by arbitrage arguments given by Cox et al. (1981), that
the fair forward price at time t is given by FO(t, T ) = St

P (t,T ) = Ste
rt,T (T−t). Consequently, by

performing a trading strategy, the time s value of a forward contract is shown to be V O(s, t, T ) =
FO(s, T )−FO(t, T ) with boundary conditions V O(t, t, T ) = 0 and V O(T, t, T ) = ST −FO(t, T ),

2.2 Futures Contacts

Now that the definition and pricing methods of forward contracts have been given, futures contracts
can be discussed. To summarize in one sentence: A futures contract is a standardized version of a
forward contract which is marked to market by exchanges. Forward contracts have been discussed
prior to futures contracts, due to the fact that a futures contract is a standardization of the forward
contracts

2.2.1 Introduction to Futures Contracts

Forward contracts are exchanged over-the-counter (OTC), whereas futures contracts are stan-
dardized versions and traded on exchanges like the Chicago Mercantile Exchange (CME). The
exchanges create futures contracts with fixed expiration dates and contract sizes. The exchange
on which the futures are traded determines when the futures expire, and what the size of a con-
tract should be. This makes futures contracts less flexible than forward contracts because in a
forward contract the two parties engaging in the contracts are free to set the date and size of the
contract (as long as both parties agree). For futures contracts, the exchange on which the futures
are traded takes care of the settlement. In case of a forward contract, both parties engaged in the
contract rely upon each other to make sure the transaction is settled at the end of the contract.
This makes a forward contract more vulnerable to counter party risk, as the engaging parties in the
contract do not know the complete financial position of their counter party, and the other party
can default and not fulfill the obligation stated in the forward contract. For futures contracts
traded on exchanges, this counter party risk is lower as the exchange acts as a third party. If one
of the parties of a contract is at risk of defaulting, the exchange will know this before the contract
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is settled and manually close the position for that party. This property of the exchanges taking
care of settlement allows for trading futures contract without having to know the counter party.
This is different from forward contract, where a (physical) counter party has to be found and kept
in contact with whilst in a forward contract.

In order to make sure users of exchanges do not default on the obligations stated in the futures
contract, the exchanges settle the futures contract at the end of each trading day. The main
difference between forward contracts and futures contracts is the settlement executed by the
exchanges. In order to make sure users of exchanges do not default on the obligations stated in
the futures contract, the exchanges settle the futures contract at the end of each trading day. This
settlement process is called Mark-to-Market (MTM), which entails the adding or subtracting of
profit or loss to or from the account balance of the user at the end of each trading day. This
addition or subtraction of daily profit and comparison with forward contracts will be discussed
in more detail later in Table 5. The process of mark-to-market in addition with the concept of
margin requirements reduce counter party risk for traders. Futures exchanges use two types of
margin requirements: initial margin and maintenance margin. The initial margin is the amount of
capital that is required to open a position, relative to the dollar amount of the futures position size.
The maintenance margin is the minimal amount of capital relative to the position size in order to
keep the position open after it has already been opened. The process of mark-to-market done by
exchanges at the end of each trading day either increases or decreases the collateral of the buyer or
seller of the contract. If the collateral of the buyer or seller falls below the maintenance margin, a
margin call will be made. This is a notice to top-up the collateral back to the maintenance margin
level. If this does not happen, the exchange will close the position for the trader. To illustrate
the concepts of margin on exchanges, we continue with the example given earlier. Suppose the
initial margin is set to 50% and the maintenance margin 25%. Party A posts $40 in collateral
to precisely satisfy the initial margin and proceeds to buy 1 futures contract with a price of $80.
Table 4 shows the process of mark-to-market and when the trader would get a margin-call. Let
F (t, T ) denote futures price at time t with expiration at time T .

t F(t,T) Daily Profit Collateral Maintenance Margin

0 80 0 40 20
1 70 -10 30 20
2 90 20 50 20
3 60 -30 20 20
4 59 -1 19 20

Table 4: Simulating the evolution of a futures price F (t, T ) and the corresponding process of mark
to market. The trader posts $40 of collateral and takes a long position of 1 unit of F (t, T ) at t=0.

In Table 4 the process of the futures contract being marked to market at the end of each trading
day is visible. The daily profit, i.e. F (t, T )−F (t−1, T ) is added or subtracted from the collateral of
the trader. Thus, the exchange settles the futures contract at the end of time t, and automatically
writes a new futures contract at time t + 1 with expiration date T . The row in bold, t = 4,
shows the collateral of the trader falling below $20, the maintenance margin. If this happens, a
margin call is made. If the trader does not top-up his collateral to at least the maintenance margin
within a certain time frame, the exchange will close the position for the trader. This is called a
liquidation. This makes sure that the exchange does not incur bad debt and the trader who has
the opposite position can always get paid.

2.2.2 Pricing and Valuing of Futures Contracts

In section 2.1, the no-arbitrage forward price was defined as FO(t, T ) = Ste
rt,T (T−t). Recall that

a forward contract makes no payments during the life of the contract until expiration date T . For
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futures contracts, this is different due to the property of daily mark-to-market of exchanges. At
the end of each day the daily profit or loss is added to or subtracted from the collateral of the
trader on an exchange. Table 5 shows the property of mark-to-market of futures contracts. Each
day the price of the futures contract increases by two and is added to the collateral on a daily
basis. For the forward contract this does not happen and the payout happens at once at time
T . As a result, the value of a futures contract is zero after this mark-to-market payout has been
completed. The term mark-to-market essentially means that at the end of each period (in this case
day), the futures contract is valued at the market price, and payout is transferred to the holder
of the futures contract. For a forward contract, we defined the value as the ’unrealized profit or
loss’ of a forward contract that could be realized by buying or selling an equivalent contract at
time s ∈ {t, ..., T}. For futures contracts, the mark to market property does this for us, and the
profit (loss) is realized at the interval at which the mark to market takes place.

t F (t, T ) Daily Profit Collateral FO(t, T ) Daily Profit

0 80 0 40 80 -
1 82 2 42 82 -
2 84 2 44 84 -
3=T 86 2 46 86 6

Table 5: Simulating the evolution of a futures price F (t, T ) and forward price FO(t, T ) and showing
that the futures contract will have a daily payout whilst the forward contracts does not. Note that
we have F (t, T ) = FO(t, T ) here for simplicity. At time T, we have F (T, T ) = FO(T, T ) = ST .

The property of futures contracts having a daily payout almost always leads to futures contracts
having a different price than forward contracts. To illustrate how futures or forward prices may
differ, Cox et al. (1981) developed the following trading strategy. Let rt,t+1 be the return of a
default-free zero-coupon bond coupon, continuously compounding at time t maturing at time t+1.
This will be referred to as the risk-free rate from time t to t+ 1. Cox et al. (1981) then perform
the following trading strategy:

Let Z = {t+1, ..., T −1, T}. Initially at time t, we invest F (t, T ) amount 6 in risk-free bonds with
maturity t+1. Then for each k ∈ Z, the bond from k−1 matures (since each bond has a maturity
of 1 day). We reinvest F (t, T ) and the accrued interest for each k except k = T (since the bond
would mature at T+1). This procedure is done for each k = {t+1, t+2, .., T −1}. This will result
in the payoff at time T of F (t, T )

∏T−1
i=t eri,i+1 , the compounded interest rate of investing F (t, T )

at time t and reinvesting this on a daily basis. To show how this part of the trading strategy
evolves over time, let Γ1,1(k) denote the portfolio value of this part of the strategy at each time
k = t, t+ 1, .., T and consider the following table:

6Note that F (t, T ) is the time-t futures price with expiration at time T. Similar to the strategy of forward
contracts, we invest the dollar amount F (t, T ) in risk-free bonds.
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k Γ1,1(k)

t F (t, T )

t+ 1 F (t, T )
∏t

i=t e
ri,i+1

t+2 F (t, T )
∏t+1

i=t e
ri,i+1

... ...

T-1 F (t, T )
∏T−2

i=t eri,i+1

T F (t, T )
∏T−1

i=t eri,i+1

Table 6: First part of the futures strategy proposed by Cox et al., 1981. F (t, T ) is invested in
a risk-free bond with maturity of 1 day at time k = t. We then reinvest F (t, T ) plus accrued
interest for every k = t+ 1, .., T − 1. Γ1,1(k) denotes the portfolio value for this strategy at each
k = t, .., T .

In addition to Γ1,1 described above, Cox et al. (1981) perform an additional trading strategy.

Let Q = {t, t + 1, t + 2, .., T − 1}. For each k ∈ Q, a long futures position of
∏k

i=t e
ri,i+1F (t, T )

contracts is taken. The position size is thus increased (decreased)7 every day with the one-day
risk-free rate. This position is held for one trading day, and at time k + 1, the position is closed,
and the proceeds invested in daily risk-free bonds up until time T . Thus at time k + 1, we get
the payoff

∏k
i=t e

ri,i+1 [F (k+1, T )−F (k, T )]. This is then re-invested at the risk-free rate at time

k + 1 until T:
(∏k

i=t e
ri,i+1 [F (k + 1, T )− F (k, T )]

)∏T−1
i=k+1 e

ri,i+1 . Notice that a negative daily

payoff is possible, i.e. F (k + 1, T ) < F (k, T ). In this case we will ’invest’ these negative returns
in the risk-free rate, which means borrowing at the risk-free rate. It will be shown later that the
intra-day payouts being positive or negative will not affect the portfolio value at time T . Let Γ1,2

denote the second part of the strategy.

k Position size Γ1,2(k)

t F (t, T )
∏t

i=t e
ri,i+1 0

t+1 F (t, T )
∏t+1

i=t e
ri,i+1 ert,t+1 [F (t+ 1, T )− F (t, T )]

t+2 F (t, T )
∏t+1

i=t e
ri,i+1 ert+1,t+2Γ1,2(t+ 1) +

∏t+1
i=t e

ri,i+1 [F (t+ 2, T )− F (t+ 1, T )]
... ... ...

T-1 F (t, T )
∏T−1

i=t eri,i+1 erT−2,T−1Γ1,2(T − 2) +
∏T−2

i=t eri,i+1 [F (T − 2, T )− F (T − 1, T )]

T 0 ST

∏T−1
i=t eri,i+1 − F (t, T )

∏T−1
i=t eri,i+1

Table 7: Second part of the futures strategy proposed by Cox et al. (1981). A position of∏T−1
i=t eri,i+1 futures contracts is taken for each k = t, .., T − 1. This payoff at time k + 1 is

given by
∏k

i=t e
ri,i+1 [F (k + 1, T ) − F (k, T )]. Γ1,2(k) denotes the portfolio value for this strategy

at each k = t, .., T .

Table 7 shows the evolution of the portfolio value for the second part of the futures strategy of
Cox et al. (1981). Despite looking quite complex, this investment strategy reduces down to an
elegant form. Notice how every day the position size of F (t, T ) is increased with the compounded
risk-free rate. Meanwhile, all previous payoffs are invested (borrowed) at the risk free rate as well,

7If the interest rate is positive, we increase our position size since eri,i+1 > 1. If the interest rate is negative,
we decrease the position size since eri,i+1 < 1
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such that we have at time t+ 2:

Γ1,2(t+ 2) = ert,t+1 [F (t+ 1, T )− F (t, T )]ert+1,t+2 +

t+1∏
i=t

eri,i+1 [F (t+ 2, T )− F (t+ 1, T )] (8)

= ert,t+1+rt+1,t+2 [F (t+ 1, T )− F (t, T )] + ert,t+1+rt+1,t+2 [F (t+ 2, T )− F (t+ 1, T )]
(9)

= ert,t+1+rt+1,t+2 [F (t+ 1, T )− F (t, T ) + F (t+ 2, T )− F (t+ 1, T )] (10)

= ert,t+1+rt+1,t+2 [F (t+ 2, T )− F (t, T )] (11)

By the property of daily payout of futures contracts, and dynamically adjusting the position size
by the daily risk-free rate every day, every term in {t+ 1, .., T − 1} can be added and subtracted.
This will lead to a dependence only of F (t, T ) and F (T, T ) = ST at time T, which will be shown
now. Let Γ1(T ) = Γ1,1(T ) +Γ1,2(T ) denote the time T portfolio value of the strategies combined.
We get similar to Cox et al. (1981):

Γ1(T ) = Γ1,1(T ) + Γ1,2(T ) (12)

= F (t, T )

T−1∏
i=t

eri,i+1 +

T−1∑
k=t

(
k∏

i=t

eri,i+1 [F (k + 1, T )− F (k, t)]

)
T−1∏

i=k+1

eri,i+1 (13)

= F (t, T )

T−1∏
i=t

eri,i+1 +

T−1∑
k=t

(
T−1∏
i=t

eri,i+1 [F (k + 1, T )− F (k, t)]

)
(14)

= F (t, T )

T−1∏
i=t

eri,i+1 +

(
T−1∏
i=t

eri,i+1 [F (t+ 1, T )− F (t, T ) + F (t+ 2, T )−

F (t+ 1, T ) + ...+ F (T, T )− F (T − 1, T )]

) (15)

=

T−1∏
i=t

eri,i+1 (F (t, T )− F (t, T ) + F (T, T )) (16)

= ST

T−1∏
i=t

eri,i+1 (17)

The final portfolio value at time T, Γ1(T ) only has dependence on F (T, T ) = ST and the com-
pounded daily risk-free rate, as shown by (13-17). Since an initial investment of F (t, T ) is made

and a final portfolio value of ST

∏T−1
i=t eri,i+1 is obtained, the fair (no-arbitrage) time t futures

price according to Cox et al. (1981) is the discounted value of the payoff ST

∏T−1
i=t eri,i+1 at time

t. Notice, however, that in contrast to forward contracts, the compounded daily interest rate here
is stochastic and unknown at time t. In order to get the no-arbitrage price, the compounded
risk-free rate for all future periods until maturity has to be estimated. For forward contracts, no
intermediate cash flows happened, and it was possible to exactly determine the no-arbitrage price
at time t, since the risk-free rate of holding a bond from time t to time T is known beforehand. For
futures contracts, this is not the case due to the intermediate cash flows arising from the property
of mark to market, which are able to be invested at a different risk-free rate each day.

So far, only daily mark-to-market payouts have been discussed. However, this can be extended to
smaller time steps. In fact, for cryptocurrency exchanges the mark-to-market payments are done
on a very low time frame, almost instantaneous. Despite the time frame being lower, the strategy
(13) will still hold. Cox et al. (1981) state that their strategy of rolling over a bond on a daily
basis is equivalent to investing in the money market account from time t to T . Let rs denote
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the instantaneous short-rate at time s ∈ [t, T ], and assume continuous mark to market of futures
payouts. If we invest $1 in the money market account at time t, and perform the same strategy

as (13), but now in continuous time, a payoff at time T of ST e
∫ T
t

rsds is obtained. In order to
discount this at time t, nformation about the price process of rs is still required.

Schroder (1999) builds upon the framework of Cox et al. (1981) in the continuous time setting
and shows that in a risk-neutral world, we have under the measure Q that the futures price
F (t, T ) is a martingale. We can compute the time-t expectation of F (t, T ) in a risk-neutral way.

Let MT = e
∫ T
t

rsds denote the value of the money market account at time T, with an initial
investment of $1 at time t, and let F denote the price process of a futures contract. We have

that F
M is a martingale under Q using M as a numeraire, so F (t,T )

M(t) = EQ
t [

F (t,T )
MT

] = EQ
t [

ST

MT
].

Consequently, we have under the risk-neutral measure :

F (t, T )

Mt
= F (t, T ) (18)

= EQ
t

[
ST

MT

]
= EQ

t

[
ST

MT
Mt

]
(19)

= StEQ
t

[
1

MT

]
= StEQ

t

[
e−

∫ T
t

rsds
]

(20)

So, under the risk-neutral measure, the no arbitrage futures price is given by: F (t, T ) = StE
Q
t [e

−
∫ T
t

rsds],
according to Schroder (1999).

2.2.3 Comparison Futures and Forward Prices

In section 2.2.2, the strategy of Cox et al. (1981) has shown in the discrete case that the fair

futures price at time t is the present value of a portfolio that pays St

∏T−1
i=t eri,i+1 at time T . Due

to the fact that the daily risk-free rate in the future is unknown at time t, it is not possible to
exactly determine the no-arbitrage futures price at time t. In this section, the results obtained
from the no-arbitrage forward and futures contracts will be compared. The no-arbitrage price of
a forward contract equals the futures price if and only if:

F (t, T ) = FO(t, T ) ⇐⇒ = St

T−1∏
i=t

eri,i+1 = Ste
rt,T (T−t) (21)

⇐⇒ (T − t) ∗ ri,i+1 = rt,T ∀i ∈ {t, t+ 1, .., T − 1} (22)

So, only if the return of continuously investing in daily risk-free on a daily basis up until time T
is the same as investing all at once at time t, i.e. under constant interest rates, the forward price
equals the futures price. In general, it is expected that F (t, T ) ̸= FO(t, T ), since interest rate in
practice are not deterministic and constant. As French (1983) states, the difference arises from the
fact that holding a risk-free bond from time t to time T (forward contract) is in general not equal to
rolling over a bond on a daily basis (futures contract). We have seen above that futures contracts
allows us to invest the profits on a daily basis (due to MTM). If the interest rates fluctuate on a
daily basis, these proceeds are invested at a different interest rates. Forward contracts do not have
any intermediate payments and thus the forward and futures prices may differ if interest rates
are stochastic. Specifically, if Cov[F (t, T ), rt,t+1] > 0, then F (t, T ) > FO(t, T ). If the futures
price is positively correlated with interest rates, we would expect a daily profit if the interest
rate rises, and are able to re-invest the profits at higher and higher interest rates. Therefore the
futures price would be higher than the forward price. Similarly, if Cov[F (t, T ), rt,t+1] < 0, then
F (t, T ) < FO(t, T ). In this case, if the futures position were to have a daily profit, it would be
expected to invest profits at a lower interest rate, and if the futures position incurs a loss, borrow
at a higher risk-free rate.
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Considering expression of the fair futures price F (t, T ) = St

∏T−1
i=t eri,i+1 again, dependence is

noted on all daily interest rates from time t to time T , which are not yet known at time t. Levy
(1989) shows, however, that in order to determine the fair futures price at time t, only the one-
period ahead interest rate needs to be predicted. Suppose the current time is T −3, and a forward
contract and futures contract are both maturing at time T . The goal of Levy (1989) is to replicate
a forward contract with a futures contract. The first (trivial) strategy to do so is the following:

At time T − 3 one forward contract is bought and held until time T . For the futures contract, one
contract at each time T − 3, T − 2, T − 1 is bought and closed the next day. Note here that it is
important that both strategies have an initial cash flow at time T −3 of zero, since both contracts
do not require any payment to be made up front. Table 8 shows that both strategies have the
same time T cashflow if FO(T − 3, T ) = F (T − 3, T ). However, notice the arbitrage opportunity
showing why this should not hold in general. Both strategies have an initial investment of 0,
but the futures contract has two intermediate cash flows, which could be invested at the risk-free
rate, whilst the forward contract does not. If we would have FO(T − 3, T ) = F (T − 3, T ), an
arbitrageur could take a short position in the forward contract, a long position in the futures
contract, and invest the daily cash flows received of the futures contract at time T − 2 and T − 1
at the risk-free rate. At time T , the arbitrageur would be hedged, since F (T, T ) − FO(T, T ) =
ST −F (T −3, T )−FO(T −3, T )−ST = 0. Thus, if interest rates are nonzero, this simple strategy
does not allow us to replicate a forward contract with a futures contract in an efficient market,
since arbitrage opportunities would arise.

time Forward Cashflow Futures Cashflow

T-3 0 0
T-2 0 F (T − 2, T )− F (T − 3, T )
T-1 0 F (T − 1, T )− F (T − 2, T )
T ST − FO(T − 3, T ) ST − F (T − 3, T )

Table 8: A simple strategy which tries to replicate a forward contract with a futures contract.

In order to replicate a forward contract with a futures contract, we have to choose the amount of
futures contract such that this arbitrage opportunity does not arise. Levy (1989) shows that this
is possible by performing the following trading strategy. At time T − 3 one forward contract is
bought and held it until time T . For the futures contract, let rT−k,T denote the risk-free rate for
time T − k to T , k = 1, 2. At time T − 3, we buy e−rT−2,T futures contracts, and at time T − 2,
when we receive the payoff, it is invested until time T , similar to (13). At time T − 2, we buy
e−rT−1,T futures contracts, and at T −1 when we get the first payoff, we invest this in the risk-free
rate until time T. At time T − 1 we buy 1 futures contract. The cash flows of this strategy are
denoted in Table 9.

time Forward Cashflow Futures Cashflow

T-3 0 0
T-2 0 e−rT−2,T [F (T − 2, T )− F (T − 3, T )]
T-1 0 e−rT−1,T [F (T − 1, T )− F (T − 2, T )]
T ST − FO(T − 3, T ) ST − F (T − 3, T )

Table 9: Daily cash flows of the forward and futures positions of the strategy as described by Levy
(1989).

The result in the last row of table 9 comes is due to the fact we invest the payoffs of T − 2 and
T − 1 two and one day, respectively, in the risk-free rate, such that at time T we get: [F (T −
2, T )−F (T − 3, T ) + (F (T − 1, T )−F (T − 2, T ) + ST −F (T − 1, T )] = ST −F (T − 3, T ). Notice
that we perform the ’arbitrage opportunity’ that was described in table 8, by investing the daily
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payoffs of the futures contract in the risk-free rate. However, due to the smart choice of position
sizing, we end up with ST −F (T − 3, T ), which essentially replicates a forward contract, since we
’lock’ in a price at time T − 3 for which the underlying asset at can be bought at time T . The
key takeaway of this example, and the paper of Levy (1989) in general, is that in order to create
a perfect hedge of a forward contract at time t with expiration at time T , with a futures contract
with equal maturity, we need to estimate for each k ∈ {t, ..., T −1} the yield of a zero-coupon bond
at time k + 1 maturing at time T . Despite that this needs to be done every period, the yield (i.e.
interest rate) of the zero-coupon bond has to be forecasted only one period ahead. Estimating the
risk-free rate one-period ahead, k times, might be easier than estimating at time t all interest rates
k periods ahead. Levy (1989) states that the variance of estimating the one-period ahead risk-free
rate k times is much smaller than forecasting all future risk-free rates at time t. Therefore, it
might be reasonable to assume that forward and futures prices are approximately equal to each
other, and the price difference between the two insignificant.

In addition to the arguments given by Levy (1989), the contract duration of the futures contract
is also important to consider. Hull (2014) states that for contracts with only a few months
duration the difference between forward and futures prices is insignificant and can be ignored.
This difference arises due to the fact that ert,T (T−t) ̸=

∏T−1
i=t eri,i+1 , the yield of a bond time to

maturity (T − t) is in general not equal to rolling over a daily bond from time t to T . The longer
the time to maturity, the bigger this difference is expected to become as the interest rates are
stochastic. In this thesis, we will only analyze futures contracts with maturity of 3 or 6 months,
which are considered to be of short duration. The arguments given by Levy (1989) and Hull
(2014) conclude that it is reasonable to assume FO(t, T ) = F (t, T ). This provides a more viable
expression to work with, since forward contracts do not have future stochastic interest rates which
have to be discounted at time t.

In this thesis, we will only futures contracts will be priced because of the absence of forward
contracts in the cryptocurrency market. Evidence given above has shown that without loss of
generality, it can assumed that forward and futures prices are almost equal to each other, although
it is acknowledged that the prices are not perfectly equal. We get the desired expression for a fair
time t futures price with expiration at time T as:

F (t, T ) = Ste
rt,T (T−t) (23)

, where rt is the risk-free rate of holding a zero-coupon bond from time t to T, in other words a
time to maturity of T − t.

2.2.4 Contango and Backwardation

A futures contract can express contango and (normal)8 backwardation. Rau-Bredow (2022) de-
scribes contango as the event where the futures price for a given asset with delivery some months
ahead is above the spot price. Backwardation is the inverse, where the futures price trades below
the spot price. Supply and demand for certain delivery dates can shift these futures prices higher
or lower than the spot price. Using a similar example as earlier, an airline may want to pay a
premium for price stability in the summer months, thus buying July oil futures which trade at
contango. Figure 2 visualizes what contango and backwardation look like. Note that we have
convergence of the futures price and the spot price close to maturity. This follows from the fact
that at time T , the boundary condition F (T, T ) = ST hold. If this convergence does not happen,
arbitrage opportunities will arise.

8Normal backwardation and backwardation are two equivalent terms and describe the same phenomenon.
Throughout this thesis the term ’backwardation’ will be used.

17



Figure 2: Contango and backwardation visualized. Retrieved from Fahim (2019).

2.2.5 Cost-of-Carry Models

In section 2.2.3 a fair futures price expression (23) has been derived. This was done for an asset
with no intermediate payments such as dividends. As one can expect, the expression derived in
(23) does not have to hold for every type of asset. As we will see later, some assets have benefits
associated with holding the underlying asset instead of a futures contract, and other assets have
costs incurred with holding the underlying asset. This section aims to give an overview of existing
models of fair (no-arbitrage) futures prices throughout different asset classes. Once this overview
is complete, it can attempted to extend this to a new asset class, that of cryptocurrencies.

The expression derived in (23) is the most simple version of the cost-of-carry model. Riley (2014)
explains that the name of this model stems from the associated cost of carrying an asset until
expiration. The cost-of-carry model simply states the fair futures price is the spot price adjusted
by all costs (benefits) of carrying 9an asset from time t to T . Recall that buying a futures contract
does not require payment at time t, whilst buying the underlying asset does require a payment
at time t. It has been shown earlier that for forward contracts, it is possible to invest money at
the risk-free rate at time t and end up with the underlying asset and a risk-free return at time T .
This is not possible for buying the underlying asset and carrying it until time T . Therefore the
(opportunity) cost of carrying the underlying asset St, i.e. holding it from time t to time T , has to
be incorporated into the fair futures price at time t. This (opportunity) cost is the risk-free rate
from time t to T , ert,T (T−t). As a result, the fair futures price at time t will be greater than the spot
price if interest rates are positive. In order for the cost-of-carry model to hold, however, certain
assumptions need to be made. The cost-of-carry model operates in a friction less market10, under
which the Law of One Price (LoOP) holds. According to Corradin and Rodriguez-Moreno (2016),
the LoOP states that two assets that produce an identical cash flow should trade at the same
price, in other words absence of arbitrage. If the LoOP does not hold, arbitrage opportunities are
possible. In addition to the LoOP, a few additional assumptions are formulated under which the
cost-of-carry models should hold. The assumptions are derived from Cornell and French (1983)
and are as follows:

9The term carrying means holding an asset for a certain period of time. Specifically in the case of futures pricing,
the underlying asset is carried from time t to time T.

10A friction less market assumes that there are no costs associated with making transactions.
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• There are no taxes and transaction costs, assets are perfectly divisible, and short-selling is
allowed

• The costs of risk-free lending and borrowing are constant and equal

• Dividends (if any) are paid continuously at a rate of D dollars per period

The above assumptions will be refered to as a perfect market. Under the perfect market assump-
tions, the fair futures price for an investment asset with no intermediate payments should equal
the cost-of-carry model stated in (23). To see why this should hold, consider the following table
where the equality does not hold:

time F(t,T) > Ste
rt,T(T−t) Cashflow time F(t,T) < Ste

rt,T(T−t) Cashflow

t Short/sell F (t, T ) 0 t Buy/long F (t, T ) 0
t Borrow St amount St t Short/sell St St

t Buy St −St t Lend out St amount −St

0 0

T Deliver F (t, T ) F (t, T ) T Take delivery on F (t, T ) −F (t, T )
T Pay back loan −Ste

rt,T (T−t) T Collect loan Ste
rt,T (T−t)

Profit F(t,T)− Ste
rt,T(T−t) > 0 Ste

rt,T(T−t) − F(t,T) > 0

Table 10: Simulating an arbitrage strategy if the simple cost-of-carry model does not hold in a
frictionless market. Based upon Damodaran (2004).

Table 10 shows two potential arbitrage opportunities if the simple cost-of-carry model does not
hold. To clarify the table further, consider the left scenario (F (t, T ) > Ste

rt,T (T−t)). Borrowing
is done at the risk-free rate to buy the underlying asset at time t for a price of St. At time T ,
the underlying asset which is held is used to deliver the futures obligation, since being short on
a futures contract means delivering the underlying asset at time T . The payoff of a short futures
contract at time T is F (t, T )− ST . The resulting payoff is F (t, T )− ST + ST = F (t, T ). Finally,
the loan is paid back loan to receive a total profit of F (t, T ) − Ste

r(T−t) > 0. Such a trade is
often called a cash-and-carry. This name is derived from the fact that one buys an asset at time
t, carries it until the end of the maturity and uses it to deliver the futures contract.The same
scenario in reverse holds for the right hand side of Table 10, which is sometimes referred to as the
reverse cash-and-carry.

So far, only an investment asset with no intermediate payments such as dividends, or assets that
require a payment such as storage costs have been discussed. Cornell and French (1983) build
upon the work of Cox et al. (1981) and extend this standard no-arbitrage futures price, to the case
of dividend paying stocks. This is done under the assumptions stated above of a perfect market.
In addition, Cornell and French (1983) make the same assumption as in this thesis, that forward
and futures prices are equal. Let St denote the stock price at time t paying continuous dividends
at a constant rate of D dollars per period. Cornell and French (1983) assume a constant risk-free
rate r. This is equivalent to the assumption in thesis that the risk-free rate from time t to T is
known at time t. It has been shown earlier how to derive this risk-free rate by using a zero-coupon
bond with maturity at time T . The trading strategy proposed by Cornell and French (1983) is
to invest all dividends (paid continuously) in risk-free bonds and receiving the risk-free rate. The
initial portfolio value at time t of this strategy11is given by:

Π1(t) = St (24)

11Since two strategies are discussed here, Π1(t) represents the portfolio value of strategy 1 at time t.
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The portfolio value of this strategy at time T is then obtained by investing dividend continuously
in risk-free bonds:

Π1(T ) = ST +D

∫ T

t

ert,T (T−w)dw (25)

= ST +
D

r
[ert,T (T−t) − 1] (26)

So, (26) is the payoff at time T of investing in the stock at time t and investing dividends contin-
uously in risk-free bonds with maturity T . Cornell and French (1983) show that this payoff can
be replicated using forward contracts. Let FO(t, T ) denote the time t forward price with expi-
ration date T . The investor takes a long position in one forward contract FO(t, T ) and invests(
FO(t, T ) + D

r [e
rt,T (T−t) − 1]

)
e−rt,T (T−t) in risk free bonds. The initial value of this portfolio at

time t is given by:

Π2(t) =

(
FO(t, T ) +

D

r
[ert,T (T−t) − 1]

)
e−rt,T (T−t) (27)

This is held risk-free bonds until time T, which gives a portfolio value of:

Π2(T ) = ST +
D

r
[ert,T (T−t) − 1] (28)

Note that (26) and (28) representing the portfolio values are equal at time T . So, since Π1 and Π2

are both self-financing portfolios with Π1(T ) = Π2(T ), we must have Π1(t) = Π2(t). Tabulating
for comparison purposes gives:

Strategy Π(t) Π(T )

1 St ST + D
r [e

rt,TT−t) − 1]
2

(
FO(t, T ) + D

r [e
rt,T (T−t) − 1]

)
e−r(T−t) ST + D

r [e
rt,T (T−t) − 1]

Similarly to the strategy proposed by Cox et al. (1981), to avoid arbitrage, the following must
hold:

St =

(
FO(t, T ) +

D

r
[ert,T (T−t) − 1]

)
e−rt,T (T−t) (29)

⇐⇒ Ste
rt,T (T−t) = FO(t, T ) +

D

r
[ert,T (T−t) − 1] (30)

⇐⇒ FO(t, T ) = Ste
rt,T (T−t) − D

r
[ert,T (T−t) − 1] (31)

Notice that for a non-dividend paying stock, i.e. D = 0, we get F (t, T ) = Ste
rt,T (T−t), equivalent

to (23). The sign of the dividend payments, in (31) is negative, resulting in a negative effect of
dividends on the futures price. This follows from the fact that the stock itself pays dividends,
whilst the futures contract does not. Equivalently, but more common in the literature is to let d
denote the dividend yield, which is paid on a continuous basis, similar to the risk-free rate being
continuously compounding. Using (31) with the dividend yield continuously paying, i.e. ed, as a
result:

F (t, T ) = Ste
(rt,T−dt)(T−t) (32)

Equation 32 is the cost-of-carry model for a stock with a dividend yield of dt annually. Again, we
have the minus sign of dividend yield in the expression here.
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The cost-of-carry model can be extended for asset classes beyond stocks. Hull (2014) states the
cost of carry model for foregin currencies as:

F (t, T ) = Ste
(rt,T−rft,T )(T−t) (33)

, where rt,T is the risk free rate in the local currency from time t to T , and rft,T the risk free rate
in the foreign currency. To explain the signs in (33) more clearly, suppose an European investor
buys a futures contract of EUR/USD. The yearly interest rate in Europe is 2% and in the US
is 3%. Similarly as in the (dividend-paying) investment asset, the European investor could buy
the desired dollars at time t, but the property of deferred payment of futures contracts allow the
investor to delay the purchase until time T , and meanwhile invest the euro’s at the risk-free rate
of 2%. This has a positive effect on the futures price. However, the interest rate in the US is
3%. If the investor would have bought spot dollars at time t, it could have been invested at a
higher risk-free rate of 3%. This therefore has a negative effect on the futures price, since it is the
risk-free return that could be earned on the spot asset at time t.

Commodities are an asset class which can be categorized as both investment and consumption
assets. Gold is considered an investment, whilst oil or natural gas are consumption assets. In
addition, commodities are, in contrast to all assets we have talked about so far, physically stored.
Storage of commodities incurs costs to the holders of the underlying commodity. Aı̈d et al. (2015)
state therefore that the cost of carrying commodities is not the interest rate alone and thus for
commodities another model has to be used. In other words, commodities have a higher carry cost
than investment assets, where we have seen in (23) that the cost of carry only consists of the
risk-free rate. Pinkdyck (2001) formulates the cost-of-carry model for commodities as:

F (t, T ) = Ste
(rt,T+kt−Ψt)(T−t) (34)

For commodities, two new parameters in the cost-of-carry model are introduced. The first one, kt,
is the storage cost associated with storing the commodity. Notice that this is expressed as a yield
(percentage), not in absolute terms. The reason kt has a plus sign, which implies a positive effect
on the futures price, is since the physical commodity incurs storage costs at an rate of kt per unit
of the commodity. Holding a long position in a futures contract does not have storage costs, so
the futures price has to be adjusted for this. To illustrate this, suppose rt,T = 0, Ψt = 0. If we
omit the term kt in the cost of carry model (34), then we would have F (t, T ) = Ste

0(T−t) = St.
However, if the physical commodity is carried from time t until T , a cost of kt (in percentage, i.e.
negative yield) is incurred. Holding the futures contract does not have this cost. Thus, at time
T holding the physical commodity gives us (1 − kt)ST and holding the futures contract gives us
ST . This would give rise to an arbitrage opportunity similar to Table 10, hence the term kt has
to be included in the cost of carry model for commodities and has a positive sign, as it benefits
the futures contract holder, which leads to a higher futures price.

The other term Ψt in the cost of carry model for commodities is the convenience yield, which is
the benefit of holding the physical commodity instead of the futures contract. Pinkdyck (2001)
states that the convenience yield obtained by holding a commodity is similar to that of dividend
yield of holding a stock, such that it has a negative effect on the futures price as seen in (34). The
convenience yield is intangible and is found through market prices. To illustrate the role of Ψt,
suppose we omit the term from the cost of carry model, such that we have:

F (t, T ) = Ste
(rt,T+kt)(T−t) (35)

In a perfect, frictionless market we would expect (35), the theoretical price of commodities to
hold due to the similar arbitrage arguments given in Table 10, with additional storage costs. In
practice, this parity rarely holds, however. Emperical evidence shows that the observed futures
price for commodities often deviates from the theoretical futures price given in (35). Litzenberger
and Rabinowitz (1995) find that oil futures between 1984 and 1992 were in strong backwardation
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77% of the time. This is a surprising result, since oil has a positive cost of carry, and we would
expect F (t, T ) > St. In other commodity markets the same phenomenon is found. Movassagh
and Modjtahedi (2005) report significant backwardation for the market of natural gas between
1991 and 2003. As a result of this emperical evidence, the cost-of-carry model for commodities
introduces an intangible parameter Ψt called the convenience yield.

To illustrate the concept of convenience yield, consider the market of natural gas. Suppose an
unexpectedly cold winter occurs. Market participants are expecting a shortage of natural gas due
to increased demand for natural gas. This shortage occurs short-term, and will lead to spot prices
of natural gas rising. Despite this, it may happen that the prices of futures contracts expiring in
June may not rise as much as the spot price. The market expects that the shortage of natural
gas will disappear after the winter, and that demand in June may be lower, resulting in expected
spot price in June to be lower. For producers holding the actual natural gas, this means that it
is possible to sell the natural gas on the spot market when shortage occurs. A futures contract
has a fixed delivery date, which does not give this flexibility. Net buyers of commodities such as
energy companies may also be worried that this cold winter will lead to a shortage of natural gas as
demand increases. They may choose to rather buy the natural gas on the spot market now to cope
with the increasing demand instead of buying a futures contract with a later delivery, as the energy
company needs the commodities in the short term. This perceived benefit of having the actual
commodity over a derivative is called the convenience yield. If the convenience yield is positive,
market participants prefer to hold the actual underlying commodity instead of a derivative. The
natural gas example demonstrates why the sign of the convenience yield Ψt is negative in (34),
holding the actual underlying asset has a benefit relative to the futures contract, which makes the
futures contract cheaper relative to the spot price. Girard (2010) explains that the value of the
convenience yield can be interpreted as the expectation of future supply and demand changes. If
market participants expect a shortage of the commodity to occur, it will be more worthwhile to
hold the actual commodity instead of a futures contract with a fixed delivery date. This will lead
to a high convenience yield, and a backwardated market as a result. Since the convenience yield
reflects expectations regarding future supply and demand, it follows that the convenience yield is
not constant over time. This is why Ψt has dependence on t. To illustrate this, Pinkdyck (2001)
presents the following figure:

Figure 3: Convenience yield visualized, retrieved from Pinkdyck (2001)

Figure 3 shows the relationship between heating degree days and the convenience yield of heating
oil. Heating degree days represent the amount of heating needed given the outside temperature.
It becomes visible from Figure 3 that the convenience yield is highly cyclical and spikes in winter
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months, when demand is high. This follows from the example of natural gas given earlier, where
in winter months market participants expect more demand and would rather hold the actual
commodity than a future, since a shortage short-term could occur. This becomes even more clear
if we consider the spike in convenience yield in 1989 in Figure 3, as a result of the heating degree
days reaching a high level. This is due to a cold winter, skyrocketing the demand for heating oil
in the short-term and causing the convenience yield to rise accordingly. In the summer months
we see the convenience yield approaching zero as demand for heating oil is lower.

A recent example where convenience yield spiked was the surge in oil and natural gas prices in
the beginning of 2022 as a result of the war in Ukraine and the boycot of Russian oil and gas.
The spot price of oil and gas jumped during the start of the war as the short-term supply was
expected to dry up. However, the futures market for long dated futures traded lower than the spot
price, and was in significant backwardation. The reason behind this was similar to what Girard
(2010) described, a significant change in expectation of future supply and demand. The boycot of
the largest supplier of oil and natural gas to Europe meant that the short-term supply of oil and
natural gas was going to dry up. Long-dated futures jumped less in price, as Europe would have
more time to find supply of oil and gas elsewhere, and equalling the supply and demand to normal
levels. The convenience yield of holding the physical commodity (oil, gas) thus experienced high
levels in early 2022.

The convenience yield is intangible and can be found through market prices. This is since it is the
aggregate expectation of market participants, and not some deterministic value that we can plug
into (34). The convenience yield thus represents the difference between the theoretical futures
price state in (35) and observed market price. The reason this difference is not arbitraged away
as quickly in the case of investment assets is due to the physical storage of commodities. Girard
(2010) states that in a backwardated market for commodities, which we often see, it is not always
possible to sell a lot of inventory of the commodity and long the futures contract. This is due
to physical constraints, as well as producers always needing to keep a certain level of storage. If
we let F̂ (t, T ) denote the theoretical futures price as predicted by 35 and F (t, T ) the true market

prices, we have ln
(

F (t,T )

F̂ (t,T )

)
= ln

(
1

e−Ψt

)
= Ψt. So, under the cost of carry model for commodities,

we find this intangible parameter Ψt through market prices and we solve for Ψt.

The parameters kt and Ψt combined together, kt−Ψt is called the net convenience yield by Girard
(2010). If the net convenience yield is negative, it means that the costs of holding the underlying
commodity exceed the benefits of holding the commodity. In other words, it is not expected that a
shortage will occur, and we have a futures market in contango. Similarly, for a positive convenience
yield, we will have a market in backwardation. The cost-of-carry model with the term δt is given
by:

F (t, T ) = Ste
(rt,T−δt)(T−t) (36)

The net convenience yield is found using market prices, and may have a cyclical nature and thus
dependence on t.

Despite (34) being widely used for determining the no-arbitrage commodities futures price, there
are cases where this model has been challenged. An example of this are commodities with no
storage costs, or cannot be stored. The electricity market does not have storage costs, since
electricity cannot be stored. Therefore, the benefit of having the ’physical’ electricity should not
exist. Despite that, Viehmann (2011) showed that the futures market of electricity experienced
levels of contango and backwardation. This has caused some debate in the literature about the
notion of convenience yield.
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3 Futures in the cryptocurrency market

In the previous section, futures pricing through several cost-of-carry models was discussed, to find
a no-arbitrage futures price. The cryptocurrency market has different characteristics and products
than established futures markets. The first difference is the property of the underlying spot market
never closing. The spot market is open 24/7, which leads to the futures market never closing as
a result. In addition, new terms such as perpetual futures or coin-margined futures are specific to
the cryptocurrency market. This section aims to introduce the dynamics of the cryptocurrency
futures market, and sets the stage to test the cost-of-carry models on market data later on. The
empirical results of the Bitcoin and Ethereum futures basis will also be presented to motivate
why cost-of-carry models will be applied. Throughout this thesis, data from the cryptocurrency
exchange Binance will be used. Binance is the largest cryptocurrency exchange and has a market
share of approximately 63% in the cryptocurrency futures market (Bitcoinfuturesinfo) 12. In this
section the ticker symbol for Bitcoin (BTC) and for Ethereum (ETH) will at times be used for
shorter notation. The two assets Bitcoin and Ethereum are chosen is since these are the largest
two cryptocurrencies and are the most frequently traded on the quarterly futures market.

3.1 Futures in the cryptocurrency market

In the cryptocurrency market the term ’futures contract’ does not have a universal interpretation,
due to different types of futures contracts being available for trading. So far in this thesis, futures in
the traditional market have been discussed, which have an expiration date T . In the cryptocurrency
market, two different types of futures contracts are frequently traded, ones with an expiration date
and ones without an expiration date. A futures contract without an expiration date is called a
perpetual futures contract, and is native to the cryptocurrency market, with its name giving away
the property of no settlement. In this thesis, it will not be attempted to price these futures, but
its effect on futures with an expiration date will be studied. Since two types of futures contracts
are discussed here, using the term ’futures’ alone can give ambiguity about which type of futures
contract is described. Futures with an expiration date in the cryptocurrency market are often
referred to as quarterly futures. This term arises from the fact that futures contracts traded in
the cryptocurrency market only have maturity at the end of a certain quarter. Consequently, the
term quarterly futures will be used throughout this thesis when talking about a future with an
expiration date, similar to those discussed in section 2.2. Futures without an expiration date will
be referred to as perpetual futures in the remainder of this thesis.

3.1.1 Quarterly Futures

Quarterly futures in the cryptocurrency market are split into two types based on the type of
collateral used. These two types are called Coin-Margined (Coin-M) and USD-Margined (USD-
M) quarterly futures. Coin-Margined (Coin-M) quarterly futures allow for cryptocurrencies such
as Bitcoin (BTC) and Ethereum (ETH) to be used as collateral, whilst USD-Margined (USD-M)
quarterly futures allow only USD13 collateral. The underlying collateral being of a different type
leads to different levels of exposure. Table 11 illustrates these properties. Suppose that 1 BTC is
trading at $10000, and the quarterly futures price F (t, T ) is also $10000, i.e. St = F (t, T ) = 10000.
For Coin-M quarterly futures, the trader holds 1 BTC as collateral, and for USD-M quarterly
futures, the trader holds $10000 as collateral. Note that the dollar amount of collateral is the
same at time t ($10000). Table 11 shows the different net exposure for each type of contract when
a long or short trade is being made. Note that the column ’Position Size’ represents being long or
short one BTC worth of quarterly futures, that means buying or selling 1 BTC worth of F (t, T ).

12https://bitcoinfuturesinfo.com/market-share-and-futures-curve, retrieved on 5th of December 2022
13This collateral is in the form of ’stablecoins’. These are tokens on the Blockchain which have underlying Dollars

backing it. This causes the token to have a value of $1. The most well-known stablecoins are USDT and USDC.
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Futures Type Collateral Position Type Position Size Net exposure

Coin-M 1 BTC Long 1 BTC 2 BTC
Coin-M 1 BTC Short -1 BTC 0
USD-M $10000 Long 1 BTC 1 BTC
USD-M $10000 Short -1 BTC -1 BTC

Table 11: Illustrating the net exposure of a trader when taking a long or short position on Coin-M
and USD-M quarterly futures, respectively.

Table 11 illustrates that Coin-M quarterly futures always have a larger net exposure relative to
the underlying asset (in this case BTC) than USD-M quarterly futures, assuming they hold the
same quarterly futures position. This follows naturally from the fact that the trader already has
an underlying long position from holding the spot asset, instead of holding cash. In the first
row, the trader takes a long position of 1 BTC on quarterly futures, and already has 1 BTC as
collateral. This results in a net exposure of 2 BTC, i.e. for every $1 move in BTC, the trader gains
or loses $2. In the second row, having a short position in F (t, T ) of 1 BTC (selling 1 BTC worth
of F (t, T )), is equivalent to holding a cash position, since the positions approximately offset one
another14. For USD-M quarterly futures, buying 1 BTC worth of F (t, T ) results in a net exposure
of 1 BTC, and selling one BTC worth of F (t, T ) results in a negative exposure of approximately 1
BTC. Table 11 thus shows that for long positions, Coin-M quarterly futures are twice as sensitive
to price movements of the underlying asset than USD-M quarerly futures. Any long exposure to
the Coin-M quarterly futures is thus leveraged exposure. For USD-M this is not the case since the
collateral is held in USD.

Before illustrating the additional risk of a long position on Coin-M quarterly futures, it is necessary
to discuss another difference between Coin-M and USD-M quarterly futures. Coin-M quarterly
futures are denominated and settled in the underlying asset, whilst USD-M quarterly futures
settle in USD. This means that for Coin-M quarterly futures, the profit-and-loss (PnL) is added
to or subtracted from the underlying asset, whilst for USD-M quarterly futures this is added to
or subtracted from the USD balance posted as collateral. Another difference between Coin-M
and USD-M quarterly futures is the contract size. As explained in section 2.2, futures contracts
size are standardized, and it is up to the discretion of an exchange to determine this contract
size. Binance has different contract sizes for Coin-M and USD-M quarterly futures. For Coin-M
quarterly futures on Binance, each asset has a standard size in dollar amounts. For Bitcoin (BTC)
this contract size is $100, and for Ethereum (ETH) this is $10. Binance calls this price of the
contract the multiplier. The fact that one contract is a pre-determined specified dollar amount,
instead of one unit of the underlying asset, might arise confusion. So, far it was assumed that
F (t, T ) is the price of a futures contract of one unit of the underlying asset. To remain consistent,
the notation F (t, T ) will remain the quarterly futures price of one unit of the underlying asset, and
the property of a multiplier given by Binance allows traders to buy fractions of F (t, T ). Figure
25 in the Appendix shows what this looks like in the Binance user-interface (UI). Since Coin-M
quarterly futures are denominated in the native asset, the price of one contract is a function of the
multiplier and the current quarterly futures price F (t, T ). If we let C(F (t, T ) denote the price of
one quarterly futures contract denominated in the underlying asset, and M the multiplier of the
given asset, then:

C(F (t, T )) =
M

F (t, T )
(37)

M is deterministic here, hence C is a function only of F (t, T ). Suppose the price of one BTC is

14Being short 1 BTC worth of a quarterly futures position of BTC approximately offsets the native BTC exposure.
During the contract, we may see the BTC quarterly futures contract F (t, T ) trade at different levels of contango
and backwardation, but at time T we have convergence to the spot price (ST = F (T, T )).
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$10000, and it is known that for BTC M = 100. The price of one contract C(10000) is given by:
100

10000 = 0.01. If the BTC price were to be higher, $12500 for example, one contract denominated in
BTC would be lower, C(12500) = 100

12500 = 0.008. Now suppose the price of one Ethereum (ETH)
is $920. A trader wants to replicate one ETH of exposure in quarterly futures. If M were to be
100 we would get: C(920) = 100

920 = 0.1087. Buying 10 contracts C(920) would give an exposure
of 1.087 ETH, and buying 9 contracts would give an exposure of 0.978 ETH. With such a high
multiplier relative to F (t, T ) it becomes very hard to replicate an exact amount of ETH. Since the
price of BTC is a lot higher than ETH, it does not have this problem which allows for a higher
multiplier.

USD-M quarterly futures do not have this standardized contract size property (multiplier). How-
ever, it is possible to buy fractions of F (t, T ) similarly to Coin-M quarterly futures. Figure 26 in
the Appendix, shows a screenshot of the Binance quarterly futures UI, showing the possibility to
buy any fraction of F (t, T ), as long as the minimal quantity bought is above 0.001 BTC. Thus, for
USD-M quarterly futures there is no standardized contract size as there is for Coin-M quarterly
futures.

Now that different levels of exposure, denomination and contract size have been discussed, an
example is given where the concepts will become more clear. To be consistent with earlier examples
in this section, Bitcoin (BTC) quarterly futures will be used. Consider two traders, trader 1
and trader 2. Both have a starting capital of $10000 at time t. Assume for simplicity that
St = F (t, T ) = 10000. Suppose trader 1 is bullish on BTC and wants exposure in the December
2022 USD-M quarterly futures contract. Trader 1 uses his $10000 in collateral to take a long
position of 1 BTC ($10000) worth of F (t, T ). His payoff during the lifespan of the contract for
different prices of F (t, T ) is given by:

t F (t, T ) Futures Type Position Size (Units) Position Size (USD) Collateral PnL

0 10000 USD-M 1 BTC 10000 10000 0
1 12500 USD-M 1 BTC 12500 12500 2500
2 9000 USD-M 1 BTC 9000 9000 -1000
3 7500 USD-M 1 BTC 7500 7500 -2500
4 5000 USD-M 1 BTC 5000 5000 -5000

Table 12: Profit-and-loss (PnL) of a USD-M position

Table 12 shows that the profit-and-loss (PnL) is added or subtracted from the deposited collateral
in a linear way. Now, consider trader 2, who is more bullish on BTC than trader 1. The starting
capital for trader 2 is also $10000. Trader 2 uses the $10000 to buy 1 BTC on the spot market.
This purchased BTC on the spot market is used as collateral to open 1 BTC worth of Coin-M
quarterly futures contracts. A common goal to use Coin-M quarterly futures is to gain additional
units of the underlying asset. In the case of the example, it can be the case that trader 2 wants to
earn additional BTC, because of a positive outlook on the Bitcoin price. Using Coin-M quarterly
futures allows trader 2 to hold spot BTC, and use it as collateral to buy a quarterly futures of
BTC. If the price of BTC goes up and subsequently F (t, T ) goes up, the trader gains additional
BTC and the price of BTC is higher, resulting in large profits.

Table 13 shows trader 2 initially buying 100 contracts with a total size of C(F (t, T )) ∗ 100 = 1
BTC. Notice how C(F (t, T )) decreases as F (t, T ) increases. This causes the position size of trader
2 to get smaller denominated in BTC as F (t, T ) rises, and larger as F (t, T ) decreases in price. This
is also reflected in the PnL of trader 2, a gain of 25% (10000 to 12500) in F (t, T ) gives the trader
an additional 0.2 BTC, and a 25% (10000 to 7500) decrease in price results in a loss of -0.33 BTC.
The payoff of trader 2 denominated in the underlying asset is thus non-linear. This follows directly
from the negative relationship between F (t, T ) and C(F (t, T ). If the price of F (t, T ) rises, the
price of 100 contracts C(F (t, T )) becomes less when denominated in F (t, T ). Similarly, if F (t, T )
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t F(t,T) C(F(t,T)) Size (BTC) Size (USD) Collateral PnL (BTC)

0 10000 ( 100
10000 =)0.01 (0.01*100 =)1 10000 10000 0

1 12500 ( 100
12500 =) 0.008 (0.008*100 =) 0.8 12500 15000 0.2

2 9000 ( 100
9000 =)0.011 (0.011 * 100 =) 1.1 9000 8000 -0.11

3 7500 ( 100
7500 =)0.0133 (0.0133 * 100 = )1.33 7500 5000 -0.33

4 5000 ( 100
5000 =) 0.02 (0.02*100 =) 2 5000 0 -1

Table 13: Profit-and-loss (PnL) in BTC terms of a Coin-M position. Note that we make the
assumption here that F (t, T ) = St for t = 0, 1, 2, 3, 4

decreases, the 100 contracts become worth more when denominated in the underlying asset. This
non-linear payoff function has negative convexity, which means that the profit-and-loss function
denominated in the underlying asset is more sensitive on the downside than on the upside. Figure
4 shows this neagtive convexity.

Figure 4: PnL curve of the returns in BTC and USD of longing 1 BTC worth of Coin-M quarterly
futures and holding 1 BTC as collateral. The y-axis is the return in percentage, the x-axis is the
corresponding BTC price.

The purple line demonstrates a convex loss function for Coin-M futures when dominated in the
underlying asset. This shows that a long position on Coin-M quarterly futures has a high downside
risk, since it is denominated in the underlying asset. Despite this, Coin-M quarterly futures
are frequently used as leveraged speculation, with the goal of obtaining additional units of the
underlying asset. The potential to gain high returns in short periods of time attracts speculators
to this type of contract, usually unaware of significantly more downside risk. This is something
we may see back in the levels of contango or backwardation of futures contracts later, where the
Coin-M futures may see more euphoria in certain periods, but also deeper drawdown as a result
of this leverage property. The linear USD-denominated payoff of trader 2 can be found in Table
25 in the appendix.
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3.1.2 Perpetual Futures

Despite more participation by institutional investors via ventures as CBOE and CME, which
offer regulated Bitcoin futures, most volume and open interest is dominated by a type of futures
contract which has not seen a lot of usage in other markets. This contract is called a perpetual
futures contract, or often also called a perpetual swap, traded on crypto-specific exchanges. With
a daily volume of over 250 billion USD (Coingecko 15), there certainly is a lot of interest in
speculating on cryptocurrencies through these perpetual contracts. Perpetual futures are more
frequently traded than quarterly futures. Table 14 shows a comparison.

Asset Type 24h Spot Vol ($B) 24h Perpetual Vol ($B) 24h Quarterly Vol ($B)

BTC Coin-M 6.098 1.421 0.135
BTC USD-M 6.098 9.735 0.062
ETH Coin-M 1.216 1.336 0.149
ETH USD-M 1.216 8.880 0.057

Table 14: 24-hour volume for Bitcoin (BTC) and Ethereum (ETH) spot, perpetual futures (per-
petual), and quarterly futures (quarterly), respectively, on the Binance exchange (Coingecko).
Retrieved from https://www.coingecko.com/en/exchanges/binance futures on 17th of December,
2022. Abbreviation ’Vol’ means volume.

Shiller (1993) originally proposed the idea for perpetual futures contracts, using it to price illiquid
assets or quantities such as the consumer price index or human capital. As the name suggests,
the length of the futures contract is perpetual, and it has no expiration date. The benefit for
speculators is that no rollover is required if a speculator desires to hold the contract for a longer
period of time. The property of no expiration date does arise questions as to how these contracts
are priced and kept in-line with the spot price. The property of convergence of the futures price
to the spot price does not exist, since the futures are perpetual and no expiration date exists.
In order to overcome this and stimulate the convergence of the perpetual futures contract to the
spot price there is a mechanism called the funding rate. Nimmagadda and Ammanamanchi (2019)
describe the funding rate as a mechanism to anchor the perpetual futures to the spot price. The
funding rate is a periodic payment, usually every 8 hours, from one side of market participant to
the other side, given the price difference between the perpetual futures and spot price. In general,
if the perpetual futures price is greater than the spot price, the funding rate is positive. This
implies that participants who have a long position in a perpetual futures contract have to pay the
participants who have a short position. If the funding rate is negative (i.e. the perpetual futures
price is below the spot price), then participants who are short pay participants who are long. To
illustrate how the funding rate stimulates the perpetual futures price to converge back to the spot
price, consider the following example where the perpetual futures price is given by Fp(t):

Fp(t) St FR(t)

15100 15000 0.1%

Table 15: Scenario where the perpetual futures price at time t Fp(t) is greater than the spot price
St the funding rate is 0.1%

First of all, note how we only have parameter t in the expression for the perpetual futures price.
This is since no expiration date is present, and therefore we do not have the T in the expression
as for quarterly futures. The perpetual futures price Fp(t) in table 15 is 15100, whilst the spot
price St is 15000. An arbitrageur could take a short position in the perpetaul futures contract,
buy the underlying asset St and collect the funding rate FR(t), and receive 0.1%. In an efficient

15Retrieved from https://www.coingecko.com/en/exchanges/derivatives, on the 16th of Feb 2023
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and frictionless market, we would expect arbitrageurs to exploit this opportunity until the two
prices are equal again. However, performing this arbitrage is not fully risk-less. He et al. (2023)
state that since the futures contract is perpetual, there is no date at which convergence of the
spot price will happen and the trade will be closed out. It could happen that the gap between
the perpetual futures price and the spot price will only widen further. Despite this hypothetical
scenario of diverging prices, the arbitrageur will get paid the funding rate every 8 hours for which
the perpetual futures price is above the spot price, which mitigates some of the price risk.

The exact calculation of the funding rate consists of two components. The first one is called the
premium index, which is a time weighted premium of the perpetual futures price relative to the
spot price. Since all data used in this thesis is from the cryptocurrency exchange Binance, we will
stick to the premium index calculation performed by Binance. The premium index Zt is given by:

Zt =
[Max(0, Ib,t − S̄t)−Max(0, S̄t − Ia,t)]

S̄t
(38)

The premium index described in 38 consists of 3 variables. The first one S̄t is a spot price index
of several crypto exchanges weighted by volume, to give a fair indication of what the current spot
price is. This prevents price manipulation to alter the funding rate. Ib,t is the Impact Bid Price.
This is the average price to execute a sell order for a predetermined amount. This is again done
to avoid price manipulation. If the market of the perpetual futures is very liquid, the Ib,t will
be very close to the actual price. Ia,t is the Index Ask Price, this is the opposite of the Ib,t, the
average ask price for filling a market buy order of a predetermined size. By using a weighted spot
price and a fair way to determine the price of the perpetual future by the Ib,t and Ia,t, Zt is a
fair representation of the premium or discount of the perpetual future relative to the spot price.
Terminology often used for the perpetual futures price is the mark price, and the weighted spot
index S̄t is often called the index price. Binance does the calculation of (38) every 5 seconds for
a total period of 8 hours. This comes down to 5760 premium index calculations for every funding
payment interval. So, (38) describes how much of an average premium or discount the perpetual

futures market has relative to the spot price over a period of 8 hours. Let Z̄t =
∑5760

t=1 tZt∑5760
t=1 t

. The

funding rate is then calculated as:

Funding Rate (FRt) = Z̄t + C(r − Z̄t, 0.05,−0.05) (39)

, where r is the predetermined interest rate set by binance, and Z̄t the average premium index
over the 8 hour period, C(.) is the clamp function which acts as a damper:

C(x,min,max) =

 min if x <min
max if x >max
x ifx ∈ [min,max]

To see how the clamp function acts as a damper, consider the following figure:

From (39) we see that if r−Zt ∈ (−0.05, 0.05), then FRt = Z̄t+r− Z̄t = r. If there is a very high
premium, say 0.1%, and r = 0.01 then FRt = 0.1 + C(−0.09.0.05,−0.05) = 0.05. The funding
rate is therefore a function of the premium index and damped to some extent.

The interpretation of the height of the funding rate can be interpreted as the level of sentiment in
the cryptocurrency market. This arises due to the property that the funding rate is paid peer-to-
peer, meaning that longs pay shorts or shorts pay long. In (38) and (39), it has been shown that
the funding rate is mainly determined by the height of the premium index. A high premium index
Z̄t is a result of the perpetual futures price FR(t) trading above the spot price St for the duration
of the 8 hour period. The perpetual future is therefore in higher demand for traders which pushes
the price above the spot price. A sustained period of strong positive funding rates thus implies
that market participants are willing to pay a premium for the perpetual futures contract, and a
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Figure 5: The clamp function C(.) plotted in Python

fee deducted every 8 hours. This all whilst the spot Bitcoin or Ethereum is trading cheaper and
does not have this fee included. The perceived benefit of speculating with leverage is creating
additional demand for these perpetual futures, and speculators are willing to pay for that. As a
result, it is reasoned here that the funding rate is a well suited and quantify able metric to measure
market sentiment. In the next section additional arguments will be given to support this claim. A
visual representation shown in Figure 31 shows that high values of the funding rate coincide with
rising prices, and vise versa.

3.2 Sentiment and Leveraged Speculation in Cryptocurrency Futures

The previous section introduced quarterly and perpetual futures. This section will illustrate the
high leverage ratio that is possible on these futures, and what connection futures have to perceived
investor sentiment.

3.2.1 Leverage in Crypto

Both quarterly and perpetual futures on crypto-native exchanges offer extremely high leverage
ratios compared to traditional futures platforms. To compare the high amount of leverage that
crypto exchanges offer, a comparison between the CME Bitcoin futures and Binance futures is
made.

The CME Bitcoin futures have a contract size of 5 Bitcoin per contract and have an expiration
date. This means that the minimum position size at any time is the dollar value of 5 Bitcoin
according to a Bitcoin time-weighted average price metric determined by the CME itself. In
comparison, Binance has significantly lower requirements for a minimum position size, a quantity
of 0.001 Bitcoin for USD-M futures, and the multiplier size as discussed (37), which is often 10
or 100 USD. The lower requirements offered by Binance therefore attract more retail traders than
CME. At the time of writing, one CME Bitcoin futures contract costs over $140,000, causing most
retail traders to be priced out of CME futures.

In order to achieve a large position size with a small amount of capital, cryptocurrency exchanges
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such as Binance offer extremely high leverage ratios16 on their futures platforms. The maximum
leverage ratio on Binance is 125x, which means that for a deposit of $1, a trader can achieve a
position size of $125, essentially borrowing $124 from Binance. This maximum leverage ratio,
however, is capped by a certain maximum position size in dollars. It is not possible to deposit
$1M dollars and use leverage to get a position size of $125M. Binance determines the maximum
leverage ratio in tiers. The maximum leverage ratio per tier for USD-M quarterly and perpetual
futures can be found in Figures 27 and 28 in the Appendix. For Coin-M futures the leverage ratios
are comparable, and therefore omitted.

To properly compare the high leverage offered by crypto-native platforms such as Binance to
the CME, we will compare a similar position size taken on both platforms. The CME has a
contract size of 5 BTC per contract. This is a value of approximately $140,000 at current prices.
Considering Figures 27 and 28 in the Appendix again, we see that for quarterly futures this falls in
the first tier (25x max leverage), and for perpetual futures this falls in the second tier (100x max
leverage). Table 16 clearly shows the lower maintenance margin requirements and higher leverage
potential for Binance futures compared to the CME.

Platform Type Settlement Position Size Max Leverage Min. Maintenance Margin

CME Delivery USD 5 BTC 2x 25%
Binance Delivery USD $140,000 25x 2%
Binance Delivery BTC 5 BTC 50x 1%
Binance Perpetual USD $140,000 100x 0.5%
Binance Perpetual BTC 5 BTC 100x 0.5%

Table 16: Showing the differences in the leverage ratios and maintenance margins between CME
and Binance. It is assumed here that 1 BTC = $28,000 such that 5 BTC = $140,000.

To explain the determination of the ’Max Leverage’ column of table 16, the max leverage is 1
IM ,

which is 1 divided by the initial margin. This means that for CME Bitcoin futures, an initial
margin of 50% has to be held, and for Binance futures with a leverage ratio of 100x, an initial
margin of only 1% has to be held. This means that to open a $140,000 position size on the CME, at
least $70,000 has to be posted on collateral initially, and a minimum of $35,000 when the position
is open. For Binance futures, the initial collateral can be as low as $1,400 to open and $700 to
maintain. Traders on Binance futures thus have the potential to greatly lever up their capital,
both for quarterly and perpetual futures. The benefit of this is that small capitalized traders
are able to enjoy larger trading capital, but there is also significant risk associated with this. At
100x leverage, a move greater than 0.5% of the underlying in the wrong direction would already
liquidate the position. High leverage ratios are therefore a double-edged sword, where high returns
but also high losses can be made. As a result of this availability of high leverage, it is expected
that users on crypto-native exchanges such as Binance use a considerably higher leverage ratio
than in other markets and platforms, such as the CME.

Schmeling et al. (2022) confirm this hypothesis in their analysis in the cryptocurrency futures
market. It is found that the futures basis for crypto-native exchanges is more volatile than for
CME futures, possibly by the higher leverage that crypto-exchanges offer. This is also visible
through the open interest 17 for perpetual and quarterly Coin-M futures. Specifically, we will
look at the increases and decreases of open interest and how this relates to leverage being used
on crypto-exchanges. Figure 29 shows the total open interest for Bitcoin Coin-M futures (both
perpetual and quarterly) throughout 2021. From January 1st 2021 up until the peak of the market
at April 13th, the price of Bitcoin increased 113.97% ($29,700 to $63,552), whilst the total open
interest increased 216.19% ($4.2B to $13.28B). This shows that a large amount of positions were

16The leverage ratio is the amount of money that can be borrowed from the platform, given a deposit size. This
allows traders to achieve a higher total position size than the money they deposited, essentially borrowing capital.

17Open interest is the total Dollar value of all margin positions currently open
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opened in bullish market regimes as demand for leveraged speculation increased. To show why this
is leveraged demand, consider Figure 29 again, now looking at April 14th 2021- June 1st 2021. The
price of Bitcoin decreased 45.50% ($63,552 to $34,640) whilst the Coin-M open interest decreased
67.16% ($13.28B to $4.36B). This enormous drop in open interest is due to a large amount of
liquidations as a result of negative convexity of Coin-M futures as shown in Figure 4. In fact,
over $1.74B in liquidations happened on May 19th 2021 alone (Coinalyze 18). For USD-M futures
in the same time period, this increase and decrease is found to be less extreme than for Coin-M
futures. Figure 30 shows a total increase of open interest on the way up of 139.5% ($1.966B to
$4.71B) and a subsequent decrease in open interest of 54.5% ($4.71B to $2.14B). The amount of
liquidations on May 19th 2021 were 1.16B. Schmeling et al. (2022) describe that a large portion of
speculators in the cryptocurrency market are ’trend-chasing’ retail investors with a high demand
for high leveraged exposure through futures. The open interest data supports this argument. It
is also verified that due to negative convexity of Coin-M futures that the amount of leverage in
these type of contracts is much higher than on USD-M futures.

3.2.2 Sentiment in the Cryptocurrency Market

In section 3.2.1 it has been shown that futures in the cryptocurrency market offer high leverage
ratios and this is seen through the behavior of open interest. Later on in this thesis, the role of
sentiment, modeled through perpetual futures funding rate, will be used to analyze the quarterly
futures basis. This section quantifies sentiment in the cryptocurrency market, and shows that the
perpetual futures funding rate is a suitable proxy for modeling sentiment.

The effect of sentiment on price behavior in the cryptocurrency market is well-studied and doc-
umented in the literature. Bouteska et al. (2022) use Principal Component Analysis (PCA) to
study the effect of sentiment in Reddit and StockTwits messages on the returns of Bitcoin. It
is found that highly positive sentiment observed through these platforms is a significant predic-
tor of Bitcoin returns. Burggraf et al. (2020) use the transfer entropy model to classify investor
sentiment, which is found to have strong predictive power on Bitcoin returns. It is also widely
known that the cryptocurrency market is notorious for its bubble-like behavior. Cheah and Fry
(2015) find that cryptocurrency markets have the stylized fact of being venerable to bubbles. This
strong influence of investor sentiment on returns, and the observed bubble-like behavior can be
explained by the great presence of retail investors in the cryptocurrency market. In addition, it is
found that the type of investors in cryptocurrencies are risk-seeking. Lammer et al. (2019) report
that investors in cryptocurrencies are more likely to invest in other risky assets such as emerging
markets, and are more likely to trade penny stocks. In addition, retail participants in the cryp-
tocurrency market are more active than in other markets, and log in to their brokerage account
approximately 9 times per month, compared to the average retail investor in other markets who
does this 2 times per month. Grobys and Junttila (2020) investigate the ’lottery-like demand’
in the cryptocurrency market, which is the interest in cryptocurrencies due to its possible high
returns, whilst the probability of this happening is quite slim. It is found that this lottery-like
demand is present in the cryptocurrency market due to its volatile nature. The tendency of in-
vestors in the cryptocurrency market to be more active and speculative also translates itself into
the area of research of this thesis, the futures market.

The example of open interest in section 3.2.1 has shown the leveraged speculation of market
participants in the cryptocurrency market. It is a direct result of sentiment, where an increase in
prices lead to a higher level of perceived sentiment, and demand for leveraged speculation increases
as a result. However, sentiment itself can be difficult to quantify as it is not some known quantity.
He et al. (2023) use the Crypto Fear and Greed Index (CFNGI) provided by Alternative 19 to
quantify market sentiment. This is the crypto-counterpart of the well-known Fear and Greed
Index (FNGI) used in the traditional market, which is constructed by CNN Business. The exact

18Retrieved from https://coinalyze.net/ on March 2nd, 2023
19https://www.alternative.me
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components of the FNG can be found in Table 26. The CFNGI is a similar index as the FNGI,
but specified for the cryptocurrency market. The CFNGI is compiled using multiple components
on a daily basis by Alternative, and aims to quantify the current market sentiment on a scale from
0 to 100. The labels classified to each range of values can be found in Table 27 in the Appendix.

The CFNGI consist of multiple components and weights. It is worth noting that the exact de-
termination of the weights is not made public by the issuer of the index, only the components,
weights and description of the estimation. In terms of transparency, this limits the applicability
of analysis of the CFNGI. Despite this, the CFNGI is widely-used as a sentiment indicator in the
cryptocurrency market, and its use in this thesis will only be to illustrate the dynamics between
sentiment and futures prices. The exact components can be found in Table 28 in the Appendix.
An overlay of the CFNGI and Bitcoin prices can be found in Figure 32 in the Appendix.

The CFNGI is a well-known measure of market sentiment, but has its drawbacks. It is a proprietary
metric that does not show its exact calculation. It may also be up to debate what the exact
relationship between this sentiment indicator and the futures basis may be. We now refer back to
section 3.1.2, where introduced perpetual futures were introduced and the associated funding rate.
Since perpetual futures are a similar contract to the quarterly futures that are being analyzed here,
using the funding rate associated with these perpetual futures seems a more natural candidate
to model sentiment. It is tested here if the perpetual futures funding rate is a suitable proxy for
investor sentiment. To do so, we will consider the CFNGI, the perpetual futures funding rate and
returns of Bitcoin and Ethereum.

To show the dynamics between prices, funding rates and the CFNGI, plots are shown in Figures
33 , 34 and 35 in the Appendix. From this simple visual analysis, we can deduce that high values
of the funding rate and the CFNGI coincide with rising prices, and vice versa low values of funding
rates and the CFNGI coincide with decreasing prices. To make this more concrete, we follow He
et al. (2023) and create a correlation matrix.

RB,7 RE,7 FR7 CFNGI7

RB,7 - - -
RE,7 0.918 - - -
FR7 0.791 0.794 - -
CFNGI7 0.774 0.688 0.675 -

Table 17: Correlation matrix between weekly Bitcoin and Ethereum spot returns, weekly funding
rates, and weekly Crypto Fear and Greed index (CFNGI).

Table 17 shows a strong correlation between returns, funding rates, and the CFNGI. Note that
for the funding rates and CFNGI the weekly mean of daily values were used. This is to filter
out noise and give a more long-term overview of the correlation between the indicators (funding
rates, CFNGI) and the weekly returns. Note that RB,7,RE,7 denote the weekly Bitcoin and
Ethereum returns. FR7 and CFNGI7 are the weekly values of the weekly funding rates and
weekly crypto fear and greed index, respectively. This strong positive correlation shows first of all
how correlated Bitcoin and Ethereum are. Secondly, it seems that funding rates and the CFNGI
are good predictors of Bitcoin and Ethereum returns. It is not the goal here to predict returns,
the purpose of Table 17 is to show that funding rates are an equivalent, if not better indicator of
market sentiment than the CFNGI as used by He et al. (2023). Therefore, later on in this thesis
funding rates will be used as a measure of investor sentiment in the analysis of quarterly futures
prices.
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3.3 Cost-of-Carry Parameters in the Cryptocurrency Market

In section 2.2.5 we have discussed several cost of carry models for different asset classes. The goal
of this thesis is to test these models against market data of Bitcoin and Ethereum, and to see
how well these models fit. In order to do so, we have to first define certain parameters. The first
parameter which is involved in all of the models is the risk-free rate rt,T . The most natural choice
for the risk-free rate, and most common in the literature is to use US treasury bills as a proxy
of the risk-free rate. This will be the starting choice of the risk-free rate parameter to test the
models against. The specifics of the choice of the risk-free rate proxies are given in the section
which will test the models.

The next parameter which has to be tailed to the cryptocurrency market is the parameter kt. This
is the storage cost parameter found in the cost of carry models for commodities. The question if
cryptocurrencies have storage costs associated with them is up for debate. In principle, anyone can
create a wallet on a blockchain and hold cryptocurrencies without incurring any costs. The only
costs associated with this would be the transaction fees for making a transaction. In practice, the
storage costs of holding cryptocurrencies may be higher than only transaction costs of moving the
cryptocurrencies. Since cryptocurrencies operate on a blockchain and are peer-to-peer, a wallet
getting compromised, or losing the credentials of a wallet means losing all of the cryptocurrencies
stored in that wallet. There is no third-party that can access the wallet, or restore a password.
This property of full self-custody of funds, which may be beneficial since it eliminates counter party
risk, does add extra cost of security. It is common practice to use a hardware wallet, a device
that is used to access a cryptocurrency wallet. These hardware wallets have a cost of around $100
associated to them. It is worth noting that this is not a per-unit cost of holding a cryptocurrency.
Hardware wallets allow for storage of $1 or $1 million worth of cryptocurrencies, and no per-unit
cost is incurred. The value of kt is therefore reasoned to be low for cryptocurrencies, and its effect
on the futures basis limited.

The next parameter which is present in the cost-of-carry model for commodities is the conve-
nience yield Ψt. As briefly stated earlier, the convenience yield is the additional benefit of holding
the underlying asset instead of its derivative. Reflecting this towards the market of cryptocur-
rencies requires us to answer the question in which scenario investors would prefer to hold the
actual underlying asset instead of a futures position on the underlying asset. Hilliard and Ngo
(2022) state that the benefit of holding cryptocurrencies is not analogous to holding an actual
commodity, but owning the actual cryptocurrency instead of a derivative does have benefits. The
most obvious benefit of holding the underlying cryptocurrency is that transactions can be made
with the cryptocurrency, which is not possible with a derivative. Investors who value the benefit
of making transactions with cryptocurrencies may pay prefer to hold the actual cryptocurrency
instead of a derivative. Another important factor which may influence the convenience yield is
counterparty risk. As briefly stated earlier when discussing the storage cost parameter kt, holding
cryptocurrencies in a wallet means full self-custody of funds and eliminates counterparty risk.
The sudden bankrupcy of one of the largest cryptocurrency exchanges FTX illustrates the large
counterparty risk in the cryptocurrency market. Hilliard and Ngo (2022) also describe a form of
negative convenience yield. Self-custody of funds means that a lost password without a backup
means a total loss of funds. Holding a derivative on a centralized party does not have this risk,
and a lost password can be restored. It is therefore plausible that technically sophisticated in-
vestors with priority on security prefer holding the actual cryptocurrency, whilst less sophisticated
investors may prefer a derivative held on a centralized party. Schmeling et al. (2022) hypothesize
that a form of convenience yield may even be demand for leveraged speculation through futures
contracts. This claim will be investigated in more detail in a later section.
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3.4 Bitcoin (BTC) and Ethereum (ETH) (bi-)Quarterly Futures Basis

This section shows the observed futures basis for Bitcoin and Ethereum. It may be wise to
gain a broad understanding of how spot and futures prices behave relative to each other, before
applying more rigorous models. It can be deduced if the market is, on average, in contango or
backwardation, and to what extent the spot and quarterly futures prices differ. From here on,
the difference between the quarterly futures and spot prices will be referred to as the basis. The
basis is simply the difference between the futures price at time t, and the spot price at time t.
Mathematically, B(t, T ) = F (t, T )−St. In other words, the futures basis of Bitcoin and Ethereum
at time t, B(t, T ) is the level of contango or backwardation at time t.

We will look at the basis for Bitcoin and Ethereum quarterly futures for both Coin-M and USD-M
quarterly futures. In section 3.1.1, the properties of Coin-M and USD-M quarterly futures were
given, as well as their differences. Recall that Coin-M futures allow traders to hold their respective
assets as collateral to open futures position. This likely means that there is more leverage involved
in Coin-M futures than in USD-M futures. This could be something we see in the basis of Coin-M
and USD-M futures.

3.4.1 Price Data

Price data of Bitcoin (BTC) and Ethereum (ETH) quarterly futures, perpetual futures and the
spot market will be used in this thesis. The price data will consist of hourly OHLC (open, high,
low, close) data from the exchange Binance. The testing period ranges from 2020-07-01 up until
2022-09-30. The method for gathering data is from the open-source library Binance Vision 20,
which is provided by Binance itself. Through Python all data is pulled from the website and
extracted into a large data set. There are 10 futures contracts which have matured in this time
period which will be used.

3.4.2 Bitcoin (BTC) (bi-)Quarterly Futures Basis

Table 18 shows the summary statistics of the futures basis of BTC bi-quarterly Coin-M futures
and USD-M quarterly futures. Coin-M futures have a maturity of 6-months, and therefore are
called bi-quarterly futures. USD-M futures have a maturity of 3-months and therefore are referred
to as quarterly futures. Taking a closer look at Table 18, it is observed that for both futures types
and every interval analyzed, there has been a positive basis, expressing a contango structure. The
level of the basis observed is quite substantial, especially given the short duration of the futures.
Coin-M Bitcoin futures reached a maximum basis greater than 18% , with a maturity of 6 months.
USD-M futures reached a maximum level of 11.45%, with a maturity of 3 months. These are
extremely high levels, and it means that investors in 2021 were willing to pay an 18% premium
for a futures contract that expired a maximum of 6 months later. The more extreme level of basis
for Coin-M futures compared to USD-M futures could be the additional leverage that is present
in the Coin-M futures.

In addition to a high mean, the variance in the level of the basis is observed to be substantial as
well. The range between the minimum and maximum observation is wide, especially throughout
2021. For Coin-M futures, the interval 2021-03-26 - 2021-09-24 experienced a minimum basis of
-5.647% and a maximum of 18.899%, all in the same 6 months. For USD-M futures, the interval
2021-03-16 - 2021-06-25 had a minimum level of -1.437% basis, and a maximum of 11.450%, in a
time period of only three months. Figures 6 and 36 visualize the futures basis over time.

20https://data.binance.vision/
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Bitcoin Coin-M futures

Start Date End Date N Mean(%) Median (%) Std. (%) Min (%) Max (%)

2020-06-30 2020-09-25 2008 1.265 1.152 0.935 -0.395 3.49
2020-07-01 2020-12-25 3949 2.200 1.813 1.358 -0.406 6.219
2020-09-25 2021-03-26 4062 3.502 3.780 1.370 -1.424 6.972
2020-12-25 2021-06-25 4178 5.472 6.547 3.295 -2.700 11.389
2021-03-26 2021-09-24 4176 4.011 1.036 4.933 -8.212 18.349
2021-06-25 2021-12-31 4340 2.279 2.715 1.154 -0.086 4.379
2021-09-24 2022-03-25 4183 2.255 2.356 2.223 -0.087 7.440
2021-12-31 2022-06-24 4024 1.131 0.890 1.157 -2.203 4.426
2022-03-25 2022-09-30 4395 0.738 0.423 0.825 -1.220 3.164

Bitcoin USD-M futures

Start Date End Date N Mean(%) Median (%) Std. (%) Min (%) Max (%)

2021-02-03 2021-03-26 1169 3.046 2.437 2.071 -0.582 7.875
2021-03-16 2021-06-25 2318 3.747 3.494 3.216 -1.437 11.450
2021-06-18 2021-09-24 2259 0.783 0.867 0.371 -2.22 2.386
2021-09-22 2021-12-31 2302 1.925 1.954 1.276 -0.363 4.775
2021-12-24 2022-03-25 2097 0.795 0.501 0.822 -0.117 2.992
2022-03-22 2022-06-24 2166 0.432 0.284 0.457 -0.431 2.363
2022-06-20 2022-09-30 2403 0.302 0.329 0.299 -0.560 1.135

Table 18: Summary statistics of Bitcoin (BTC) Coin-M and USD-M futures basis (F (t, T )− St).
Each row represents a different contract maturity. Note that each column is given in ’(%)’, which

represents F (t,T )−St

St
∗ 100.

Figure 6: BTC Coin-M bi-quarterly futures basis
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3.4.3 Ethereum (ETH) (bi-)quarterly futures basis

In this section, a similar analysis will be performed on Ethereum futures as in section 3.4.2. Table
19 shows the summary statistics for Ethereum Coin-M and USD-M (bi-) quarterly futures.

ETH Coin-M futures

Start Date End Date N Mean(%) Median (%) Std. (%) Min (%) Max (%)

2020-07-24 2020-09-25 1449 1.572 1.260 1.384 -0.777 6.022
2020-08-05 2020-12-25 1950 2.236 1.442 1.864 -1.408 7.170
2020-09-25 2021-03-26 3349 3.272 3.464 1.489 -3.789 6.534
2020-12-25 2021-06-25 4178 5.481 6.448 3.292 -5.647 11.436
2021-03-26 2021-09-24 4177 4.140 1.059 5.021 -5.078 18.899
2021-06-25 2021-12-31 4340 2.243 2.756 1.249 -0.094 5.330
2021-09-24 2022-03-25 4183 2.718 2.524 2.431 -0.183 7.822
2021-12-31 2022-06-24 4009 1.055 0.812 1.145 -2.501 4.622
2022-03-25 2022-09-30 4395 0.361 0.173 1.129 -1.692 3.351

ETH USD-M futures

Start Date End Date N Mean(%) Median (%) Std. (%) Min (%) Max (%)

2021-02-03 2021-03-26 1147 3.501 2.168 2.732 -0.113 9.530
2021-03-16 2021-06-25 2318 3.980 3.476 3.598 -3.737 12.31
2021-06-18 2021-09-24 2259 0.906 0.967 0.390 -0.650 2.415
2021-09-22 2021-12-31 2302 2.039 2.150 1.317 -0.722 5.396
2021-12-24 2022-03-25 2097 0.752 0.317 0.884 -0.185 3.085
2022-03-22 2022-06-24 2166 0.457 0.278 0.497 -0.288 2.321
2022-06-20 2022-09-30 2403 -0.382 -0.098 0.623 -1.610 0.791

Table 19: Summary statistics of Ethereum (ETH) Coin-M and USD-M (bi-) quarterly futures
basis F (t, T ) − St. Each row represents a different contract maturity. Note that each column is

given in ’(%)’, which represents F (t,T )−St

St
∗ 100.

The results for Ethereum Coin-M bi-quarterly and USD-M quarterly futures are very similar
to those of Bitcoin in table 18. The Ethereum futures market experiences an average stage of
contango, including a high variance. The maximum observed value of the basis is approximately
18% similar to that of Bitcoin. Notice that for the Ethereum USD-M futures, the last interval:
2022-06-20 - 2022-09-30 shows backwardation. This is also visible in Figure 8, where we see a
negative basis for a significant amount of time. The observed negative basis during interval could
be explained as an anomaly, and will be discussed in greater detail in the next section when the
notion of convenience yield is introduced.
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Figure 7: ETH Coin-M bi-quarterly futures basis

Figure 8: ETH USD-M quarterly futures basis
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4 Time Series Analysis

Throughout this section notation of Neusser (2016) will be used.

4.1 Random Walk and Order of Integrataion

4.1.1 Random Walk

Prices of financial assets followed over time are classified as time series data. Specifically, financial
assets are often modeled as a random walk process. Granger and Newbold (1974) decribe a random
walk process to represent speculative assets particularly well. Neusser (2016) defines a random
walk process with drift as:

Xt = µ+Xt−1 + Zt (40)

µ is the drift term, Xt is the stochastic process of asset prices, and Zt ∼ N(0, σ2). Modeling asset
prices as in (40) is done under the random walk theory. As the name suggests, the random walk
theory states that prices of financial assets are random to some extent. The asset price at time
t is its its own value at time t − 1 with some random movement Zt and a constant drift term
µ. The randomness in Zt results in the asset prices being unpredictable according to the random
walk theory. Modeling a stock price as a random walk is the discrete version of the geometric
Brownian motion, which is often used to model asset prices in the continuous time. Fama (1965)
links the random walk theory of asset prices to the Efficient Market Hypothesis (EMH), although
they are not identical 21. Specifically, Fama (1965) states that the theory of random walk begins
under the assumption of efficient markets, where it is assumed that prices of assets trade around
their intrinsic value. However, there may be uncertainty or discussion regarding what exactly this
intrinsic value may be. This results in prices moving randomly around the intrinsic value and
gives rise to the random walk theory. A plot of a random walk can be found in Figure 9.

Figure 9: Stationary time series as shown by Neusser (2016) (page 17).

4.1.2 Stationarity and Unit Roots in Time Series

In next chapter, time series analysis will be performed on data of the cryptocurrency market.
The property of stationarity will often be discussed. Therefore this subsections aims to give a

21The Efficient Market Hypothesis states that markets are efficient and all information that is publicly available
is reflected in market prices.
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description of stationarity in time series, and what it means when a time series has a unit root.
Stationarity is often necessary in order to gain correct statistical interference of time series data,
such as a correct asymptotic distribution. Neusser (2016) denotes the following conditions for a
time series to be (weakly) stationary:

• E[Xt] = µ

• V ar[Xt] is finite

• Cov[t, s] = Cov[t+ r, s+ r]

The conditions above imply that a stationary time series has a constant mean and a (finite) co-
variance that does not change over time. This does not imply that the covariance is the same
between each two time periods, but it should be the same for any two time periods which are
equally far apart, i.e. Cov(X1, X2) = Cov(X11, X12) and Cov(X4, X7) = Cov(X11, X14). Figure
10 shows what a stationary time series might look like.

Figure 10: Stationary time series as shown by Neusser (2016) (page 17).

Stationarity is required in many time series models. To show why a random-walk may not be
stationary, consider the following AR(1) model:

Xt = µ+ ϕXt−1 + Zt (41)

, where Zt ∼ N(0, σ2) again, similar to (40). We can recursively express Xt as an Moving Average
(MA) model:

Xt = µ+ ϕXt−1 + Zt = µ+ ϕ(µ+ ϕXt−2 + Zt−1) + Zt (42)

= µ+ ϕµ+ ϕ2(Xt−2) + ϕZt−1 + Zt (43)

= ... (44)

= ϕtX0 + µ

t∑
i=0

ϕi +

t∑
i=0

ϕiZt−i (45)

Using the expression in (45), the expectation and variance can be computed as follows:

E[Xt] = E[ϕtX0+µ

t∑
i=0

ϕi+

t∑
i=0

ϕiZt−i] = ϕtX0+µ

t∑
i=0

ϕi+

i∑
i=0

E[ϕiZt−i] = ϕtX0+µ

t∑
i=0

ϕi (46)
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V ar[Xt] = V ar[ϕtX0 + µ

t∑
i=0

ϕi +

t∑
i=0

ϕiZt−i] = V ar[

t∑
i=0

ϕiZt−i] =

t∑
i=0

ϕ2iV ar[Zt−i] =

t∑
i=0

ϕ2iσ2

(47)

To get to the variance expression in (47), it is assumed that white noise Zt, Zt−1, Zt−2, ... are
independent, therefore Cov(Zj , Zk) = 0 ∀j ̸= k. As a result, V ar[

∑t
i=0 Xi] =

∑t
i=0 V ar[Xi].

Now consider the first case, |ϕ| < 1. Notice that we have two geometric series in (46) and
(47) with a common ratio r = −1 < ϕ < 1 and r = ϕ2 < 1, respectively. If t → ∞ , these
geometric series converge to 1

1−ϕ and 1
1−ϕ2 , respectively. Therefore, if |ϕ| < 1, E[Xt] =

µ
1−ϕ ,

and V ar[Xt] =
σ2

(1−ϕ2) . Both the expectation and variance are not dependent on t. For t < s,

Cov(Xt, Xs) = Cov(Xt, ϕ
s−tXt) = ϕs−tV ar[Xt] = ϕ(s+r)−(t+r)V ar[Xt] = Cov(Xt+r, Xs+r), and

therefore the time series is weakly stationary for |ϕ| < 1. In the case when |ϕ| > 1, we clearly see
that when t → ∞, the two geometric series in (46) and (47) diverge to infinity, and the time series
is non stationary.

In the last case where ϕ =1, which is the random walk process as discussed earlier, it follows from
(46) that E[Xt] = X0 + µt, which is dependent on t. The first property of stationarity is thus
violated with a drifting mean that increases or decreases over time. From (47), it follows that for
ϕ = 1, V ar[Xt] =

∑t
i=1 1

2iσ2 = tσ2, which also has dependence on t. Finally, for two time periods
equally far apart, Cov(X1, X3) = ϕ2V ar[X1] = V ar[X1] = σ2, and Cov(X11, X13) = V ar(X11) =
11σ2. Covariance stationarity does therefore not hold. The AR(1) process Xt is said to have a
unit root in this last case, where ϕ = 1.

The term unit root arises from the fact that 1 is the root of the characteristic equation derived
from (40). The expression in (40) can be written in terms of a lag operator L (where XtL = Xt−1)
as Xt = µ+ϕXtL+Zt ⇐⇒ Zt−µ = Xt(1−ϕL). If we now consider the characteristic equation,
we obtain 1 − ϕL = 1 − L = 0 ⇐⇒ L = 1. This shows that a unit root is present, since 1 is a
solution of the characteristic equation. A random walk process without drift (Xt = Xt−1 + Zt),
is also non stationary. This is since V ar[Xt] = V ar[Z0 + ... + Zt] = tσ2, which is dependent on
t. Therefore the random walk process with or without drift is non stationary. Intuitively, this
is not a surprising result. It is well known that financial assets have a long-term trend and they
are considered to be non-stationary. Figure 37 in the Appendix from Neusser (2016) showing the
Swiss stock index also shows that prices of financial assets (stocks in this case) are clearly not
stationary and have a long term trend.

4.1.3 Order of Integration

The concept of unit roots was defined in section 4.1.2, and it was shown that a process with a
unit root is non stationary. Throughout this thesis non stationary data will often be considered.
To classify for what type of non stationary data we are working with, the order of integration of
time series is introduced. Engle and Granger (1987) define a time series to be integrated of order
d, if first differencing a non stationary time series d times makes the time series weakly stationary.
A time series integrated of order d is denoted by I(d). Neusser (2016) gives an equivalent but
definition of an integrated time series in mathematical notation, where a time series is I(d) if
(1 − L)dXt is weakly stationary. If Xt ∼ I(1), then ∆Xt = Xt − Xt−1 ∼ I(0) according to
Engle and Granger (1987). To prove this result, consider again the random walk time series with
drift from (40). It was shown in section 4.1.2 that the random walk with drift has one unit root,
which means that (4.1.2) is an I(1) process. In order to make the time series stationary, consider
∆Xt = Xt −Xt−1. This results in:
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∆Xt = Xt −Xt−1 (48)

= µ+ ϕXt−1 + Zt −Xt−1 (49)

= µ+ (ϕ− 1)Xt−1 + Zt = µ+ (1− 1)Xt−1 + Zt (50)

= µ+ Zt (51)

From (51) it follows that E[∆Xt] = E[µ+Zt] = µ and V ar[∆Xt] = V ar[µ+Zt] = σ2. The random
walk process with drift as in (40) has a unit root (i.e. ϕ = 1) and is non stationary, but ∆Xt is
weakly stationary. Therefore, Xt is an I(1) process.

The motivation behind explicitly showing the dynamics of I(1) processes is that economic variables
are often I(1). Prices of financial asset or GDP growth express a long-term trend and therefore
are not stationary by themselves. Using the example of the Swiss stock index as in Figure 37 it
was shown that financial assets have a long-term trend and therefore a unit root and possibly a
drift term. Relating this to the topic of this thesis, where spot and futures price time series will
be analyzed, Dolatabadi et al. (2015) state that it is generally accepted that a unit root in both
spot and futures prices is present similar to the random walk in (40).

4.1.4 Spurious Regressions

In the next chapter the relationship between spot and futures prices will be analyzed. As
Dolatabadi et al. (2015) pointed out, these are both I(1) processes. Performing regression analysis
on non stationary data may cause a spurious regression, which describes a strong relationship be-
tween two time series that does not exist. To illustrate the phenomenon of a spurious regression,
the findings of Hendry (1980) are discussed. Hendry (1980) tested the fit between the UK M3
money supply and another time series, obtaining a R2 of 0.999, indicating an almost perfect fit.
This time series was later showed to be the cumulative rainfall in the UK, which should not be
able to perfectly explain the money supply. The reason for this high fit is that both time se-
ries are non stationary and move up over time, incorrectly expressing a non-existent relationship,
therefore being spurious. Granger and Newbold (1974) show the same phenomenon by generating
two independent random walk processes, Xt and Yt of length 50. Both random walks have unit
roots, Xt = Xt−1 + Zt and Yt = Yt−1 + Z̃t, where Zt ∼ N(0, σ2) and Z̃t ∼ N(0, σ2). Granger
and Newbold (1974) specified the regression equation as Yt = β0 + β1Xt + ϵt. Since the random
walks are generated completely independent, there is no actual relationship between the two time
series (β1 = 0). Despite this, Granger and Newbold (1974) find that in three-quarters of their
observations the null hypothesis β1 = 0 is rejected, which means that β1 is significantly different
from zero despite the random walks being independent, and no causal relationship exists. Spurious
regressions occur in I(1) processes because of the existence of a long-term trend. Over the long
run, two I(1) processes may start drifting in the same direction. This drifting process may cause
linear regressions to give non-existent relationships. To see how the OLS estimator may become
significant, consider two random walks with drift, Xt = α1 +Xt−1 + ϵ1,t, Yt = α2 + Yt−1 + ϵ2,t.

Recall that this can be written as Xt = α1t+X0 +
∑T

t=1 ϵ1,t and Yt = α2t+X0 +
∑T

t=1 ϵ2,t. For
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the regression Yt = β0 + β1Xt + ut, Whelan (2011) shows:

β̂ =

∑T
t=1 XtYt∑T
t=1 X

2
t

(52)

=

∑T
t=1(α1 +Xt−1 + ϵ1,t)(α2 + Yt−1 + ϵ2,t)∑T

t=1(α1 +Xt−1 + ϵ1,t)2
(53)

=

∑T
t=1(α1t+X0 +

∑T
t=1 ϵ1,t)(α2t+ Y0

∑T
t=1 ϵ2,t)∑T

t=1(α1t+X0 +
∑T

t=1 ϵ1,t)
2

(54)

→ α1α2

α2
1

=
α2

α1
if T → ∞ (55)

Where in (54), in the numerator there is a term
∑T

t=1 α1α2t
2 = α1α2

2T 3+3T 2+T
6 and in the

denominator
∑T

t=1 α1t
2 = α2

1
2T 3+3T 2+T

6 . These are the only terms with a T 3 factor. For T → ∞,

these terms dominate all other terms according to Whelan (2011). As such, β̂ → α2

α1
. The OLS

estimate β̂ will therefore indicate a relationship between two independent time series as shown
above based on the ratio of the drift terms. Phillips (1987) shows that for two random walks

without drift the OLS estimator β̂ converges to the ratio of two Wiener Processes
∫ 1
0
WrdW (r)∫ 1

0
W (r)2dr

. A

spurious regression tends to have a high unjustified R2. Granger and Newbold (1974) describe
a spurious regression as a regression with a high degree of fit in terms of R2, but a low value
of the Durbin-Watson statistic. In fact, Phillips (1987) shows that the Durbin-Watson statistic
converges to zero as T → ∞ for a spurious regression . The Durbin-Watson (DW) test in the
regression Yt = β0 + β1Xt + ϵt, is checking whether ρ ̸= 0 in ϵt = ρϵt−1 + ut. Stationarity in the
error term therefore implies ρ = 0. Durbin and Watson (1951) propose the following test statistic

DW =
∑T

t=2(ϵt−ϵt−1)
2∑T

t=1 ϵ2t
→ 2(1 − ρ). Granger and Newbold (1974) developed the rule of thumb,

where a regression is said to be spurious if the R2 > DW .

4.1.5 Unit Root Tests

As seen in section 4.1.4, the existence of unit roots in time series data may cause spurious re-
gressions. A formal testing procedure for unit roots is therefore essential. Considering the AR(1)
model again given by Xt = µ + ϕXt + Zt, it was shown that a unit root exists when ϕ = 1,
which causes an expectation and variance dependent on t as shown in (46) and (47). It was
also shown that for a random walk ∆Xt ∼ I(0), therefore Xt ∼ I(1). In order to formally test
whether a time series has a unit root and is an I(1) process, the Dickey-Fuller Test, proposed by
Dickey and Fuller (1979) is often used. Dickey and Fuller (1979) use three versions of an AR(1)
model in their paper, and the test will work for all three versions. The different versions are an
AR(1) process without drift and linear term (Xt = ϕXt−1 + Zt), an AR (1) process with drift
and no linear term (Xt = µ + ϕXt−1 + Zt), and an AR(1) process with drift and linear term
(Xt = µ + βt + ϕXt−1 + Zt). We will stick to the AR(1) process with drift which we have used
so far in this chapter. The Dickey-Fuller Test takes the first difference to obtain the following
regression equation:

∆Xt = µ+ (ϕ− 1)Xt−1 + Zt (56)

= µ+ δXt−1 + Zt (57)

Under the null hypothesis, (57) has a unit root present, (ϕ = 1 ⇒ δ = 0). Under the alternative
hypothesis, no unit root is present (ϕ < 1 ⇒ δ < 0). To get the intuition behind the testing
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procedure, consider Figure 9. Realizations of Xt are truly random, and a positive (negative) value
of Xt−1 does not lead to a higher probability of a negative (positive) value of Xt. Therefore we
would not expect the lagged value Xt−1 in (57) to have any relationship or predictive power on
Xt. As a result, under the null hypothesis, δ = 0. Under the alternative hypothesis, where it
is assumed that Xt is stationary, consider Figure 10 for intuition. The time series seems to be
mean-reverting. That is, a spike far away from the mean seems to be pulled back to the mean.
It is therefore hypothesized under the alternative hypothesis that a positive (negative) value of
Xt−1 has a negative (positive) effect on Xt due to its mean-reverting nature. Therefore, Xt−1 is
a predictor of Xt and we have under the alternative hypothesis δ < 0. The negative sign stems
from its mean reverting nature.

The parameter δ in (57) estimated through OLS. Since δ = (ϕ−1), we have that δ̂ = (ϕ̂−1) ⇐⇒
ϕ̂ = δ̂ + 1. The T-statistic of the OLS regression is given by tδ̂ = ϕ̂−1

σϕ̂
. The result in the

denominator is the standard error of ϕ̂, which arises from V ar[δ̂] = V ar[ϕ̂ + 1] = V ar[ϕ̂]. First
of all, notice that under the alternative hypothesis (|ϕ| < 1) that tδ̂ converges to a normal
distribution, because of (46) and (47), which we have seen for |ϕ| < 1 results in E[Xt] =

µ
1−ϕ and

V ar[Xt] =
σ2

(1−ϕ2) . Using these results, Central Limit Theorem and the Yule-Walker estimator,

we find similar to Neusser (2016):

√
T
(
ϕ̂− ϕ

)
−−→
d

N(µ, 1− ϕ2) (58)

Figure 11 shows the distribution of the OLS estimator ϕ̂ for different values of ϕ. We see that
the higher the value of ϕ, the more left-skewed the distribution of the OLS estimator becomes. If
ϕ approaches 1, ϕ̂ approaches a degenerate distribution. This degenerate distribution arises from
(58), where the variance approaches zero as ϕ approaches 1. Under the null hypothesis, there is a
downward bias of the OLS estimator, and no asymptotic normality.

Figure 11: Distributions of the OLS estimator for different values of ϕ in the AR(1) model.
Retrieved from Neusser (2016) (page 142)

Dickey and Fuller (1979) overcome this degenerate distribution by scaling with T , instead of
√
T

as in (58). We obtain the limiting distribution T
(
ϕ̂− ϕ

)
→ DF , where DF is the Dickey-Fuller

Distribution. Notice that by scaling by T instead of
√
T implies a faster rate of convergence to the

true parameter value ϕ. Neusser (2016) then shows using this procedure, we get a T-statistic value

of tδ̂ = ϕ̂−1√
S2
T∑T

i=1
X2

T−1

, where S2
T = 1

T−2

∑T
i=1

(
Xt − ϕ̂Xt−1

)2
follows the Dickey-Fuller distribution.
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Figure 12 shows Monte Carlo simulations of the t-statistic under the null hypothesis (where the t
statistic follows a Dickey-Fuller distribution):

Figure 12: 10,000 Monte Carlo simulations of the Dickey-Fuller distribution and the normal dis-
tribution. Retrieved from Neusser (2016) (page 144)

Figure 12 shows that the Dickey-Fuller distribution has lower T-values compared to the normal
distribution. If compared to the normal distribution, it thus has a left skewness similar to the
empirical results seen in (11). It is therefore appropriate to use the Dickey-Fuller critical values
in the Dickey-Fuller test instead of critical values of the normal distribution under the null hy-
pothesis. The critical values of the Dickey Fuller distributions were determined using Monte Carlo
simulations in Dickey and Fuller (1979). A table of critical values of the Dickey-Fuller distribution
can be found in the appendix in Figure 38 retrieved from Fuller (1994). Notice that for each case
of the model, for instance a drift, no drift, or a linear trend, the critical values are different. The
correct specification of the model is therefore important and will be discussed in more detail in
the next chapter.

In addition to the Dickey-Fuller test, we can also use the Augmented Dickey-Fuller (ADF) test
to test for a unit root in time series. The ADF test is an extension of the Dickey-Fuller test, and
uses higher order autoregressive terms in the regression equation. The null hypothesis of the ADF
test is ϕ = 1, and the alternative is ϕ < 1, similar to the Dickey-Fuller test. Another similarity to
the Dickey-Fuller test is that we have to specify the model specifications beforehand, choosing a
model with drift term (µ ̸= 0), a linear trend (β ̸= 0), or neither. In addition, we need to specify
a value of p, which is the number of lags in the regression equation. If we suspect a high degree
of serial correlation, we may need to use a large number of lags and vise versa if we suspect a low
degree of serial correlation in our model. The regression equation in the Augmented Dickey-Fuller
(ADF) test is given by:

∆Xt = µ+ βt+ ϕXt−1 +

p∑
i=1

ρi∆Xt−i + Zt (59)

The regression equation of the ADF test is similar to that of the Dickey-Fuller test, with the
addition of additional autoregressive terms. In the next chapter the ADF test will be performed
on the data. In terms of selecting the optimal numbers p, two widely used criteon for model
slection are the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).
The AIC is developed by Akaike (1973), and used to select the best model out of a variety of
different models. The application in the case of this thesis is that a different number of lags p are
possible. The AIC is used to choose the optimal number of lags p used in the ADF test. If the
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number of lags in the ADF test is given by p, then the AIC is given by

AIC = 2p− 2ln(L̂p) (60)

, where L̂p is the Maximum Likelihood Function of the ADF model with p parameters, as defined
in (59). The p that minimizes the AIC will be the best model according to Akaike (1973). There
is a trade-off between the best log likelihood function and the number of parameters. In general,
adding extra parameters p will improve the model fit, but is vulnerable to over fitting. Therefore
the term 2p is a penalty term, penalizing extra lags added. The BIC is given by:

BIC = pln(N)− 2ln(L̂p) (61)

The BIC is similar to the AIC in adding a penalty term. The difference between the two lies in the
determination of the penalty term. ln(N) is the natural logarithm of the number of observations
in the sample. The penalty of the BIC will be stricter than for the AIC if pln(N) > 2p ⇐⇒
ln(N) > 2 ⇐⇒ N > e2 ⇐⇒ N > 7.389. Since N is an integer, for samples with 8 or more
observations the BIC will be stricter. In this thesis, samples greater than 1000 observations will
be tested, resulting in the BIC being stricter than the AIC.

Once the optimal number of lags is chosen using the AIC or BIC, the testing procedure is similar
to that of the Dickey-Fuller test, and the same critical values as in (38) are used.

This section has introduced two statistical tests, the (Augmented) Dickey-Fuller tests. These tests
are often used to test for unit roots in time series data, which is often a problem when performing
time series analysis on economic data. Performing the (Augmented) Dickey-Fuller test will clarify
whether our time series has a unit root present. The choice between the ’standard’ and augmented
Dickey-Fuller test depends on the a priori expectation of the data. If the processes analyzed are
suspected to have serial correlation, it may be more convenient to choose the augmented version of
the test with a large number of lags. If a more simple model is considered, the default Dickey-Fuller
test may be more suitable.

4.2 Cointegration

4.2.1 Introduction to Cointegration

So far in this chapter, I(1) processes and its problems in statistical analysis have been discussed.
The presence of unit roots in I(1) result in difficulty interpreting OLS estimates, as the regression
may be spurious, indicating a non existent relationship. However, there is a special case under
which it is possible to interpret the OLS estimates and test for a long-run relationship between two
non stationary time series. If the time series are cointegrated, then this long-run relationship of two
integrated time series can be determined, and statistical interference can be drawn. The concept
of cointegration is relatively new in econometrics, introduced by Engle and Granger (1987).

Consider K time series. Let X ∈ RTxK , where all components of X are I(d). According to Engle
and Granger (1987), these K time series are cointegrated of order b if there exists at most K − 1
linearly independent vectors v ̸= 0 ∈ RTx1, such that ϵ = vTX ∼ I(d − b). This means that if a
linear combination between the K time series exists such that the residuals ϵ are I(d − b), then
the K time series are cointegrated of order b. In the application within this thesis, only I(1) time
series are considered. Therefore, K time series are cointegrated of order 1 if ϵ = Y − vTX ∼ I(0)
with mean zero. The vectors v that satisfy this condition are called the cointegrating vectors.
It is possible that a maximum of K − 1 cointegrating vectors exist. Suppose that r ≤ K − 1
cointegrating vectors exist, then v ∈ RTxR. Engle and Granger (1987) call the rank of this matrix
the cointegrating rank.
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Similar research as in this thesis, such as Heany (2001) test for cointegration between several
spot and future pairs, therefore allowing for the existence of multiple cointegrating vectors. Given
the lack of research of cointegration between Bitcoin and Ethereum spot prices, the main area of
research in this thesis will be whether the futures price of each asset is cointegrated with its own
spot price. It will not be tested whether the Bitcoin futures price is cointegrated with Ethereum
spot prices, and vice versa. This is perhaps an interesting area for future research, but the goal of
this thesis is to establish the cointegrating relationship between the pairs themselves. As a result,
we will consider two time series for both assets, the spot and futures time series. The maximum
number of cointegrating vectors is therefore 1. For two time series X and Y , which are both I(1),
cointegration is achieved if, Y − α − βX ∼ I(0), where α and β are now scalars. Equivalent
notation used, for instance by Mackinnon (2010) is to use vector notation:

U =
[
Y 1 X

]  1
−α
−β

 = Y − α− βX ∼ I(0) with mean zero.

Maslyuk and Smyth (2009) describe two time series to be cointegrated if the time series express a
long-run relationship. To get an intuition as to what this means, Figure 13 show two cointegrated
time series. Despite the two time series moving together in the long run, short-term deviations may
occur. The bottom green line shows the difference between the two time series, where deviations
from zero are frequently observed. The condition that needs to be satisfied is that the residuals,
i.e. the green line is I(0). In Figure 13 this does seem to be the case, with a mean around zero and
deviations from the mean being reverted back to the mean over time. This implies stationarity of
the residuals and therefore cointegrated time series.

Figure 13: Two cointegrated time series. Graph retrieved from Johansen (2015).

To illustrate how cointegration filters out possible spurious regression, consider Figure 14, which
shows two random walks which both move up. If a linear regression were to be performed, a
positive coefficient between the two random walks is likely to occur, as over the entire period the
two random walks move up. This would indicate any relationship between the two random walks.
The green line in figure 14 highlights the difference between the two random walks. This difference
between the random walks seems non stationary. For the first 200 observations this difference is
negative and becomes positive afterwards. It is therefore unlikely that we can find a single value
β for which the residuals of the regression Y = α+βX+ ϵ are stationary. A linear regression may
indicate a relationship between the two random walks, whilst for cointegration this would not be
the case. Therefore cointegration may filter out two time series that may not have any long-run
relationship.

Cointegration fits well in the application of this thesis. The goal in the next chapter is to fit the
cost-of-carry models to the observed market prices. Suppose that f is the time series of futures
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Figure 14: Two independent random walks with normal increments created in Python with
T=1000.

prices, s the spot price time series, and r the time series of the risk-free rate. Suppose that
f − s = r is the equilibrium in the cost-of-carry model. Under the no-arbitrage condition in which
the cost-of-carry models operate, any deviation from the long-run equilibrium between f−s and r
would imply an arbitrage opportunity, as shown in Table 10. In an efficient market, the existence
of an arbitrage opportunity (f − s > r or f − s < r) would cause arbitrageurs to take the possible
arbitrage opportunities which would then restore equilibrium. Randomness in the market will
cause f − s ̸= r to deviate in the short-term, but the importance lies in this arbitraging force that
would restore equilibrium. Cointegration therefore seems a natural way of testing whether the
cost-of-carry models hold in the market. There are two I(1) time series of prices, and it is to be
established whether a linear combination of the two results in an equilibrium around zero. The
residuals I(0) and mean-reverting with a mean of zero due to arbitrage opportunities.

4.2.2 Properties OLS under Cointegration

Under cointegration, there is consistency of the OLS estimates, and are thus interpretable. Con-
sider the two I(1) random walks with drift again, as in (53). Let X =

∑T
i=1 Xt, Y =

∑T
i=1 Yt

and U =
∑T

i=1 ut. Whelan (2011) shows that under under cointegration of X and Y , i.e.

U = Y − βX ∼ I(0) with mean zero. Consistency of the OLS estimator β̂ then follows from:

β̂ =

∑T
t=1 XtYt∑T
t=1 X

2
t

= β +

∑T
t=1 Xtut∑T
t=1 X

2
t

(62)

= β +

∑T
t=1(α1 +Xt−1 + ϵ1,t)ut∑T
t=1(α1 +Xt−1 + ϵ1,t)2

= β +

∑T
t=1(α1t+X0 +

∑T
t=1 ϵ1,t)ut∑T

t=1(α1t+X0 +
∑T

t=1 ϵ1,t)
2

(63)

= β +

∑T
t=1 ut∑T

t=1(α1t+X0 +
∑T

t=1 ϵ1,t)
= β +

∑T
t=1 ut∑T

t=1(α
2
1t+ ...)

→ β (64)

(65)

The convergence β̂ → β occurs due to ut ∼ I(0) under cointegration, which does not increase with

t. The denominator has a term which includes a t and will therefore grow faster, implying β̂ → β.
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It is thus shown by using derivations from Whelan (2011) that the OLS estimator is consistent
when X and Y are cointegrated. Another fact is that the OLS estimator is in fact more than
consistent, since the rate of convergence is faster than the traditional

√
(T ) of the OLS estimator.

Whelan (2011) shows:

T (β̂ − β) =
T
∑T

t=1(α1t+X0 +
∑T

t=1 ϵ1,t)ut∑T
t=1(α1t+X0 +

∑T
t=1 ϵ1,t)

2
(66)

=
1
T 3T

∑T
t=1(α1t+X0 +

∑T
t=1 ϵ1,t)ut

1
T 3

∑T
t=1(α1t+X0 +

∑T
t=1 ϵ1,t)

2
=

1
T 2

∑T
t=1(α1t+X0 +

∑T
t=1 ϵ1,t)ut

1
T 3

∑T
t=1(α1t+X0 +

∑T
t=1 ϵ1,t)

2
(67)

=

1
T 2

(
α1

T (T+1)
2 + ...

)
ut

1
T 3

(
α1

2T 3+3T 2+T
6 + ...

) =
α1

2 ut + ...
α2

1

3 + ...
→ 0 (68)

Despite the numerator in (68) being divided by T 2 instead of T 3, the multiplication by ut which
is zero mean results in the numerator converting to 0 as T → ∞. Thus under cointegration, we
have T (β̂−β) −→

p
0. We have convergence at rate T instead of

√
T and this is super-consistency of

the OLS estimator. Under cointegration, the OLS estimates thus can be interpreted and converge
faster to the true parameter values.

Testing for cointegration can be done using the Engle-Granger test, proposed in Engle and Granger
(1987). It is a two-step procedure, where two I(1) time series can be tested for cointegration.
Before the testing procedure the order of integration of the time series has to be verified. The
Engle-Granger test works soley for I(1) processes, therefore the time series tested for cointegration
need to be tested for a unit root beforehand, using the Augmented-Dickey Fuller test, for instance.
The first step of the Engle-Granger test is setting up the regression equation:

Y = α+ βX + ϵ (69)

Notice that an intercept is included here, but the cointegrating parameter remains β. One of the
properties of cointegration is Y − βX ∼ I(0) ⇒ α+ (Y − βX) ∼ I(0). This arises due to adding
a constant to a stationary process does not change the stationarity. Including an intercept in the
regression is standard practice in the Engle-Granger test, and it will be explained in the next
chapter that in the case of this thesis it is expected that α is close to zero. It was established
earlier in this section that under cointegration, β̂ estimated from (69) is is super-consistent and
it can therefore be estimated through OLS. In order to establish this, it needs to be verified
whether ϵ̂ = Y − α̂ − β̂X ∼ I(0) with mean zero. If this holds, Y and X are cointegrated with
cointegration parameter β. A unit root test, the Augmented Dickey-Fuller test with the regression
equation (59) will be performed on the residuals to test for stationarity. If the null hypothesis of
the second step is rejected, there is stationarity in the residuals. Therefore the null hypothesis of
the Engle-Granger test is no cointegration, and the alternative hypothesis is cointegration.

Engle and Granger (1987) state that cointegration implies the existence of an Error Correction
Model (ECM). A simple error correcting model of

∆Yt = α1 +

p∑
i=1

ϕi∆Xt−i + θ(Yt−1 − βXt−1) + ϵt (70)

The interesting aspect of the ECM as defined in (70) is that all variables are now I(0). It was
assumed Yt ∼ I(1), therefore ∆Yt ∼ I(0), and if Yt and Xt are cointegrated, then (Yt−1−βXt−1) ∼
I(0). All time series being stationary implies OLS to give correct statistical interference. The first
parameters ϕi incorporate the short-term dynamics of ∆Yt and ∆Xt, and θ captures the long-run
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relationship using the cointegration between Yt and Xt. Notice that the coefficient θ should be
negative, since Yt > βXt implies a value of Yt above its long-run equilibrium. As a result, it is
more likely that ∆Yt < 0 and vice versa for Yt < βXt.
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5 Cointegration Analysis of Cost-of-Carry Models

This section will perform the cointegration tests on the cost-of-carry models specified in section
2.2.5. In addition, a new model will be proposed and tested.

5.1 Risk-free Rate Proxy

Since all of the models given in section 2.2.5 contain the risk free rate rt,T , a good proxy for rt,T has
to be chosen. The risk-free rate is considered to be, as the name suggests, the return on a risk-free
investment. In practice, an investment is never fully risk-free, but we can choose an asset that is
perceived to be the most safe among all assets. Typically, government bonds are considered to be
the safest investments possible, but even these investments have default-risk, which is the risk that
the government will not be able to pay back its debt when the bond matures. Government bonds
of third-world countries with a less-developed economy will have higher default risk than those of
a developed economy. It is common practice to use US government bonds (often referred to as US
treasuries) as a proxy of the risk-free rate, since the creditworthiness of the US is considered high
and US treasuries are the most liquid government bonds in the world. This is also why almost
every country in the world holds some US government bonds (US treasuries) on its balance sheet.
These arguments lead to US treasuries being a natural choice for the risk-free rate to test the
spot-future parities against. Last, US treasuries are a natural choice because almost all liquid
cryptocurrency markets are settled in dollars.

Damodaran (2008) states that in addition to the asset chosen for the risk-free rate, duration is also
important. US treasuries are all zero-coupon bonds, of which the duration is simply the maturity
of the bond. In this thesis quarterly futures with a maturity of 3 or 6 months are considered. To
match the duration, the corresponding risk-free rate proxy of 3 or 6 months US Treasury Bills22

will be used. Specifically, we look at the 3 or 6-Month Treasury Bill Secondary Market Rate,
Discount Basis (DTB3) provided by the St. Louis FED 23. The term Discount Basis arises due to
the property of US treasuries being zero-coupon, so the risk-free rate is the yield of the 3-month
US treasury, which is the discount24 of the bond relative to face value and maturity of the bond.

The Yield to Maturity (YTM) of a bond is: FV
P (t,T )

1
T−t − 1, where FV is the face-value of a bond

(dollar amount the bond gets paid back at time T), P (t, T ) is the current bond price at time t
with maturity at time T, and T − t is the duration in years the bond has left. Note that the only
term that is non-constant is P (t, T ), which is the market price of the bond. Thus the current
discount (premium) of the bond determines the yield of the bond. Suppose a bond with 3 years to

maturity and a face value of $1000 trades at $800. The yield to maturity is: ( 1000800 )
1
3 − 1 = 0.077

(7.7%). If the bond were to have 2 years maturity instead of 3 and trades at the same price, we

would have a yield of: ( 1000800 )
1
2 − 1 = 0.118(11.8%).

Given the examples above, it makes sense to match the duration of the risk-free rate proxy to the
duration of the contract we want to investigate, as Damodaran (2008) states. Suppose we want to
model the cost-of-carry of a Bitcoin futures contract with 6 months to maturity, and a 6-month
and 30-year treasury have an annual yield of 2% and 4%, respectively. Using the 30-year bond
will give a higher risk-free rate, but matures more than 29 years after our Bitcoin contract expires.
Using the 4% as a risk-free rate is thus not accurate as the duration of the 30-year treasury is
much longer.

A problem that we run into quickly is the fact that US treasuries do not trade during the weekend,
whilst the market for cryptocurrencies trades 24/7. Therefore a proxy during the weekend for the
risk-free rate has to be chosen. Similar research on the topic of this research such as Lian et al.

22A treasury bill is US government debt with a maturity shorter than 1 year.
23https://fred.stlouisfed.org/series/TB3MS
24In extreme cases of negative interest rates, we can have the situation where bond prices are higher than their

face value, but in general zero-coupon bonds trade at a discount to face value.
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(2019), Kapar and Olmo (2019) and Hu et al. (2020) do not run into this problem as only CME
and CBOE futures are discussed, which only trade during the weekdays. Since the futures traded
on Binance do trade over the weekend, we will include weekend prices in this thesis. During the
weekend, market participants also do not have information on the risk-free rate at that given time
since the bond market is closed. We will therefore use the risk-free rate at the close of Friday for
modeling the cost of carry for Saturday and Sunday.

Figure 15: US 3 and 6 month treasury bill yield plotted.

Figure 15 shows that for the majority of the testing period, the risk-free rate was very close to
zero. Only from 2022 onwards the yield of US treasuries started to go up rapidly. This long period
of near zero rates results in the cost of carry purely from an interest rate alone being very low.
Especially since the maturities of futures considered here are a maximum of 6 months, the yield
on US treasuries throughout 2020 and 2021 for short maturities is very low. Early 2022, interest
rates surged as rising inflation caused central banks to increase rates.

5.2 Cointegration Test of Futures and Spot Prices

In the following sections the cost-of-carry models will be tested on market data. The goal is to test
whether the cost-of-carry models can explain the observed basis in (bi-) quarterly futures given
the spot prices and carry variables. Under the no-arbitrage assumption in which the cost-of-carry
models operate, there should be a long-run relationship between the futures prices and the spot
price adjusted by carry variables. Any deviation from equilibrium would be reverted back by
arbitrageurs. In section 4.1 it was established that this long-run relationship can be tested for by
cointegration analysis. From here on, methodology of Wu et al. (2021) will be followed, and a log
transformation applied. Let log(F (t, T )) = ft,T and log(St) = st. In addition, vector notation will
be used to transform from a time t setting to considering the entire time series. f is the vector of
all log futures prices from time 0 to time T , and s the vector of log spot prices.

5.2.1 Data Generating Process ft,T and st

In section 4.1, it was discussed that the Augmented Dickey-Fuller test has multiple possibilities
for the regression equation. This includes the following three possibilities for the data generating
processes (DGP) of Xt:

52



Xt = µ+ γt+ ϕXt−1 + Zt (71)

Xt = µ+ ϕXt−1 + Zt (72)

Xt = ϕXt−1 + Zt (73)

The correct model which best represents the actual underlying data generating process (DGP) has
to be chosen to give correct results of the ADF test. This is since the critical values for (71,72 and
73) are all different. Figure 39 shows the Bitcoin hourly prices for the entire testing period. In
order to establish a valid regression equation and remove the carry variables from the exponent,
log prices will be considered. Figure 16 shows the Bitcoin log prices over the entire interval.

Figure 16: Bitcoin hourly log closing prices over our entire testing period

Over the entire sample period, the Bitcoin log prices have increased, on average. Purely modeling
the DGP of Bitcoin log prices as a random walk, i.e. using (73), would imply E[Xt] = X0.
Historical data does not back the claim E[Xt] = X0, as the price of Bitcoin has risen in a decade
from a few dollars to tens of thousands, indicating a growth rate. It therefore makes sense to
include a drift term or trend in the DGP of Bitcoin log prices. The choice of DGP now comes
down to distinguishing between a drift term µ or the existence of a linear trend γt. Visually from
Figure 16, a purely linear (deterministic) trend does not seem to be present. There is volatility
both on the upside and downside. Therefore the trend in Bitcoin (log) prices seems stochastic.
In addition to visual inspection, Stadnytska (2010) describe an approach originally proposed by
Elder and Kennedy (2001). This procedure is starting off under the DGP (72), the simpler one
without a linear trend. A unit root test on is then performed on this DGP. If the null hypothesis
of a unit root is rejected,(ϕ ̸= 1), then it is very likely that the true DGP is given by (71) , and Xt

is trend stationary. Stadnytska (2010) state that a unit root and a deterministic trend together
is very unrealistic, and therefore this approach is viable. Either the growth rate is due to a unit
root, or a deterministic trend. We therefore start off with (72) as the DGP for Bitcoin prices.
The DGP (72) in the unit root test is also used for Bitcoin prices by Corelli (2018) and Wu et al.
(2021).

53



Ethereum (log) prices can be found in Figures 40 and 41 in the Appendix. The behavior of the
(log) prices is very similar to that of Bitcoin, except a total higher return over the testing period.
We will therefore also use the AR(1) model with drift (72) to test for a unit root.

5.2.2 Checking For I(1) Processes

In order for cointegration between f and s to hold, it needs to be verified that both series are I(1).
Dolatabadi et al. (2015) state that it is widely accepted that both spot and futures time series
are I(1) processes. Therefore, it will be tested in this subsection whether f and s are I(1), such
that cointegration can exist. If time series are I(1), there is a unit root present. The Augmented
Dickey-Fuller (ADF) test specified in (59) will be performed on f and s. The test will be performed
under the opimal number of lags established by the AIC and BIC. The maximum number of lags
out of which the AIC and BIC can choose is the criterion developed by Schwert and Simon (1989),

which is often used and given by pmax = 12( N
100 )

1
4 .

It will first be tested whether s for both Bitcoin and Ethereum is I(1). Recall that the null
hypothesis of the ADF test is a unit root present, where the alternative hypothesis is no unit root
present. Note that the ADF test with underlying DGP Xt = µ + ϕXt−1 + Zt will be used, such
that ∆Xt = µ+ (ϕ− 1)Xt−1 + Zt, as established in section 5.2.1. Table 20 shows large p-values,
both using the AIC and BIC criterion. These p-values are well above any rejection region. The
null hypothesis of a unit root is therefore not rejected. It follows that s has a unit root present
for both Bitcoin and Ethereum, and s ∼ I(1) ⇒ ∆s ∼ I(0). Figure 42 in the Appendix shows
that first differencing Bitcoin log prices results in a stationary time series. For Ethereum the plot
looks similar and can be found in the Appendix in (43).

Bitcoin log spot price st

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-01-01 2022-09-30 24061 35 -1.677 0.443 1 -1.662 0.451

Ethereum log spot price st

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-01-01 2022-09-30 24015 45 -1.971 0.299 0 -1.959 0.305

Table 20: Augmented Dickey-Fuller test for BTC and ETH log transformed spot prices for the
entire sample period. The test is used to assess whether a unit root is present in the log spot price
vector s. The null hypothesis (H0) is a unit root present, where the alternative (H1), is that no
unit root is present.

Now for the futures log prices f , it will also be tested to see if the time series are I(1). This will
be done this for every interval, for both Coin-M and USD-M quarterly futures. The results of
the ADF test can be found in Table 29 in the Appendix. Only 4 out of 32 intervals tested have
a test statistic that is is significant at the 10 or 5% level. None of the intervals tested have a
significant test statistic at the 1% level. Based on the data in Table 29 we can thus not reject the
null hypothesis of a unit root being present in log futures prices. It is therefore concluded that
f ∼ I(1).

The results in Tables 20 and 29 have shown that both s and f are I(1) and therefore integrated
of the same order. It is now possible to test for cointegration.
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5.2.3 Cointegration Test of Futures and Spot Prices

This section will test for cointegration between log spot and futures prices, f , and s, where f
denotes the vector of log futures prices f0,T , ..., fT,T , and s the vector of log spot prices s0, ..., sT .
The goal is to test whether a long-run equilibrium between spot and futures exist. It is widely
accepted in the literature that spot and futures prices are cointegrated. Hu et al. (2020) state that
there is in general a strong expectation that futures and spot prices have a strong cointegrated
relationship. Despite this, it has been noted in Figures 18 and 19 that a significant basis can exist
between spot and futures prices in the cryptocurrency market. In order to establish if a long-
run relationship between spot and futures prices exists, without the addition of cost-of-carry, the
Engle-Granger test will be performed on f and s in this section. Recall that the Engle-Granger
test consists of two steps. The first step involves an OLS regression on the regression equation
f = α + βs + ϵ. In the second step we test if ϵ̂ = f − α̂ − β̂s ∼ I(0). This is done using the
Augmented Dickey-Fuller (ADF) test on the residuals to test for stationarity.

Enle-Granger Test Bitcoin Coin-M futures

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 - 2020-09-25 (N = 2008)

-0.304 1.034 0.002 522.398 0.000*** 0.993 12 -0.591 0.458 1 -1.225 0.203

2020-08-05 - 2020-12-25 (N = 3949)

0.230 0.978 0.001 1376.404 0.000*** 0.998 14 -2.100 0.034** 1 -2.323 0.019**

2020-09-25 - 2021-03-26 (N = 4062)

0.103 0.993 0.000 2803.696 0.000*** 0.999 18 -1.617 0.062* 1 -2.792 0.005***

2020-12-25 - 2021-06-25 (N = 4178)

-0.354 1.038 0.002 529.571 0.000*** 0.985 21 -1.333 0.169 2 -1.887 0.056**

2021-03-26 - 2021-09-24 (N = 4176)

-1.715 1.164 0.002 494.196 0.000*** 0.983 9 -0.931 0.316 4 -1.304 0.178

2021-06-25 - 2021-12-31 (N = 4340)

0.077 0.995 0.002 1201.650 0.000*** 0.997 8 -1.396 0.151 3 -1.638 0.096

2021-09-24 - 2022-03-25 (N = 4183)

-1.127 1.1069 0.001 1290.925 0.000*** 0.997 2 -2.818 0.005*** 2 -2.818 0.005***

2021-12-31 - 2022-06-24 (N = 4024)

-0.322 1.032 0.001 1445.955 0.000*** 0.998 29 -2.400 0.016** 7 -2.326 0.019**

2022-03-25 - 2022-09-30 (N = 4395)

-0.258 1.026 0.000 6459.561 0.000*** 1.000 15 -3.186 0.001*** 7 -3.265 0.001***

Table 21: Results of performing the Engle-Granger test on each interval of BTC log Coin-M
futures prices and BTC log prices. The left hand side of the table β̂,σβ̂ , tβ and R2 are parameters

corresponding to the OLS regression f = α+β1s+ϵ, and the parameters γAIC , t̂AIC , pAIC , γBIC ,
t̂BIC and pBIC are parameters corresponding to the Augmented Dickey Fuller (ADF) test. Notice
that *, ** and *** imply significant t-statistics at the 10,5, and 1% level, respectively.

Table 21 shows the results of the Engle-Granger test for Bitcoin Coin-M futures and spot log
prices. In order for the cointegrating parameter to be interpretable, there must be stationarity
of the residuals in the second stage. For the majority of the intervals tested, the null hypothesis
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of a unit root in the residuals is not rejected, both for the AIC and BIC. It can therefore not be
concluded that f and s are cointegrated. This implies there is no equilibrium between f and s
itself for Bitcoin Coin-M futures. To illustrate how this might arise, consider Figure 44 in the
Appendix. It shows how the difference between the (log) prices may not always move in the
same direction, as there is more (less) demand for the futures contract than on the spot Bitcoin,
therefore causing the prices to diverge.

Table 30 in the Appendix shows the results for the Engle-Granger between on Coin-M Ethereum
futures log prices and log spot price. The results are similar to those of Bitcoin Coin-M futures,
although we accept the reject hypothesis of no cointegration for one more interval for Ethereum
Coin-M futures. It seems as if Ethereum spot and futures prices are slightly more cointegrated,
but we are can not say this with certainty as the null hypothesis is not rejected for every interval.
A plot of the first interval of which the null hypothesis is not rejected can be found in Figure 45
in the Appendix.

USD-M futures have a shorter maturity and lower basis than Coin-M futures. Tables 31 and 32
in the Appendix show the results of the Engle-Granger test on Bitcoin and Ethereum USD-M
futures. The results are in line with those of Coin-M futures, where the null hypothesis of f and
s not being cointegrated is not rejected in every interval. Therefore, it is can not be concluded
with certainty that Bitcoin USD-M log futures prices and log spot prices are cointegrated.

In this subsection, it has been tested whether the (log) futures and spot time series are cointegrated.
If cointegration would hold, then there would be a long-run relationship between f and s. The
results of the Engle-Granger test do not imply cointegration for every interval tested. In order
to explain the observed deviation between futures and spot prices as seen in (6,36, 7, and 8)
there is additional work to do. The next section will introduce cost-of-carry variables to find an
equilibrium between futures and spot prices.

5.3 Testing Cost-of-Carry Models

This section will attempt to find a stronger cointegrating relationship than between the prices
alone by applying the cost of carry models explained and derived in section 2.2.5. In doing
so, a predicted fair futures price at any time given the spot price and cost-of-carry variables is
determined. This predicted fair price is then tested for cointegration against the observed market
prices.

5.3.1 Cost-of-Carry Model Investment Assets

In section 2.2, the most simple cost-of-carry model, that for investment assets has been defined as
F (t, T ) = Ste

rt,T (T−t). The intuition behind this model, is that the futures contract does not have
a payment due until time T , whilst buying the spot asset has a payment due at time t; a deferred
payment. Therefore, carrying the spot asset from time t to time T has an opportunity cost, which
is the risk-free rate. In Table 10, the arbitrage opportunities for a violation of this model have
been outlined. A deviation from the theoretical price gives rise to an arbitrage opportunity. To
empirically test this model, the methodology as used by Wu et al. (2021) is applied, which is a
log transformation to get a more desirable form:

F (t, T ) = Ste
r(T−t) (74)

⇐⇒ log(F (t, T ) = log(St) + rt(T − t) (75)

⇐⇒ log(F (t, T )− log(St) = rt(T − t) (76)

(77)
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We now move from a time t perspective to a whole time series. Let r̃ denote the vector:
r0T

r1(T − 1)
...

rT−1


, where each component is the risk free rate at that particular entry multiplied by the time to
maturity in years. We then obtain the regression equation:

f − s = α+ βr̃ + ϵ (78)

The intuition behind (78) is that that the futures basis (left-hand side) can be explained by
the cost-of-carry term r̃. In the previous section it was concluded that f and s alone are not
cointegrated. The cost-of-carry model explains that an interest rate carry has to be included, to
overcome opportunity costs (cost of capital) for arbitrageurs. The Engle-Granger test will now be
performed on (78). A cointegrating relationship between the futures basis and the cost-of-carry

under the simple model is found, if the the residuals of (78) ,ϵ̂ = f − s − α̂ − β̂r̃ ∼ I(0). In
addition, the restriction is imposed that the cost-of-carry model for investment assets holds if
α̂ = 0 and β̂ = 1. To prove this, let rt, ft,T and st denote the t-th element of the vectors r̃,f and
s, respectively. Then at some time t < T under the cost of carry model for investment assets, we

have: ft,T −st = log(F (t, T ))− log(St) = log(F (t,T )
St

) = r̃t ⇐⇒ e(log(
F (t,T )

St
) = ert ⇐⇒ F (t, T ) =

Ste
rt,T (T−t). For any deviation from this theoretical futures price Ste

rt,T (T−t), Table 10 shows
the arbitrage opportunities that would arise. Suppose a deviation from the cost of carry model
occurs, where (78) no longer holds. Arbitrageurs could in turn make a riskless profit and restore
equilibrium. As a result, the errors themselves are mean-reverting and correcting. This is why
testing for stationarity of the residuals in (78) is an elegant application for testing the cost-of-carry
models. Stationarity in the residuals implies a mean-reverting time series, and this is what we
also expect to happen in the market due to arbitrageurs as described above.

Before performing the Engle-Granger test, it has to be ensured that both f − s and r̃ ∼ I(1).
Table 33 in the Appendix shows the results of the ADF test on each interval for f − s, under
Coin-M and USD-M futures. The null hypothesis of a unit root is rejected both using the AIC
and BIC for the interval: 2021-12-31 - 2022-06-24 for Bitcoin Coin-M futures. For Ethereum
Coin-M futures these are the intervals: 2020-09-25 - 2021-03-26 and 2021-12-31- 2022-06-25.
For Ethereum USD-M futures this is the interval: 2021-12-24 - 2022-03-25. In these intervals,
cointegration tests do not give interpretable results due to f − s not being I(1). Table 34 in the
Appendix shows that r̃ ∼ I(1) for every testing period.

Table 22 shows the results of the Engle-Granger test between f − s and r̃ for Bitcoin Coin-M
futures. First of all, note that the interval 2021-12-31 - 2022-06-24 is not discussed as f − s is
I(1) on this interval. Compared to Table 21, the p-values of the ADF test of the residuals for the
simple cost-of-carry model all decreased in Table 22, implying stronger stationarity of the residuals.
Instead of 3 intervals not being cointegrated, it is reduced to 2 by adding r̃. For the intervals where
stationarity of the residuals is ensured, the OLS estimates of the first-stage regression in the left-
hand side of the table can be interpreted, and α̂ and β̂ are super-consistent. The intercept α̂ is
close to zero, as expected. However, the estimate of the cointegration parameter β̂ is extremely
high. On three separate intervals a value of β̂ > 100 is observed, while the hypothesis of the
cost-of-carry model was β = 1. The implications of this will be discussed at the end of this
section.
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Engle Granger test Bitcoin Coin-M futures using cost-of-carry for investment assets

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 - 2020-09-25 (N = 2008)

0.009 23.754 1.780 13.343 0.000*** 0.082 12 -1.44 0.140 1 -1.805 0.068*

2020-08-05 - 2020-12-25 (N = 3949)

0.012 32.717 0.875 37.400 0.000*** 0.262 19 -2.302 0.020** 1 -2.503 0.012**

2020-09-25 - 2021-03-26 (N = 4062)

0.029 23.616 1.130 20.899 0.000*** 0.097 18 -1.827 0.064* 1 -2.796 0.005***

2020-12-25 - 2021-06-25 (N = 4178)

0.0323 125.897 2.655 47.415 0.000*** 0.350 24 -1.630 0.097* 2 -2.203 0.0265***

2021-03-26 - 2021-09-24 (N = 4176)

-0.029 635.06 8.939 71.048 0.000*** 0.547 9 -2.172 0.029** 4 -2.516 0.011**

2021-06-25 - 2021-12-31 (N = 4340)

0.006 106.407 1.766 60.245 0.000*** 0.456 8 -3.0595 0.002*** 2 -3.342 0.0008***

2021-09-24 - 2022-03-25 (N = 4183)

0.052 -67.77 1.557 -43.552 0.000*** 0.312 7 0.156 0.734 1 -0.191 0.617

2021-12-31 - 2022-06-24 (N = 4024)

0.011 0.1525 0.282 0.540 0.589 0.000 16 -2.938 0.003*** 7 -2.809 0.005***

2022-03-25 - 2022-09-30 (N = 4395)

-0.003 2.1694 0.066 32.686 0.000*** 0.196 15 -2.765 0.001*** 7 -2.256 0.01**

Table 22: Results of performing the Engle-Granger test on BTC Coin-M futures using the cost of
carry model for investment assets. The left hand side of the table β̂,σβ̂ , tβ and R2 are parameters

corresponding to the OLS regression f − s = α + βr̃ + ϵ, and the parameters γAIC , t̂AIC , pAIC ,
γBIC , t̂BIC and pBIC are parameters corresponding to the Augmented Dickey Fuller (ADF) test.
Notice that *, ** and *** imply significant t-statistics at the 10,5, and 1% level, respectively.

58



Table 35 in the Appendix shows the results for Ethereum Coin-M futures, where the intervals
2020-09-25 - 2021-03-26 and 2021-12-31- 2022-06-25 are not considered due f − s not being
I(1). For all intervals considered, stationarity of the residuals is concluded. The estimate for the

cointegrating parameter β̂ for Ethereum Coin-M futures is also far off the value of 1 hypothesized.
Tables 36 and 37 in the Appendix for USD-M futures show analogous results.

Figure 17: Cost of Carry (rt,T (T − t)) per interval of Coin-M futures. The declining cost of carry
throughout the interval can be explained by (T − t) getting smaller as t increases.

In general, under the cost-of-carry model for investment assets, the regression equation f − s =
α + βr̃ + ϵ is an improvement in terms of cointegration compared to f − s alone. However, for
the model to hold, β = 1 is required. This is not what is observed in the data, and large values
of β̂ > 100 are estimated. This means that the cost of carry model for investment assets, which
only consists of the risk-free rate, is unable to explain the observed (log) basis between Bitcoin
and Ethereum Coin-M futures. In some intervals, the cost-of-carry of the risk-free rate needs to
be scaled by a factor of 100 to explain the variation in the futures basis. This result may seem
surprising, given that the cost of carry model for investment assets is widely used throughout large
markets such as for stocks and bonds. To analyze this further, Figure 17 shows the cost-of-carry
r̃ across all 9 intervals for Coin-M futures. For the majority of the intervals, this cost-of-carry
was close to zero. This can be explained due to zero interest rates which can be seen in Figure
15. The negligible cost-of-carry start to disappear from the beginning of 2022, when interest rates
moved from zero to higher rates. In the latter intervals, all Tables show declining values of β̂
as the cost-of-carry becomes meaningful. For the majority of intervals, the cost-of-carry model
for investment assets is unable to explain the high value of the basis observed in figures 6, 36,
7 and 8. At face value, the results of this section conclude that the futures market for Bitcoin
and Ethereum is not efficient. It has been demonstrated before that for values β̂ ̸= 1 arbitrage
opportunities are possible through Table 10. Performing a ’cash-carry’25 trade by arbitrageurs
would have been profitable on almost every interval tested. The lack of arbitrage opportunities
restoring parity between the futures and spot prices could be because of an omitted parameter in
the regression equation 78. In the next section we will build upon this analysis to find this omitted
parameter.

25Reminder that a cash-and-carry trade implies taking a short position in the futures contract at time t, buying
the spot asset at time t and closing the trade at time T profiting F (t, T )− St.
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5.4 Cost-of-Carry Model for Commodities

In section 5.3.1, it was concluded that using the cost-of-carry model for investment assets does
not explain all observed futures basis in the market. In order to further explain the observed
gap, we consider the cost-of-carry models for commodities, given by F (t, T ) = Ste

(rt+δt), where
δt = (kt − Ψt), which we will refer to as the net convenience yield as explained in section 2.2.5.
Since the parameter δt originates from the commodities market, it is necessary to provide an
interpretation in relation to the cryptocurrency market. In section 3.3, it has been attempted to
rationalize what δt might be. It was concluded that storage costs (if any) were relatively low and
fixed costs instead of per unit. In fact, Schmeling et al. (2022) even omit storage costs completely
from cryptocurrencies. The pure convenience yield Ψt could be the utility of the physical Bitcoin
or Ethereum as a means of transaction, or for Ethereum specific the usage of smart contracts.
Another possible interpretation for Ψt is the self-custody benefit, in wake of bankruptcies of some
prominent cryptocurrency exchanges. Schmeling et al. (2022) even argue that Ψt may originate
from demand in leveraged speculation, which will be discussed in greater detail later.

Recall that δt is an intangible parameter found through market prices. Under the cost-of-carry
model for commodities, all unobserved futures bases from section 5.3.1 can be explained by δt.
Again moving from a time t scenario to vector notation, let δ note the vector of convenience yield
over time, i.e.

δ =


δ0
δ1
...

δT−1


We then obtain, using (34), δ = f − s− r̃. The right hand side of this equation is already known
due to the previous section. To illustrate the value of δ over time, Figures 18, 19, 47 and 48 show
the net convenience yield δ over time. All figures show that, on average, we observe a positive
value of δ. This implies that the market implies either high storage costs k, or a highly negative
convenience yield Ψ. The plots show a value of δ exceeding 0.1 (≈ 10%) for some time periods.
This level is simply too high to attribute to storage costs, which we argued to be negligible.
Assuming a low k leads to the cost-of-carry model directing the high observed futures basis to a
negative value of Ψ, since δ = (k − Ψ). This implies that market participants prefer to hold a
futures contract instead of the physical Bitcoin or Ethereum. The high observed futures basis thus
stems from a highly time variant Ψ which is negative most of the time. This is also what Schmeling
et al. (2022) conclude. Their analysis concludes with the observation that the convenience yield on
Bitcoin futures is highly time variant. Possible reasons for this were absence of arbitrageurs that
restore parity, and small speculators that have high demand for leveraged speculation through
futures.

The claim of δ being high (as a result of a negative Ψ) leads to contradictory arguments. To illus-
trate why, consider Figure 19, which shows the net convenience yield of Ethereum USD-Margined
futures over time. The last interval shows a negative sustained value of δ. In September 2022,
the Ethereum merge took place. This resulted in holders of Ethereum gaining an additional token
called ETHPOW. This additional token is similar to a dividend payment, and futures contracts
did not get this token. Therefore the value of Ψ rose sharply during this time, causing δ < 0
and the future to go in backwardation. The backwardation immediately reverted after the merge
took place. This shows that the parameter Ψ is present in its natural form as in the commodities
market. Taking this evidence into account, theorizing δ for all other intervals to be high means
that Ψ is both positive and negative at the same time. Concluding the analysis as is leads to too
many question marks about the value and interpretation of δ as a result of a strong time-varying
Ψ. It is hypothesized here that it is not δ alone that is this volatile, but perhaps the proxy of the
risk-free rate as chosen is too simplistic.
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Figure 18: Plot of the net convenience yield for Bitcoin Coin-M futures

Figure 19: Plot of the net convenience yield for Ethereum USD-M futures

5.5 Funding Rate Cost-of-Carry Model

Schmeling et al. (2022) perform similar research to this thesis, and concluded their analysis with
stating that δ is highly time variant due to a lack of arbitrageurs, and high demand for leveraged
speculation by small traders. The previous section in this thesis found similar results. The
highly time-varying δ could be market irrationality of small speculators as Schmeling et al. (2022)
hypothesized, but could also be to incorrect risk-free proxies being used to price quarterly futures.
In Figure 17, it was shown that the cost-of-carry during 2020 and 2021 was negligible, despite the
quarterly futures expressing contango greater than 10% at times. In this section, through the scope
of opportunity costs and sentiment, a new proxy to model the risk-free rate in the cryptocurrency
market will be proposed. It will be investigated whether a new model, using this new proxy for
the risk-free rate, will lead to δ becoming less time-variant and constant over time.
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5.5.1 Opportunity Costs and the Effect of Perpetual Futures on Quarterly Futures

Empirical results from the data in this thesis have shown in Figures 18, 19, 47 and 48 that large
values of δ are present in the quarterly futures market for Bitcoin and Ethereum. Schmeling et al.
(2022) hypothesized that a possible explanation of this phenomenon is a lack of arbitrageurs to
put capital into the cash-and-carry trade to restore the high observed futures basis back in lower
territory. In this section, this claim will be analyzed, and it will be shown that opportunity costs
exist for arbitrageurs due to other opportunities in the market yielding higher returns. If the
amount of possible opportunities is greater than the total amount of capital willing to restore the
quarterly futures basis, it could explain the sustained high basis on Bitcoin and Ethereum quarterly
futures. Specifically, the more frequently traded perpetual futures is one of such opportunities.
Arbitrageurs have to choose between deploying capital in the cash-and-carry trade for perpetual
or quarterly futures. Recall that if the perpetual futures price is, on average, greater than the spot
price (Fp(t) > St) during an 8-hour period, the funding rate would be positive. Arbitrageurs could
take a short position in the perpetual futures contract and receive the funding rate. Notice that this
is a very similar trade to the cash-and-carry described in Table 10, where for F (t, T ) > Ste

rt,T (T−t)

an arbitrageur would carry the spot asset from time t to T , and take a short position in the futures
contract (perform a cash-and-carry trade).

Let Γ1(0, T ) denote the trading strategy of cash-and-carry of perpetual futures. This is the strategy
of buying the underlying spot Bitcoin or Ethereum S0 at time 0, and taking a short position on
the perpetual future Fp(0), receiving the funding rate FR(·) every 8 hours. For simplicity and
fair comparison, the start and end dates of the strategy will be matched with the maturity dates
of the quarterly futures contracts, so from time 0 to time T for every interval. Let Θ(·, 0, T )
denote profit function at time T of this strategy, which started at time 0. Then, Θ(Γ1, 0, T ) =

(Fp(0) − Fp(T )) + (ST − S0) +
∑3(̃T )

i=1 FR(i), where the first two terms are the profit or loss due
to price changes, and the latter is the sum of all funding rate payments received from time 0 to

time T . Notice that the summation has an upper limit of 3(̃T ). So far in this thesis, (T − t)
has been expressed in years, to scale the annual risk-free rate with. However, for the funding
rate, 3 daily payments from time 0 to T are incurred, therefore measuring in days is appropriate,

and (̃T ) = 365(T ). Figures 20 and 50 show Θ(Γ1, 0, T ) for every interval of Coin-M perpetual
futures. The results for USD-M perpetual futures are similar and therefore plots are omitted. It is
clearly visible from the figures that Γ1(0, T ) has been a profitable trading strategy with Θ(Γ1, 0, T )
exceeding 10% in two occasions with a total duration of 6 months. Γ1(0, T ) also experiences little
drawdown.
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Figure 20: Returns in percentage of the cash and carry strategy for Bitcoin Coin-M perpetual
futures

Next, let Γ2(0, T ) denote the cash-and-carry strategy of quarterly futures. This strategy is buying
the underlying Bitcoin or Ethereum at time 0, taking a short position in the quarterly futures
at time 0, and closing out the positions at time T , where we have F (T, T ) = ST . As a result,
Θ(Γ2, 0, T ) = (F (0, T )− F (T, T ) + ST − S0) = (F (0, T )− ST + ST − S0) = F (0, T )− S0. Figure
21 shows the returns for the cash-and-carry strategy for Bitcoin Coin-M quarterly futures per
interval. It is worth noting that the returns of Γ2(0, T ) are not realized until time T , therefore
the equity curve of the strategy is the profit (loss) if the position would be closed out before
time T . In Figure 21 it can be seen that Θ(Γ2, 0, T ) > 0 for all intervals, similar to the case of
perpetual futures. However, there is a lot more drawdown observed than for Γ1(0, T ). Drawdown
is defined as an unrealized loss at time t ∈ {0, ..., T − 1} due to unfavorable price changes. This
high observed drawdown could be a problem for arbitrageurs performing Γ2(0, T ), if not enough
margin is posted. If too little margin is posted and large drawdowns occur, an arbitrageur could
be forced to unwind the position at an unfavorable point in time causing a huge loss, similar what
happened to Long Term Capital Management in 1998. This risk could limit the amount of capital
willing to take the other side of such a trade, since arbitrageurs try to mitigate risks as much as
possible. For Ethereum Coin-M futures we observe similar results as can be seen in Figure 49.
The plots for USD-M futures look similar to those of Coin-M futures and are therefore omitted.

Tables 38 and 39 in the Appendix show more rigorous comparisons between Γ1(0, T ) and Γ2(0, T ).
The majority of intervals show that Θ(Γ1(0, T )) was higher, and experienced lower drawdown
than Θ(Γ2(0, T )). It is worth noting that only the final return and max drawdown are computed,
since a cash-and-carry trade for quarterly futures is taken with the target in mind to hold it until
time T . It could be argued that the perpetual futures funding rate is a more interesting trade for
arbitrageurs, emphasized by the significantly lower drawdown observed in (20) in comparison to
(21). Arbitrageurs take on less price risk and the returns are comparable, making the perpetual
futures carry trade more attractive on paper. It is worth noting, however, that the return of
a cash-and-carry trade for quarterly futures E[Θ(Γ2, 0, T )] = E[F (0, T ) − S0] = F (0, T ) − S0 is
deterministic at time 0, since the profit is locked in at time 0, assuming that the boundary condition
F (T, T ) = ST holds. For perpetual futures, we have E[Θ(Γ2, 0, T )] = E[(Fp(0) − Fp(T ) + (ST −
S0) +

∑3̃(T )
i=1 FR(i)] = (Fp(0) − S0) + E[ST − Fp(T ) +

∑3(̃T )
i=1 FR(i)]. This is not deterministic

because no boundary condition exists, and because the funding rate is stochastic. This gives the
perpetual futures cash and carry trade less certainty. However, empirical data suggests that the
drawdown of the perpetual futures cash-and-carry strategy Γ1(0, T ) is low.
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Figure 21: Returns in percentage of the cash and carry strategy for Bitcoin Coin-M futures

The arguments given above analyze the claim of Schmeling et al. (2022) of absence of arbitrageurs
in quarterly futures markets. Empirical data in this section has shown that perpetual futures
cash-and-carry opportunities compared to quarterly futures are as good, if not better, from a
risk/return perspective for arbitrageurs. The cash-and-carry trades of quarterly futures incurred
high drawdown between time 0 and T , which may result in arbitrageurs staying away. The per-
petual futures market is also magnitudes larger than quarterly futures, therefore more capital can
be deployed in perpetual futures than quarterly futures. It is therefore argued here that perpetual
futures affect the basis of quarterly futures. This follows purely from the profit-maximizing mind-
set of arbitrageurs, who can achieve higher returns and lower risk in perpetual futures, therefore
the amount of capital in the cash and carry trades of quarterly futures is limited. Arbitrageurs
will require at least the return of the cash-and-carry trade of perpetual futures in order to take the
cash-and-carry trade on quarterly futures. This implies high opportunity costs, or equivalently a
high cost of capital for taking the cash-and-carry trade on quarterly futures and locking up capital
for a longer time. It may therefore be necessary to add this cost of capital in the cost-of-carry
model for Bitcoin and Ethereum quarterly futures.

In addition to the opportunity cost expressed in cost of capital, it can also be shown that through
excess demand for leveraged speculation driven by market sentiment, that the perpetual futures
funding rate directly influences the quarterly futures basis. Suppose a speculator wants to take
a leveraged futures position on Bitcoin or Ethereum. To do this, there is a choice between quar-
terly and perpetual futures contracts. If both F (t, T ) and Fp(t) are higher than their theoretical
fair value by the cost-of-carry model, then a rational investor would simply buy St at time t.
However, it has been argued in section 3.2.1 that euphoric sentiment results in high demand for
leveraged speculation, resulting in speculators willing to pay extra for the opportunity to borrow
capital to speculate on price increases. Suppose the speculator is indifferent between the two and
wants to maximize his return at time T . For the speculator at time t, choosing between the two

options results in mint

(
B(t, T ),EQ

t [
∑3(̃T−t)

i=1 FR(i)]

)
. Recall that B(t, T ) = F (t, T ) − St, and

EQ
t [
∑3(̃T−t)

i=1 FR(i)] is the time t expected value of all perpetual futures funding rate payments.

If at time t, B(t, T ) < EQ
t [
∑3(̃T−t)

i=1 FR(i)], then the speculator may choose to buy the quarterly

futures contract F (t, T ), even if F (t, T ) > Ste
rt,T (T−t). Similarly, if B(t, T ) > EQ

t [
∑3(̃T−t)

i=1 FR(i)],
then any rational investor would pick the perpetual futures contract as it maximizes the return at
time T .
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Another example can be given from the point of view of an arbitrageur. Suppose again that

B(t, T ) < Et[
∑3(̃T−t)

i=1 FR(i)]. The arbitrageur could simply take a short position in the perpetual
futures contract at time t, and a long position in the quarterly futures position. At time T , the

perpetual futures position is closed, and the arbitrageur receives [
∑3(̃T−t)

i=1 FR(i)] − B(t, T ). A
note on why an arbitrageur may take a long position in the quarterly futures contract instead of
buying St is that this can be done extremely capital efficient, as the two positions offset most of
the price movement. If the actual spot asset is bought, more capital is required.

An additional point worth mentioning here, is that it is assumed Fp(T ) = ST , such that the
arbitrageur does not lose money on the negative price difference between the perpetual futures
and spot price. For quarterly futures, we have the boundary condition F (T, T ) = ST . However,
perpetual futures do not have an expiration date. As He et al. (2023) points out, convergence of
the perpetual futures price to the spot price is therefore not guaranteed. Empirically, however,
we see that this difference is very small. Figure 51 in the Appendix shows that this difference
historically has been a maximum of -0.2% except some very short term deviations. This is much
smaller than the quarterly futures basis observed in (6,36,7 and 8).

The arguments and examples given above show that the funding rate will have an influence on the
basis of quarterly futures. If the (risk-neutral) expected value of funding rate payments from time
t to T is greater than the futures basis, then an arbitrage / profitable trading strategy is possible.
This means that if the quarterly futures price were to trade exactly at fair value as computed by
(23), this arbitrage/profitable trading strategy would therefore cause F (t, T ) to rise above its fair
value.

The hypothesized relationship is therefore as follows. As a result of high perceived investor sen-
timent, market participants are willing to pay heavily for the ability to speculate on leverage.
This translates itself into high funding rates on the perpetual futures contract. If the quarterly

basis does not rise accordingly, i.e. B(t, T ) < EQt[
∑3(̃T−t)

i=1 FR(i)], it is shown that a profitable
cash-and-carry strategy exists, which would cause B(t, T ) to rise. It is reasoned that perpetual
futures influence quarterly futures, instead of the other way. This is due to the size differential,
where perpetual futures have almost 100x more volume than quarterly futures (14).

5.5.2 Funding Rate Cost-of-Carry Model

In the previous section, the direct effect of perpetual futures funding rate on the basis of quarterly
futures was hypothesized, both using arguments about opportunity costs, and excess demand for
speculation driving the funding rate and quarterly futures basis higher. This hypothesis will be
formally tested in this section. To measure the direct effect of the funding rate on the quarterly
futures basis, the funding rate r

pf

t,T will be used as a proxy for the crypto-native risk-free rate. The
model proposed here has the following form:

F (t, T ) = Ste
(r

pf
t,T−(rt,T+δt)(T−t)) (79)

, where r
pf

t,T = EQ
t [
∑3(̃T−t)

i=1 FR(i)] and δt = (kt − Ψt). Notice that the (T − t) vanishes in r
pf

t,T

since it sums over all future funding rate payments from time t to T . The model formulated in
(79) will be called the funding rate cost-of-carry model. The model falls under the category of
cost-of-carry model for foreign currencies, described in (33). The intuition behind this model stems
from arguments in the previous section about opportunity costs regarding perpetual futures. If
the expected return on the cash-and-carry trade on perpetual futures from time t to time T is y%,
then the quarterly futures basis B(t, T ) should be at least y% to make the arbitrage opportunity
attractive. The risk-free rate is subtracted here as the opportunity cost to abstain from making

any trade at all. If rt,T > rr
fp
t,T , then arbitrageurs are better off investing in the risk-free rate.
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Notice that (79) is still in a time t setting with parameters in the exponent. Using vector notation
and applying a log transformation to extract the parameters from the exponent results in:

f = s+ (rpf − r̃) + δ (80)

In (80), f and s again represent the log futures and spot prices, and rpf is given by:


EQ
0 [
∑3T̃

i=1 FR(i)]

EQ
1 [
∑3(̃T−1)

i=1 FR(i)]
...

EQ
T−1[

∑3
i=1 FR(i)]


r̃ is the vector with the risk-free rate, and δ the vector of convenience yields across time. The
challenge in (79) and hence in (80) lies in finding a suitable estimation for rpf , since it is stochastic.

At some time t < T , we have r
pf

t,T = EQ
t [
∑3(̃T−t)

i=1 FR(i)], which means that the upcoming funding
rates from time t to time T have to be estimated at time t. In order to choose a suitable model,
we start with a visual inspection of Figure 31 in the Appendix. It is visible that periods with an
elevated funding rate periods seem to stay elevated for some time. It appears as if the funding
rate time series is non stationary, and that previous realizations of the funding rate impact future
realizations. It will therefore be attempted to model the perpetual futures funding rate using an
Autoregressive Integrated Moving Average (ARIMA(p, d, q)) model, which allows for forecasting
non stationary time series, and allows for previous realizations to affect future realizations. The
model where d = 0 is called the ARMA(p, q) model, which requires stationary data to have
proper forecasts. Since it is suspected that funding rates may be non stationary, the ARMA(p, q)
model is not feasible. Therefore an ARIMA(p, d, q) model is considered to determine rfp . An
ARIMA(p, d, q) model is simplistic and suffices for the application within this thesis. The goal of
this section is to test whether including the funding rate in the cost of carry model leads to a higher
explanation of the Bitcoin and Ethereum futures basis. Developing an extensive model to forecast
the behavior of funding rates would be a thesis on its own. Therefore, due to time and length
constraints, the goal of these simple ARIMA models in this thesis is to test the hypothesis that
the perpetual futures funding rate impact the pricing of quarterly futures. It is acknowledged that
modeling the funding rate is done in a simplistic way and more precise and extensive estimation
methods are possible.

Adhikari and Agrawal (2013) define a process Xt to follow an ARIMA(p, d, q) if Xt satisfies:

(
1−

p∑
i=1

ϕiL
i

)
(1− L)dXt =

1 +

q∑
j=1

θjL
j

 ϵt (81)

, where ϕ represents the coefficients of the p autoregressive terms, and θ the coefficients of the q
moving average terms. In order to select the corresponding parameters p, d, q, a two-step procedure
will be used. The first step is to identify the correct model out of a class of general ARIMA(p, d, q)
models. In order to do this, the Auto Correlation Function (ACF) is considered. Figure 22 shows
that for both Bitcoin and Ethereum Coin-M funding rate, the ACF is decaying slowly, and in fact
does not converge to zero.
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(a) Autocorrelation Function (ACF) for the Bitcoin
Coin-M funding rate

(b) Autocorrelation Function (ACF) for the
Ethereum Coin-M funding rate

Figure 22: Autocorrelation Function (ACF) for the Bitcoin and Ethereum Coin-M funding rate

Adhikari and Agrawal (2013) argue that an ACF that does not decay towards zero violates the
stationarity assumption that ARMA(p, q) models require. This follows from stationary time series
being mean-reverting; a value of Xt above its mean implies a higher probability of Xt−1 being
a lower value and thus reverting to its mean. The ACF plot shows that this is not true for the
funding rate time series, and a high degree of autocorrelation is present. This is also what was
found in the visual analysis of Figure 31, where certain market regimes experienced sustained high
funding rates. In order to remove this autocorrelation, the first-differene of the time series rpf is
taken. To formally test whether stationarity is guaranteed under the first-differenced time series,
Table 40 in the Appendix shows the results of the ADF test of ∆rpf . The test statistic is highly
significant, both using the AIC and BIC. Therefore ∆rpf is stationary, and d = 1 in the ARIMA
model. For USD-M futures the same results are found and therefore omitted.

After d = 1 is chosen, the first step of specifying the correct ARIMA(p, 1, q) models is selecting
a class of suitable models through a visual inspection of the ACF and Partial Autocorrelation
Function (PACF) of ∆rpf . This is similar to the first step of the Box-Jenkins method. Figures
52 and 53 in the Appendix show the ACF and PACF for ∆rpf . Starting with USD-M futures, it
could be argued that both for Bitcoin and Ethereum the PACFs are decaying in a geometric way
towards zero. A geometric decay of the PACF is a characteristic of an ARIMA(0, 1, q) according
to Neusser (2016). For the ACF, it is visible that after a maximum of 3 lags, the ACF is well in
the significance region, indicating an ARIMA(0, 1, 1), ARIMA(0, 1, 2) or ARIMA(0, 1, 3) model.
However, it could also be argued that the decay of the PACF is not geometric, and in fact is only
significant after 10 lags. It will therefore also be tested if an ARIMA(10, 1, 1), ARIMA(10, 1, 2) or
ARIMA(10, 1, 3) is appropriate. For Bitcoin and Ethereum Coin-M futures a similar visual inspec-
tion is performed, and the ARIMA(0, 1, 6) , ARIMA(0, 1, 7) , ARIMA(0, 1, 8), ARIMA(6, 1, 6),
ARIMA(6, 1, 7) and ARIMA(6, 1, 8) are picked using the same procedure. Table 23 shows the
AIC values for all six models chosen. It follows that that the best model for the Bitcoin USD-M
funding rate is the ARIMA(0, 1, 2) model, and for Ethereum USD-M this is an ARIMA(0, 1, 1)
model. For Coin-M Bitcoin and Ethereum futures the AIC is minimized for an ARIMA(0, 1, 6)
model and thus chosen.
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AIC for different ARIMA(p, 1, q) models for USD-M futures

Asset ARIMA(0, 1, 1) ARIMA(0, 1, 2) ARIMA(0, 1, 3) ARIMA(10, 1, 1) ARIMA(10, 1, 2) ARIMA(10, 1, 3)

BTC -39830 -42921 -39826 -39810 -39808 -41404

ETH -40680 -38134 -38132 -38116 -38114 -39439

AIC for different ARIMA(p, 1, q) models for Coin-M futures

Asset ARIMA(0, 1, 6) ARIMA(0, 1, 7) ARIMA(0, 1, 8) ARIMA(6, 1, 6) ARIMA(6, 1, 7) ARIMA(6, 1, 8)

Bitcoin -16240 -16239 -16238 -15984 -15982 -15980

Ethereum -15106 -15104 -15103 -15096 -15099 -14942

Table 23: AIC values ARIMA models

Now that the models are chosen, a quick explanation of the forecasting method is given. Recall
that rpf is given by:


EQ
0 [
∑3T̃

i=1 FR(i)]

EQ
1 [
∑3(̃T−1)

i=1 FR(i)]
...

EQ
T−1[

∑3
i=1 FR(i)]


The first step is fitting the ARIMA(p, 1, q) models on the entire testing period to obtain the
corresponding coefficients. Then at each time t ∈ {0, .., T − 1} we use the previous funding rate
values and the ARIMA(p, 1, q) model to forecast from time t to T . All forecasted funding rates

are then summed and EQ
t [
∑3(̃T−t)

i=1 FR(i)] is obtained. We now have an estimate for rpf , and the
Engle-Granger test for is performed again to check for improvement in terms of cointegration. The
regression in the first step of the Engle-Granger test is now given by:

f − s = α+ β(rpf − r̃) + ϵ (82)

In order for cointegration to be valid, it must be checked whether (rpf − r̃) ∼ I(1). Table 41 shows
that for Coin-M futures the intervals 2020-09-25 - 2021-03-26 and 2021-12-31 - 2022-06-24 are
I(0) at the 5% significance and thus can not be interpreted. For USD-M futures this is the interval
2022-03-22 - 2022-06-24. For f − s, Table 33 in the Appendix has shown that for Bitcoin Coin-M
this is the case for 2021-12-31 - 2022-06-24.

Table 24 shows the results of performing the Engle-Granger test on the funding rate cost-of-carry
model for Bitcoin Coin-M futures. First drawing our attention to the right hand of the table, it
is clear that under the AIC and BIC, for all intervals tested the residuals are stationary, with the
caveat that the two intervals highlighted above cannot be considered, due to (rpf − r̃) ∼ I(1). For
all other intervals it is therefore possible to interpret the OLS estimate (cointegration parameter)

β̂, and α̂. In comparison to the model for the investment asset where the cointegration parameter
for some intervals was greater than 100, we now observe the cointegration parameter β̂ much closer
to 1, and α̂ close to zero. This implies that the funding rate cost-of-carry model explains more of
the observed quarterly futures basis, as was hypothesized, and in the long-run f − s ≈ (rpf − r̃).
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Bitcoin Coin-M futures funding rate model

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 - 2020-09-25 (N = 2008)

0.005 0.827 0.015 54.427 0.000*** 0.599 15 -3.694 0.001*** 0 -4.623 5.557e-6***

2020-08-05 - 2020-12-25 (N = 3949)

0.011 0.869 0.015 58.339 0.000*** 0.464 1 -3.839 0.001*** 1 -3.839 0.001***

2020-09-25 - 2021-03-26 (N = 4062)

0.027 0.379 0.01 40.284 0.000*** 0.287 23 -2.659 0.007*** 1 -4.067 5.613e-5***

2020-12-25 - 2021-06-25 (N = 4178)

0.034 0.718 0.012 61.705 0.000*** 0.478 24 -3.102 0.002*** 1 -3.971 8.198e-5**

2021-03-26 - 2021-09-24 (N = 4176)

0.017 0.790 0.008 98.108 0.000*** 0.699 29 -4.770 2.945e-6*** 2 -4.687 4.25e-6***

2021-06-25 - 2021-12-31 (N = 4340)

0.019 0.417 0.016 26.476 0.000*** 0.140 3 -2.440 0.014** 2 -2.562 0.011**

2021-09-24 - 2022-03-25 (N = 4183)

0.009 0.889 0.008 107.7 0.000*** 0.751 1 -4.312 2.073e-5*** 0 -4.532 8.225e-6***

2021-12-31 - 2022-06-24 (N = 4024)

0.008 1.074 0.02 53.152 0.000*** 0.414 15 -4.157 3.909e-5** 0 -4.939 1.392e-6***

2022-03-25 - 2022-09-30 (N = 4395)

0.007 0.040 0.018 2.156 0.031** 0.001 26 -2.474 0.013** 7 -2.471 0.013**

Table 24: Results of performing the Engle-Granger test on each interval of BTC Coin-M futures
using the funding rate cost of carry model. The left hand side of the table β̂,σβ̂ , tβ and R2 are

parameters corresponding to the OLS regression f − s = β(rpf − r̃)+ ϵ, and the parameters γAIC ,
t̂AIC , pAIC , γBIC , t̂BIC and pBIC are parameters corresponding to the Augmented Dickey Fuller
(ADF) test. Notice that *, ** and *** imply significant t-statistics at the 10,5, and 1% level,
respectively.

For Ethereum Coin-M futures, similar results can be deduced from Table 42 in the Appendix.
Each interval contains I(0) residuals from the first-stage regression, and the OLS estimate of the

cointegrating parameter β̂ improved dramatically. In Table 35, the first six intervals reported
cointegrating parameters of approximately 186,99,23,124,627 and 96, respectively. This has now
been improved to 0.827, 0.869, 0.379, 0.718, 0.789 and 0.417, respectively. The cointegration
parameters are closer to 1, indicating a better explanation of the futures basis.

To get more intuition about the remaining unexplained futures basis under the funding rate cost-
of-carry model, Figure 23 plots the net convenience yield δ for Bitcoin Coin-M futures. Under this
model, f −s−rpf + r̃ = δ. Figure 23 shows that using (rfp − r̃) as the interest-rate carry term has
flattened the value of δ in general, being more centered around zero. The highest observed value
of δ is slightly above 0.1, whilst using r̃ alone resulted in a maximum δ > 0.15 (as seen in (18)).

The cointegration parameter β̂ being closer to 1 thus also seen visibly. It is also visible in Figure
23 that δ is more volatile under the funding rate model than under the investment asset model.
This is due to the fact that rpf itself is volatile, as it is estimated based on previous observations
using an ARIMA(0, 1, 2) model. This model uses relatively short-term lags which can explain
the observed volatility, since the funding rate computed every 8 hours can deviate significantly.
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In addition, under the funding rate model, rpf is vulnerable to outliers, where multiple deviation
from the mean are seen, but revert back quickly. It is worth noting that the two largest outliers
(in grey) are also seen in Figure 18. An explanation for this model to be more vulnerably is the
choice of model. As stated earlier, it is acknowledged that the choice of model is simplistic and
could be modeled to higher precision in future research. Relatively few lagged terms are used here,
perhaps more extensive models could mitigate this volatility. In general, the unexplained futures
basis δ is much more flat than for the earlier model, confirming the findings in Table 24 about
drastically improving the fit using the (rfp − r̃) carry term. A similar plot regarding Ethereum
Coin-M futures can be found in Figure 54.

Figure 23: Net convenience yield δ Bitcoin Coin-M futures under the funding rate cost of carry
model.

The same procedure is now performed on USD-M futures. Table 43 and 44 in the Appendix show
the results of the Engle-Granger test on Bitcoin and Ethereum Coin-Futures under the funding
rate cost-of-carry model. The residuals of the first-stage OLS regression are all I(1) except for the
second-to-last interval, which could not be considered due to Table 41 concluding (rpf − r̃) ∼ I(1).
The cointegration parameters found on almost all intervals are close to 1, greatly improving the fit
of the models compared to the cost-of-carry model for investment assets. Figure 24 shows the net
convenience yield δ under the cost-of-carry model. Notice the relatively flat structure compared
to Figure 24 with in general lower values for δ under the funding rate model.

This section has shown that using the funding rate cost-of-carry-model with the carry term (rpf−r̃)
has greatly improved the explanation of the observed futures basis, leading to smaller values of δ.
For all intervals tested, the residuals of the cointegrating regression expressed I(0) residuals, and

the estimate of the cointegration parameter β̂ close to 1, improving by a factor of 100x compared
to the cost-of-carry models for investment assets.
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Figure 24: Net convenience yield δ Ethereum USD-M futures under the funding rate cost of carry
model.
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6 Summary and Conclusions

6.1 Summary and Discussion of Results

This thesis attempted to explain the futures basis of Bitcoin and Ethereum using several cost-
of-carry models. The motivation behind the research in this thesis is a highly volatile futures
basis. For USD-M futures, a basis as high as 10% with a maturity of 3 months was observed. For
Coin-M futures with a higher underlying leverage, the futures basis was even higher at 18% with
a maturity of only 6 months. This high futures basis is unprecedented compared to other asset
classes, and consequently an explanation was sought after.

In an efficient market, a no-arbitrage futures price should exist, where arbitrageurs restore equi-
librium for any deviation from this no-arbitrage price. The literature was investigated, where
well-researched and tested models from different asset classes were gathered. These models, the
so-called cost-of-carry models, explain that the no-arbitrage price of futures consists of the under-
lying spot asset, and a set of carry variables arising from the deferred payment property of futures
contracts.

The benchmark model chosen is the cost-of-carry model for investment assets, which is given by
F (t, T ) = Ste

rt,T (T−t). This benchmark model uses the yield of US-treasuries as a proxy for
the risk-free rate. In the commodity markets, it is often observed F (t, T ) ̸= Ste

rt,T (T−t). The
reasoning behind the benchmark model not holding in the commodity markets is the storage
costs kt associated with storing a commodity, higher barriers of arbitrage, and the existence of
a convenience yield Ψt. The latter stems from commodities being a consumption asset, and
therefore, the physical commodity may be preferred over a derivative. The cost-of-carry model in
the commodities market is given by: F (t, T ) = Ste

(rt+kt−Ψt)(T−t) in a time t setting. Often, kt
and Ψt are bundled together, leading to δt = (kt−Ψt) and F (t, T ) = Ste

(rt,T+δt)(T−t). For foreign

currencies, the cost-of-carry model is given by F (t, T ) = Ste
(rt,T−rft,T )(T−t), the carry term being

the difference between local and foreign currency.

Testing of cost-of-carry models in related literature such as Quan (1992), Heany (2001), Asche and
Guttormsen (2002) and Wu et al. (2021) is done using a cointegration approach. The motivation
behind cointegration is the non-stationarity of time series and the interest in a long-run mean
reverting relationship, which is to be expected in efficient markets. Under the cost-of-carry models,
any deviation from the equilibrium between the two would result in an arbitrage opportunity,
which should restore equilibrium again. The cointegration test in this thesis is the two-step Engle-
Granger test, which performs a linear regression in the first step, and a test for stationarity of
the residuals in the second step. If the null hypothesis of the Engle-Granger test is rejected,
cointegration is concluded.

It was established in Section 5 that Bitcoin and Ethereum log spot and log futures prices are not
cointegrated, contrary to what is found in other markets. A reasoning for this is the large futures
basis that is observed in the cryptocurrency market. The results of testing the cost-of-carry model
for investment assets using the first-stage regression f − s = α+ βr̃ + ϵ established cointegration
in most intervals, explaining more of the futures basis than without the carry term r̃. However,
the estimate of the cointegrating parameter β̂ was reported to be greater than 100 for a large
proportion of the intervals tested. This implies that the observed futures basis is, on average,
100 times greater than the cost-of-carry term. It follows from this observation that the model
F (t, T ) = Ste

rt,T (T−t) is not sufficient to explain the futures basis observed. This result on its
own is not surprising, as the testing period (2020-2022) had a large period of zero interest rates
and futures with short maturities. It can therefore not be expected that such a simple carry term
can explain the large variation observed in future basis. Essentially, this finding implies that the
futures market for Bitcoin and Ethereum is not efficient. If F (t, T ) ̸= Ste

rt,T (T−t), then arbitrage
opportunities are possible.
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Attention was then turned to the cost-of-carry model with net convenience yield parameter δ.
Plotting the unexplained futures basis led to a highly time-variant δ, reaching a value as high
as 0.15 for some intervals. Schmeling et al. (2022) found similar results and concluded that the
cryptocurrency market has a highly time-variant δ. This is a result of a combination of two
factors, the shortage of capital performing cash-and-carry trades, and the excess demand for
leveraged speculation. At face value, the cryptocurrency futures market is inefficient, and too
little capital takes trades to restore equilibrium between futures and spot prices. It was argued in
Section 5 that the opportunity costs for cash-and-carry trades in the cryptocurrency market are
substantial, and can be quantified as the return on a similar strategy involving perpetual futures.
This high opportunity cost may limit the amount of capital that performs the cash-and-carry trade
on quarterly futures. Another argument was given, outlining the influence that excess demand
for speculation on perpetual futures has on the quarterly futures basis. These arguments led to
the proposition of the hypothesis that the perpetual futures funding rate is a well-suited proxy to
model the risk-free return in the cryptocurrency market.

This native risk-free rate in the cryptocurrency market consisting of perpetual futures funding

rate, is given by r
pf

t,T = EQ
t [
∑3(̃T−t)

i=1 FR(i)], the time t expectation of all future funding rate
payments. Since this is a stochastic quantity, it was attempted to simplistically model this from
the perspective of an investor at time t using an ARIMA(p, d, q) model. It was observed visually
that the time-series of funding rates has a non-decaying Autocorrelation Function. As such, models
that require stationarity of data therefore cannot be applied. It was found that the time series
∆rfp was stationary and therefore an ARIMA(p, 1, q) model was found to be suitable to model

EQ
t [
∑3(̃T−t)

i=1 FR(i)]. The parameters p and q, which minimize the AIC, were chosen to construct
the model. After the choice of ARIMA(p, d, q) models, the funding rate cost-of-carry model

was proposed as F (t, T ) = Ste
(r

pf
t,T−(rt,T+δt)(T−t)). The Engle-Granger test concluded stationary

residuals for every interval of the regression equation f −s = α+β(rpf − r̃)+ ϵ. The cointegrating

parameters β̂ were thus all super-consistent, and substantially closer to 1. For the new model, all
cointegrating parameters ranged between 0 and 1.885, and for the benchmark model this was a
range of -75 to 1269. This indicates a substantial improvement in terms of the fit of the model,
hypothesized by a cointegrating parameter β̂ close to 1. As such, the arguments that the funding
rates directly impact quarterly futures prices does seem to have merit. Visually, the value of δ
was seen to be lower resulting in a flatter futures basis.

Despite the large improvement in the cointegrating parameter, the model can be improved on. For
instance, the last interval suggested a parameter β̂ close to 0, which is odd, and may need extra
investigation. A visual representation of the remaining unexplained futures basis δ was shown
to be highly volatile, and regardless of the large improvement, a sustained futures basis was still
observed. The high volatility of δ can be explained by the volatility of the underlying funding
rate data, and the short and simple ARIMA(p, 1, q) model. It is acknowledged that this model
is likely too simple to truly estimate the future funding rates, and more complex and extensive
models will lead to a better estimation of r

pf

t,T and hence the futures basis.

6.2 Academic and Practical Takeaways

The results of this thesis provide several interesting academic and practical takeaways. As for
the academic takeaways, the gap between the existing literature of no-arbitrage futures pricing
and the cryptocurrency market is bridged, applying cost-of-carry models from all asset classes on
cryptocurrencies. In addition, a new model was proposed. This model explains substantially more
futures basis in the cryptocurrency market, through establishing the link between perpetual and
quarterly futures. This creates a deeper understanding of the behavior of the new and unknown
cryptocurrencies futures market, which opens possibilities for future research in the field of futures
pricing in the cryptocurrency market. As for practical takeaways, the empirical analysis of the
behavior of futures prices insist that uneducated investors trading in Bitcoin or Ethereum futures
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should exercise caution when trading these futures contracts. It has been shown that Bitcoin and
Ethereum futures trade well outside of the bands of traditional no-arbitrage models. An investor
should realize that the high futures basis on Bitcoin and Ethereum impose additional downside
risk, as convergence of the futures price to the spot price is guaranteed. Lastly, this thesis has been
extensive in describing all relevant mechanics of the futures market of cryptocurrencies market such
as the collateralization types, leverage and irrationality due to sentiment. This may contribute
to a greater understanding of the products, and lead to a more efficient and transparent market.
This benefits multiple stakeholders, such as researchers, investors, or arbitrageurs.

6.3 Limitations and Future Research

The methodology used to model the expected funding rate has its limitations. Estimation was done
through an ARIMA(p, 1, q) model, with p and q different for each futures type and asset, consisting
of relatively few lags. The funding rate data itself is volatile, leading to the ARIMA(p, 1, q)
models expressing a high degree of volatility in estimating the funding rate. This model is likely
too simplistic to precisely forecast all future funding rate payments. Future research could extend
on this thesis by making a more elaborate model of forecasting funding rates. Another limitation
of this research is the relatively short testing period. The time frame of the analysis in this thesis
is from 2020 to 2022, since the cryptocurrency futures market is still in its infancy. As a result,
the high observed futures basis observed in 2021 may prove to be an anomaly, and as the market
matures, this inefficiency decays. Subsequently, it may be that traditional cost-of-carry models
hold better in the future as the market becomes more efficient. An opportunity for future research
is to conduct the same analysis as in this thesis at a later time period, and compare the results to
test if this efficiency does arise.

In terms of future research, the methodology could be extended. In this thesis, the cointegrating
parameter was estimated to test the fit of the cost-of-carry models. This was done in a univari-
ate case, with one carry parameter at the time. The analysis performed in this research could
be extended to the multivariate case, by proposing a VAR model that allows for cointegration
between different assets, for instance. The Johansen test could be applied in that case. Since
cointegration implies the existence of Error Correction Models, several Error Correction Models
could be developed given the results of this thesis, to model the short and long-run dynamics
between futures and spot prices in the cryptocurrency market. Furthermore, this research has
limited itself to the largest two cryptocurrencies, Bitcoin and Ethereum. Future research could
perform similar analysis as performed here on smaller cryptocurrencies to see if similar behavior
is found. Lastly, this thesis has focused on the cost-of-carry approach to price futures contracts.
Other theories, such as adding risk premiums to futures prices could be applied on the futures
market of cryptocurrencies to explain the futures basis.
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A Appendix

A.1 Quarterly Futures Section

Figure 25: Visual representation of the Binance Coin-M contract size for BTC in the Binance
user-interface. We see that F (t, T ) is 16793.2, and the contract size is 100 USD. Thus in order
to buy 1 unit of F (t, T ) we need to long 16973,2

100 = 167.932 ≈ 168 contracts. Screenshot from:
https://www.binance.com/en/delivery/btcusd quarter on the 6th of December 2022.

Figure 26: Visual representation of the Binance USD-M contract size for BTC in the Binance user-
interface. We see that F (t, T ) is 16793.9. If a trader wants to buy 0.12 units worth of F (t, T ), that
is possible. There is no standardized contract size. The only requirement is that the minimum
size is 0.001 BTC. Screenshot from: https://www.binance.com/en/futures/BTCUSDT on the 6th
of December 2022.
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t F(t,T) Futures Type Position Size (BTC) Position Size (USD) Collateral PnL

0 10000 Coin-M 1 BTC 10000 10000 0
1 12500 Coin-M 1 BTC 12500 15000 5000
2 9000 Coin-M 1 BTC 9000 8000 -2000
3 7500 Coin-M 1 BTC 7500 5000 -5000
4 5000 Coin-M 1 BTC 5000 0 -10000

Table 25: Profit-and-loss (PnL) in USD of a Coin-M position. Note that we make the assumption
here that F (t, T ) = St for t = 0, 1, 2, 3, 4.

Figure 27: Maximum leverage and maintenance margin per position size interval for BTC USD-M
Quarterly Futures. Retrieved from Binance

Figure 28: Maximum leverage and maintenance margin per position size interval for BTC USD-M
Perpetual Futures. Retrieved from Binance
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Figure 29: BTC perpetual futures price and total Coin-M open interest (perpetual and quarterly
futures) in 2021 highlighted. The solid (blue) line represents the BTC price, and the candlesticks
represent the total Coin-M open interest of BTC perpetual and quarterly futures. Retrieved from
https://www.coinalyze.net

Figure 30: BTC perpetual futures prices and total USD-M open interest (perpetual and quarterly
futures) in 2021 highlighted. The solid (blue) line represents the BTC price, and the candlesticks
represent the total USD-M open interest of BTC perpetual and quarterly futures. Retrieved from
https://www.coinalyze.net
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Figure 31: Perperual futures funding rate and Bitcoin spot prices

Component Explanation

Market Momentum Price of the S&P 500 above or below its 125-day moving average
Stock Price Strength Number of stocks at 52-week highs versus those at 52-week lows
Stock Price Breadth Volume of shares rising versus declining
Put and Call Options 5-day put/call ratio
Market Volatility Level of the Volatility Index (VIX) above or below its 50-day moving average
Safe Haven Demand Difference in returns between shocks and bonds over the last 20 days
Junk Bond Demand Spread in yields of junk bonds versus investment grade

Table 26: Components of the Fear and Greed Index. Each component has an equal
weight, from which a value from 0 to 100 is calculated. Retrieved from CNN (2023)
https://https://edition.cnn.com/markets/fear-and-greed

Interval Classification

[0-24] Extreme Fear
[25-49] Fear
[50-74] Greed
[75-100] Extreme Greed

Table 27: Classification per interval for the Crypto Fear and Greed Index (CFNGI). Retrieved
from https://www.alternative.me

Component Weight

Volatility 29.41%
Market Momentum and Volume 29.41%
Social Media 17.66%
BTC Dominance 11.76%
Google Trends 11.76%

Table 28: Weight per component for the Crypto Fear and Greed Index (CFNGI). Retrieved from
https://www.alternative.me
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Figure 32: Crypto Fear and Greed Index (CNGI) overlaid with Bitcoin prices. The bar on the
right y-axis represents the scores (0-100) of the CFNGI. Red colors imply low values, and green
colors imply high values. Retrieved from https://www.lookintobitcoin.com

Figure 33: Bitcoin perpetual futures funding rate and Crypto Fear and Greed Index (CFNG).
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Figure 34: Bitcoin daily spot prices Crypto Fear and Greed Index (CFNG).

Figure 35: Bitcoin daily spot prices and Bitcoin perpetual futures funding rate plotted.
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Figure 36: BTC USD-M quarterly futures basis
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A.2 Time Series Theory

Figure 37: Swiss Market Index (SWI) price over time as shown by Neusser (2016) (page 8).

Figure 38: Critical values of the Dickey-Fuller distribution. Retrieved from Fuller (1994) (page
641)
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A.3 Cointegration Tests

Figure 39: Bitcoin hourly closing prices over our entire testing period

Figure 40: Ethereum hourly log closing prices over our entire testing period
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Figure 41: Ethereum hourly closing prices over our entire testing period

Figure 42: Hourly first differences of BTC log spot prices s, ∆s.
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Bitcoin Coin-M log price f

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 2020-09-25 2006 1 -1.552 0.508 1 -1.552 0.508
2020-07-01 2020-12-25 3928 2 0.580 0.987 1 0.498 0.985
2020-09-25 2021-03-26 4062 11 -0.979 0.761 0 -0.996 0.754
2020-12-25 2021-06-25 4160 24 -2.018 0.279 0 -2.230 0.195
2021-03-26 2021-09-24 4161 19 -1.482 0.543 4 -1.455 0.555
2021-06-25 2021-12-31 4343 2 -1.791 0.385 0 -1.744 0.408
2021-09-24 2022-03-25 4183 1 -1.242 0.655 0 -1.208 0.670
2021-12-31 2022-06-24 4018 5 -0.051 0.954 0 -0.085 0.951
2022-03-25 2022-09-30 4367 27 -1.519 0.524 0 -1.482 0.542

Bitcoin USD-M log price f

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-03 2021-03-26 1171 4 -2.737 0.068* 0 -3.176 0.021**
2021-03-16 2021-06-25 2323 11 -0.735 0.838 0 -0.801 0.819
2021-06-18 2021-09-24 2263 0 -1.168 0.687 0 -1.168 0.687
2021-09-22 2021-12-31 2304 2 -1.606 0.481 0 -1.614 0.476
2021-12-24 2022-03-25 2097 0 -2.635 0.086* 0 -2.635 0.086*
2022-03-22 2022-06-24 2166 18 0.304 0.978 0 0.138 0.969
2022-06-20 2022-09-30 2403 2 -2.018 0.278 0 -2.042 0.268

Ethereum Coin-M log price f

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-07-24 2020-09-25 1447 1 -3.016 0.033** 0 -3.097 0.027**
2020-08-05 2020-12-25 1954 0 -1.490 0.583 0 -1.490 0.583
2020-09-25 2021-03-26 3331 12 -1.653 0.455 0 -1.755 0.403
2020-12-25 2021-06-25 4157 24 -3.132 0.024** 0 -2.949 0.040**
2021-03-26 2021-09-24 4153 27 -2.151 0.225 0 -2.426 0.135
2021-06-25 2021-12-31 4343 2 -2.163 0.220 0 -2.067 0.258
2021-09-24 2022-03-25 4183 0 -1.407 0.579 0 -1.407 0.579
2021-12-31 2022-06-24 4007 0 0.172 0.971 0 0.172 0.971
2022-03-25 2022-09-30 4367 27 -1.439 0.564 0 -1.470 0.548

Ethereum USD-M log price f

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-04 2021-03-26 1147 0 -2.033 0.272 0 -2.033 0.272
2021-03-16 2021-06-25 2298 27 -1.490 0.537 0 -1.673 0.445
2021-06-18 2021-09-24 2263 0 -1.039 0.739 0 -1.039 0.739
2021-09-22 2021-12-31 2302 0 -2.480 0.120 0 -2.480 0.120
2021-12-24 2022-03-25 2097 20 -2.476 0.121 0 -2.376 0.149
2022-03-22 2022-06-24 2166 15 0.543 0.986 0 0.349 0.979
2022-06-20 2022-09-30 2403 2 -1.877 0.343 0 -1.869 0.347

Table 29: Results of performing the ADF test on f on Coin-M and USD-M for both Bitcoin and
Ethereum. *,** and*** imply a significant test statistic at confidence levels of 0.1,0.05 and 0.01,
respectively.
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Engle-Granger Test Ethereum Coin-M futures

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-07-24 - 2020-09-25 (N = 1449)

-0.026 1.007 0.004 286.253 0.000*** 0.983 15 -1.134 0.233 7 -2.358 0.018**

2020-08-05 - 2020-12-25 (N = 3949)

0.364 0.944 0.002 568.879 0.000*** 0.994 0 -2.856 0.004*** 0 -2.856 0.004***

2020-09-25 - 2021-03-26 (N = 4062)

0.056 0.996 0.000 2187.335 0.000*** 0.999 2 -2.777 0.005*** 2 -2.777 0.005***

2020-12-25 - 2021-06-25 (N = 4178)

0.385 0.956 0.001 905.433 0.000*** 0.995 2 -2.599 0.009*** 2 -2.599 0.009**

2021-03-26 - 2021-09-24 (N = 4176)

0.329 0.963 0.003 307.505 0.000*** 0.958 31 -1.138 0.232 5 -1.264 0.190

2021-06-25 - 2021-12-31 (N = 4340)

0.089 0.992 0.001 1445.614 0.000*** 0.998 6 -1.847 0.062* 5 -1.913 0.053*

2021-09-24 - 2022-03-25 (N = 4183)

-0.710 1.090 0.001 924.960 0.000*** 0.995 2 -2.022 0.041** 1 -2.141 0.031**

2021-12-31 - 2022-06-24 (N = 4009)

-0.169 1.023 0.000 2116.475 0.000*** 0.999 21 -2.924 0.003*** 7 -2.813 0.005***

2022-03-25 - 2022-09-30 (N = 4395)

-0.155 1.021 0.000 2754.753 0.000*** 0.999 21 -1.876 0.058* 2 -1.951 0.049**

Table 30: Results of performing the Engle-Granger test on each interval of ETH Coin-M log futures
and log spot prices. The left hand side of the table β̂,σβ̂ , tβ and R2 are parameters corresponding

to the OLS regression f = β1s + ϵ, and the parameters γAIC , t̂AIC , pAIC , γBIC , t̂BIC and pBIC

are parameters corresponding to the Augmented Dickey Fuller (ADF) test. Notice that *, ** and
*** imply significant t-statistics at the 10,5, and 1% level, respectively.

Figure 43: Hourly first differences of log ETH spot prices ft, ∆st.
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Engle-Granger Test on Bitcoin USD-M futures

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-03 - 2021-03-26 (N = 1169)

0.792 0.933 0.005 216.411 0.000*** 0.976 2 -1.628 0.098 2 -1.628 0.098

2021-03-16 - 2021-06-25 (N = 2318)

-1.335 1.127 0.001 842.000 0.000*** 0.997 3 -2.514 0.015** 3 -2.514 0.015**

2021-06-18 - 2021-09-24 (N = 2259)

0.061 0.995 0.000 2187.412 0.000*** 1.000 14 -1.795 0.069* 4 -3.674 0.000***

2021-09-22 - 2021-12-31 (N = 2302)

-0.661 1.062 0.001 695.204 0.000*** 0.995 8 -1.426 0.144 3 -1.637 0.096*

2021-12-24 - 2022-03-25 (N = 2097)

-0.608 1.0579 0.002 649.394 0.000*** 0.995 2 -1.581 0.121 2 -1.581 0.121

2021-03-22 - 2022-06-24 (N = 2166)

-0.152 1.015 0.000 4194.066 0.000*** 1.000 15 -2.119 0.033** 5 -2.206 0.026**

2022-06-20 - 2022-09-30 (N = 2403)

-0.249 1.025 0.001 1711.151 0.000*** 0.999 3 -3.488 0.000** 3 -3.488 0.000***

Table 31: Results of performing the Engle-Granger test on each interval of BTC USD-M log
futures prices and log spot prices. The left hand side of the table β̂,σβ̂ , tβ and R2 are parameters

corresponding to the OLS regression f = β1s + ϵ, and the parameters γAIC , t̂AIC , pAIC , γBIC ,
t̂BIC and pBIC are parameters corresponding to the Augmented Dickey Fuller (ADF) test. Notice
that *, ** and *** imply significant t-statistics at the 10,5, and 1% level, respectively.

Figure 44: Hourly first differences of Bitcoin Coin-M futures log prices (f) and spot prices s on
the interval 2020-06-30 - 2020-09-25
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Engle-Granger Test Ethereum USD-M futures

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-04 - 2021-03-26 (N = 1147)

-0.842 1.118 0.007 128.723 0.000*** 0.935 23 -0.546 0.478 3 -1.479 0.130

2021-03-16 - 2021-06-25 (N = 2318)

0.514 0.939 0.003 337.916 0.000*** 0.980 3 -1.238 0.198 3 -1.186 0.215

2021-06-18 - 2021-09-24 (N = 2259)

0.040 0.996 0.000 2981.712 0.000*** 1.000 13 -3.304 0.001*** 3 -4.885 1.768e-6***

2021-09-22 - 2021-12-31 (N = 2302)

0.044 0.997 0.002 466.083 0.000*** 0.990 20 -0.376 0.546 1 -0.858 0.346

2021-12-24 - 2022-03-25 (N = 2097)

-0.384 1.049 0.001 1239.101 0.000*** 0.999 4 -1.676 0.088* 2 -1.798 0.068*

2021-03-22 - 2022-06-24 (N = 2166)

-0.725 1.010 0.000 4768.318 0.000*** 1.000 14 -2.044 0.039** 6 -2.901 0.004***

2022-06-20 - 2022-09-30 (N = 2403)

0.1327 0.981 0.001 1559.43 0.000*** 0.999 2 -2.391 0.016** 1 -2.577 0.01***

Table 32: Results of performing the Engle-Granger test on each interval of ETH USD-M log
futures prices and log spot prices. The left hand side of the table β̂,σβ̂ , tβ and R2 are parameters

corresponding to the OLS regression f = β1s + ϵ, and the parameters γAIC , t̂AIC , pAIC , γBIC ,
t̂BIC and pBIC are parameters corresponding to the Augmented Dickey Fuller (ADF) test. Notice
that *, ** and *** imply significant t-statistics at the 10,5, and 1% level, respectively.

Figure 45: Hourly first differences of Ethereum Coin-M futures log prices (f) and spot prices s on
the interval 2022-03-25 - 2022-09-30
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ADF test f − s Bitcoin Coin-M futures

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 2020-09-25 2006 12 -0.544 0.883 1 -1.042 0.738
2020-07-01 2020-12-25 3928 18 -1.837 0.362 2 -2.021 0.277
2020-09-25 2021-03-26 4062 18 -1.572 0.498 1 -2.659 0.081*
2020-12-25 2021-06-25 4160 24 -0.919 0.782 2 -1.431 0.567
2021-03-26 2021-09-24 4161 9 -1.084 0.721 7 -1.126 0.704
2021-06-25 2021-12-31 4343 8 -1.382 0.591 3 -1.581 0.492
2021-09-24 2022-03-25 4183 6 -1.051 0.734 2 -1.129 0.703
2021-12-31 2022-06-24 4018 16 -3.152 0.023** 7 -2.841 0.052*
2022-03-25 2022-09-30 4367 26 -2.482 0.120 7 -2.520 0.111

ADF test f − s Bitcoin USD-M futures

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-03 2021-03-26 1171 9 -0.753 0.832 2 -1.056 0.732
2021-03-16 2021-06-25 2323 4 -1.026 0.743 3 -1.118 0.707
2021-06-18 2021-09-24 2263 14 -2.249 0.188 4 -4.150 0.000***
2021-09-22 2021-12-31 2304 8 -0.231 0.935 2 -0.793 0.821
2021-12-24 2022-03-25 2097 13 -2.417 0.137 3 -2.261 0.185
2022-03-22 2022-06-24 2166 15 -1.620 0.473 5 -1.645 0.459
2022-06-20 2022-09-30 2403 7 -1.855 0.353 3 -2.337 0.160

ADF test f − s Ethereum Coin-M futures

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-07-24 2020-09-25 1447 15 -1.043 0.737 0 -2.314 0.167
2020-08-05 2020-12-25 1954 8 -1.626 0.469 1 -1.722 0.419
2020-09-25 2021-03-26 3331 2 -2.912 0.044** 2 -2.912 0.044**
2020-12-25 2021-06-25 4157 2 -1.547 0.510 2 -1.547 0.510
2021-03-26 2021-09-24 4153 29 -1.109 0.712 5 -1.158 0.691
2021-06-25 2021-12-31 4343 6 -1.509 0.529 5 -1.584 0.491
2021-09-24 2022-03-25 4183 5 -1.104 0.713 2 -1.182 0.681
2021-12-31 2022-06-24 4007 16 -3.642 0.005*** 10 -3.638 0.012**
2022-03-25 2022-09-30 4367 28 -2.314 0.167 2 -2.201 0.206

ADF test f − s Ethereum USD-M futures

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-04 2021-03-26 1147 3 -1.278 0.639 0 3 -1.278 0.639
2021-03-16 2021-06-25 2298 12 -0.770 0.827 3 -1.135 0.700
2021-06-18 2021-09-24 2263 13 -2.606 0.092 6 -3.624 0.005
2021-09-22 2021-12-31 2302 20 -0.586 0.874 1 -1.089 0.719
2021-12-24 2022-03-25 2097 16 -3.368 0.012** 10 -2.914 0.044**
2022-03-22 2022-06-24 2166 14 -1.784 0.388 6 -2.396 0.143
2022-06-20 2022-09-30 2403 2 -1.984 0.294 2 -1.984 0.294

Table 33: Results of performing the ADF test on f − s for both assets on Coin-M and USD-M
futures. *,** and*** imply a significant test statistic at confidence levels of 0.1,0.05 and 0.01,
respectively.
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ADF test r̃ on Coin-M intervals

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 2020-09-25 2006 0 - 2.480 0.120 0 - 2.480 0.120
2020-07-01 2020-12-25 3928 23 -2.121 0.236 23 -2.121 0.236
2020-09-25 2021-03-26 4062 23 -1.041 0.738 23 -1.041 0.738
2020-12-25 2021-06-25 4160 23 -1.613 0.476 23 -1.613 0.476
2021-03-26 2021-09-24 4161 23 -1.480 0.543 0 -1.693 0.435
2021-06-25 2021-12-31 4343 23 -1.329 0.616 23 -1.329 0.616
2021-09-24 2022-03-25 4183 0 -0.671 0.854 0 -0.671 0.854
2021-12-31 2022-06-24 4018 0 0.168 0.970 0 0.168 0.970
2022-03-25 2022-09-30 4367 24 2.485 0.999 0 2.361 0.999

ADF test r̃ on USD-M intervals

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-03 2021-03-26 1171 23 -0.899 0.788 23 -0.899 0.788
2021-03-16 2021-06-25 2323 23 -2.145 0.225 23 -2.145 0.225
2021-06-18 2021-09-24 2263 0 -0.892 0.791 4 0 -0.892 0.791
2021-09-22 2021-12-31 2304 23 0.360 0.980 23 0.360 0.980
2021-12-24 2022-03-25 2097 23 -0.08 0.951 0 -0.602 0.871
2022-03-22 2022-06-24 2166 0 1.078 0.995 0 1.078 0.995
2022-06-20 2022-09-30 2403 24 1.765 0.998 0 1.705 0.998

Table 34: Results of performing the ADF test on r̃ on the corresponding intervals for Coin-M and
USD-M futures. *,** and*** imply a significant test statistic at confidence levels of 0.1,0.05 and
0.01, respectively.

Figure 46: Cost of Carry (rt,T (T − t)) per interval of USD-M futures. The declining cost of carry
throughout the interval can be explained by (T − t) getting smaller as t increases.
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Ethereum Coin-M futures Engle Granger test using cost-of-carry for investment assets

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 - 2020-09-25 (N = 2008)

-0.004 186.893 3.158 59.172 0.000*** 0.708 12 -3.311 0.001*** 0 -4.879 1.816e-06***

2020-08-05 - 2020-12-25 (N = 3949)

0.002 99.770 0.937 106.494 0.000*** 0.853 8 -3.405 0.001*** 0 -4.445 1.19e-5***

2020-09-25 - 2021-03-26 (N = 4062)

0.028 23.404 1.737 13.473 0.000*** 0.051 2 -2.946 0.003*** 2 -2.946 0.003***

2020-12-25 - 2021-06-25 (N = 4178)

0.033 124.396 2.667 46.648 0.000*** 0.343 2 -2.455 0.013** 2 -2.455 0.013**

2021-03-26 - 2021-09-24 (N = 4176)

-0.028 627.731 9.363 67.046 0.000*** 0.518 7 -2.048 0.038** 3 -2.340 0.018**

2021-06-25 - 2021-12-31 (N = 4340)

0.009 96.237 2.133 45.128 0.000*** 0.319 06 -2.839 0.004*** 5 -2.864 0.004***

2021-09-24 - 2022-03-25 (N = 4183)

0.057 -75.253 1.686 -44.631 0.000*** 0.323 5 -0.023 0.677 1 -0.0224 0.605

2021-12-31 - 2022-06-24 (N = 4024)

0.010 0.331 0.280 1.185 0.236 0.000 16 -2.859 0.004*** 2 -2.097 0.034**

2022-03-25 - 2022-09-30 (N = 4395)

-0.013 3.475 0.087 39.721 0.000*** 0.264 28 -2.146 0.031** 2 -2.225 0.025**

Table 35: Results of performing the Engle-Granger test on ETH Coin-M futures using the cost of
carry model for investment assets. The left hand side of the table β̂,σβ̂ , tβ and R2 are parameters

corresponding to the OLS regression f − s = α + βr̃ + ϵ, and the parameters γAIC , t̂AIC , pAIC ,
γBIC , t̂BIC and pBIC are parameters corresponding to the Augmented Dickey Fuller (ADF) test.
Notice that *, ** and *** imply significant t-statistics at the 10,5, and 1% level, respectively.
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Bitcoin USD-M futures Engle Granger test using cost-of-carry for investment assets

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-03 - 2021-03-26 (N = 1169)

0.004 954.113 19.166 49.781 0.000*** 0.680 3 -3.378 0.001*** 1 -3.931 9.593e-5***

2021-03-16 - 2021-06-25 (N = 2318)

0.002 1269.269 21.449 59.175.000 0.000*** 0.602 24 -3.300 0.0001*** 23 -3.424 0.001***

2021-06-18 - 2021-09-24 (N = 2259)

0.004 58.718 1.421 41.331 0.000*** 0.431 14 -2.905 0.004*** 4 -4.937 1.400e-6***

2021-09-22 - 2021-12-31 (N = 2302)

-0.003 318.375 3.733 85.285 0.000*** 0.760 23 -2.605 0.009*** 1 -3.336 0.001***

2021-12-24 - 2022-03-25 (N = 2097)

0.010 -9.922 1.736 -5.715 0.000*** 0.015 12 -2.002 0.043** 3 -2.200 0.026**

2021-03-22 - 2022-06-24 (N = 2166)

-0.003 6.801 0.191 35.628 0.000*** 0.370 15 -2.020 0.042** 4 -2.153 0.030**

2022-06-20 - 2022-09-30 (N = 2403)

-0.002 1.604 0.028 57.803 0.000*** 0.582 6 -3.098 0.002*** 3 -3.563 0.000***

Table 36: Results of performing the Engle-Granger test on each interval of BTC USD-M futures
using the cost of carry model for investment assets. The left hand side of the table β̂,σβ̂ , tβ and

R2 are parameters corresponding to the OLS regression f − s = α + βr̃ + ϵ, and the parameters
γAIC , t̂AIC , pAIC , γBIC , t̂BIC and pBIC are parameters corresponding to the Augmented Dickey
Fuller (ADF) test. Notice that *, ** and *** imply significant t-statistics at the 10,5, and 1%
level, respectively.

Figure 47: Plot of the net convenience yield for Ethereum Coin-M futures
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Ethereum USD-M futures Engle-Granger test using cost-of-carry for investment assets

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-04 - 2021-03-26 (N = 1147)

0.001 1216.249 27.956 43.506 0.000*** 0.623 3 -2.912 0.003*** 2 -3.086 0.002***

2021-03-16 - 2021-06-25 (N = 2318)

-0.001 1429.699 23.524 60.775 0.000*** 0.615 24 -3.346 0.001*** 23 -3.514 0.000***

2021-06-18 - 2021-09-24 (N = 2259)

0.005 55.803 1.590 35.096 0.000*** 0.353 12 -4.102 4.873e-05 3 -5.717 3.717e-8***

2021-09-22 - 2021-12-31 (N = 2302)

-0.003 339.693 3.401 99.881 0.000*** 0.813 23 -3.357 0.001*** 1 -4.117 4.592

2021-12-24 - 2022-03-25 (N = 2097)

0.011 -14.226 1.857 -7.659 0.000*** 0.027 16 -2.534 0.011** 4 -2.263 0.022*

2021-03-22 - 2022-06-24 (N = 2166)

-0.003 6.979 0.3214 32.602 0.000*** 0.329 6 -2.724 0.006*** 5 -2.434 0.014**

2022-06-20 - 2022-09-30 (N = 2403)

-0.01 1.815 0.082 22.075 0.000*** 0.169 2 -2.007 0.0428** 2 -2.007 0.042**

Table 37: Results of performing the Engle-Granger test on each interval of Ethereum USD-M
futures using the cost of carry model for investment assets. The left hand side of the table
β̂,σβ̂ , tβ and R2 are parameters corresponding to the OLS regression f − s = α + βr̃ + ϵ, and

the parameters γAIC , t̂AIC , pAIC , γBIC , t̂BIC and pBIC are parameters corresponding to the
Augmented Dickey Fuller (ADF) test. Notice that *, ** and *** imply significant t-statistics at
the 10,5, and 1% level, respectively.

Figure 48: Plot of the net convenience yield for Bitcoin USD-M futures
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Figure 49: Returns in percentage of the cash and carry strategy for Ethereum Coin-M futures

Figure 50: Returns in percentage of the cash and carry strategy for Ethereum Coin-M perpetual
futures
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Bitcoin Coin-M

2020-06-30 - 2020-09-25

Type Return (%) Max Drawdown (%)

Quarterly 0.763 2.698
Perpetual 3.378 0.997

2020-08-05 - 2020-12-25

Type Return (%) Max Drawdown (%)

Quarterly 1.046 4.800
Perpetual 6.045 0.998

2020-09-25 - 2021-03-26

Type Return (%) Max Drawdown (%)

Quarterly 1.245 5.207
Perpetual 14.247 0.998

2020-12-25 - 2021-06-25

Type Return (%) Max Drawdown (%)

Quarterly 5.813 7.234
Perpetual 16.767 0.998

2021-03-26 - 2021-09-24

Type Return (%) Max Drawdown (%)

Quarterly 12.000 9.410
Perpetual 6.528 0.998

2021-06-25 - 2021-12-31

Type Return (%) Max Drawdown (%)

Quarterly 2.217 2.570
Perpetual 4.869 1.048

2021-09-24 - 2022-03-25

Type Return (%) Max Drawdown (%)

Quarterly 3.992 4.680
Perpetual 4.268 0.999

2021-12-31 - 2022-06-24

Type Return (%) Max Drawdown (%)

Quarterly 10.236 0.071
Perpetual 1.445 0.993

2022-03-25 - 2022-09-30

Type Return (%) Max Drawdown (%)

Quarterly 5.722 0.844
Perpetual 1.648 1.000

Ethereum Coin-M

2020-06-30 - 2020-09-25

Type Return (%) Max Drawdown (%)

Quarterly 1.131 2.824
Perpetual 4.366 0.978

2020-08-05 - 2020-12-25

Type Return (%) Max Drawdown (%)

Quarterly 4.378 2.355
Perpetual 5.632 0.990

2020-09-25 - 2021-03-26

Type Return (%) Max Drawdown (%)

Quarterly 0.876 5.892
Perpetual 17.758 0.999

2020-12-25 - 2021-06-25

Type Return (%) Max Drawdown (%)

Quarterly 1.274 8.896
Perpetual 20.585 0.999

2021-03-26 - 2021-09-24

Type Return (%) Max Drawdown (%)

Quarterly 4.200 10.999
Perpetual 8.472 0.998

2021-06-25 - 2021-12-31

Type Return (%) Max Drawdown (%)

Quarterly 1.378 3.911
Perpetual 5.503 1.010

2021-09-24 - 2022-03-25

Type Return (%) Max Drawdown (%)

Quarterly 4.029 4.505
Perpetual 3.834 1.003

2021-12-31 - 2022-06-24

Type Return (%) Max Drawdown (%)

Quarterly 15.254 -0.164
Perpetual 0.807 0.989

2022-03-25 - 2022-09-30

Type Return (%) Max Drawdown (%)

Quarterly 6.122 0.812
Perpetual -1.228 3.314

Table 38: Comparison between cash-and-carry strategies for Quarterly and Perpetual Coin-M
futures for each interval (note that the perpetual has no interval but it is analyzed in the same
time periods as the quarterly futures to give a more fair comparison).
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Bitcoin USD-M

2021-02-04 - 2021-03-26

Type Return (%) Max Drawdown (%)

Quarterly -0.725 -7.549
Perpetual 6.485 0.998

2021-03-16 - 2021-06-25

Type Return (%) Max Drawdown (%)

Quarterly 11.073 4.733
Perpetual 5.8755 0.994

2021-06-18 - 2021-09-24

Type Return (%) Max Drawdown (%)

Quarterly 2.217 2.570
Perpetual 4.869 1.048

2021-09-22 - 2021-12-31

Type Return (%) Max Drawdown (%)

Quarterly 2.217 2.570
Perpetual 4.869 1.048

2021-12-24 - 2022-03-25

Type Return (%) Max Drawdown (%)

Quarterly 3.274 0.084
Perpetual 0.843 0.999

2022-03-22 - 2022-06-24

Type Return (%) Max Drawdown (%)

Quarterly 2.263 1.289
Perpetual 0.789 0.986

2022-06-20 - 2022-09-30

Type Return (%) Max Drawdown (%)

Quarterly 1.556 0.170
Perpetual 0.926 1.001

Ethereum USD-M

2021-02-04 - 2021-03-26

Type Return (%) Max Drawdown (%)

Quarterly 6.171 3.742
Perpetual 7.545 0.982

2021-03-16 - 2021-06-25

Type Return (%) Max Drawdown (%)

Quarterly 6.898 5.711
Perpetual 6.877 0.964

2021-06-18 - 2021-09-24

Type Return (%) Max Drawdown (%)

Quarterly 1.225 -0.209
Perpetual 2.379 1.019

2021-09-22 - 2021-12-31

Type Return (%) Max Drawdown (%)

Quarterly 3.377 1.744
Perpetual 3.222 0.996

2021-12-24 - 2022-03-25

Type Return (%) Max Drawdown (%)

Quarterly 4.06 0.033
Perpetual 0.765 0.987

2022-03-22 - 2022-06-24

Type Return (%) Max Drawdown (%)

Quarterly 3.016 -0.838
Perpetual 0.211 0.973

2022-06-20 - 2022-09-30

Type Return (%) Max Drawdown (%)

Quarterly 1.247 0.053
Perpetual -1.376 4.645

Table 39: Comparison between cash-and-carry strategies for Quarterly and Perpetual USD-M
futures for each interval (note that the perpetual has no interval but it is analyzed in the same
time periods as the quarterly futures to give a more fair comparison).
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Figure 51: Difference in percentage between Bitcoin Perpetual Futures and Spot Price.

First Difference Bitcoin Perpetual Futures Funding Rate (∆rf )

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-01-01 2022-09-30 2982 28 -14.414 8.120e-27*** 7 -27.905 0.000***

First Difference Ethereum Perpetual Futures Funding Rate (∆rf )

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-01-01 2022-09-30 2982 28 -15.656 1.571e-28*** 9 -25.117 0.000***

Table 40: Augmented Dickey-Fuller test on the first difference of Bitcoin and Ethereum funding
rates for the entire sample period. The test is used to assess whether a unit root is present in
funding rates. The null hypothesis (H0) is a unit root present, where the alternative (H1), is that
no unit root is present. Note that for the p-value, we have that *** is statistically significant at
the 1% level.
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(a) Autocorrelation Function (ACF) for the first-
differenced Bitcoin funding rate

(b) Autocorrelation Function (ACF) for the first-
differenced Ethereum funding rate

(c) Partial Autocorrelation Function (PACF) for the
first-differenced Bitcoin funding rate

(d) Partial Autocorrelation Function (PACF) for the
first-differenced Ethereum funding rate

Figure 52: (Partial) Autocorrelation Function for the Bitcoin and Ethereum USD-M first-
differenced funding rate
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(a) Autocorrelation Function (ACF) for the first-
differenced Bitcoin Coin-M funding rate

(b) Autocorrelation Function (ACF) for the first-
differenced Ethereum Coin-M funding rate

(c) Partial Autocorrelation Function (PACF) for the
first-differenced Bitcoin Coin-M funding rate

(d) Partial Autocorrelation Function (PACF) for the
first-differenced Ethereum Coin-M funding rate

Figure 53: (Partial) Autocorrelation Function for the Bitcoin and Ethereum Coin-M first-
differenced funding rate
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ADF test (rpf − r̃) on Coin-M intervals

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 2020-09-25 2006 8 - 2.161 0.221 0 - 1.908 0.328
2020-07-01 2020-12-25 3928 15 -2.852 0.051* 15 -2.852 0.051*
2020-09-25 2021-03-26 4062 23 -3.095 0.027** 8 -3.972 0.001***
2020-12-25 2021-06-25 4160 23 -2.727 0.069 23 -2.727 0.069
2021-03-26 2021-09-24 4161 0 -2.400 0.142 0 -2.400 0.142
2021-06-25 2021-12-31 4343 0 -2.127 0.185 0 -2.127 0.185
2021-09-24 2022-03-25 4183 0 -2.542 0.106 0 -2.542 0.106
2021-12-31 2022-06-24 4018 15 -5.032 1.914e-5*** 0 -5.311 5.207e-6***
2022-03-25 2022-09-30 4367 24 -2.432 0.107 0 -2.532 0.101

ADF test (rpf − r̃) on USD-M intervals

Start Date End Date N γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-03 2021-03-26 1171 8 -2.161 0.221 0 -1.908 0.328
2021-03-16 2021-06-25 2323 15 -1.876 0.328 15 -1.876 0.328
2021-06-18 2021-09-24 2263 0 -0.761 0.853 0 -0.761 0.853
2021-09-22 2021-12-31 2304 0 -2.312 0.153 0 -2.312 0.153
2021-12-24 2022-03-25 2097 23 -1.986 0.274 0 -1.912 0.253
2022-03-22 2022-06-24 2166 24 1.765 0.998 0 1.705 0.998
2022-06-20 2022-09-30 2403 24 -2.102 0.076* 0 -2.076 0.079*

Table 41: Results of performing the ADF test on (rpf − r̃) on the corresponding intervals for
Coin-M and USD-M futures. *,** and*** imply a significant test statistic at confidence levels of
0.1,0.05 and 0.01, respectively.

Figure 54: Net convenience yield δ Ethereum Coin-M futures under the funding rate cost-of-carry
model.

104



Engle-Granger test Ethereum Coin-M futures funding rate model

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2020-06-30 - 2020-09-25 (N = 2008)

0.008 0.636 0.017 36.565 0.000*** 0.483 10 -2.947 0.003*** 3 -3.015 0.002***

2020-08-05 - 2020-12-25 (N = 3949)

0.009 0.9311 0.017 54.144 0.000*** 0.603 15 -3.664 0.001*** 0 -4.797 1.161e-6***

2020-09-25 - 2021-03-26 (N = 4062)

0.023 0.422 0.01 42.776 0.000*** 0.355 2 -4.483 1.014e-5*** 1 -4.695 4.079e-6***

2020-12-25 - 2021-06-25 (N = 4178)

0.034 0.798 0.013 61.835 0.000*** 0.479 24 -3.092 0.002*** 2 -3.921 9.965e-5***

2021-03-26 - 2021-09-24 (N = 4176)

0.018 0.800 0.008 96.954 0.000*** 0.694 28 -4.666 4.604e-6*** 2 -4.477 1.039e-5***

2021-06-25 - 2021-12-31 (N = 4340)

0.02 0.582 0.016 36.265 0.000*** 0.234 2 -3.238 0.001*** 2 -3.238 0.001***

2021-09-24 - 2022-03-25 (N = 4183)

0.007 1.054 0.02 52.416 0.000*** 0.408 16 -4.106 4.792e-5*** 1 -4.698 4.028e-6***

2021-12-31 - 2022-06-24 (N = 4024)

0.008 1.074 0.02 53.152 0.000*** 0.414 15 -4.157 3.909e-5** 0 -4.939 1.392e-6***

2022-03-25 - 2022-09-30 (N = 4395)

0.004 0.089 0.025 3.509 0.000*** 0.003 28 -2.294 0.021** 2 -2.174 0.028**

Table 42: Results of performing the Engle-Granger test on each interval of ETH Coin-M futures
using the funding rate cost-of-carry model. The left hand side of the table β̂,σβ̂ , tβ and R2 are

parameters corresponding to the OLS regression f − s = β(rpf − r̃)+ ϵ, and the parameters γAIC ,
t̂AIC , pAIC , γBIC , t̂BIC and pBIC are parameters corresponding to the Augmented Dickey Fuller
(ADF) test. Notice that *, ** and *** imply significant t-statistics at the 10,5, and 1% level,
respectively.

105



EG-Test Bitcoin USD-M futures under the funding rate cost of carry model

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-03 - 2021-03-26 (N = 1169)

0.0123 0.743 0.011 65.374 0.000*** 0.788 6 -4.147 4.080e-5*** 1 -4.731 3.483e-6***

2021-03-16 - 2021-06-25 (N = 2318)

0.014 0.988 0.013 76.322 0.000*** 0.717 27 -4.331 1.919e-5*** 2 -4.068 5.588e-5***

2021-06-18 - 2021-09-24 (N = 2259)

0.008 0.051 0.012 4.306 0.000*** 0.008 14 -2.251 0.023** 4 -4.4118 4.575e-5***

2021-09-22 - 2021-12-31 (N = 2302)

0.006 1.118 0.013 88.414 0.000*** 0.774 1 -4.845 2.116e-6*** 1 -4.845 2.116e-6***

2021-12-24 - 2022-03-25 (N = 2097)

0.003 1.765 0.027 66.068 0.000*** 0.677 2 -4.311 2.089e-5*** 1 -4.491 9.821e-6***

2021-03-22 - 2022-06-24 (N = 2166)

0.004 0.073 0.032 2.270 0.023** 0.002 15 -1.571 0.109 4 -1.712 0.082*

2022-06-20 - 2022-09-30 (N = 2403)

0.003 0.529 0.011 47.926 0.000*** 0.490 3 -4.453 1.152e-5*** 3 -4.453 1.152e-5***

Table 43: Results of performing the Engle-Granger test on each interval of BTC USD-M futures
using the cost of carry model for investment assets. The left hand side of the table β̂,σβ̂ , tβ and

R2 are parameters corresponding to the OLS regression f −s = β(rpf − r̃)+ ϵ, and the parameters
γAIC , t̂AIC , pAIC , γBIC , t̂BIC and pBIC are parameters corresponding to the Augmented Dickey
Fuller (ADF) test. Notice that *, ** and *** imply significant t-statistics at the 10,5, and 1%
level, respectively.

Figure 55: Net convenience yield δ Bitcoin USD-M futures under the funding rate cost of carry
model.
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EG-Test Ethereum USD-M futures under the funding rate cost of carry model

α̂ β̂ σβ̂ tβ pβ R2 γAIC t̂AIC pAIC γBIC t̂BIC pBIC

2021-02-03 - 2021-03-26 (N = 1169)

0.0114 0.979 0.015 66.854 0.000*** 0.798 21 -2.561 0.010*** 2 -4.200 3.287e-5***

2021-03-16 - 2021-06-25 (N = 2318)

0.014 1.077 0.015 71.003 0.000*** 0.687 2 -3.704 0.000*** 1 -3.908 0.001***

2021-06-18 - 2021-09-24 (N = 2259)

0.046 0.009 0.012 3.747 0.000*** 0.006 13 -2.500 0.012** 6 -3.624 0.001***

2021-09-22 - 2021-12-31 (N = 2302)

0.006 1.128 0.014 81.319 0.000*** 0.776 1 -3.824 0.001*** 1 -3.824 0.001***

2021-12-24 - 2022-03-25 (N = 2097)

0.002 1.885 0.029 66.107 0.000*** 0.678 15 -3.709 0.001*** 1 -4.555 7.465e-6***

2021-03-22 - 2022-06-24 (N = 2166)

0.004 0.241 0.035 6.951 0.000** 0.022 6 -2.155 0.029** 6 -2.155 0.029**

2022-06-20 - 2022-09-30 (N = 2403)

-0.0043 0.718 0.028 25.334 0.000*** 0.212 2 -2.783 0.005*** 1 -2.910 0.003***

Table 44: Results of performing the Engle-Granger test on each interval of ETH USD-M futures
using the cost of carry model for investment assets. The left hand side of the table β̂,σβ̂ , tβ and

R2 are parameters corresponding to the OLS regression f−s = β(rpf − r̃)+ϵ , and the parameters
γAIC , t̂AIC , pAIC , γBIC , t̂BIC and pBIC are parameters corresponding to the Augmented Dickey
Fuller (ADF) test. Notice that *, ** and *** imply significant t-statistics at the 10,5, and 1%
level, respectively.
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